Science.gov

Sample records for solfataricus p2 binds

  1. Discovery and characterization of a second extremely thermostable (+)-γ-lactamase from Sulfolobus solfataricus P2.

    PubMed

    Zhu, Shaozhou; Huang, Rong; Gao, Shuaihua; Li, Xinxin; Zheng, Guojun

    2016-05-01

    A thermostable formamidase from the hyperthermophilic archaeon Sulfolobus solfataricus P2 was revealed to be a novel, thermostable (+)-γ-lactamase. This (+)-γ-lactamase (Sso2810) is composed of only 318 amino acid residues, in contrast to a previously reported (+)-γ-lactamase (Sso2122) with 504 amino acid residues from the same strain. Herein, we demonstrate that a single strain may contain diverse (+)-γ-lactamases. The gene of this thermostable (+)-γ-lactamase was cloned, functionally expressed in Escherichia coli BL21 and purified by a simple yet effective heat treatment method. Sso2810 was biochemically characterized and compared to Sso2122, with phylogenetic analysis indicating different evolutionary histories for the two encoding genes. This newly found thermostable enzyme shows promising properties for industrial applications; specifically, it could be used for the production of chirally pure (-)-γ-lactam for the synthesis of well-known carbocyclic nucleoside antiretroviral agents like Abacavir and Peramivir. The chiral product of the enzyme was purified to >99% enantiomeric excess. PMID:26685014

  2. Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2

    SciTech Connect

    Barry, Richard C.; Young, Mark J.; Stedman, Kenneth M.; Dratz, Edward A.

    2006-07-14

    A proteomic map of Sulfolobus solfataricus P2, an archaeon that grows optimally at 80 C and pH 3.2, was developed using high resolution two-dimensional gel electrophoresis and peptide mass fingerprinting. A total of 867 protein spots (659 aqueous tris-soluble spots and 208 aqueous tris-insoluble) were mapped over IPG 3-10, 4-7, and 6-11, with second dimension gels made of 8-18% polyacrylamide. 324 different gene products were represented by the 867 spots, with 274 gene products being identified in the tris-soluble fractions and 100 gene products in the tris-insoluble portion. Fifty gene products were found on gels from both fractions. Additionally, an average of 1.50 + 0.12 isoforms/per protein were identified. This mapping study confirmed the expression of proteins involved in numerous metabolic, transport, energy production, nucleic acid replication, translation, and transcription pathways. Of particular interest, phosphoenolpyruvate carboxykinase (SSO2537) was detected even though the pathway for gluconeogenesis is unknown for this archaeon. Tris-soluble fractions contained many cytosolic proteins while tris-insoluble fractions contained many membrane-associated proteins, including ABC transporters and an ATP synthase. This study provides an optimized 2-DE approach for investigating the biochemical pathways and post-translational modifications employed by Sulfolobus to survive in its extreme environment.

  3. Purification, crystallization and preliminary crystallographic analysis of a GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus

    SciTech Connect

    Wu, Hao; Sun, Lei; Brouns, Stan J. J.; Fu, Sheng; Akerboom, Jasper; Li, Xuemei; Oost, John van der

    2007-03-01

    A GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus has been crystallized. Combined with biochemical analyses, it is expected that the structure of this protein will give insight in the function of a relatively unknown subfamily of the GTPase superfamily. A predicted GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus, termed SsGBP, has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized using the hanging-drop vapour-diffusion technique in the presence of 0.05 M cadmium sulfate and 0.8 M sodium acetate pH 7.5. A single-wavelength anomalous dispersion data set was collected to a maximum resolution of 2.0 Å using a single cadmium-incorporated crystal. The crystal form belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with approximate unit-cell parameters a = 65.0, b = 72.6, c = 95.9 Å and with a monomer in the asymmetric unit.

  4. Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2.

    PubMed

    Ettema, Thijs J G; Brinkman, Arie B; Lamers, Packo P; Kornet, Noor G; de Vos, Willem M; van der Oost, John

    2006-07-01

    Using a comparative genomics approach, a copper resistance gene cluster has been identified in multiple archaeal genomes. The cop cluster is predicted to encode a metallochaperone (CopM), a P-type copper-exporting ATPase (CopA) and a novel, archaea-specific transcriptional regulator (CopT) which might control the expression of the cop genes. Sequence analysis revealed that CopT has an N-terminal DNA-binding helix-turn-helix domain and a C-terminal TRASH domain; TRASH is a novel domain which has recently been proposed to be uniquely involved in metal-binding in sensors, transporters and trafficking proteins in prokaryotes. The present study describes the molecular characterization of the cop gene cluster in the thermoacidophilic crenarchaeon Sulfolobus solfataricus. The polycistronic copMA transcript was found to accumulate in response to growth-inhibiting copper concentrations, whereas copT transcript abundance appeared to be constitutive. DNA-binding assays revealed that CopT binds to the copMA promoter at multiple sites, both upstream and downstream of the predicted TATA-BRE site. Copper was found to specifically modulate the affinity of DNA binding by CopT. This study describes a copper-responsive operon in archaea, a new family of archaeal DNA-binding proteins, and supports the idea that this domain plays a prominent role in the archaeal copper response. A model is proposed for copper-responsive transcriptional regulation of the copMA gene cluster. PMID:16804172

  5. Enzymatic synthesis of dimaltosyl-{beta}-cyclodextrin via a transglycosylation reaction using TreX, a Sulfolobus solfataricus P2 debranching enzyme

    SciTech Connect

    Kang, Hee-Kwon; Cha, Hyunju; Yang, Tae-Joo; Park, Jong-Tae; Lee, Seungjae; Kim, Young-Wan; Auh, Joong-Hyuck; Okada, Yasuyo; Kim, Jung-Wan; Cha, Jaeho; Kim, Chung Ho; Park, Kwan-Hwa

    2008-02-01

    Di-O-{alpha}-maltosyl-{beta}-cyclodextrin ((G2){sub 2}-{beta}-CD) was synthesized from 6-O-{alpha}-maltosyl-{beta}-cyclodextrin (G2-{beta}-CD) via a transglycosylation reaction catalyzed by TreX, a debranching enzyme from Sulfolobus solfataricus P2. TreX showed no activity toward glucosyl-{beta}-CD, but a transfer product (1) was detected when the enzyme was incubated with maltosyl-{beta}-CD, indicating specificity for a branched glucosyl chain bigger than DP2. Analysis of the structure of the transfer product (1) using MALDI-TOF/MS and isoamylase or glucoamylase treatment revealed it to be dimaltosyl-{beta}-CD, suggesting that TreX transferred the maltosyl residue of a G2-{beta}-CD to another molecule of G2-{beta}-CD by forming an {alpha}-1,6-glucosidic linkage. When [{sup 14}C]-maltose and maltosyl-{beta}-CD were reacted with the enzyme, the radiogram showed no labeled dimaltosyl-{beta}-CD; no condensation product between the two substrates was detected, indicating that the synthesis of dimaltosyl-{beta}-CD occurred exclusively via transglycosylation of an {alpha}-1,6-glucosidic linkage. Based on the HPLC elution profile, the transfer product (1) was identified to be isomers of 6{sup 1},6{sup 3}- and 6{sup 1},6{sup 4}-dimaltosyl-{beta}-CD. Inhibition studies with {beta}-CD on the transglycosylation activity revealed that {beta}-CD was a mixed-type inhibitor, with a K{sub i} value of 55.6 {mu}mol/mL. Thus, dimaltosyl-{beta}-CD can be more efficiently synthesized by a transglycosylation reaction with TreX in the absence of {beta}-CD. Our findings suggest that the high yield of (G2){sub 2}-{beta}-CD from G2-{beta}-CD was based on both the transglycosylation action mode and elimination of the inhibitory effect of {beta}-CD.

  6. Insertion of dNTPs Opposite the 1,N2-Propanodeoxyguanosine Adduct by Sulfolobus solfataricus P2 DNA Polymerase IV†, ‡

    PubMed Central

    Wang, Yazhen; Musser, Sarah K.; Saleh, Sam; Marnett, Lawrence J.; Egli, Martin; Stone, Michael P.

    2009-01-01

    1, N2-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2′-deoxy-β-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase–DNA–dNTP complexes for three template–primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 Å. Three template 18-mer–primer 13-mer sequences, 5′-d(TCACXAAATCCTTCCCCC)-3′ • 5′-d(GGGGGAAGGATTT)-3′ (template I), 5′-d(TCACXGAATCCT-TCCCCC)-3′ • 5′-d(GGGGGAAGGATTC)-3′ (template II), and 5′-d(TCATXGAATCCTTCCCCC)-3′ • 5′-d(GGGGGAAGGATTC)-3′ (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5′-neighboring template dC, utilizing Watson–Crick geometry. Replication bypass experiments with the template–primer 5′TCACXAAATCCTTACGAGCATCGCCCCC-3′ • 5′-GGGGGCGATGCTCGTAAGGATTT-3′, where X is PdG, which includes PdG in the 5′-CXA-3′ template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5′-TXG-3′, a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5′-neighboring T, utilizing Watson–Crick geometry. Thus, all three ternary complexes were of the “type II” structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91–102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how −1 frameshift mutations might be generated for the PdG adduct, a structural model for the exocylic M1dG adduct

  7. Frameshift Deletion by Sulfolobus solfataricus P2 DNA Polymerase Dpo4 T239W Is Selective for Purines and Involves Normal Conformational Change Followed by Slow Phosphodiester Bond Formation*

    PubMed Central

    Zhang, Huidong; Beckman, Jeff W.; Guengerich, F. Peter

    2009-01-01

    The human DNA polymerase κ homolog Sulfolobus solfataricus DNA polymerase IV (Dpo4) produces “−1” frameshift deletions while copying unmodified DNA and, more frequently, when bypassing DNA adducts. As judged by steady-state kinetics and mass spectrometry, bypass of purine template bases to produce these deletions occurred rarely but with 10-fold higher frequency than with pyrimidines. The DNA adduct 1,N2-etheno-2′-deoxyguanosine, with a larger stacking surface than canonical purines, showed the highest frequency of formation of −1 frameshift deletions. Dpo4 T239W, a mutant we had previously shown to produce fluorescence changes attributed to conformational change following dNTP binding opposite cognate bases (Beckman, J. W., Wang, Q., and Guengerich, F. P. (2008) J. Biol. Chem. 283, 36711–36723), reported similar conformational changes when the incoming dNTP complemented the base following a templating purine base or bulky adduct (i.e. the “+1” base). However, in all mispairing cases, phosphodiester bond formation was inefficient. The frequency of −1 frameshift events and the associated conformational changes were not dependent on the context of the remainder of the sequence. Collectively, our results support a mechanism for −1 frameshift deletions by Dpo4 that involves formation of active complexes via a favorable conformational change that skips the templating base, without causing slippage or flipping out of the base, to incorporate a complementary residue opposite the +1 base, in a mechanism previously termed “dNTP-stabilized incorporation.” The driving force is attributed to be the stacking potential between the templating base and the incoming dNTP base. PMID:19837980

  8. Frameshift deletion by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W is selective for purines and involves normal conformational change followed by slow phosphodiester bond formation.

    PubMed

    Zhang, Huidong; Beckman, Jeff W; Guengerich, F Peter

    2009-12-11

    The human DNA polymerase kappa homolog Sulfolobus solfataricus DNA polymerase IV (Dpo4) produces "-1" frameshift deletions while copying unmodified DNA and, more frequently, when bypassing DNA adducts. As judged by steady-state kinetics and mass spectrometry, bypass of purine template bases to produce these deletions occurred rarely but with 10-fold higher frequency than with pyrimidines. The DNA adduct 1,N(2)-etheno-2'-deoxyguanosine, with a larger stacking surface than canonical purines, showed the highest frequency of formation of -1 frameshift deletions. Dpo4 T239W, a mutant we had previously shown to produce fluorescence changes attributed to conformational change following dNTP binding opposite cognate bases (Beckman, J. W., Wang, Q., and Guengerich, F. P. (2008) J. Biol. Chem. 283, 36711-36723), reported similar conformational changes when the incoming dNTP complemented the base following a templating purine base or bulky adduct (i.e. the "+1" base). However, in all mispairing cases, phosphodiester bond formation was inefficient. The frequency of -1 frameshift events and the associated conformational changes were not dependent on the context of the remainder of the sequence. Collectively, our results support a mechanism for -1 frameshift deletions by Dpo4 that involves formation of active complexes via a favorable conformational change that skips the templating base, without causing slippage or flipping out of the base, to incorporate a complementary residue opposite the +1 base, in a mechanism previously termed "dNTP-stabilized incorporation." The driving force is attributed to be the stacking potential between the templating base and the incoming dNTP base. PMID:19837980

  9. Comparison of the In Vitro Replication of the 7-(2-Oxoheptyl)-1,N2-etheno-2′-deoxyguanosine and 1,N2-Etheno-2′-deoxyguanosine Lesions by Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4)

    PubMed Central

    Christov, Plamen P.; Petrova, Katya V.; Shanmugam, Ganesh; Kozekov, Ivan D.; Kozekova, Albena; Guengerich, F. Peter; Stone, Michael P.; Rizzo, Carmelo J.

    2010-01-01

    Oligonucleotides were synthesized containing the 7-(2-oxoheptyl)-etheno-dGuo adduct, which is derived from the reaction of dGuo and the lipid peroxidation product 4-oxo-2-nonenal. The in vitro replication of 7-(2-oxoheptyl)-etheno-dGuo by the model Y-family polymerase Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4) was examined in two sequences. The extension products were sequenced using an improved LC-ESI-MS/MS protocol developed in our laboratories and the results were compared to that of the 1,N2-etheno-dGuo adduct in the same sequence contexts. Both etheno adducts were highly miscoding when situated in a 5′-TXG-3′ local sequence contexts with <4% of the extension products being derived from error-free bypass. The major extension products resulted from the misinsertion of Ade opposite the adduct and a one-base deletion. The major extension products from replication of the etheno lesions in a 5′-CXG-3′ local sequence context were the result of misinsertion of Ade, a one-base deletion, and error-free bypass. Other minor extension products were also identified. The 7-(2-oxoheptyl)-etheno-dGuo lesion resulted in a larger frequency of misinsertion of Ade, whereas the 1,N2-etheno-dGuo gave more of the one-base deletion product. Conformational studies of duplex DNA containing the 7-(2-oxoheptyl)-etheno-dGuo in a 5′-TXG-3′ sequence context by NMR indicated the presence of a pH-dependent conformational transition, likely involving the glycosyl bond at the adducted guanosine; the pKa for this transition was lower than that observed for the 1,N2-ε-dGuo lesion. However, the 7-(2-oxoheptyl)-etheno-dGuo lesion, the complementary Cyt, and both flanking base pairs remained disordered at all pH values, which is attributed to the presence of the hydrophobic heptyl group of the 7-(2-oxoheptyl)-etheno-dGuo lesion. The altered pKa value and the structural disorder at the 7-(2-oxoheptyl)-etheno-dGuo lesion site, as compared to the same sequence containing the 1,N2

  10. Two disparate ligand binding sites in the human P2Y1 receptor

    PubMed Central

    Zhang, Dandan; Gao, Zhan-Guo; Zhang, Kaihua; Kiselev, Evgeny; Crane, Steven; Wang, Jiang; Paoletta, Silvia; Yi, Cuiying; Ma, Limin; Zhang, Wenru; Han, Gye Won; Liu, Hong; Cherezov, Vadim; Katritch, Vsevolod; Jiang, Hualiang; Stevens, Raymond C.; Jacobson, Kenneth A.; Zhao, Qiang; Wu, Beili

    2015-01-01

    In response to adenosine 5′-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7Å resolution, and with a non-nucleotide antagonist BPTU at 2.2Å resolution. The structures reveal two distinct ligand binding sites, providing atomic details of P2Y1R’s unique ligand binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which, however, is different in shape and location from the nucleotide binding site in previously determined P2Y12R structure. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects. PMID:25822790

  11. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  12. Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal domain of Ss-LrpB, a transcription regulator from Sulfolobus solfataricus

    SciTech Connect

    Peeters, Eveline; Hoa, Bach Thi Mai; Zegers, Ingrid; Charlier, Daniel; Maes, Dominique

    2005-11-01

    The C-terminal domain of the transcriptional regulator Ss-LrpB from S. solfataricus was purified by affinity chromatography and crystallized. Crystals belong to space group P2{sub 1}2{sub 1}2. A complete data set was collected to a resolution of 2 Å. Ss-LrpB from Sulfolobus solfataricus P2 belongs to the bacterial/archaeal superfamily of Lrp-like (leucine-responsive regulatory protein-like) transcription regulators. The N-terminal DNA-binding domain contains a HTH motif and the C-terminal domain contains an αβ-sandwich (βαββαβ fold). The C-terminal domain was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 59.35, b = 74.86, c = 38.08 Å and a data set was collected to 2.0 Å resolution. Structure determination using a selenomethionine derivative is under way.

  13. Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding

    PubMed Central

    2014-01-01

    Background X-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome, the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates, triggering silencing of the chromosome. In mouse, an alternative Xist promoter, P2 is also the site of YY1 binding, which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation, including absence of a functional antisense regulator Tsix, and absence of strictly paternal inactivation in extraembryonic tissues, prompting us to examine regulatory regions for the human XIST gene. Results We demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However, YY1 binding is insufficient to drive P2 expression or establish the DHS, which may require a development-specific factor. Furthermore, reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST. Conclusions The differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter, P2, that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition, this region binds YY1 on the unmethylated inactive X chromosome, and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST. PMID:25200388

  14. Glutamate-1-semialdehyde aminotransferase from Sulfolobus solfataricus.

    PubMed

    Palmieri, G; Di Palo, M; Scaloni, A; Orru, S; Marino, G; Sannia, G

    1996-12-01

    Glutamate-1-semialdehyde aminotransferase (GSA-AT) from the extremely thermophilic bacterium Sulfolobus solfataricus has been purified to homogeneity and characterized. GSA-AT is the last enzyme in the C5 pathway for the conversion of glutamate into the tetrapyrrole precursor delta-aminolaevulinate (ALA) in plants, algae and several bacteria. The active form of GSA-AT from S. solfataricus seems to be a homodimer with a molecular mass of 87 kDa. The absorption spectrum of the purified aminotransferase is indicative of the presence of pyridoxamine 5'-phosphate (PMP) cofactor, and the catalytic activity of the enzyme is further stimulated by addition of PMP. 3-Amino-2,3-dihydrobenzoic acid is an inhibitor of the aminotransferase activity. The N-terminal amino acid sequence of GSA-AT from S. solfataricus was found to share significant similarity with the eukaryotic and eubacterial enzymes. Evidence is provided that ALA synthesis in S. solfataricus follows the C5 pathway characteristic of plants, algae, cyanobacteria and many other bacteria. PMID:8973563

  15. Blockade of ATP binding site of P2 purinoceptors in rat parotid acinar cells by isothiocyanate compounds.

    PubMed

    Soltoff, S P; McMillian, M K; Talamo, B R; Cantley, L C

    1993-05-01

    Extracellular ATP activates a P2Z-type purinergic receptor (purinoceptor) in rat parotid acinar cells that increases the intracellular free Ca2+ concentration via the entry of extracellular Ca2+ through an ATP-sensitive cation channel (Soltoff et al., Am J Physiol 262: C934-C940, 1992). To learn more about the ATP binding site of the purinoceptor, we examined the effects of several stilbene isothiocyanate analogs of DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), which block the binding of [32P]ATP to intact parotid cells (McMillian et al., Biochem J 255:291-300, 1988) and blocked the activation of the P2Z purinoceptor. The ATP-stimulated 45Ca2+ uptake was blocked by DIDS, H2DIDS (dihydro-DIDS; 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid), and SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid), but not by DNDS (4,4'-dinitrostilbene-2,2'-disulfonic acid), a stilbene disulfonate compound lacking isothiocyanate (SCN-) groups, or by KSCN. The potency of the stilbene disulfonates was related to the number of isothiocyanate groups on each compound. Under the experimental conditions, the IC50 value of DIDS (approximately 35 microM), which has two SCN-groups, was much lower than that of SITS (approximately 125 microM), which has only one SCN-group. The inhibitory effects of DIDS appeared to be much more potent than those of SITS due to the kinetics of their binding to the purinoceptors. Eosin-5-isothiocyanate (EITC) and fluorescein-5-isothiocyanate (FITC), non-stilbene isothiocyanate compounds with single SCN-groups, also blocked the response to ATP and were less potent than DIDS. Trinitrophenyl-ATP (TNP-ATP), an ATP derivative that is not an effective agonist of the parotid P2Z receptor, blocked the covalent binding of DIDS to the plasma membrane, suggesting that ATP and DIDS bind to the same site. Reactive Blue 2 (Cibacron Blue 3GA), an anthraquinone-sulfonic acid derivative that is a noncovalent purinergic antagonist, also blocked

  16. Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the C-­terminal domain of Ss-LrpB, a transcription regulator from Sulfolobus solfataricus

    PubMed Central

    Peeters, Eveline; Hoa, Bach Thi Mai; Zegers, Ingrid; Charlier, Daniel; Maes, Dominique

    2005-01-01

    Ss-LrpB from Sulfolobus solfataricus P2 belongs to the bacterial/archaeal superfamily of Lrp-like (leucine-responsive regulatory protein-like) transcription regulators. The N-terminal DNA-binding domain contains a HTH motif and the C-terminal domain contains an αβ-sandwich (βαββαβ fold). The C-­terminal domain was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P21212, with unit-cell parameters a = 59.35, b = 74.86, c = 38.08 Å and a data set was collected to 2.0 Å resolution. Structure determination using a selenomethionine derivative is under way. PMID:16511214

  17. Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site.

    PubMed Central

    Pintor, J.; Torres, M.; Castro, E.; Miras-Portugal, M. T.

    1991-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide, which is stored in secretory granules, presents two types of high affinity binding sites in chromaffin cells. A Kd value of 8 +/- 0.65 x 10(-11) M and Bmax value of 5420 +/- 450 sites per cell were obtained for the high affinity binding site. A Kd value of 5.6 +/- 0.53 x 10(-9) M and a Bmax value close to 70,000 sites per cell were obtained for the second binding site with high affinity. 2. The diadenosine polyphosphates, Ap3A, Ap4A, Ap5A and Ap6A, displaced [3H]-Ap4A from the two binding sites, the Ki values being 1.0 nM, 0.013 nM, 0.013 nM and 0.013 nM for the very high affinity binding site and 0.5 microM, 0.13 microM, 0.062 microM and 0.75 microM for the second binding site. 3. The ATP analogues displaced [3H]-Ap4A with the potency order of the P2y receptors, adenosine 5'-O-(2 thiodiphosphate) (ADP-beta-S) greater than 5'-adenylyl imidodiphosphate (AMP-PNP) greater than alpha, beta-methylene ATP (alpha, beta-MeATP), in both binding sites. The Ki values were respectively 0.075 nM, 0.2 nM and 0.75 nM for the very high affinity binding site and 0.125 microM, 0.5 microM and 0.9 microM for the second binding site. PMID:1912985

  18. Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.

    PubMed Central

    Giardina, P; de Biasi, M G; de Rosa, M; Gambacorta, A; Buonocore, V

    1986-01-01

    Glucose dehydrogenase has been purified to homogeneity from cell extracts of the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme utilizes both NAD+ and NADP+ as coenzyme and catalyses the oxidation of several monosaccharides to the corresponding glyconic acid. Substrate specificity and oxidation rate depend on the coenzyme present; when NAD+ is used, the enzyme binds and oxidizes specifically sugars presenting equatorial orientation of hydroxy groups at C-2, C-3 and C-4. The Mr of the native enzyme is 124,000 and decreases to about 60,000 in the presence of 6 M-guanidinium chloride and to about 30,000 in the presence of 5% (w/v) SDS. The enzyme shows maximal activity at pH 9, 77 degrees C and 20 mM-Mg2+, -Mn2+ or -Ca2+ and is fairly stable in the presence of chaotropic agents and water-miscible organic solvents such as methanol or acetone. PMID:3827812

  19. Selective permeabilization of cervical cancer cells to an ionic DNA-binding cytotoxin by activation of P2Y receptors

    PubMed Central

    Bukhari, Maurish; Deng, Han; Jones, Noelle; Towne, Zachary; Woodworth, Craig D.; Samways, Damien S.K.

    2015-01-01

    Extracellular ATP is known to permeabilize certain cell types to polyatomic cations like YO-PRO1. Here, we report that extracellularly applied ATP stimulated rapid uptake and accumulation of an otherwise weakly membrane permeable fluorescent DNA-binding cytotoxin, Hoechst 33258, into cervical cancer cells. While ATP stimulated Hoechst 332uptake in 20–70% of cells from seven cervical cancer cell lines, it consistently stimulated uptake in less than 8% of cervical epithelial cells obtained from the normal transformation zone and ectocervix tissue of 10 patients. ATP-evoked Hoechst 33258 uptake was independent of ionotropic P2X receptors, but dependent on activation of P2Y receptors. Thus, we show here that cervical cancer cells can be selectively induced to take up and accumulate an ionic cytotoxin by exposure to extracellular ATP. PMID:25937122

  20. Cellulose Degradation by Sulfolobus solfataricus Requires a Cell-Anchored Endo-β-1-4-Glucanase

    PubMed Central

    Girfoglio, Michele; Rossi, Mosé

    2012-01-01

    A sequence encoding a putative extracellular endoglucanase (sso1354) was identified in the complete genome sequence of Sulfolobus solfataricus. The encoded protein shares signature motifs with members of glycoside hydrolases family 12. After an unsuccessful first attempt at cloning the full-length coding sequences in Escherichia coli, an active but unstable recombinant enzyme lacking a 27-residue N-terminal sequence was generated. This 27-amino-acid sequence shows significant similarity with corresponding regions in the sugar binding proteins AraS, GlcS, and TreS of S. solfataricus that are responsible for anchoring them to the plasma membrane. A strategy based on an effective vector/host genetic system for Sulfolobus and on expression control by the promoter of the S. solfataricus gene which encodes the glucose binding protein allowed production of the enzyme in sufficient quantities for study. In fact, the enzyme expressed in S. solfataricus was stable and highly thermoresistant and showed optimal activity at low pH and high temperature. The protein was detected mainly in the plasma membrane fraction, confirming the structural similarity to the sugar binding proteins. The results of the protein expression in the two different hosts showed that the SSO1354 enzyme is endowed with an endo-β-1-4-glucanase activity and specifically hydrolyzes cellulose. Moreover, it also shows significant but distinguishable specificity toward several other sugar polymers, such as lichenan, xylan, debranched arabinan, pachyman, and curdlan. PMID:22821975

  1. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    PubMed

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion. PMID:25605536

  2. Molecular Determinants of Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Binding to Transient Receptor Potential V1 (TRPV1) Channels*

    PubMed Central

    Poblete, Horacio; Oyarzún, Ingrid; Olivero, Pablo; Comer, Jeffrey; Zuñiga, Matías; Sepulveda, Romina V.; Báez-Nieto, David; González Leon, Carlos; González-Nilo, Fernando; Latorre, Ramón

    2015-01-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate. PMID:25425643

  3. Dyspnea related to reversibly-binding P2Y12 inhibitors: A review of the pathophysiology, clinical presentation and diagnostics.

    PubMed

    Unverdorben, Martin; Parodi, Guido; Pistolesi, Massimo; Storey, Robert F

    2016-01-01

    Dyspnea is a common symptom physiologically associated with strenuous exercise and pathologically reflecting well-known diseases and conditions that are predominantly pulmonary, cardiovascular, and weight-related in origin. Dyspnea improves with appropriate measures that enhance physical performance and treatment of the underlying diseases. Dyspnea is less commonly triggered by other causes such as the environment (e.g., ozone), drugs, and others, some of which do not seem to affect bronchopulmonary function as evidenced by normal results of comprehensive pulmonary function testing. In cardiovascular medicine, dyspnea has recently attracted attention because it has been reported that this symptom occurs more frequently with the administration of the new oral reversibly-binding platelet P2Y12 receptor inhibitors ticagrelor [1-6], cangrelor [7-10], and elinogrel [11]. This paper succinctly addresses the current understanding of the pathophysiology, clinical presentation, and diagnostics of dyspnea, associated either with bronchopulmonary function impairment, as triggered mainly by pulmonary and cardiovascular diseases, or without bronchopulmonary function impairment, as induced by endogenous or external compounds such as drugs in order to provide a context for understanding, recognizing and managing P2Y12 inhibitor-induced dyspnea. PMID:26386945

  4. Structure and Biochemical Characterization of Protein Acetyltransferase from Sulfolobus solfataricus

    SciTech Connect

    Brent, Michael M.; Iwata, Ayaka; Carten, Juliana; Zhao, Kehao; Marmorstein, Ronen

    2009-09-02

    The Sulfolobus solfataricus protein acetyltransferase (PAT) acetylates ALBA, an abundant nonspecific DNA-binding protein, on Lys{sup 16} to reduce its DNA affinity, and the Sir2 deacetylase reverses the modification to cause transcriptional repression. This represents a 'primitive' model for chromatin regulation analogous to histone modification in eukaryotes. We report the 1.84-{angstrom} crystal structure of PAT in complex with coenzyme A. The structure reveals homology to both prokaryotic GNAT acetyltransferases and eukaryotic histone acetyltransferases (HATs), with an additional 'bent helix' proximal to the substrate binding site that might play an autoregulatory function. Investigation of active site mutants suggests that PAT does not use a single general base or acid residue for substrate deprotonation and product reprotonation, respectively, and that a diffusional step, such as substrate binding, may be rate-limiting. The catalytic efficiency of PAT toward ALBA is low relative to other acetyltransferases, suggesting that there may be better, unidentified substrates for PAT. The structural similarity of PAT to eukaryotic HATs combined with its conserved role in chromatin regulation suggests that PAT is evolutionarily related to the eukaryotic HATs.

  5. Peptides (P1, P2 and its mutations) binding with a graphene sheet: an all-atom to all-residue hierarchical coarse-grained approach

    NASA Astrophysics Data System (ADS)

    Kuang, Zhifeng; Farmer, Barry; Pandey, Ras

    2013-03-01

    Binding of peptide P2 (EPLQLKM) [1] and its mutations (P2G, P2Q) to a graphene sheet are studied by a coarse-grained computer simulation. Our hierarchical coarse-grained approach involves all-atom MD simulation to assess the binding interaction of each residue with the graphene sheet. Data from all-atom simulations are then used as input to phenomenological interaction in a coarse-grained MC simulation [2]. Binding of each peptide and its residue in corresponding sequence (P2, P2G, P2Q) are evaluated by analyzing the adsorption of each residue, its mobility, and structural profiles. Although it is difficult to identify overall morphological differences in adsorbed peptides by visual inspections, quantitative analysis of the conformational changes of adsorbed peptides shows variations in size among P2E and its mutations. Results on binding of peptide P1 (HSSYWYAFNNKT) may also be presented if data become available. This work is supported by the Air Force Research Laboratory.

  6. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  7. Conformational flexibility of the agonist binding jaw of the human P2X3 receptor is a prerequisite for channel opening

    PubMed Central

    Kowalski, M; Hausmann, R; Dopychai, A; Grohmann, M; Franke, H; Nieber, K; Schmalzing, G; Illes, P; Riedel, T

    2014-01-01

    Background and Purpose It is assumed that ATP induces closure of the binding jaw of ligand-gated P2X receptors, which eventually results in the opening of the membrane channel and the flux of cations. Immobilization by cysteine mutagenesis of the binding jaw inhibited ATP-induced current responses, but did not allow discrimination between disturbances of binding, gating, subunit assembly or trafficking to the plasma membrane. Experimental Approach A molecular model of the pain-relevant human (h)P2X3 receptor was used to identify amino acid pairs, which were located at the lips of the binding jaw and did not participate in agonist binding but strongly approached each other even in the absence of ATP. Key Results A series of cysteine double mutant hP2X3 receptors, expressed in HEK293 cells or Xenopus laevis oocytes, exhibited depressed current responses to α,β-methylene ATP (α,β-meATP) due to the formation of spontaneous inter-subunit disulfide bonds. Reducing these bonds with dithiothreitol reversed the blockade of the α,β-meATP transmembrane current. Amino-reactive fluorescence labelling of the His-tagged hP2X3 receptor and its mutants expressed in HEK293 or X. laevis oocytes demonstrated the formation of inter-subunit cross links in cysteine double mutants and, in addition, confirmed their correct trimeric assembly and cell surface expression. Conclusions and Implications In conclusion, spontaneous tightening of the binding jaw of the hP2X3 receptor by inter-subunit cross-linking of cysteine residues substituted at positions not directly involved in agonist binding inhibited agonist-evoked currents without interfering with binding, subunit assembly or trafficking. PMID:24989924

  8. A BAR-Domain Protein SH3P2, Which Binds to Phosphatidylinositol 3-Phosphate and ATG8, Regulates Autophagosome Formation in Arabidopsis[C][W

    PubMed Central

    Zhuang, Xiaohong; Wang, Hao; Lam, Sheung Kwan; Gao, Caiji; Wang, Xiangfeng; Cai, Yi; Jiang, Liwen

    2013-01-01

    Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain–containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2–green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum–derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis. PMID:24249832

  9. Identification of a GDP-mannose pyrophosphorylase gene from Sulfolobus solfataricus.

    PubMed

    Sacchetti, Silvana; Bartolucci, Simonetta; Rossi, Mosè; Cannio, Raffaele

    2004-05-12

    An open reading frame (ORF) encoding a putative GDP-mannose pyrophosphorylase (SsoGMPP) was identified on the genome sequence of Sulfolobus solfataricus P2, the predicted gene product showing high amino acid sequence homology to several archaeal, bacterial, and eukaryal GDP-mannose pyrophosphorylases such as guanidine diphosphomannose pyrophosphorylases (GMPPs) from Saccharomyces cerevisiae and Arabidopsis thaliana. The sequence was PCR amplified from genomic DNA of S. solfataricus P2 and heterologous gene expression obtained as a fusion to glutathione S-transferase in Escherichia coli, under conditions suitable to reduce the formation of inclusion bodies. Specific assays performed at 60 degrees C revealed the presence of the archaeal synthesizing GDP-mannose enzyme activity in the cell extracts of the transformed E. coli. As a positive control, the same assays were performed at the mesophilic enzyme optimum temperature on the already characterized yeast recombinant GMPP. The recombinant protein was purified to homogeneity by glutathione sepharose affinity chromatography and its thermophilic nature could be verified. The enzyme was definitively identified by demonstrating its capability to catalyze also the reverse reaction of pyrophosphorolysis and, most interestingly, its high specificity for synthesizing GDP-mannose. PMID:15145064

  10. Human β-defensin 3 contains an oncolytic motif that binds PI(4,5)P2 to mediate tumour cell permeabilisation

    PubMed Central

    Phan, Thanh Kha; Lay, Fung T.; Poon, Ivan K.H.; Hinds, Mark G.; Kvansakul, Marc; Hulett, Mark D.

    2016-01-01

    Cationic antimicrobial peptides (CAPs), including taxonomically diverse defensins, are innate defense molecules that display potent antimicrobial and immunomodulatory activities. Specific CAPs have also been shown to possess anticancer activities; however, their mechanisms of action are not well defined. Recently, the plant defensin NaD1 was shown to induce tumour cell lysis by directly binding to the plasma membrane phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The NaD1–lipid interaction was structurally defined by X-ray crystallography, with the defensin forming a dimer that binds PI(4,5)P2 via its cationic β2-β3 loops in a ‘cationic grip’ conformation. In this study, we show that human β-defensin 3 (HBD-3) contains a homologous β2-β3 loop that binds phosphoinositides. The binding of HBD-3 to PI(4,5)P2 was shown to be critical for mediating cytolysis of tumour cells, suggesting a conserved mechanism of action for defensins across diverse species. These data not only identify an evolutionary conservation of CAP structure and function for lipid binding, but also suggest that PIP-binding CAPs could be exploited for novel multifunction therapeutics. PMID:26657293

  11. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    PubMed

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein. PMID:25790177

  12. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats.

    PubMed

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-10-01

    Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight-bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell-induced injury to nerves that innervate the skin. PMID:26049406

  13. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats

    PubMed Central

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-01-01

    Abstract Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight–bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell–induced injury to nerves that innervate the skin. PMID:26049406

  14. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  15. Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and Its Conformational Changes in Response to Substrate Binding

    PubMed Central

    Lee, Chang Woo; Lee, Joo-Ho; Rimal, Hemraj; Park, Hyun; Lee, Jun Hyuck; Oh, Tae-Jin

    2016-01-01

    Cytochrome P450 monooxygenases (CYP, EC 1.14.14.1) belong to a large family of enzymes that catalyze the hydroxylation of various substrates. Here, we present the crystal structure of CYP105P2 isolated from Streptomyces peucetius ATCC27952 at a 2.1 Å resolution. The structure shows the presence of a pseudo-ligand molecule in the active site, which was co-purified fortuitously and is presumed to be a biphenyl derivative. Comparison with previously determined substrate-bound CYP structures showed that binding of the ligand produces large and distinctive conformational changes in α2–α3, α7–α9, and the C-terminal loop regions. This structural flexibility confirms our previous observation that CYP105P2 can accommodate a broad range of ligands. The structure complexed with a pseudo-ligand provides the first molecular view of CYP105P2–ligand interactions, and it indicates the involvement of hydrophobic residues (Pro82, Ala181, Met187, Leu189, Leu193, and Ile236) in the interactions between hydrophobic ligands and CYP105P2. These results provide useful insights into the structural changes involved in the recognition of different ligands by CYP105P2. PMID:27231902

  16. Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and Its Conformational Changes in Response to Substrate Binding.

    PubMed

    Lee, Chang Woo; Lee, Joo-Ho; Rimal, Hemraj; Park, Hyun; Lee, Jun Hyuck; Oh, Tae-Jin

    2016-01-01

    Cytochrome P450 monooxygenases (CYP, EC 1.14.14.1) belong to a large family of enzymes that catalyze the hydroxylation of various substrates. Here, we present the crystal structure of CYP105P2 isolated from Streptomyces peucetius ATCC27952 at a 2.1 Å resolution. The structure shows the presence of a pseudo-ligand molecule in the active site, which was co-purified fortuitously and is presumed to be a biphenyl derivative. Comparison with previously determined substrate-bound CYP structures showed that binding of the ligand produces large and distinctive conformational changes in α2-α3, α7-α9, and the C-terminal loop regions. This structural flexibility confirms our previous observation that CYP105P2 can accommodate a broad range of ligands. The structure complexed with a pseudo-ligand provides the first molecular view of CYP105P2-ligand interactions, and it indicates the involvement of hydrophobic residues (Pro82, Ala181, Met187, Leu189, Leu193, and Ile236) in the interactions between hydrophobic ligands and CYP105P2. These results provide useful insights into the structural changes involved in the recognition of different ligands by CYP105P2. PMID:27231902

  17. P2X receptors.

    PubMed

    North, R Alan

    2016-08-01

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377721

  18. Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4)P2 in regulating insulin sensitivity defined by knock-in analysis

    PubMed Central

    Wullschleger, Stephan; Wasserman, David H.; Gray, Alex; Sakamoto, Kei; Alessi, Dario R.

    2015-01-01

    Insulin sensitivity is critically dependent on the activity of PI3K (phosphoinositide 3-kinase) and generation of the PtdIns(3,4,5)P3 second messenger. PtdIns(3,4,5)P3 can be broken down to PtdIns(3,4)P2 through the action of the SHIPs (Src-homology-2-domain-containing inositol phosphatases). As PtdIns(3,4)P2 levels peak after those of PtdIns(3,4,5)P3, it has been proposed that PtdIns(3,4)P2 controls a negative-feedback loop that down-regulates the insulin and PI3K network. Previously, we identified two related adaptor proteins termed TAPP [tandem PH (pleckstrin homology)-domain-containing protein] 1 and TAPP2 that specifically bind to PtdIns(3,4)P2 through their C-terminal PH domain. To determine whether TAPP1 and TAPP2 play a role in regulating insulin sensitivity, we generated knock-in mice that express normal endogenous levels of mutant TAPP1 and TAPP2 that are incapable of binding PtdIns(3,4)P2. These homozygous TAPP1R211L/R211LTAPP2R218L/R218L double knock-in mice are viable and exhibit significantly enhanced activation of Akt, a key downstream mediator of insulin signalling. Consistent with increased PI3K and Akt activity, the double knock-in mice display enhanced whole body insulin sensitivity and disposal of glucose uptake into muscle tissues. We also generated wild-type and double TAPP1R211L/R211LTAPP2R218L/R218L knock-in embryonic fibroblasts and found that insulin triggered enhanced production of PtdIns(3,4,5)P3 and Akt activity in the double knock-in fibroblasts. These observations provide the first genetic evidence to support the notion that binding of TAPP1 and TAPP2 adaptors to PtdIns(3,4)P2 function as negative regulators of the insulin and PI3K signalling pathways. PMID:21204784

  19. Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1.

    PubMed Central

    Kimber, Wendy A; Deak, Maria; Prescott, Alan R; Alessi, Dario R

    2003-01-01

    It has been postulated that PtdIns(3,4) P (2), one of the immediate breakdown products of PtdIns(3,4,5) P (3), functions as a signalling molecule in insulin- and growth-factor-stimulated pathways. To date, the t andem- P H-domain-containing p rotein- 1 (TAPP1) and related TAPP2 are still the only known PH-domain-containing proteins that interact strongly and specifically with PtdIns(3,4) P (2). In this study we demonstrate that endogenously expressed TAPP1, is constitutively associated with the protein-tyrosine-phosphatase-like protein-1 (PTPL1 also known as FAP-1). We show that PTPL1 binds to TAPP1 and TAPP2, principally though its first PDZ domain [where PDZ is postsynaptic density protein ( P SD-95)/ Drosophila disc large tumour suppressor ( d lg)/tight junction protein ( Z O1)] and show that this renders PTPL1 capable of associating with PtdIns(3,4) P (2) in vitro. Our data suggest that the binding of TAPP1 to PTPL1 does not influence PTPL1 phosphatase activity, but instead functions to maintain PTPL1 in the cytoplasm. Following stimulation of cells with hydrogen peroxide to induce PtdIns(3,4) P (2) production, PTPL1, complexed to TAPP1, translocates to the plasma membrane. This study provides the first evidence that TAPP1 and PtdIns(3,4) P (2) could function to regulate the membrane localization of PTPL1. We speculate that if PTPL1 was recruited to the plasma membrane by increasing levels of PtdIns(3,4) P (2), it could trigger a negative feedback loop in which phosphoinositide-3-kinase-dependent or other signalling pathways could be switched off by the phosphatase-catalysed dephosphorylation of receptor tyrosine kinases or tyrosine phosphorylated adaptor proteins such as IRS1 or IRS2. Consistent with this notion we observed RNA-interference-mediated knock-down of TAPP1 in HEK-293 cells, enhanced activation and phosphorylation of PKB following IGF1 stimulation. PMID:14516276

  20. Purification and properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    The paper reports properties of a sulfite-activated ATPase from Sulfolobus solfataricus, purified using ammonium sulfate precipitation, column chromatography on UltraGel and Sepharose 6B, and SDS-PAGE. The 92-fold purified enzyme had a relative molecular mass of 370,000. It could be dissociated into three subunits with respective molecular masses of 63,000, 48,000, and 24,000. The ATPase activity was found to be inhibitable by nitrate, N-ethylmaleimide (which bound predominantly to the largest subunit), and 4-chloro 7-nitrobenzofurazan, but not by azide, quercetin, or vanadate. While the ATPase from S. solfataricus shared a number of properties with the S. acidocaldarius ATPase, there were also significant differences suggesting the existence of several types of archaeal ATPases.

  1. Purification and Properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

  2. Observation of the membrane binding activity and domain structure of gpV, which comprises the tail spike of bacteriophage P2.

    PubMed

    Kageyama, Yasuhiro; Murayama, Masanori; Onodera, Takashi; Yamada, Seiko; Fukada, Harumi; Kudou, Motonori; Tsumoto, Kouhei; Toyama, Yoshiharu; Kado, Syunsaku; Kubota, Kenji; Takeda, Shigeki

    2009-10-27

    The P2 phage virion has tail spike proteins beneath the baseplate and uses them to adsorb to the outer membrane of Escherichia coli during the infection process. Previous immunoelectron microscopic studies suggested that the tail spikes are composed of the gene V product (gpV); however, experimental evidence of its membrane binding activity has yet to be reported. In this study, we purified and characterized recombinant full-length gpV and its C-terminal domain. Limited chymotrypsin proteolysis of gpV produced a C-terminal domain composed of Ser86-Leu211. Our experiments demonstrated that the N- and C-terminal domains have very different melting temperatures: 50 and 74 degrees C, respectively. We also found that gpV binds the E. coli membrane via its C-terminal domain. We conclude that the C-terminal domain of gpV is a stable trimer and serves as the receptor-binding domain for the second step in the phage adsorption process. PMID:19780551

  3. Complete Genome Sequence of Sulfolobus solfataricus Strain 98/2 and Evolved Derivatives

    PubMed Central

    McCarthy, Samuel; Gradnigo, Julien; Johnson, Tyler; Payne, Sophie; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Moriyama, Etsuko

    2015-01-01

    Sulfolobus solfataricus is a thermoacidophilic crenarcheote with a 3.0-Mb genome. Here, we report the genome sequence of S. solfataricus strain 98/2, along with several evolved derivatives generated through experimental microbial evolution for enhanced thermoacidophily. PMID:26021927

  4. Functional potential of P2P-R: a role in the cell cycle and cell differentiation related to its interactions with proteins that bind to matrix associated regions of DNA?

    PubMed

    Scott, Robert E; Giannakouros, Thomas; Gao, Sizhi; Peidis, Philippos

    2003-09-01

    P2P-R is the alternately spliced product of the P2P-R/PACT gene in that P2P-R lacks one exon encoding 34 amino acids. The 250 kDa P2P-R protein is the predominate product expressed in multiple murine cell lines. It is a highly basic protein that contains multiple domains including an N-terminal RING type zinc finger, a proline rich domain, an RS region, and a C-terminal lysine-rich domain. P2P-R binds the p53 and the Rb1 tumor suppressors and is phosphorylated by the cdc2 and SRPK1a protein kinases. P2P-R also interacts with scaffold attachment factor-B (SAF-B), a well characterized MARs (for matrix attachment regions) binding factor, and may interact with nucleolin, another MARs binding factor. In addition, P2P-R binds single strand DNA (ssDNA). The expression of P2P-R is regulated by differentiation and cell cycle events. P2P-R mRNA is markedly repressed during differentiation, whereas immunoreactive P2P-R protein levels are >10-fold higher in mitotic than in G(0) cells. The localization of P2P-R also is modulated during the cell cycle. During interphase, P2P-R is present primarily in nucleoli and nuclear speckles whereas during mitosis, P2P-R associates with the periphery of chromosomes. Overexpression of near full length P2P-R induces mitotic arrest in prometaphase and mitotic apoptosis, and overexpression of selected P2P-R segments also can promote apoptosis. This compendium of data supports the possibility that P2P-R may form complexes with the Rb1 and/or p53 tumor suppressors and MARs-related factors, in a cell cycle and cell differentiation-dependent manner, to influence gene transcription/expression and nuclear organization. PMID:12938151

  5. The proliferation potential protein-related (P2P-R) gene with domains encoding heterogeneous nuclear ribonucleoprotein association and Rb1 binding shows repressed expression during terminal differentiation.

    PubMed

    Witte, M M; Scott, R E

    1997-02-18

    Terminal differentiation is associated with repression in the expression of the proliferation potential proteins (P2P) subset of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. We report here the cloning and characterization of a 5173-bp P2P-related (P2P-R) cDNA that contains a 4214-bp open reading frame. Probes to this cDNA detect a single 8-kb mRNA in multiple murine tissues and in proliferating 3T3T cells, but not in terminally differentiated 3T3T adipocytes. Evidence that this cDNA can encode peptides with domains for hnRNP association was established by showing that such peptides are recognized by two monoclonal antibodies known to detect core hnRNP proteins, and by showing that the C130 monoclonal antibody, produced against a cDNA-derived fusion protein, also selectively detects native P2P hnRNP proteins. In addition, P2P-R cDNA-derived fusion proteins bind single-stranded nucleic acids, and a P2P-R cDNA-derived antisense oligonucleotide selectively represses P2P expression. Because terminal differentiation is associated with modulation in Rb1 function, we assayed if products of this cDNA might interact with Rb1. Evidence that the P2P-R cDNA encodes a protein domain that binds Rb1 was established using a glutathione S-transferase fusion protein to selectively precipitate Rb1 from cellular extracts. Data also show that this binding is reduced by competition with the adenovirus E1a protein, indicating that binding occurs through the "pocket" domain of Rb1. These results establish that the P2P-R cDNA encodes protein domains involved in both hnRNP association and Rb1 binding and complement recent reports that localize Rb1 to sites of RNA processing in the nucleus. PMID:9037032

  6. Calditol tetraether lipids of the archaebacterium Sulfolobus solfataricus. Biosynthetic studies.

    PubMed Central

    Nicolaus, B; Trincone, A; Esposito, E; Vaccaro, M R; Gambacorta, A; De Rosa, M

    1990-01-01

    Lipids from the archaebacterium Sulfolobus solfataricus are based on 72-membered macrocyclic tetraethers made up from two C40 diol units differently cyclized and either two glycerol moieties or one glycerol moiety and a unique branched-chain nonitol named calditol (glycerodialkylnonitol tetraethers, GDNTs). To elucidate the biosynthesis of calditol and related tetraethers, labelled precursors, [U-14C,1(3)-3H]glycerol, [U-14C,2-3H]glycerol, D-[1-14C,6-3H]glucose, D-[6-14C,1-3H]glucose, D-[1-14C,2-3H]glucose, D-[1-14C,6-3H]fructose and D-[1-14C]galactose, were fed to S. solfataricus. Without regard to stereochemistry or phosphorylation, incorporation experiments provided evidence that the biosynthesis of calditol occurs via an aldolic condensation between dihydroxyacetone and fructose, through a 2-oxo derivative of calditol as an intermediate. The latter is in turn reduced and then alkylated to yield the GDNTs. The biogenetic origins of both glycerol and C40 isoprenoid moieties of GDNTs are also discussed. PMID:2109600

  7. DNA binding and antigene activity of a daunomycin-conjugated triplex-forming oligonucleotide targeting the P2 promoter of the human c-myc gene

    PubMed Central

    Carbone, Giuseppina M.; McGuffie, Eileen; Napoli, Sara; Flanagan, Courtney E.; Dembech, Chiara; Negri, Umberto; Arcamone, Federico; Capobianco, Massimo L.; Catapano, Carlo V.

    2004-01-01

    Triplex-forming oligonucleotides (TFO) that bind DNA in a sequence-specific manner might be used as selective repressors of gene expression and gene-targeted therapeutics. However, many factors, including instability of triple helical complexes in cells, limit the efficacy of this approach. In the present study, we tested whether covalent linkage of a TFO to daunomycin, which is a potent DNA-intercalating agent and anticancer drug, could increase stability of the triple helix and activity of the oligonucleotide in cells. The 11mer daunomycin-conjugated GT (dauno-GT11) TFO targeted a sequence upstream of the P2 promoter, a site known to be critical for transcription of the c-myc gene. Band-shift assays showed that the dauno-GT11 formed triplex DNA with enhanced stability compared to the unmodified TFO. Band shift and footprinting experiments demonstrated that binding of dauno-GT11 was highly sequence-specific with exclusive binding to the 11 bp target site in the c-myc promoter. The daunomycin-conjugated TFO inhibited transcription in vitro and reduced c-myc promoter activity in prostate and breast cancer cells. The daunomycin-conjugated TFO was taken up by cells with a distinctive intracellular distribution compared to free daunomycin. However, cationic lipid-mediated delivery was required for enhanced cellular uptake, nuclear localization and biological activity of the TFO in cells. Dauno-GT11 reduced transcription of the endogenous c-myc gene in cells, but did not affect expression of non-target genes, such as ets-1 and ets-2, which contained very similar target sequences in their promoters. Daunomycin-conjugated control oligonucleotides unable to form triplex DNA with the target sequence did not have any effect in these assays, indicating that daunomycin was not directly responsible for the activity of daunomycin-conjugated TFO. Thus, attachment of daunomycin resulted in increased triplex stability and biological activity of the 11mer GT-rich TFO without

  8. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus

    PubMed Central

    Robinson, Nicholas P; Blood, Katherine A; McCallum, Simon A; Edwards, Paul A W; Bell, Stephen D

    2007-01-01

    Although the Archaea exhibit an intriguing combination of bacterial- and eukaryotic-like features, it is not known how these prokaryotic cells segregate their chromosomes before the process of cell division. In the course of our analysis of the third replication origin in the archaeon Sulfolobus solfataricus, we identify and characterise sister chromatid junctions in this prokaryote. This pairing appears to be mediated by hemicatenane-like structures, and we provide evidence that these junctions persist in both replicating and postreplicative cells. These data, in conjunction with fluorescent in situ hybridisation analyses, suggest that Sulfolobus chromosomes have a significant period of postreplicative sister chromatid synapsis, a situation that is more reminiscent of eukaryotic than bacterial chromosome segregation mechanisms. PMID:17255945

  9. Development of a therapeutic monoclonal antibody that targets secreted fatty acid-binding protein aP2 to treat type 2 diabetes.

    PubMed

    Burak, M Furkan; Inouye, Karen E; White, Ariel; Lee, Alexandra; Tuncman, Gurol; Calay, Ediz S; Sekiya, Motohiro; Tirosh, Amir; Eguchi, Kosei; Birrane, Gabriel; Lightwood, Daniel; Howells, Louise; Odede, Geofrey; Hailu, Hanna; West, Shauna; Garlish, Rachel; Neale, Helen; Doyle, Carl; Moore, Adrian; Hotamisligil, Gökhan S

    2015-12-23

    The lipid chaperone aP2/FABP4 has been implicated in the pathology of many immunometabolic diseases, including diabetes in humans, but aP2 has not yet been targeted for therapeutic applications. aP2 is not only an intracellular protein but also an active adipokine that contributes to hyperglycemia by promoting hepatic gluconeogenesis and interfering with peripheral insulin action. Serum aP2 levels are markedly elevated in mouse and human obesity and strongly correlate with metabolic complications. These observations raise the possibility of a new strategy to treat metabolic disease by targeting serum aP2 with a monoclonal antibody (mAb) to aP2. We evaluated mAbs to aP2 and identified one, CA33, that lowered fasting blood glucose, improved systemic glucose metabolism, increased systemic insulin sensitivity, and reduced fat mass and liver steatosis in obese mouse models. We examined the structure of the aP2-CA33 complex and resolved the target epitope by crystallographic studies in comparison to another mAb that lacked efficacy in vivo. In hyperinsulinemic-euglycemic clamp studies, we found that the antidiabetic effect of CA33 was predominantly linked to the regulation of hepatic glucose output and peripheral glucose utilization. The antibody had no effect in aP2-deficient mice, demonstrating its target specificity. We conclude that an aP2 mAb-mediated therapeutic constitutes a feasible approach for the treatment of diabetes. PMID:26702093

  10. Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Egelseer, Eva M.; Dekitsch, Christine; Sleytr, Uwe B.

    1998-01-01

    First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content. PMID:9852032

  11. Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase

    SciTech Connect

    Elias, Mikael; Dupuy, Jérôme; Merone, Luigia; Lecomte, Claude; Rossi, Mosè; Masson, Patrick; Manco, Giuseppe; Chabriere, Eric

    2007-07-01

    A phosphotriesterase (PTE) from the hyperthermophilic archaeon S. solfataricus has been crystallized. Combined with biochemical and bioengineering studies, it is expected that the structure of this protein will provide insight into the natural function of the PTE family and provide important data for achieving an efficient organophosphate biodecontaminant. Organophosphates constitute the largest class of insecticides used worldwide and some of them are potent nerve agents. Consequently, organophosphate-degrading enzymes are of paramount interest as they could be used as bioscavengers and biodecontaminants. Phosphotriesterases (PTEs) are capable of hydrolyzing these toxic compounds with high efficiency. A distant and hyperthermophilic representative of the PTE family was cloned from the archeon Sulfolobus solfataricus MT4, overexpressed in Escherichia coli and crystallized; the crystals diffracted to 2.54 Å resolution. Owing to its exceptional thermostability, this PTE may be an excellent candidate for obtaining an efficient organophosphate biodecontaminant. Here, the crystallization conditions and data collection for the hyperthermophilic S. solfataricus PTE are reported.

  12. SANS measurements on sulfolobus solfataricus ribosome as a function of temperature and magnesium concentration

    NASA Astrophysics Data System (ADS)

    Briganti, G.; Giordano, R.; Londei, P.; Pedone, F.

    1997-02-01

    The ribosomes of the extremely thermophylic archaebacterium Sulfolobus solfataricus (optimal growth at T = 87°C) are stable and active at temperatures close to 90°C, in spite of the fact that their composition is very similar to the ribosomes of the mesophilic bacterium E. coli, growing at 37°C. We present the first SANS analysis of the intact S. solfataricus 70S monomers as well as of the isolated 30S and 50S subunits as a function of the temperature and the magnesium ion concentration. Our results indicate that, under conditions similar to those employed for the analysis of E. coli ribosomes, supramolecular aggregates are present in S. solfataricus, their extent depending on temperature, ribosome concentration and magnesium ion content. Only above 70°C changes in the scattering profile are observed, concomitant with the specific biological activation of this kind of ribosome.

  13. A New Archaeal β-Glycosidase from Sulfolobus solfataricus

    PubMed Central

    Cobucci-Ponzano, Beatrice; Aurilia, Vincenzo; Riccio, Gennaro; Henrissat, Bernard; Coutinho, Pedro M.; Strazzulli, Andrea; Padula, Anna; Corsaro, Maria Michela; Pieretti, Giuseppina; Pocsfalvi, Gabriella; Fiume, Immacolata; Cannio, Raffaele; Rossi, Mosè; Moracci, Marco

    2010-01-01

    Carbohydrate active enzymes (CAZymes) are a large class of enzymes, which build and breakdown the complex carbohydrates of the cell. On the basis of their amino acid sequences they are classified in families and clans that show conserved catalytic mechanism, structure, and active site residues, but may vary in substrate specificity. We report here the identification and the detailed molecular characterization of a novel glycoside hydrolase encoded from the gene sso1353 of the hyperthermophilic archaeon Sulfolobus solfataricus. This enzyme hydrolyzes aryl β-gluco- and β-xylosides and the observation of transxylosylation reactions products demonstrates that SSO1353 operates via a retaining reaction mechanism. The catalytic nucleophile (Glu-335) was identified through trapping of the 2-deoxy-2-fluoroglucosyl enzyme intermediate and subsequent peptide mapping, while the general acid/base was identified as Asp-462 through detailed mechanistic analysis of a mutant at that position, including azide rescue experiments. SSO1353 has detectable homologs of unknown specificity among Archaea, Bacteria, and Eukarya and shows distant similarity to the non-lysosomal bile acid β-glucosidase GBA2 also known as glucocerebrosidase. On the basis of our findings we propose that SSO1353 and its homologs are classified in a new CAZy family, named GH116, which so far includes β-glucosidases (EC 3.2.1.21), β-xylosidases (EC 3.2.1.37), and glucocerebrosidases (EC 3.2.1.45) as known enzyme activities. PMID:20427274

  14. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage.

    PubMed

    Fröls, Sabrina; Gordon, Paul M K; Panlilio, Mayi Arcellana; Duggin, Iain G; Bell, Stephen D; Sensen, Christoph W; Schleper, Christa

    2007-12-01

    In order to characterize the genome-wide transcriptional response of the hyperthermophilic, aerobic crenarchaeote Sulfolobus solfataricus to UV damage, we used high-density DNA microarrays which covered 3,368 genetic features encoded on the host genome, as well as the genes of several extrachromosomal genetic elements. While no significant up-regulation of genes potentially involved in direct DNA damage reversal was observed, a specific transcriptional UV response involving 55 genes could be dissected. Although flow cytometry showed only modest perturbation of the cell cycle, strong modulation of the transcript levels of the Cdc6 replication initiator genes was observed. Up-regulation of an operon encoding Mre11 and Rad50 homologs pointed to induction of recombinational repair. Consistent with this, DNA double-strand breaks were observed between 2 and 8 h after UV treatment, possibly resulting from replication fork collapse at damaged DNA sites. The strong transcriptional induction of genes which potentially encode functions for pilus formation suggested that conjugational activity might lead to enhanced exchange of genetic material. In support of this, a statistical microscopic analysis demonstrated that large cell aggregates formed upon UV exposure. Together, this provided supporting evidence to a link between recombinational repair and conjugation events. PMID:17905990

  15. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins

    PubMed Central

    Hall, Randy A.; Ostedgaard, Lynda S.; Premont, Richard T.; Blitzer, Jeremy T.; Rahman, Nadeem; Welsh, Michael J.; Lefkowitz, Robert J.

    1998-01-01

    The Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the β2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the β2 receptor. Mutagenesis studies of the β2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the β2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling. PMID:9671706

  16. Insight into the cellular involvement of the two reverse gyrases from the hyperthermophilic archaeon Sulfolobus solfataricus

    PubMed Central

    2014-01-01

    Background Reverse gyrases are DNA topoisomerases characterized by their unique DNA positive-supercoiling activity. Sulfolobus solfataricus, like most Crenarchaeota, contains two genes each encoding a reverse gyrase. We showed previously that the two genes are differently regulated according to temperature and that the corresponding purified recombinant reverse gyrases have different enzymatic characteristics. These observations suggest a specialization of functions of the two reverse gyrases. As no mutants of the TopR genes could be obtained in Sulfolobales, we used immunodetection techniques to study the function(s) of these proteins in S. solfataricus in vivo. In particular, we investigated whether one or both reverse gyrases are required for the hyperthermophilic lifestyle. Results For the first time the two reverse gyrases of S. solfataricus have been discriminated at the protein level and their respective amounts have been determined in vivo. Actively dividing S. solfataricus cells contain only small amounts of both reverse gyrases, approximately 50 TopR1 and 125 TopR2 molecules per cell at 80°C. S. solfataricus cells are resistant at 45°C for several weeks, but there is neither cell division nor replication initiation; these processes are fully restored upon a return to 80°C. TopR1 is not found after three weeks at 45°C whereas the amount of TopR2 remains constant. Enzymatic assays in vitro indicate that TopR1 is not active at 45°C but that TopR2 exhibits highly positive DNA supercoiling activity at 45°C. Conclusions The two reverse gyrases of S. solfataricus are differently regulated, in terms of protein abundance, in vivo at 80°C and 45°C. TopR2 is present both at high and low temperatures and is therefore presumably required whether cells are dividing or not. By contrast, TopR1 is present only at high temperature where the cell division occurs, suggesting that TopR1 is required for controlling DNA topology associated with cell division activity

  17. Solution Structure of Ribosomal Protein L40E, a Unique C4 Zinc Finger Protein Encoded by Archaeon Sulfolobus Solfataricus

    SciTech Connect

    Wu, Bin; Lukin, Jonathan A.; Yee, Adelinda; Lemak, Alexander; Semesi, Anthony; Ramelot, Theresa A.; Kennedy, Michael A.; Arrowsmith, Cheryl H.

    2008-01-31

    The ribosomal protein L40E from archaeon Sulfolobus solfataricus is a component of the 50S ribosomal subunit. L40E is a 56-residue, highly basic protein that contains a C4 zinc finger motif, CRKC_X10_CRRC. Homologs are found in both archaea and eukaryotes but are not present in bacteria. Eukaryotic genomes encode L40E as a ubiquitin-fusion protein. L40E was absent from the crystal structure of euryarchaeota 50S ribosomal subunit. Here we report the three-dimensional solution structure of L40E by NMR spectroscopy. The structure of L40E is a three-stranded b-sheet with a simple b2b1b3 topology. There are two unique characteristics revealed by the structure. First, a large and ordered b2–b3 loop twists to pack across the one side of the protein. L40E contains a buried polar cluster comprising Lys19, Lys20, Cys22, Asn29, and Cys36. Second, the surface of L40E is almost entirely positively charged. Ten conserved basic residues are positioned on the two sides of the surface. It is likely that binding of zinc is essential in stabilizing the tertiary structure of L40E to act as a scaffold to create a broad positively charged surface for RNA and/or protein recognition. A portion of this work was performed in the Environmental Molecular Sciences Facility, a DOE national scientific user facility.

  18. Modeling DNA Repair: Approaching In Vivo Techniques in the Hyperthermophile Sulfolobus Solfataricus

    SciTech Connect

    Blanton, J.; Fuss, J.; Yannone, S.M.; Tainer, J.A.; Cooper, P.K.

    2005-01-01

    Archaea are found in some of the most extreme environments on earth and represent a third domain of life distinct from Eukarya and Eubacteria. The hyperthermophilic archaeon Sulfolobus solfataricus, isolated from acidic hot springs (80oC, pH 3) in Yellowstone National Park, has emerged as a potential model system for studying human DNA repair processes. Archaea are more closely related to Eukarya than to Eubacteria, suggesting that archaeal DNA repair machinery may model the complex human system much more closely than that of other prokaryotes. DNA repair requires coordinated protein-protein interactions that are frequently transient. Protein complexes that are transient at extreme temperatures where archaea thrive may be more stable at room temperature, allowing for the characterization of otherwise short-lived complexes. However, characterization of these systems in archaea has been limited by the absence of a stable in vivo transformation and expression system. The work presented here is a pilot study in gene cloning and recombinant protein expression in S. solfataricus. Three genes associated with DNA repair were selected for expression: MRE11, PCNA1, and a putative CSB homologue. Though preparation of these recombinant genes followed standard methods, preparation of a suitable vector proved more challenging. The shuttle vector pSSV64, derived from the SSV1 virus and the E. coli vector pBSSK+, was most successfully isolated from the DH5α E. coli strain. Currently, alternative vectors are being designed for more efficient genetic manipulations in S. solfataricus.

  19. Heteromeric assembly of P2X subunits

    PubMed Central

    Saul, Anika; Hausmann, Ralf; Kless, Achim; Nicke, Annette

    2013-01-01

    Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs. PMID:24391538

  20. Extracellular UDP-Glucose Activates P2Y14 Receptor and Induces Signal Transducer and Activator of Transcription 3 (STAT3) Tyr705 Phosphorylation and Binding to Hyaluronan Synthase 2 (HAS2) Promoter, Stimulating Hyaluronan Synthesis of Keratinocytes*

    PubMed Central

    Jokela, Tiina A.; Kärnä, Riikka; Makkonen, Katri M.; Laitinen, Jarmo T.; Tammi, Raija H.; Tammi, Markku I.

    2014-01-01

    Hyaluronan, a major matrix molecule in epidermis, is often increased by stimuli that enhance keratinocyte proliferation and migration. We found that small amounts of UDP-sugars were released from keratinocytes and that UDP-glucose (UDP-Glc) added into keratinocyte cultures induced a specific, rapid induction of hyaluronan synthase 2 (HAS2), and an increase of hyaluronan synthesis. The up-regulation of HAS2 was associated with JAK2 and ERK1/2 activation, and specific Tyr705 phosphorylation of transcription factor STAT3. Inhibition of JAK2, STAT3, or Gi-coupled receptors blocked the induction of HAS2 expression by UDP-Glc, the latter inhibitor suggesting that the signaling was triggered by the UDP-sugar receptor P2Y14. Chromatin immunoprecipitations demonstrated increased promoter binding of Tyr(P)705-STAT3 at the time of HAS2 induction. Interestingly, at the same time Ser(P)727-STAT3 binding to its response element regions in the HAS2 promoter was unchanged or decreased. UDP-Glc also stimulated keratinocyte migration, proliferation, and IL-8 expression, supporting a notion that UDP-Glc signals for epidermal inflammation, enhanced hyaluronan synthesis as an integral part of it. PMID:24847057

  1. Use of Chimeras, Point Mutants, and Molecular Modeling to Map the Antagonist-binding Site of 4,4′,4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic Acid (NF449) at P2X1 Receptors for ATP*

    PubMed Central

    Farmer, Louise K.; Schmid, Ralf; Evans, Richard J.

    2015-01-01

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. PMID:25425641

  2. Crystallization and preliminary X-ray crystallographic analysis of Sulfolobus solfataricus thioredoxin reductase

    PubMed Central

    Ruggiero, Alessia; Ruocco, Maria Rosaria; Grimaldi, Pasquale; Arcari, Paolo; Masullo, Mariorosario; Zagari, Adriana; Vitagliano, Luigi

    2005-01-01

    A thermostable thioredoxin reductase isolated from Sulfolobus solfataricus (SsTrxR) has been successfully crystallized in the absence and in the presence of NADP. Two different crystal forms have been obtained. Crystals of the form that yields higher resolution data (1.8 Å) belong to space group P212121, with unit-cell parameters a = 76.77, b = 120.68, c = 126.85 Å. The structure of the enzyme has been solved by MAD methods using the anomalous signal from the Se atoms of selenomethionine-labelled SsTrxR. PMID:16511192

  3. Epithelial P2X purinergic receptor channel expression and function

    PubMed Central

    Taylor, Amanda L.; Schwiebert, Lisa M.; Smith, Jeffrey J.; King, Chris; Jones, Julie R.; Sorscher, Eric J.; Schwiebert, Erik M.

    1999-01-01

    P2X purinergic receptor (P2XR) channels bind ATP and mediate Ca2+ influx — 2 signals that stimulate secretory Cl– transport across epithelia. We tested the hypotheses that P2XR channels are expressed by epithelia and that P2XRs transduce extracellular ATP signals into stimulation of Cl– transport across epithelia. Electrophysiological data and mRNA analysis of human and mouse pulmonary epithelia and other epithelial cells indicate that multiple P2XRs are broadly expressed in these tissues and that they are active on both apical and basolateral surfaces. Because P2X-selective agonists bind multiple P2XR subtypes, and because P2X agonists stimulate Cl– transport across nasal mucosa of cystic fibrosis (CF) patients as well as across non-CF nasal mucosa, P2XRs may provide novel targets for extracellular nucleotide therapy of CF. PMID:10510328

  4. Purification and biochemical characterization of a poly(ADP-ribose) polymerase-like enzyme from the thermophilic archaeon Sulfolobus solfataricus.

    PubMed Central

    Faraone-Mennella, M R; Gambacorta, A; Nicolaus, B; Farina, B

    1998-01-01

    A poly(ADP-ribose) polymerase-like enzyme, detected in a crude homogenate from Sulfolobus solfataricus by means of activity and immunoblot analyses, was purified to electrophoretic homogeneity by a rapid procedure including two sequential affinity chromatographies, on NAD+-agarose and DNA-Sepharose. The latter column selected specifically the poly(ADP-ribosyl)ating enzyme with a 17% recovery of enzymic activity and a purification of more than 15000-fold. The molecular mass (54-55 kDa) assessed by SDS/PAGE and immunoblot was definitely lower than that determined for the corresponding eukaryotic protein. The enzyme was proved to be thermophilic, with a temperature optimum of approx. 80 degreesC, and thermostable, with a half-life of 204 min at 80 degreesC, in good agreement with the requirements of a thermozyme. It displayed a Km towards NAD+ of 154+/-50 microM; in the pH range 6.5-10.0 the activity values were similar, not showing a real optimum pH. The enzyme was able to bind homologous DNA, as evidenced by the ethidium bromide displacement assay. The product of the ADP-ribosylating reaction co-migrated with the short oligomers of ADP-ribose (less than 6 residues) from a eukaryotic source. Reverse-phase HPLC analysis of the products, after digestion with phosphodiesterase I, gave an elution profile reproducing that obtained by the enzymic digestion of the rat testis poly(ADP-ribose). These results strongly suggest that the activities of the purified enzyme include the elongation step. PMID:9761745

  5. Inhibitory effect of mineral ion accumulation on high density growth of the hyperthermophilic archaeon Sulfolobus solfataricus.

    PubMed

    Park, C B; Lee, S B

    1999-01-01

    A fed-batch operation for high density cultivation of Sulfolobus solfataricus (DSM 1617) in a bench-top fermentor using a feed medium composed of glucose and yeast extract was investigated. The highest maximal cell density obtained in controlled fed-batch cultures was 21.7 g/l. Although higher yeast extract concentrations in the medium favored greater cell biomass yield, cell growth ceased with low cell densities. It was observed that large amounts of inorganic ions, such as sulfate, ammonium, potassium and phosphate ions, were accumulated in the culture broth at higher yeast extract concentrations. This was due to either the addition of the titrant or feeding of yeast extract during cultivation. Fed-batch cultures with additional mineral salts in the feed medium showed much lower cell biomass, indicating that accumulation of inorganic ions has a significant inhibitory effect on the growth of S. solfataricus. Inhibition of cell growth by the presence of mineral ions was further confirmed by the batch culture experiments. Some plausible mechanisms which can account for the growth inhibition at higher mineral ion concentrations have been suggested. PMID:16232474

  6. Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites.

    PubMed

    Limauro, Danila; Saviano, Michele; Galdi, Ilaria; Rossi, Mosè; Bartolucci, Simonetta; Pedone, Emilia

    2009-01-01

    Sulfolobus solfataricus protein disulphide oxidoreductase (SsPDO) contains three disulphide bridges linking residues C(41)XXC(44), C(155)XXC(158), C(173)XXXXC(178). To get information on the role played by these cross-links in determining the structural and functional properties of the protein, we performed site-directed mutagenesis on Cys residues and investigated the changes in folding, stability and functional features of the mutants and analysed the results with computational analysis. The reductase activity of SsPDO and its mutants was evaluated by insulin and thioredoxin reductase assays also coupled with peroxiredoxin Bcp1 of S. solfataricus. The three-dimensional model of SsPDO was constructed and correlated with circular dichroism data and functional results. Biochemical analysis indicated a key function for the redox site constituted by Cys155 and Cys158. To discriminate between the role of the two cysteine residues, each cysteine was mutagenized and the behaviour of the single mutants was investigated elucidating the basis of the electron-shuffling mechanism for SsPDO. Finally, cysteine pK values were calculated and the accessible surface for the cysteine side chains in the reduced form was measured, showing higher reactivity and solvent exposure for Cys155. PMID:18988690

  7. Preliminary characterization of two different crystal forms of acylphosphatase from the hyperthermophile archaeon Sulfolobus solfataricus

    SciTech Connect

    Zuccotti, Simone; Rosano, Camillo; Bemporad, Francesco; Stefani, Massimo; Bolognesi, Martino

    2005-01-01

    S. solfataricus acylphosphatase has been expressed, purified and crystallized in two different crystal forms. Preliminary characterization of a triclinic and a monoclinic crystal form is reported and data were collected to 1.27 and 1.90 Å, respectively. Acylphosphatase is a ubiquitous small enzyme that was first characterized in mammals. It is involved in the hydrolysis of carboxyl-phosphate bonds in several acylphosphate substrates, such as carbamoylphosphate and 1,3-biphosphoglycerate; however, a consensus on acylphosphatase action in vivo has not yet been reached. Recent investigations have focused on acylphosphatases from lower phyla, such as Drosophila melanogaster and Escherichia coli, in view of the application of these small proteins as models in the study of folding, misfolding and aggregation processes. An acylphosphatase from the hyperthermophilic archaeon Sulfolobus solfataricus has been cloned, expressed and purified. Here, the growth and characterization of a triclinic and a monoclinic crystal form of the hyperthermophilic enzyme are reported; X-ray diffraction data have been collected to 1.27 and 1.90 Å resolution, respectively.

  8. Purification, Crystallization and Preliminary Diffraction Studies of the Sulfolobus solfataricus PCNA Proteins in Different Oligomeric Forms

    SciTech Connect

    Xing,G.; Hlinkova, V.; Ling, H.

    2007-01-01

    PCNA is a ring-shaped protein that encircles DNA and is essential for DNA metabolism, including DNA replication and repair. PCNA is either a homotrimer in eukaryotes and euryarchaeotes or a heterotrimer in some crenarchaeotes. The crenarchaeon Sulfolobus solfataricus encodes three PCNA homologues (PCNA1, PCNA2, and PCNA3). PCNA1 and PCNA2 form a stable dimer. The dimer then recruits PCNA3 to form the trimeric ring-shaped molecule that is typical for all PCNA proteins. We crystallized the PCNA3 monomer, the PCNA1-PCNA2 heterodimer, and the PCNA1-PCNA2-PCNA3 heterotrimer. The crystals diffract X-ray to 1.9, 2.6, and 2.5 Angstroms resolutions, respectively. SAD phasing and molecular replacement solutions have confirmed that the crystals do contain the corresponding monomer, dimer, and trimer.

  9. Crystallization of alpha and beta subunits of IF2 translation initiation factor from archaebacteria Sulfolobus solfataricus

    NASA Astrophysics Data System (ADS)

    Pechkova, E.; Vasile, F.; Spera, R.; Nicolini, C.

    2008-08-01

    Translation initiation factor 2 alpha (aIF2 α) and beta (aIF2 β) subunits from archaebacteria Sulfolobus solfataricus have been crystallized here for the first time. Indeed aIF2 α small microcrystals of about 10-20 μm appeared with the thin film nanotemplate method, but not with the classical hanging-drop method. Similarly, under a polarization light microscope microcrystals of larger size (up to about 50-80 μm) of aIF2 β were also obtained using the same procedure, but not with the classical hanging-drop method. We subsequently confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectroscopy the identification of the corresponding dissolved crystals as formed by the aIF2 α and β proteins.

  10. Total reconstitution of active large ribosomal subunits of the thermoacidophilic archaebacterium Sulfolobus solfataricus.

    PubMed Central

    Londei, P; Teixidò, J; Acca, M; Cammarano, P; Amils, R

    1986-01-01

    The large ribosomal subunit of the extremely thermoacidophilic archaebacterium Sulfolobus solfataricus has been reconstituted from the completely dissociated RNA and proteins by a two-step incubation procedure at high temperatures. Successful reconstitution requires a preliminary incubation of the ribosomal components for 45 min at 65 degrees C, followed by a second heat-treatment at 80 degrees C for 60 min. Structural reassembly depends upon high concentrations of K+ (300-400 mM) and Mg2+ (20-40 mM) ions. In addition, complete recovery of subunit function stringently requires the presence of a polyamine, thermine (or spermine). The reconstituted archaebacterial subunits are essentially indistinguishable from the native ones by a number of structural and functional criteria. Images PMID:3083401

  11. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus.

    PubMed

    Aucelli, Tiziana; Contursi, Patrizia; Girfoglio, Michele; Rossi, Mosè; Cannio, Raffaele

    2006-01-01

    The pSSVx genetic element from Sulfolobus islandicus REY15/4 is a hybrid between a plasmid and a fusellovirus, able to be maintained in non-integrative form and to spread when the helper SSV2 virus is present in the cells. In this work, the satellite virus was engineered to obtain an Escherichia coli-Sulfolobus solfataricus shuttle vector for gene transfer and expression in S.solfataricus by fusing site-specifically the pSSVx chromosome with an E.coli plasmid replicon and the ampicillin resistance gene. The pSSVx-based vector was proven functional like the parental virus, namely it was able to spread efficiently through infected S.solfataricus cells. Moreover, the hybrid plasmid stably transformed S.solfataricus and propagated with no rearrangement, recombination or integration into the host chromosome. The high copy number of the artificial genetic element was found comparable with that calculated for the wild-type pSSVx in the new host cells, with no need of genetic markers for vector maintenance in the cells and for transfomant enrichment. The newly constructed vector was also shown to be an efficient cloning vehicle for the expression of passenger genes in S.solfataricus. In fact, a derivative plasmid carrying an expression cassette of the lacS gene encoding the beta-glycosidase from S.solfataricus under the control of the Sulfolobus chaperonine (thermosome tf55) heat shock promoter was also able to drive the expression of a functional enzyme. Complementation of the beta-galactosidase deficiency in a deletion mutant strain of S.solfataricus demonstrated that lacS gene was an efficient marker for selection of single transformants on solid minimal lactose medium. PMID:16971457

  12. Functional characterization of intracellular Dictyostelium discoideum P2X receptors.

    PubMed

    Ludlow, Melanie J; Durai, Latha; Ennion, Steven J

    2009-12-11

    Indicative of cell surface P2X ion channel activation, extracellular ATP evokes a rapid and transient calcium influx in the model eukaryote Dictyostelium discoideum. Five P2X-like proteins (dP2XA-E) are present in this organism. However, their roles in purinergic signaling are unclear, because dP2XA proved to have an intracellular localization on the contractile vacuole where it is thought to be required for osmoregulation. To determine functional properties of the remaining four dP2X-like proteins and to assess their cellular roles, we recorded membrane currents from expressed cloned receptors and generated a quintuple knock-out Dictyostelium strain devoid of dP2X receptors. ATP evoked inward currents at dP2XB and dP2XE receptors but not at dP2XC or dP2XD. beta,gamma-Imido-ATP was more potent than ATP at dP2XB but a weak partial agonist at dP2XE. Currents in dP2XB and dP2XE were strongly inhibited by Na(+) but insensitive to copper and the P2 receptor antagonists pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid and suramin. Unusual for P2X channels, dP2XA and dP2XB were also Cl(-)-permeable. The extracellular purinergic response to ATP persisted in p2xA/B/C/D/E quintuple knock-out Dictyostelium demonstrating that dP2X channels are not responsible. dP2XB, -C, -D, and -E were found to be intracellularly localized to the contractile vacuole with the ligand binding domain facing the lumen. However, quintuple p2xA/B/C/D/E null cells were still capable of regulating cell volume in water demonstrating that, contrary to previous findings, dP2X receptors are not required for osmoregulation. Responses to the calmodulin antagonist calmidazolium, however, were reduced in p2xA/B/C/D/E null cells suggesting that dP2X receptors play a role in intracellular calcium signaling. PMID:19833731

  13. Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus

    PubMed Central

    Schelert, James; Rudrappa, Deepak; Johnson, Tyler

    2013-01-01

    Crenarchaeota include extremely thermoacidophilic organisms that thrive in geothermal environments dominated by sulfidic ores and heavy metals such as mercury. Mercuric ion, Hg(II), inactivates transcription in the crenarchaeote Sulfolobus solfataricus and simultaneously derepresses transcription of a resistance operon, merHAI, through interaction with the MerR transcription factor. While mercuric reductase (MerA) is required for metal resistance, the role of MerH, an adjacent small and predicted product of an ORF, has not been explored. Inactivation of MerH either by nonsense mutation or by in-frame deletion diminished Hg(II) resistance of mutant cells. Promoter mapping studies indicated that Hg(II) sensitivity of the merH nonsense mutant arose through transcriptional polarity, and its metal resistance was restored partially by single copy merH complementation. Since MerH was not required in vitro for MerA-catalysed Hg(II) reduction, MerH may play an alternative role in metal resistance. Inductively coupled plasma-mass spectrometry analysis of the MerH deletion strain following metal challenge indicated that there was prolonged retention of intracellular Hg(II). Finally, a reduced rate of mer operon induction in the merH deletion mutant suggested that the requirement for MerH could result from metal trafficking to the MerR transcription factor. PMID:23619003

  14. 2p2 Team News

    NASA Astrophysics Data System (ADS)

    Jones, H.

    2000-06-01

    The 2p2 Team continued towards the implementation at the 2.2-m of the same BOB (Broker for Observation Blocks) observing interface as seen at other ESO telescopes. This requires an interface to be written between the existing BOB software and the non-VLT compatible control software for the Wide-Field Imager (WFI) and 2.2-m. Cristian Urrutia, Tatiana Paz and Eduardo Robledo are heading its development. With this software in place, observers can use the VLT Phase 2 Proposal Preparation System (P2PP) for definition of their exposures, whether they are for Visitor or Service Mode.

  15. How the change of the ligand from L = porphine, P2-, to L = P4-substituted porphine, P(P)42-, affects the electronic properties and the M-L binding energies for the first-row transition metals M = Sc-Zn: Comparative study

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Aleksey E.

    2016-05-01

    We performed comparative DFT study, including Natural Bond Orbitals (NBO) analysis, of the binding energies between all the first-row transition metals Mn+ (M = Sc-Zn) and two ligands of the similar type: porphine, P2-, and its completely P-substituted counterpart, P(P)42-. The main findings are as follows: (i) complete substitution of all the pyrrole nitrogens with P-atoms does not affect the ground spin state of metalloporphyrins; (ii) generally, for the MP(P)4 compounds the calculated HOMO/LUMO gaps and optical gaps are smaller than for their MP counterparts; (iii) the trends in the change of the binding energies between Mn+ and P(P)42-/P2- are very similar for both ligands. The complete substitution of the pyrrole nitrogens by the P-atoms decreases the Mn+-ligand binding energies; all the MP(P)4 compounds studied are stable according to the calculated Ebind values and therefore can be potentially synthesized.

  16. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    SciTech Connect

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.; Sheri, Venkat Reddy; Kassekert, Luke A.; Chen, Shujing; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T.; Mitsuya, Hiroaki

    2015-10-30

    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolution X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.

  17. 3D Structure of Sulfolobus solfataricus Carboxypeptidase Developed by Molecular Modeling is Confirmed by Site-Directed Mutagenesis and Small Angle X-Ray Scattering

    PubMed Central

    Occhipinti, Emanuela; Martelli, Pier Luigi; Spinozzi, Francesco; Corsi, Federica; Formantici, Cristina; Molteni, Laura; Amenitsch, Heintz; Mariani, Paolo; Tortora, Paolo; Casadio, Rita

    2003-01-01

    Sulfolobus solfataricus carboxypeptidase (CPSso) is a thermostable zinc-metalloenzyme with a Mr of 43,000. Taking into account the experimentally determined zinc content of one ion per subunit, we developed two alternative 3D models, starting from the available structures of Thermoactinomyces vulgaris carboxypeptidase (Model A) and Pseudomonas carboxypeptidase G2 (Model B). The former enzyme is monomeric and has one metal ion in the active site, while the latter is dimeric and has two bound zinc ions. The two models were computed by exploiting the structural alignment of the one zinc- with the two zinc-containing active sites of the two templates, and with a threading procedure. Both computed structures resembled the respective template, with only one bound zinc with tetrahedric coordination in the active site. With these models, two different quaternary structures can be modeled: one using Model A with a hexameric symmetry, the other from Model B with a tetrameric symmetry. Mutagenesis experiments directed toward the residues putatively involved in metal chelation in either of the models disproved Model A and supported Model B, in which the metal-binding site comprises His108, Asp109, and His168. We also identified Glu142 as the acidic residue interacting with the water molecule occupying the fourth chelation site. Furthermore, the overall fold and the oligomeric structure of the molecule was validated by small angle x-ray scattering (SAXS). An ab initio original approach was used to reconstruct the shape of the CPSso in solution from the experimental curves. The results clearly support a tetrameric structure. The Monte Carlo method was then used to compare the crystallographic coordinates of the possible quaternary structures for CPSso with the SAXS profiles. The fitting procedure showed that only the model built using the Pseudomonas carboxypeptidase G2 structure as a template fitted the experimental data. PMID:12885660

  18. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    SciTech Connect

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen Qian Xuhong

    2011-10-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P{sub 2} promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research Highlights: > B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. > B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. > B1 induced significant increase of p53 binding to Bcl-2 P{sub 2} promoter TATA box.

  19. Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from Sulfolobus solfataricus

    SciTech Connect

    Xu, Qingping; Rife, Christopher L.; Carlton, Dennis; Miller, Mitchell D.; Krishna, S. Sri; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grzechnik, Slawomir K.; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; van den Bedem, Henry; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-08-28

    Signal transduction ATPases with numerous domains (STAND), a large class of P-loop NTPases, belong to AAA+ ATPases. They include AP(apoptotic)-ATPases (e.g., animal apoptosis regulators CED4/Apaf-1, plant disease resistance proteins, and bacterial AfsR-like transcription regulators), NACHT NTPases (e.g. CARD4, NAIP, Het-E-1, TLP1), and several other less well-characterized families. STAND differ from other P-loop NTPases by their unique sequence motifs, which include an hhGRExE (h, hydrophobic; x, any residue) motif at the N-terminal region, a GxP/GxxP motif at the C-terminal region of the NTPase domain, in addition to a C-terminal helical domain and additional domains such as WD40, TPR, LRR or catalytic modules. Despite significant biological interests, structural coverage of STAND proteins is very limited and only two other structures are currently known: the cell death regulators Apaf-1 and CED-4. Here, we report the crystal structure of SSO1545 from Sulfolobus solfataricus, which was determined using the semi-automated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG; http://www.jcsg.org), as part of the National Institute of General Medical Sciences' Protein Structure Initiative (PSI). SSO1545 (NP-342973.1), a representative of the archaeal STANDs, is a member of Pfam PF01637 and encodes a protein of 356 residues with calculated molecular weight and isoelectric point of 41.7 kD and 8.2, respectively.

  20. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  1. AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist

    PubMed Central

    Gever, Joel R; Soto, Rothschild; Henningsen, Robert A; Martin, Renee S; Hackos, David H; Panicker, Sandip; Rubas, Werner; Oglesby, Ian B; Dillon, Michael P; Milla, Marcos E; Burnstock, Geoffrey; Ford, Anthony PDW

    2010-01-01

    Background and purpose: Purinoceptors containing the P2X3 subunit (P2X3 homotrimeric and P2X2/3 heterotrimeric) are members of the P2X family of ion channels gated by ATP and may participate in primary afferent sensitization in a variety of pain-related diseases. The current work describes the in vitro pharmacological characteristics of AF-353, a novel, orally bioavailable, highly potent and selective P2X3/P2X2/3 receptor antagonist. Experimental approach: The antagonistic potencies (pIC50) of AF-353 for rat and human P2X3 and human P2X2/3 receptors were determined using methods of radioligand binding, intracellular calcium flux and whole cell voltage-clamp electrophysiology. Key results: The pIC50 estimates for these receptors ranged from 7.3 to 8.5, while concentrations 300-fold higher had little or no effect on other P2X channels or on an assortment of receptors, enzymes and transporter proteins. In contrast to A-317491 and TNP-ATP, competition binding and intracellular calcium flux experiments suggested that AF-353 inhibits activation by ATP in a non-competitive fashion. Favourable pharmacokinetic parameters were observed in rat, with good oral bioavailability (%F = 32.9), reasonable half-life (t1/2 = 1.63 h) and plasma-free fraction (98.2% protein bound). Conclusions and implications: The combination of a favourable pharmacokinetic profile with the antagonist potency and selectivity for P2X3 and P2X2/3 receptors suggests that AF-353 is an excellent in vivo tool compound for study of these channels in animal models and demonstrates the feasibility of identifying and optimizing molecules into potential clinical candidates, and, ultimately, into a novel class of therapeutics for the treatment of pain-related disorders. PMID:20590629

  2. In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus

    PubMed Central

    Hattori, Ai; Unno, Hideaki; Goda, Shuichiro; Motoyama, Kento; Yoshimura, Tohru

    2015-01-01

    ABSTRACT In the present study, the crystal structure of recombinant diphosphomevalonate decarboxylase from the hyperthermophilic archaeon Sulfolobus solfataricus was solved as the first example of an archaeal and thermophile-derived diphosphomevalonate decarboxylase. The enzyme forms a homodimer, as expected for most eukaryotic and bacterial orthologs. Interestingly, the subunits of the homodimer are connected via an intersubunit disulfide bond, which presumably formed during the purification process of the recombinant enzyme expressed in Escherichia coli. When mutagenesis replaced the disulfide-forming cysteine residue with serine, however, the thermostability of the enzyme was significantly lowered. In the presence of β-mercaptoethanol at a concentration where the disulfide bond was completely reduced, the wild-type enzyme was less stable to heat. Moreover, Western blot analysis combined with nonreducing SDS-PAGE of the whole cells of S. solfataricus proved that the disulfide bond was predominantly formed in the cells. These results suggest that the disulfide bond is required for the cytosolic enzyme to acquire further thermostability and to exert activity at the growth temperature of S. solfataricus. IMPORTANCE This study is the first report to describe the crystal structures of archaeal diphosphomevalonate decarboxylase, an enzyme involved in the classical mevalonate pathway. A stability-conferring intersubunit disulfide bond is a remarkable feature that is not found in eukaryotic and bacterial orthologs. The evidence that the disulfide bond also is formed in S. solfataricus cells suggests its physiological importance. PMID:26303832

  3. Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge

    PubMed Central

    Salzano, Anna M; Febbraio, Ferdinando; Farias, Tiziana; Cetrangolo, Giovanni P; Nucci, Roberto; Scaloni, Andrea; Manco, Giuseppe

    2007-01-01

    Background Exposure to nickel (Ni) and its chemical derivatives has been associated with severe health effects in human. On the contrary, poor knowledge has been acquired on target physiological processes or molecular mechanisms of this metal in model organisms, including Bacteria and Archaea. In this study, we describe an analysis focused at identifying proteins involved in the recovery of the archaeon Sulfolobus solfataricus strain MT4 from Ni-induced stress. Results To this purpose, Sulfolobus solfataricus was grown in the presence of the highest nickel sulphate concentration still allowing cells to survive; crude extracts from treated and untreated cells were compared at the proteome level by using a bi-dimensional chromatography approach. We identified several proteins specifically repressed or induced as result of Ni treatment. Observed up-regulated proteins were largely endowed with the ability to trigger recovery from oxidative and osmotic stress in other biological systems. It is noteworthy that most of the proteins induced following Ni treatment perform similar functions and a few have eukaryal homologue counterparts. Conclusion These findings suggest a series of preferential gene expression pathways activated in adaptation response to metal challenge. PMID:17692131

  4. 2p2 Team News

    NASA Astrophysics Data System (ADS)

    Jones, H.

    2000-12-01

    In September we welcomed new team member Lisa Germany from Australia. Lisa is a new ESO Fellow and has interests in supernovae and their use in cosmological distance determinations. S e p t e m b e r, however, was also a month for departures when we said goodbye to long-time team member James Brewer. James was a pivotal member of the 2p2 Team since his arrival at ESO in 1996. He has returned to Canada to take up a position at the University of British Columbia, in Vancouver, Canada. We wish him all the best under northern skies.

  5. The SLAC P2 Marx

    SciTech Connect

    Kemp, Mark; Benwell, Andrew; Burkhart, Craig; MacNair, David; Nguyen1, Minh; /SLAC

    2012-07-05

    A proposed high energy physics accelerator, the International Linear Collider, will require greater than five hundred rf stations. Each station is composed of a klystron driven by a modulator. Recently, the SLAC P2 Marx was designated the baseline modulator for the ILC. This paper describes some key features of this modulator and presents recent experimental results. The P2 Marx is presently being transported to another facility for lifetime testing. Here, we will gain understanding of how the Marx performs into a klystron load and gain experience operating the Marx for longer periods. Long term plans include the possibility of using this rf station for L-band technology demonstration at SLAC. While the Marx was designed with the ILC in mind, the topology can be readily applied to several different applications. We are currently evaluating the use of the topology for ESS, CLIC, and upgrades for systems at Fermi National Accelerator Laboratory. Because of the modular nature of the cell and the robustness of the control system, many different combinations of series and parallel operation are possible along with different load currents and pulse shapes.

  6. Calmodulin interacts with the platelet ADP receptor P2Y1

    PubMed Central

    Arthur, Jane F.; Shen, Yang; Mu, Fi-Tjen; Leon, Catherine; Gachet, Christian; Berndt, Michael C.; Andrews, Robert K.

    2006-01-01

    P2Y1 [P2 (purinergic type-2)-receptor 1] is a G-protein-coupled ADP receptor that regulates platelet activation and ADP-induced Ca2+ signalling. Studies using P2Y1-knockout mice, Gq-deficient mice or P2Y1-selective inhibitors have previously identified a key role for P2Y1 in pathophysiological thrombus formation at high shear stress. We provide evidence that a positively charged juxtamembrane sequence within the cytoplasmic C-terminal tail of P2Y1 can bind directly to the cytosolic regulatory protein calmodulin. Deletion by mutagenesis of the calmodulin-binding domain of P2Y1 inhibits intracellular Ca2+ flux in transfected cells. These results suggest that the interaction of calmodulin with the P2Y1 C-terminal tail may regulate P2Y1-dependent platelet aggregation. PMID:16848759

  7. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  8. Next-nearest neighbour contributions to P 2p{sub 3/2} X-ray photoelectron binding energy shifts of mixed transition-metal phosphides M{sub 1-x}M'{sub x}P with the MnP-type structure

    SciTech Connect

    Grosvenor, Andrew P. Cavell, Ronald G.; Mar, Arthur

    2007-10-15

    X-ray photoelectron (XPS) and X-ray absorption (XANES) spectroscopic measurements have been made for several series of mixed transition-metal phosphides M{sub 1-x}M'{sub x}P (Co{sub 1-x}Mn{sub x}P, Mn{sub 1-x}V{sub x}P, and Co{sub 1-x}V{sub x}P), which adopt the MnP-type structure (M is more electronegative than M'). The P 2p binding energy shifts displayed by the mixed metal phosphide members do not follow the trend shown by the simple binary phosphides, a deviation which arises from the contribution of next-nearest neighbour effects operating on the primary photoemission site. The magnitude of this contribution can be derived from a simple charge potential model taking the metal electronegativity differences into account. It is suggested that these next-nearest neighbour contributions induce a charge transfer between the two dissimilar metals via metal-metal bonding, which modifies the Madelung potential experienced at the photoemission site. This charge transfer has been confirmed by analysis of the Co 2p XPS spectra as well as the P and Mn K-edge XANES spectra. - Graphical abstract: The mixed phosphides Co{sub 1-x}Mn{sub x}P, Mn{sub 1-x}V{sub x}P, and Co{sub 1-x}V{sub x}P with the MnP-type structure have been studied by use of XPS and XANES. The P 2p binding energies in the mixed phosphides display shifts relative to the binary phosphides that cannot be explained by interaction of the nearest neighbours alone.

  9. The Molecular Mechanism of P2Y1 Receptor Activation.

    PubMed

    Yuan, Shuguang; Chan, H C Stephen; Vogel, Horst; Filipek, Slawomir; Stevens, Raymond C; Palczewski, Krzysztof

    2016-08-22

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1 R) is activated by adenosine 5'-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1 R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 μs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1 R activation. PMID:27460867

  10. The Molecular Mechanism of P2Y1 Receptor Activation

    PubMed Central

    Chan, H. C. Stephen; Vogel, Horst; Filipek, Slawomir

    2016-01-01

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1R) is activated by adenosine 5’-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 µs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1R activation. PMID:27460867

  11. Modulation of P2X3 and P2X2/3 Receptors by Monoclonal Antibodies.

    PubMed

    Shcherbatko, Anatoly; Foletti, Davide; Poulsen, Kris; Strop, Pavel; Zhu, Guoyun; Hasa-Moreno, Adela; Melton Witt, Jody; Loo, Carole; Krimm, Stellanie; Pios, Ariel; Yu, Jessica; Brown, Colleen; Lee, John K; Stroud, Robert; Rajpal, Arvind; Shelton, David

    2016-06-01

    Purinergic homomeric P2X3 and heteromeric P2X2/3 receptors are ligand-gated cation channels activated by ATP. Both receptors are predominantly expressed in nociceptive sensory neurons, and an increase in extracellular ATP concentration under pathological conditions, such as tissue damage or visceral distension, induces channel opening, membrane depolarization, and initiation of pain signaling. Hence, these receptors are considered important therapeutic targets for pain management, and development of selective antagonists is currently progressing. To advance the search for novel analgesics, we have generated a panel of monoclonal antibodies directed against human P2X3 (hP2X3). We have found that these antibodies produce distinct functional effects, depending on the homomeric or heteromeric composition of the target, its kinetic state, and the duration of antibody exposure. The most potent antibody, 12D4, showed an estimated IC50 of 16 nm on hP2X3 after short term exposure (up to 18 min), binding to the inactivated state of the channel to inhibit activity. By contrast, with the same short term application, 12D4 potentiated the slow inactivating current mediated by the heteromeric hP2X2/3 channel. Extending the duration of exposure to ∼20 h resulted in a profound inhibition of both homomeric hP2X3 and heteromeric hP2X2/3 receptors, an effect mediated by efficient antibody-induced internalization of the channel from the plasma membrane. The therapeutic potential of mAb12D4 was assessed in the formalin, complete Freund's adjuvant, and visceral pain models. The efficacy of 12D4 in the visceral hypersensitivity model indicates that antibodies against P2X3 may have therapeutic potential in visceral pain indications. PMID:27129281

  12. P2 receptor web: complexity and fine-tuning.

    PubMed

    Volonté, Cinzia; Amadio, Susanna; D'Ambrosi, Nadia; Colpi, Monica; Burnstock, Geoffrey

    2006-10-01

    The present review offers a new perspective on a family of receptors, termed P2 receptors, specific for nucleoside tri- and diphosphates of purines/pyrimidines. We emphasize here that while decoding the inputs of various related extracellular ligands, P2 receptors are a clear example of increasing biological complexity. They are represented by 7 ionotropic P2X and 8 metabotropic P2Y receptors; they have very heterogeneous ligands and binding characteristics, molecular properties, transduction mechanisms, cellular localization and protein-protein interactions. While the reason for this sophistication is unknown, a few compelling issues emerge while looking at such a rich variety. We ask, for instance, why so many different receptor subtypes are necessary for triggering biological properties and functions, and if these receptors are more than the sum of their single entities. A first possibility is that newly synthesized P2 proteins are casually located on the cell surface (stochastic hypothesis). Alternatively, distinct subunits are engaged on different cell phenotypes by genetic control (genetic determinism) and/or selective recruitment under physiopathological conditions and epigenetic stimuli (epigenetic determinism). Nevertheless, an appropriate way to both dissect the vast biological scenario and molecular complexity among P2 receptors and to integrate and upgrade their assortment is to regard them as a "combinatorial receptor web", that is, a dynamic architecture of P2 proteins demonstrating economic efficiency and involving a process of "fine-tuning", a mechanism which endorses the dynamic nature of all biological reactions. In the present analysis, we stimulate a scientific query about what contributes to such a vast P2 receptor sophistication. PMID:16780954

  13. Signal transmission within the P2X2 trimeric receptor.

    PubMed

    Keceli, Batu; Kubo, Yoshihiro

    2014-06-01

    P2X2 receptor channel, a homotrimer activated by the binding of extracellular adenosine triphosphate (ATP) to three intersubunit ATP-binding sites (each located ∼50 Å from the ion permeation pore), also shows voltage-dependent activation upon hyperpolarization. Here, we used tandem trimeric constructs (TTCs) harboring critical mutations at the ATP-binding, linker, and pore regions to investigate how the ATP activation signal is transmitted within the trimer and how signals generated by ATP and hyperpolarization converge. Analysis of voltage- and [ATP]-dependent gating in these TTCs showed that: (a) Voltage- and [ATP]-dependent gating of P2X2 requires binding of at least two ATP molecules. (b) D315A mutation in the β-14 strand of the linker region connecting the ATP-binding domains to the pore-forming helices induces two different gating modes; this requires the presence of the D315A mutation in at least two subunits. (c) The T339S mutation in the pore domains of all three subunits abolishes the voltage dependence of P2X2 gating in saturating [ATP], making P2X2 equally active at all membrane potentials. Increasing the number of T339S mutations in the TTC results in gradual changes in the voltage dependence of gating from that of the wild-type channel, suggesting equal and independent contributions of the subunits at the pore level. (d) Voltage- and [ATP]-dependent gating in TTCs differs depending on the location of one D315A relative to one K308A that blocks the ATP binding and downstream signal transmission. (e) Voltage- and [ATP]-dependent gating does not depend on where one T339S is located relative to K308A (or D315A). Our results suggest that each intersubunit ATP-binding signal is directly transmitted on the same subunit to the level of D315 via the domain that contributes K308 to the β-14 strand. The signal subsequently spreads equally to all three subunits at the level of the pore, resulting in symmetric and independent contributions of the three

  14. Signal transmission within the P2X2 trimeric receptor

    PubMed Central

    Kubo, Yoshihiro

    2014-01-01

    P2X2 receptor channel, a homotrimer activated by the binding of extracellular adenosine triphosphate (ATP) to three intersubunit ATP-binding sites (each located ∼50 Å from the ion permeation pore), also shows voltage-dependent activation upon hyperpolarization. Here, we used tandem trimeric constructs (TTCs) harboring critical mutations at the ATP-binding, linker, and pore regions to investigate how the ATP activation signal is transmitted within the trimer and how signals generated by ATP and hyperpolarization converge. Analysis of voltage- and [ATP]-dependent gating in these TTCs showed that: (a) Voltage- and [ATP]-dependent gating of P2X2 requires binding of at least two ATP molecules. (b) D315A mutation in the β-14 strand of the linker region connecting the ATP-binding domains to the pore-forming helices induces two different gating modes; this requires the presence of the D315A mutation in at least two subunits. (c) The T339S mutation in the pore domains of all three subunits abolishes the voltage dependence of P2X2 gating in saturating [ATP], making P2X2 equally active at all membrane potentials. Increasing the number of T339S mutations in the TTC results in gradual changes in the voltage dependence of gating from that of the wild-type channel, suggesting equal and independent contributions of the subunits at the pore level. (d) Voltage- and [ATP]-dependent gating in TTCs differs depending on the location of one D315A relative to one K308A that blocks the ATP binding and downstream signal transmission. (e) Voltage- and [ATP]-dependent gating does not depend on where one T339S is located relative to K308A (or D315A). Our results suggest that each intersubunit ATP-binding signal is directly transmitted on the same subunit to the level of D315 via the domain that contributes K308 to the β-14 strand. The signal subsequently spreads equally to all three subunits at the level of the pore, resulting in symmetric and independent contributions of the three

  15. Crystallization and preliminary X-ray diffraction analysis of a cytochrome P450 (CYP119) from Sulfolobus solfataricus.

    PubMed

    Park, S Y; Yamane, K; Adachi, S; Shiro, Y; Weiss, K E; Sligar, S G

    2000-09-01

    CYP119 is a cytochrome P450 with a molecular weight of 43 kDa which has been isolated from the thermophilic archaeon Sulfolobus solfataricus. This enzyme is extremely stable to high temperature and high pressure. The first crystallization and preliminary crystallographic study of CYP119 is reported here. Crystals of CYP119 were obtained by the sitting-drop vapour-diffusion method using a precipitant solution containing 20%(w/v) PEG 4000 and 0.2 M sodium thiocyanate at pH 6.4. Using synchrotron radiation, the CYP119 crystal diffracted to 1.84 A resolution. It belongs to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 86.17 (0.07), c = 221.11 (0.04) A, in which the numbers in parentheses describe the standard deviations. Assuming two molecules of the CYP119 per asymmetric unit, the calculated molar volume (V(m)) is 2.38 A(3) Da(-1). Bijvoet and dispersive anomalous difference Patterson maps show a clear peak corresponding to the haem irons. The complete crystallographically defined structure is currently in progress using MIR (multiple isomorphous replacement) and MAD (multiwavelength anomalous diffraction) techniques. PMID:10957637

  16. P2 receptors and platelet function.

    PubMed

    Hechler, Béatrice; Gachet, Christian

    2011-09-01

    Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA(2) and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y(1) and P2Y(12) receptor subtypes, while the P2X(1) receptor ligand-gated cation channel is activated by ATP. The P2Y(1) receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y(12) receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X(1) receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs. PMID:21792575

  17. P2X Receptors as Drug Targets

    PubMed Central

    Jarvis, Michael F.

    2013-01-01

    The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets. PMID:23253448

  18. P2 performance measurement tools workbook: Draft

    SciTech Connect

    1995-06-01

    The underlying purpose of the Department of Energy`s (DOE) Waste Minimization and Pollution Prevention (WMin/P2) Program is compliance with the waste management regulations set forth by the DOE, the federal government, and individual state and local agencies 1. In addition to these regulatory mandates, the increases in waste management costs and public interest in environmental issues have created other drivers to develop and demonstrate an effective WMin/P2 Program. The Waste Minimization Division (EM-334) must have adequate methods to calculate and roll up pollution prevention (P2) progress to meet the WMin/P2 requirements; these requirements support DOE and national objectives and direct funding. This document outlines a system to evaluate DOE`s P2 progress towards the waste reduction requirements. The emphasis of these pollution prevention measurements is to evaluate whether P2 activities are effective, (i.e., has the required amount of waste been reduced as a result of the P2 activities) and to evaluate the cost management of P2 projects. The performance evaluation system presented in this document encompass these aspects: (1) site requirements that apply to all DOE waste generating organizations, (2) a baseline that is not affected by short-term waste generation, and (3) key indicators that can be rolled up across DOE sites and across specific Cognizant Secretarial Officers` (CSO) sites. In a performance-based management system, requirements are the fundamental link between the planning and measurement process. The site requirements are {open_quotes}targets{close_quotes} at the process or activity level. Measuring DOE`s P2 progress toward these requirements provides the necessary feedback to (1) compare performance with the requirements/standards (i.e., whether the reduction requirement of 50% by 1999 is achievable) (2) detect departures from planned levels of performance, and (3) restore performance to the planned levels or achieve new levels of performance.

  19. The relationship between P2X4 and P2X7: a physiologically important interaction?

    PubMed

    Craigie, Eilidh; Birch, Rebecca E; Unwin, Robert J; Wildman, Scott S

    2013-01-01

    Purinergic signaling within the kidney is becoming an important focus in the study of renal health and disease. The effectors of ATP signaling, the P2Y and P2X receptors, are expressed to varying extents in and along the nephron. There are many studies demonstrating the importance of the P2Y2 receptor on kidney function, and other P2 receptors are now emerging as participants in renal regulation. The P2X4 receptor has been linked to epithelial sodium transport in the nephron and expression levels of the P2X7 receptor are up-regulated in certain pathophysiological states. P2X7 antagonism has been shown to ameliorate rodent models of DOCA salt-induced hypertension and P2X4 null mice are hypertensive. Interestingly, polymorphisms in the genetic loci of P2X4 and P2X7 have been linked to blood pressure variation in human studies. In addition to the increasing evidence linking these two P2X receptors to renal function and health, a number of studies link the two receptors in terms of physical associations between their subunits, demonstrated both in vitro and in vivo. This review will analyze the current literature regarding interactions between P2X4 and P2X7 and assess the potential impact of these with respect to renal function. PMID:23966951

  20. Functionalized Congeners of P2Y1 Receptor Antagonists:

    SciTech Connect

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun; Kilbey, II, S Michael; Costanzi, Stefano; Hechler, Béatrice; Gachet, Christian; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to

  1. Expression and function of P2 receptors in hematopoietic stem and progenitor cells

    PubMed Central

    Feng, Wenli; Wang, Lina

    2015-01-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind to a class of plasma membrane receptors, P2 receptors, to trigger intercellular signaling. P2 receptors can be further divided into P2X and P2Y subfamilies based on structure and function. Different hematopoietic cells express diverse spectrums of P2 receptors at different levels, including hematopoietic stem and progenitor cells (HSPCs). Extracellular adenosine triphosphate (ATP) exerts different effects on HSPCs, regulating cell proliferation, differentiation, migration, and chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptor function and human diseases attracts more and more attention. This review summarizes the expression and function of P2 receptors in HSPCs and the relationship to hematopoietic diseases.

  2. P2X and P2Y receptor signaling in red blood cells

    PubMed Central

    Sluyter, Ronald

    2015-01-01

    Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology. PMID:26579528

  3. Structural and functional exchangeability of 5 S RNA species from the eubacterium E.coli and the thermoacidophilic archaebacterium Sulfolobus solfataricus.

    PubMed Central

    Teixidò, J; Altamura, S; Londei, P; Amils, R

    1989-01-01

    The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures. Images PMID:2493632

  4. Characteristics of new P2Y12 inhibitors: selection of P2Y12 inhibitors in clinical practice.

    PubMed

    Golino, Paolo

    2013-12-01

    The options for antithrombotic therapy have recently been expanded, facilitating optimal tailored treatment. Dual antiplatelet therapy with aspirin and an approved adenosine diphosphate P2Y12 receptor antagonist is recommended for the management of patients with acute coronary syndromes (ACS). However, there are a number of controversies: which P2Y12 inhibitor to choose; how long should antiplatelet therapy be used so as to prevent thrombotic events and minimize bleeding risks; whether to use drug-eluting (DES) or bare-metal stents (BMS) and how to manage the individual variability in response to clopidogrel. Clopidogrel in combination with aspirin has been the standard dual antiplatelet regimen for ACS. The new, more potent P2Y12 inhibitors, prasugrel and ticagrelor, have shown improved antithrombotic effects compared with clopidogrel in patients with ACS (with or without ST-segment elevation myocardial infarction) in landmark trials, even if they were associated with an increased risk of major bleeding. Different pharmacogenetic and pharmacodynamic characteristics may explain, in part, the different pharmacologic and clinical responses to these antiplatelet agents. Importantly, both clopidogrel and prasugrel are prodrugs, i.e., they need to be converted in vivo into active metabolites that selectively and irreversibly bind the P2Y12 receptor. Unlike clopidogrel, however, common functional cytochrome P450 genetic variants do not affect prasugrel active metabolite levels or inhibition of platelet aggregation. In contrast, ticagrelor is not a prodrug (i.e., does not require hepatic metabolism to exert its antiplatelet effect) and represents the first oral P2Y12 receptor antagonist that is reversibly bound. Similar to prasugrel, ticagrelor achieves greater and more rapid inhibition of platelet function than clopidogrel. Evidence suggests that the new P2Y12 antagonists may offer improved antithrombotic effects compared with clopidogrel in selected patients for the

  5. EXPRESSION, PURIFICATION, AND SMALL ANGLE X-RAY SCATTERING OF DNA REPLICATION AND REPAIR PROTEINS FROM THE HYPERTHERMOPHILE SULFOLOBUS SOLFATARICUS

    SciTech Connect

    Patterson, S.M.; Hatherill, J.R.; Hammel, M.; Hura, G.L.; Tainer, J.A.; Yannone, S.M.

    2008-01-01

    Vital molecular processes such as DNA replication, transcription, translation, and maintenance occur through transient protein interactions. Elucidating the mechanisms by which these protein complexes and interactions function could lead to treatments for diseases related to DNA damage and cell division control. In the recent decades since its introduction as a third domain, Archaea have shown to be simpler models for complicated eukaryotic processes such as DNA replication, repair, transcription, and translation. Sulfolobus solfataricus is one such model organism. A hyperthermophile with an optimal growth temperature of 80°C, Sulfolobus protein-protein complexes and transient protein interactions should be more stable at moderate temperatures, providing a means to isolate and study their structure and function. Here we provide the initial steps towards characterizing three DNA-related Sulfolobus proteins with small angle X-ray scattering (SAXS): Sso0257, a cell division control and origin recognition complex homolog, Sso0768, the small subunit of the replication factor C, and Sso3167, a Mut-T like protein. SAXS analysis was performed at multiple concentrations for both short and long exposure times. The Sso0257 sample was determined to be either a mixture of monomeric and dimeric states or a population of dynamic monomers in various conformational states in solution, consistent with a fl exible winged helix domain. Sso0768 was found to be a complex mixture of multimeric states in solution. Finally, molecular envelope reconstruction from SAXS data for Sso3167 revealed a novel structural component which may function as a disordered to ordered region in the presence of its substrates and/or protein partners.

  6. Immobilization of carboxypeptidase from Sulfolobus solfataricus on magnetic nanoparticles improves enzyme stability and functionality in organic media

    PubMed Central

    2014-01-01

    Background Superparamagnetic iron oxide nanoparticles (MNP) offer several advantages for applications in biomedical and biotechnological research. In particular, MNP-based immobilization of enzymes allows high surface-to-volume ratio, good dispersibility, easy separation of enzymes from the reaction mixture, and reuse by applying an external magnetic field. In a biotechnological perspective, extremophilic enzymes hold great promise as they often can be used under non-conventional harsh conditions, which may result in substrate transformations that are not achievable with normal enzymes. This prompted us to investigate the effect of MNP bioconjugation on the catalytic properties of a thermostable carboxypeptidase from the hyperthermophilic archaeon Sulfolobus solfataricus (CPSso), which exhibits catalytic properties that are useful in synthetic processes. Results CPSso was immobilized onto silica-coated iron oxide nanoparticles via NiNTA-His tag site-directed conjugation. Following the immobilization, CPSso acquired distinctly higher long-term stability at room temperature compared to the free native enzyme, which, in contrast, underwent extensive inactivation after 72 h incubation, thus suggesting a potential utilization of this enzyme under low energy consumption. Moreover, CPSso conjugation also resulted in a significantly higher stability in organic solvents at 40°C, which made it possible to synthesize N-blocked amino acids in remarkably higher yields compared to those of free enzyme. Conclusions The nanobioconjugate of CPSso immobilized on silica-coated magnetic nanoparticles exhibited enhanced stability in aqueous media at room temperature as well as in different organic solvents. The improved stability in ethanol paves the way to possible applications of immobilized CPSso, in particular as a biocatalyst for the synthesis of N-blocked amino acids. Another potential application might be amino acid racemate resolution, a critical and expensive step in

  7. Reaction Kinetics of Substrate Transglycosylation Catalyzed by TreX of Sulfolobus solfataricus and Effects on Glycogen Breakdown

    PubMed Central

    Nguyen, Dang Hai Dang; Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Oktavina, Ershita Fitria; Nguyen, Thi Lan Huong; Lee, Sung-Jae; Park, Cheon-Seok; Li, Dan; Park, Sung-Hoon; Stapleton, David; Lee, Jin-Sil

    2014-01-01

    We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc4-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc4-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.5 mM) substrate concentrations. TreX transferred maltotetraosyl moieties from the donor substrate to acceptor molecules, resulting in the formation of two positional isomers of dimaltotetraosyl-α-1,6-β-cyclodextrin [(Glc4)2-β-CD]; these were 61,63- and 61,64-dimaltotetraosyl-α-1,6-β-CD. Use of a modified Michaelis-Menten equation to study substrate transglycosylation revealed that the kcat and Km values for transglycosylation were 1.78 × 103 s−1 and 3.30 mM, respectively, whereas the values for hydrolysis were 2.57 × 103 s−1 and 0.206 mM, respectively. Also, enzyme catalytic efficiency (the kcat/Km ratio) increased as the degree of polymerization of branch chains rose. In the model reaction system of Escherichia coli, glucose-1-phosphate production from glycogen by the glycogen phosphorylase was elevated ∼1.45-fold in the presence of TreX compared to that produced in the absence of TreX. The results suggest that outward shifting of glycogen branch chains via transglycosylation increases the number of exposed chains susceptible to phosphorylase action. We developed a model of the glycogen breakdown process featuring both hydrolysis and transglycosylation catalyzed by the debranching enzyme. PMID:24610710

  8. Humoral and Cell-mediated Autoimmune Reactions to Human Acidic Ribosomal P2 Protein in Individuals Sensitized to Aspergillus fumigatus P2 Protein

    PubMed Central

    Mayer, Christina; Appenzeller, Ulrich; Seelbach, Heike; Achatz, Gernot; Oberkofler, Hannes; Breitenbach, Michael; Blaser, Kurt; Crameri, Reto

    1999-01-01

    A panel of cDNAs encoding allergenic proteins was isolated from an Aspergillus fumigatus cDNA library displayed on the surface of filamentous phage. Solid phase–immobilized serum immunoglobulin E (IgE) from A. fumigatus–allergic individuals was used to enrich phage displaying IgE-binding molecules. One of the cDNAs encoded a 11.1-kD protein that was identified as acidic ribosomal phosphoprotein type 2 (P2 protein). The allergen, formally termed rAsp f 8, shares >62% sequence identity and >84% sequence homology to corresponding eukaryotic P2 proteins, including human P2 protein. The sequences encoding human and fungal P2 protein were subcloned, expressed in Escherichia coli as His6-tagged fusion proteins, and purified by Ni2+–chelate affinity chromatography. Both recombinant P2 proteins were recognized by IgE antibodies from allergic individuals sensitized to the A. fumigatus P2 protein and elicited strong type 1–specific skin reactions in these individuals. Moreover, human and fungal P2 proteins induced proliferative responses in peripheral blood mononuclear cells of A. fumigatus– allergic subjects sensitized to the fungal P2 protein. These data provide strong evidence for in vitro and in vivo humoral and cell-mediated autoreactivity to human P2 protein in patients suffering from chronic A. fumigatus allergy. PMID:10224291

  9. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    PubMed

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function. PMID:22916275

  10. ARF6-Dependent Regulation of P2Y Receptor Traffic and Function in Human Platelets

    PubMed Central

    Kanamarlapudi, Venkateswarlu; Owens, Sian E.; Saha, Keya; Pope, Robert J.; Mundell, Stuart J.

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y1 and P2Y12 purinoceptors. Recently, we demonstrated that P2Y1 and P2Y12 purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y1 and P2Y12 purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y1 or P2Y12 purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function. PMID:22916275

  11. Ion channel regulation by phosphoinositides analyzed with VSPs—PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility

    PubMed Central

    Rjasanow, Alexandra; Leitner, Michael G.; Thallmair, Veronika; Halaszovich, Christian R.; Oliver, Dominik

    2015-01-01

    The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs. PMID

  12. Lymphocytes from P2X7-deficient mice exhibit enhanced P2X7 responses

    PubMed Central

    Taylor, Simon R. J.; Gonzalez-Begne, Mireya; Sojka, Dorothy K.; Richardson, Jill C.; Sheardown, Steven A.; Harrison, Stephen M.; Pusey, Charles D.; Tam, Frederick W. K.; Elliott, James I.

    2009-01-01

    The purinergic receptor P2X7 is expressed on immune cells, and its stimulation results in the release of IL-1β from macrophages. Its absence, as evidenced from the analysis of two independent strains of P2X7-deficient mice, results in reduced susceptibility to inflammatory disease, and the molecule is an important, potential therapeutic target in autoimmunity. However, P2X7 has also been detected in several neuronal cell types, although its function and even its presence in these cells are highly contested, with anti-P2X7 antibodies staining brain tissue from both strains of P2X7−/− mice identically to wild-type mice. It has therefore been suggested that neurons express a distinct “P2X7-like” protein that has similar antibody recognition epitopes to P2X7 and some properties of the genuine receptor. In this study, we show that whereas P2X7 activity is absent from macrophages and dendritic cells in P2X7−/− animals, T cells from one gene-deficient strain unexpectedly exhibit higher levels of P2X7 activity than that found in cells from control, unmanipulated C57BL/6 mice. A potential mechanism for this tissue-specific P2X7 expression in P2X7−/− animals is discussed, as is the implication that the immune and indeed neuronal functions of P2X7 may have been underestimated. PMID:19276178

  13. Evidence that the xylanase activity from Sulfolobus solfataricus Oalpha is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity.

    PubMed

    Maurelli, Luisa; Giovane, Alfonso; Esposito, Alessandra; Moracci, Marco; Fiume, Immacolata; Rossi, Mosè; Morana, Alessandra

    2008-09-01

    Sulfolobus solfataricus strain Oalpha was previously isolated for its ability to grow on minimal medium supplemented with xylan as a carbon source. The strain exhibited thermostable xylanase activity but several attempts to identify the gene encoding for the activity failed. Further studies showed that the xylanase displayed activity on carboxymethylcellulose (CMC) and the new activity was characterized. It exhibited an optimal temperature and pH of 95 degrees C and 3.5, respectively, and a half-life of 53 min at 95 degrees C. The enzyme, which was demonstrated to be glycosylated, hydrolyzed CMC in an endo-manner releasing cellobiose and other cello-oligomers. Analysis of the tryptic fragments by tandem mass spectrometry led to identification of the endoglucanase precursor, encoded by the sso1354 gene, as the protein possessing dual activity. The efficiency of the SSO1354 protein in degrading cellulosic and hemicellulosic fractions contained in agronomic residues was tested at low pH and high temperature. Cellulose and xylan were degraded to glucose and xylose at 90 degrees C, pH 4 by an enzyme mix consisting of SSO1354 and additional glycosyl hydrolases from S. solfataricus Oalpha. Given its role in saccharification processes requiring high temperatures and acidic environments, SSO1354 represents an interesting candidate for the utilization of agro-industrial waste for fuel production. PMID:18568289

  14. P2 integration into conduct of decommissioning

    SciTech Connect

    Boing, L.E.; Lindley, R.

    1997-08-01

    Over the last five years, the D and D Program at the ANL-East site has completed decommissioning of three facilities. Currently, decommissioning of two facilities continues at the site with completion of the JANUS Reactor scheduled for September 1997 and completion of the CP-5 Reactor scheduled for late in CY 1999. In the course of this work, certain waste minimization pollution prevention (WMin/P2) activities have been integrated into all these projects. In most cases, the P2 aspects were key components of the operations that made the best use of available project resources to complete the work safely, within the budget and on or ahead of schedule. This paper will highlight those WMin/P2 activities found most suitable for these D and D operations. Activities covered will include: re-use of lead bricks from a research reactor for shielding material at an accelerator facility, re-use of a reactor out building structure by the on-site plant services group, and several other smaller scope activities which have also helped heighten WMin/P2 awareness in decommissioning.

  15. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Séguéla, Philippe

    2013-01-01

    P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia. PMID:24324400

  16. Design, synthesis, pharmacological characterization of a fluorescent agonist of the P2Y₁₄ receptor.

    PubMed

    Kiselev, Evgeny; Balasubramanian, Ramachandran; Uliassi, Elisa; Brown, Kyle A; Trujillo, Kevin; Katritch, Vsevolod; Hammes, Eva; Stevens, Raymond C; Harden, T Kendall; Jacobson, Kenneth A

    2015-11-01

    The P2Y14R is a G(i/o)-coupled receptor of the P2Y family of purinergic receptors that is activated by extracellular UDP and UDP-glucose (UDPG). In an earlier report we described a P2Y14R fluorescent probe, MRS4174, based on the potent and selective antagonist PPTN, a naphthoic acid derivative. Here, we report the design, preparation, and activity of an agonist-based fluorescent probe MRS4183 (11) and a shorter P2Y14R agonist congener, which contain a UDP-glucuronic acid pharmacophore and BODIPY fluorophores conjugated through diaminoalkyl linkers. The design relied on both docking in a P2Y14R homology model and established structure activity relationship (SAR) of nucleotide analogs. 11 retained P2Y14R potency with EC50 value of 0.96 nM (inhibition of adenylyl cyclase), compared to parent UDPG (EC50 47 nM) and served as a tracer for microscopy and flow cytometry, displaying minimal nonspecific binding. Binding saturation analysis gave an apparent binding constant for 11 in whole cells of 21.4±1.1 nM, with a t1/2 of association at 50 nM 11 of 23.9 min. Known P2Y14R agonists and PPTN inhibited cell binding of 11 with the expected rank order of potency. The success in the identification of a new P2Y14R fluorescent agonist with low nonspecific binding illustrates the advantages of rational design based on recently determined GPCR X-ray structures. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands. PMID:26303895

  17. Emerging key roles for P2X receptors in the kidney

    PubMed Central

    Birch, R. E.; Schwiebert, E. M.; Peppiatt-Wildman, C. M.; Wildman, S. S.

    2013-01-01

    P2X ionotropic non-selective cation channels are expressed throughout the kidney and are activated in a paracrine or autocrine manner following the binding of extracellular ATP and related extracellular nucleotides. Whilst there is a wealth of literature describing a regulatory role of P2 receptors (P2R) in the kidney, there are significantly less data on the regulatory role of P2X receptors (P2XR) compared with that described for metabotropic P2Y. Much of the historical literature describing a role for P2XR in the kidney has focused heavily on the role of P2X1R in the autoregulation of renal blood flow. More recently, however, there has been a plethora of manuscripts providing compelling evidence for additional roles for P2XR in both kidney health and disease. This review summarizes the current evidence for the involvement of P2XR in the regulation of renal tubular and vascular function, and highlights the novel data describing their putative roles in regulating physiological and pathophysiological processes in the kidney. PMID:24098285

  18. Emerging key roles for P2X receptors in the kidney.

    PubMed

    Birch, R E; Schwiebert, E M; Peppiatt-Wildman, C M; Wildman, S S

    2013-01-01

    P2X ionotropic non-selective cation channels are expressed throughout the kidney and are activated in a paracrine or autocrine manner following the binding of extracellular ATP and related extracellular nucleotides. Whilst there is a wealth of literature describing a regulatory role of P2 receptors (P2R) in the kidney, there are significantly less data on the regulatory role of P2X receptors (P2XR) compared with that described for metabotropic P2Y. Much of the historical literature describing a role for P2XR in the kidney has focused heavily on the role of P2X1R in the autoregulation of renal blood flow. More recently, however, there has been a plethora of manuscripts providing compelling evidence for additional roles for P2XR in both kidney health and disease. This review summarizes the current evidence for the involvement of P2XR in the regulation of renal tubular and vascular function, and highlights the novel data describing their putative roles in regulating physiological and pathophysiological processes in the kidney. PMID:24098285

  19. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing.

    PubMed

    Adam, Iris; Mendoza, Ezequiel; Kobalz, Ursula; Wohlgemuth, Sandra; Scharff, Constance

    2016-07-01

    Mutations of the transcription factor FOXP2 cause a severe speech and language disorder. In songbirds, FoxP2 is expressed in the medium spiny neurons (MSNs) of the avian basal ganglia song nucleus, Area X, which is crucial for song learning and adult song performance. Experimental downregulation of FoxP2 in Area X affects spine formation, prevents neuronal plasticity induced by social context and impairs song learning. Direct target genes of FoxP2 relevant for song learning and song production are unknown. Here we show that a lentivirally mediated FoxP2 knockdown in Area X of zebra finches downregulates the expression of VLDLR, one of the two reelin receptors. Zebra finch FoxP2 binds to the promoter of VLDLR and activates it, establishing VLDLR as a direct FoxP2 target. Consistent with these findings, VLDLR expression is co-regulated with FoxP2 as a consequence of adult singing and during song learning. We also demonstrate that knockdown of FoxP2 affects glutamatergic transmission at the corticostriatal MSN synapse. These data raise the possibility that the regulatory relationship between FoxP2 and VLDLR guides structural plasticity towards the subset of FoxP2-positive MSNs in an activity dependent manner via the reelin pathway. PMID:27105823

  20. A fluorescent approach for identifying P2X1 ligands

    PubMed Central

    Ruepp, Marc-David; Brozik, James A.; de Esch, Iwan J.P.; Farndale, Richard W.; Murrell-Lagnado, Ruth D.; Thompson, Andrew J.

    2015-01-01

    There are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g. NF279, NF449). NF449 is the most potent and selective ligand, but potencies of many others are not particularly high and they can also act at other P2X, P2Y and non-purinergic receptors. While there is clearly scope for further work on P2X1 receptor pharmacology, screening can be difficult owing to rapid receptor desensitisation. To reduce desensitisation substitutions can be made within the N-terminus of the P2X1 receptor, but these could also affect ligand properties. An alternative is the use of fluorescent voltage-sensitive dyes that respond to membrane potential changes resulting from channel opening. Here we utilised this approach in conjunction with fragment-based drug-discovery. Using a single concentration (300 μM) we identified 46 novel leads from a library of 1443 fragments (hit rate = 3.2%). These hits were independently validated by measuring concentration-dependence with the same voltage-sensitive dye, and by visualising the competition of hits with an Alexa-647-ATP fluorophore using confocal microscopy; confocal yielded kon (1.142 × 106 M−1 s−1) and koff (0.136 s−1) for Alexa-647-ATP (Kd = 119 nM). The identified hit fragments had promising structural diversity. In summary, the measurement of functional responses using voltage-sensitive dyes was flexible and cost-effective because labelled competitors were not needed, effects were independent of a specific binding site, and both agonist and antagonist actions were probed in a single assay. The method is widely applicable and could be applied to all P2X family members, as well as other voltage-gated and ligand-gated ion channels. This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology

  1. Medicinal chemistry of adenosine, P2Y and P2X receptors.

    PubMed

    Jacobson, Kenneth A; Müller, Christa E

    2016-05-01

    Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain

  2. Systems genetics analyses predict a transcription role for P2P-R: Molecular confirmation that P2P-R is a transcriptional co-repressor

    PubMed Central

    2010-01-01

    Background The 250 kDa P2P-R protein (also known as PACT and Rbbp6) was cloned over a decade ago and was found to bind both the p53 and Rb1 tumor suppressor proteins. In addition, P2P-R has been associated with multiple biological functions, such as mitosis, mRNA processing, translation and ubiquitination. In the current studies, the online GeneNetwork system was employed to further probe P2P-R biological functions. Molecular studies were then performed to confirm the GeneNetwork evaluations. Results GeneNetwork and associated gene ontology links were used to investigate the coexpression of P2P-R with distinct functional sets of genes in an adipocyte genetic reference panel of HXB/BXH recombinant strains of rats and an eye genetic reference panel of BXD recombinant inbred strains of mice. The results establish that biological networks of 75 and 135 transcription-associated gene products that include P2P-R are co-expressed in a genetically-defined manner in rat adipocytes and in the mouse eye, respectively. Of this large set of transcription-associated genes, >10% are associated with hormone-mediated transcription. Since it has been previously reported that P2P-R can bind the SRC-1 transcription co-regulatory factor (steroid receptor co-activator 1, [Ncoa1]), the possible effects of P2P-R on estrogen-induced transcription were evaluated. Estrogen-induced transcription was repressed 50-70% by the transient transfection of P2P-R plasmid constructs into four different cell types. In addition, knockdown of P2P-R expression using an antisense oligonucleotide increased estrogen-mediated transcription. Co-immunoprecipitation assays confirmed that P2P-R interacts with SRC-1 and also demonstrated that P2P-R interacts with estrogen receptor α. Conclusions The findings presented in this study provide strong support for the value of systems genetics, especially GeneNetwork, in discovering new functions of genes that can be confirmed by molecular analysis. More specifically

  3. Agonist-bound structure of the human P2Y12 receptor

    PubMed Central

    Zhang, Jin; Zhang, Kaihua; Gao, Zhan-Guo; Paoletta, Silvia; Zhang, Dandan; Han, Gye Won; Li, Tingting; Ma, Limin; Zhang, Wenru; Müller, Christa E.; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Katritch, Vsevolod; Jacobson, Kenneth A.; Stevens, Raymond C.; Wu, Beili; Zhao, Qiang

    2014-01-01

    The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, has been identified as one of the most prominent clinical drug targets for inhibition of platelet aggregation. Consequently, extensive mutagenesis and modeling studies of the P2Y12R have revealed many aspects of agonist/antagonist binding1-4. However, the details of agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here, we report the structures of the human P2Y12R in complex with a full agonist 2-methylthio-adenosine-5′-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Å resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5′-triphosphate (2MeSATP) at 3.1 Å resolution. Analysis of these structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283)5, reveals dramatic conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions, providing the first insight into a different ligand binding landscape in the δ-group of class A G protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing ambiguities surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example of a GPCR where agonist access to the binding pocket requires large scale rearrangements in the highly malleable extracellular region, the structural studies therefore will provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs. PMID:24784220

  4. Renal P2 receptors and hypertension.

    PubMed

    Menzies, R I; Unwin, R J; Bailey, M A

    2015-01-01

    The regulation of extracellular fluid volume is a key component of blood pressure homeostasis. Long-term blood pressure is stabilized by the acute pressure natriuresis response by which changes in renal perfusion pressure evoke corresponding changes in renal sodium excretion. A wealth of experimental evidence suggests that a defect in the pressure natriuresis response contributes to the development and maintenance of hypertension. The mechanisms underlying the relationship between renal perfusion pressure and sodium excretion are incompletely understood. Increased blood flow through the vasa recta increases renal interstitial hydrostatic pressure, thereby reducing the driving force for transepithelial sodium reabsorption. Paracrine signalling also contributes to the overall natriuretic response by inhibiting tubular sodium reabsorption in several nephron segments. In this brief review, we discuss the role of purinergic signalling in the renal control of blood pressure. ATP is released from renal tubule and vascular cells in response to increased flow and can activate P2 receptor subtypes expressed in both epithelial and vascular endothelial/smooth muscle cells. In concert, these effects integrate the vascular and tubular responses to increased perfusion pressure and targeting P2 receptors, particularly P2X7, may prove beneficial for treatment of hypertension. PMID:25345692

  5. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    PubMed

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  6. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    PubMed Central

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  7. Lipopolysaccharide inhibits the channel activity of the P2X7 receptor.

    PubMed

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  8. Neuromodulation by extracellular ATP and P2X receptors in the CNS

    PubMed Central

    Khakh, Baljit S.; North, R. Alan

    2014-01-01

    Extracellular adenosine 5’ triphosphate (ATP) is a widespread cell-to-cell signaling molecule in the brain, where it activates cell surface P2X and P2Y receptors. P2X receptors define a protein family unlike other neurotransmitter-gated ion channels in terms of sequence, subunit topology, assembly and architecture. Within milliseconds of binding ATP, they catalyze the opening of a cation-selective pore. However, recent data show that P2X receptors often underlie neuromodulatory responses on slower time scales of seconds or longer. Herein, we review these findings at molecular, cellular and systems levels. We propose that, while P2X receptors are fast ligand-gated cation channels, they are most adept at mediating slow neuromodulatory functions that are more widespread and more physiologically utilized than fast ATP synaptic transmission in the CNS. PMID:23040806

  9. Characterisation of ATP analogues to cross-link and label P2X receptors

    PubMed Central

    Agboh, Kelvin C.; Powell, Andrew J.; Evans, Richard J.

    2009-01-01

    P2X receptors are a distinct family of ATP-gated ion channels with a number of physiological roles ranging from smooth muscle contractility to the regulation of blood clotting. In this study we determined whether the UV light-reactive ATP analogues 2-azido ATP, ATP azidoanilide (ATP-AA) and 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) can be used to label the ATP binding site of P2X1 receptors. These analogues were agonists, and in patch clamp studies evoked inward currents from HEK293 cells stably expressing the P2X1 receptor. Following irradiation in the presence of these compounds subsequent responses to an EC50 concentration of ATP were reduced by >65%. These effects were partially reversed by co-application of ATP or suramin with the photo-reactive ATP analogue at the time of irradiation. In autoradiographic studies radiolabelled 2-azido [γ32P] ATP and ATP-AA-[γ32P] cross-linked to P2X1 receptors and this binding was reduced by co-incubation with ATP. These studies demonstrate that photo-reactive ATP analogues can be used to label P2X receptor and may prove useful in elucidating the ATP binding site at this novel class of ATP binding proteins. PMID:18599093

  10. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  11. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  12. Eclogitic pyroxenes, ordered with P2 symmetry

    USGS Publications Warehouse

    Clark, J.R.; Papike, J.J.

    1966-01-01

    X-ray diffraction crystal-structure analysis of omphacite from eclogite, Tiburon Peninsula, Marin County, California, shows that this clinopyroxene has P2 symmetry with a nearly ordered distribution of the multiple cation content defined by its approximate formula: (Na0.5Ca0.5) (Mg 0.4Fe2+0.1Al0.4Fe3+0.1)Si2O6. Na+ and Ca2+ tend to assume alternate locations in the structure, and (Mg,Fe2+) octahedra alternate with Al3+ or (Al,F3+) octahedra in chains along c.

  13. Eclogitic pyroxenes, ordered with p2 symmetry.

    PubMed

    Clark, J R; Papike, J J

    1966-11-25

    X-ray diffraction crystal-structure analysis of omphacite from eclogite, Tiburon Peninsula, Marin County, California, shows that this clinopyroxene has P2 symmetry with a nearly ordered distribution of the multiple cation content defined by its approximate formula: (Na(o.5) Ca(o.5)) (Mg(o.4)Fe(2)+( 0.1) Al(0.4) Fe(3) +(0.1)) Si(2)0(6). Na+ and Ca(2+) tend to assume alternate locations in the structure, and ( Mg,Fe(2+)) octahedra alternate with Al(3+). or (Al,F(3+)) octahedra in chains along c. PMID:17752801

  14. Electronic states of BP, BP +, BP -, B 2P 2, B2P2- and B2P2+

    NASA Astrophysics Data System (ADS)

    Linguerri, Roberto; Komiha, Najia; Oswald, Rainer; Mitrushchenkov, Alexander; Rosmus, Pavel

    2008-05-01

    Using augmented sextuple zeta basis sets and internally contracted multireference configuration interaction (MRCI) wavefunctions, potential energy, electric dipole and transition moments have been computed for the X 3Π, a 1Σ +, b 1Π and A 3Σ - states of BP, X 2Σ + and A 2Π states of BP - and X 4Σ - and A 4Π states of BP +. From these data spectroscopic constants, radiative transition probabilities and photoelectron spectra of BP - and BP have been evaluated. The non-vanishing spin-orbit coupling elements between the four low lying triplet and singlet states of the neutral BP have also been calculated from MRCI wavefunctions. The treatment of the corresponding perturbations in the manifold of dense rovibrational states in the three lowest states would require a precise knowledge of the electronic excitation energies. Our best singlet-triplet separations (X-a) are calculated to be 2412 cm -1 (MRCI) and 2482 cm -1 (restricted coupled cluster with perturbative triples (RCCSD(T))) with an estimated error bound of about ±200 cm -1. All three states have long radiative lifetimes with cascading among the rovibrational levels of different states. The ionization energy IE e of BP is calculated to be 9.22 eV (MRCI) and 9.48 eV (RCCSD(T)), the electron affinity EA e 2.51 eV (MRCI) and 2.74 eV (RCCSD(T)). The photoelectron spectra of BP and BP - have been obtained from the Franck-Condon factors of the MRCI potentials. For the UV spectroscopy the dipole allowed radiative transition probabilities are given for A 3Σ - ↔ X 3Π, b 1Π ↔ a 1Σ + of BP, A 2Π ↔ X 2Σ + of BP - and A 4Π ↔ X 4Σ - of BP +. The ionization energy IE e of B 2P 2 of 8.71 eV and the electron affinity EA e of 2.34 eV have been calculated by the RCCSD(T)/aVQZ approach. Also the harmonic vibrational wavenumbers for the electronic ground states of the ions B2P2+ and B2P2- are given.

  15. Discovery of Potential Orthosteric and Allosteric Antagonists of P2Y1R from Chinese Herbs by Molecular Simulation Methods

    PubMed Central

    Lu, Fang; Jiang, Lu-di; Qiao, Lian-sheng; Xiang, Yu-hong

    2016-01-01

    P2Y1 receptor (P2Y1R), which belongs to G protein-coupled receptors (GPCRs), is an important target in ADP-induced platelet aggregation. The crystal structure of P2Y1R has been solved recently, which revealed orthosteric and allosteric ligand-binding sites with the details of ligand-protein binding modes. And it suggests that P2Y1R antagonists, which recognize two distinct sites, could potentially provide an efficacious and safe antithrombotic profile. In present paper, 2D similarity search, pharmacophore based screening, and molecular docking were used to explore the potential natural P2Y1R antagonists. 2D similarity search was used to classify orthosteric and allosteric antagonists of P2Y1R. Based on the result, pharmacophore models were constructed and validated by the test set. Optimal models were selected to discover potential P2Y1R antagonists of orthosteric and allosteric sites from Traditional Chinese Medicine (TCM). And the hits were filtered by Lipinski's rule. Then molecular docking was used to refine the results of pharmacophore based screening and analyze the binding mode of the hits and P2Y1R. Finally, two orthosteric and one allosteric potential compounds were obtained, which might be used in future P2Y1R antagonists design. This work provides a reliable guide for discovering natural P2Y1R antagonists acting on two distinct sites from TCM.

  16. A novel radioligand for the ATP-gated ion channel P2X7: [3H] JNJ-54232334.

    PubMed

    Lord, Brian; Ameriks, Michael K; Wang, Qi; Fourgeaud, Lawrence; Vliegen, Maarten; Verluyten, Willy; Haspeslagh, Pieter; Carruthers, Nicholas I; Lovenberg, Timothy W; Bonaventure, Pascal; Letavic, Michael A; Bhattacharya, Anindya

    2015-10-15

    The ATP-gated ion channel P2X7 has emerged as a potential central nervous system (CNS) drug target based on the hypotheses that pro-inflammatory cytokines such as IL-1β that are released by microglia, may contribute to the etiology of various disorders of the CNS including depression. In this study, we identified two closely related P2X7 antagonists, JNJ-54232334 and JNJ-54140515, and then tritium labeled the former to produce a new radioligand for P2X7. JNJ-54232334 is a high affinity ligand for the rat P2X7 with a pKi of 9.3±0.1. In rat cortical membranes, [3H] JNJ-54232334 reached saturable binding with equilibrium dissociation (Kd) constant of 4.9±1.3 nM. The compound displayed monophasic association and dissociation kinetics with fast on and off rates. In rat brain sections, specific binding of [3H] JNJ-54232334 was markedly improved compared to the previously described P2X7 radioligand, [3H] A-804598. In P2X7 knockout mouse brain sections, [3H] A-804598 bound to non-P2X7 binding sites in contrast to [3H] JNJ-54232334. In rat or wild type mouse brain sections [3H] JNJ-54232334 bound in a more homogenous and region independent manner. The ubiquitous expression of P2X7 receptors was confirmed with immunohistochemistry in rat brain sections. The partial displacement of [3H] A-804598 binding resulted in the underestimation of the level of ex vivo P2X7 occupancy for JNJ-54140515. Higher levels of P2X7 ex vivo occupancy were measured using [3H] JNJ-54232334 due to less non-specific binding. In summary, we describe [3H] JNJ-54232334 as a novel P2X7 radioligand, with improved properties over [3H] A-804598. PMID:26386289

  17. P2X7 on Mouse T Cells: One Channel, Many Functions

    PubMed Central

    Rissiek, Björn; Haag, Friedrich; Boyer, Olivier; Koch-Nolte, Friedrich; Adriouch, Sahil

    2015-01-01

    The P2X7 receptor is an adenosine triphosphate (ATP)-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature interleukin (IL)-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-covalent binding of ATP or, in the presence of nicotinamide adenine dinucleotide, by its covalent ADP-ribosylation catalyzed by the ecto-ADP-ribosyltransferase ARTC2.2. Prolonged activation of P2X7 by either one of these pathways triggers the induction of T cell death. Conversely, lower concentrations of ATP can activate P2X7 to enhance T cell proliferation and production of IL-2. In this review, we will highlight the molecular and cellular consequences of P2X7 activation on mouse T cells and its versatile role in T cell homeostasis and activation. Further, we will discuss important differences in the function of P2X7 on human and murine T cells. PMID:26042119

  18. Comparative study of the P2X gene family in animals and plants.

    PubMed

    Hou, Zhuoran; Cao, Jun

    2016-06-01

    P2X receptors are ligand-gated ion channels that can bind with the adenosine triphosphate (ATP) and have diverse functional roles in neuropathic pain, inflammation, special sense, and so on. In this study, 180 putative P2X genes, including 176 members in 32 animal species and 4 members in 3 species of lower plants, were identified. These genes were divided into 13 groups, including 7 groups in vertebrates and 6 groups in invertebrates and lower plants, through phylogenetic analysis. Their gene organization and motif composition are conserved in most predicted P2X members, while group-specific features were also found. Moreover, synteny relationships of the putative P2X genes in vertebrates are conserved while simultaneously experiencing a series of gene insertion, inversion, and transposition. Recombination signals were detected in almost all of the vertebrates and invertebrates, suggesting that intragenic recombination may play a significant role in the evolution of P2X genes. Selection analysis also identified some positively selected sites that acted on the evolution of most of the predicted P2X proteins. The phenomenon of alternative splicing occurred commonly in the putative P2X genes of vertebrates. This article explored in depth the evolutional relationship among different subtypes of P2X genes in animal and plants and might serve as a solid foundation for deciphering their functions in further studies. PMID:26874702

  19. Characterization of ATPase Activity of P2RX2 Cation Channel

    PubMed Central

    Mittal, Rahul; Grati, M'hamed; Sedlacek, Miloslav; Yuan, Fenghua; Chang, Qing; Yan, Denise; Lin, Xi; Kachar, Bechara; Farooq, Amjad; Chapagain, Prem; Zhang, Yanbin; Liu, Xue Z.

    2016-01-01

    P2X purinergic receptors are plasma membrane ATP-dependent cation channels that are broadly distributed in the mammalian tissues. P2RX2 is a modulator of auditory sensory hair cell mechanotransduction and plays an important role in hair cell tolerance to noise. In this study, we demonstrate for the first time in vitro and in cochlear neuroepithelium, that P2RX2 possesses the ATPase activity. We observed that the P2RX2 V60L human deafness mutation alters its ability to bind ATP, while the G353R has no effect on ATP binding or hydrolysis. A non-hydrolysable ATP assay using HEK293 cells suggests that ATP hydrolysis plays a significant role in the opening and gating of the P2RX2 ion channel. Moreover, the results of structural modeling of the molecule was in agreement with our experimental observations. These novel findings suggest the intrinsic ATPase activity of P2RX2 and provide molecular insights into the channel opening. PMID:27252659

  20. Characterization of ATPase Activity of P2RX2 Cation Channel.

    PubMed

    Mittal, Rahul; Grati, M'hamed; Sedlacek, Miloslav; Yuan, Fenghua; Chang, Qing; Yan, Denise; Lin, Xi; Kachar, Bechara; Farooq, Amjad; Chapagain, Prem; Zhang, Yanbin; Liu, Xue Z

    2016-01-01

    P2X purinergic receptors are plasma membrane ATP-dependent cation channels that are broadly distributed in the mammalian tissues. P2RX2 is a modulator of auditory sensory hair cell mechanotransduction and plays an important role in hair cell tolerance to noise. In this study, we demonstrate for the first time in vitro and in cochlear neuroepithelium, that P2RX2 possesses the ATPase activity. We observed that the P2RX2 V60L human deafness mutation alters its ability to bind ATP, while the G353R has no effect on ATP binding or hydrolysis. A non-hydrolysable ATP assay using HEK293 cells suggests that ATP hydrolysis plays a significant role in the opening and gating of the P2RX2 ion channel. Moreover, the results of structural modeling of the molecule was in agreement with our experimental observations. These novel findings suggest the intrinsic ATPase activity of P2RX2 and provide molecular insights into the channel opening. PMID:27252659

  1. Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones

    PubMed Central

    Virginio, Caterina; North, R A; Surprenant, Annmarie

    1998-01-01

    Whole-cell recordings were made from HEK 293 (human embryonic kidney) cells stably transfected with cDNAs encoding P2X2, P2X3 or both receptors (P2X2/3) and from cultured rat nodose neurones. Nodose neurones all showed immunoreactivity for both P2X2 and P2X3, but not P2X1, receptors. Reversal potentials were measured in extracellular sodium, N-methyl-D-glucamine (NMDG) and NMDG containing 5 mM Ca2+; the values were used to compute relative permeabilities (PNMDG/PNa and PCa/PNa). PNMDG/PNa was not different for P2X2, P2X2/3 and nodose neurones (0.03) but was significantly higher (0.07) for P2X3 receptors. PCa/PNa was not different among P2X3, P2X2/3 and nodose neurones (1.2-1.5) but was significantly higher (2.5) for P2X2 receptors. External Ca2+ inhibited purinoceptor currents with half-maximal concentrations of 5 mM at the P2X2 receptor, 89 mM at the P2X3 receptor and 15 mM at both the P2X2/3 heteromeric receptor and nodose neurones. In each case, the inhibition was voltage independent and was overcome by increasing concentrations of agonist. These results may indicate that Ca2+ permeability of the heteromeric (P2X2/3) channel is dominated by that of the P2X3 subunit, while Ca2+ block of the receptor involves both P2X2 and P2X3 subunits. The correspondence in properties between P2X2/3 receptors and nodose ganglion neurones further supports the conclusion that the native α,β-methylene ATP-sensitive receptor is a P2X2/3 heteromultimer. PMID:9625864

  2. Single Channel Properties of P2X2 Purinoceptors

    PubMed Central

    Ding, Shinghua; Sachs, Frederick

    1999-01-01

    The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current–voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of ∼30 pS at −100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was ∼150 mM at 0 mV and voltage dependent. The binding site appeared to be ∼0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (Po) to a maximum of 0.6 with an EC50 of 11.2 μM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of ∼7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted Po vs. ATP concentration closely matches the single channel current dose–response curve. PMID:10228183

  3. Antipsychotic Drugs Inhibit Platelet Aggregation via P2Y1 and P2Y12 Receptors

    PubMed Central

    Wu, Chang-Chieh; Tsai, Fu-Ming; Chen, Mao-Liang; Wu, Semon; Lee, Ming-Cheng; Tsai, Tzung-Chieh; Wang, Lu-Kai; Wang, Chun-Hua

    2016-01-01

    Antipsychotic drugs (APDs) used to treat clinical psychotic syndromes cause a variety of blood dyscrasias. APDs suppress the aggregation of platelets; however, the underlying mechanism remains unknown. We first analyzed platelet aggregation and clot formation in platelets treated with APDs, risperidone, clozapine, or haloperidol, using an aggregometer and rotational thromboelastometry (ROTEM). Our data indicated that platelet aggregation was inhibited, that clot formation time was increased, and that clot firmness was decreased in platelets pretreated with APDs. We also examined the role two major adenosine diphosphate (ADP) receptors, P2Y1 and P2Y12, play in ADP-mediated platelet activation and APD-mediated suppression of platelet aggregation. Our results show that P2Y1 receptor stimulation with ADP-induced calcium influx was inhibited by APDs in human and rats' platelets, as assessed by in vitro or ex vivo approach, respectively. In contrast, APDs, risperidone and clozapine, alleviated P2Y12-mediated cAMP suppression, and the release of thromboxane A2 and arachidonic acid by activated platelets decreased after APD treatment in human and rats' platelets. Our data demonstrate that each APD tested significantly suppressed platelet aggregation via different mechanisms. PMID:27069920

  4. P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis

    PubMed Central

    Viering, Daan H. H. M.; Bos, Caro; Bindels, René J. M.; Hoenderop, Joost G. J.

    2016-01-01

    ATP-mediated signaling is an important regulator of electrolyte transport in the kidney. The purinergic cation channel P2X6 has been previously localized to the distal convoluted tubule (DCT), a nephron segment important for Mg2+ and Na+ reabsorption, but its role in ion transport remains unknown. In this study, P2x6 knockout (P2x6-/-) mice were generated to investigate the role of P2X6 in renal electrolyte transport. The P2x6-/- animals displayed a normal phenotype and did not differ physiologically from wild type mice. Differences in serum concentration and 24-hrs urine excretion of Na+, K+, Mg2+ and Ca2+ were not detected between P2x6+/+, P2x6+/- and P2x6-/- mice. Quantitative PCR was applied to examine potential compensatory changes in renal expression levels of other P2x subunits and electrolyte transporters, including P2x1-5, P2x7, Trpm6, Ncc, Egf, Cldn16, Scnn1, Slc12a3, Slc41a1, Slc41a3, Cnnm2, Kcnj10 and Fxyd2. Additionally, protein levels of P2X2 and P2X4 were assessed in P2x6+/+ and P2x6-/- mouse kidneys. However, significant changes in expression were not detected. Furthermore, no compensatory changes in gene expression could be demonstrated in heart material isolated from P2x6-/- mice. Except for a significant (P<0.05) upregulation of P2x2 in the heart of P2x6-/- mice compared to the P2x6+/+ mice. Thus, our data suggests that purinergic signaling via P2X6 is not significantly involved in the regulation of renal electrolyte handling under normal physiological conditions. PMID:27254077

  5. Cloning and pharmacological characterization of the dog P2X7 receptor

    PubMed Central

    Roman, S; Cusdin, FS; Fonfria, E; Goodwin, JA; Reeves, J; Lappin, SC; Chambers, L; Walter, DS; Clay, WC; Michel, AD

    2009-01-01

    Background and purpose: Human and rodent P2X7 receptors exhibit differences in their sensitivity to antagonists. In this study we have cloned and characterized the dog P2X7 receptor to determine if its antagonist sensitivity more closely resembles the human or rodent orthologues. Experimental approach: A cDNA encoding the dog P2X7 receptor was isolated from a dog heart cDNA library, expressed in U-2 OS cells using the BacMam viral expression system and characterized in electrophysiological, ethidium accumulation and radioligand binding studies. Native P2X7 receptors were examined by measuring ATP-stimulated interleukin-1β release in dog and human whole blood. Key results: The dog P2X7 receptor was 595 amino acids long and exhibited high homology (>70%) to the human and rodent orthologues although it contained an additional threonine at position 284 and an amino acid deletion at position 538. ATP possessed low millimolar potency at dog P2X7 receptors. 2′-&3′-O-(4benzoylbenzoyl) ATP had slightly higher potency but was a partial agonist. Dog P2X7 receptors possessed relatively high affinity for a number of selective antagonists of the human P2X7 receptor although there were some differences in potency between the species. Compound affinities in human and dog blood exhibited a similar rank order of potency as observed in studies on the recombinant receptor although absolute potency was considerably lower. Conclusions and implications: Dog recombinant and native P2X7 receptors display a number of pharmacological similarities to the human P2X7 receptor. Thus, dog may be a suitable species for assessing target-related toxicity of antagonists intended for evaluation in the clinic. PMID:19814727

  6. LPS-induced clustering of CD14 triggers generation of PI(4,5)P2.

    PubMed

    Płóciennikowska, Agnieszka; Zdioruk, Mykola I; Traczyk, Gabriela; Świątkowska, Anna; Kwiatkowska, Katarzyna

    2015-11-15

    Bacterial lipopolysaccharide (LPS) induces strong pro-inflammatory reactions after sequential binding to CD14 protein and TLR4 receptor. Here, we show that CD14 controls generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in response to LPS binding. In J774 cells and HEK293 cells expressing CD14 exposed to 10-100 ng/ml LPS, the level of PI(4,5)P2 rose in a biphasic manner with peaks at 5-10 min and 60 min. After 5-10 min of LPS stimulation, CD14 underwent prominent clustering in the plasma membrane, accompanied by accumulation of PI(4,5)P2 and type-I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) isoforms Iα and Iγ (encoded by Pip5k1a and Pip5k1c, respectively) in the CD14 region. Clustering of CD14 with antibodies, without LPS and TLR4 participation, was sufficient to trigger PI(4,5)P2 elevation. The newly generated PI(4,5)P2 accumulated in rafts, which also accommodated CD14 and a large portion of PIP5K Iα and PIP5K Iγ. Silencing of PIP5K Iα and PIP5K Iγ, or application of drugs interfering with PI(4,5)P2 synthesis and availability, abolished the LPS-induced PI(4,5)P2 elevation and inhibited downstream pro-inflammatory reactions. Taken together, these data indicate that LPS induces clustering of CD14, which triggers PI(4,5)P2 generation in rafts that is required for maximal pro-inflammatory signaling of TLR4. PMID:26446256

  7. Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain

    PubMed Central

    Masuda, Takahiro; Iwamoto, Shosuke; Yoshinaga, Ryohei; Tozaki-Saitoh, Hidetoshi; Nishiyama, Akira; Mak, Tak W.; Tamura, Tomohiko; Tsuda, Makoto; Inoue, Kazuhide

    2014-01-01

    In response to neuronal injury or disease, microglia adopt distinct reactive phenotypes via the expression of different sets of genes. Spinal microglia expressing the purinergic P2X4 receptor (P2X4R) after peripheral nerve injury (PNI) are implicated in neuropathic pain. Here we show that interferon regulatory factor-5 (IRF5), which is induced in spinal microglia after PNI, is responsible for direct transcriptional control of P2X4R. Upon stimulation of microglia by fibronectin, IRF5 induced de novo expression of P2X4R by directly binding to the promoter region of the P2rx4 gene. Mice lacking Irf5 did not upregulate spinal P2X4R after PNI, and also exhibited substantial resistance to pain hypersensitivity. Furthermore, we found that expression of IRF5 in microglia is regulated by IRF8. Thus, an IRF8-IRF5 transcriptional axis may contribute to shifting spinal microglia toward a P2X4R-expressing reactive state after PNI. These results may provide a new target for treating neuropathic pain. PMID:24818655

  8. Structural and functional evolution of the P2Y12-like receptor group

    PubMed Central

    Hermsdorf, Thomas; Engemaier, Eva; Engel, Kathrin; Liebscher, Ines; Thor, Doreen; Zierau, Klaas; Römpler, Holger; Schulz, Angela

    2007-01-01

    Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members. PMID:18404440

  9. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    PubMed Central

    Ruskamo, Salla; Yadav, Ravi P.; Sharma, Satyan; Lehtimäki, Mari; Laulumaa, Saara; Aggarwal, Shweta; Simons, Mikael; Bürck, Jochen; Ulrich, Anne S.; Juffer, André H.; Kursula, Inari; Kursula, Petri

    2014-01-01

    P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer. PMID:24419389

  10. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System.

    PubMed

    Mittal, Rahul; Chan, Brandon; Grati, M'hamed; Mittal, Jeenu; Patel, Kunal; Debs, Luca H; Patel, Amit P; Yan, Denise; Chapagain, Prem; Liu, Xue Zhong

    2016-08-01

    The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc. PMID:26627116

  11. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2015-04-01

    The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV. PMID:25622129

  12. Spontaneous cell fusion in macrophage cultures expressing high levels of the P2Z/P2X7 receptor.

    PubMed

    Chiozzi, P; Sanz, J M; Ferrari, D; Falzoni, S; Aleotti, A; Buell, G N; Collo, G; Di Virgilio, F

    1997-08-11

    Mouse and human macrophages express a plasma membrane receptor for extracellular ATP named P2Z/P2X7. This molecule, recently cloned, is endowed with the intriguing property of forming an aqueous pore that allows transmembrane fluxes of hydrophylic molecules of molecular weight below 900. The physiological function of this receptor is unknown. In a previous study we reported experiments suggesting that the P2Z/P2X7 receptor is involved in the formation of macrophage-derived multinucleated giant cells (MGCs; Falzoni, S., M. Munerati, D. Ferrari, S. Spisani, S. Moretti, and F. Di Virgilio. 1995. J. Clin. Invest. 95:1207- 1216). We have selected several clones of mouse J774 macrophages that are characterized by either high or low expression of the P2Z/P2X7 receptor and named these clones P2Zhyper or P2Zhypo, respectively. P2Zhyper, but not P2Zhypo, cells grown to confluence in culture spontaneously fuse to form MGCs. As previously shown for human macrophages, fusion is inhibited by the P2Z/P2X7 blocker oxidized ATP. MGCs die shortly after fusion through a dramatic process of cytoplasmic sepimentation followed by fragmentation. These observations support our previous hypothesis that the P2Z/P2X7 receptor is involved in macrophage fusion. PMID:9245796

  13. 5-OMe-UDP is a potent and selective P2Y(6)-receptor agonist.

    PubMed

    Ginsburg-Shmuel, Tamar; Haas, Michael; Schumann, Marlen; Reiser, Georg; Kalid, Ori; Stern, Noa; Fischer, Bilha

    2010-02-25

    P2Y nucleotide receptors (P2Y-Rs) play important physiological roles. However, most of the P2Y-R subtypes are still lacking potent and selective agonists and antagonists. Based on data mining analysis of binding interactions in 44 protein-uridine nucleos(t)ides complexes, we designed uracil nucleotides, substituted at the C5/C6 position. All C6-substituted derivatives were inactive at the P2Y(2,4,6)-Rs, while out of the C5-substituted analogues, only 5-OMe-UD(T)P showed activity. To rationalize the data, the ionization and conformation of these analogues were evaluated. The pK(a) values of most analogues substituted at the C5/C6 positions were unaltered compared to UTP (pK(a) 9.42), except for 5-F-UTP nucleotide (pK(a) 7.85). C6-substituted analogues adopt the syn or high-syn conformations, which are disfavored by the receptors, while 5-OMe-UD(T)P adopt the favored anti conformation. Furthermore, 5-OMe-UDP adopts the S sugar puckering, which is the conformation preferred by the P2Y(6)-R, but not the P2Y(2)- or P2Y(4)-Rs. 5-OMe-UDP fulfills the conformational and H-bonding requirements of P2Y(6)-R, thus, making a potent P2Y(6)-R agonist (EC(50) 0.08 microM), more than UDP (EC(50) 0.14 microM). PMID:20095577

  14. Structural and Molecular Modeling Features of P2X Receptors

    PubMed Central

    Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos

    2014-01-01

    Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936

  15. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567

    PubMed Central

    Bhattacharya, Anindya; Wang, Qi; Ao, Hong; Shoblock, James R; Lord, Brian; Aluisio, Leah; Fraser, Ian; Nepomuceno, Diane; Neff, Robert A; Welty, Natalie; Lovenberg, Timothy W; Bonaventure, Pascal; Wickenden, Alan D; Letavic, Michael A

    2013-01-01

    BACKGROUND AND PURPOSE An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist. EXPERIMENTAL APPROACH We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1β release) in both recombinant and native systems. Target engagement of JNJ-47965567 was demonstrated by ex vivo receptor binding autoradiography and in vivo blockade of Bz-ATP induced IL-1β release in the rat brain. Finally, the efficacy of JNJ-47965567 was tested in standard models of depression, mania and neuropathic pain. KEY RESULTS JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1β release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL−1 (P2X7 receptor autoradiography) and functional block of Bz-ATP induced IL-1β release. JNJ-47965567 (30 mg·kg−1) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test. Conclusion and Implications JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology. PMID:23889535

  16. Effects of P2Y12 receptor antagonists beyond platelet inhibition - comparison of ticagrelor with thienopyridines.

    PubMed

    Nylander, Sven; Schulz, Rainer

    2016-04-01

    The effect and clinical benefit of P2Y12 receptor antagonists may not be limited to platelet inhibition and the prevention of arterial thrombus formation. Potential additional effects include reduction of the pro-inflammatory role of activated platelets and effects related to P2Y12 receptor inhibition on other cells apart from platelets. P2Y12 receptor antagonists, thienopyridines and ticagrelor, differ in their mode of action being prodrugs instead of direct acting and irreversibly instead of reversibly binding to P2Y12 . These key differences may provide different potential when it comes to additional effects. In addition to P2Y12 receptor blockade, ticagrelor is unique in having the only well-documented additional target of inhibition, the equilibrative nucleoside transporter 1. The current review will address the effects of P2Y12 receptor antagonists beyond platelets and the protection against arterial thrombosis. The discussion will include the potential for thienopyridines and ticagrelor to mediate anti-inflammatory effects, to conserve vascular function, to affect atherosclerosis, to provide cardioprotection and to induce dyspnea. PMID:26758983

  17. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library.

    PubMed

    Zhao, Ning; Schmitt, Margaret A; Fisk, John D

    2016-04-01

    Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that may be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins that may serve as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the S. solfataricus protein Sso7d scaffold. Sso7d is a small cysteine-free DNA-binding protein (approximately 7 kDa, 63 amino acids), with a melting temperature of nearly 100 °C. Tight-binding Sso7d variants were selected for a diverse set of protein targets from a 10(10) member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely related human, bovine and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context. Furthermore, phage-displayed Sso7d variants retain their binding affinity after exposure to temperatures up to 70 °C. Taken together, our results suggest that the Sso7d scaffold will be a complementary addition to the range of non-antibody scaffold proteins that may be utilized in phage display. Variants of hyperthermostable binding proteins have potential applications in diagnostics and therapeutics for environments with extreme conditions of storage and deployment. PMID:26835881

  18. Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus.

    PubMed

    Kouril, Theresa; Esser, Dominik; Kort, Julia; Westerhoff, Hans V; Siebers, Bettina; Snoep, Jacky L

    2013-09-01

    Four enzymes of the gluconeogenic pathway in Sulfolobus solfataricus were purified and kinetically characterized. The enzymes were reconstituted in vitro to quantify the contribution of temperature instability of the pathway intermediates to carbon loss from the system. The reconstituted system, consisting of phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase and the fructose 1,6-bisphosphate aldolase/phosphatase, maintained a constant consumption rate of 3-phosphoglycerate and production of fructose 6-phosphate over a 1-h period. Cofactors ATP and NADPH were regenerated via pyruvate kinase and glucose dehydrogenase. A mathematical model was constructed on the basis of the kinetics of the purified enzymes and the measured half-life times of the pathway intermediates. The model quantitatively predicted the system fluxes and metabolite concentrations. Relative enzyme concentrations were chosen such that half the carbon in the system was lost due to degradation of the thermolabile intermediates dihydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency. PMID:23865479

  19. P2Y Receptors Sensitize Mouse and Human Colonic Nociceptors

    PubMed Central

    Hockley, James R. F.; Tranter, Michael M.; McGuire, Cian; Boundouki, George; Cibert-Goton, Vincent; Thaha, Mohamed A.; Blackshaw, L. Ashley; Michael, Gregory J.; Baker, Mark D.; Knowles, Charles H.; Winchester, Wendy J.

    2016-01-01

    Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g., ATP and UTP) are strongly implicated in this process following their release from epithelial cells during mechanical stimulation of the gut, and from immune cells during inflammation. Actions of ATP are mediated through both ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptor activation causes excitation of visceral afferents; however, the impact of P2Y receptor activation on visceral afferents innervating the gut is unclear. Here we investigate the effects of stimulating P2Y receptors in isolated mouse colonic sensory neurons, and visceral nociceptor fibers in mouse and human nerve-gut preparations. Additionally, we investigate the role of Nav1.9 in mediating murine responses. The application of UTP (P2Y2 and P2Y4 agonist) sensitized colonic sensory neurons by increasing action potential firing to current injection and depolarizing the membrane potential. The application of ADP (P2Y1, P2Y12, and P2Y13 agonist) also increased action potential firing, an effect blocked by the selective P2Y1 receptor antagonist MRS2500. UTP or ADP stimulated afferents, including mouse and human visceral nociceptors, in nerve-gut preparations. P2Y1 and P2Y2 transcripts were detected in 80% and 56% of retrogradely labeled colonic neurons, respectively. Nav1.9 transcripts colocalized in 86% of P2Y1-positive and 100% of P2Y2-positive colonic neurons, consistent with reduced afferent fiber responses to UTP and ADP in Nav1.9−/− mice. These data demonstrate that P2Y receptor activation stimulates mouse and human visceral nociceptors, highlighting P2Y-dependent mechanisms in the generation of visceral pain during gastrointestinal disease. SIGNIFICANCE STATEMENT Chronic visceral pain is a debilitating symptom of many gastrointestinal disorders. The activation of

  20. Structure-based identification and characterisation of structurally novel human P2X7 receptor antagonists.

    PubMed

    Caseley, Emily A; Muench, Stephen P; Fishwick, Colin W; Jiang, Lin-Hua

    2016-09-15

    The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, meaning that the human P2X7R (hP2X7R) is an attractive therapeutic target. The crystal structures of the zebrafish P2X4R in the closed and ATP-bound open states provide an unprecedented opportunity for structure-guided identification of new ligands. The present study performed virtual screening of ∼100,000 structurally diverse compounds against the ATP-binding pocket in the hP2X7R. This identified three compounds (C23, C40 and C60) out of 73 top-ranked compounds by testing against hP2X7R-mediated Ca(2+) responses. These compounds were further characterised using Ca(2+) imaging, patch-clamp current recording, YO-PRO-1 uptake and propidium iodide cell death assays. All three compounds inhibited BzATP-induced Ca(2+) responses concentration-dependently with IC50s of 5.1±0.3μM, 4.8±0.8μM and 3.2±0.2μM, respectively. C23 and C40 inhibited BzATP-induced currents in a reversible and concentration-dependent manner, with IC50s of 0.35±0.3μM and 1.2±0.1μM, respectively, but surprisingly C60 did not affect BzATP-induced currents up to 100μM. They suppressed BzATP-induced YO-PRO-1 uptake with IC50s of 1.8±0.9μM, 1.0±0.1μM and 0.8±0.2μM, respectively. Furthermore, these three compounds strongly protected against ATP-induced cell death. Among them, C40 and C60 exhibited strong specificity towards the hP2X7R over the hP2X4R and rP2X3R. In conclusion, our study reports the identification of three novel hP2X7R antagonists with micromolar potency for the first time using a structure-based approach, including the first P2X7R antagonist with preferential inhibition of large pore formation. PMID:27481062

  1. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    SciTech Connect

    Ruskamo, Salla; Yadav, Ravi P.; Sharma, Satyan; Lehtimäki, Mari; Laulumaa, Saara; Aggarwal, Shweta; Simons, Mikael; Bürck, Jochen; Ulrich, Anne S.; Juffer, André H.; Kursula, Inari; Kursula, Petri

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.

  2. Three new phosphates with isolated P2O7 units: noncentrosymmetric Cs2Ba3(P2O7)2 and centrosymmetric Cs2BaP2O7 and LiCsBaP2O7.

    PubMed

    Li, Lin; Han, Shujuan; Lei, Bing-Hua; Wang, Ying; Li, Hongyi; Yang, Zhihua; Pan, Shilie

    2016-03-01

    Three new phosphates, a noncentrosymmetric (NCS) Cs2Ba3(P2O7)2 and centrosymmetric (CS) Cs2BaP2O7 and LiCsBaP2O7, have been synthesized from high-temperature solutions for the first time. Analysis of the structures determined by single-crystal X-ray diffraction showed that although the three compounds contained isolated P2O7 units, they yielded different three-dimensional (3D) networks: Cs2Ba3(P2O7)2 crystallized in the NCS Orthorhombic space group P212121, Cs2BaP2O7 in the CS monoclinic space group P21/n, and LiCsBaP2O7, having an identical stoichiometry with Cs2BaP2O7, crystallized in monoclinic space group, P21/c. Structural comparisons suggested the differences between their 3D frameworks to be due to differences between the sizes and coordination environments of the cations. Characterizations including thermal and optical analyses showed Cs2Ba3(P2O7)2 and Cs2BaP2O7 to melt congruently, and Cs2Ba3(P2O7)2 to exhibit a wide transparent region with a cut-off edge below 176 nm. The NLO properties and electronic structures of these compounds were investigated using first-principles calcualtions. PMID:26831497

  3. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N[superscript 2]-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Christov, Plamen P.; Kozekova, Albena; Rizzo, Carmelo J.; Egli, Martin; Stone, Michael P.

    2014-10-02

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of {omega}-6 polyunsaturated fatty acids in vivo. Michael addition of the N{sub 2}-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N{sub 2}-dGuo (1,N{sub 2}-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua {yields} Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, the (6S,8R,11S)-1,N{sub 2}-dGuo lesion remained in the ring

  4. Characterization of P2X3, P2Y1 and P2Y4 receptors in cultured HEK293-hP2X3 cells and their inhibition by ethanol and trichloroethanol.

    PubMed

    Fischer, Wolfgang; Wirkner, Kerstin; Weber, Marco; Eberts, Christoph; Köles, Laszlo; Reinhardt, Robert; Franke, Heike; Allgaier, Clemens; Gillen, Clemens; Illes, Peter

    2003-05-01

    Membrane currents and changes in the intracellular Ca2+ concentration ([Ca2+]i) were measured in HEK293 cells transfected with the human P2X3 receptor (HEK293-hP2X3). RT-PCR and immunocytochemistry indicated the additional presence of endogenous P2Y1 and to some extent P2Y4 receptors. P2 receptor agonists induced inward currents in HEK293-hP2X3 cells with the rank order of potency alpha,beta-meATP approximately ATP > ADP-beta-S > UTP. A comparable rise in [Ca2+]i was observed after the slow superfusion of ATP, ADP-beta-S and UTP; alpha,beta-meATP was ineffective. These data, in conjunction with results obtained by using the P2 receptor antagonists TNP-ATP, PPADS and MRS2179 indicate that the current response to alpha,beta-meATP is due to P2X3 receptor activation, while the ATP-induced rise in [Ca2+]i is evoked by P2Y1 and P2Y4 receptor activation. TCE depressed the alpha,beta-meATP current in a manner compatible with a non-competitive antagonism. The ATP-induced increase of [Ca2+]i was much less sensitive to the inhibitory effect of TCE than the current response to alpha,beta-meATP. The present study indicates that in HEK293-hP2X3 cells, TCE, but not ethanol, potently inhibits ligand-gated P2X3 receptors and, in addition, moderately interferes with G protein-coupled P2Y1 and P2Y4 receptors. Such an effect may be relevant for the interruption of pain transmission in dorsal root ganglion neurons following ingestion of chloral hydrate or trichloroethylene. PMID:12694404

  5. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    NASA Astrophysics Data System (ADS)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  6. Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin.

    PubMed

    Xu, Ji; Chai, Hua; Ehinger, Konstantin; Egan, Terrance M; Srinivasan, Rahul; Frick, Manfred; Khakh, Baljit S

    2014-07-01

    P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current-voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs

  7. Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin

    PubMed Central

    Xu, Ji; Chai, Hua; Ehinger, Konstantin; Egan, Terrance M.; Srinivasan, Rahul; Frick, Manfred

    2014-01-01

    P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current–voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs

  8. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  9. P2X receptors: New players in cancer pain

    PubMed Central

    Franceschini, Alessia; Adinolfi, Elena

    2014-01-01

    Pain is unfortunately a quite common symptom for cancer patients. Normally pain starts as an episodic experience at early cancer phases to become chronic in later stages. In order to improve the quality of life of oncological patients, anti-cancer treatments are often accompanied by analgesic therapies. The P2X receptor are adenosine triphosphate (ATP) gated ion channels expressed by several cells including neurons, cancer and immune cells. Purinergic signaling through P2X receptors recently emerged as possible common pathway for cancer onset/growth and pain sensitivity. Indeed, tumor microenvironment is rich in extracellular ATP, which has a role in both tumor development and pain sensation. The study of the different mechanisms by which P2X receptors favor cancer progression and relative pain, represents an interesting challenge to design integrated therapeutic strategies for oncological patients. This review summarizes recent findings linking P2X receptors and ATP to cancer growth, progression and related pain. Special attention has been paid to the role of P2X2, P2X3, P2X4 and P2X7 in the genesis of cancer pain and to the function of P2X7 in tumor growth and metastasis. Therapeutic implications of the administration of different P2X receptor blockers to alleviate cancer-associated pain sensations contemporarily reducing tumor progression are also discussed. PMID:25426266

  10. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  11. Extracellular ATP dissociates nonmuscle myosin from P2X(7) complex: this dissociation regulates P2X(7) pore formation.

    PubMed

    Gu, Ben J; Rathsam, Catherine; Stokes, Leanne; McGeachie, Andrew B; Wiley, James S

    2009-08-01

    The P2X(7) receptor is a ligand-gated cation channel that is highly expressed on monocyte-macrophages and that mediates the pro-inflammatory effects of extracellular ATP. Dilation of the P2X(7) channel and massive K(+) efflux follows initial channel opening, but the mechanism of secondary pore formation is unclear. The proteins associated with P2X(7) were isolated by using anti-P2X(7) monoclonal antibody-coated Dynabeads from both interferon-gamma plus LPS-stimulated monocytic THP-1 cells and P2X(7)-transfected HEK-293 cells. Two nonmuscle myosins, NMMHC-IIA and myosin Va, were found to associate with P2X(7) in THP-1 cells and HEK-293 cells, respectively. Activation of the P2X(7) receptor by ATP caused dissociation of P2X(7) from nonmuscle myosin in both cell types. The interaction of P2X(7) and NMMHC-IIA molecules was confirmed by fluorescent life time measurements and fluorescent resonance of energy transfer-based time-resolved flow cytometry assay. Reducing the expression of NMMHC-IIA or myosin Va by small interfering RNA or short hairpin RNA led to a significant increase of P2X(7) pore function without any increase in surface expression or ion channel function of P2X(7) receptors. S-l-blebbistatin, a specific inhibitor of NMMHC-IIA ATPase, inhibited both ATP-induced ethidium uptake and ATP-induced dissociation of P2X(7)-NMMHC-IIA complex. In both cell types nonmuscle myosin closely interacts with P2X(7) and is dissociated from the complex by extracellular ATP. Dissociation of this anchoring protein may be required for the transition of P2X(7) channel to a pore. PMID:19494237

  12. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper

    PubMed Central

    Bavan, Selvan; Straub, Volko A; Blaxter, Mark L; Ennion, Steven J

    2009-01-01

    Background Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (HdP2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa. Results ATP (EC50 ~44.5 μM) evoked transient inward currents in HdP2X with millisecond rates of activation and desensitisation. HdP2X is antagonised by pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (IC50 15.0 μM) and suramin (IC50 22.6 μM) and zinc and copper inhibit ATP-evoked currents with IC50 values of 62.8 μM and 19.9 μM respectively. Site-directed mutagenesis showed that unlike vertebrate P2X receptors, extracellular histidines do not play a major role in coordinating metal binding in HdP2X. However, H306 was identified as playing a minor role in the actions of copper but not zinc. Ivermectin potentiated responses to ATP with no effect on the rates of current activation or decay. Conclusion The presence of a P2X receptor in a tardigrade species suggests that both nematodes and arthropods lost their P2X genes independently, as both traditional and molecular phylogenies place the divergence between Nematoda and Arthropoda before their divergence from Tardigrada. The phylogenetic analysis performed in our study also clearly demonstrates that the emergence of the family of seven P2X channels in human and other mammalian species was a relatively recent evolutionary event that occurred subsequent to the split between

  13. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed. PMID:23356287

  14. Supporting Collaboration and Creativity Through Mobile P2P Computing

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Adam; Datta, Anwitaman; Żaczek, Łukasz; Rzadca, Krzysztof

    Among many potential applications of mobile P2P systems, collaboration applications are among the most prominent. Examples of applications such as Groove (although not intended for mobile networks), collaboration tools for disaster recovery (the WORKPAD project), and Skype's collaboration extensions, all demonstrate the potential of P2P collaborative applications. Yet, the development of such applications for mobile P2P systems is still difficult because of the lack of middleware.

  15. P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms.

    PubMed

    Hardy, Adam R; Conley, Pamela B; Luo, Jiansong; Benovic, Jeffrey L; Poole, Alastair W; Mundell, Stuart J

    2005-05-01

    Adenosine 5'-diphosphate (ADP) plays a central role in regulating platelet function by the activation of the G protein-coupled receptors P2Y(1) and P2Y(12). Although it is well established that aggregation responses of platelets to ADP desensitize, the underlying mechanisms involved remain unclear. In this study we demonstrate that P2Y(1)- and P2Y(12)-mediated platelet responses desensitize rapidly. Furthermore, we have established that these receptors desensitize by different kinase-dependent mechanisms. G protein-coupled receptor kinase (GRK) 2 and GRK6 are both endogenously expressed in platelets. Transient overexpression of dominant-negative mutants of these kinases or reductions in endogenous GRK expression by the use of specific siRNAs in 1321N1 cells showed that P2Y(12), but not P2Y(1), desensitization is mediated by GRKs. In contrast, desensitization of P2Y(1), but not P2Y(12), is largely dependent on protein kinase C activity. This study is the first to show that both P2Y(1) and P2Y(12) desensitize in human platelets, and it reveals ways in which their sensitivity to ADP may be differentially and independently altered. PMID:15665114

  16. Dynamic aspects of functional regulation of the ATP receptor channel P2X2.

    PubMed

    Kubo, Yoshihiro; Fujiwara, Yuichiro; Keceli, Batu; Nakajo, Koichi

    2009-11-15

    The P2X(2) channel is a ligand-gated channel activated by ATP. Functional features that reflect the dynamic flexibility of the channel include time-dependent pore dilatation following ATP application and direct inhibitory interaction with activated nicotinic acetylcholine receptors on the membrane. We have been studying the mechanisms by which P2X(2) channel functionality is dynamically regulated. Using a Xenopus oocyte expression system, we observed that the pore properties, including ion selectivity and rectification, depend on the open channel density on the membrane. Pore dilatation was apparent when the open channel density was high and inward rectification was modest. We also observed that P2X(2) channels show voltage dependence, despite the absence of a canonical voltage sensor. At a semi-steady state after ATP application, P2X(2) channels were activated upon membrane hyperpolarization. This voltage-dependent activation was also [ATP] dependent. With increases in [ATP], the speed of hyperpolarization-induced activation was increased and the conductance-voltage relationship was shifted towards depolarized potentials. Based on analyses of experimental data and various simulations, we propose that these phenomena can be explained by assuming a fast ATP binding step and a rate-limiting voltage-dependent gating step. Complete elucidation of these regulatory mechanisms awaits dynamic imaging of functioning P2X(2) channels. PMID:19752115

  17. Activation of Distinct P2Y Receptor Subtypes Stimulates Insulin Secretion in MIN6 Mouse Pancreatic β Cells

    PubMed Central

    Balasubramanian, Ramachandran; de Azua, Inigo Ruiz; Wess, Jürgen; Jacobson, Kenneth A.

    2010-01-01

    Extracellular nucleotides and their receptor antagonists have therapeutic potential in disorders such as inflammation, brain disorders, and cardiovascular diseases. Pancreatic β cells express several purinergic receptors, and reported nucleotide effects on insulin secretion are contradictory. We studied the effect of P2Y receptors on insulin secretion and cell death in MIN6, mouse pancreatic β cells. Expression of P2Y1 and P2Y6 receptors was revealed by total mRNA analysis using RT-PCR. MIN6 cells were stimulated in the presence of 16.7 mM glucose with or without P2Y1 and P2Y6 agonists, 2-MeSADP and Up3U, respectively. Both the agonists increased insulin secretion with EC50 values of 44.6±7.0 nM and 30.7±12.7 nM respectively. The insulin secretion by P2Y1 and P2Y6 agonists was blocked by their selective antagonists MRS2179 and MRS2578, respectively. Binding of the selective P2Y1 receptor antagonist radioligand [125I]MRS2500 in MIN6 cell membranes was saturable (KD 4.74±0.47 nM), and known P2Y1 ligands competed with high affinities. Inflammation and glucose toxicity leads to pancreatic β cell death in diabetes. Flow cytometric analysis revealed that Up3U but not 2-MeSADP protected MIN6 cells against TNF-α induced apoptosis. Overall, the results demonstrate that selective stimulation of P2Y1 and P2Y6 receptors increases insulin secretion that accompanies intracellular calcium release, suggesting potential application of P2Y receptor ligands in the treatment of diabetes. PMID:20067775

  18. P2X7 Receptors in Neurological and Cardiovascular Disorders

    PubMed Central

    Skaper, Stephen D.; Debetto, Patrizia; Giusti, Pietro

    2009-01-01

    P2X receptors are ATP-gated cation channels that mediate fast excitatory transmission in diverse regions of the brain and spinal cord. Several P2X receptor subtypes, including P2X7, have the unusual property of changing their ion selectivity during prolonged exposure to ATP, which results in a channel pore permeable to molecules as large as 900 daltons. The P2X7 receptor was originally described in cells of hematopoietic origin, and mediates the influx of Ca2+ and Na+ and Ca2+ and Na+ ions as well as the release of proinflammatory cytokines. P2X7 receptors may affect neuronal cell death through their ability to regulate the processing and release of interleukin-1β, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7 receptors provides an inflammatory stimulus, and P2X7 receptor-deficient mice have substantially attenuated inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X7 receptor activity, by regulating the release of proinflammatory cytokines, may be involved in the pathophysiology of depression. Apoptotic cell death occurs in a number of vascular diseases, including atherosclerosis, restenosis, and hypertension, and may be linked to the release of ATP from endothelial cells, P2X7 receptor activation, proinflammatory cytokine production, and endothelial cell apoptosis. In this context, the P2X7 receptor may be viewed as a gateway of communication between the nervous, immune, and cardiovascular systems. PMID:20029634

  19. Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α-L-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus.

    PubMed

    Shin, Kyung-Chul; Choi, Hye-Yeon; Seo, Min-Ju; Oh, Deok-Kun

    2015-01-01

    Ginsenoside compound K (C-K) is attracting a lot of interest because of its biological and pharmaceutical activities, including hepatoprotective, antitumor, anti-wrinkling, and anti-skin aging activities. C-K has been used as the principal ingredient in skin care products. For the effective application of ginseng extracts to the manufacture of cosmetics, the PPD-type ginsenosides in ginseng extracts should be converted to C-K by enzymatic conversion. For increased yield of C-K from the protopanaxadiol (PPD)-type ginsenosides in red-ginseng extract (RGE), the α-L-arabinofuranoside-hydrolyzing α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus (CS-abf) was used along with the β-D-glucopyranoside/α-L-arabinopyranoside-hydrolyzing β-glycosidase from Sulfolobus solfataricus (SS-bgly) because SS-bgly showed very low hydrolytic activity on the α-L-arabinofuranoside linkage in ginsenosides. The optimal reaction conditions for C-K production were as follows: pH 6.0, 80°C, 2 U/mL SS-bgly, 3 U/mL CS-abf, and 7.5 g/L PPD-type ginsenosides in RGE. Under these optimized conditions, SS-bgly supplemented with CS-abf produced 4.2 g/L C-K from 7.5 g/L PPD-type ginsenosides in 12 h without other ginsenosides, with a molar yield of 100% and a productivity of 348 mg/L/h. To the best of our knowledge, this is the highest concentration and productivity of C-K from ginseng extract ever published in literature. PMID:26710074

  20. Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α-L-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus

    PubMed Central

    Shin, Kyung-Chul; Choi, Hye-Yeon; Seo, Min-Ju; Oh, Deok-Kun

    2015-01-01

    Ginsenoside compound K (C-K) is attracting a lot of interest because of its biological and pharmaceutical activities, including hepatoprotective, antitumor, anti-wrinkling, and anti-skin aging activities. C-K has been used as the principal ingredient in skin care products. For the effective application of ginseng extracts to the manufacture of cosmetics, the PPD-type ginsenosides in ginseng extracts should be converted to C-K by enzymatic conversion. For increased yield of C-K from the protopanaxadiol (PPD)-type ginsenosides in red-ginseng extract (RGE), the α-l-arabinofuranoside-hydrolyzing α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus (CS-abf) was used along with the β-d-glucopyranoside/α-l-arabinopyranoside-hydrolyzing β-glycosidase from Sulfolobus solfataricus (SS-bgly) because SS-bgly showed very low hydrolytic activity on the α-l-arabinofuranoside linkage in ginsenosides. The optimal reaction conditions for C-K production were as follows: pH 6.0, 80°C, 2 U/mL SS-bgly, 3 U/mL CS-abf, and 7.5 g/L PPD-type ginsenosides in RGE. Under these optimized conditions, SS-bgly supplemented with CS-abf produced 4.2 g/L C-K from 7.5 g/L PPD-type ginsenosides in 12 h without other ginsenosides, with a molar yield of 100% and a productivity of 348 mg/L/h. To the best of our knowledge, this is the highest concentration and productivity of C-K from ginseng extract ever published in literature. PMID:26710074

  1. P2X3 receptors and peripheral pain mechanisms

    PubMed Central

    North, R Alan

    2004-01-01

    ATP released from damaged or inflamed tissues can act at P2X receptors expressed on primary afferent neurones. The resulting depolarization can initiate action potentials that are interpreted centrally as pain. P2X3 subunits are found in a subset of small-diameter, primary afferent neurones, some of which are also sensitive to capsaicin. They can form homo-oligomeric channels, or they can assemble with P2X2 subunits into hetero-oligomers. Studies with antagonists selective for P2X3-containing receptors, experiments with antisense oligonucleotides to reduce P2X3 subunit levels, and behavioural testing of P2X3 knock-out mice, all suggest a role for the P2X2/3 receptor in the signalling of chronic inflammatory pain and some features of neuropathic pain. The availability of such tools and experimental approaches promises to accelerate our understanding of the other physiological roles for P2X receptors on primary afferent neurones. PMID:12832496

  2. A mechanism of intracellular P2X receptor activation.

    PubMed

    Sivaramakrishnan, Venketesh; Fountain, Samuel J

    2012-08-17

    P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2X(A)R knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen. PMID:22736763

  3. P2P-R protein localizes to the nucleolus of interphase cells and the periphery of chromosomes in mitotic cells which show maximum P2P-R immunoreactivity.

    PubMed

    Gao, Sizhi; Witte, Michael M; Scott, Robert E

    2002-05-01

    P2P-R is a nuclear protein that can bind both p53 and Rb1. Its functions include roles in the control of RNA metabolism, apoptosis, and p53-dependent transcription. The expression of P2P-R also is repressed in G1 arrested terminally differentiated cells. The current studies therefore evaluated if P2P-R undergoes cell cycle-associated changes in its abundance and/or localization. Western blots show that relative to G0 quiescent cells, P2P-R protein levels are higher in populations of G2/M cells prepared by the physiological parasynchronization technique of serum deprivation followed by serum stimulation. More striking is the > 10-fold enrichment of P2P-R protein in specimens of highly purified mitotic cells prepared by the mitotic shake-select technique, or by synchrony with the mitotic spindle disruption agents nocodazole or vinblastine. These changes in P2P-R protein occur without a concomitant change in P2P-R mRNA expression suggesting that P2P-R immunoreactivity increases during mitosis. Confocal microscopy next established the localization of P2P-R to nucleoli in interphase cells and at the periphery of chromosomes in mitotic cells that lack nucleoli. The high levels of P2P-R localized to the periphery of chromosomes in mitotic cells suggest that P2P-R shares characteristics with other nucleolar proteins that associate with the periphery of chromosomes during mitosis. These include: nucleolin, B23, Ki67, and fibrillarin. PMID:12064457

  4. Antinociceptive effect of a new P(2Z)/P2X7 antagonist, oxidized ATP, in arthritic rats.

    PubMed

    Dell'Antonio, Giacomo; Quattrini, Angelo; Dal Cin, Elena; Fulgenzi, Alessandro; Ferrero, Maria Elena

    2002-07-19

    The neurotransmitter adenosine triphosphate (ATP) is released from sensory nerve endings during inflammation and acts at the level of P2X receptors. We used the irreversible inhibitor of P2z/P2X7 receptor, designated oxidized ATP (oATP), to test its possible antinociceptive activity in arthritic rats. We induced unilateral inflammation of the rat hind paw by local injection of Freund's complete adjuvant. Administration of the adjuvant resulted in a significant reduction of paw pressure threshold (PPT). Injection of oATP into inflamed paws significantly increased, in a dose-dependent manner, PPT values to levels comparable with or higher than those evaluated in control uninflamed paws. The data indicate that the P2z/P2X7 receptor system exerts a role in nociception and that oATP, by inhibiting such a receptor, reduces the nociceptive signal in the course of peripheral inflammation. PMID:12098642

  5. P2MP MPLS-Based Hierarchical Service Management System

    NASA Astrophysics Data System (ADS)

    Kumaki, Kenji; Nakagawa, Ikuo; Nagami, Kenichi; Ogishi, Tomohiko; Ano, Shigehiro

    This paper proposes a point-to-multipoint (P2MP) Multi-Protocol Label Switching (MPLS) based hierarchical service management system. Traditionally, general management systems deployed in some service providers control MPLS Label Switched Paths (LSPs) (e.g., RSVP-TE and LDP) and services (e.g., L2VPN, L3VPN and IP) separately. In order for dedicated management systems for MPLS LSPs and services to cooperate with each other automatically, a hierarchical service management system has been proposed with the main focus on point-to-point (P2P) TE LSPs in MPLS path management. In the case where P2MP TE LSPs and services are deployed in MPLS networks, the dedicated management systems for P2MP TE LSPs and services must work together automatically. Therefore, this paper proposes a new algorithm that uses a correlation between P2MP TE LSPs and multicast VPN services based on a P2MP MPLS-based hierarchical service management architecture. Also, the capacity and performance of the proposed algorithm are evaluated by simulations, which are actually based on certain real MPLS production networks, and are compared to that of the algorithm for P2P TE LSPs. Results show this system is very scalable within real MPLS production networks. This system, with the automatic correlation, appears to be deployable in real MPLS production networks.

  6. ATP P2X3 receptors and neuronal sensitization

    PubMed Central

    Fabbretti, Elsa

    2013-01-01

    Increasing evidence indicates the importance of extracellular adenosine triphosphate (ATP) in the modulation of neuronal function. In particular, fine control of ATP release and the selective and discrete ATP receptor operation are crucial elements of the crosstalk between neuronal and non-neuronal cells in the peripheral and central nervous systems. In peripheral neurons, ATP signaling gives an important contribution to neuronal sensitization, especially that involved in neuropathic pain. Among other subtypes, P2X3 receptors expressed on sensory neurons are sensitive even to nanomolar concentrations of extracellular ATP, and therefore are important transducers of pain stimuli. P2X3 receptor function is highly sensitive to soluble factors like neuropeptides and neurotrophins, and is controlled by transduction mechanisms, protein-protein interactions and discrete membrane compartmentalization. More recent findings have demonstrated that P2X3 receptors interact with the synaptic scaffold protein calcium/calmodulin-dependent serine protein kinase (CASK) in a state dependent fashion, indicating that CASK plays a crucial role in the modulation of P2X3 receptor stability and efficiency. Activation of P2X3 receptors within CASK/P2X3 complex has important consequences for neuronal plasticity and possibly for the release of neuromodulators and neurotransmitters. Better understanding of the interactome machinery of P2X3 receptors and their integration with other receptors and channels on neuronal surface membranes, is proposed to be essential to unveil the process of neuronal sensitization and related, abnormal pain signaling. PMID:24363643

  7. Imaging P2X4 Receptor Lateral Mobility in Microglia

    PubMed Central

    Toulme, Estelle; Khakh, Baljit S.

    2012-01-01

    ATP-gated ionotropic P2X4 receptors are up-regulated in activated microglia and are critical for the development of neuropathic pain, a microglia-associated disorder. However, the nature of how plasma membrane P2X4 receptors are regulated in microglia is not fully understood. We used single-molecule imaging to track quantum dot-labeled P2X4 receptors to explore P2X4 receptor mobility in the processes of resting and activated microglia. We find that plasma membrane P2X4 receptor lateral mobility in resting microglial processes is largely random, consisting of mobile and slowly mobile receptors. Moreover, lateral mobility is P2X subunit- and cell-specific, increased in an ATP activation and calcium-dependent manner, and enhanced in activated microglia by the p38 MAPK pathway that selectively regulates slowly mobile receptors. Thus, our data indicate that P2X4 receptors are dynamically regulated mobile ATP sensors, sampling more of the plasma membrane in response to ATP and during the activated state of microglia that is associated with nervous system dysfunction. PMID:22393055

  8. Principles and properties of ion flow in P2X receptors

    PubMed Central

    Samways, Damien S. K.; Li, Zhiyuan; Egan, Terrance M.

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775

  9. Principles and properties of ion flow in P2X receptors.

    PubMed

    Samways, Damien S K; Li, Zhiyuan; Egan, Terrance M

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5'-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca(2+) concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na(+) and Ca(2+) in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775

  10. Evolution of pro-protamine P2 genes in primates.

    PubMed

    Retief, J D; Dixon, G H

    1993-06-01

    Protamines P1 and P2 form a family of small basic peptides that represent the major sperm proteins in placental mammals. In human and mouse protamine P2 is one of the most abundant sperm proteins. The protamine P2 gene codes for a P2 precursor, pro-P2 which is later processed by proteolytic cleavages in its N-terminal region to form the mature P2 protamines. We have used polymerase chain amplification to directly sequence the pro-P2 genes of the five major primate families: red howler (Alouatta seniculus) is a New World monkey (Cebidae); the two macaque species, Macaca mulatta and M. nemistrina are Old World monkeys (Cercopithecidae), the gibbon, Hylobates lar, represents one branch of the apes (Hylobatidae); the orangutan, Pongo pygmaeus, gorilla, Gorilla gorilla and two species of chimpanzee Pan paniscus and Pan troglodytes represent a second ape family (Pongidae). These pro-P2 genes are compared with that of human [Domenjoud, L., Nussbaum, G., Adham, I. M., Greeske, G. & Engel, W. (1990) Genomics 8, 127-133]. The overall size and organization of the genes are conserved within the group. The mean length of pro-P2 is 101 residues, with an increase to 102 in M. nemistrina and a decrease to 99 residues in red howler (A. seniculus). In gorilla and red howler one of two 79-bp tandem repeats that occurs 3' of the gene is deleted. Of the 101 deduced amino acids examined, an amino acid change occurs in one or more primates at 45 positions. Considering only the most recently diverged group, the human/gorilla/chimpanzee clade, this represents a very high mutation rate of 0.99 changes/100 sites in 10(6) years. This rapid mutation rate is characteristic of both members of the protamine gene family, P1 and P2. Consideration of the variable nature of the sequences at the multiple sites of proteolysis during the processing of the pro-P2 indicates either that there are several processing enzymes of differing specificities, or more likely that the folded structure of the pro-P2

  11. An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets

    PubMed Central

    Nisar, Shaista; Daly, Martina E.; Federici, Augusto B.; Artoni, Andrea; Mumford, Andrew D.; Watson, Stephen P.

    2011-01-01

    The platelet P2Y12 purinoceptor (P2Y12R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y12R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)–binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y12R (P341A) that is associated with reduced expression of the P2Y12R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y12R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic. PMID:21937696

  12. An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets.

    PubMed

    Nisar, Shaista; Daly, Martina E; Federici, Augusto B; Artoni, Andrea; Mumford, Andrew D; Watson, Stephen P; Mundell, Stuart J

    2011-11-17

    The platelet P2Y(12) purinoceptor (P2Y(12)R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y(12)R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)-binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y(12)R (P341A) that is associated with reduced expression of the P2Y(12)R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y(12)R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic. PMID:21937696

  13. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors

    PubMed Central

    Mamedova, Liaman; Capra, Valérie; Accomazzo, Maria Rosa; Gao, Zhan-Guo; Ferrario, Silvia; Fumagalli, Marta; Abbracchio, Maria P.; Rovati, G. Enrico; Jacobson, Kenneth A.

    2016-01-01

    Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y1,2,4,6,11,12,13,14 receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 μM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 μM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y1,2,4,6 receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 μM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 μM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions. PMID:16280122

  14. PTEN interaction with tethered bilayer lipid membranes containing PI(4,5)P2

    NASA Astrophysics Data System (ADS)

    Moldovan, R.; Shenoy, S.; Shekhar, P.; Kalinowski, A.; Gericke, A.; Heinrich, F.; Loesche, M.

    2009-03-01

    Synthetic lipid membrane models are frequently used for the study of biophysical processes at cell membranes. We use a robust membrane model, the tethered bilayer lipid membrane (tBLM), based on a (C14)2-(PEO)6-thiol anchor, WC14 [1]. Such membranes can be prepared to contain single phospholipids or complex lipid mixtures [2], including functional lipids involved in cell signaling, such as the highly charged phosphatidylinositol phosphates (PIPs). To study the interaction between the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) and model membranes we have incorporated phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in tBLMs and use fluorescence correlation spectroscopy (FCS), neutron reflectometry (NR) and surface plasmon resonance (SPR) for their characterization. NR shows that tBLMs formed with PI(4,5)P2 are complete. FCS of labeled PI(4,5)P2 shows that diffusion occurs at the time scale characteristic of membrane-incorporated lipid. Finally, SPR shows specific binding of PTEN to the model membrane thus confirming the incorporation of PI(4,5)P2 into the tBLM. [1] McGillivray et al, Biointerphases 2, 21-33 (2007) [2] Heinrich et al, Langmuir, submitted

  15. Manipulation of P2X Receptor Activities by Light Stimulation

    PubMed Central

    Kim, Sang Seong

    2016-01-01

    P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels. PMID:26884649

  16. Anisotropic thermal anharmonicity of CdSiP2 and ZnGeP2: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wei, Lei; Zhang, Guodong; Fan, Weiliu; Li, Yanlu; Yang, Lei; Zhao, Xian

    2013-12-01

    The anisotropic thermal anharmonicity of CdSiP2 and ZnGeP2 has been studied by calculating the a- and c-axial Grüneisen parameters separately to cast light on the mechanism of anisotropic thermal expansivity of ABC2 chalcopyrite compounds. Both the Debye model and lattice dynamics theory were implemented to calculate the axial Grüneisen parameters. The variation of shear modulus, calculated from the Debye model, demonstrated normal behavior for ZnGeP2 but abnormal behavior for CdSiP2, and was thus assumed to be the most important parameter that determines anisotropic thermal anharmonicity. Using phonon frequency-based lattice dynamics, the axial mode Grüneisen parameters were calculated for not only the Γ-point but also for other K-points in the first Brillouin zone. The lowest B1 and B2 modes of both compounds were found to be new soft modes that were not observed in previous studies of volume-dependent mode Grüneisen parameters. The larger magnitude of these soft mode Grüneisen parameters of CdSiP2 was responsible for its greater abnormal axial thermal anharmonicity in the low-temperature range. The Grüneisen parameters became positive at 110 K for CdSiP2 and 80 K for ZnGeP2.

  17. Network Awareness in P2P-TV Applications

    NASA Astrophysics Data System (ADS)

    Traverso, Stefano; Leonardi, Emilio; Mellia, Marco; Meo, Michela

    The increasing popularity of applications for video-streaming based on P2P paradigm (P2P-TV) is raising the interest of both broadcasters and network operators. The former see a promising technology to reduce the cost of streaming content over the Internet, while offering a world-wide service. The latter instead fear that the traffic offered by these applications can grow without control, affecting other services, and possibly causing network congestion and collapse. The “Network-Aware P2P-TV Application over Wise Networks” FP7 project aims at studying and developing a novel P2P-TV application offering the chance to broadcast high definition video to broadcasters and to carefully manage the traffic offered by peers to the network, therefore avoiding worries to Internet providers about network overload. In such context, we design a simulator to evaluate performance of different P2P-TV solutions, to compare them both considering end-users’ and network providers’ perspectives, such as quality of service perceived by subscribers and link utilization. In this paper, we provide some results that show how effective can be a network aware P2P-TV system.

  18. Improving P2P live-content delivery using SVC

    NASA Astrophysics Data System (ADS)

    Schierl, T.; Sánchez, Y.; Hellge, C.; Wiegand, T.

    2010-07-01

    P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where peers may ungracefully leave the P2P infrastructure, typically an overlay networks. Peers ungracefully leaving the system cause connection losses in the overlay, which require repair operations. During such repair operations, which typically take a few roundtrip times, no data is received from the lost connection. While taking low delay for fast-channel tune-in into account as a key feature for broadcast-like streaming applications, the P2P live streaming approach can only rely on a certain media pre-buffer during such repair operations. In this paper, multi-tree based Application Layer Multicast as a P2P overlay technique for live streaming is considered. The use of Flow Forwarding (FF), a.k.a. Retransmission, or Forward Error Correction (FEC) in combination with Scalable video Coding (SVC) for concealment during overlay repair operations is shown. Furthermore the benefits of using SVC over the use of AVC single layer transmission are presented.

  19. Accelerated FoxP2 evolution in echolocating bats.

    PubMed

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J; Jones, Gareth; Zhang, Shuyi

    2007-01-01

    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination. PMID:17878935

  20. Accelerated FoxP2 Evolution in Echolocating Bats

    PubMed Central

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J.; Jones, Gareth; Zhang, Shuyi

    2007-01-01

    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination. PMID:17878935

  1. Silver indium diphosphate, AgInP(2)O(7).

    PubMed

    Zouihri, Hafid; Saadi, Mohamed; Jaber, Boujemaa; El Ammari, Lehcen

    2010-01-01

    Polycrystalline material of the title compound, AgInP(2)O(7), was synthesized by traditional high-temperature solid-state methods and single crystals were grown from the melt of a mixture of AgInP(2)O(7) and B(2)O(3) as flux in a platinium crucible. The structure consists of InO(6) octa-hedra, which are corner-shared to PO(4) tetra-hedra into a three-dimensional network with hexa-gonal channels running parallel to the c axis. The silver cation, located in the channel, is bonded to seven O atoms of the [InP(2)O(7)] framework with Ag-O distances ranging from 2.370 (2) to 3.015 (2) Å. The P(2)O(7) diphosphate anion is characterized by a P-O-P angle of 137.27 (9) and a nearly eclipsed conformation. AgInP(2)O(7) is isotypic with the M(I)FeP(2)O(7) (M(I) = Na, K, Rb, Cs and Ag) diphosphate family. PMID:21522510

  2. Versatility of Y-family Sulfolobus solfataricus DNA Polymerase Dpo4 in Translesion Synthesis Past Bulky N[superscript 2]-Alkylguanine Adducts

    SciTech Connect

    Zhang, Huidong; Eoff, Robert L.; Kozekov, Ivan D.; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter

    2009-09-25

    In contrast to replicative DNA polymerases, Sulfolobus solfataricus Dpo4 showed a limited decrease in catalytic efficiency (k{sub cat}/K{sub m}) for insertion of dCTP opposite a series of N{sup 2}-alkylguanine templates of increasing size from (methyl (Me) to (9-anthracenyl)-Me (Anth)). Fidelity was maintained with increasing size up to (2-naphthyl)-Me (Naph). The catalytic efficiency increased slightly going from the N{sup 2}-NaphG to the N{sup 2}-AnthG substrate, at the cost of fidelity. Pre-steady-state kinetic bursts were observed for dCTP incorporation throughout the series (N{sup 2}-MeG to N{sup 2}-AnthG), with a decrease in the burst amplitude and k{sub pol}, the rate of single-turnover incorporation. The pre-steady-state kinetic courses with G and all of the six N{sup 2}-alkyl G adducts could be fit to a general DNA polymerase scheme to which was added an inactive complex in equilibrium with the active ternary Dpo4 {center_dot} DNA {center_dot} dNTP complex, and only the rates of equilibrium with the inactive complex and phosphodiester bond formation were altered. Two crystal structures of Dpo4 with a template N{sup 2}-NaphG (in a post-insertion register opposite a 3'-terminal C in the primer) were solved. One showed N{sup 2}-NaphG in a syn conformation, with the naphthyl group located between the template and the Dpo4 'little finger' domain. The Hoogsteen face was within hydrogen bonding distance of the N4 atoms of the cytosine opposite N{sup 2}-NaphG and the cytosine at the -2 position. The second structure showed N{sup 2}-Naph G in an anti conformation with the primer terminus largely disordered. Collectively these results explain the versatility of Dpo4 in bypassing bulky G lesions.

  3. Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals.

    PubMed

    Carsten, Jörg M; Schmidt, Anja; Sieber, Volker

    2015-10-10

    Dihydroxyacid dehydratases (DHADs) are excellent biocatalysts for the defunctionalization of biomass. Here, we report on the recombinant production of DHAD from Sulfolobus solfataricus (SsDHAD) in E. coli and its characterization with special focus on activity toward non-natural substrates, thermo-stability, thermo-inactivation kinetics and activation capabilities and its application within multi-step cascades for chemicals production. Using a simple heat treatment of cell lysate as major purification step we achieved a specific activity of 4.4 units per gram cell mass toward the substrate d-gluconate. The optimal temperature and pH value for this reaction are 77°C and pH 6.2. The inhibitory concentration (IC50, 50% residual activity) of different alcohols was determined to be 15% (v/v) for ethanol, 4.5% (v/v) for butanol and 4% (v/v) for isobutanol. Besides d-gluconate and the natural substrate 2,3-dihydroxyisovalerate (DHIV) SsDHAD is able to convert the C3-sugar-acid d-glycerate to pyruvate, a reaction, which does not occur in natural metabolic pathways, with a specific activity of 10.7±0.4mU/mg. The specific activity of the enzyme can be increased 3-fold by incubation with 2-mercaptoethanol. The activation has no impact on temperature dependence, but modulates the thermo-inactivation tolerance at 50°C. The total turnover numbers for all of the three reactions was found to be 35.5×10(3)±1.0×10(3) for the conversion of d-gluconate to 2-keto-3-deoxygluconate (KDG), 28.2×10(3)±0.8×10(3) for DHIV to 2-ketovalerate (KIV) and 943±0.28×10(2) for d-glycerate to pyruvate. With activated SsDHAD these values could be further increased 5- and 4-fold for the d-gluconate and d-glycerate conversion, respectively. PMID:26102631

  4. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  5. Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing.

    PubMed

    Csóka, Balázs; Németh, Zoltán H; Törő, Gábor; Idzko, Marco; Zech, Andreas; Koscsó, Balázs; Spolarics, Zoltán; Antonioli, Luca; Cseri, Karolina; Erdélyi, Katalin; Pacher, Pál; Haskó, György

    2015-09-01

    Extracellular ATP binds to and signals through P2X7 receptors (P2X7Rs) to modulate immune function in both inflammasome-dependent and -independent manners. In this study, P2X7(-/-) mice, the pharmacological agonists ATP-magnesium salt (Mg-ATP; 100 mg/kg, EC50 ≈ 1.32 mM) and benzoylbenzoyl-ATP (Bz-ATP; 10 mg/kg, EC50 ≈ 285 μM), and antagonist oxidized ATP (oxi-ATP; 40 mg/kg, IC50 ≈ 100 μM) were used to show that P2X7R activation is crucial for the control of mortality, bacterial dissemination, and inflammation in cecal ligation and puncture-induced polymicrobial sepsis in mice. Our results with P2X7(-/-) bone marrow chimeric mice, adoptive transfer of peritoneal macrophages, and myeloid-specific P2X7(-/-) mice indicate that P2X7R signaling on macrophages is essential for the protective effect of P2X7Rs. P2X7R signaling protects through enhancing bacterial killing by macrophages, which is independent of the inflammasome. By using the connexin (Cx) channel inhibitor Gap27 (0.1 mg/kg, IC50 ≈ 0.25 μM) and pannexin channel inhibitor probenecid (10 mg/kg, IC50 ≈ 11.7 μM), we showed that ATP release through Cx is important for inhibiting inflammation and bacterial burden. In summary, targeting P2X7Rs provides a new opportunity for harnessing an endogenous protective immune mechanism in the treatment of sepsis. PMID:26060214

  6. Key Sites for P2X Receptor Function and Multimerization: Overview of Mutagenesis Studies on a Structural Basis

    PubMed Central

    Hausmann, Ralf; Kless, Achim; Schmalzing, Günther

    2015-01-01

    P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures. PMID:25439586

  7. Soft-Chemistry Forms of Sn 2P 2S 6and CuInP 2S 6

    NASA Astrophysics Data System (ADS)

    Bourdon, X.; Cajipe, V. B.

    1998-11-01

    We present our attempts to prepare lamellar SnP2S6and CuInP2S6by metathesis reactions in aqueous media. Use of a SnCl4precursor unexpectedly led to the formation of the three-dimensional compound SnII2P2S6rather than SnIVP2S6. The crystallites thus obtained were about 65 nm in size, i.e., much larger than those previously synthesized from SnCl2. We correlate this with the smaller Sn/P ratio (<1), which implies fewer nucleation sites and probably enhanced particle growth in the present case. The product tested positive for second-harmonic generation (SHG) at room temperature (RT). Initial31P NMR-MAS spectroscopy data indicate that this material is in an intermediate state between the ferroelectric and paraelectric phases of crystalline Sn2P2S6. An analogous solution method readily yielded CuInP2S6, the first quaternary thiophosphate prepared via this soft-chemistry route. A rather small coherence length ≈27Å, equivalent to four layers, is found for this product; band broadening is also observed in the Raman spectrum. SHG measurements likewise revealed a signal for this material at RT; a non polar macroscopic state may, however, not be precluded, given the known order-disorder nature of the ferroelectric-paraelectric transition in crystalline CuInP2S6.

  8. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus.

    PubMed

    Pollatzek, Eric; Hitzel, Norma; Ott, Daniela; Raisl, Katrin; Reuter, Bärbel; Gerstberger, Rüdiger

    2016-07-01

    The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the

  9. Structure, Adsorption to Host, and Infection Mechanism of Virulent Lactococcal Phage p2

    PubMed Central

    Bebeacua, Cecilia; Tremblay, Denise; Farenc, Carine; Chapot-Chartier, Marie-Pierre; Sadovskaya, Irina; van Heel, Marin; Veesler, David

    2013-01-01

    Lactococcal siphophages from the 936 and P335 groups infect the Gram-positive bacterium Lactococcus lactis using receptor binding proteins (RBPs) attached to their baseplate, a large multiprotein complex at the distal part of the tail. We have previously reported the crystal and electron microscopy (EM) structures of the baseplates of phages p2 (936 group) and TP901-1 (P335 group) as well as the full EM structure of the TP901-1 virion. Here, we report the complete EM structure of siphophage p2, including its capsid, connector complex, tail, and baseplate. Furthermore, we show that the p2 tail is characterized by the presence of protruding decorations, which are related to adhesins and are likely contributed by the major tail protein C-terminal domains. This feature is reminiscent of the tail of Escherichia coli phage λ and Bacillus subtilis phage SPP1 and might point to a common mechanism for establishing initial interactions with their bacterial hosts. Comparative analyses showed that the architecture of the phage p2 baseplate differs largely from that of lactococcal phage TP901-1. We quantified the interaction of its RBP with the saccharidic receptor and determined that specificity is due to lower koff values of the RBP/saccharidic dissociation. Taken together, these results suggest that the infection of L. lactis strains by phage p2 is a multistep process that involves reversible attachment, followed by baseplate activation, specific attachment of the RBPs to the saccharidic receptor, and DNA ejection. PMID:24027307

  10. Properties of IncP-2 plasmids of Pseudomonas spp.

    PubMed Central

    Jacoby, G A; Sutton, L; Knobel, L; Mammen, P

    1983-01-01

    Thirty IncP-2 R plasmids from isolates of Pseudomonas spp. of diverse geographical origins were examined for the production of resistance properties. All the plasmids determined resistance to tellurite and all inhibited the propagation of certain DNA phages, although several patterns of phage inhibition were detected. Of the 30 plasmids, 29 determined resistance to streptomycin, 28 determined resistance to mercuric ion, and 24 determined resistance to sulfonamide. Resistance to other antibiotics, to compounds of arsenic, boron, or chromium, and to UV irradiation was less common. The degradative plasmid CAM also belonged to this group. When CAM was introduced into recipients carrying an IncP-2 R plasmid, recombinant plasmids were often formed in which antibiotic resistance and the ability to grow on camphor were transferred together to further recipients or were lost together in a strain in which IncP-2 plasmids were unstable. Such hybrid plasmid formation was rec dependent. CAM and other IncP-2 plasmids that determine UV light resistance demonstrated UV-enhanced, nonpolarized transfer of the Pseudomonas aeruginosa chromosome. By agarose gel electrophoresis, all IncP-2 R plasmids and CAM were ca. 300 X 10(6) in molecular weight. PMID:6638986

  11. P2X7 receptor at the heart of disease

    PubMed Central

    Vasileiou, Ei; Montero, R M; Turner, C M; Vergoulas, G

    2010-01-01

    Purinergic signaling is a crucial component of disease whose pathophysiological basis is now well established. This review focuses on P2X7, a unique bifunctional purinoreceptor that either opens a non selective cation channel or forms a large, cytolytic pore depending on agonist application and leading to membrane blebbing and to cell death either by necrosis or apoptosis. Activation of P2X7 receptor has been shown to stimulate the release of multiple proinflammatory cytokines by activated macrophages, with the IL-1b to be the most extensively studied among them. These findings were verified by the use of knockout P2X7 (-/-) mice. Update information coming from all fields of research implicate this receptor at the very heart of diseases such as rheumatoid arthritis, multiple sclerosis, depression, Alzheimer disease, and to kidney damage, in renal fibrosis and experimental nephritis. Clinical studies are currently underway with the newly developed selective antagonists for P2X7 receptor, the results of which are eagerly anticipated. These studies together with data from in-vivo experiments with the P2X7 knockout mice and in-vitro experiments will shed light in this exciting area. PMID:20981163

  12. Determinants of Default in P2P Lending.

    PubMed

    Serrano-Cinca, Carlos; Gutiérrez-Nieto, Begoña; López-Palacios, Luz

    2015-01-01

    This paper studies P2P lending and the factors explaining loan default. This is an important issue because in P2P lending individual investors bear the credit risk, instead of financial institutions, which are experts in dealing with this risk. P2P lenders suffer a severe problem of information asymmetry, because they are at a disadvantage facing the borrower. For this reason, P2P lending sites provide potential lenders with information about borrowers and their loan purpose. They also assign a grade to each loan. The empirical study is based on loans' data collected from Lending Club (N = 24,449) from 2008 to 2014 that are first analyzed by using univariate means tests and survival analysis. Factors explaining default are loan purpose, annual income, current housing situation, credit history and indebtedness. Secondly, a logistic regression model is developed to predict defaults. The grade assigned by the P2P lending site is the most predictive factor of default, but the accuracy of the model is improved by adding other information, especially the borrower's debt level. PMID:26425854

  13. An efficient query mechanism base on P2P networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Mu, Aiqin; Zhao, Defang

    2013-07-01

    How to implement the efficient query is the key problem deployed on P2P networks. This paper analyses the shortage of several query algorithm, and presents a new algorithm DDI, which means distributed searching with double indices. It discusses the popularity of documents and the linking status of the networks, and calculates the availability of the nodes in whole network, determines the route of the query process. It compares the items of time using, the quantity of requests and update information by the emulate experiments. Along with the rapid development of computer network technology, peer-to-peer (referred to as P2P) network research has gradually become mature, and it is widely used in different fields, some large P2P computing project has entered the implementation stage. At present, many more popular software systems such as Gnutella, Freenet, Napster are deployed based on P2P technology. How to achieve effective information query has become one of the key problems of P2P research.

  14. Determinants of Default in P2P Lending

    PubMed Central

    2015-01-01

    This paper studies P2P lending and the factors explaining loan default. This is an important issue because in P2P lending individual investors bear the credit risk, instead of financial institutions, which are experts in dealing with this risk. P2P lenders suffer a severe problem of information asymmetry, because they are at a disadvantage facing the borrower. For this reason, P2P lending sites provide potential lenders with information about borrowers and their loan purpose. They also assign a grade to each loan. The empirical study is based on loans’ data collected from Lending Club (N = 24,449) from 2008 to 2014 that are first analyzed by using univariate means tests and survival analysis. Factors explaining default are loan purpose, annual income, current housing situation, credit history and indebtedness. Secondly, a logistic regression model is developed to predict defaults. The grade assigned by the P2P lending site is the most predictive factor of default, but the accuracy of the model is improved by adding other information, especially the borrower’s debt level. PMID:26425854

  15. Managing Linguistic Data Summaries in Advanced P2P Applications

    NASA Astrophysics Data System (ADS)

    Hayek, Rabab; Raschia, Guillaume; Valduriez, Patrick; Mouaddib, Noureddine

    As the amount of stored data increases, data localization techniques become no longer sufficient in P2P systems. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this chapter, we describe a solution for managing linguistic data summaries in advanced P2P applications which are dealing with semantically rich data. The produced summaries are synthetic, multidimensional views over relational tables. The novelty of this proposal relies on the double summary exploitation in distributed P2P systems. First, as semantic indexes, they support locating relevant nodes based on their data descriptions. Second, due to their intelligibility, these summaries can be directly queried and thus approximately answer a query without the need for exploring original data. The proposed solution consists first in defining a summary model for hierarchical P2P systems. Second, appropriate algorithms for summary creation and maintenance are presented. A query processing mechanism, which relies on summary querying, is then proposed to demonstrate the benefits that might be obtained from summary exploitation.

  16. Effects of antidepressants on P2X7 receptors.

    PubMed

    Wang, Wei; Xiang, Zheng-Hua; Jiang, Chun-Lei; Liu, Wei-Zhi; Shang, Zhi-Lei

    2016-08-30

    Antidepressants including paroxetine, fluoxetine and desipramine are commonly used for treating depression. P2×7 receptors are member of the P2X family. Recent studies indicate that these receptors may constitute a novel potential target for the treatment of depression. In the present study, we examined the action of these antidepressants on cloned rat P2×7 receptors that were stably expressed in human embryonic kidney (HEK) 293 cells by using the whole-cell patch-clamp technique, and found that paroxetine at a dose of 10µM could significantly reduce the inward currents evoked by the P2×7 receptors agonist BzATP by pre-incubation for 6-12 but not by acute application (10µM) or pre-incubation for 2-6h at a dose of 1µM, 3µM or 10µM paroxetine. Neither fluoxetine nor desipramine had significant effects on currents evoked by BzATP either applied acutely or by pre-incubation at various concentrations. These results suggest that the sensitivity of rat P2×7 receptors to antidepressants is different, which may represent an unknown mechanism by which these drugs exert their therapeutic effects and side effects. PMID:27318632

  17. Protecting Data Privacy in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Jawad, Mohamed; Serrano-Alvarado, Patricia; Valduriez, Patrick

    P2P systems are increasingly used for efficient, scalable data sharing. Popular applications focus on massive file sharing. However, advanced applications such as online communities (e.g., medical or research communities) need to share private or sensitive data. Currently, in P2P systems, untrusted peers can easily violate data privacy by using data for malicious purposes (e.g., fraudulence, profiling). To prevent such behavior, the well accepted Hippocratic database principle states that data owners should specify the purpose for which their data will be collected. In this paper, we apply such principles as well as reputation techniques to support purpose and trust in structured P2P systems. Hippocratic databases enforce purpose-based privacy while reputation techniques guarantee trust. We propose a P2P data privacy model which combines the Hippocratic principles and the trust notions. We also present the algorithms of PriServ, a DHT-based P2P privacy service which supports this model and prevents data privacy violation. We show, in a performance evaluation, that PriServ introduces a small overhead.

  18. Variations of P2 in subpulse drifting pulsars

    NASA Astrophysics Data System (ADS)

    Yuen, R.; Melrose, D. B.; Samsuddin, M. A.; Tu, Z. Y.; Han, X. H.

    2016-06-01

    We develop a model for subpulse separation period, P2, taking into account both the apparent motion of the visible point as a function of pulsar phase, ψ, and the possibility of abrupt jumps between different rotation states in non-corotating pulsar magnetospheres. We identify three frequencies: (i) the spin frequency of the star, (ii) the drift frequency of the magnetospheric plasma in the source region and (iii) the angular frequency of the visible point around its trajectory. We show how the last of these, which is neglected in traditional models by implicitly assuming the line of sight through the centre of the star, affects the interpretation of P2. We attribute the subpulse structure to emission from m antinodes distributed uniformly in azimuthal angle about the magnetic axis. We show that variations of P2 as a function of rotational phase or observing frequency arise naturally when the motion of the visible point is taken into account. We discuss possible application of our model in signifying overall field-line distortion at the emitting region. Abrupt changes in P2 can occur during state switching in the magnetosphere. We demonstrate that the unique value of P2 in each rotation state can be used, in principle, to relate the rotation state of the magnetospheres to subpulse drifting.

  19. Synthesis of Amylose-b-P2 VP Block Copolymers.

    PubMed

    Kumar, Kamlesh; Woortman, Albert J J; Loos, Katja

    2015-12-01

    A new class of rod-coil block copolymers is synthesized by chemoenzymatic polymerization. In the first step, maltoheptaose, which acts as a primer for the synthesis of amylose, is attached to poly(2-vinyl pyridine) (P2 VP). The enzymatic polymerization of maltoheptaose is carried out by phosphorylase to obtain amylose-b-P2 VP block copolymers. The block copolymer is characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, gel permeation chromatography, and wide-angle X-ray scattering techniques. The designed molecules combine the inclusion complexation ability of amylose with the supramolecular complexation ability of P2 VP and therefore this kind of rod-coil block copolymers can be used to generate well-organized novel self-assembled structures. PMID:26437256

  20. Emerging roles of P2X receptors in cancer.

    PubMed

    Adinolfi, Elena; Capece, Marina; Amoroso, Francesca; De Marchi, Elena; Franceschini, Alessia

    2015-01-01

    Tumor microenvironment composition strongly conditions cancer growth and progression, acting not only at cancer itself but also modifying its interactions with immune, endothelial and nervous cells. Extracellular ATP and its receptors recently gained increasing attention in the oncological field. ATP accumulates in cancer milieu through spontaneous release, tumor necrosis or chemotherapy exerting a trophic activity on cancer cells, modulating the cross talk among tumor, and surrounding tissues. Accordingly, ATP gated P2X receptors emerged as central players in tumor development, invasion, progression and related symptoms. Indeed, P2X receptors are expressed and are functional not only on tumor cells but also in immune-infiltrate and nearby neurons. In this review, we summarize recent findings on P2X receptors role in tumor cell differentiation, bioenergetics, angiogenesis, metastasis and associated pain, giving an outline of the potential anti-neoplastic activity of receptor agonists and antagonists. PMID:25312206

  1. Market Design for a P2P Backup System

    NASA Astrophysics Data System (ADS)

    Seuken, Sven; Charles, Denis; Chickering, Max; Puri, Sidd

    Peer-to-peer (P2P) backup systems are an attractive alternative to server-based systems because the immense costs of large data centers can be saved by using idle resources on millions of private computers instead. This paper presents the design and theoretical analysis of a market for a P2P backup system. While our long-term goal is an open resource exchange market using real money, here we consider a system where monetary transfers are prohibited. A user who wants to backup his data must in return supply some of his resources (storage space, upload and download bandwidth) to the system.We propose a hybrid P2P architecture where all backup data is transferred directly between peers, but a dedicated server coordinates all operations and maintains meta-data. We achieve high reliability guarantees while keeping our data replication factor low by adopting sophisticated erasure coding technology (cf., [2]).

  2. P2Y nucleotide receptors: Promise of therapeutic applications

    PubMed Central

    Jacobson, Kenneth A.; Boeynaems, Jean-Marie

    2010-01-01

    Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G protein-coupled receptors, termed P2Y. However, the receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease, and thrombosis. On the horizon are novel treatments of cardiovascular diseases, inflammatory diseases, and neurodegeneration. PMID:20594935

  3. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m. PMID:19002228

  4. P2X and P2Y Receptors—Role in the Pathophysiology of the Nervous System

    PubMed Central

    Puchałowicz, Kamila; Tarnowski, Maciej; Baranowska-Bosiacka, Irena; Chlubek, Dariusz; Dziedziejko, Violetta

    2014-01-01

    Purinergic signalling plays a crucial role in proper functioning of the nervous system. Mechanisms depending on extracellular nucleotides and their P2 receptors also underlie a number of nervous system dysfunctions. This review aims to present the role of purinergic signalling, with particular focus devoted to role of P2 family receptors, in epilepsy, depression, neuropathic pain, nervous system neoplasms, such as glioma and neuroblastoma, neurodegenerative diseases like Parkinson’s disease, Alzheimer’s disease and multiple sclerosis. The above-mentioned conditions are associated with changes in expression of extracellular ectonucleotidases, P2X and P2Y receptors in neurons and glial cells, as well as releasing considerable amounts of nucleotides from activated or damaged nervous tissue cells into the extracellular space, which contributes to disturbance in purinergic signalling. The numerous studies indicate a potential possibility of using synthetic agonists/antagonists of P2 receptors in treatment of selected nervous system diseases. This is of particular significance, since numerous available agents reveal a low effectiveness and often produce side effects. PMID:25530618

  5. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration.

    PubMed

    Alvarez, Alvaro; Lagos-Cabré, Raúl; Kong, Milene; Cárdenas, Areli; Burgos-Bravo, Francesca; Schneider, Pascal; Quest, Andrew F G; Leyton, Lisette

    2016-09-01

    Our previous reports indicate that ligand-induced αVβ3 integrin and Syndecan-4 engagement increases focal adhesion formation and migration of astrocytes. Additionally, ligated integrins trigger ATP release through unknown mechanisms, activating P2X7 receptors (P2X7R), and the uptake of Ca(2+) to promote cell adhesion. However, whether the activation of P2X7R and ATP release are required for astrocyte migration and whether αVβ3 integrin and Syndecan-4 receptors communicate with P2X7R via ATP remains unknown. Here, cells were stimulated with Thy-1, a reported αVβ3 integrin and Syndecan-4 ligand. Results obtained indicate that ATP was released by Thy-1 upon integrin engagement and required the participation of phosphatidylinositol-3-kinase (PI3K), phospholipase-C gamma (PLCγ) and inositol trisphosphate (IP3) receptors (IP3R). IP3R activation leads to increased intracellular Ca(2+), hemichannel (Connexin-43 and Pannexin-1) opening, and ATP release. Moreover, silencing of the P2X7R or addition of hemichannel blockers precluded Thy-1-induced astrocyte migration. Finally, Thy-1 lacking the integrin-binding site did not stimulate ATP release, whereas Thy-1 mutated in the Syndecan-4-binding domain increased ATP release, albeit to a lesser extent and with delayed kinetics compared to wild-type Thy-1. Thus, hemichannels activated downstream of an αVβ3 integrin-PI3K-PLCγ-IP3R pathway are responsible for Thy-1-induced, hemichannel-mediated and Syndecan-4-modulated ATP release that transactivates P2X7Rs to induce Ca(2+) entry. These findings uncover a hitherto unrecognized role for hemichannels in the regulation of astrocyte migration via P2X7R transactivation induced by integrin-mediated ATP release. PMID:27235833

  6. Measurement and analysis of P2P IPTV program resource.

    PubMed

    Wang, Wenxian; Chen, Xingshu; Wang, Haizhou; Zhang, Qi; Wang, Cheng

    2014-01-01

    With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs. PMID:24772008

  7. Pollution Prevention Successes Database (P2SDb) user guide

    SciTech Connect

    1995-07-01

    When Pollution Prevention Opportunity Assessments (P2OAs) were launched at the Hanford Site during the summer of 1994, the first comment received from those using them expressed the desire for a method to report assessments electronically. As a temporary measure, macros were developed for use on word processing systems, but a more formal database was obviously needed. Additionally, increased DOE and Washington state reporting requirements for pollution prevention suggested that a database system would streamline the reporting process. The Pollution Prevention Group of Westinghouse Hanford Company (WHC) contracted with the Data Automation Engineering Department from ICF Kaiser Hanford Company (ICFKH) to develop the system. The scope was to develop a database that will track P2OAs conducted by the facilities and contractors at the Hanford Site. It will also track pollution prevention accomplishments that are not the result of P2OAs and document a portion of the Process Waste Assessments conducted in the past. To accommodate the above criteria, yet complete the system in a timely manner, the Pollution Prevention Successes Database (P2SDb) is being implemented in three phases. The first phase will automate the worksheets to provide both input and output of the data associated with the worksheets. The second phase will automate standard summary reports and ad hoc reports. The third phase will provide automated searching of the database to facilitate the sharing of pollution prevention experiences among various users. This User`s Guide addresses only the Phase 1 system.

  8. Measurement and Analysis of P2P IPTV Program Resource

    PubMed Central

    Chen, Xingshu; Wang, Haizhou; Zhang, Qi

    2014-01-01

    With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs. PMID:24772008

  9. An Rgd Sequence in the P2y2 Receptor Interacts with αVβ3 Integrins and Is Required for Go-Mediated Signal Transduction

    PubMed Central

    Erb, Laurie; Liu, Jun; Ockerhausen, Jonathan; Kong, Qiongman; Garrad, Richard C.; Griffin, Korey; Neal, Chris; Krugh, Brent; Santiago-Pérez, Laura I.; González, Fernando A.; Gresham, Hattie D.; Turner, John T.; Weisman, Gary A.

    2001-01-01

    The P2Y2 nucleotide receptor (P2Y2R) contains the integrin-binding domain arginine-glycine-aspartic acid (RGD) in its first extracellular loop, raising the possibility that this G protein–coupled receptor interacts directly with an integrin. Binding of a peptide corresponding to the first extracellular loop of the P2Y2R to K562 erythroleukemia cells was inhibited by antibodies against αVβ3/β5 integrins and the integrin-associated thrombospondin receptor, CD47. Immunofluorescence of cells transfected with epitope-tagged P2Y2Rs indicated that αV integrins colocalized 10-fold better with the wild-type P2Y2R than with a mutant P2Y2R in which the RGD sequence was replaced with RGE. Compared with the wild-type P2Y2R, the RGE mutant required 1,000-fold higher agonist concentrations to phosphorylate focal adhesion kinase, activate extracellular signal–regulated kinases, and initiate the PLC-dependent mobilization of intracellular Ca2+. Furthermore, an anti-αV integrin antibody partially inhibited these signaling events mediated by the wild-type P2Y2R. Pertussis toxin, an inhibitor of Gi/o proteins, partially inhibited Ca2+ mobilization mediated by the wild-type P2Y2R, but not by the RGE mutant, suggesting that the RGD sequence is required for P2Y2R-mediated activation of Go, but not Gq. Since CD47 has been shown to associate directly with Gi/o family proteins, these results suggest that interactions between P2Y2Rs, integrins, and CD47 may be important for coupling the P2Y2R to Go. PMID:11331301

  10. The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice*

    PubMed Central

    Meister, Jaroslawna; Le Duc, Diana; Ricken, Albert; Burkhardt, Ralph; Thiery, Joachim; Pfannkuche, Helga; Polte, Tobias; Grosse, Johannes; Schöneberg, Torsten; Schulz, Angela

    2014-01-01

    UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion. PMID:24993824

  11. Ca3P2 and other topological semimetals with line nodes and drumhead surface states

    NASA Astrophysics Data System (ADS)

    Chan, Y.-H.; Chiu, Ching-Kai; Chou, M. Y.; Schnyder, Andreas P.

    2016-05-01

    As opposed to ordinary metals, whose Fermi surfaces are two dimensional, topological (semi)metals can exhibit protected one-dimensional Fermi lines or zero-dimensional Fermi points, which arise due to an intricate interplay between symmetry and topology of the electronic wave functions. Here, we study how reflection symmetry, time-reversal symmetry, SU(2) spin-rotation symmetry, and inversion symmetry lead to the topological protection of line nodes in three-dimensional semimetals. We obtain the crystalline invariants that guarantee the stability of the line nodes in the bulk and show that a quantized Berry phase leads to the appearance of protected surfaces states, which take the shape of a drumhead. By deriving a relation between the crystalline invariants and the Berry phase, we establish a direct connection between the stability of the line nodes and the drumhead surface states. Furthermore, we show that the dispersion minimum of the drumhead state leads to a Van Hove singularity in the surface density of states, which can serve as an experimental fingerprint of the topological surface state. As a representative example of a topological semimetal, we consider Ca3P2 , which has a line of Dirac nodes near the Fermi energy. The topological properties of Ca3P2 are discussed in terms of a low-energy effective theory and a tight-binding model, derived from ab initio DFT calculations. Our microscopic model for Ca3P2 shows that the drumhead surface states have a rather weak dispersion, which implies that correlation effects are enhanced at the surface of Ca3P2 .

  12. Structure-Based Design of 3-(4-Aryl-1H-1,2,3-triazol-1-yl)-Biphenyl Derivatives as P2Y14 Receptor Antagonists.

    PubMed

    Junker, Anna; Balasubramanian, Ramachandran; Ciancetta, Antonella; Uliassi, Elisa; Kiselev, Evgeny; Martiriggiano, Chiara; Trujillo, Kevin; Mtchedlidze, Giorgi; Birdwell, Leah; Brown, Kyle A; Harden, T Kendall; Jacobson, Kenneth A

    2016-07-14

    UDP and UDP-glucose activate the P2Y14 receptor (P2Y14R) to modulate processes related to inflammation, diabetes, and asthma. A computational pipeline suggested alternatives to naphthalene of a previously reported P2Y14R antagonist (3, PPTN) using docking and molecular dynamics simulations on a hP2Y14R homology model based on P2Y12R structures. By reevaluating the binding of 3 to P2Y14R computationally, two alternatives, i.e., alkynyl and triazolyl derivatives, were identified. Improved synthesis of fluorescent antagonist 4 enabled affinity quantification (IC50s, nM) using flow cytometry of P2Y14R-expressing CHO cells. p-F3C-phenyl-triazole 65 (32) was more potent than a corresponding alkyne 11. Thus, additional triazolyl derivatives were prepared, as guided by docking simulations, with nonpolar aryl substituents favored. Although triazoles were less potent than 3 (6), simpler synthesis facilitated further structural optimization. Additionally, relative P2Y14R affinities agreed with predicted binding of alkynyl and triazole analogues. These triazoles, designed through a structure-based approach, can be assessed in disease models. PMID:27331270

  13. Structure-Based Design of 3-(4-Aryl-1H-1,2,3-triazol-1-yl)-Biphenyl Derivatives as P2Y14 Receptor Antagonists

    PubMed Central

    2016-01-01

    UDP and UDP-glucose activate the P2Y14 receptor (P2Y14R) to modulate processes related to inflammation, diabetes, and asthma. A computational pipeline suggested alternatives to naphthalene of a previously reported P2Y14R antagonist (3, PPTN) using docking and molecular dynamics simulations on a hP2Y14R homology model based on P2Y12R structures. By reevaluating the binding of 3 to P2Y14R computationally, two alternatives, i.e., alkynyl and triazolyl derivatives, were identified. Improved synthesis of fluorescent antagonist 4 enabled affinity quantification (IC50s, nM) using flow cytometry of P2Y14R-expressing CHO cells. p-F3C-phenyl-triazole 65 (32) was more potent than a corresponding alkyne 11. Thus, additional triazolyl derivatives were prepared, as guided by docking simulations, with nonpolar aryl substituents favored. Although triazoles were less potent than 3 (6), simpler synthesis facilitated further structural optimization. Additionally, relative P2Y14R affinities agreed with predicted binding of alkynyl and triazole analogues. These triazoles, designed through a structure-based approach, can be assessed in disease models. PMID:27331270

  14. Supporting seamless mobility for P2P live streaming.

    PubMed

    Kim, Eunsam; Kim, Sangjin; Lee, Choonhwa

    2014-01-01

    With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme. PMID:24977171

  15. Supporting Seamless Mobility for P2P Live Streaming

    PubMed Central

    Kim, Eunsam; Kim, Sangjin; Lee, Choonhwa

    2014-01-01

    With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme. PMID:24977171

  16. P2 - The weak charge of the proton

    SciTech Connect

    Becker, D.; Gerz, K.; Baunack, S.; Kumar, K. S.; Maas, F. E.

    2013-11-07

    The goal of the P2 project is a new high precision determination of the electroweak mixing angle θ{sub W}. The project has been approved in January 2012 and the experiment will be carried out at the upcoming MESA accelerator facility in Mainz. The experimental method is a measurement of the proton weak charge Q{sub W}(p) through the parity violating asymmetry in the elastic electron-proton scattering at low values of Q{sup 2} ∼ 0.003 GeV{sup 2}. We have estimated an achievable fractional precision of 0.15% in the determination of sin{sup 2}(θ{sub W}), which corresponds to an uncertainty of 2.1% for Q{sup W}(p). In this article, we discuss the achievable precision within Project P2 and present first results of conceptual studies for the experiment.

  17. Luminescence in Li2BaP2O7.

    PubMed

    Hatwar, L R; Wankhede, S P; Moharil, S V; Muthal, P L; Dhopte, S M

    2015-09-01

    The photo-, thermo- and optically stimulated luminescence in Li2BaP2O7 activated with Eu(2+) /Cu(+) are reported. Strong thermoluminescence, which is about two times greater than LiF-TLD 100 was observed in the Eu(2+) -activated sample. It also exhibited optically stimulated luminescence sensitivity of ~20% that of commercial Al2O3:C phosphor. PMID:25351563

  18. P2 receptors in cardiovascular regulation and disease

    PubMed Central

    Erlinge, David

    2007-01-01

    The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development. PMID:18368530

  19. Theoretical photoionization processes for aluminum-like P2+

    NASA Astrophysics Data System (ADS)

    Wang, HongBin; Jiang, Gang; Duan, Jie

    2016-05-01

    The theoretical photoionization cross sections for the ground and metastable states of Al-like P2+ are first time investigated in the photon energy range of 30-43.5 eV by the Dirac R-matrix method, and a good agreement between the dipole length and velocity form is achieved. The effects of the partial photoionization on the total PI of ground and metastable states are discussed. Our theoretical results are consistent with the latest experimental measurement, only some discrepancies are found. The channel coupling effects play an important role in the photoionization of Al-like P2+. The resonance energies and quantum defects are obtained, where a comparison between the theoretical and experimental data is made. It is worth noting that the theoretical resonance is as large as 0.28 eV. Our results can serve as a reference to further study the PI of Al-like P2+ in theory and experiment and be regarded as a supplement for Opacity Project TOP base results.

  20. P2X4R+ microglia drive neuropathic pain

    PubMed Central

    Beggs, Simon; Trang, Tuan; Salter, Michael W

    2016-01-01

    Neuropathic pain, the most debilitating of all clinical pain syndromes, may be a consequence of trauma, infection or pathology from diseases that affect peripheral nerves. Here we provide a framework for understanding the spinal mechanisms of neuropathic pain as distinct from those of acute pain or inflammatory pain. Recent work suggests that a specific microglia response phenotype characterized by de novo expression of the purinergic receptor P2X4 is critical for the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Stimulating P2X4 receptors initiates a core pain signaling pathway mediated by release of brain-derived neurotrophic factor, which produces a disinhibitory increase in intracellular chloride in nociceptive (pain-transmitting) neurons in the spinal dorsal horn. The changes caused by signaling from P2X4R+ microglia to nociceptive transmission neurons may account for the main symptoms of neuropathic pain in humans, and they point to specific interventions to alleviate this debilitating condition. PMID:22837036

  1. An Overlapping Structured P2P for REIK Overlay Network

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Song, Jingjing; Yu, Jiguo

    REIK is based on a ring which embedded an inverse Kautz digraph, to enable multi-path P2P routing. It has the constant degree and the logarithmic diameter DHT scheme with constant congestion and Byzantine fault tolerance. However, REIK did not consider the interconnection of many independent smaller networks. In this paper, we propose a new approach to build overlay network, OLS-REIK which is an overlapping structured P2P for REIK overlay network. It is a more flexible interconnecting different REIK network. Peers can belong to several rings, allowing this interconnection. By connecting smaller structured overlay networks in an unstructured way, it provides a cost effective alternative to hierarchical structured P2P systems requiring costly merging. Routing of lookup messages is performed as in REIK within one ring, but a peer belonging to several rings forwards the request to the different rings it belongs to. Furthermore a small number of across point is enough to ensure a high exhaustiveness level.

  2. Pure P2P mediation system: A mappings discovery approach

    NASA Astrophysics Data System (ADS)

    selma, El yahyaoui El idrissi; Zellou, Ahmed; Idri, Ali

    2015-02-01

    The information integration systems consist in offering a uniform interface to provide access to a set of autonomous and distributed information sources. The most important advantage of this system is that it allows users to specify what they want, rather than thinking about how to get the responses. The works realized in this area have particular leads to two major classes of integration systems: the mediation systems based on the paradigm mediator / adapter and peer to peer systems (P2P). The combination of both systems has led to a third type; is the mediation P2P systems. The P2P systems are large-scale systems, self-organized and distributed. They allow the resource management in a completely decentralized way. However, the integration of structured information sources, heterogeneous and distributed proves to be a complex problem. The objective of this work is to propose an approach to resolve conflicts and establish a mapping between the heterogeneous elements. This approach is based on clustering; the latter is to group similar Peers that share common information in the same subnet. Thus, to facilitate the heterogeneity, we introduced three additional layers of our hierarchy of peers: internal schema, external schema and Schema directory peer. We used linguistic techniques, and precisely the name correspondence technique, that is based on the similarity of names to propose a correspondence.

  3. Load Balancing in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yingwu

    In this chapter we start by addressing the importance and necessity of load balancing in structured P2P networks, due to three main reasons. First, structured P2P networks assume uniform peer capacities while peer capacities are heterogeneous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash function used to generate node IDs and data item keys leads to imbalanced overlay address space and item distribution. Lastly, placement of data items cannot be randomized in some applications (e.g., range searching). We then present an overview of load aggregation and dissemination techniques that are required by many load balancing algorithms. Two techniques are discussed including tree structure-based approach and gossip-based approach. They make different tradeoffs between estimate/aggregate accuracy and failure resilience. To address the issue of load imbalance, three main solutions are described: virtual server-based approach, power of two choices, and address-space and item balancing. While different in their designs, they all aim to improve balance on the address space and data item distribution. As a case study, the chapter discusses a virtual server-based load balancing algorithm that strives to ensure fair load distribution among nodes and minimize load balancing cost in bandwidth. Finally, the chapter concludes with future research and a summary.

  4. Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach

    PubMed Central

    Morten, Michael J.; Peregrina, Jose R.; Figueira-Gonzalez, Maria; Ackermann, Katrin; Bode, Bela E.; White, Malcolm F.; Penedo, J. Carlos

    2015-01-01

    Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes. PMID:26578575

  5. Identification and characterization of a novel P2Y 12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study.

    PubMed

    Daly, Martina E; Dawood, Ban B; Lester, William A; Peake, Ian R; Rodeghiero, Francesco; Goodeve, Anne C; Makris, Michael; Wilde, Jonathan T; Mumford, Andrew D; Watson, Stephen P; Mundell, Stuart J

    2009-04-23

    We investigated whether defects in the P2Y(12) ADP receptor gene (P2RY12) contribute to the bleeding tendency in 92 index cases enrolled in the European MCMDM-1VWD study. A heterozygous mutation, predicting a lysine to glutamate (K174E) substitution in P2Y(12), was identified in one case with mild type 1 von Willebrand disease (VWD) and a VWF defect. Platelets from the index case and relatives carrying the K174E defect changed shape in response to ADP, but showed reduced and reversible aggregation in response to 10 muM ADP, unlike the maximal, sustained aggregation observed in controls. The reduced response was associated with an approximate 50% reduction in binding of [(3)H]2MeS-ADP to P2Y(12), whereas binding to the P2Y(1) receptor was normal. A hemagglutinin-tagged K174E P2Y(12) variant showed surface expression in CHO cells, markedly reduced binding to [(3)H]2MeS-ADP, and minimal ADP-mediated inhibition of forskolin-induced adenylyl cyclase activity. Our results provide further evidence for locus heterogeneity in type 1 VWD. PMID:19237732

  6. Final Design of the SLAC P2 Marx Klystron Modulator

    SciTech Connect

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Larsen, R.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2011-11-08

    The SLAC P2 Marx has been under development for two years, and follows on the P1 Marx as an alternative to the baseline klystron modulator for the International Linear Collider. The P2 Marx utilizes a redundant architecture, air-insulation, a control system with abundant diagnostic access, and a novel nested droop correction scheme. This paper is an overview of the design of this modulator. There are several points of emphasis for the P2 Marx design. First, the modulator must be compatible with the ILC two-tunnel design. In this scheme, the modulator and klystron are located within a service tunnel with limited access and available footprint for a modulator. Access to the modulator is only practical from one side. Second, the modulator must have high availability. Robust components are not sufficient alone to achieve availability much higher than 99%. Therefore, redundant architectures are necessary. Third, the modulator must be relatively low cost. Because of the large number of stations in the ILC, the investment needed for the modulator components is significant. High-volume construction techniques which take advantage of an economy of scale must be utilized. Fourth, the modulator must be simple and efficient to maintain. If a modulator does become inoperable, the MTTR must be small. Fifth, even though the present application for the modulator is for the ILC, future accelerators can also take advantage of this development effort. The hardware, software, and concepts developed in this project should be designed such that further development time necessary for other applications is minimal.

  7. Substituted 5,6-(Dihydropyrido[3,4-d]pyrimidin-7(8H)-yl)-methanones as P2X7 Antagonists.

    PubMed

    Ziff, Jeannie; Rudolph, Dale A; Stenne, Brice; Koudriakova, Tatiana; Lord, Brian; Bonaventure, Pascal; Lovenberg, Timothy W; Carruthers, Nicholas I; Bhattacharya, Anindya; Letavic, Michael A; Shireman, Brock T

    2016-04-20

    We describe the synthesis of a novel class of brain penetrating P2X7 antagonists with high potency at both the rat and human P2X7 receptors. Disclosed herein are druglike molecules with demonstrated target engagement of the rat P2X7 receptors after an oral dose. Specifically, compound 20 occupied the P2X7 receptors >80% over the 6 h time course as measured by an ex vivo radioligand binding experiment. In a dose-response assay, this molecule has a plasma EC50 of 8 ng/mL. Overall, 20 has suitable druglike properties and pharmacokinetics in rat and dog. This molecule and others disclosed herein will serve as additional tools to elucidate the role of the P2X7 receptor in neuropsychiatric disorders. PMID:26754558

  8. Mining human genome for novel purinergic P2Y receptors: a sequence analysis and molecular modeling approach.

    PubMed

    Bhatnagar, Sonika; Mishra, Shubhi; Pathak, Ravi

    2011-02-01

    The purinergic P2Y receptors are G-protein coupled receptors (GPCRs) that control many physiological processes by mediating cellular responses to purines, pyrimidines and their analogues. They can be used as potential therapeutic targets in a variety of disease conditions. Therefore, it is critical to identify new members of this family of receptors from the human genome and characterize them for their role in health and disease. In the present work, molecular modeling was carried out for the 21 known P2Y receptors. Binding site analysis was done on the basis of docking and site-directed mutagenesis data. Thus, conserved features of P2Y receptors could be formulated. These features can be used to determine the purinergic nature of potential P2Y receptors in the human genome. We applied this knowledge to human genome GPCR sequences found by sensitive sequence search techniques and identified two orphan receptors, namely GPR34 and GP171 that have all the necessary conserved features of P2Y receptors. PMID:21142848

  9. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons

    PubMed Central

    Chen, Yong; Zhang, Xiaofei; Wang, Congying; Li, GuangWen; Gu, Yanping; Huang, Li-Yen Mae

    2008-01-01

    Purinergic ionotropic P2X7 receptors (P2X7Rs) are closely associated with excitotoxicity and nociception. Inhibition of P2X7R activation has been considered as a potentially useful strategy to improve recovery from spinal cord injury and reduce inflammatory damage to trauma. The physiological functions of P2X7Rs, however, are poorly understood, even though such information is essential for making the P2X7R an effective therapeutic target. We show here that P2X7Rs in satellite cells of dorsal root ganglia tonically inhibit the expression of P2X3Rs in neurons. Reducing P2X7R expression using siRNA or blocking P2X7R activity by antagonists elicits P2X3R up-regulation, increases the activity of sensory neurons responding to painful stimuli, and evokes abnormal nociceptive behaviors in rats. Thus, contrary to the notion that P2X7R activation is cytotoxic, P2X7Rs in satellite cells play a crucial role in maintaining proper P2X3R expression in dorsal root ganglia. Studying the mechanism underlying the P2X7R–P2X3R control, we demonstrate that activation of P2X7Rs evokes ATP release from satellite cells. ATP in turn stimulates P2Y1 receptors in neurons. P2Y1 receptor activation appears to be necessary and sufficient for the inhibitory control of P2X3R expression. We further determine the roles of the P2X7R–P2Y1–P2X3R inhibitory control under injurious conditions. Activation of the inhibitory control effectively prevents the development of allodynia and increases the potency of systemically administered P2X7R agonists in inflamed rats. Thus, direct blocking P2X7Rs, as proposed before, may not be the best strategy for reducing pain or lessening neuronal degeneration because it also disrupts the protective function of P2X7Rs. PMID:18946042

  10. Persistent photoconductivity in high resistive Zn3P2

    NASA Astrophysics Data System (ADS)

    Sierański, K.; Szatkowski, J.; Pawlikowski, J. M.

    2014-02-01

    Resistivity and photoconductivity of p-type Zn3P2 polycrystals grown by closed tube vapour transport method have been investigated. Persistent photoconductivity (PPC) has been observed at temperatures T < 200 K. At 77 K, the photoconduction persists for over 103 s after termination of the light. The PPC buildup and decay kinetics have been measured at 77 K and analyzed in the frame of large lattice-relaxed deep levels. We have determined the spectral dependence for the optical cross section and obtain an optical ionization energy of 0.83 eV.

  11. Motor Learning: The FoxP2 Puzzle Piece

    PubMed Central

    Teramitsu, Ikuko; White, Stephanie A.

    2009-01-01

    Mutation of the DNA-binding region of the FOXP2 protein causes an inherited language disorder. A recent study provides the first data on mice with this mutation, which exhibit deficits in motor-skill learning and abnormal properties of neural circuits that contribute to these skills. PMID:18430631

  12. Exploring a 2-Naphthoic Acid Template for the Structure-Based Design of P2Y14 Receptor Antagonist Molecular Probes

    PubMed Central

    2015-01-01

    The P2Y14 receptor (P2Y14R), one of eight P2Y G protein-coupled receptors (GPCR), is involved in inflammatory, endocrine, and hypoxic processes and is an attractive pharmaceutical target. The goal of this research is to develop high-affinity P2Y14R fluorescent probes based on the potent and highly selective antagonist 4-(4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl)-2-naphthoic acid (6, PPTN). A model of hP2Y14R based on recent hP2Y12R X-ray structures together with simulated antagonist docking suggested that the piperidine ring is suitable for fluorophore conjugation while preserving affinity. Chain-elongated alkynyl or amino derivatives of 6 for click or amide coupling were synthesized, and their antagonist activities were measured in hP2Y14R-expressing CHO cells. Moreover, a new Alexa Fluor 488 (AF488) containing derivative 30 (MRS4174, Ki = 80 pM) exhibited exceptionally high affinity, as compared to 13 nM for the alkyne precursor 22. A flow cytometry assay employing 30 as a fluorescent probe was used to quantify specific binding to P2Y14R. Known P2Y receptor ligands inhibited binding of 30 with properties consistent with their previously established receptor selectivities and affinities. These results illustrate that potency in this series of 2-naphthoic acid derivatives can be preserved by chain functionalization, leading to highly potent fluorescent molecular probes for P2Y14R. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands. This approach demonstrates the predictive power of GPCR homology modeling and the relevance of newly determined X-ray structures to GPCR medicinal chemistry. PMID:25299434

  13. Birefringence and band structure of CdP2 crystals

    NASA Astrophysics Data System (ADS)

    Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.

    2013-08-01

    The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||сP2 crystals are isotropic for wavelength λо=896 nm. Indirect transitions in excitonic region Еgx are nonpolarized due to one pair of bands. Minimal direct energy intervals correspond to transitions Г1→Г1 for Е||с and Г2→Г1 for Е⊥с. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Г1→Г1 and Г2→Г1 band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5-10 eV and optical functions (n, k, ε1, ε2,d2ε1/dE2 and d2ε2/dE2) were calculated by using Kramers-Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  14. P2Y Receptors in Alzheimer’s Disease

    PubMed Central

    Erb, Laurie; Cao, Chen; Ajit, Deepa; Weisman, Gary A.

    2014-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia, affecting more than 10% of people over the age of 65. Age is the greatest risk factor for AD, although a combination of genetic, lifestyle and environmental factors also contribute to disease development. Common features of AD are the formation of plaques composed of beta-amyloid peptides (Aβ) and neuronal death in brain regions involved in learning and memory. Although Aβ is neurotoxic, the primary mechanisms by which Aβ affects AD development remain uncertain and controversial. Mouse models overexpressing amyloid precursor protein and Aβ have revealed that Aβ has potent effects on neuroinflammation and cerebral blood flow that contribute to AD progression. Therefore, it is important to consider how endogenous signaling in the brain responds to Aβ and contributes to AD pathology. In recent years, Aβ has been shown to affect ATP release from brain and blood cells and alter the expression of G protein-coupled P2Y receptors that respond to ATP and other nucleotides. Accumulating evidence reveals a prominent role for P2Y receptors in AD pathology, including Aβ production and elimination, neuroinflammation, neuronal function and cerebral blood flow. PMID:25179475

  15. Residual platelet ADP reactivity after clopidogrel treatment is dependent on activation of both the unblocked P2Y1 and the P2Y12 receptor and is correlated with protein expression of P2Y12

    PubMed Central

    Braun, Oscar Ö; Amisten, Stefan; Wihlborg, Anna-Karin; Hunting, Karen; Nilsson, David

    2006-01-01

    Two ADP receptors have been identified on human platelets: P2Y1 and P2Y12. The P2Y12 receptor blocker clopidogrel is widely used to reduce the risks in acute coronary syndromes, but, currently, there is no P2Y1 blocker in clinical use. Evidence for variable responses to clopidogrel has been described in several reports. The mechanistic explanation for this phenomenon is not fully understood. The aim of this study was to examine mechanisms responsible for variability of 2MeS-ADP, a stable ADP analogue, induced platelet reactivity in clopidogrel-treated patients. Platelet reactivity was assessed by flow cytometry measurements of P-selectin (CD62P) and activated GpIIb/IIIa complex (PAC-1). Residual 2MeS-ADP activation via the P2Y12 and P2Y1 receptors was determined by co-incubation with the selective antagonists AR-C69931 and MRS2179 in vitro. P2Y1 and P2Y12 receptor expression on both RNA and protein level were determined, as well as the P2Y12 H1 or H2 haplotypes. Our data suggest that the residual platelet activation of 2MeS-ADP after clopidogrel treatment is partly due to an inadequate antagonistic effect of clopidogrel on the P2Y12 receptor and partly due to activation of the P2Y1 receptor, which is unaffected by clopidogrel. Moreover, a correlation between increased P2Y12 protein expression on platelets and decreased response to clopidogrel was noticed, r2=0.43 (P<0.05). No correlation was found between P2Y12 mRNA levels and clopidogrel resistance, indicating post-transcriptional mechanisms. To achieve additional ADP inhibition in platelets, antagonists directed at the P2Y1 receptor could be more promising than the development of more potent P2Y12 receptor antagonists. PMID:18404433

  16. Activation by ATP of a P2U 'nucleotide' receptor in an exocrine cell.

    PubMed Central

    Martin, S. C.; Shuttleworth, T. J.

    1995-01-01

    1. We employed the perforated patch whole-cell technique to investigate the effects of ATP and other related nucleotides on membrane conductances in avian exocrine salt gland cells. 2. ATP (10 microM-1 mM) evoked an increase in maxi-K+ and Cl- conductances with a reversal potential of -35 mV. At lower concentrations of ATP (< or = 100 microM) responses were generally oscillatory with a sustained response observed at higher concentrations (> or = 200 microM). 3. Both oscillatory and sustained responses were abolished by the removal of bath Ca2+. In cells preincubated in extracellular saline containing reduced Ca2+, the application of ATP resulted in a transient increase in current. 4. As increasing concentrations of ATP (and related nucleotides) evoked a graded sequence of events with little run-down we were able to establish a rank order of potency in single cells. The order of potency of ATP analogues and agonists of the various P2-receptor subtypes was UTP > ATP = 2-methylthio-ATP > ADP. Adenosine (1 microM-1 mM), AMP (1 microM-1 mM), alpha,beta-methylene-ATP (1 microM-1 mM) and beta,gamma-methylene-ATP (1 microM-1 mM) were without effect. 5. In conclusion, although unable to preclude a role for a P2Y-receptor, our results suggest that ATP binds to a P2U-receptor increasing [Ca2+]i and subsequently activating Ca(2+)-sensitive K+ and Cl- currents. PMID:7670734

  17. BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2.

    PubMed

    Wu, Tingting; Baumgart, Tobias

    2014-11-25

    In striated muscles, invaginations from the plasma membrane, termed transverse tubules (T-tubule), function in the excitation-contraction coupling machinery. BIN1 (isoform8) plays a critical role in the biogenesis of T-tubules. BIN1 contains an N-terminal BAR domain to sense and induce membrane curvature, an isoform8-specific polybasic motif (exon10) as the phosphoinositide binding module and a C-terminal Src homology 3 (SH3) domain for the recruitment of downstream proteins such as dynamin 2. Previous studies of N-BAR domains focused on elucidating mechanisms of membrane curvature sensing and generation (MC-S&G). Less is known about how MC-S&G is regulated. We found that the SH3 domain binds to the exon10 motif more strongly compared to the proline-rich domain (PRD) of dynamin 2. Furthermore, we found that the MC-S&G ability of full-length BIN1 is inhibited on membranes lacking PI(4,5)P2. Addition of PI(4,5)P2 in the membrane activates BIN1 to sense and induce membrane curvature. Co-presence of the SH3 domain and exon10 motif leads to the strongest phosphoinositide-mediated control of BIN1 function. Addition of SH3 domain ligand (such as PRD peptides), as well as addition of the water-soluble PI(4,5)P2 analogue, can both enhance the MC-S&G ability of BIN1 on membranes without PI(4,5)P2, indicating that the key to activate BIN1 is to disrupt the exon10-SH3 interaction. The nonsense mutation K436X, found in centronuclear myopathy (CNM) patients, abolishes SH3 domain binding with either exon10 or the PRD motif, resulting in increased membrane deformation capacity. Our results suggest an autoinhibition model for BIN1 that involves a synergistic regulation by membrane composition and protein-protein interactions. PMID:25350771

  18. Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region.

    PubMed

    Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-Ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio

    2016-04-26

    Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s(-1)), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region. PMID:27071117

  19. Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides.

    PubMed

    Fujiwara, Yuichiro; Kubo, Yoshihiro

    2006-10-01

    Phosphoinositides (PIP(n)s) are known to regulate the activity of some ion channels. Here we determined that ATP-gated P2X(2) channels also are regulated by PIP(n)s, and investigated the structural background and the unique features of this regulation. We initially used two-electrode voltage clamp to analyse the electrophysiological properties of P2X(2) channels expressed in Xenopus oocytes, and observed that preincubation with wortmannin or LY294002, two PI3K inhibitors, accelerated channel desensitization. K365Q or K369Q mutation of the conserved, positively charged, amino acid residues in the proximal region of the cytoplasmic C-terminal domain also accelerated desensitization, whereas a K365R or K369R mutation did not. We observed that the permeability of the channel to N-methyl-d-glucamine (NMDG) transiently increased and then decreased after ATP application, and that the speed of the decrease was accelerated by K365Q or K369Q mutation or PI3K inhibition. Using GST-tagged recombinant proteins spanning the proximal C-terminal region, we then analysed their binding of the P2X(2) cytoplasmic domain to anionic lipids using PIP(n)s-coated nitrocellulose membranes. We found that the recombinant proteins that included the positively charged region bound to PIPs and PIP(2)s, and that this binding was eliminated by the K365Q and K369Q mutations. We also used a fluorescence assay to confirm that fusion proteins comprising the proximal C-terminal region of P2X(2) with EGFP expressed in COS-7 cells closely associated with the membrane. Taken together, these results show that membrane-bound PIP(n)s play a key role in maintaining channel activity and regulating pore dilation through electrostatic interaction with the proximal region of the P2X(2) cytoplasmic C-terminal domain. PMID:16857707

  20. Mechanisms of SHP-1 P2 promoter regulation in hematopoietic cells and its silencing in HTLV-1-transformed T cells.

    PubMed

    Nakase, Koichi; Cheng, Jihua; Zhu, Quan; Marasco, Wayne A

    2009-01-01

    The Src homology-2-containing protein-tyrosine phosphatase 1 (SHP-1), is a negative regulator of cell signaling. It is also considered a tumor suppressor gene because of its ability to antagonize the action of tyrosine kinases. Although SHP-1 is expressed strongly in hematopoietic cells, decreased expression has been observed in various hematological malignancies, which suggests a central involvement of SHP-1 in leukemogenesis. We have shown previously that human T cell lymphotropic virus type-1 (HTLV-1) Tax-induced promoter silencing (TIPS) is an early event causing down-regulation of SHP-1 expression, which is dependent on NF-kappaB. In this study, DNase I footprinting and EMSA also revealed binding of transcription factors, specificity protein 1 (Sp1) and octamer-binding transcription factor 1 (Oct-1) to the P2 promoter, and site-directed mutagenesis confirmed that these factors contribute to the basal P2 promoter activity. Chromatin immunoprecipitation (CHIP) assays showed that Sp1, Oct-1, NF-kappaB, CREB-1, and RNA polymerase II interacted with the core SHP-1 P2 promoter in CD4+ T cells and Jurkat cells but not in HTLV-1-transformed MT-2 and HUT102 cells when HTLV-1 Tax is present. Furthermore, bisulfite sequencing of the SHP-1 P2 core region revealed heavy CpG methylation in HTLV-1-transformed cells compared with freshly isolated CD4+ T cells and HTLV-1-noninfected T cell lines. A significant inverse correlation between degree of CpG methylation and expression of SHP-1 mRNA or protein was observed. Taken together, our data support the notion that in HTLV-1-transformed CD4+ T cells, TIPS causes dissociation of transcription factors from the core SHP-1 P2 promoter, which in turn leads to subsequent DNA methylation, an important early step for leukemogenesis. PMID:18948549

  1. Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis

    PubMed Central

    Khan, Shenaz; Abu Jawdeh, Bassam G.; Goel, Monu; Schilling, William P.; Parker, Mark D.; Puchowicz, Michelle A.; Yadav, Satya P.; Harris, Raymond C.; El-Meanawy, Ashraf; Hoshi, Malcolm; Shinlapawittayatorn, Krekwit; Deschênes, Isabelle; Ficker, Eckhard; Schelling, Jeffrey R.

    2014-01-01

    Chronic kidney disease progression can be predicted based on the degree of tubular atrophy, which is the result of proximal tubule apoptosis. The Na+/H+ exchanger NHE1 regulates proximal tubule cell survival through interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], but pathophysiologic triggers for NHE1 inactivation are unknown. Because glomerular injury permits proximal tubule luminal exposure and reabsorption of fatty acid/albumin complexes, we hypothesized that accumulation of amphipathic, long-chain acyl-CoA (LC-CoA) metabolites stimulates lipoapoptosis by competing with the structurally similar PI(4,5)P2 for NHE1 binding. Kidneys from mouse models of progressive, albuminuric kidney disease exhibited increased fatty acids, LC-CoAs, and caspase-2–dependent proximal tubule lipoapoptosis. LC-CoAs and the cytosolic domain of NHE1 directly interacted, with an affinity comparable to that of the PI(4,5)P2-NHE1 interaction, and competing LC-CoAs disrupted binding of the NHE1 cytosolic tail to PI(4,5)P2. Inhibition of LC-CoA catabolism reduced NHE1 activity and enhanced apoptosis, whereas inhibition of proximal tubule LC-CoA generation preserved NHE1 activity and protected against apoptosis. Our data indicate that albuminuria/lipiduria enhances lipotoxin delivery to the proximal tubule and accumulation of LC-CoAs contributes to tubular atrophy by severing the NHE1-PI(4,5)P2 interaction, thereby lowering the apoptotic threshold. Furthermore, these data suggest that NHE1 functions as a metabolic sensor for lipotoxicity. PMID:24531551

  2. Metabolism of glucose 1,6-P2--III. Partial purification and characterization of glucose 1,6-P2 synthase from pig skeletal muscle.

    PubMed

    Carreras, M; Carreras, J; Climent, F

    1988-01-01

    1. Glycerate 1,3-P2-dependent glucose, 1,6-P2 synthase has been purified 2000-fold from pig skeletal muscle, with a yield of 75%. 2. The enzyme possesses fructose 1,6-P2-dependent glucose 1,6-P2 synthase and phosphoglucomutase activities, which represent 0.1 and 60% of the main activity, respectively. 3. Both glucose 1-P and glucose 6-P can act as acceptors of the phosphoryl group from glycerate 1,3-P2. 4. The Km values are 19 microM and 67 nM for glucose 1-P and glycerate 1,3-P2, respectively. 5. The enzyme is inhibited by glycerate 2,3-P2, fructose 1,6-P2, glycerate 3-P, phosphoenolpyruvate and lithium, the inhibition pattern varying with the compound. PMID:2854765

  3. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1

    PubMed Central

    Leodolter, Julia; Warweg, Jannis; Weber-Ban, Eilika

    2015-01-01

    Clp chaperone-proteases are cylindrical complexes built from ATP-dependent chaperone rings that stack onto a proteolytic ClpP double-ring core to carry out substrate protein degradation. Interaction of the ClpP particle with the chaperone is mediated by an N-terminal loop and a hydrophobic surface patch on the ClpP ring surface. In contrast to E. coli, Mycobacterium tuberculosis harbors not only one but two ClpP protease subunits, ClpP1 and ClpP2, and a homo-heptameric ring of each assembles to form the ClpP1P2 double-ring core. Consequently, this hetero double-ring presents two different potential binding surfaces for the interaction with the chaperones ClpX and ClpC1. To investigate whether ClpX or ClpC1 might preferentially interact with one or the other double-ring face, we mutated the hydrophobic chaperone-interaction patch on either ClpP1 or ClpP2, generating ClpP1P2 particles that are defective in one of the two binding patches and thereby in their ability to interact with their chaperone partners. Using chaperone-mediated degradation of ssrA-tagged model substrates, we show that both Mycobacterium tuberculosis Clp chaperones require the intact interaction face of ClpP2 to support degradation, resulting in an asymmetric complex where chaperones only bind to the ClpP2 side of the proteolytic core. This sets the Clp proteases of Mycobacterium tuberculosis, and probably other Actinobacteria, apart from the well-studied E. coli system, where chaperones bind to both sides of the protease core, and it frees the ClpP1 interaction interface for putative new binding partners. PMID:25933022

  4. Protonic Conduction in TiP2O7

    NASA Astrophysics Data System (ADS)

    Nalini, V.; Norby, T.; Anuradha, A. M.

    2006-06-01

    TiP2O7 was synthesized by reacting TiO2 and 85 % H3PO4 and characterized by XRD, TEM and SEM. The electrical conductivity of the sample was examined at 500-1000 °C under various p(O2), p(H2O), and p(D2O) conditions. The conductivity of the material in wet atmospheres was higher than that under D2O-containing and dry atmospheres, indicating that protonic conduction was dominant in this material in wet atmospheres. The conductivity was mainly independent of p(O2) at 500-900 °C under oxidizing conditions, confirming predominant ionic (protonic) conduction.

  5. P2P Approach for Web Services Publishing and Discovery

    NASA Astrophysics Data System (ADS)

    Islam, Mohmammad Towhidul; Akon, Mursalin; Shen, Xuemin (Sherman)

    Web service is an emerging paradigm for distributing business applications from different platforms to a wide variety of clients. The critical factor in seamlessly accessing web services is to discover the appropriate service and the related service providers. Unfortunately, current web service technologies use centralized directory to keep the service index, which is not scalable and at the same time vulnerable to single point of failure. Peer to peer system is a popular decentralized architecture which can be used for key look up service with scalability and self organization. Thus there is an opportunity to intersect the P2P framework with web services to provide the scalable solution. In this chapter, we discuss the key methods to deploy web services using the peer-to-peer technology.

  6. P2X receptors in cochlear Deiters' cells

    PubMed Central

    Chen, Chu; Bobbin, Richard P

    1998-01-01

    The ionotropic purinoceptors in isolated Deiters' cells of guinea-pig cochlea were characterized by use of the whole-cell variant of the patch-clamp technique.Extracellular application of adenosine 5′-triphosphate (ATP) induced a dose-dependent inward current when the cells were voltage-clamped at −80 mV. The ATP-induced current showed desensitization and had a reversal potential around −4 mV.Increasing intracellular free Ca2+ by decreasing the concentration of EGTA in the pipette solution reduced the amplitude of the ATP-gated current.The order of agonist potency was: 2-methylthioATP (2-meSATP)>ATP>benzoylbenzoyl-ATP (BzATP)>α,β-methyleneATP (α,β,meATP>adenosine 5′-diphosphate (ADP)>uridine 5′-triphosphate (UTP)>adenosine 5′-monophosphate (AMP)=adenosine (Ad).Pretreatment with forskolin (10 μM), 8-bromoadenosine-3′,5′-cyclophosphate (8-Br-cyclic AMP, 1 mM), 3-isobutyl-1-methylxanthine (IBMX, 1 mM) or phorbol-12-myristate-13-acetate (PMA, 1 μM) reversibly reduced the ATP-induced peak current.The results are consistent with molecular biological data which indicate that P2X2 purinoceptors are present in Deiters' cells. In addition, the reduction of the ATP-gated current by activators of protein kinase A and protein kinase C indicates that these P2X2 purinoceptors can be functionally modulated by receptor phosphorylation. PMID:9641551

  7. P2C-Type ATPases and Their Regulation.

    PubMed

    Retamales-Ortega, Rocío; Vio, Carlos P; Inestrosa, Nibaldo C

    2016-03-01

    P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases. PMID:25631710

  8. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases

    PubMed Central

    Arulkumaran, Nishkantha; Unwin, Robert J.; Tam, Frederick W. K.

    2011-01-01

    Introduction The P2X7 receptor (P2X7R) has an important role in inflammation and immunity, but until recently, clinical application has been limited by a lack of specific antagonists. Recent studies using P2X7R knockout (KO) mice and specific receptor antagonists have shown that the P2X7R is an important therapeutic target in inflammatory diseases. Areas covered We have reviewed the current literature on the role of the P2X7R in inflammatory diseases, focusing on potential therapeutic applications of selective P2X7R antagonists as an anti-inflammatory agent. Particular emphasis has been placed on the potential role of P2X7R in common inflammatory diseases. The latest developments in phase I and II clinical trials of P2X7R antagonists are covered. Expert opinion Recent studies using gene KO mice and selective P2X7R antagonists suggest that P2X7R is a viable therapeutic target for inflammatory diseases. However, efficacious P2X7R antagonists for use in clinical studies are still at an early stage of development. Future challenges include: identifying potential toxicity and side effects of treatment, timing of treatment initiation and its duration in chronic inflammatory conditions, optimum dosage, and development of a functional assay for P2X7R that would help to guide treatment. PMID:21510825

  9. Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer.

    PubMed

    Hofman, Paul; Cherfils-Vicini, Julien; Bazin, Marie; Ilie, Marius; Juhel, Thierry; Hébuterne, Xavier; Gilson, Eric; Schmid-Alliana, Annie; Boyer, Olivier; Adriouch, Sahil; Vouret-Craviari, Valérie

    2015-03-01

    Colitis-associated cancer (CAC) is a complication of inflammatory bowel disease (IBD). Binding of extracellular ATP to the purinergic receptor P2RX7 has emerged as a critical event in controlling intestinal inflammation, acting to limit elevation of proinflammatory mast cells and cytokines and promote survival of regulatory T cells (Treg) and enteric neurons. In this study, we investigated the effect of P2RX7 blockade in an established mouse model of CAC. Using genetic and pharmacologic tools, we found unexpectedly that while P2RX7 mediated inflammatory responses, it also acted at an early time to suppress CAC development. P2RX7 blockade enhanced proliferation of intestinal epithelial cells and protected them from apoptosis. The proliferative effects of P2RX7 blockade were associated with an increased production of TGFβ1 that was sufficient to stimulate the proliferation of intestinal epithelial cells. Finally, P2RX7 blockade also altered immune cell infiltration and promoted Treg accumulation within lesions of the digestive system. Taken together, our findings reveal an unexpected role for P2RX7 in preventing CAC, suggesting cautions in the use of P2RX7 inhibitors to treat IBD given the possibility of increasing risks CAC as a result. PMID:25564520

  10. Insights into the Molecular Mechanisms Underlying Mammalian P2X7 Receptor Functions and Contributions in Diseases, Revealed by Structural Modeling and Single Nucleotide Polymorphisms

    PubMed Central

    Jiang, Lin-Hua; Baldwin, Jocelyn M.; Roger, Sebastien; Baldwin, Stephen A.

    2013-01-01

    The mammalian P2X7 receptors (P2X7Rs), a member of the ionotropic P2X receptor family with distinctive functional properties, play an important part in mediating extracellular ATP signaling in health and disease. A clear delineation of the molecular mechanisms underlying the key receptor properties, such as ATP-binding, ion permeation, and large pore formation of the mammalian P2X7Rs, is still lacking, but such knowledge is crucial for a better understanding of their physiological functions and contributions in diseases and for development of therapeutics. The recent breakthroughs in determining the atomic structures of the zebrafish P2X4.1R in the closed and ATP-bound open states have provided the long-awaited structural information. The human P2RX7 gene is abundant with non-synonymous single nucleotide polymorphisms (NS-SNPs), which generate a repertoire of human P2X7Rs with point mutations. Characterizations of the NS-SNPs identified in patients of various disease conditions and the resulting mutations have informed previously unknown molecular mechanisms determining the mammalian P2X7R functions and diseases. In this review, we will discuss the new insights into such mechanisms provided by structural modeling and recent functional and genetic linkage studies of NS-SNPs. PMID:23675347

  11. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    PubMed Central

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  12. Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization

    PubMed Central

    Gerevich, Z; Zadori, Z; Müller, C; Wirkner, K; Schröder, W; Rubini, P; Illes, P

    2007-01-01

    Background and purpose: The aim of the present study was to investigate whether the endogenous metabotropic P2Y receptors modulate ionotropic P2X3 receptor-channels. Experimental approach: Whole-cell patch-clamp experiments were carried out on HEK293 cells permanently transfected with human P2X3 receptors (HEK293-hP2X3 cells) and rat dorsal root ganglion (DRG) neurons. Key results: In both cell types, the P2Y1,12,13 receptor agonist, ADP-β-S, inhibited P2X3 currents evoked by the selective agonist, α,β-methylene ATP (α,β-meATP). This inhibition could be markedly counteracted by replacing in the pipette solution the usual GTP with GDP-β-S, a procedure known to block all G protein heterotrimers. P2X3 currents evoked by ATP, activating both P2Y and P2X receptors, caused a smaller peak amplitude and desensitized faster than those currents evoked by the selective P2X3 receptor agonist α,β-meATP. In the presence of intracellular GDP-β-S, ATP- and α,β-meATP-induced currents were identical. Recovery from P2X3 receptor desensitization induced by repetitive ATP application was slower than the recovery from α,β-meATP-induced desensitization. When G proteins were blocked by intracellular GDP-β-S, the recovery from the ATP- and α,β-meATP-induced desensitization were of comparable speed. Conclusions and Implications: Our results suggest that the activation of P2Y receptors G protein-dependently facilitates the desensitization of P2X3 receptors and suppresses the recovery from the desensitized state. Hence, the concomitant stimulation of P2X3 and P2Y receptors of DRG neurons by ATP may result both in an algesic effect and a partly counterbalancing analgesic activity. PMID:17351651

  13. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets.

    PubMed

    Hardy, Adam R; Jones, Matthew L; Mundell, Stuart J; Poole, Alastair W

    2004-09-15

    Adenosine diphosphate (ADP), an important platelet agonist, acts through 2 G-protein-coupled receptors (GPCRs), P2Y(1) and P2Y(12), which signal through Gq and Gi, respectively. There is increasing evidence for cross-talk between signaling pathways downstream of GPCRs and here we demonstrate cross-talk between these 2 ADP receptors in human platelets. We show that P2Y(12) contributes to platelet signaling by potentiating the P2Y(1)-induced calcium response. This potentiation is mediated by 2 mechanisms: inhibition of adenylate cyclase and activation of phosphatidylinositol 3 (PI 3)-kinase. Furthermore, the Src family kinase inhibitor PP1 selectively potentiates the contribution to the calcium response by P2Y(12), although inhibition of adenylate cyclase by P2Y(12) is unaffected. Using PP1 in combination with the inhibitor of PI 3-kinase LY294002, we show that Src negatively regulates the PI 3-kinase-mediated component of the P2Y(12) calcium response. Finally, we were able to show that Src kinase is activated through P2Y(1) but not P2Y(12). Taken together, we present evidence for a complex signaling interplay between P2Y(1) and P2Y(12), where P2Y(12) is able to positively regulate P2Y(1) action and P2Y(1) negatively regulates this action of P2Y(12). It is likely that this interplay between receptors plays an important role in maintaining the delicate balance between platelet activation and inhibition during normal hemostasis. PMID:15187029

  14. P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes

    PubMed Central

    2013-01-01

    Background Regulatory proteins (RPs) such as transcription factors (TFs) and two-component system (TCS) proteins control how prokaryotic cells respond to changes in their external and/or internal state. Identification and annotation of TFs and TCSs is non-trivial, and between-genome comparisons are often confounded by different standards in annotation. There is a need for user-friendly, fast and convenient tools to allow researchers to overcome the inherent variability in annotation between genome sequences. Results We have developed the web-server P2RP (Predicted Prokaryotic Regulatory Proteins), which enables users to identify and annotate TFs and TCS proteins within their sequences of interest. Users can input amino acid or genomic DNA sequences, and predicted proteins therein are scanned for the possession of DNA-binding domains and/or TCS domains. RPs identified in this manner are categorised into families, unambiguously annotated, and a detailed description of their features generated, using an integrated software pipeline. P2RP results can then be outputted in user-specified formats. Conclusion Biologists have an increasing need for fast and intuitively usable tools, which is why P2RP has been developed as an interactive system. As well as assisting experimental biologists to interrogate novel sequence data, it is hoped that P2RP will be built into genome annotation pipelines and re-annotation processes, to increase the consistency of RP annotation in public genomic sequences. P2RP is the first publicly available tool for predicting and analysing RP proteins in users’ sequences. The server is freely available and can be accessed along with documentation at http://www.p2rp.org. PMID:23601859

  15. Crystal structure of the ATP-gated P2X[subscript 4] ion channel in the closed state

    SciTech Connect

    Kawate, Toshimitsu; Michel, Jennifer Carlisle; Birdsong, William T.; Gouaux, Eric

    2009-08-13

    P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X{sub 4} receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in {beta}-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an {approx}8 {angstrom} slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.

  16. Sp1/3 and NF-1 mediate basal transcription of the human P2X1 gene in megakaryoblastic MEG-01 cells

    PubMed Central

    Zhao, Jiangqin; Ennion, Steven J

    2006-01-01

    Background P2X1 receptors play an important role in platelet function as they can induce shape change, granule centralization and are also involved in thrombus formation. As platelets have no nuclei, the level of P2X1 expression depends on transcriptional regulation in megakaryocytes, the platelet precursor cell. Since nothing is known about the molecular mechanisms regulating megakaryocytic P2X1 expression, this study aimed to identify and functionally characterize the P2X1 core promoter utilized in the human megakaryoblastic cell line MEG-01. Results In order to identify cis-acting elements involved in the transcriptional regulation of P2X1 expression, the ability of 4.7 kb P2X1 upstream sequence to drive luciferase reporter gene expression was tested. Low promoter activity was detected in proliferating MEG-01 cells. This activity increased 20-fold after phorbol-12-myristate-13-acetate (PMA) induced differentiation. A transcription start site was detected 365 bp upstream of the start codon by primer extension. Deletion analysis of reporter constructs indicated a core promoter located within the region -68 to +149 bp that contained two Sp1 sites (named Sp1a and Sp1b) and an NF-1 site. Individual mutations of Sp1b or NF-1 binding sites severely reduced promoter activity whereas triple mutation of Sp1a, Sp1b and NF-1 sites completely abolished promoter activity in both untreated and PMA treated cells. Sp1/3 and NF-1 proteins were shown to bind their respective sites by EMSA and interaction of Sp1/3, NF-1 and TFIIB with the endogenous P2X1 core promoter in MEG-01 cells was demonstrated by chromatin immunoprecipitation. Alignment of P2X1 genes from human, chimp, rat, mouse and dog revealed consensus Sp1a, Sp1b and NF-1 binding sites in equivalent positions thereby demonstrating evolutionary conservation of these functionally important sites. Conclusion This study has identified and characterized the P2X1 promoter utilized in MEG-01 cells and shown that binding of Sp1

  17. State of affairs: Design and structure-activity relationships of reversible P2Y12 receptor antagonists.

    PubMed

    Zetterberg, Fredrik; Svensson, Peder

    2016-06-15

    Myocardial infarction and stroke are the most common causes of mortality and morbidity in the developed world. Therefore the search for antiplatelet therapy has been in focus for the last decades, in particular the search for new P2Y12R antagonists. The first P2Y12R drug developed, clopidogrel, is a major success but there is still room for improvement with respect to bleeding profile and non-responders. These liabilities could be due to the fact that clopidogrel is a pro-drug and upon activation binds covalently to the receptor. Therefore a lot of effort has gone into identifying reversible inhibitors. One recent example is ticagrelor, which in clinical studies have been shown to be safer and even reduce rate of death from vascular events as compared head to head with clopidogrel. We here review the medicinal chemistry strategies used in the design of new reversible P2Y12R antagonists. In addition, we also present structure based design studies based on the recently published agonist and antagonist X-ray structures of P2Y12R. PMID:27133596

  18. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells

    PubMed Central

    2014-01-01

    Background The participation of spinal P2X receptors in neuropathic pain is well recognized. However, the role of P2Y receptors has been less studied. The purpose of this study was to investigate the contribution of spinal P2Y6,11 receptors following peripheral nerve damage induced by spinal nerve ligation. In addition, we determined the expression of P2Y6,11 receptors in the dorsal spinal cord in presence of the selective P2Y6,11 receptors antagonists. Furthermore, we evaluated the participation of spinal microglia and astrocytes in the pronociceptive role of P2Y6,11 receptors. Results Spinal administration of the selective P2Y6 (MRS2578, 10–100 μM) and P2Y11 (NF340, 0.3–30 μM) receptor antagonists reduced tactile allodynia in spinal nerve ligated rats. Nerve injury increased the expression of P2Y6,11 receptors at 7, 14 and 21 days after injury. Furthermore, intrathecal administration of MRS2578 (100 μM/day) and NF340 (30 μM/day) for 3 days significantly reduced spinal nerve injury-induced increase in P2Y6,11 receptors expression, respectively. Spinal treatment (on day 14 after injury) with minocycline (100 μg/day) or fluorocitrate (1 nmol/day) for 7 days reduced tactile allodynia and spinal nerve injury-induced up-regulation in Iba-1 and GFAP, respectively. In addition, minocycline reduced nerve injury-induced up-regulation in P2Y6,11 receptors whereas that fluorocitrate diminished P2Y11, but not P2Y6, receptors up-regulation. Intrathecal treatment (on day 21 after injury) with the selective P2Y6 (PSB0474, 3–30 μM) and P2Y11 (NF546, 1–10 μM) receptor agonists produced remarkable tactile allodynia in nerve ligated rats previously treated with minocycline or fluorocitrate for 7 days. Conclusions Our data suggest that spinal P2Y6 is present in spinal microglia while P2Y11 receptors are present in both spinal microglia and astrocytes, and both receptors are up-regulated in rats subjected to spinal nerve injury. In addition, our data suggest

  19. Multicast Services over Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Manzanares-Lopez, Pilar; Malgosa-Sanahuja, Josemaria; Muñoz-Gea, Juan Pedro; Sanchez-Aarnoutse, Juan Carlos

    IP multicast functionality was defined as an efficient method to transmit datagrams to a group of receivers. However, although a lot of research work has been done in this technology, IP multicast has not spread out over the Internet as much as expected, reducing its use for local environments (i.e., LANs). The peer-to-peer networks paradigm can be used to overcome the IP multicast limitations. In this new scenario (called Application Layer Multicast or ALM), the multicast functionality is changed from network to application layer. Although ALM solution can be classified into unstructured and structured solutions, the last ones are the best option to offer multicast services due to the effectiveness in the discovery nodes, their mathematical definition and the totally decentralized management. In this chapter we are going to offer a tutorial of the main structured ALM solutions, but introducing two novelties with respect to related surveys in the past: first, the systematic description of most representative structured ALM solution in OverSim (one of the most popular p2p simulation frameworks). Second, some simulation comparatives between flooding-based and tree-based structured ALM solution are also presented.

  20. SLAC P2 Marx Control System and Regulation Scheme

    SciTech Connect

    MacNair, David; Kemp, Mark A.; Macken, Koen; Nguyen, Minh N.; Olsen, Jeff; /SLAC

    2011-05-20

    The SLAC P2 MARX Modulator consists of 32 cells charged in parallel by a -4 kV supply and discharged in series to provide a -120 kV 140 amp 1.7 millisecond pulse. Each cell has a 350 uF main storage capacitor. The voltage on the capacitor will droop approximately 640 volts during each pulse. Each cell will have a boost supply that can add up to 700 V to the cell output. This allows the output voltage of the cell to remain constant within 0.1% during the pulse. The modulator output voltage control is determined by the -4 kV charging voltage. A voltage divider will measure the modulator voltage on each pulse. The charging voltage will be adjusted by the data from previous pulses to provide the desired output. The boost supply in each cell consists of a 700 V buck regulator in series with the main capacitor. The supply uses a lookup table for PWM control. The lookup table is calculated from previous pulse data to provide a constant cell output. The paper will describe the modulator and cell regulation used by the MARX modulator. Measured data from a single cell and three cell string will be included.

  1. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering—A Comparison between Wild-Type Protein and a Hinge Mutant

    PubMed Central

    Laulumaa, Saara; Nieminen, Tuomo; Lehtimäki, Mari; Aggarwal, Shweta; Simons, Mikael; Koza, Michael M.; Vattulainen, Ilpo; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations. PMID:26068118

  2. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  3. P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes.

    PubMed

    Ballerini, P; Ciccarelli, R; Caciagli, F; Rathbone, M P; Werstiuk, E S; Traversa, U; Buccella, S; Giuliani, P; Jang, S; Nargi, E; Visini, D; Santavenere, C; Di Iorio, P

    2005-01-01

    Astrocytes have been recognized as important elements in controlling inflammatory as well as immune processes in the central nervous system (CNS). Recently, glial cells have been shown to produce cysteinyl leukotrienes (CysLTs) which are known lipid mediators of inflammation and whose extracellular concentrations rise under different pathological conditions in the brain. In the same conditions also extracellular concentrations of ATP dramatically increase reaching levels able to activate P2X7 ionotropic receptors for which an emerging role in neuroinflammation and neurodegeneration has been claimed. RTPCR analysis showed that primary cultures of rat brain astrocytes express P2X7 receptors. Application of the selective P2X7 agonist benzoyl benzoly ATP (BzATP) markedly increased [Ca2+]i which was mediated by a calcium influx from the extracellular milieu. The P2X7 antagonist, oATP, suppressed the BzATP-induced calcium increase. Consistent with the evidence that increased calcium levels activate the leukotriene biosynthetic pathway, challenge of astrocytes with either the calcium ionophore A23187 or BzATP significantly increased CysLT production and the cell pre-treatment with EGTA abolished these effects. Again the P2X7 antagonist prevented the BzATP-mediated CysLT efflux, whereas the astrocyte pretreatment with MK-571, a CysLT1 receptor antagonist, was ineffective. The astrocyte pre-treatment with a cocktail of inhibitors of ATP binding cassette (ABC) proteins reduced the BzATP-mediated CysLT production confirming that ABC transporters are involved in the release of CysLTs. The astrocyte P2X7- evoked rise of CysLT efflux was abolished in the presence of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP) whose expression, along with that of 5-lipoxygenase (5-LO) was reported by Northern Blot analysis. The stimulation of P2X7 induced an up-regulation of FLAPmRNA that was reduced by the antagonist oATP. These data suggest that in rat brain cultured

  4. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase

    PubMed Central

    Schmitz, Karl R.; Sauer, Robert T.

    2014-01-01

    Summary Mycobacterial Clp-family proteases function via collaboration of the heteromeric ClpP1P2 peptidase with a AAA+ partner, ClpX or ClpC1. These enzymes are essential for M. tuberculosis viability and are validated antibacterial drug targets, but the requirements for assembly and regulation of functional proteolytic complexes are poorly understood. Here, we report the reconstitution of protein degradation by mycobacterial Clp proteases in vitro and describe novel features of these enzymes that distinguish them from orthologs in other bacteria. Both ClpX and ClpC1 catalyze ATP-dependent unfolding and degradation of native protein substrates in conjunction with ClpP1P2, but neither mediates protein degradation with just ClpP1 or ClpP2. ClpP1P2 alone has negligible peptidase activity, but is strongly stimulated by translocation of protein substrates into ClpP1P2 by either AAA+ partner. Interestingly, our results support a model in which both binding of a AAA+ partner and protein-substrate delivery are required to stabilize active ClpP1P2. Our model has implications for therapeutically targeting ClpP1P2 in dormant M. tuberculosis, and our reconstituted systems should facilitate identification of novel Clp protease inhibitors and activators. PMID:24976069

  5. Cystoviral polymerase complex protein P7 uses its acidic C-terminal tail to regulate the RNA-directed RNA polymerase P2.

    PubMed

    Alphonse, Sébastien; Arnold, Jamie J; Bhattacharya, Shibani; Wang, Hsin; Kloss, Brian; Cameron, Craig E; Ghose, Ranajeet

    2014-07-15

    In bacteriophages of the cystovirus family, the polymerase complex (PX) encodes a 75-kDa RNA-directed RNA polymerase (P2) that transcribes the double-stranded RNA genome. Also a constituent of the PX is the essential protein P7 that, in addition to accelerating PX assembly and facilitating genome packaging, plays a regulatory role in transcription. Deletion of P7 from the PX leads to aberrant plus-strand synthesis suggesting its influence on the transcriptase activity of P2. Here, using solution NMR techniques and the P2 and P7 proteins from cystovirus ϕ12, we demonstrate their largely electrostatic interaction in vitro. Chemical shift perturbations on P7 in the presence of P2 suggest that this interaction involves the dynamic C-terminal tail of P7, more specifically an acidic cluster therein. Patterns of chemical shift changes induced on P2 by the P7 C-terminus resemble those seen in the presence of single-stranded RNA suggesting similarities in binding. This association between P2 and P7 reduces the affinity of the former toward template RNA and results in its decreased activity both in de novo RNA synthesis and in extending a short primer. Given the presence of C-terminal acidic tracts on all cystoviral P7 proteins, the electrostatic nature of the P2/P7 interaction is likely conserved within the family and could constitute a mechanism through which P7 regulates transcription in cystoviruses. PMID:24813120

  6. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  7. Multiple Roles of the Extracellular Vestibule Amino Acid Residues in the Function of the Rat P2X4 Receptor

    PubMed Central

    Rokic, Milos B.; Stojilkovic, Stanko S.; Vavra, Vojtech; Kuzyk, Pavlo; Tvrdonova, Vendula; Zemkova, Hana

    2013-01-01

    The binding of ATP to trimeric P2X receptors (P2XR) causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47–V61 and F324–N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening. PMID:23555667

  8. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions.

    PubMed

    Basse, Marie-Jeanne; Betzi, Stéphane; Morelli, Xavier; Roche, Philippe

    2016-01-01

    2P2Idb is a hand-curated structural database dedicated to protein-protein interactions with known small molecule orthosteric modulators. It compiles the structural information related to orthosteric inhibitors and their target [i.e. related 3D structures available in the RCSB Protein Data Bank (PDB)] and provides links to other useful databases. 2P2Idb includes all interactions for which both the protein-protein and protein-inhibitor complexes have been structurally characterized. Since its first release in 2010, the database has grown constantly and the current version contains 27 protein-protein complexes and 274 protein-inhibitor complexes corresponding to 242 unique small molecule inhibitors which represent almost a 5-fold increase compared to the previous version. A number of new data have been added, including new protein-protein complexes, binding affinities, molecular descriptors, precalculated interface parameters and links to other webservers. A new query tool has been implemented to search for inhibitors within the database using standard molecular descriptors. A novel version of the 2P2I-inspector tool has been implemented to calculate a series of physical and chemical parameters of the protein interfaces. Several geometrical parameters including planarity, eccentricity and circularity have been added as well as customizable distance cutoffs. This tool has also been extended to protein-ligand interfaces. The 2P2I database thus represents a wealth of structural source of information for scientists interested in the properties of protein-protein interactions and the design of protein-protein interaction modulators. Database URL: http://2p2idb.cnrs-mrs.fr. PMID:26980515

  9. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein–protein interactions

    PubMed Central

    Basse, Marie-Jeanne; Betzi, Stéphane; Morelli, Xavier; Roche, Philippe

    2016-01-01

    2P2Idb is a hand-curated structural database dedicated to protein–protein interactions with known small molecule orthosteric modulators. It compiles the structural information related to orthosteric inhibitors and their target [i.e. related 3D structures available in the RCSB Protein Data Bank (PDB)] and provides links to other useful databases. 2P2Idb includes all interactions for which both the protein–protein and protein–inhibitor complexes have been structurally characterized. Since its first release in 2010, the database has grown constantly and the current version contains 27 protein–protein complexes and 274 protein–inhibitor complexes corresponding to 242 unique small molecule inhibitors which represent almost a 5-fold increase compared to the previous version. A number of new data have been added, including new protein–protein complexes, binding affinities, molecular descriptors, precalculated interface parameters and links to other webservers. A new query tool has been implemented to search for inhibitors within the database using standard molecular descriptors. A novel version of the 2P2I-inspector tool has been implemented to calculate a series of physical and chemical parameters of the protein interfaces. Several geometrical parameters including planarity, eccentricity and circularity have been added as well as customizable distance cutoffs. This tool has also been extended to protein–ligand interfaces. The 2P2I database thus represents a wealth of structural source of information for scientists interested in the properties of protein–protein interactions and the design of protein–protein interaction modulators. Database URL: http://2p2idb.cnrs-mrs.fr PMID:26980515

  10. Chromosomal localization of the human P2y6 purinoceptor gene and phylogenetic analysis of the P2y purinoceptor family.

    PubMed

    Somers, G R; Hammet, F; Woollatt, E; Richards, R I; Southey, M C; Venter, D J

    1997-08-15

    The G-protein-coupled P2Y purinoceptors mediate a variety of physiological effects in response to extracellular nucleotides. With the recent discovery of several new members from a variety of species, the P2Y purinoceptor family now encompasses types P2Y1 to P2Y6. By fluorescence in situ hybridization and utilization of the National Center for Biotechnology Information (NCBI) database, the human P2Y6 gene was localized to chromosome 11q13.5, between polymorphic markers D11S1314 and D11S916. NCBI database analysis of the remaining human P2Y purinoceptor genes revealed that P2Y2 and P2Y6 mapped to within less than 4 cM, and thus constitute the first described chromosomal clustering of this gene family. Phylogenetic analysis of the P2Y purinoceptor family demonstrated the presence of five evolutionary branches and suggests the occurrence of an ancient gene duplication event. PMID:9286708

  11. Activation of P2X(7) receptors stimulates the expression of P2Y(2) receptor mRNA in astrocytes cultured from rat brain.

    PubMed

    D'Alimonte, I; Ciccarelli, R; Di Iorio, P; Nargi, E; Buccella, S; Giuliani, P; Rathbone, M P; Jiang, S; Caciagli, F; Ballerini, P

    2007-01-01

    Under pathological conditions brain cells release ATP at concentrations reported to activate P2X(7) ionotropic receptor subtypes expressed in both neuronal and glial cells. In the present study we report that the most potent P2X(7) receptor agonist BzATP stimulates the expression of the metabotropic ATP receptor P2Y(2) in cultured rat brain astrocytes. In other cell types several kinds of stimulation, including stress or injury, induce P2Y(2) expression that, in turn, is involved in different cell reactions. Similarly, it has recently been found that in astrocytes and astrocytoma cells P2Y(2) sites can trigger neuroprotective pathways through the activation of several mechanisms, including the induction of genes for antiapoptotic factors, neurotrophins, growth factors and neuropeptides. Here we present evidence that P2Y(2) mRNA expression in cultured astrocytes peaks 6 h after BzATP exposure and returns to basal levels after 24 h. This effect was mimicked by high ATP concentrations (1 mM) and was abolished by P2X(7)-antagonists oATP and BBG. The BzATP-evoked P2Y(2) receptor up-regulation in cultured astrocytes was coupled to an increased UTP-mediated intracellular calcium response. This effect was inhibited by oATP and BBG and by P2Y(2)siRNA, thus supporting evidence of increased P2Y(2) activity. To further investigate the mechanisms by which P2X(7) receptors mediated the P2Y(2) mRNA up-regulation, the cells were pre-treated with the chelating agent EGTA, or with inhibitors of mitogen-activated kinase (MAPK) (PD98059) or protein kinase C, (GF109203X). Each inhibitor significantly reduced the extent to which BzATP induced P2Y(2) mRNA. Both BzATP and ATP (1 mM) increased ERK1/2 activation. P2X(7)-induced ERK1/2 phosphorylation was unaffected by pre-treatment of astrocytes with EGTA whereas it was inhibited by GF109203X. Phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, rapidly increased ERK1/2 activation. We conclude that activation of P2X(7) receptors in

  12. Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome

    PubMed Central

    Hou, Linlin; Klug, Gabriele; Evguenieva-Hackenberg, Elena

    2014-01-01

    The archaeal exosome is a phosphorolytic 3′–5′ exoribonuclease complex. In a reverse reaction it synthesizes A-rich RNA tails. Its RNA-binding cap comprises the eukaryotic orthologs Rrp4 and Csl4, and an archaea-specific subunit annotated as DnaG. In Sulfolobus solfataricus DnaG and Rrp4 but not Csl4 show preference for poly(rA). Archaeal DnaG contains N- and C-terminal domains (NTD and CTD) of unknown function flanking a TOPRIM domain. We found that the NT and TOPRIM domains have comparable, high conservation in all archaea, while the CTD conservation correlates with the presence of exosome. We show that the NTD is a novel RNA-binding domain with poly(rA)-preference cooperating with the TOPRIM domain in binding of RNA. Consistently, a fusion protein containing full-length Csl4 and NTD of DnaG led to enhanced degradation of A-rich RNA by the exosome. We also found that DnaG strongly binds native and in vitro transcribed rRNA and enables its polynucleotidylation by the exosome. Furthermore, rRNA-derived transcripts with heteropolymeric tails were degraded faster by the exosome than their non-tailed variants. Based on our data, we propose that archaeal DnaG is an RNA-binding protein, which, in the context of the exosome, is involved in targeting of stable RNA for degradation. PMID:25326320

  13. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter.

    PubMed

    Marcel, V; Vijayakumar, V; Fernández-Cuesta, L; Hafsi, H; Sagne, C; Hautefeuille, A; Olivier, M; Hainaut, P

    2010-05-01

    The tumor suppressor p53 protein is activated by genotoxic stress and regulates genes involved in senescence, apoptosis and cell-cycle arrest. Nine p53 isoforms have been described that may modulate suppressive functions of the canonical p53 protein. Among them, Delta133p53 lacks the 132 proximal residues and has been shown to modulate p53-induced apoptosis and cell-cycle arrest. Delta133p53 is expressed from a specific mRNA, p53I4, driven by an alternative promoter P2 located between intron 1 and exon 5 of TP53 gene. Here, we report that the P2 promoter is regulated in a p53-dependent manner. Delta133p53 expression is increased in response to DNA damage by doxorubicin in p53 wild-type cell lines, but not in p53-mutated cells. Chromatin immunoprecipitation and luciferase assays using P2 promoter deletion constructs indicate that p53 binds functional response elements located within the P2 promoter. We also show that Delta133p53 does not bind specifically to p53 consensus DNA sequence in vitro, but competes with wild-type p53 in specific DNA-binding assays. Finally, we report that Delta133p53 counteracts p53-dependent growth suppression in clonogenic assays. These observations indicate that Delta133p53 is a novel target of p53 that may participate in a negative feedback loop controlling p53 function. PMID:20190805

  14. Mechanistic insights from resolving ligand-dependent kinetics of conformational changes at ATP-gated P2X1R ion channels.

    PubMed

    Fryatt, Alistair G; Dayl, Sudad; Cullis, Paul M; Schmid, Ralf; Evans, Richard J

    2016-01-01

    Structural studies of P2X receptors show a novel U shaped ATP orientation following binding. We used voltage clamp fluorometry (VCF) and molecular dynamics (MD) simulations to investigate agonist action. For VCF the P2X1 receptor (P2X1R) K190C mutant (adjacent to the agonist binding pocket) was labelled with the fluorophore MTS-TAMRA and changes in fluorescence on agonist treatment provided a real time measure of conformational changes. Studies with heteromeric channels incorporating a key lysine mutation (K68A) in the ATP binding site demonstrate that normally three molecules of ATP activate the receptor. The time-course of VCF responses to ATP, 2'-deoxy ATP, 3'-deoxy ATP, Ap5A and αβmeATP were agonist dependent. Comparing the properties of the deoxy forms of ATP demonstrated the importance of the 2' hydroxyl group on the ribose ring in determining agonist efficacy consistent with MD simulations showing that it forms a hydrogen bond with the γ-phosphate oxygen stabilizing the U-shaped conformation. Comparison of the recovery of fluorescence on agonist washout, with channel activation to a second agonist application for the partial agonists Ap5A and αβmeATP, showed a complex relationship between conformational change and desensitization. These results highlight that different agonists induce distinct conformational changes, kinetics and recovery from desensitization at P2X1Rs. PMID:27616669

  15. Roles of two-component system AfsQ1/Q2 in regulating biosynthesis of the yellow-pigmented coelimycin P2 in Streptomyces coelicolor.

    PubMed

    Chen, Shuangshuang; Zheng, Guosong; Zhu, Hong; He, Huiqi; Chen, Lei; Zhang, Weiwen; Jiang, Weihong; Lu, Yinhua

    2016-08-01

    We previously demonstrated that in Streptomyces coelicolor two-component system AfsQ1/Q2 activates the production of the yellow-colored coelimycin P2 (also named as yCPK) on glutamate-supplemented minimal medium, and the response regulator AfsQ1 could specifically bind to the intergenic region between two structural genes, cpkA and cpkD Here, a more in-depth investigation was performed to elucidate the mechanism underlying the role of AfsQ1/Q2 in regulating coelimycin P2 biosynthesis. Deletion of afsQ1/Q2 resulted in markedly decreased expression of the whole coelimycin P2 biosynthetic gene cluster. Electrophoretic mobility shift assays revealed that AfsQ1 bound only to the target site identified previously, but not to any other promoters in the gene cluster. Mutations of AfsQ1-binding motif only resulted in drastically reduced transcription of the cpkA/B/C operon (encoding three type I polyketide synthases) and intriguingly, led to enhanced expression of some coelimcyin P2 genes, particularly accA1 and scF These results suggested the direct role of AfsQ1/Q2 in regulating coelimycin production, which is directly mediated by the structural genes, but not the cluster-situated regulatory genes, and also implied that other unknown mechanisms may be involved in AfsQ1/Q2-mediated regulation of coelimycin P2 biosynthesis. PMID:27313101

  16. Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus.

    PubMed

    Rodrigues, Ricardo J; Almeida, Teresa; Díaz-Hernández, Miguel; Marques, Joana M; Franco, Rafael; Solsona, Carles; Miras-Portugal, María Teresa; Ciruela, Francisco; Cunha, Rodrigo A

    2016-06-01

    Previous studies documented a cross-talk between purinergic P2X (P2XR) and nicotinic acetylcholine receptors (nAChR) in heterologous expression systems and peripheral preparations. We now investigated if this occurred in native brain preparations and probed its physiological function. We found that P2XR and nAChR were enriched in hippocampal terminals, where both P2X1-3R and α3, but not α4, nAChR subunits were located in the active zone and in dopamine-β-hydroxylase-positive hippocampal terminals. Notably, P2XR ligands displaced nAChR binding and nAChR ligands displaced P2XR binding to hippocampal synaptosomes. In addition, a negative P2XR/nAChR cross-talk was observed in the control of the evoked release of noradrenaline from rat hippocampal synaptosomes, characterized by a less-than-additive facilitatory effect upon co-activation of both receptors. This activity-dependent cross-inhibition was confirmed in Xenopus oocytes transfected with P2X1-3Rs and α3β2 (but not α4β2) nAChR. Besides, P2X2 co-immunoprecipitated α3β2 (but not α4β2) nAChR, both in HEK cells and rat hippocampal membranes indicating that this functional interaction is supported by a physical association between P2XR and nAChR. Moreover, eliminating extracellular ATP with apyrase in hippocampal slices promoted the inhibitory effect of the nAChR antagonist tubocurarine on noradrenaline release induced by high- but not low-frequency stimulation. Overall, these results provide integrated biochemical, pharmacological and functional evidence showing that P2X1-3R and α3β2 nAChR are physically and functionally interconnected at the presynaptic level to control excessive noradrenergic terminal activation upon intense synaptic firing in the hippocampus. PMID:26801076

  17. Promoted Interaction of Nuclear Factor-κB With Demethylated Purinergic P2X3 Receptor Gene Contributes to Neuropathic Pain in Rats With Diabetes.

    PubMed

    Zhang, Hong-Hong; Hu, Ji; Zhou, You-Lang; Qin, Xin; Song, Zhen-Yuan; Yang, Pan-Pan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-12-01

    Painful diabetic neuropathy is a common complication of diabetes produced by mechanisms that as yet are incompletely defined. The aim of this study was to investigate the roles of nuclear factor-κB (NF-κB) in the regulation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3R) plasticity in dorsal root ganglion (DRG) neurons of rats with painful diabetes. Here, we showed that hindpaw pain hypersensitivity in streptozocin-induced diabetic rats was attenuated by treatment with purinergic receptor antagonist suramin or A-317491. The expression and function of P2X3Rs was markedly enhanced in hindpaw-innervated DRG neurons in diabetic rats. The CpG (cytosine guanine dinucleotide) island in the p2x3r gene promoter region was significantly demethylated, and the expression of DNA methyltransferase 3b was remarkably downregulated in DRGs in diabetic rats. The binding ability of p65 (an active form of NF-κB) with the p2x3r gene promoter region and p65 expression were enhanced significantly in diabetes. The inhibition of p65 signaling using the NF-κB inhibitor pyrrolidine dithiocarbamate or recombinant lentiviral vectors designated as lentiviral vector-p65 small interfering RNA remarkably suppressed P2X3R activities and attenuated diabetic pain hypersensitivity. Insulin treatment significantly attenuated pain hypersensitivity and suppressed the expression of p65 and P2X3Rs. Our findings suggest that the p2x3r gene promoter DNA demethylation and enhanced interaction with p65 contributes to P2X3R sensitization and diabetic pain hypersensitivity. PMID:26130762

  18. Inhibition of antigen receptor-dependent Ca(2+) signals and NF-AT activation by P2X7 receptors in human B lymphocytes.

    PubMed

    Pippel, Anja; Beßler, Björn; Klapperstück, Manuela; Markwardt, Fritz

    2015-04-01

    One of the first intracellular signals after antigen binding by the antigen receptor of B lymphocytes is the increased intracellular Ca(2+) concentration ([Ca(2+)]i), which is followed by several intracellular signaling events like the nuclear translocation of the transcription factor NF-AT controlling the fate of B lymphocytes after their activation. Extracellular ATP, which is released from cells under several pathological conditions, is considered a danger-associated signal serving as an immunomodulator. We investigated the interaction of antigen receptor (BCR) and P2X7 receptor (P2X7R) activation on [Ca(2+)]i signaling and on nuclear translocation of the transcription factor NF-AT in human B lymphocytes. Although the P2X7R is an ATP-gated Ca(2+)-permeable ion channel, P2X7R activation inhibits the BCR-mediated [Ca(2+)]i responses. This effect is mimicked by cell membrane depolarization induced by an increase in the extracellular K(+) concentration or by application of the Na(+) ionophore gramicidin, but is abolished by stabilization of the membrane potential using the K(+) ionophore valinomycin, by extracellular Mg(2+), which is known to inhibit P2X7R-dependent effects, or by replacing Na(+) by the less P2X7R-permeable Tris(+) ion. Furthermore, P2X7R activation by ATP inhibits the BCR-dependent translocation of the transcription factor NF-ATc1 to the nucleus. We therefore conclude that extracellular ATP via the P2X7R mediates inhibitory effects on B cell activation. This may be of relevance for understanding of the activation of the BCR under pathological conditions and for the development of therapeutic strategies targeting human B lymphocytes or P2X7 receptors. PMID:25678443

  19. The PNT domain from Drosophila pointed-P2 contains a dynamic N-terminal helix preceded by a disordered phosphoacceptor sequence.

    PubMed

    Lau, Desmond K W; Okon, Mark; McIntosh, Lawrence P

    2012-11-01

    Pointed-P2, the Drosophila ortholog of human ETS1 and ETS2, is a transcription factor involved in Ras/MAP kinase-regulated gene expression. In addition to a DNA-binding ETS domain, Pointed-P2 contains a PNT (or SAM) domain that serves as a docking module to enhance phosphorylation of an adjacent phosphoacceptor threonine by the ERK2 MAP kinase Rolled. Using NMR chemical shift, ¹⁵N relaxation, and amide hydrogen exchange measurements, we demonstrate that the Pointed-P2 PNT domain contains a dynamic N-terminal helix H0 appended to a core conserved five-helix bundle diagnostic of the SAM domain fold. Neither the secondary structure nor dynamics of the PNT domain is perturbed significantly upon in vitro ERK2 phosphorylation of three threonine residues in a disordered sequence immediately preceding this domain. These data thus confirm that the Drosophila Pointed-P2 PNT domain and phosphoacceptors are highly similar to those of the well-characterized human ETS1 transcription factor. NMR-monitored titrations also revealed that the phosphoacceptors and helix H0, as well as region of the core helical bundle identified previously by mutational analyses as a kinase docking site, are selectively perturbed upon ERK2 binding by Pointed-P2. Based on a homology model derived from the ETS1 PNT domain, helix H0 is predicted to partially occlude the docking interface. Therefore, this dynamic helix must be displaced to allow both docking of the kinase, as well as binding of Mae, a Drosophila protein that negatively regulates Pointed-P2 by competing with the kinase for its docking site. PMID:22936607

  20. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain

    PubMed Central

    Andó, RD; Méhész, B; Gyires, K; Illes, P; Sperlágh, B

    2010-01-01

    Background and purpose: This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. Experimental approach: The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4′,4″,4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8′-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5′-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5′-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). Key results: MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested

  1. P2Y2R Deficiency Attenuates Experimental Autoimmune Uveitis Development

    PubMed Central

    Relvas, Lia Judice M.; Makhoul, Maya; Dewispelaere, Remi; Caspers, Laure; Communi, Didier; Boeynaems, Jean-Marie; Robaye, Bernard; Bruyns, Catherine; Willermain, François

    2015-01-01

    We aimed to study the role of the nucleotide receptor P2Y2R in the development of experimental autoimmune uveitis (EAU). EAU was induced in P2Y2+/+ and P2Y2-/- mice by immunization with IRBP peptide or by adoptive transfer of in vitro restimulated semi-purified IRBP-specific enriched T lymphocytes from spleens and lymph nodes isolated from native C57Bl/6 or P2Y2+/+ and P2Y2-/- immunized mice. Clinical and histological scores were used to grade disease severity. Splenocytes and lymph node cell phenotypes were analyzed using flow cytometry. Semi-purified lymphocytes and MACS-purified CD4+ T lymphocytes from P2Y2+/+ and P2Y2-/- immunized mice were tested for proliferation and cytokine secretion. Our data show that clinical and histological scores were significantly decreased in IRBP-immunized P2Y2-/- mice as in P2Y2-/- mice adoptively transfered with enriched T lymphocytes from C57Bl/6 IRBP-immunized mice. In parallel, naïve C57Bl/6 mice adoptively transferred with T lymphocytes from P2Y2-/- IRBP-immunized mice also showed significantly less disease. No differences in term of spleen and lymph node cell recruitment or phenotype appeared between P2Y2-/- and P2Y2+/+ immunized mice. However, once restimulated in vitro with IRBP, P2Y2-/- T cells proliferate less and secrete less cytokines than the P2Y2+/+ one. We further found that antigen-presenting cells of P2Y2-/- immunized mice were responsible for this proliferation defect. Together our data show that P2Y2-/- mice are less susceptible to mount an autoimmune response against IRBP. Those results are in accordance with the danger model, which makes a link between autoreactive lymphocyte activation, cell migration and the release of danger signals such as extracellular nucleotides. PMID:25692550

  2. Pore properties and pharmacological features of the P2X receptor channel in airway ciliated cells

    PubMed Central

    Ma, Weiyuan; Korngreen, Alon; Weil, Simy; Cohen, Enbal Ben-Tal; Priel, Avi; Kuzin, Liubov; Silberberg, Shai D

    2006-01-01

    Airway ciliated cells express an ATP-gated P2X receptor channel of unknown subunit composition (P2Xcilia) which is modulated by Na+ and by long exposures to ATP. P2Xcilia was investigated by recording currents from freshly dissociated rabbit airway ciliated cells with the patch-clamp technique in the whole-cell configuration. During the initial continuous exposure to extracellular ATP, P2Xcilia currents gradually increase in magnitude (priming), yet the permeability to N-methyl-d-glucamine (NMDG) does not change, indicating that priming does not arise from a progressive change in pore diameter. Na+, which readily permeates P2Xcilia receptor channels, was found to inhibit the channel extracellular to the electric field. The rank order of permeability to various monovalent cations is: Li+, Na+, K+, Rb+, Cs+, NMDG+ and TEA+, with a relative permeability of 1.35, 1.0, 0.99, 0.91, 0.79, 0.19 and 0.10, respectively. The rank order for the alkali cations follows an Eisenman series XI for a high-strength field site. Ca2+ has been estimated to be 7-fold more permeant than Na+. The rise in [Ca2+]i in ciliated cells, induced by the activation of P2Xcilia, is largely inhibited by either Brilliant Blue G or KN-62, indicating that P2X7 may be a part of P2Xcilia. P2Xcilia is augmented by Zn2+ and by ivermectin, and P2X4 receptor protein is detected by immunolabelling at the basal half of the cilia, strongly suggesting that P2X4 is a component of P2Xcilia receptor channels. Taken together, these results suggest that P2Xcilia is either assembled from P2X4 and P2X7 subunits, or formed from modified P2X4 subunits. PMID:16423852

  3. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel

    PubMed Central

    Habermacher, Chloé; Martz, Adeline; Calimet, Nicolas; Lemoine, Damien; Peverini, Laurie; Specht, Alexandre; Cecchini, Marco; Grutter, Thomas

    2016-01-01

    P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extracellular domain following agonist binding. However, the mechanism of pore opening still remains controversial. Here we use photo-switchable cross-linkers as ‘molecular tweezers’ to monitor a series of inter-residue distances in the transmembrane domain of the P2X2 receptor during activation. These experimentally based structural constraints combined with computational studies provide high-resolution models of the channel in the open and closed states. We show that the extent of the outer pore expansion is significantly reduced compared to the ATP-bound structure. Our data further reveal that the inner and outer ends of adjacent pore-lining helices come closer during opening, likely through a hinge-bending motion. These results provide new insight into the gating mechanism of P2X receptors and establish a versatile strategy applicable to other membrane proteins. DOI: http://dx.doi.org/10.7554/eLife.11050.001 PMID:26808983

  4. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel.

    PubMed

    Habermacher, Chloé; Martz, Adeline; Calimet, Nicolas; Lemoine, Damien; Peverini, Laurie; Specht, Alexandre; Cecchini, Marco; Grutter, Thomas

    2016-01-01

    P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extracellular domain following agonist binding. However, the mechanism of pore opening still remains controversial. Here we use photo-switchable cross-linkers as 'molecular tweezers' to monitor a series of inter-residue distances in the transmembrane domain of the P2X2 receptor during activation. These experimentally based structural constraints combined with computational studies provide high-resolution models of the channel in the open and closed states. We show that the extent of the outer pore expansion is significantly reduced compared to the ATP-bound structure. Our data further reveal that the inner and outer ends of adjacent pore-lining helices come closer during opening, likely through a hinge-bending motion. These results provide new insight into the gating mechanism of P2X receptors and establish a versatile strategy applicable to other membrane proteins. PMID:26808983

  5. BIN1 Membrane Curvature Sensing and Generation Show Autoinhibition Regulated by Downstream Ligands and PI(4,5)P2

    PubMed Central

    2015-01-01

    In striated muscles, invaginations from the plasma membrane, termed transverse tubules (T-tubule), function in the excitation–contraction coupling machinery. BIN1 (isoform8) plays a critical role in the biogenesis of T-tubules. BIN1 contains an N-terminal BAR domain to sense and induce membrane curvature, an isoform8-specific polybasic motif (exon10) as the phosphoinositide binding module and a C-terminal Src homology 3 (SH3) domain for the recruitment of downstream proteins such as dynamin 2. Previous studies of N-BAR domains focused on elucidating mechanisms of membrane curvature sensing and generation (MC-S&G). Less is known about how MC-S&G is regulated. We found that the SH3 domain binds to the exon10 motif more strongly compared to the proline-rich domain (PRD) of dynamin 2. Furthermore, we found that the MC-S&G ability of full-length BIN1 is inhibited on membranes lacking PI(4,5)P2. Addition of PI(4,5)P2 in the membrane activates BIN1 to sense and induce membrane curvature. Co-presence of the SH3 domain and exon10 motif leads to the strongest phosphoinositide-mediated control of BIN1 function. Addition of SH3 domain ligand (such as PRD peptides), as well as addition of the water-soluble PI(4,5)P2 analogue, can both enhance the MC-S&G ability of BIN1 on membranes without PI(4,5)P2, indicating that the key to activate BIN1 is to disrupt the exon10–SH3 interaction. The nonsense mutation K436X, found in centronuclear myopathy (CNM) patients, abolishes SH3 domain binding with either exon10 or the PRD motif, resulting in increased membrane deformation capacity. Our results suggest an autoinhibition model for BIN1 that involves a synergistic regulation by membrane composition and protein–protein interactions. PMID:25350771

  6. Protein–protein interaction inhibition (2P2I) combining high throughput and virtual screening: Application to the HIV-1 Nef protein

    PubMed Central

    Betzi, Stéphane; Restouin, Audrey; Opi, Sandrine; Arold, Stefan T.; Parrot, Isabelle; Guerlesquin, Françoise; Morelli, Xavier; Collette, Yves

    2007-01-01

    Protein–protein recognition is the cornerstone of multiple cellular and pathological functions. Therefore, protein–protein interaction inhibition (2P2I) is endowed with great therapeutic potential despite the initial belief that 2P2I was refractory to small-molecule intervention. Improved knowledge of complex molecular binding surfaces has recently stimulated renewed interest for 2P2I, especially after identification of “hot spots” and first inhibitory compounds. However, the combination of target complexity and lack of starting compound has thwarted experimental results and created intellectual barriers. Here we combined virtual and experimental screening when no previously known inhibitors can be used as starting point in a structure-based research program that targets an SH3 binding surface of the HIV type I Nef protein. High-throughput docking and application of a pharmacophoric filter on one hand and search for analogy on the other hand identified drug-like compounds that were further confirmed to bind Nef in the micromolar range (isothermal titration calorimetry), to target the Nef SH3 binding surface (NMR experiments), and to efficiently compete for Nef–SH3 interactions (cell-based assay, GST pull-down). Initial identification of these compounds by virtual screening was validated by screening of the very same library of compounds in the cell-based assay, demonstrating that a significant enrichment factor was attained by the in silico screening. To our knowledge, our results identify the first set of drug-like compounds that functionally target the HIV-1 Nef SH3 binding surface and provide the basis for a powerful discovery process that should help to speed up 2P2I strategies and open avenues for new class of antiviral molecules. PMID:18042718

  7. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells

    PubMed Central

    Sathanoori, Ramasri; Swärd, Karl; Olde, Björn; Erlinge, David

    2015-01-01

    Endothelial cells lining the blood vessels are principal players in vascular inflammatory responses. Dysregulation of endothelial cell function caused by hyperglycemia, dyslipidemia, and hyperinsulinemia often result in impaired vasoregulation, oxidative stress, inflammation, and altered barrier function. Various stressors including high glucose stimulate the release of nucleotides thus initiating signaling via purinergic receptors. However, purinergic modulation of inflammatory responses in endothelial cells caused by high glucose and palmitate remains unclear. In the present study, we investigated whether the effect of high glucose and palmitate is mediated by P2X7 and P2X4 and if they play a role in endothelial cell dysfunction. Transcript and protein levels of inflammatory genes as well as reactive oxygen species production, endothelial-leukocyte adhesion, and cell permeability were investigated in human umbilical vein endothelial cells exposed to high glucose and palmitate. We report high glucose and palmitate to increase levels of extracellular ATP, expression of P2X7 and P2X4, and inflammatory markers. Both P2X7 and P2X4 antagonists inhibited high glucose and palmitate-induced interleukin-6 levels with the former having a significant effect on interleukin-8 and cyclooxygenase-2. The effect of the antagonists was confirmed with siRNA knockdown of the receptors. In addition, P2X7 mediated both high glucose and palmitate-induced increase in reactive oxygen species levels and decrease in endothelial nitric oxide synthase. Blocking P2X7 inhibited high glucose and palmitate-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as leukocyte-endothelial cell adhesion. Interestingly, high glucose and palmitate enhanced endothelial cell permeability that was dependent on both P2X7 and P2X4. Furthermore, antagonizing the P2X7 inhibited high glucose and palmitate-mediated activation of p38-mitogen activated protein kinase

  8. Transcriptional Control Mechanisms Associated with the Nucleotide Receptor P2X7, a Critical Regulator of Immunologic, Osteogenic and Neurologic Functions

    PubMed Central

    Lenertz, Lisa Y.; Gavala, Monica L.; Zhu, Yiming; Bertics, Paul J.

    2011-01-01

    The nucleotide receptor P2X7 is an attractive therapeutic target and potential biomarker for multiple inflammatory and neurologic disorders, and it is expressed in several immune, osteogenic and neurologic cell types. Aside from its role in the nervous system, it is activated by ATP released at sites of tissue damage, inflammation and infection. Ligand binding to P2X7 stimulates many cell responses, including calcium fluxes, MAPK activation, inflammatory mediator release, and apoptosis. Much work has centered on P2X7 action in cell death and mediator processing (e.g., pro-interleukin-1 cleavage by the inflammasome), but the contribution of P2X7 to transcriptional regulation is less well defined. In this review, we will focus on the growing evidence for the importance of nucleotide-mediated gene expression, we will highlight several animal model, human genetic, and clinical studies that support P2X7 as a therapeutic target, and we will discuss the latest developments in anti-P2X7 clinical trials. PMID:21298493

  9. Caged Agonist of P2Y1 and P2Y12 Receptors for Light-Directed Facilitation of Platelet Aggregation

    PubMed Central

    Gao, Zhan-Guo; Hechler, Béatrice; Besada, Pedro; Gachet, Christian; Jacobson, Kenneth A.

    2008-01-01

    We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y1 and P2Y12 nucleotide receptors, 2-MeSADP, by blocking the β-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y1 and P2Y12 receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y1 or P2Y12 receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 μM MRS2703, full aggregation was achieved within one minute of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control. PMID:18199424

  10. Caged agonist of P2Y1 and P2Y12 receptors for light-directed facilitation of platelet aggregation.

    PubMed

    Gao, Zhan-Guo; Hechler, Béatrice; Besada, Pedro; Gachet, Christian; Jacobson, Kenneth A

    2008-03-15

    We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y(1) and P2Y(12) nucleotide receptors, 2-MeSADP, by blocking the beta-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y(1) and P2Y(12) receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y(1) or P2Y(12) receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 microM MRS2703, full aggregation was achieved within 1 min of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control. PMID:18199424

  11. FoxP2 and olfaction: divergence of FoxP2 expression in olfactory tubercle between different feeding habit bats.

    PubMed

    Chen, Qi; Wang, Lina; Jones, G; Metzner, W; Xuan, F J; Yin, Jiangxia; Sun, Y

    2013-12-01

    FoxP2 is a member of the winged helix/forkhead class of transcription factors. Despite FoxP2 is found to have particular relevance to speech and language, the role of this gene is broader and not yet fully elucidated. In this study, we investigated the expression of FoxP2 in the brains of bats with different feeding habits (two frugivorous species and three insectivorous species). We found FoxP2 expression in the olfactory tubercle of frugivorous species is significantly higher than that in insectivorous species. Difference of FoxP2 expression was not observed within each of the frugivorous or insectivorous group. The diverse expression patterns in olfactory tubercle between two kinds of bats indicate FoxP2 has a close relation with olfactory tubercle associated functions, suggesting its important role in sensory integration within the olfactory tubercle and such a discrepancy of FoxP2 expression in olfactory tubercle may take responsibility for the different feeding behaviors of frugivorous and insectivorous bats. PMID:24275589

  12. P2RX7: A receptor with a split personality in inflammation and cancer

    PubMed Central

    Di Virgilio, Francesco

    2016-01-01

    P2X7 (also known as P2RX7) is a plasma membrane receptor for extracellular ATP that is expressed at a high level by immune and tumor cells. Previous data showed that increased P2rx7 expression by tumor cells accelerates tumor progression. We have now looked at the other side of the relationship by investigating the effect of a lack of host P2rx7 expression on tumor growth. Our novel observations highlight a surprising role of host P2rx7 in restraining tumor progression. PMID:27308580

  13. Synthesis and Structure-Activity Relationships of Pyridoxal-6-arylazo-5′-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists

    PubMed Central

    Kim, Yong-Chul; Camaioni, Emidio; Ziganshin, Airat U.; Ji, Xiao-duo; King, Brian F.; Wildman, Scott S.; Rychkov, Alexei; Yoburn, Joshua; Kim, Heaok; Mohanram, Arvind; Harden, T. Kendall; Boyer, José L.; Burnstock, Geoffrey; Jacobson, Kenneth A.

    2012-01-01

    Novel analogs of the P2 receptor antagonist pyridoxal-5′-phosphate-6-phenylazo-2′,4′-disulfonate (PPADS) were synthesized. Modifications were made through functional group substitution on the sulfophenyl ring and at the phosphate moiety through the inclusion of phosphonates, demonstrating that a phosphate linkage is not required for P2 receptor antagonism. Substituted 6-phenylazo and 6-naphthylazo derivatives were also evaluated. Among the 6-phenylazo derivatives, 5′-methyl, ethyl, propyl, vinyl, and allyl phosphonates were included. The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y1 receptors, in guinea-pig vas deferens and bladder P2X1 receptors, and in ion flux experiments by using recombinant rat P2X2 receptors expressed in Xenopus oocytes. Competitive binding assay at human P2X1 receptors in differentiated HL-60 cell membranes was carried out by using [35S]ATP-γ-S. A 2′-chloro-5′-sulfo analog of PPADS (C14H12O9N3ClPSNa), a vinyl phosphonate derivative (C15H12O11N3PS2Na3), and a naphthylazo derivative (C18H14O12N3PS2Na2), were particularly potent in binding to human P2X1 receptors. The potencies of phosphate derivatives at P2Y1 receptors were generally similar to PPADS itself, except for the p-carboxyphenylazo phosphate derivative C15H13O8N3PNa and its m-chloro analog C15H12O8N3ClPNa, which were selective for P2X vs. P2Y1 receptors. C15H12O8N3ClPNa was very potent at rat P2X2 receptors with an IC50 value of 0.82 μM. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5-yl]methylphosphonic acid (C14H12-O8N3ClPSNa) showed high potency at P2Y1 receptors with an IC50 of 7.23 μM. The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y1 receptors, whereas at recombinant P2X2 receptors had an IC50 value of 1.1 μM. An ethyl phosphonate derivative (C15H15O11N3PS2Na3), whereas inactive at turkey erythrocyte P2Y1 receptors

  14. Polymorphism of NaVO2F2: a P2₁/c superstructure with pseudosymmetry of P2₁/m in the subcell.

    PubMed

    Yu, Zi-Qun; Wang, Jing-Quan; Huang, Ya-Xi; Botis, Sanda M; Pan, Yuanming; Mi, Jin-Xiao

    2015-06-01

    The ADDSYM routine in the program PLATON [Spek (2015). Acta Cryst. C71, 9-18] has helped researchers to avoid structures of (metal-)organic compounds being reported in an unnecessarily low symmetry space group. However, determination of the correct space group may get more complicated in cases of pseudosymmetric inorganic compounds. One example is NaVO2F2, which was reported [Crosnier-Lopez et al. (1994). Eur. J. Solid State Inorg. Chem. 31, 957-965] in the acentric space group P2₁ based on properties but flagged by ADDSYM as (pseudo)centrosymmetric P2₁/m within default distance tolerances. Herein a systematic investigation reveals that NaVO2F2 exists in at least four polymorphs: P2₁, (I), P2₁/m, (II), P2₁/c, (III), and one or more low-temperature ones. The new centrosymmetric modification, (III), with the space group P2₁/c has a similar atomic packing geometry to phase (I), except for having a doubled c axis. The double-cell of phase (III) arises from atomic shifts from the glide plane c at (x, ¼, z). With increasing temperature, the number of observed reflections decreases. The odd l reflections gradually become weaker and, correspondingly, all atoms shift towards the glide plane, resulting in a gradual second-order transformation of (III) into high-temperature phase (II) (P2₁/m) at below 493 K. At least one first-order enantiotropic phase transition was observed below 139 K from both the single-crystal X-ray diffraction and the differential scanning calorimetry analyses. Periodic first-principles calculations within density functional theory show that both P2₁/c superstructure (III) and P2₁ substructure (I) are more stable than P2₁/m structure (II), and that P2₁/c superstructure (III) is more stable that P2₁ substructure (I). PMID:26044323

  15. Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels.

    PubMed

    Dai, Gucan; Yu, Haijie; Kruse, Martin; Traynor-Kaplan, Alexis; Hille, Bertil

    2016-06-01

    Myo-inositol is an important cellular osmolyte in autoregulation of cell volume and fluid balance, particularly for mammalian brain and kidney cells. We find it also regulates excitability. Myo-inositol is the precursor of phosphoinositides, key signaling lipids including phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. However, whether myo-inositol accumulation during osmoregulation affects signaling and excitability has not been fully explored. We found that overexpression of the Na(+)/myo-inositol cotransporter (SMIT1) and myo-inositol supplementation enlarged intracellular PI(4,5)P2 pools, modulated several PI(4,5)P2-dependent ion channels including KCNQ2/3 channels, and attenuated the action potential firing of superior cervical ganglion neurons. Further experiments using the rapamycin-recruitable phosphatase Sac1 to hydrolyze PI(4)P and the P4M probe to visualize PI(4)P suggested that PI(4)P levels increased after myo-inositol supplementation with SMIT1 expression. Elevated relative levels of PIP and PIP2 were directly confirmed using mass spectrometry. Inositol trisphosphate production and release of calcium from intracellular stores also were augmented after myo-inositol supplementation. Finally, we found that treatment with a hypertonic solution mimicked the effect we observed with SMIT1 overexpression, whereas silencing tonicity-responsive enhancer binding protein prevented these effects. These results show that ion channel function and cellular excitability are under regulation by several "physiological" manipulations that alter the PI(4,5)P2 setpoint. We demonstrate a previously unrecognized linkage between extracellular osmotic changes and the electrical properties of excitable cells. PMID:27217553

  16. A Novel P2P traffic Prediction Algorithm Based on Hybrid Model

    NASA Astrophysics Data System (ADS)

    Zhi-jie, Han; Ru-chuan, Wang; Xiao-yang, Duan

    The increasing P2P network traffic on the Internet has leaded to the problem of network congestion. In the consequence of the diversification of the P2P traffic and protocol, research on the management of P2P traffic has had many problems needed to resolve. P2P traffic Prediction is kernel problem in the P2P traffic management. Based on the P2P traffic characters, this thesis present a P2P traffic model, gived a traffic prediction algorithm bases on wavelet-analysis, and proved the accuracy of the algorithm. Simulation has experiment figures that the algorithm a high prediction precision and superior real-time performance.

  17. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.

    PubMed

    Savi, Pierre; Herbert, Jean-Marc

    2005-04-01

    Ticlopidine and clopidogrel belong to the same chemical family of thienopyridine adenosine diphosphate (ADP)-receptor antagonists. They have shown their efficacy as platelet antiaggregant and antithrombotic agents in many animal models, both ex vivo and in vivo. Although ticlopidine was discovered more than 30 years ago, it was only recently that the mechanism of action of ADP-receptor antagonists was characterized in detail. Ticlopidine and clopidogrel both behave in vivo as specific antagonists of P2Y (12), one of the ADP receptors on platelets. Metabolic steps that involve cytochrome P450-dependent pathways are required to generate the active metabolite responsible for this in vivo activity. The active moiety is a reactive thiol derivative that targets P2Y (12) on platelets. The interaction is irreversible, accounting for the observation that platelets are definitely antiaggregated, even if no active metabolite is detectable in plasma. The interaction is specific for P2Y (12); other purinoceptors such as P2Y (1) and P2Y (13) are spared. This results in inhibition of the binding of the P2Y (12) agonist 2-methylthio-ADP and the ADP-induced downregulation of adenylyl cyclase. Platelet aggregation is affected not only when triggered by ADP but also by aggregation inducers when used at concentrations requiring released ADP as an amplifier. The efficacy and safety of clopidogrel has been established in several large, randomized, controlled trials. The clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE) trial demonstrated the superiority of clopidogrel over acetylsalicylic acid (ASA) in patients at risk of ischemic events, including ischemic stroke, myocardial infarction (MI), and peripheral arterial disease. The clopidogrel in unstable angina to prevent recurrent ischemic events (CURE) trial showed a sustained, incremental benefit when clopidogrel was added to standard therapy (including ASA) in patients with unstable angina and non-Q-wave MI

  18. Helical structure determined by NMR of the HIV-1 (345–392)Gag sequence, surrounding p2: Implications for particle assembly and RNA packaging

    PubMed Central

    Morellet, Nelly; Druillennec, Sabine; Lenoir, Christine; Bouaziz, Serge; Roques, Bernard P.

    2005-01-01

    Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically dependent on the spacer p2, located between the capsid and the nucleocapsid proteins. P2 contributes also, in association with NCp7, to specific recognition of the HIV-1 packaging signal resulting in viral genome encapsidation. There is no structural information about the 20 last amino acids of the C-terminal part of capsid (CA[CTD]) and p2, in the molecular mechanism of Gag assembly. In this study the structure of a peptide encompassing the 14 residues of p2 with the upstream 21 residues and the downstream 13 residues was determined by 1H NMR in 30% trifluoroethanol (TFE). The main structural motif is a well-defined amphipathic α-helix including p2, the seven last residues of the CA(CTD), and the two first residues of NCp7. Peptides containing the p2 domain have a strong tendency to aggregate in solution, as shown by gel filtration analyses in pure H2O. To take into account the aggregation phenomena, models of dimer and trimer formed through hydrophobic or hydrophilic interfaces were constructed by molecular dynamic simulations. Gel shift experiments demonstrate that the presence of at least p2 and the 13 first residues of NCp7 is required for RNA binding. A computer-generated model of the Gag polyprotein segment (282–434)Gag interacting with the packaging element SL3 is proposed, illustrating the importance of p2 and NCp7 in genomic encapsidation. PMID:15659370

  19. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  20. Orally bioavailable pyridine and pyrimidine-based Factor XIa inhibitors: Discovery of the methyl N-phenyl carbamate P2 prime group.

    PubMed

    Corte, James R; Fang, Tianan; Pinto, Donald J P; Orwat, Michael J; Rendina, Alan R; Luettgen, Joseph M; Rossi, Karen A; Wei, Anzhi; Ramamurthy, Vidhyashankar; Myers, Joseph E; Sheriff, Steven; Narayanan, Rangaraj; Harper, Timothy W; Zheng, Joanna J; Li, Yi-Xin; Seiffert, Dietmar A; Wexler, Ruth R; Quan, Mimi L

    2016-05-15

    Pyridine-based Factor XIa (FXIa) inhibitor (S)-2 was optimized by modifying the P2 prime, P1, and scaffold regions. This work resulted in the discovery of the methyl N-phenyl carbamate P2 prime group which maintained FXIa activity, reduced the number of H-bond donors, and improved the physicochemical properties compared to the amino indazole P2 prime moiety. Compound (S)-17 was identified as a potent and selective FXIa inhibitor that was orally bioavailable. Replacement of the basic cyclohexyl methyl amine P1 in (S)-17 with the neutral p-chlorophenyltetrazole P1 resulted in the discovery of (S)-24 which showed a significant improvement in oral bioavailability compared to the previously reported imidazole (S)-23. Additional improvements in FXIa binding affinity, while maintaining oral bioavailability, was achieved by replacing the pyridine scaffold with either a regioisomeric pyridine or pyrimidine ring system. PMID:27073051

  1. Molecular characterization of six intermediate proteins in the processing of mouse protamine P2 precursor.

    PubMed

    Chauvière, M; Martinage, A; Debarle, M; Sautière, P; Chevaillier, P

    1992-03-01

    In mouse spermatozoa, DNA is compacted by two protamines mP1 and mP2. Protamine mP2 (63 residues) is synthesized in spermatid nuclei as a precursor pmP2 (106 residues) which is subsequently processed at the end of spermiogenesis [Yelick, P.C., Balhorn, R., Johnson, P.A., Corzett, M., Mazrimas, J.A., Kleene, K.C. & Hecht, N.B. (1987) Mol. Cell. Biol. 7, 2173-2179]. Six proteins, three of which were described earlier [Chauvière, M., Martinage, A., Debarle, M., Alimi, E., Sautière, P. & Chevaillier, Ph. (1991) C.R. Acad. Sci. 313, 107-112], have molecular and electrophoretic properties similar to those of pmP2. They were isolated from purified testis nuclei and characterized by amino acid composition, N-terminal sequence and peptide mapping. From the amino acid compositions, it appears that all six proteins are rich in arginine, cysteine and histidine and are closely related to pmP2 and mP2. The N-terminal sequence of each protein overlaps a distinct region of the N-terminal part of pmP2. The C-terminal part of protamine mP2 starting at arginine 15 is common to all proteins as assessed by amino acid compositions and peptide maps. All these structural data demonstrate that the six isolated proteins are products of pmP2 precursor processing. The six intermediate proteins pmP2/5, pmP2/11, pmP2/16, pmP2/20, pmP2/26 and pmP2/32 which contain 102, 96, 91, 87, 81 and 75 residues, respectively, are generated from the pmP2 precursor after N-terminal excision of 4, 10, 15, 19, 25 and 31 residues, respectively. The C-terminal sequence of protamine mP2 is strictly identical to that of its precursor; therefore, no maturation occurs in this part of the molecule. At the present time, the proteolytic pathway involved in the amino-terminal processing leading to the mature form of the protamine mP2 (63 residues) has not been elucidated. However, the different representation of six intermediates in the testis suggests that some stages of processing are faster than others or that some

  2. Role of the Extracellular Loops of G Protein-Coupled Receptors in Ligand Recognition: A Molecular Modeling Study of the Human P2Y1 Receptor

    PubMed Central

    Moro, Stefano; Hoffmann, Carsten; Jacobson, Kenneth A.

    2016-01-01

    The P2Y1 receptor is a G protein-coupled receptor (GPCR) and is stimulated by extracellular ADP and ATP. Site-directed mutagenesis of the three extracellular loops (ELs) of the human P2Y1 receptor indicates the existence of two essential disulfide bridges (Cys124 in EL1 and Cys202 in EL2; Cys42 in the N-terminal segment and Cys296 in EL3) and several specific ionic and H-bonding interactions (involving Glu209 and Arg287). Through molecular modeling and molecular dynamics simulations, an energetically sound conformational hypothesis for the receptor has been calculated that includes transmembrane (TM) domains (using the electron density map of rhodopsin as a template), extracellular loops, and a truncated N-terminal region. ATP may be docked in the receptor, both within the previously defined TM cleft and within two other regions of the receptor, termed meta-binding sites, defined by the extracellular loops. The first meta-binding site is located outside of the TM bundle, between EL2 and EL3, and the second higher energy site is positioned immediately underneath EL2. Binding at both the principal TM binding site and the lower energy meta-binding sites potentially affects the observed ligand potency. In meta-binding site I, the side chain of Glu209 (EL2) is within hydrogen-bonding distance (2.8 Å) of the ribose O3′, and Arg287 (EL3) coordinates both α- and β-phosphates of the triphosphate chain, consistent with the insensitivity in potency of the 5′-monophosphate agonist, HT-AMP, to mutation of Arg287 to Lys. Moreover, the selective reduction in potency of 3′NH2-ATP in activating the E209R mutant receptor is consistent with the hypothesis of direct contact between EL2 and nucleotide ligands. Our findings support ATP binding to at least two distinct domains of the P2Y1 receptor, both outside and within the TM core. The two disulfide bridges present in the human P2Y1 receptor play a major role in the structure and stability of the receptor, to constrain the

  3. Accelerated tumor progression in mice lacking the ATP receptor P2X7.

    PubMed

    Adinolfi, Elena; Capece, Marina; Franceschini, Alessia; Falzoni, Simonetta; Giuliani, Anna L; Rotondo, Alessandra; Sarti, Alba C; Bonora, Massimo; Syberg, Susanne; Corigliano, Domenica; Pinton, Paolo; Jorgensen, Niklas R; Abelli, Luigi; Emionite, Laura; Raffaghello, Lizzia; Pistoia, Vito; Di Virgilio, Francesco

    2015-02-15

    The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion. PMID:25542861

  4. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    PubMed Central

    de Torre-Minguela, Carlos; Barberà-Cremades, Maria; Gómez, Ana I.; Martín-Sánchez, Fátima; Pelegrín, Pablo

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R. PMID:26935289

  5. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion

    PubMed Central

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X.

    2015-01-01

    Intra-endolysosomal Ca2+ release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca2+ release and the downstream Ca2+ targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca2+-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca2+ release and subsequent CaM activation. PMID:26101220

  6. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death.

    PubMed

    Salaro, Erica; Rambaldi, Alessia; Falzoni, Simonetta; Amoroso, Francesca Saveria; Franceschini, Alessia; Sarti, Alba Clara; Bonora, Massimo; Cavazzini, Francesco; Rigolin, Gian Matteo; Ciccone, Maria; Audrito, Valentina; Deaglio, Silvia; Pelegrin, Pablo; Pinton, Paolo; Cuneo, Antonio; Di Virgilio, Francesco

    2016-01-01

    Lymphocyte growth and differentiation are modulated by extracellular nucleotides and P2 receptors. We previously showed that the P2X7 receptor (P2X7R or P2RX7) is overexpressed in circulating lymphocytes from chronic lymphocytic leukemia (CLL) patients. In the present study we investigated the P2X7R/NLRP3 inflammasome axis in lymphocytes from a cohort of 23 CLL patients. P2X7R, ASC and NLRP3 were investigated by Western blot, PCR and transfection techniques. P2X7R was overexpressed and correlated with chromosome 12 trisomy in CLL patients. ASC mRNA and protein were also overexpressed. On the contrary, NLRP3 was dramatically down-modulated in CLL lymphocytes relative to lymphocytes from healthy donors. To further investigate the correlation between P2X7R, NLRP3 and cell growth, NLRP3 was silenced in THP-1 cells, a leukemic cell line that natively expresses both NLRP3 and P2X7R. NLRP3 silencing enhanced P2X7R expression and promoted growth. On the contrary, NLRP3 overexpression caused accelerated apoptosis. The P2X7R was also up-modulated in hematopoietic cells from NLRP3-KO mice. In conclusion, we show that NLRP3 down-modulation stimulates P2X7R expression and promotes growth, while NLRP3 overexpression inhibits cell proliferation and stimulates apoptosis. These findings suggest that NLRP3 is a negative regulator of growth and point to a role of the P2X7R/NLRP3 axis in CLL. PMID:27221966

  7. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death

    PubMed Central

    Salaro, Erica; Rambaldi, Alessia; Falzoni, Simonetta; Amoroso, Francesca Saveria; Franceschini, Alessia; Sarti, Alba Clara; Bonora, Massimo; Cavazzini, Francesco; Rigolin, Gian Matteo; Ciccone, Maria; Audrito, Valentina; Deaglio, Silvia; Pelegrin, Pablo; Pinton, Paolo; Cuneo, Antonio; Di Virgilio, Francesco

    2016-01-01

    Lymphocyte growth and differentiation are modulated by extracellular nucleotides and P2 receptors. We previously showed that the P2X7 receptor (P2X7R or P2RX7) is overexpressed in circulating lymphocytes from chronic lymphocytic leukemia (CLL) patients. In the present study we investigated the P2X7R/NLRP3 inflammasome axis in lymphocytes from a cohort of 23 CLL patients. P2X7R, ASC and NLRP3 were investigated by Western blot, PCR and transfection techniques. P2X7R was overexpressed and correlated with chromosome 12 trisomy in CLL patients. ASC mRNA and protein were also overexpressed. On the contrary, NLRP3 was dramatically down-modulated in CLL lymphocytes relative to lymphocytes from healthy donors. To further investigate the correlation between P2X7R, NLRP3 and cell growth, NLRP3 was silenced in THP-1 cells, a leukemic cell line that natively expresses both NLRP3 and P2X7R. NLRP3 silencing enhanced P2X7R expression and promoted growth. On the contrary, NLRP3 overexpression caused accelerated apoptosis. The P2X7R was also up-modulated in hematopoietic cells from NLRP3-KO mice. In conclusion, we show that NLRP3 down-modulation stimulates P2X7R expression and promotes growth, while NLRP3 overexpression inhibits cell proliferation and stimulates apoptosis. These findings suggest that NLRP3 is a negative regulator of growth and point to a role of the P2X7R/NLRP3 axis in CLL. PMID:27221966

  8. Role of P2 Receptors as Modulators of Rat Eosinophil Recruitment in Allergic Inflammation

    PubMed Central

    Alberto, Anael Viana Pinto; Faria, Robson Xavier; de Menezes, Joao Ricardo Lacerda; Surrage, Andrea; da Rocha, Natasha Cristina; Ferreira, Leonardo Gomes Braga; Frutuoso, Valber da Silva; Martins, Marco Aurélio; Alves, Luiz Anastácio

    2016-01-01

    ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin. PMID:26784445

  9. RDGBα, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction

    PubMed Central

    Yadav, Shweta; Garner, Kathryn; Georgiev, Plamen; Li, Michelle; Gomez-Espinosa, Evelyn; Panda, Aniruddha; Mathre, Swarna; Okkenhaug, Hanneke; Cockcroft, Shamshad; Raghu, Padinjat

    2015-01-01

    ABSTRACT Many membrane receptors activate phospholipase C (PLC) during signalling, triggering changes in the levels of several plasma membrane lipids including phosphatidylinositol (PtdIns), phosphatidic acid (PtdOH) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. It is widely believed that exchange of lipids between the plasma membrane and endoplasmic reticulum (ER) is required to restore lipid homeostasis during PLC signalling, yet the mechanism remains unresolved. RDGBα (hereafter RDGB) is a multi-domain protein with a PtdIns transfer protein (PITP) domain (RDGB-PITPd). We find that, in vitro, the RDGB-PITPd binds and transfers both PtdOH and PtdIns. In Drosophila photoreceptors, which experience high rates of PLC activity, RDGB function is essential for phototransduction. We show that binding of PtdIns to RDGB-PITPd is essential for normal phototransduction; however, this property is insufficient to explain the in vivo function because another Drosophila PITP (encoded by vib) that also binds PtdIns cannot rescue the phenotypes of RDGB deletion. In RDGB mutants, PtdIns(4,5)P2 resynthesis at the plasma membrane following PLC activation is delayed and PtdOH levels elevate. Thus RDGB couples the turnover of both PtdIns and PtdOH, key lipid intermediates during G-protein-coupled PtdIns(4,5)P2 turnover. PMID:26203165

  10. FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2.

    PubMed

    Wierstra, Inken; Alves, Jürgen

    2006-10-01

    FOXM1c transactivates the c-myc promoter via the P1 and P2 TATA boxes using a new mechanism. Whereas the P1 TATA box TATAATGC requires its sequence context to be FOXM1c responsive, the P2 TATA box TATAAAAG alone is sufficient to confer FOXM1c responsiveness to any minimal promoter. FOXM1c transactivates by binding to the TATA box as well as directly to TATA-binding protein, transcription factor IIB and transcription factor IIA. This new transactivation mechanism is clearly distinguished from the function of FOXM1c as a conventional transcription factor. The central domain of FOXM1c functions as an essential domain for activation via the TATA box, but as an inhibitory domain (retinoblastoma protein-independent transrepression domain and retinoblastoma protein-recruiting negative regulatory domain) for transactivation via conventional FOXM1c-binding sites. Each promoter with the P2 TATA box TATAAAAG is postulated to be transactivated by FOXM1c. This was demonstrated for the promoters of c-fos, hsp70 and histone H2B/a. A database search revealed almost 300 probable FOXM1c target genes, many of which function in proliferation and tumorigenesis. Accordingly, dominant-negative FOXM1c proteins reduced cell growth approximately threefold, demonstrating a proliferation-stimulating function for wild-type FOXM1c. PMID:16965535

  11. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  12. Platelet Antistaphylococcal Responses Occur through P2X1 and P2Y12 Receptor-Induced Activation and Kinocidin Release▿

    PubMed Central

    Trier, Darin A.; Gank, Kimberly D.; Kupferwasser, Deborah; Yount, Nannette Y.; French, William J.; Michelson, Alan D.; Kupferwasser, Leon I.; Xiong, Yan Q.; Bayer, Arnold S.; Yeaman, Michael R.

    2008-01-01

    Platelets (PLTs) act in antimicrobial host defense by releasing PLT microbicidal proteins (PMPs) or PLT kinocidins (PKs). Receptors mediating staphylocidal efficacy and PMP or PK release versus isogenic PMP-susceptible (ISP479C) and -resistant (ISP479R) Staphylococcus aureus strains were examined in vitro. Isolated PLTs were incubated with ISP479C or ISP479R (PLT/S. aureus ratio range, 1:1 to 10,000:1) in the presence or absence of a panel of PLT inhibitors, including P2X and P2Y receptor antagonists of increasingly narrow specificity, and PLT adhesion receptors (CD41, CD42b, and CD62P). PLT-to-S. aureus exposure ratios of ≥10:1 yielded significant reductions in the viability of both strains. Results from reversed-phase high-performance liquid chromatography indicated that staphylocidal PLT releasates contained PMPs and PKs. At ratios below 10:1, the PLT antistaphylococcal efficacy relative to the intrinsic S. aureus PMP-susceptible or -resistant phenotype diminished. Apyrase (an agent of ADP degradation), suramin (a general P2 receptor antagonist), pyridoxal 5′-phosphonucleotide derivative (a specific P2X1 antagonist), and cangrelor (a specific P2Y12 antagonist) mitigated the PLT staphylocidal response against both strains, correlating with reduced levels of PMP and PK release. Specific inhibition occurred in the presence and absence of homologous plasma. The antagonism of the thromboxane A2, cyclooxygenase-1/cyclooxygenase-2, or phospholipase C pathway or the hindrance of surface adhesion receptors failed to impede PLT anti-S. aureus responses. These results suggest a multifactorial PLT anti-S. aureus response mechanism involving (i) a PLT-to-S. aureus ratio sufficient for activation; (ii) the ensuing degranulation of PMPs, PKs, ADP, and/or ATP; (iii) the activation of P2X1/P2Y12 receptors on adjacent PLTs; and (iv) the recursive amplification of PMP and PK release from these PLTs. PMID:18824536

  13. Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression.

    PubMed

    Galam, Lakshmi; Rajan, Ashna; Failla, Athena; Soundararajan, Ramani; Lockey, Richard F; Kolliputi, Narasaiah

    2016-03-15

    Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1β release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury. PMID:26747786

  14. The Roles of P2Y2 Purinergic Receptors in Osteoblasts and Mechanotransduction

    PubMed Central

    Xing, Yanghui; Gu, Yan; Bresnahan, James J.; Paul, Emmanuel M.; Donahue, Henry J.; You, Jun

    2014-01-01

    We previously demonstrated, using osteoblastic MC3T3-E1 cells, that P2Y2 purinergic receptors are involved in osteoblast mechanotransduction. In this study, our objective was to further investigate, using a knockout mouse model, the roles of P2Y2 receptors in bone mechanobiology. We first examined bone structure with micro-CT and measured bone mechanical properties with three point bending experiments in both wild type mice and P2Y2 knockout mice. We found that bones from P2Y2 knockout mice have significantly decreased bone volume, bone thickness, bone stiffness and bone ultimate breaking force at 17 week old age. In order to elucidate the mechanisms by which P2Y2 receptors contribute to bone biology, we examined differentiation and mineralization of bone marrow cells from wild type and P2Y2 knockout mice. We found that P2Y2 receptor deficiency reduces the differentiation and mineralization of bone marrow cells. Next, we compared the response of primary osteoblasts, from both wild type and P2Y2 knockout mice, to ATP and mechanical stimulation (oscillatory fluid flow), and found that osteoblasts from wild type mice have a stronger response, in terms of ERK1/2 phosphorylation, to both ATP and fluid flow, relative to P2Y2 knockout mice. However, we did not detect any difference in ATP release in response to fluid flow between wild type and P2Y2 knock out osteoblasts. Our findings suggest that P2Y2 receptors play important roles in bone marrow cell differentiation and mineralization as well as in bone cell mechanotransduction, leading to an osteopenic phenotype in P2Y2 knockout mice. PMID:25268784

  15. Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome

    PubMed Central

    Galligan, James J

    2004-01-01

    The irritable bowel syndrome (IBS) is a gastrointestinal motility disorder affecting millions of patients. IBS symptoms include diarrhea, constipation and pain. The etiology of IBS is due partly to changes in the function of nerves supplying the gastrointestinal tract, immune system activation and to psychological factors. P2X receptors are multimeric ATP-gated cation channels expressed by neuronal and non-neuronal cells. Sensory nerve endings in the gastrointestinal tract express P2X receptors. ATP released from gastrointestinal cells activates P2X receptors on sensory nerve endings to stimulate motor reflexes and to transmit nociceptive signals. Antagonists acting at P2X receptors on sensory nerves could attenuate abdominal pain in IBS patients. Primary afferent neurons intrinsic to the gut, and enteric motor- and interneurons express P2X receptors. These neurons participate in motor reflexes. Agonists acting at enteric P2X receptors may enhance gastrointestinal propulsion and secretion, and these drugs could be useful for treating constipation-predominant IBS. Antagonists acting at enteric P2X receptors would decrease propulsion and secretion and they might be useful for treating diarrhea-predominant IBS. Current knowledge of P2X receptor distribution and function in the gut of laboratory animals provides a rational basis for further exploration of the therapeutic potential for drugs acting at P2X receptors in IBS patients. However, more information about P2X receptor distribution and function in the human gastrointestinal tract is needed. Data on the distribution and function of P2X receptors on gastrointestinal immune cells would also provide insights into the therapeutic potential of P2X receptor agents in IBS. PMID:15051631

  16. Potential Involvement of P2 Receptors in the Pathological Processes of Hyperthyroidism: A Pilot Study.

    PubMed

    Hong, Wu; Li, Guodong; Nie, Yijun; Zou, Lifang; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Zhang, Chun-Ping; Liang, Shangdong

    2016-05-01

    Symptoms of hyperthyroidism manifest mainly as changes in the nervous and metabolic systems. Whether P2X receptors (ionotropic ATP purinergic receptors, including P2X3 receptor and P2X7 receptor) are involved in the alterations of these disorders still remains unclear. Thus, this study aimed to assess the association of hyperthyroidism with the expression of P2X3 and P2X7 receptors and the concentrations of ATP in blood leukocytes and catecholamine. Twelve healthy subjects and twelve patients diagnosed with hyperthyroidism were recruited. Serum free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) levels had been detected by chemiluminescence method. Meanwhile, the catecholamine levels (including adrenaline, noradrenaline, and dopamine) in plasma, ATP level and P2X receptors (including P2X3 receptor and P2X7 receptor) in peripheral blood had been detected by high performance liquid chromatography, bioluminescence method, and reverse transcription polymerase chain reaction, respectively. Levels of epinephrine and norepinephrine were significantly higher in the hyperthyroidism group compared with the control group. The concentration of ATP in the hyperthyroidism group was significantly higher than its in the control group. The expression of P2X3 mRNA and P2X7 mRNA in hyperthyroidism group were significantly increased compared with those in control group. In a conclusion, there is a relationship between the elevated expression of P2X3 receptor and P2X7 receptor in peripheral blood leukocytes and high serum epinephrine and norepinephrine levels in hyperthyroidism patients. PMID:27312548

  17. Ivermectin Antagonizes Ethanol Inhibition in Purinergic P2X4 Receptors

    PubMed Central

    Popova, Maya; Perkins, Daya; Trudell, James R.; Alkana, Ronald L.; Davies, Daryl L.

    2010-01-01

    ATP-gated purinergic P2X4 receptors (P2X4Rs) are expressed in the central nervous system and are sensitive to ethanol at intoxicating concentrations. P2XRs are trimeric; each subunit consists of two transmembrane (TM) α-helical segments, a large extracellular domain, and intracellular amino and carboxyl terminals. Recent work indicates that position 336 (Met336) in the TM2 segment is critical for ethanol modulation of P2X4Rs. The anthelmintic medication ivermectin (IVM) positively modulates P2X4Rs and is believed to act in the same region as ethanol. The present study tested the hypothesis that IVM can antagonize ethanol action. We investigated IVM and ethanol effects in wild-type and mutant P2X4Rs expressed in Xenopus oocytes by using a two-electrode voltage clamp. IVM antagonized ethanol-induced inhibition of P2X4Rs in a concentration-dependent manner. The size and charge of substitutions at position 336 affected P2X4R sensitivity to both ethanol and IVM. The first molecular model of the rat P2X4R, built onto the X-ray crystal structure of zebrafish P2X4R, revealed a pocket formed by Asp331, Met336, Trp46, and Trp50 that may play a role in the actions of ethanol and IVM. These findings provide the first evidence for IVM antagonism of ethanol effects in P2X4Rs and suggest that the antagonism results from the ability of IVM to interfere with ethanol action on the putative pocket at or near position 336. Taken with the building evidence supporting a role for P2X4Rs in ethanol intake, the present findings suggest that the newly identified alcohol pocket is a potential site for development of medication for alcohol use disorders. PMID:20543096

  18. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival.

    PubMed

    Gehring, Marina P; Kipper, Franciele; Nicoletti, Natália F; Sperotto, Nathalia D; Zanin, Rafael; Tamajusuku, Alessandra S K; Flores, Debora G; Meurer, Luise; Roesler, Rafael; Filho, Aroldo B; Lenz, Guido; Campos, Maria M; Morrone, Fernanda B

    2015-11-01

    Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival. PMID:26358881

  19. Insights into the channel gating of P2X receptors from structures, dynamics and small molecules

    PubMed Central

    Wang, Jin; Yu, Ye

    2016-01-01

    P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors. PMID:26725734

  20. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787. PMID:27219534

  1. Selective P2X7 receptor antagonists for chronic inflammation and pain

    PubMed Central

    Donnelly-Roberts, Diana; Jarvis, Michael F.

    2008-01-01

    ATP, acting on P2X7 receptors, stimulates changes in intracellular calcium concentrations, maturation, and release of interleukin-1β (IL-1β), and following prolonged agonist exposure, cell death. The functional effects of P2X7 receptor activation facilitate several proinflammatory processes associated with arthritis. Within the nervous system, these proinflammatory processes may also contribute to the development and maintenance of chronic pain. Emerging data from genetic knockout studies have indicated specific roles for P2X7 receptors in inflammatory and neuropathic pain states. The discovery of multiple distinct chemical series of potent and highly selective P2X7 receptor antagonists have enhanced our understanding of P2X7 receptor pharmacology and the diverse array of P2X7 receptor signaling mechanisms. These antagonists have provided mechanistic insight into the role(s) P2X7 receptors play under pathophysiological conditions. In this review, we integrate the recent discoveries of novel P2X7 receptor-selective antagonists with a brief update on P2X7 receptor pharmacology and its therapeutic potential. PMID:18568426

  2. Identification of a New Morpholine Scaffold as a P2Y12 Receptor Antagonist.

    PubMed

    Ahn, Young Ha; Lee, Joo-Youn; Park, Hee Dong; Kim, Tae Hun; Park, Min Chul; Choi, Gildon; Kim, Sunghoon

    2016-01-01

    The P2Y12 receptor is critical for platelet activation and is an attractive drug target for the prevention of atherothrombotic events. Despite the proven antithrombotic efficacy of P2Y12 inhibitors, these thienopyridine scaffolds are prodrugs that lack important features of the ideal antithrombotic agent. For this reason, ticagrelor-a new chemical class of P2Y12 receptor antagonist-was developed, but it can cause shortness of breath and various types of bleeding. Moreover, ticagrelor is a cytochrome P450 3A4 substrate/inhibitor and, therefore, caution should be exercised when it is used concomitantly with strong CYP3A4 inducers/inhibitors. There is a need for novel P2Y12 receptor antagonist scaffolds that are reversible and have high efficacy without associated side effects. Here, we describe a novel antagonist containing a morpholine moiety that was identified by screening libraries of commercially available compounds. The molecule, Compound E, acted on P2Y12, but not P2Y1 and P2Y13, and exhibited pharmacological characteristics that were distinct from those of ticagrelor, acting instead on P2Y12 via an allosteric mechanism. These results provide a basis for the development/optimization of a new class of P2Y12 antagonists. PMID:27563870

  3. T(lys), a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes.

    PubMed

    Fusco, Salvatore; She, Qunxin; Bartolucci, Simonetta; Contursi, Patrizia

    2013-05-01

    While studying the gene expression of the Sulfolobus spindle-shaped virus 1 (SSV1) in Sulfolobus solfataricus lysogenic cells, a novel viral transcript (T(lys)) was identified. Transcriptional analysis revealed that T(lys) is expressed only in the absence of UV irradiation and is downregulated during the growth of the lysogenic host. The correponding gene f55 lies between two transcriptional units (T6 and T(ind)) that are upregulated upon UV irradiation. The open reading frame f55 encodes a 6.3-kDa protein which shows sequence identity with negative regulators that fold into the ribbon-helix-helix DNA-binding motif. DNA-binding assays demonstrated that the recombinant F55, purified from Escherichia coli, is indeed a putative transcription factor able to recognize site specifically target sequences in the promoters of the early induced T5, T6, and T(ind) transcripts, as well as of its own promoter. Binding sites of F55 are included within a tandem-repeated sequence overlapping the transcription start sites and/or the B recognition element of the pertinent genes. The strongest binding was observed with the promoters of T5 and T6, and an apparent cooperativity in binding was observed with the T(ind) promoter. Taking together the transcriptional analysis data and the biochemical evidences, we surmise that the protein F55 is involved in the regulation of the lysogenic state of SSV1. PMID:23514883

  4. P2X7 receptor antagonist activity of the anti-allergic agent oxatomide.

    PubMed

    Yoshida, Kazuki; Ito, Masaaki; Matsuoka, Isao

    2015-11-15

    Activation of the P2X7 receptor by extracellular ATP is associated with various immune responses including allergic inflammation. Anti-allergic agents, such as H1-antihistamines, are known to inhibit the effects of different chemical mediators such as acetylcholine and platelet-activating factor. Therefore, we hypothesized that some anti-allergic agents might affect P2X7 receptor function. Using N18TG2 and J774 cells, which express functional P2X7 receptors, the effects of several anti-allergic agents on P2X7 receptor function were investigated by monitoring the ATP-induced increase in intracellular Ca(2+) concentrations ([Ca(2+)]i). Among the various agents tested, oxatomide significantly inhibited P2X7 receptor-mediated [Ca(2+)]i elevation in a concentration-dependent manner without affecting the P2Y2 receptor-mediated response in both N18TG2 and J774 cells. Consistently, oxatomide inhibited P2X7 receptor-mediated membrane current and downstream responses such as mitogen-activated protein kinase activation, inflammation-related gene induction, and cell death. In addition, oxatomide inhibited P2X7 receptor-mediated degranulation in mouse bone marrow-derived mast cells. Whole cell patch clamp analyses in HEK293 cells expressing human, mouse, and rat P2X7 receptors revealed that the inhibitory effect of oxatomide on ATP-induced current was most prominent for the human P2X7 receptor and almost non-existent for the rat P2X7 receptor. The potent inhibitory effects of oxatomide on human P2X7 receptor-mediated function were confirmed in RPMI8226 human B cell-like myeloma cells, which endogenously express the P2X7 receptor. Our results demonstrated that the antihistamine oxatomide also acts as a P2X7 receptor antagonist. Future studies should thus evaluate whether P2X7 receptor antagonism contributes to the anti-allergic effects of oxatomide. PMID:26463039

  5. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts

    PubMed Central

    Gangadharan, Vimal; Nohe, Anja; Caplan, Jeffrey; Czymmek, Kirk

    2014-01-01

    The synthesis of new bone in response to a novel applied mechanical load requires a complex series of cellular signaling events in osteoblasts and osteocytes. The activation of the purinergic receptor P2X7R is central to this mechanotransduction signaling cascade. Recently, P2X7R have been found to be associated with caveolae, a subset of lipid microdomains found in several cell types. Deletion of caveolin-1 (CAV1), the primary protein constituent of caveolae in osteoblasts, results in increased bone mass, leading us to hypothesize that the P2X7R is scaffolded to caveolae in osteoblasts. Thus, upon activation of the P2X7R, we postulate that caveolae are endocytosed, thereby modulating the downstream signal. Sucrose gradient fractionation of MC3T3-E1 preosteoblasts showed that CAV1 was translocated to the denser cytosolic fractions upon stimulation with ATP. Both ATP and the more specific P2X7R agonist 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced endocytosis of CAV1, which was inhibited when MC3T3-E1 cells were pretreated with the specific P2X7R antagonist A-839977. The P2X7R cofractionated with CAV1, but, using superresolution structured illumination microscopy, we found only a subpopulation of P2X7R in these lipid microdomains on the membrane of MC3T3-E1 cells. Suppression of CAV1 enhanced the intracellular Ca2+ response to BzATP, suggesting that caveolae regulate P2X7R signaling. This proposed mechanism is supported by increased mineralization in CAV1 knockdown MC3T3-E1 cells treated with BzATP. These data suggest that caveolae regulate P2X7R signaling upon activation by undergoing endocytosis and potentially carrying with it other signaling proteins, hence controlling the spatiotemporal signaling of P2X7R in osteoblasts. PMID:25318104

  6. P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus.

    PubMed

    Henshall, David C; Engel, Tobias

    2015-08-01

    There remains a need for more efficacious treatments for status epilepticus. Prolonged seizures result in the release of ATP from cells which activates the P2 class of ionotropic and metabotropic purinoceptors. The P2X receptors gate depolarizing sodium and calcium entry and are expressed by both neurons and glia throughout the brain, and a number of subtypes are upregulated after status epilepticus. Recent studies have explored the in vivo effects of targeting ATP-gated P2X receptors in preclinical models of status epilepticus, with particular focus on the P2X7 receptor (P2X7R). The P2X7R mediates microglial activation and the release of the proepileptogenic inflammatory cytokine interleukin 1β. The receptor may also directly modulate neurotransmission and gliotransmission and promote the recruitment of immune cells into brain parenchyma. Data from our group and collaborators show that status epilepticus produced by intraamygdala microinjection of kainic acid increases P2X7R expression in the hippocampus and neocortex of mice. Antagonism of the P2X7R in the model reduced seizure severity, microglial activation and interleukin 1β release, and neuronal injury. Coadministration of a P2X7R antagonist with a benzodiazepine also provided seizure suppression in a model of drug-refractory status epilepticus when either treatment alone was minimally effective. More recently, we showed that status epilepticus in immature rats is also reduced by P2X7R antagonism. Together, these findings suggest that P2X receptors may be novel targets for seizure control and interruption of neuroinflammation after status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus". PMID:25843343

  7. Knocking out P2X receptors reduces transmitter secretion in taste buds

    PubMed Central

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  8. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    PubMed

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs. PMID:20070609

  9. Purinergic signaling via P2X7 receptor mediates IL-1β production in Kupffer cells exposed to silica nanoparticle.

    PubMed

    Kojima, Shuji; Negishi, Yusuke; Tsukimoto, Mitsutoshi; Takenouchi, Takato; Kitani, Hiroshi; Takeda, Ken

    2014-07-01

    There is extensive evidence that nanoparticles (NPs) cause adverse effects in multiple organs, including liver, though the mechanisms involved remain to be fully established. Kupffer cells are macrophages resident in the liver, and play important roles in liver inflammation induced by various toxic agents, including lipopolysaccharide (LPS). Interleukin-1 (IL-1) family members IL-1α,β are released from LPS-primed macrophages exposed to NPs, including silica NPs (SNPs), via activation of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasomes. Here, we investigated the mechanism of production of IL-1β via activation of inflammasomes in mouse Kupffer cell line KUP5, focusing on the role of purinergic signaling via P2X7 receptor. IL-1β production by LPS-primed KUP5 cells exposed to SNPs was increased dose-dependently, and was greatest in response to SNPs with a diameter of 30 nm (SNP30), as compared with 70-nm and 300-nm SNPs (SNP70 and SNP300). ATP release was also highest in cells exposed to SNP30. Treatment of LPS-primed KUP5 cells with ATP also induced a high level of IL-1β production, similar to that induced by SNP30. IL-1β production was significantly inhibited by apyrase (an ecto-nucleotidase) and A438079 (a P2X7 antagonist/ATP-release inhibitor). Production of reactive oxygen species (ROS) was confirmed in cells exposed to SNP30. In conclusion, ATP released from P2X7 receptor in response to stimulation of KUP5 cells with SNP30 induces ROS production via cell-membrane NADPH oxidase. The ROS causes activation of inflammasomes, leading to caspase-1-dependent processing of IL-1β. PMID:24685903

  10. Salvianolic acid B inhibits platelets as a P2Y12 antagonist and PDE inhibitor: evidence from clinic to laboratory.

    PubMed

    Liu, Lei; Li, Jian; Zhang, Yan; Zhang, Shenghui; Ye, Jianqin; Wen, Zhichao; Ding, Jianping; Kunapuli, Satya P; Luo, Xinping; Ding, Zhongren

    2014-10-01

    Salviae miltiorrhiza (Danshen) has been used for thousands of years in China and some other Asian countries to treat atherothrombotic diseases. Salvianolate which consists of three water-soluble ingredients purified from Salviae miltiorrhiza, has been approved by Chinese SFDA to treat coronary artery disease. So far, there is no evidence clearly showing the clinical efficiency of salvianolate and the underlying mechanism. This study is to evaluate the effects of salvianolate on platelets in patients with acute coronary syndrome and explore the underlying mechanism. We evaluated the effects of salvianolate on platelets in patients with acute coronary syndrome by measuring ADP-induced PAC-1 binding and P-selectin expression on platelets. Salvianolate significantly potentiated the antiplatelet effects of standard dual antiplatelet therapy. We also investigated the antiplatelet effects of salvianolatic acid B (Sal-B), the major component which composes 85% of salvianolate. Sal-B inhibits human platelet activation induced by multiple agonists in vitro by inhibiting phosphodiesterase (PDE) and antagonizing P2Y12 receptor. For the first time, we show the antiplatelet efficiency of salvianolate in ACS patients undergoing treatment with clopidogrel plus aspirin, and demonstrate that Sal-B, the major component of salvianolate inhibits human platelet activation via PDE inhibition and P2Y12 antagonism which may account for the clinical antiplatelet effects of salvianolate. Our results suggest that Sal-B may substitute salvianolate for clinical use. PMID:25077998

  11. Personalised Peer-Supported Learning: The Peer-to-Peer Learning Environment (P2PLE)

    ERIC Educational Resources Information Center

    Corneli, Joseph; Mikroyannidis, Alexander

    2011-01-01

    The Peer-to-Peer Learning Environment (P2PLE) is a proposed approach to helping learners co-construct their learning environment using recommendations about people, content, and tools. The work draws on current research on PLEs, and participant observation at the Peer-to-Peer University (P2PU). We are particularly interested in ways of eliciting…

  12. The implementation of a novel P2P service redirection mechanism in passive optical network

    NASA Astrophysics Data System (ADS)

    Jiang, Xinting; Chen, Xue; Ma, Dongchao; Wang, Ning

    2010-12-01

    In order to resolve the P2P topology mismatch problem, a novel P2P service redirection scheme has been proposed by us and the scheme is fully described in reference. Furthermore, we have successfully implemented this mechanism in EPON system. Experimental results show that our scheme can effectively reduce core network traffic, and evidently improve clients' downloading rate.

  13. Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate.

    PubMed Central

    Lazarowski, E. R.; Watt, W. C.; Stutts, M. J.; Boucher, R. C.; Harden, T. K.

    1995-01-01

    1. The human P2U-purinoceptor was stably expressed in 1321N1 human astrocytoma cells and the pharmacological selectivity of the expressed receptor was studied by measurement of inositol lipid hydrolysis. 2. High basal levels of inositol phosphates occurred in P2U-purinoceptor-expressing cells. This phenomenon was shown to be due to release of large amounts of ATP from 1321N1 cells, and could be circumvented by adoption of an assay protocol that did not involve medium changes. 3. UTP, ATP and ATP gamma S were full and potent agonists for activation of phospholipase C with EC50 values of 140 nM, 230 nM, and 1.72 microM, respectively. 5BrUTP, 2C1ATP and 8BrATP were also full agonists although less potent than their natural congeners. Little or no effect was observed with the selective P2Y-, P2X-, and P2T-purinoceptor agonists, 2MeSATP, alpha,beta-MeATP, and 2MeSADP, respectively. 4. Diadenosine tetraphosphate, Ap4A, was a surprisingly potent agonist at the expressed P2U-purinoceptor with an EC50 (720 nM) in the range of the most potent P2U-purinoceptor agonists. Ap4A may be a physiologically important activator of P2U-purinoceptors. PMID:8564228

  14. P2CS: updates of the prokaryotic two-component systems database

    PubMed Central

    Ortet, Philippe; Whitworth, David E.; Santaella, Catherine; Achouak, Wafa; Barakat, Mohamed

    2015-01-01

    The P2CS database (http://www.p2cs.org/) is a comprehensive resource for the analysis of Prokaryotic Two-Component Systems (TCSs). TCSs are comprised of a receptor histidine kinase (HK) and a partner response regulator (RR) and control important prokaryotic behaviors. The latest incarnation of P2CS includes 164 651 TCS proteins, from 2758 sequenced prokaryotic genomes. Several important new features have been added to P2CS since it was last described. Users can search P2CS via BLAST, adding hits to their cart, and homologous proteins can be aligned using MUSCLE and viewed using Jalview within P2CS. P2CS also provides phylogenetic trees based on the conserved signaling domains of the RRs and HKs from entire genomes. HK and RR trees are annotated with gene organization and domain architecture, providing insights into the evolutionary origin of the contemporary gene set. The majority of TCSs are encoded by adjacent HK and RR genes, however, ‘orphan’ unpaired TCS genes are also abundant and identifying their partner proteins is challenging. P2CS now provides paired HK and RR trees with proteins from the same genetic locus indicated. This allows the appraisal of evolutionary relationships across entire TCSs and in some cases the identification of candidate partners for orphan TCS proteins. PMID:25324303

  15. Birdsong decreases protein levels of FoxP2, a molecule required for human speech.

    PubMed

    Miller, Julie E; Spiteri, Elizabeth; Condro, Michael C; Dosumu-Johnson, Ryan T; Geschwind, Daniel H; White, Stephanie A

    2008-10-01

    Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability. PMID:18701760

  16. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors.

    PubMed

    Mulryan, K; Gitterman, D P; Lewis, C J; Vial, C; Leckie, B J; Cobb, A L; Brown, J E; Conley, E C; Buell, G; Pritchard, C A; Evans, R J

    2000-01-01

    P2X1 receptors for ATP are ligand-gated cation channels, present on many excitable cells including vas deferens smooth muscle cells. A substantial component of the contractile response of the vas deferens to sympathetic nerve stimulation, which propels sperm into the ejaculate, is mediated through P2X receptors. Here we show that male fertility is reduced by approximately 90% in mice with a targeted deletion of the P2X1 receptor gene. Male mice copulate normally--reduced fertility results from a reduction of sperm in the ejaculate and not from sperm dysfunction. Female mice and heterozygote mice are unaffected. In P2X1-receptor-deficient mice, contraction of the vas deferens to sympathetic nerve stimulation is reduced by up to 60% and responses to P2X receptor agonists are abolished. These results show that P2X1 receptors are essential for normal male reproductive function and suggest that the development of selective P2X1 receptor antagonists may provide an effective non-hormonal male contraceptive pill. Also, agents that potentiate the actions of ATP at P2X1 receptors may be useful in the treatment of male infertility. PMID:10638758

  17. P2X receptors and their roles in astroglia in the central and peripheral nervous system.

    PubMed

    Illes, Peter; Verkhratsky, Alexei; Burnstock, Geoffrey; Franke, Heike

    2012-10-01

    Astrocytes are a class of neural cells that control homeostasis at all levels of the central and peripheral nervous system. There is a bidirectional neuron-glia interaction via a number of extracellular signaling molecules, glutamate and ATP being the most widespread. ATP activates ionotropic P2X and metabotropic P2Y receptors, which operate in both neurons and astrocytes. Morphological, biochemical, and functional evidence indicates the expression of astroglial P2X(1/5) heteromeric and P2X(7) homomeric receptors, which mediate physiological and pathophysiological responses. Activation of P2X(1/5) receptors triggers rapid increase of intracellular Na(+) that initiates immediate cellular reactions, such as the depression of the glutamate transporter to keep high glutamate concentrations in the synaptic cleft, the activation of the local lactate shuttle to supply energy substrate to pre- and postsynaptic neuronal structures, and the reversal of the Na(+)/Ca(2+) exchange resulting in additional Ca(2+) entry. The consequences of P2X(7) receptor activation are mostly but not exclusively mediated by the entry of Ca(2+) and result in reorganization of the cytoskeleton, inflammation, apoptosis/necrosis, and proliferation, usually at a prolonged time scale. Thus, astroglia detect by P2X(1/5) and P2X(7) receptors both physiological concentrations of ATP secreted from presynaptic nerve terminals and also much higher concentrations of ATP attained under pathological conditions. PMID:22013151

  18. Birdsong Decreases Protein Levels of FoxP2, a Molecule Required for Human Speech

    PubMed Central

    Miller, Julie E.; Spiteri, Elizabeth; Condro, Michael C.; Dosumu-Johnson, Ryan T.; Geschwind, Daniel H.; White, Stephanie A.

    2008-01-01

    Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability. PMID:18701760

  19. THE ETV P2 INNOVATIVE COATINGS AND COATING EQUIPMENT PROGRAM--AN UPDATE

    EPA Science Inventory

    The paper focuses on the Pollution Prevention (P2), Recycling, and Waste Treatment Systems Center of the EPA's Environmental Technology Verification (ETV) Program and, specifically, the P2 Innovating Coatings and Coating Equipment Program (CCEP) housed within the Center. The focu...

  20. Peer-to-Peer (P2P) Knowledge, Use, and Attitudes of Academic Librarians

    ERIC Educational Resources Information Center

    Hendrix, Dean

    2007-01-01

    To assess their knowledge, use, and attitudes regarding peer-to-peer (P2P) applications, this study surveyed academic librarians (n = 162) via a mail-in survey. Correlations between the sample characteristics (age, gender, year of MLS, type of library job) and P2P knowledge, use, and attitudes were also explored. Overall, academic librarians…

  1. Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain.

    PubMed

    Gu, Nan; Eyo, Ukpong B; Murugan, Madhuvika; Peng, Jiyun; Matta, Sanjana; Dong, Hailong; Wu, Long-Jun

    2016-07-01

    Microglial cells are critical in the pathogenesis of neuropathic pain and several microglial receptors have been proposed to mediate this process. Of these receptors, the P2Y12 receptor is a unique purinergic receptor that is exclusively expressed by microglia in the central nervous system (CNS). In this study, we set forth to investigate the role of P2Y12 receptors in microglial electrophysiological and morphological (static and dynamic) activation during spinal nerve transection (SNT)-induced neuropathic pain in mice. First, we found that a genetic deficiency of the P2Y12 receptor (P2Y12(-/-) mice) ameliorated pain hypersensitivities during the initiation phase of neuropathic pain. Next, we characterised both the electrophysiological and morphological properties of microglia in the superficial spinal cord dorsal horn following SNT injury. We show dramatic alterations including a peak at 3days post injury in microglial electrophysiology while high resolution two-photon imaging revealed significant changes of both static and dynamic microglial morphological properties by 7days post injury. Finally, in P2Y12(-/-) mice, these electrophysiological and morphological changes were ameliorated suggesting roles for P2Y12 receptors in SNT-induced microglial activation. Our results therefore indicate that P2Y12 receptors regulate microglial electrophysiological as well as static and dynamic microglial properties after peripheral nerve injury, suggesting that the microglial P2Y12 receptor could be a potential therapeutic target for the treatment of neuropathic pain. PMID:26576724

  2. Nociceptive transmission and modulation via P2X receptors in central pain syndrome.

    PubMed

    Kuan, Yung-Hui; Shyu, Bai-Chuang

    2016-01-01

    Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome. PMID:27230068

  3. Calendar year 1998 -- Pollution Prevention Annual Data Summary (P2ADS) guide. Final report

    SciTech Connect

    1998-09-01

    The purpose of this guide is to assist Navy and Marine Corps shore installation, CONUS and OCONUS, in preparing their Pollution Prevention Annual Data Summary (P2ADS). The P2ADS is the combined collection of solid and hazardous waste reporting as required by OPNAVINST 5090.1B.

  4. Synthesis, SAR, and Pharmacological Characterization of Brain Penetrant P2X7 Receptor Antagonists

    PubMed Central

    2015-01-01

    We describe the synthesis and SAR of 1,2,3-triazolopiperidines as a novel series of potent, brain penetrant P2X7 antagonists. Initial efforts yielded a series of potent human P2X7R antagonists with moderate to weak rodent potency, some CYP inhibition, poor metabolic stability, and low solubility. Further work in this series, which focused on the SAR of the N-linked heterocycle, not only increased the potency at the human P2X7R but also provided compounds with good potency at the rat P2X7R. These efforts eventually delivered a potent rat and human P2X7R antagonist with good physicochemical properties, an excellent pharmacokinetic profile, good partitioning into the CNS, and demonstrated in vivo target engagement after oral dosing. PMID:26101572

  5. An anti-attack model based on complex network theory in P2P networks

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Lu, Songnian; Zhao, Dandan; Zhang, Aixin; Li, Jianhua

    2012-04-01

    Complex network theory is a useful way to study many real systems. In this paper, an anti-attack model based on complex network theory is introduced. The mechanism of this model is based on a dynamic compensation process and a reverse percolation process in P2P networks. The main purpose of the paper is: (i) a dynamic compensation process can turn an attacked P2P network into a power-law (PL) network with exponential cutoff; (ii) a local healing process can restore the maximum degree of peers in an attacked P2P network to a normal level; (iii) a restoring process based on reverse percolation theory connects the fragmentary peers of an attacked P2P network together into a giant connected component. In this way, the model based on complex network theory can be effectively utilized for anti-attack and protection purposes in P2P networks.

  6. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  7. Design and Implementation of P2P Streaming Systems for Webcast

    NASA Astrophysics Data System (ADS)

    Gotoh, Yusuke; Suzuki, Kentaro; Yoshihisa, Tomoki; Kanazawa, Masanori

    Due to the recent spread of different styles of watching movies, streaming using Peer-to-Peer (P2P) technology has attracted great attention. In P2P streaming systems, to distribute the network load, since peers from which the user receives data are selected at random, clients have to wait until their desired data are delivered. Therefore, many researches are attempting to reduce the waiting time. However, due to the complexity of implementation, they usually evaluate these methods using machine simulations. In actual environments, interruption time is not always reduced by increasing the number of clients who deliver data. To evaluate the availability of P2P streaming systems, implementing a P2P streaming system is crucial. In this paper, we design and implement a P2P streaming system. With our implemented system, we consider situations in which the proposed system is effective.

  8. Convergence of Internet and TV: The Commercial Viability of P2P Content Delivery

    NASA Astrophysics Data System (ADS)

    de Boever, Jorn

    The popularity of (illegal) P2P (peer-to-peer) file sharing has a disruptive impact on Internet traffic and business models of content providers. In addition, several studies have found an increasing demand for bandwidth consuming content, such as video, on the Internet. Although P2P systems have been put forward as a scalable and inexpensive model to deliver such content, there has been relatively little economic analysis of the potentials and obstacles of P2P systems as a legal and commercial content distribution model. Many content providers encounter uncertainties regarding the adoption or rejection of P2P networks to spread content over the Internet. The recent launch of several commercial, legal P2P content distribution platforms increases the importance of an integrated analysis of the Strengths, Weaknesses, Opportunities and Threats (SWOT).

  9. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. PMID:23387322

  10. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves.

    PubMed

    Faroni, A; Smith, R J P; Procacci, P; Castelnovo, L F; Puccianti, E; Reid, A J; Magnaghi, V; Verkhratsky, A

    2014-10-01

    Adenosine-5'-triphosphate, the physiological ligand of P2X receptors, is an important factor in peripheral nerve development. P2X7 receptor is expressed in Schwann cells (SCs), but the specific effects of P2X7 purinergic signaling on peripheral nerve development, myelination, and function are largely unknown. In this study, sciatic nerves from P2X7 knockout mice were analyzed for altered expression of myelin-associated proteins and for alterations in nerve morphology. Immunohistochemical analyses revealed that, in the wild-type peripheral nerves, the P2X7 receptor was localized mainly in myelinating SCs, with only a few immunopositive nonmyelinating SCs. Complete absence of P2X7 receptor protein was confirmed in the sciatic nerves of the knockout mice by Western blot and immunohistochemistry. Western blot analysis revealed that expression levels of the myelin proteins protein zero and myelin-associated glycoprotein are reduced in P2X7 knockout nerves. In accordance with the molecular results, transmission electron microscopy analyses revealed that P2X7 knockout nerves possess significantly more unmyelinated axons, contained in a higher number of Remak bundles. The myelinating/nonmyelinating SC ratio was also decreased in knockout mice, and we found a significantly increased number of irregular fibers compared with control nerves. Nevertheless, the myelin thickness in the knockout was unaltered, suggesting a stronger role for P2X7 in determining SC maturation than in myelin formation. In conclusion, we present morphological and molecular evidence of the importance of P2X7 signaling in peripheral nerve maturation and in determining SC commitment to a myelinating phenotype. PMID:24903685

  11. Luminescent nitridophosphates CaP2 N4 :Eu(2+) , SrP2 N4 :Eu(2+) , BaP2 N4 :Eu(2+) , and BaSr2 P6 N12 :Eu(2.).

    PubMed

    Pucher, Florian J; Marchuk, Alexey; Schmidt, Peter J; Wiechert, Detlef; Schnick, Wolfgang

    2015-04-20

    Nitridophosphates MP2 N4 :Eu(2+) (M=Ca, Sr, Ba) and BaSr2 P6 N12 :Eu(2+) have been synthesized at elevated pressures and 1100-1300 °C starting from the corresponding azides and P3 N5 with EuCl2 as dopant. Addition of NH4 Cl as mineralizer allowed for the growth of single crystals. This led to the successful structure elucidation of a highly condensed nitridophosphate from single-crystal X-ray diffraction data (CaP2 N4 :Eu(2+) (P63 , no. 173), a=16.847(2), c=7.8592(16) Å, V=1931.7(6) Å(3) , Z=24, 2033 observed reflections, 176 refined parameters, wR2 =0.096). Upon excitation by UV light, luminescence due to parity-allowed 4f(6) ((7) F)5d(1) →4f(7) ((8) S7/2 ) transition was observed in the orange (CaP2 N4 :Eu(2+) , λmax =575 nm), green (SrP2 N4 :Eu(2+) , λmax =529 nm), and blue regions of the visible spectrum (BaSr2 P6 N12 :Eu(2+) and BaP2 N4 :Eu(2+) , λmax =450 and 460 nm, respectively). Thus, the emission wavelength decreases with increasing ionic radius of the alkaline-earth ions. The corresponding full width at half maximum values (2240-2460 cm(-1) ) are comparable to those of other known Eu(2+) -doped (oxo)nitrides emitting in the same region of the visible spectrum. Following recently described quaternary Ba3 P5 N10 Br:Eu(2+) , this investigation represents the first report on the luminescence of Eu(2+) -doped ternary nitridophosphates. Similarly to nitridosilicates and related oxonitrides, Eu(2+) -doped nitridophosphates may have the potential to be further developed into efficient light-emitting diode phosphors. PMID:25765825

  12. Age-related changes in p2 odorant receptor mapping in the olfactory bulb.

    PubMed

    Costanzo, Richard M; Kobayashi, Masayoshi

    2010-06-01

    The ability to identify odors is dependent on the spatial mapping of odorant receptors onto fixed positions within the olfactory bulb. In elderly adults, odor identification and discrimination is often impaired. The objective of this study was to determine if there are age-related changes in odorant receptor mapping. We studied 8 groups of mice ranging in age from 2 weeks to 2.5 years and mapped the projection of P2 odorant receptors onto targeted glomeruli within medial and lateral domains of the olfactory bulb. A total of 60 mice were used to measure the number of P2 glomeruli, bulb length, the position of each glomerulus, and the amount of P2 axons targeting each glomerulus. We found that over 70% of olfactory bulbs contained multiple P2 glomeruli, bulb length increased 42% between the ages of 2 and 13 weeks, and the position of P2 glomeruli shifted with bulb growth. In most cases, targeted glomeruli were either completely or partially filled with P2 axons. In some cases, targeting was diffuse, with glomeruli receiving only a few stray P2-labeled axons. The frequency of diffuse targeting was rare (<4%) in adult mice 3-6 months in age. However, significant increases in diffuse targeting were observed in older mice, reaching 10% at 1 year and 22% at 2 years of age. These findings suggest that odorant receptor mapping becomes more disrupted in old age and could account for impaired olfactory function in elderly adults. PMID:20231263

  13. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+

    PubMed Central

    Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.

    2013-01-01

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888

  14. P2Y12 expression and function in alternatively activated human microglia

    PubMed Central

    Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.

    2015-01-01

    Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS. PMID:25821842

  15. P2P Technology for High-Performance Computing: An Overview

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J. (Technical Monitor); Berry, Jason

    2003-01-01

    The transition from cluster computing to peer-to-peer (P2P) high-performance computing has recently attracted the attention of the computer science community. It has been recognized that existing local networks and dedicated clusters of headless workstations can serve as inexpensive yet powerful virtual supercomputers. It has also been recognized that the vast number of lower-end computers connected to the Internet stay idle for as long as 90% of the time. The growing speed of Internet connections and the high availability of free CPU time encourage exploration of the possibility to use the whole Internet rather than local clusters as massively parallel yet almost freely available P2P supercomputer. As a part of a larger project on P2P high-performance computing, it has been my goal to compile an overview of the 2P2 paradigm. I have studied various P2P platforms and I have compiled systematic brief descriptions of their most important characteristics. I have also experimented and obtained hands-on experience with selected P2P platforms focusing on those that seem promising with respect to P2P high-performance computing. I have also compiled relevant literature and web references. I have prepared a draft technical report and I have summarized my findings in a poster paper.

  16. Escherichia coli K-12 and B contain functional bacteriophage P2 ogr genes.

    PubMed Central

    Slettan, A; Gebhardt, K; Kristiansen, E; Birkeland, N K; Lindqvist, B H

    1992-01-01

    The bacteriophage P2 ogr gene encodes an essential 72-amino-acid protein which acts as a positive regulator of P2 late transcription. A P2 ogr deletion phage, which depends on the supply of Ogr protein in trans for lytic growth on Escherichia coli C, has previously been constructed. E. coli B and K-12 were found to support the growth of the ogr-defective P2 phage because of the presence of functional ogr genes located in cryptic P2-like prophages in these strains. The cryptic ogr genes were cloned and sequenced. Compared with the P2 wild-type ogr gene, the ogr genes in the B and K-12 strains are conserved, containing mostly silent base substitutions. One of the base substitutions in the K-12 ogr gene results in replacement of an alanine with valine at position 57 in the Ogr protein but does not seem to affect the function of Ogr as a transcriptional activator. The cryptic ogr genes are constitutively transcribed, apparently at a higher level than the wild-type ogr gene in a P2 lysogen. Images PMID:1597424

  17. Modulating P2X7 Receptor Signaling during Rheumatoid Arthritis: New Therapeutic Approaches for Bisphosphonates.

    PubMed

    Baroja-Mazo, Alberto; Pelegrín, Pablo

    2012-01-01

    P2X7 receptor-mediated purinergic signaling is a well-known mechanism involved in bone remodeling. The P2X7 receptor has been implicated in the pathophysiology of various bone and cartilage diseases, including rheumatoid arthritis (RA), a widespread and complex chronic inflammatory disorder. The P2X7 receptor induces the release into the synovial fluid of the proinflammatory factors (e.g., interleukin-1β, prostaglandins, and proteases) responsible for the clinical symptoms of RA. Thus, the P2X7 receptor is emerging as a novel anti-inflammatory therapeutic target, and various selective P2X7 receptor antagonists are under clinical trials. Extracellular ATP signaling acting through the P2X7 receptor is a complex and dynamic scenario, which varies over the course of inflammation. This signaling is partially modulated by the activity of ectonucleotidases, which degrade extracellular ATP to generate other active molecules such as adenosine or pyrophosphates. Recent evidence suggests differential extracellular metabolism of ATP during the resolution of inflammation to generate pyrophosphates. Extracellular pyrophosphate dampens proinflammatory signaling by promoting alternative macrophage activation. Our paper shows that bisphosphonates are metabolically stable pyrophosphate analogues that are able to mimic the anti-inflammatory function of pyrophosphates. Bisphosphonates are arising per se as promising anti-inflammatory drugs to treat RA, and this therapy could be improved when administrated in combination with P2X7 receptor antagonists. PMID:22830074

  18. Saffron reduces ATP-induced retinal cytotoxicity by targeting P2X7 receptors.

    PubMed

    Corso, Lucia; Cavallero, Anna; Baroni, Debora; Garbati, Patrizia; Prestipino, Gianfranco; Bisti, Silvia; Nobile, Mario; Picco, Cristiana

    2016-03-01

    P2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD). Experimental studies demonstrated that saffron protects photoreceptors from light-induced damage preserving both retinal morphology and visual function and improves retinal flicker sensitivity in AMD patients. To evaluate a possible interaction between saffron and P2X7 receptors (P2X7Rs), different cellular models and experimental approaches were used. We found that saffron positively influences the viability of mouse primary retinal cells and photoreceptor-derived 661W cells exposed to ATP, and reduced the ATP-induced intracellular calcium increase in 661W cells. Similar results were obtained on HEK cells transfected with recombinant rat P2X7R but not on cells transfected with rat P2X2R. Finally, patch-clamp experiments showed that saffron inhibited cationic currents in HEK-P2X7R cells. These results point out a novel mechanism through which saffron may exert its protective role in neurodegeneration and support the idea that P2X7-mediated calcium signaling may be a crucial therapeutic target in the treatment of neurodegenerative diseases. PMID:26739703

  19. Behavior-Linked FoxP2 Regulation Enables Zebra Finch Vocal Learning

    PubMed Central

    Heston, Jonathan B.

    2015-01-01

    Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. PMID:25698728

  20. The role of P2Y1 receptor signaling in central respiratory control.

    PubMed

    Rajani, V; Zhang, Y; Revill, A L; Funk, G D

    2016-06-01

    The profile of P2 receptor signaling in respiratory control has increased substantially since the first suggestions more than 15 years ago of roles in central chemoreception and modulating inspiratory motor outflow. Part of this reflects the paradigm shift that glia participate in information processing and that ATP is a major gliotransmitter. P2 receptors are a diverse family. Here, we review ATP signaling in respiratory control, highlighting G-protein coupled P2Y1 receptors that have been a focus of recent work. Despite strong evidence of a role for glia and P2 receptor signaling in the central chemosensitivity mediated by the retotrapezoid nucleus, P2Y1 receptors do not appear to be directly involved. Evidence that central P2 receptors and glia contribute to the hypoxic ventilatory response is compelling and P2Y1 receptors are the strongest candidate. However, functional significance in vivo, details of the signaling pathways and involvement of other receptor subtypes remain important questions. PMID:26476057

  1. Behavior-linked FoxP2 regulation enables zebra finch vocal learning.

    PubMed

    Heston, Jonathan B; White, Stephanie A

    2015-02-18

    Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. PMID:25698728

  2. Evidence for two P2-purinoceptor subtypes in human small pulmonary arteries.

    PubMed Central

    Liu, S. F.; McCormack, D. G.; Evans, T. W.; Barnes, P. J.

    1989-01-01

    1. P2-purinoceptors have not been characterized in human pulmonary vessels and we therefore examined the effects of adenosine 5'-triphosphate (ATP) and its analogues on human isolated small pulmonary arteries (SPA) in vitro. 2. Contractile responses were induced by all of the analogues, with the rank order of potency alpha,beta-methylene-ATP (alpha,beta-meATP) = beta,gamma-methylene-ATP (beta,gamma-meATP) greater than ATP greater than 2-methylthio-ATP, indicating the presence of vasoconstrictor P2x receptors. 3. In precontracted SPA, vasodilator responses were produced by all of the analogues. The rank order of potency for the analogues causing vasodilator responses was: 2-methylthio-ATP much greater than ATP much greater than beta,gamma-meATP = alpha,beta-meATP, indicating a vasodilator P2y receptor. 4. Removal of endothelial cells had no significant effect on either the contractile or relaxant responses to any of the analogues. 5. After pretreatment of the endothelium-denuded vessels with alpha,beta-meATP (to desensitize P2x receptors), the contractile response to beta,gamma-meATP (a potent P2x receptor agonist) was abolished. 6. We conclude that both P2x- and P2y-purinoceptors are present in human SPA and that both receptors reside on the vascular smooth muscle. PMID:2590768

  3. P2X7 Deficiency Attenuates Renal Injury in Experimental Glomerulonephritis

    PubMed Central

    Taylor, Simon R.J.; Turner, Clare M.; Elliott, James I.; McDaid, John; Hewitt, Reiko; Smith, Jennifer; Pickering, Matthew C.; Whitehouse, Darren L.; Cook, H. Terence; Burnstock, Geoffrey; Pusey, Charles D.; Unwin, Robert J.; Tam, Frederick W.K.

    2009-01-01

    The P2X7 receptor is a ligand-gated cation channel that is normally expressed by a variety of immune cells, including macrophages and lymphocytes. Because it leads to membrane blebbing, release of IL-1β, and cell death by apoptosis or necrosis, it is a potential therapeutic target for a variety of inflammatory diseases. Although the P2X7 receptor is usually not detectable in normal renal tissue, we previously reported increased expression of both mRNA and protein in mesangial cells and macrophages infiltrating the glomeruli in animal models of antibody-mediated glomerulonephritis. In this study, we used P2X7-knockout mice in the same experimental model of glomerulonephritis and found that P2X7 deficiency was significantly renoprotective compared with wild-type controls, evidenced by better renal function, a striking reduction in proteinuria, and decreased histologic glomerular injury. In addition, the selective P2X7 antagonist A-438079 prevented the development of antibody-mediated glomerulonephritis in rats. These results support a proinflammatory role for P2X7 in immune-mediated renal injury and suggest that the P2X7 receptor is a potential therapeutic target. PMID:19389853

  4. Striatal FoxP2 Is Actively Regulated during Songbird Sensorimotor Learning

    PubMed Central

    Teramitsu, Ikuko; Poopatanapong, Amy; Torrisi, Salvatore; White, Stephanie A.

    2010-01-01

    Background Mutations in the FOXP2 transcription factor lead to language disorders with developmental onset. Accompanying structural abnormalities in cortico-striatal circuitry indicate that at least a portion of the behavioral phenotype is due to organizational deficits. We previously found parallel FoxP2 expression patterns in human and songbird cortico/pallio-striatal circuits important for learned vocalizations, suggesting that FoxP2's function in birdsong may generalize to speech. Methodology/Principal Findings We used zebra finches to address the question of whether FoxP2 is additionally important in the post-organizational function of these circuits. In both humans and songbirds, vocal learning depends on auditory guidance to achieve and maintain optimal vocal output. We tested whether deafening prior to or during the sensorimotor phase of song learning disrupted FoxP2 expression in song circuitry. As expected, the songs of deafened juveniles were abnormal, however basal FoxP2 levels were unaffected. In contrast, when hearing or deaf juveniles sang for two hours in the morning, FoxP2 was acutely down-regulated in the striatal song nucleus, area X. The extent of down-regulation was similar between hearing and deaf birds. Interestingly, levels of FoxP2 and singing were correlated only in hearing birds. Conclusions/Significance Hearing appears to link FoxP2 levels to the amount of vocal practice. As juvenile birds spent more time practicing than did adults, their FoxP2 levels are likely to be low more often. Behaviorally-driven reductions in the mRNA encoding this transcription factor could ultimately affect downstream molecules that function in vocal exploration, especially during sensorimotor learning. PMID:20062527

  5. Glucose transporter 2 expression is down regulated following P2X7 activation in enterocytes.

    PubMed

    Bourzac, Jean-François; L'Ériger, Karine; Larrivée, Jean-François; Arguin, Guillaume; Bilodeau, Maude S; Stankova, Jana; Gendron, Fernand-Pierre

    2013-01-01

    With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two-thirds of villi. These data suggest a different role for this receptor in IECs. Using the non-cancerous IEC-6 cells and differentiated Caco-2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7-induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7-dependent Glut2 internalization involved the calcium-independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption. PMID:22566162

  6. P2Y2 receptor-mediated lymphotoxin-α secretion regulates intercellular cell adhesion molecule-1 expression in vascular smooth muscle cells.

    PubMed

    Seye, Cheikh I; Agca, Yuksel; Agca, Cansu; Derbigny, Wilbert

    2012-03-23

    The proinflammatory cytokine lymphotoxin-α (LTA) is thought to contribute to the pathogenesis of atherosclerosis. However, the mechanisms that regulate its expression in vascular smooth muscle cells (VSMC) are poorly understood. The ability of exogenous nucleotides to stimulate LTA production was evaluated in VSMC by ELISA. The P2Y(2) nucleotide receptor (P2Y(2)R) agonist UTP stimulates a strong and sustained release of LTA from WT but not P2Y(2)R(-/-) SMC. Assessment of LTA gene transcription by LTA promoter-luciferase construct indicated that LTA levels are controlled at the level of transcription. We show using RNAi techniques that knockdown of the actin-binding protein filamin-A (FLNa) severely impaired nucleotide-induced Rho activation and consequent Rho-mediated LTA secretion. Reintroduction of FLNa in FLNa RNAi SMC rescued UTP-induced LTA expression. In addition, we found that UTP-stimulated LTA secretion is not sensitive to brefeldin A, which blocks the formation of vesicles involved in protein transport from the endoplasmic reticulum to the Golgi apparatus, suggesting that P2Y(2)R/filamin-mediated secretion of LTA is independent of the endoplasmic reticulum/Golgi secretory vesicle route. Furthermore, UTP selectively induces ICAM-1 expression in WT but not SMC expressing a truncated P2Y(2)R deficient in LTA secretion. These data suggest that P2Y(2)R recruits FLNa to provide a cytoskeletal scaffold necessary for Rho signaling pathway upstream of LTA release and subsequent stimulation of ICAM-1 expression on vascular smooth muscle cells. PMID:22298782

  7. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice.

    PubMed

    Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B; Goldstein, Joyce; Mason, Ronald P

    2012-05-01

    While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms. PMID:22343416

  8. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation

    PubMed Central

    Kim, Jiwook; Kim, Bokyoum; Kim, Joowon; Shin, Yusom; Kim, Judeok; Ryu, Siejeong; Yang, Yu-Mi

    2016-01-01

    Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca2+ signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases. PMID:27034593

  9. Pharmacological and molecular characterization of P2X receptors in rat pelvic ganglion neurons

    PubMed Central

    Zhong, Yu; Dunn, Philip M; Xiang, Zhenghua; Bo, Xuenong; Burnstock, Geoffrey

    1998-01-01

    The presence and characteristics of P2X receptors on neurons of the rat major pelvic ganglia (MPG) have been studied using whole cell voltage-clamp, in situ hybridization and immunohistochemistry.Rapid application of ATP (100 μM) to isolated rat MPG neurons induced moderately large inward currents (0.33–5.3 nA) in 39% of cells (108/277). The response to ATP occurred very rapidly, with an increase in membrane conductance, and desensitized slowly.The concentration-response curve for ATP yielded an EC50 of 58.9 μM. The agonist profile was ATP⩾2MeSATP=ATPγS>BzATP, while α,β-MeATP, β,γ-MeATP, UTP and ADP were all inactive at concentrations up to 100 μM.The response to ATP was antagonized by suramin (pA2=5.6), reactive blue-2 (IC50=0.7 μM) and pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS).Lowering the pH from 7.4 to 6.8 produced a marked potentiation (to 339% of control) of the responses to ATP (30 μM), while raising the pH to 8.0 attenuated the responses (to 20% of control). The EC50s for ATP were 28.8, 58.9 and 264 μM at pH 6.8, 7.4 and 8.0, respectively.Co-application of ATP with Zn2+ produced a marked enhancement of the responses to ATP, with an EC50 of 9.55 μM. In the presence of Zn2+ (30 μM), the EC50 for ATP was decreased to 4.57 μM.In situ hybridization revealed that the P2X receptor transcripts levels in rat MPG neurons are P2X2>P2X4>P2X1, P2X3, P2X5 and P2X6. The immunohistochemical staining revealed a small number of neurons with strong P2X2 immunoreactivity.In conclusion, our results indicate that there are P2X receptors present on MPG neurons. The pharmacological characteristics of these receptors, the in situ hybridization and immunohistochemical evidence are consistent with them being of the P2X2 subtype, or heteromultimers, with P2X2 being the dominant component. PMID:9831914

  10. A Prognostic Method for Scheduling Maintenance on the P2- Marx Modulator

    SciTech Connect

    Benwell, Andrew; Burkhart, Craig; Kemp, Mark; Macken, Koen; Nguyen, Minh; MacNair, Dave; Olsen, Jeff; Larsen, Ray; /SLAC

    2010-06-10

    The SLAC National Accelerator Laboratory is developing a second generation Marx-type modulator for the ILC, the P2-Marx. The modulator is expected to operate reliably in excess of 10{sup 5} hours with minimum downtime. A prognostic system is being implemented with the development of the P2-Marx to monitor and track the health of key high voltage components. This paper discusses the way in which the prognostic system will be implemented and used to monitor the health of the P2-Marx modulator.

  11. Aneurysms of the P2P Segment of Posterior Cerebral Artery: Case Report and Surgical Steps.

    PubMed

    Aguiar, Paulo; Gatto, Luana; Neves, Maick; Martins, Carlos; Nakasone, Fabio; Isolan, Gustavo

    2014-01-01

    The posterior cerebral artery (PCA) is divided into 4 segments: precommunicating segment (P1), postcommunicating segment (P2), quadrigeminal segment (P3), and calcarine segment (P4). Small aneurysms are more prevalent than large aneurysms in patients with ruptured aneurysms. P2 and P3 aneurysms are usually managed by the subtemporal approach. This is a case report of rupture saccular aneurysm of posterior cerebral artery on P2P segment. The authors show the surgical steps of these rare aneurysms with an illustrative case. PMID:25548571

  12. Aneurysms of the P2P Segment of Posterior Cerebral Artery: Case Report and Surgical Steps

    PubMed Central

    Aguiar, Paulo; Neves, Maick; Martins, Carlos; Nakasone, Fabio; Isolan, Gustavo

    2014-01-01

    The posterior cerebral artery (PCA) is divided into 4 segments: precommunicating segment (P1), postcommunicating segment (P2), quadrigeminal segment (P3), and calcarine segment (P4). Small aneurysms are more prevalent than large aneurysms in patients with ruptured aneurysms. P2 and P3 aneurysms are usually managed by the subtemporal approach. This is a case report of rupture saccular aneurysm of posterior cerebral artery on P2P segment. The authors show the surgical steps of these rare aneurysms with an illustrative case. PMID:25548571

  13. Research of trust model in P2P network based on trusted computing

    NASA Astrophysics Data System (ADS)

    Li, Rong; Li, Lei

    2013-03-01

    In order to strengthen the security of P2P networks, it is necessary to build trust relationships between nodes of networks. However, the traditional trust evaluation models can't resist the attacks of Pseudospoofing and Pseudostheft effectively. To resolve the problems, in this paper, the trusted computing method is introduced into P2P networks, and an idea of group trust model based on trusted computing methods is proposed. In the process of trust evaluation, the model can realize the anonymous attestation of the node body, which improves the creditability of trust relationships between nodes and resolves the security problems of P2P networks.

  14. Electronic Structure and Phase Transition in Ferroelectic Sn2P2S6 Crystal

    PubMed Central

    Glukhov, Konstantin; Fedyo, Kristina; Banys, Juras; Vysochanskii, Yulian

    2012-01-01

    An analysis of the P2S6 cluster electronic structure and its comparison with the crystal valence band in the paraelectric and ferroelectric phases has been done by first-principles calculations for Sn2P2S6 ferroelectrics. The origin of ferroelectricity has been outlined. It was established that the spontaneous polarization follows from the stereochemical activity of the electron lone pair of tin cations, which is determined by hybridization with P2S6 molecular orbitals. The chemical bonds covalence increase and rearrangement are related to the valence band changes at transition from the paraelectric phase to the ferroelectric phase. PMID:23203069

  15. Diversity of the P2 protein among nontypeable Haemophilus influenzae isolates.

    PubMed Central

    Bell, J; Grass, S; Jeanteur, D; Munson, R S

    1994-01-01

    The genes for outer membrane protein P2 of four nontypeable Haemophilus influenzae strains were cloned and sequenced. The derived amino acid sequences were compared with the outer membrane protein P2 sequence from H. influenzae type b MinnA and the sequences of P2 from three additional nontypeable H. influenzae strains. The sequences were 76 to 94% identical. The sequences had regions with considerable variability separated by regions which were highly conserved. The variable regions mapped to putative surface-exposed loops of the protein. PMID:8188390

  16. New P2X3 receptor antagonists. Part 1: Discovery and optimization of tricyclic compounds.

    PubMed

    Szántó, Gábor; Makó, Attila; Bata, Imre; Farkas, Bence; Kolok, Sándor; Vastag, Mónika; Cselenyák, Attila

    2016-08-15

    Purinergic P2X3 receptors are trimeric ligand-gated ion channels whose antagonism is an appealing yet challenging and not fully validated drug development idea. With the aim of identification of an orally active, potent human P2X3 receptor antagonist compound that can penetrate the central nervous system, the compound collection of Gedeon Richter was screened. A hit series of tricyclic compounds was subjected to a rapid, two-step optimization process focusing on increasing potency, improving metabolic stability and CNS penetrability. Attempts resulted in compound 65, a potential tool compound for testing P2X3 inhibitory effects in vivo. PMID:27423478

  17. New P2X3 receptor antagonists. Part 2: Identification and SAR of quinazolinones.

    PubMed

    Szántó, Gábor; Makó, Attila; Vágó, István; Hergert, Tamás; Bata, Imre; Farkas, Bence; Kolok, Sándor; Vastag, Mónika

    2016-08-15

    Numerous potent P2X3 antagonists have been discovered and the therapeutic potential of P2X3 antagonism already comprises proof-of-concept data obtained in clinical trials with the most advanced compound. We have lately reported the discovery and optimization of thia-triaza-tricycle compounds with potent P2X3 antagonistic properties. This Letter describes the SAR of a back-up series containing a 4-oxo-quinazoline central ring. The discovery of the highly potent compounds 51 is presented. PMID:27426300

  18. [Effect of P2X7 receptor knock-out on bone cancer pain in mice].

    PubMed

    Zhao, Xin; Liu, Hui-Zhu; Zhang, Yu-Qiu

    2016-06-25

    Cancer pain is one of the most common symptoms in patients with late stage cancer. Lung, breast and prostate carcinoma are the most common causes of pain from osseous metastasis. P2X7 receptor (P2X7R) is one of the subtypes of ATP-gated purinergic ion channel family, predominately distributed in microglia in the spinal cord. Activation of P2X7Rs in the spinal dorsal horn has been associated with release of proinflammatory cytokines from glial cells, causing increased neuronal excitability and exaggerated nociception. Mounting evidence implies a critical role of P2X7R in inflammatory and neuropathic pain. However, whether P2X7R is involved in cancer pain remains controversial. Here we established a bone cancer pain model by injecting the Lewis lung carcinoma cells into the femur bone marrow cavity of C57BL/6J wild-type mice (C57 WT mice) and P2X7R knockout mice (P2rx7(-/-) mice) to explore the role of P2X7R in bone cancer pain. Following intrafemur carcinoma inoculation, robust mechanical allodynia and thermal hyperalgesia in C57 WT mice were developed on day 7 and 14, respectively, and persisted for at least 28 days in the ipsilateral hindpaw of the affected limb. CatWalk gait analysis showed significant decreases in the print area and stand phase, and a significant increase in swing phase in the ipsilateral hindpaw on day 21 and 28 after carcinoma cells inoculation. Histopathological sections (hematoxylin and eosin stain) showed that the bone marrow of the affected femur was largely replaced by invading tumor cells, and the femur displayed medullary bone loss and bone destruction on day 28 after inoculation. Unexpectedly, no significant changes in bone cancer-induced hypersensitivity of pain behaviors were found in P2rx7(-/-) mice, and the changes of pain-related values in CatWalk gait analysis even occurred earlier in P2rx7(-/-) mice, as compared with C57 WT mice. Together with our previous study in rats that blockade of P2X7R significantly alleviated bone cancer

  19. ALIX Regulates the Ubiquitin-Independent Lysosomal Sorting of the P2Y1 Purinergic Receptor via a YPX3L Motif

    PubMed Central

    Dores, Michael R.; Grimsey, Neil J.; Mendez, Francisco; Trejo, JoAnn

    2016-01-01

    Endocytic sorting and lysosomal degradation are integral to the regulation of G protein-coupled receptor (GPCR) function. Upon ligand binding, classical GPCRs are activated, internalized and recycled or sorted to lysosomes for degradation, a process that requires receptor ubiquitination. However, recent studies have demonstrated that numerous GPCRs are sorted to lysosomes independent of receptor ubiquitination. Here, we describe an ubiquitin-independent lysosomal sorting pathway for the purinergic GPCR P2Y1. After activation, P2Y1 sorts to lysosomes for degradation independent of direct ubiquitination that is mediated by a YPX3L motif within the second intracellular loop that serves as a binding site for the adaptor protein ALIX. Depletion of ALIX or site-directed mutation of the YPX3L motif inhibits P2Y1 sorting into the lumen of multivesicular endosomes/lysosomes and degradation. These findings confirm the function of YPX3L motifs as lysosomal targeting sequences for GPCRs and demonstrate that ALIX mediates the ubiquitin-independent degradation of certain GPCRs. PMID:27301021

  20. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    PubMed

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM. PMID:27289560

  1. Characterization of PROPPIN-Phosphoinositide Binding and Role of Loop 6CD in PROPPIN-Membrane Binding

    PubMed Central

    Busse, Ricarda A.; Scacioc, Andreea; Krick, Roswitha; Pérez-Lara, Ángel; Thumm, Michael; Kühnel, Karin

    2015-01-01

    PROPPINs (β-propellers that bind polyphosphoinositides) are a family of PtdIns3P- and PtdIns(3,5)P2-binding proteins that play an important role in autophagy. We analyzed PROPPIN-membrane binding through isothermal titration calorimetry (ITC), stopped-flow measurements, mutagenesis studies, and molecular dynamics (MD) simulations. ITC measurements showed that the yeast PROPPIN family members Atg18, Atg21, and Hsv2 bind PtdIns3P and PtdIns(3,5)P2 with high affinities in the nanomolar to low-micromolar range and have two phosphoinositide (PIP)-binding sites. Single PIP-binding site mutants have a 15- to 30-fold reduced affinity, which explains the requirement of two PIP-binding sites in PROPPINs. Hsv2 bound small unilamellar vesicles with a higher affinity than it bound large unilamellar vesicles in stopped-flow measurements. Thus, we conclude that PROPPIN membrane binding is curvature dependent. MD simulations revealed that loop 6CD is an anchor for membrane binding, as it is the region of the protein that inserts most deeply into the lipid bilayer. Mutagenesis studies showed that both hydrophobic and electrostatic interactions are required for membrane insertion of loop 6CD. We propose a model for PROPPIN-membrane binding in which PROPPINs are initially targeted to membranes through nonspecific electrostatic interactions and are then retained at the membrane through PIP binding. PMID:25954880

  2. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy

    PubMed Central

    Wang, Huan; Hong, Ling-Juan; Huang, Ji-Yun; Jiang, Quan; Tao, Rong-Rong; Tan, Chao; Lu, Nan-Nan; Wang, Cheng-Kun; Ahmed, Muhammad M; Lu, Ying-Mei; Liu, Zhi-Rong; Shi, Wei-Xing; Lai, En-Yin; Wilcox, Christopher S; Han, Feng

    2015-01-01

    Septic encephalopathy (SE) is a critical factor determining sepsis mortality. Vascular inflammation is known to be involved in SE, but the molecular events that lead to the development of encephalopathy remain unclear. Using time-lapse in vivo two-photon laser scanning microscopy, we provide the first direct evidence that cecal ligation and puncture in septic mice induces microglial trafficking to sites adjacent to leukocyte adhesion on inflamed cerebral microvessels. Our data further demonstrate that septic injury increased the chemokine CXCL1 level in brain endothelial cells by activating endothelial P2RX7 and eventually enhanced the binding of Mac-1 (CD11b/CD18)-expressing leukocytes to endothelial ICAM-1. In turn, leukocyte adhesion upregulated endothelial CX3CL1, thereby triggering microglia trafficking to the injured site. The sepsis-induced increase in endothelial CX3CL1 was abolished in CD18 hypomorphic mutant mice. Inhibition of the P2RX7 pathway not only decreased endothelial ICAM-1 expression and leukocyte adhesion but also prevented microglia overactivation, reduced brain injury, and consequently doubled the early survival of septic mice. These results demonstrate the role of the P2RX7 pathway in linking neurovascular inflammation to brain damage in vivo and provide a rationale for targeting endothelial P2RX7 for neurovascular protection during SE. PMID:25998681

  3. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy.

    PubMed

    Wang, Huan; Hong, Ling-Juan; Huang, Ji-Yun; Jiang, Quan; Tao, Rong-Rong; Tan, Chao; Lu, Nan-Nan; Wang, Cheng-Kun; Ahmed, Muhammad M; Lu, Ying-Mei; Liu, Zhi-Rong; Shi, Wei-Xing; Lai, En-Yin; Wilcox, Christopher S; Han, Feng

    2015-06-01

    Septic encephalopathy (SE) is a critical factor determining sepsis mortality. Vascular inflammation is known to be involved in SE, but the molecular events that lead to the development of encephalopathy remain unclear. Using time-lapse in vivo two-photon laser scanning microscopy, we provide the first direct evidence that cecal ligation and puncture in septic mice induces microglial trafficking to sites adjacent to leukocyte adhesion on inflamed cerebral microvessels. Our data further demonstrate that septic injury increased the chemokine CXCL1 level in brain endothelial cells by activating endothelial P2RX7 and eventually enhanced the binding of Mac-1 (CD11b/CD18)-expressing leukocytes to endothelial ICAM-1. In turn, leukocyte adhesion upregulated endothelial CX3CL1, thereby triggering microglia trafficking to the injured site. The sepsis-induced increase in endothelial CX3CL1 was abolished in CD18 hypomorphic mutant mice. Inhibition of the P2RX7 pathway not only decreased endothelial ICAM-1 expression and leukocyte adhesion but also prevented microglia overactivation, reduced brain injury, and consequently doubled the early survival of septic mice. These results demonstrate the role of the P2RX7 pathway in linking neurovascular inflammation to brain damage in vivo and provide a rationale for targeting endothelial P2RX7 for neurovascular protection during SE. PMID:25998681

  4. Dispersion of Phonon Surface Polaritons in ZnGeP2: Anisotropy and Temperature Impacts.

    PubMed

    Shportko, K V; Otto, A; Venger, E F

    2016-12-01

    Zinc germanium diphosphide (ZnGeP2) is an attractive and promising functional material for different devices of the nano- and optoelectronics. In this paper, dispersion of phonon surface polaritons (PSPs) in ZnGeP2 has been studied in the 200-500-cm(-1) spectral range at 4 and 300 K. Dispersion of "real" and "virtual" PSPs were calculated for C-axis being normal and parallel to the surface. Anisotropy in ZnGeP2 leads to the different numbers of PSP dispersion branches for different orientations of the sample. The temperature-dependent phonon contributions in the dielectric permittivity shift dispersion of the surface polaritons in ZnGeP2 to the higher wavenumbers at 4 K. We have shown that experimental dispersion of PSP is in agreement with theory. PMID:26858158

  5. High pressure studies of the phase transition in the ferroelectric Sn2P2S6

    NASA Astrophysics Data System (ADS)

    Dzhavadov, Leonid N.; Ryzhov, Valentin N.

    2016-06-01

    We apply a method of pulse-adiabatic modulation of pressure to obtain heat capacity and thermal expansion of ferroelectric Sn2P2S6 in the vicinity of the second order phase transition at pressures to 5 kbar. The phase transition in Sn2P2S6 does not change its nature and stays second order in the whole range of pressure currently studied. The earlier conclusion on the tricritical features of the phase transition in Sn2P2S6 cannot be confirmed. Discontinuities of heat capacity and thermal expansion perfectly fit the Ehrenfest equation that expected in the mean field theories. An excellent performance of the Ehrenfest formula in a wide range of pressures establishes phase transition in Sn2P2S6 as an almost ideal mean field phase transition.

  6. Dispersion of Phonon Surface Polaritons in ZnGeP2: Anisotropy and Temperature Impacts

    NASA Astrophysics Data System (ADS)

    Shportko, K. V.; Otto, A.; Venger, E. F.

    2016-02-01

    Zinc germanium diphosphide (ZnGeP2) is an attractive and promising functional material for different devices of the nano- and optoelectronics. In this paper, dispersion of phonon surface polaritons (PSPs) in ZnGeP2 has been studied in the 200-500-cm-1 spectral range at 4 and 300 K. Dispersion of "real" and "virtual" PSPs were calculated for C-axis being normal and parallel to the surface. Anisotropy in ZnGeP2 leads to the different numbers of PSP dispersion branches for different orientations of the sample. The temperature-dependent phonon contributions in the dielectric permittivity shift dispersion of the surface polaritons in ZnGeP2 to the higher wavenumbers at 4 K. We have shown that experimental dispersion of PSP is in agreement with theory.

  7. Photodetectors and birefringence in ZnP2-С2h5 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-03-01

    The spectral dependences of refractive indexes no(n⊥), ne(n||) and Δn=no(n⊥)-ne(n||) were studied in ZnP2-C2h5 crystals. The intersection of no(n⊥) and ne(n||) was found for λ0=0.906 μm. The crystal possesses positive dispersion Δn=no(n⊥)-ne(n||) in the region where λ>λ0, and a negative dispersion is observed in the region where λ<λ0. The electrical, spectral and azimuth characteristics of monolith n-р- and Ме-n-р-ZnP2C2h5 and discrete ZnP2-C2h5-ZnP2-D48 structures were studied, and a prognosis was made on the usage perspective of these devices.

  8. Late-Postnatal Cannabinoid Exposure Persistently Increases FoxP2 Expression within Zebra Finch Striatum

    PubMed Central

    Soderstrom, Ken; Luo, Bin

    2010-01-01

    Prior work has shown that cannabinoid exposure of zebra finches during sensorimotor stages of vocal development alters song patterns produced in adulthood. We are currently working to identify physiological substrates for this altered song learning. FoxP2 is a transcription factor associated with altered vocal development in both zebra finches and humans. This protein shows a distinct pattern of expression within Area X of striatum that coincides with peak expression of CB1 cannabinoid receptors during sensorimotor learning. Coincident expression in a brain region essential for song learning led us to test for a potential signaling interaction. We have found that cannabinoid agonists acutely increase expression of FoxP2 throughout striatum. When administered during sensorimotor song learning, cannabinoids increase basal levels of striatal FoxP2 expression in adulthood. Thus, song-altering cannabinoid treatments are associated with persistent increases in basal expression of FoxP2 in zebra finch striatum. PMID:20017118

  9. Investigation of Structural and Electronic Properties of Zn3P2: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Kabra, K.; Kumar, R.; Sharma, B. K.; Sharma, G.

    2016-03-01

    This paper deals with the structural and electronic properties of the compound Zn3P2. Equilibrium structural properties have been calculated by fitting the energy-volume data to standard equation of state. The theoretical as well as experimental spherically averaged Compton profiles are also determined. The experiment is performed using a 5 Ci 241Am gamma-rays Compton spectrometer, allowing 59.54 keV gamma rays to get scattered by the polycrystalline sample and the corresponding theoretical profiles are obtained from linear combination of atomic orbital method within density functional theory framework. Anisotropy curves using three different directions [100], [110] and [111] are obtained for the compound and an ionic model is also proposed, which supports the transfer of 2.0 electrons from Zn to P atom. At last, equal-valence-electron-density profiles for Zn3P2 and Cd3P2 are presented, confirming more ionic characters in Zn3P2.

  10. The ILC P2 Marx and Application of the Marx Topology to Future Accelerators

    SciTech Connect

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Hugyik, J.; Larsen, R.; Macken, K.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2011-08-19

    The SLAC P2 Marx is under development as the linac klystron modulator for the ILC. This modulator builds upon the success of the P1 Marx, which is currently undergoing lifetime evaluation. While the SLAC P2 Marx's (henceforth, 'P2 Marx') target application is the ILC, characteristics of the Marx topology make it equally well-suited for operation at different parameter ranges; for example, increased pulse repetition frequency, increased output current, longer pulse width, etc. Marx parameters such as the number of cells, cell capacitance, and component selection can be optimized for the application. This paper provides an overview of the P2 Marx development. In addition, the scalability of the Marx topology to other long-pulse parameter ranges is discussed.

  11. Investigation of Structural and Electronic Properties of Zn3P2: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Kabra, K.; Kumar, R.; Sharma, B. K.; Sharma, G.

    2016-06-01

    This paper deals with the structural and electronic properties of the compound Zn3P2. Equilibrium structural properties have been calculated by fitting the energy-volume data to standard equation of state. The theoretical as well as experimental spherically averaged Compton profiles are also determined. The experiment is performed using a 5 Ci 241Am gamma-rays Compton spectrometer, allowing 59.54 keV gamma rays to get scattered by the polycrystalline sample and the corresponding theoretical profiles are obtained from linear combination of atomic orbital method within density functional theory framework. Anisotropy curves using three different directions [100], [110] and [111] are obtained for the compound and an ionic model is also proposed, which supports the transfer of 2.0 electrons from Zn to P atom. At last, equal-valence-electron-density profiles for Zn3P2 and Cd3P2 are presented, confirming more ionic characters in Zn3P2.

  12. Security Issues for P2P-Based Voice- and Video-Streaming Applications

    NASA Astrophysics Data System (ADS)

    Seedorf, Jan

    P2P computing offers a new interesting field for security researchers. Being highly distributed and lacking centralised, trusted entities for bootstrapping security mechanisms, these systems demand novel approaches for decentralised security solutions.

  13. Oxygen substitution effects in Li10GeP2S12 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Sun, Yulong; Suzuki, Kota; Hara, Kosuke; Hori, Satoshi; Yano, Taka-aki; Hara, Masahiko; Hirayama, Masaaki; Kanno, Ryoji

    2016-08-01

    For the lithium super-ionic conductor Li10GeP2S12, the partial substitution of sulfur by oxygen is achieved via a solid-state reaction. The solid-solution range of oxygen is found to be 0 ≤ x < 0.9 in Li10GeP2S12-xOx. Structure refinements using synchrotron X-ray diffraction data confirm the preference for oxygen substitution in the PS4 tetrahedra. The local structural change in the P(S/O)4 tetrahedra upon substitution is also indicated by Raman spectroscopy. Ionic conduction properties are maintained even after the oxygen substitution in Li10GeP2S12; the ionic conductivity of Li10GeP2S12-xOx (0.3 ≤ x ≤ 0.6) ranges from 1.03 × 10-2 to 8.43 × 10-3 S cm-1 at 298 K. No redox current is observed by cyclic voltammetry from nearly 0 to 10 V versus Li/Li+ except for that due to the lithium deposition/dissolution reactions. All-solid-state batteries using Li10GeP2S12-xOx (x = 0.3 and 0.6) as solid electrolytes with Li metal anodes show discharge capacities exceeding 100 mAh g-1 and better cycling performance compared to batteries using the original Li10GeP2S12. The partial substitution of oxygen for sulfur in Li10GeP2S12 affords a novel solid electrolyte, Li10GeP2S12-xOx, with high conductive properties and electrochemical stability.

  14. Clinical effects and outcomes with new P2Y12 inhibitors in ACS.

    PubMed

    Collet, Jean-Philippe; O'Connor, Stephen

    2012-02-01

    Thienopyridines have become the cornerstone of treatment for percutaneous coronary intervention although no survival benefit has ever been shown with clopidogrel despite increasing loading doses. Newly developed P2Y12 inhibitors are more potent, more predictable, and have a faster onset of action than clopidogrel, characteristics that make them particularly attractive for high-risk percutaneous coronary intervention (PCI). Four new P2Y12 inhibitors have been tested each of them having particular individual properties. Prasugrel is an oral pro-drug leading to irreversible blockade of the P2Y12 receptor and is approved worldwide for ACS PCI. Ticagrelor is a direct-acting and reversible inhibitor of the P2Y12 receptor with potentially more pleiotropic effects. Cangrelor is an intravenous direct and reversible inhibitor of the P2Y12 receptor providing the highest level of inhibition, and elinogrel is an intravenous and oral P2Y12 antagonist with a direct and reversible action. Both prasugrel and ticagrelor, opposed to clopidogrel, have shown that stronger P2Y12 inhibition led respectively to significant 19 and 16% relative risk reduction of a similar primary end point combining cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke. Both drugs showed a significant 0.6% absolute excess of TIMI major bleeding not related to CABG surgery. Because in clinical trials, patients perceived to be at higher risk of bleeding usually are excluded, the risk of major and even fatal bleeding might even be higher in a 'real-world' setting, i.e. in the elderly patient with comorbidities. On the other hand, these newly developed P2Y12 inhibitors decrease mortality after PCI compared with clopidogrel. The risk/benefit ratio is particularly favorable in PCI for patients with STEMI. PMID:21895760

  15. Determination of diffusion, reflection and deexcitation coefficients of metastable excited Ne(3P2) atom

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Itoh, H.

    2016-05-01

    The diffusion coefficient of the metastable excited Ne(3P2) atom in neon, the reflection coefficient of Ne(3P2) at the surface of an electrode and the rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) were determined from the gas pressure dependence of the effective lifetime of Ne(3P2). The effective lifetime of Ne(3P2) was measured from the transient current after turning off the Ultraviolet (UV) light in a Townsend discharge. The observed transient current waveform was analysed by solving the diffusion equation for the metastable excited Ne(3P2) atom using the third kind of boundary condition. The rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) and the reflection coefficient were determined by a nonspectroscopic method for the first time in neon to the best of our knowledge and were (3.2  ±  0.4)  ×  10‑16 cm3 s‑1 and 0.10  ±  0.04, respectively. The obtained diffusion coefficient at 1 Torr was 177  ±  17 cm2 s‑1, which is consistent with the value reported by Dixon and Grant. Moreover, the present results are compared with the results of Phelps and were found to be in good agreement. We also discuss the deexcitation rate of Ne(3P2) at pressures of up to 60 Torr in comparison with previously reported values.

  16. An Efficient, Scalable and Robust P2P Overlay for Autonomic Communication

    NASA Astrophysics Data System (ADS)

    Li, Deng; Liu, Hui; Vasilakos, Athanasios

    The term Autonomic Communication (AC) refers to self-managing systems which are capable of supporting self-configuration, self-healing and self-optimization. However, information reflection and collection, lack of centralized control, non-cooperation and so on are just some of the challenges within AC systems. Since many self-* properties (e.g. selfconfiguration, self-optimization, self-healing, and self-protecting) are achieved by a group of autonomous entities that coordinate in a peer-to-peer (P2P) fashion, it has opened the door to migrating research techniques from P2P systems. P2P's meaning can be better understood with a set of key characteristics similar to AC: Decentralized organization, Self-organizing nature (i.e. adaptability), Resource sharing and aggregation, and Fault-tolerance. However, not all P2P systems are compatible with AC. Unstructured systems are designed more specifically than structured systems for the heterogeneous Internet environment, where the nodes' persistence and availability are not guaranteed. Motivated by the challenges in AC and based on comprehensive analysis of popular P2P applications, three correlative standards for evaluating the compatibility of a P2P system with AC are presented in this chapter. According to these standards, a novel Efficient, Scalable and Robust (ESR) P2P overlay is proposed. Differing from current structured and unstructured, or meshed and tree-like P2P overlay, the ESR is a whole new three dimensional structure to improve the efficiency of routing, while information exchanges take in immediate neighbors with local information to make the system scalable and fault-tolerant. Furthermore, rather than a complex game theory or incentive mechanism, asimple but effective punish mechanism has been presented based on a new ID structure which can guarantee the continuity of each node's record in order to discourage negative behavior on an autonomous environment as AC.

  17. PON-P2: Prediction Method for Fast and Reliable Identification of Harmful Variants

    PubMed Central

    Niroula, Abhishek; Urolagin, Siddhaling; Vihinen, Mauno

    2015-01-01

    More reliable and faster prediction methods are needed to interpret enormous amounts of data generated by sequencing and genome projects. We have developed a new computational tool, PON-P2, for classification of amino acid substitutions in human proteins. The method is a machine learning-based classifier and groups the variants into pathogenic, neutral and unknown classes, on the basis of random forest probability score. PON-P2 is trained using pathogenic and neutral variants obtained from VariBench, a database for benchmark variation datasets. PON-P2 utilizes information about evolutionary conservation of sequences, physical and biochemical properties of amino acids, GO annotations and if available, functional annotations of variation sites. Extensive feature selection was performed to identify 8 informative features among altogether 622 features. PON-P2 consistently showed superior performance in comparison to existing state-of-the-art tools. In 10-fold cross-validation test, its accuracy and MCC are 0.90 and 0.80, respectively, and in the independent test, they are 0.86 and 0.71, respectively. The coverage of PON-P2 is 61.7% in the 10-fold cross-validation and 62.1% in the test dataset. PON-P2 is a powerful tool for screening harmful variants and for ranking and prioritizing experimental characterization. It is very fast making it capable of analyzing large variant datasets. PON-P2 is freely available at http://structure.bmc.lu.se/PON-P2/. PMID:25647319

  18. Molecular cloning and sequencing of a novel human P2 nucleotide receptor.

    PubMed

    Southey, M C; Hammet, F; Hutchins, A M; Paidhungat, M; Somers, G R; Venter, D J

    1996-11-11

    A novel human P2 nucleotide receptor has been cloned from a T-cell cDNA library. The predicted amino acid sequence shows characteristics of a G-protein-coupled receptor, and shares 88% homology with a recently characterised rat P2 nucleotide receptor sequence. Distinctive features include an extremely short cytoplasmic tail with only one putative protein kinase C phosphorylation site. Northern blot analysis revealed a 1.9 kb transcript expressed in the placenta. PMID:8950181

  19. Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models

    PubMed Central

    Fischer, Wolfgang; Franke, Heike; Krügel, Ute; Müller, Heiko; Dinkel, Klaus; Lord, Brian; Letavic, Michael A.; Henshall, David C.; Engel, Tobias

    2016-01-01

    The ATP-gated P2X7 receptor (P2X7R) is a non-selective cation channel which senses high extracellular ATP concentrations and has been suggested as a target for the treatment of neuroinflammation and neurodegenerative diseases. The use of P2X7R antagonists may therefore be a viable approach for treating CNS pathologies, including epileptic disorders. Recent studies showed anticonvulsant potential of P2X7R antagonists in certain animal models. To extend this work, we tested three CNS-permeable P2X7R blocker (Brilliant Blue G, AFC-5128, JNJ-47965567) and a natural compound derivative (tanshinone IIA sulfonate) in four well-characterized animal seizure models. In the maximal electroshock seizure threshold test and the pentylenetetrazol (PTZ) seizure threshold test in mice, none of the four compounds demonstrated anticonvulsant effects when given alone. Notably, in combination with carbamazepine, both AFC-5128 and JNJ-47965567 increased the threshold in the maximal electroshock seizure test. In the PTZ-kindling model in rats, useful for testing antiepileptogenic activities, Brilliant Blue G and tanshinone exhibited a moderate retarding effect, whereas the potent P2X7R blocker AFC-5128 and JNJ-47965567 showed a significant and long-lasting delay in kindling development. In fully kindled rats, the investigated compounds revealed modest effects to reduce the mean seizure stage. Furthermore, AFC-5128- and JNJ-47965567-treated animals displayed strongly reduced Iba 1 and GFAP immunoreactivity in the hippocampal CA3 region. In summary, our results show that P2X7R antagonists possess no remarkable anticonvulsant effects in the used acute screening tests, but can attenuate chemically-induced kindling. Further studies would be of interest to support the concept that P2X7R signalling plays a crucial role in the pathogenesis of epileptic disorders. PMID:27281030

  20. Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri*

    PubMed Central

    Fountain, Samuel J.; Cao, Lishuang; Young, Mark T.; North, R. Alan

    2008-01-01

    We have cloned a P2X receptor (OtP2X) from the green algae Ostreococcus tauri. The 42-kDa receptor shares ∼28% identity with human P2X receptors and 23% with the Dictyostelium P2X receptor. ATP application evoked flickery single channel openings in outside-out membrane patches from human embryonic kidney 293 cells expressing OtP2X. Whole-cell recordings showed concentration-dependent cation currents reversing close to zero mV; ATP gave a half-maximal current at 250 μm. αβ-Methylene-ATP evoked only small currents in comparison to ATP (EC50 > 5 mm). 2′,3′-O-(4-Benzoylbenzoyl)-ATP, βγ-imido-ATP, ADP, and several other nucleotide triphosphates did not activate any current. The currents evoked by 300 μm ATP were not inhibited by 100 μm suramin, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid, 2′,3′-O-(2,4,6-trinitrophenol)-ATP, or copper. Ion substitution experiments indicated permeabilities relative to sodium with the rank order calcium >choline >Tris >tetraethylammonium >N-methyl-d-glucosamine. However, OtP2X had a low relative calcium permeability (PCa/PNa = 0.4) in comparison with other P2X receptors. This was due at least in part to the presence of an asparagine residue (Asn353) at a position in the second transmembrane domain in place of the aspartate that is completely conserved in all other P2X receptor subunits, because replacement of Asn353 with aspartate increased calcium permeability by ∼50%. The results indicate that the ability of ATP to gate cation permeation across membranes exists in cells that diverged in evolutionary terms from animals about 1 billion years ago. PMID:18381285

  1. Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors.

    PubMed

    Jelassi, Bilel; Anchelin, Monique; Chamouton, Julie; Cayuela, María Luisa; Clarysse, Lucie; Li, Junying; Goré, Jacques; Jiang, Lin-Hua; Roger, Sébastien

    2013-07-01

    The adenosine 5'-triphosphate (ATP)-gated Ca(2+)-permeable channel P2X7 receptor (P2X7R) is strongly upregulated in many tumors and cancer cells, and has an important role in cancer cell invasion associated with metastases. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an anthraquinone derivative originally isolated from Rheum officinale Baill known for decades to possess anticancer properties. In this study, we examined the effects of emodin on P2X7R-dependent Ca(2+) signaling, extracellular matrix degradation, and in vitro and in vivo cancer cell invasiveness using highly aggressive human cancer cells. Inclusion of emodin at doses ≤10 µM in cell culture had no or very mild effect on the cell viability. ATP elicited increases in intracellular Ca(2+) concentration were reduced by 35 and 60% by 1 and 10 µM emodin, respectively. Emodin specifically inhibited P2X7R-mediated currents with an IC50 of 3 µM and did not inhibit the currents mediated by the other human P2X receptors heterologously expressed in human embryonic kidney (HEK293T) cells. ATP-induced increase in gelatinolytic activity, in cancer cell invasiveness in vitro and in cell morphology changes were prevented by 1 µM emodin. Furthermore, such ATP-evoked effects and inhibition by emodin were almost completely ablated in cancer cells transfected with P2X7R-specific small interfering RNA (siRNA) but not with scrambled siRNA. Finally, the in vivo invasiveness of the P2X7R-positive MDA-MB-435s breast cancer cells, assessed using a zebrafish model of micrometastases, was suppressed by 40 and 50% by 1 and 10 µM emodin. Taken together, these results provide consistent evidence to indicate that emodin inhibits human cancer cell invasiveness by specifically antagonizing the P2X7R. PMID:23524196

  2. Activation of Trp-P-1 and Trp-P-2 in vitro and in vivo

    SciTech Connect

    Dolara, P.; Caderni, G.; Benetti, D.

    1982-01-01

    Isolated perfused livers were not able to activate the promutagens Trp-P-1 and Trp-P-2 to their genotoxic metabolites. On the contrary, inherently active mutagenic compounds were detected in the bile of living rats to which Trp-P-1 and Trp-P-2 had been administered intravenously. The excretion of active mutagens through the bile may explain the tumorigenic effect that these compounds exert on the liver during chronic feeding experiments.

  3. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling

    PubMed Central

    Avanzato, D.; Genova, T.; Fiorio Pla, A.; Bernardini, M.; Bianco, S.; Bussolati, B.; Mancardi, D.; Giraudo, E.; Maione, F.; Cassoni, P.; Castellano, I.; Munaron, L.

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1–10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  4. The impact of playout policy on the performance of P2P live streaming: or how not to kill your P2P advantage

    NASA Astrophysics Data System (ADS)

    Vassilakis, Constantinos; Laoutaris, Nikolaos; Stavrakakis, Ioannis

    2008-01-01

    In this paper we examine the impact of the adopted playout policy on the performance of P2P live streaming systems. We argue and demonstrate experimentally that (popular) playout policies which permit the divergence of the playout points of different nodes can deteriorate drastically the performance of P2P live streaming. Consequently, we argue in favor of keeping different playout points "near-in-time", even if this requires sacrificing (dropping) some late frames that could otherwise be rendered (assuming no strict bidirectional interactivity requirements are in place). Such nearly synchronized playout policies create "positive correlation" with respect to the available frames at different playout buffers. Therefore, they increase the number of upstream relay nodes from which a node can pull frames and thus boost the playout quality of both single-parent (tree) and multiple-parent (mesh) systems. On the contrary, diverging playout points reduce the number of upstream parents that can offer a gapless relay of the stream. This is clearly undesirable and should be avoided as it contradicts the fundamental philosophy of P2P systems which is to supplement an original service point with as many additional ones presented by the very own users of the service.

  5. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling.

    PubMed

    Avanzato, D; Genova, T; Fiorio Pla, A; Bernardini, M; Bianco, S; Bussolati, B; Mancardi, D; Giraudo, E; Maione, F; Cassoni, P; Castellano, I; Munaron, L

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1-10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  6. Impaired Cognition after Stimulation of P2Y1 Receptors in the Rat Medial Prefrontal Cortex

    PubMed Central

    Koch, Holger; Bespalov, Anton; Drescher, Karla; Franke, Heike; Krügel, Ute

    2015-01-01

    We hypothesize that cortical ATP and ADP accumulating in the extracellular space, eg during prolonged network activity, contribute to a decline in cognitive performance in particular via stimulation of the G protein-coupled P2Y1 receptor (P2Y1R) subtype. Here, we report first evidence on P2Y1R-mediated control of cognitive functioning in rats using bilateral microinfusions of the selective agonist MRS2365 into medial prefrontal cortex (mPFC). MRS2365 attenuated prepulse inhibition of the acoustic startle reflex while having no impact on startle amplitude. Stimulation of P2Y1Rs deteriorated performance accuracy in the delayed non-matching to position task in a delay dependent manner and increased the rate of magazine entries consistent with both working memory disturbances and impaired impulse control. Further, MRS2365 significantly impaired performance in the reversal learning task. These effects might be related to MRS2365-evoked increase of dopamine observed by microdialysis to be short-lasting in mPFC and long-lasting in the nucleus accumbens. P2Y1Rs were identified on pyramidal cells and parvalbumin-positive interneurons, but not on tyrosine hydroxylase-positive fibers, which argues for an indirect activation of dopaminergic afferents in the cortex by MRS2365. Collectively, these results suggest that activation of P2Y1Rs in the mPFC impairs inhibitory control and behavioral flexibility mediated by increased mesocorticolimbic activity and local disinhibition. PMID:25027332

  7. P2X7 receptors mediate deleterious renal epithelial-fibroblast cross talk.

    PubMed

    Ponnusamy, Murugavel; Ma, Li; Gong, Rujun; Pang, Maoyin; Chin, Y Eugene; Zhuang, Shougang

    2011-01-01

    Peritubular fibroblasts in the kidney are the major erythropoietin-producing cells and also contribute to renal repair following acute kidney injury (AKI). Although few fibroblasts were observed in the interstitium adjacent to damaged tubular epithelium in the early phase of AKI, the underlying mechanism by which their numbers were reduced remains unknown. In this study, we tested the hypothesis that damaged renal epithelial cells directly induce renal interstitial fibroblast death by releasing intracellular ATP and activating purinergic signaling. Exposure of a cultured rat renal interstitial fibroblast cell line (NRK-49F) to necrotic renal proximal tubular cells (RPTC) lysate or supernatant induced NRK-49F cell death by apoptosis and necrosis. Depletion of ATP with apyrase or inhibition of the P2X purinergic receptor with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid blocked the deleterious effect of necrotic RPTC supernatant. The P2X7 receptor, an ATP-sensitive purinergic receptor, was not detected in cultured NRK-49F cells but was inducible by necrotic RPTC supernatant. Treatment with A438079, a highly selective P2X7 receptor inhibitor, or knockdown of the P2X7 receptor with small interference RNA diminished renal fibroblast death induced by necrotic RPTC supernatant. Conversely, overexpression of the P2X7 receptor potentiated this response. Collectively, these findings provide strong evidence that damaged renal epithelial cells can directly induce the death of renal interstitial fibroblasts by ATP activation of the P2X7 receptor. PMID:20861083

  8. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior

    PubMed Central

    Inscho, Edward W.; Cook, Anthony K.; Imig, John D.; Vial, Catherine; Evans, Richard J.

    2003-01-01

    This study tests the hypothesis that P2X1 receptors mediate pressure-induced afferent arteriolar autoregulatory responses. Afferent arterioles from rats and P2X1 KO mice were examined using the juxtamedullary nephron technique. Arteriolar diameter was measured in response to step increases in renal perfusion pressure (RPP). Autoregulatory adjustments in diameter were measured before and during P2X receptor blockade with NF279 or A1 receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). Acute papillectomy or furosemide perfusion was performed to interrupt distal tubular fluid flow past the macula densa, thus minimizing tubuloglomerular feedback–dependent influences on afferent arteriolar function. Under control conditions, arteriolar diameter decreased by 17% and 29% at RPP of 130 and 160 mmHg, respectively. Blockade of P2X1 receptors with NF279 blocked pressure-mediated vasoconstriction, reflecting an attenuated autoregulatory response. The A1 receptor blocker DPCPX did not alter autoregulatory behavior or the response to ATP. Deletion of P2X1 receptors in KO mice significantly blunted autoregulatory responses induced by an increase in RPP, and this response was not further impaired by papillectomy or furosemide. WT control mice exhibited typical RPP-dependent vasoconstriction that was significantly attenuated by papillectomy. These data provide compelling new evidence indicating that tubuloglomerular feedback signals are coupled to autoregulatory preglomerular vasoconstriction through ATP-mediated activation of P2X1 receptors. PMID:14679185

  9. Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.

    PubMed

    Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-01

    This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services. PMID:21164969

  10. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier.

    PubMed

    Lou, Nanhong; Takano, Takahiro; Pei, Yong; Xavier, Anna L; Goldman, Steven A; Nedergaard, Maiken

    2016-01-26

    Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed to close laser-induced openings of the BBB. Thus, microglial cells play a previously unrecognized protective role in the maintenance of BBB integrity following cerebrovascular damage. Because clopidogrel antagonizes the platelet P2Y12 receptor, it is widely prescribed for patients with coronary artery and cerebrovascular disease. As such, these observations suggest the need for caution in the postincident continuation of P2RY12-targeted platelet inhibition. PMID:26755608

  11. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling