Science.gov

Sample records for solid acid catalyst

  1. Hydrocracking with new solid acid catalysts: Model compounds studies

    SciTech Connect

    Sharma, R.K.; Diehl, J.W.; Olson, E.S. )

    1990-01-01

    Two new solid acid catalysts have been prepared by supporting zinc chloride on silica gel and acid-exchanged montmorillonite. The acid properties of these catalysts were determined by Hammett indicator method which showed that highly Bronsted acidic sites were present. SEM/EDS studies indicated a uniform distribution of silicon, zinc, and chlorine in the silica gel-zinc chloride catalyst. The activities of these catalysts in the hydrocracking of bibenzyl, polybenzyl, alkylbenzenes, and other heteroatom substituted aromatics were investigated. Their results with model compounds account for the effectiveness of these solid acid catalysts for conversion of coals to lower molecular weight materials.

  2. Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst

    SciTech Connect

    Dai, Sheng; Mayes, Richard T; Fulvio, Pasquale F; Ma, Zhen

    2011-01-01

    Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

  3. The Effect of Supercritical Fluids on Solid Acid Catalyst Alkylation

    SciTech Connect

    Ginosar, Daniel Michael; Thompson, David Neil; Burch, Kyle Coates; Zalewski, D. J.

    2002-05-01

    The alkylation of isobutane with trans-2-butene was explored over six solid acid catalysts in the liquid, near-critical liquid, and supercritical regions through the addition of an inert cosolvent to the reaction feed mixture. The addition of supercritical cosolvents did not result in sustained catalytic alkylation activity. A modest improvement in product yield was obtained with the addition of methane in the modified-liquid region; however, catalyst longevity and product selectivity were decreased compared to cosolvent-free liquid conditions. This paper describes the catalyst screening and selection process, an exploration of catalyst performance with varying concentrations of methane, and an examination of the effects of seven supercritical fluids on catalyst performance. The catalysts included two zeolites, two sulfated metal oxides, and two Nafion catalysts. Three hydrocarbons, two fluorocarbons, carbon dioxide, and sulfur hexafluoride were explored as inert cosolvents added to the reaction mixture.

  4. Esterification of acidic oils over a versatile amorphous solid catalyst.

    PubMed

    Zaccheria, Federica; Brini, Simona; Psaro, Rinaldo; Scotti, Nicola; Ravasio, Nicoletta

    2009-01-01

    An amorphous SiO(2)-ZrO(2) catalyst shows high activity in the esterification of free fatty acids contained in vegetable oils while at the same time promoting the transesterification of triglycerides. The catalyst is hence a good candidate for a low-waste deacidification pretreatment or for a one-pot biodiesel production process starting from oils with a high acid content. PMID:19479893

  5. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.

    PubMed

    Zheng, Anmin; Li, Shenhui; Liu, Shang-Bin; Deng, Feng

    2016-04-19

    Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules

  6. A Mini-Review on Solid Acid Catalysts for Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Hansora, Dharmesh; Usmani, Ghayas A.

    2016-04-01

    This paper presents an overview of research pertaining to solid acid catalysts for esterification reactions. Prominence has been given to the literatures that have been appeared during the last two decades. A variety of reactions catalyzed by solid acid catalysts have been tabulated according to their broad classification; industrially important reactions have been outlined. Examples, where the use of various solid acid catalysts have led to an improvement in the selectivity of the desired products, have also been discussed. Various catalyzed esterification reactions using different approaches and previous kinetic studies have been reviewed. Types, preparation and synthesis of various solid acid catalysts have been reviewed and discussed. Suggestions have been summarized for their implementation in future work.

  7. n-hydrocarbons conversions over metal-modified solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Zarubica, A.; Ranđelović, M.; Momčilović, M.; Radulović, N.; Putanov, P.

    2013-12-01

    The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.

  8. Role of solid acid catalysts in bio diesel production.

    PubMed

    Shivayogimath, C B; Sunita, G; Manoj Kumar, B

    2009-07-01

    Biodiesel is gaining importance as an alternate source of attractive fuel because of depleting fossil fuel resources. It is produced by trans-esterification, in which oil or fat reacts with a monohydric alcohol in presence of a catalyst. In the present work, trans-esterification of sunflower oil with methanol is carried out by using zirconia supported isopoly and heteropoly tungstates (HPAs) as catalysts. Effects of reaction parameters, such as catalyst types and its concentration, molar ratio of sunflower oil to methanol, reaction temperature and time, have been optimized to get higher conversion of sunflower oil and the product distribution of fatty acid methyl esters (FAME) in the trans-esterfication reaction. PMID:21117436

  9. Hydrothermal preparation and characterization of novel corncob-derived solid acid catalysts.

    PubMed

    Ma, Huan; Li, Jiabao; Liu, Weiwei; Cheng, Beijiu; Cao, Xiaoyan; Mao, Jingdong; Zhu, Suwen

    2014-06-11

    Novel corncob-derived solid acid catalysts were successfully synthesized for the first time by the hydrothermal method. The influences of different preparation conditions were investigated, and the structure-function relationships of the resulting catalysts were also discussed on the basis of the analysis of structure and composition. In comparison to conventional solid acid catalysts, the corncob-derived catalyst synthesized under optimized conditions exhibited higher catalytic activity in esterification reactions, yielding nearly 90% methyl oleate in only 2 h. The catalyst retained satisfactory catalytic activity for esterification, even after 8 reaction cycles. Solid-state magic angle spinning (MAS) (13)C nuclear magnetic resonance (NMR) investigations further indicated that the catalyst was composed of polycyclic aromatic carbon sheets bearing -SO3H, -COOH, and -OH groups in adequate amounts and with proper proportions, contributing to its excellent catalytic activity. This work provides a green method to synthesize solid acid catalysts from biomass wastes and may contribute to a holistic approach for biomass conversion. PMID:24820344

  10. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst.

    PubMed

    Yang, Fengli; Liu, Qishun; Bai, Xuefang; Du, Yuguang

    2011-02-01

    5-Hydroxymethylfurfural (HMF) was produced from monosaccharide (fructose and glucose), polysaccharide (inulin) and the Jerusalem artichoke juice by a simple one-pot reaction including hydrolysis and dehydration using solid acid under mild condition. Hydrated niobium pentoxide (Nb(2)O(5)·nH(2)O(2)) after pretreatment showed high catalytic activities for dehydration of mono- and polysaccharide to HMF at 433 K in water-2-butanol (2:3 v/v) biphasic system, giving high HMF yield of 89% and 54% from fructose and inulin, respectively. The HMF yield was up to 74% and 65% when inulin and Jerusalem artichoke juice were hydrolyzed by exoinulinase. The solid acid made the process environment-friendly and energy-efficient to convert carbohydrates into bio-fuels and platform chemicals. PMID:21036606

  11. A solid acid esterification catalyst which reduces waste and increases yields

    SciTech Connect

    Lundquist, E.G.

    1993-12-31

    Recent research on polymeric catalysts has led to the development of a new solid acid esterification catalyst which is highly active for the esterification of fatty acids and maleic anhydride at elevated temperatures. The use of this catalyst eliminates the need for a final neutralization step which is required when using traditional homogenous acid (H{sub 2}SO{sub 4} and HCl) catalysts. This neutralization step generates large amounts of waste salts and hurts efficiency since unconsumed organic acid reactants are also neutralized. In the high temperature esterification reactions studied here, the production of dialkyl ether by-products from the acid catalyzed self-condensation of alcohol is also greatly reduced allowing for both high activity and selectivity.

  12. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  13. Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production.

    PubMed

    Chen, Guo; Fang, Baishan

    2011-02-01

    The aim of this work is to study the catalyst prepared by glucose-starch mixture. Assessment experiments showed that solid acid behaved the highest esterification activity when glucose and corn powder were mixed at ratio of 1:1, carbonized at 400°C for 75 min and sulfonated with concentrated H(2)SO(4) (98%) at 150°C for 5 h. The catalyst was characterized by acid activity measurement, XPS, TEM and FT-IR. The results indicated that solid acid composed of CS(0.073)O(0.541) has both Lewis acid sites and Bronsted acid sites caused by SO(3)H and COOH. The conversions of oleic acid esterification and triolein transesterification are 96% and 60%, respectively. Catalyst for biodiesel production from waste cottonseed oil containing high free fatty acid (FFA 55.2 wt.%) afforded the methyl ester yield of about 90% after 12h. The catalyst deactivated gradually after recycles usage, but it could be regenerated by H(2)SO(4) treatment. PMID:21067915

  14. Selective hydrolysis of hemicellulose from wheat straw by a nanoscale solid acid catalyst.

    PubMed

    Zhong, Chao; Wang, Chunming; Huang, Fan; Wang, Fengxue; Jia, Honghua; Zhou, Hua; Wei, Ping

    2015-10-20

    A nanoscale catalyst, solid acid SO4(2-)/Fe2O3 with both Lewis and Brønsted acidity was found to effectively hydrolyze hemicellulose while keeping cellulose and lignin inactive, and selective hydrolysis of hemicellulose from wheat straw by this catalyst was also confirmed. The factors that significantly affected hydrolysis process were investigated with response surface methodology, and the optimum conditions for time, temperature, and ratio of wheat straw to catalyst (w/w) were calculated to be 4.10h, 141.97°C, and 1.95:1, respectively. A maximum hemicellulose hydrolysis yield of 63.5% from wheat straw could be obtained under these conditions. In addition, the catalyst could be recycled six times with high activity remaining. PMID:26256198

  15. Conversion of spent solid phosphoric Acid catalyst to environmentally friendly fertilizer.

    PubMed

    Merwe, Werner van der

    2010-03-01

    Solid phosphoric acid (SPA) catalysts are widely used in the petroleum industry. Despite a high phosphorus content the spent catalyst is generally not reused. Moreover, due to the limited life spans that are achieved industrially, large quantities of spent catalyst requires disposal, often by landfill. SPA can be readily converted to fertilizer, but the presence of carbonaceous deposits on the catalyst presents a potential environmental hazard. This work demonstrates that these deposits are mostly polyaromatic (amorphous carbon) with smaller amounts of oxygenates and aliphatics. Neither the chemical makeup nor the physical structure of the catalyst or the presence of coke precludes it from use as fertilizer. Subsequently, the spent catalyst was milled, neutralized with lime and ammonium hydroxide, and then calcined to yield a phosphate-rich fertilizer. Toxicity characteristic leaching tests of the spent catalyst fertilizer showed low levels of metals and organics, establishing that no harmful compounds are likely to be absorbed into plant life or groundwater. A plant growth study of the spent catalyst fertilizer indicated that it is approximately as effective as superphosphate fertilizer when used in alkaline soil. The spent catalyst fertilizer is environmentally benign and economically efficient. PMID:20146419

  16. Mesoporous nickel-aluminosilicate nanocomposite: a solid acid catalyst for ether synthesis.

    PubMed

    Neelakandeswari, N; Karvembu, R; Dharmaraj, N

    2013-04-01

    Mesoporous nickel aluminosilicate, a solid acid catalyst prepared by sol-gel technique was utilized as a heterogeneous catalyst for the synthesis of symmetrical ethers by dehydro-condensation of alcohols. The prepared catalysts were characterized by Fourier-transform infra red spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), N2 adsorption-desorption analysis, temperature programmed desorption of ammonia (TPD) and X-ray photoelectron spectroscopic techniques. The presence of the catalyst assisted the etherification reaction in 30 minutes. Ethers formed in these reactions were quantified by gas chromatography (GC) and the identities of few of them were confirmed by nuclear magnetic resonance spectral data (NMR). PMID:23763171

  17. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

    PubMed Central

    2011-01-01

    Background Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated. Results The highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved. Conclusions The catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs. PMID:22145867

  18. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.

    PubMed

    Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee

    2015-04-01

    In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars. PMID:25625460

  19. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  20. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe₂(SO₄)₃/γ-Fe₂O₃ Nanoparticle-Based Solid Acid Catalyst.

    PubMed

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-01-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied. PMID:26856604

  1. Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid.

    PubMed

    Wang, Yang; Wang, Ding; Tan, Minghui; Jiang, Bo; Zheng, Jingtang; Tsubaki, Noritatsu; Wu, Mingbo

    2015-12-01

    SO3H-functionalized monodispersed hollow carbon/silica spheres (HS/C-SO3H) with primary mesopores were prepared with polystyrene as a template and p-toluenesulfonic acid (TsOH) as a carbon precursor and -SO3H source simultaneously. The physical and chemical properties of HS/C-SO3H were characterized by N2 adsorption, TEM, SEM, XPS, XRD, Raman spectrum, NH3-TPD, element analysis and acid-base titration techniques. As a solid acid catalyst, HS/C-SO3H shows excellent performance in the esterification of oleic acid with methanol, which is a crucial reaction in biodiesel production. The well-defined hollow architecture and enhanced active sites accessibility of HS/C-SO3H guarantee the highest catalytic performance compared with the catalysts prepared by activation of TsOH deposited on the ordered mesoporous silicas SBA-15 and MCM-41. At the optimized conditions, high conversion (96.9%) was achieved and no distinct activity drop was observed after 5 recycles. This synthesis strategy will provide a highly effective solid acid catalyst for green chemical processes. PMID:26588826

  2. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  3. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    PubMed

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. PMID:26967333

  4. The Origin of Regioselectivity in 2-butanol Dehydration on Solid Acid Catalysts

    SciTech Connect

    Kwak, Ja Hun; Rousseau, Roger J.; Mei, Donghai; Peden, Charles HF; Szanyi, Janos

    2011-10-17

    The origin in the variations of trans-/cis-2-butene product selectivity ratios in 2-butanol dehydration over solid acid catalysts were investigated using a combined experimental-theory approach. Reactivity measurements over γ-Al2O3, AlOx/SBA-15, and H-form zeolites with widely varying Si/Al ratios and pore structures showed over two orders of magnitude change in the trans-/cis-2-butene product ratio. Activation energy barriers calculated for the concerted C-O and β-C-H bond breakings of adsorbed butoxy intermediates by dispersion-corrected DFT calculations correctly predicted the trans-/cis-2-butene product ratio observed on γ-Al2O3. The very low trans-2-butene selectivity on γ-Al2O3 can now be understood by the formation of a late transition state with high energy barrier caused by the strong van der Waals interaction between the γ-H atoms and the flat catalyst surface. Decreasing the dispersive attractive force between the adsorbed butoxide and the surface (e.g., by moving it further away from the support surface in AlOx/SBA-15) leads to almost equimolar formation of the trans- and cis-2-butene isomers. Trans-/cis-2-butene selectivity ratios much higher than that dictated by thermodynamic equilibrium can be achieved by introducing additional geometric constraints around the active catalytic site (e.g., varying the 3D environment around the active center in zeolites). We propose a model to explain the widely varying trans-/cis-2-butene selectivity in 2-butanol dehydration over solid acid catalysts that is consistent with the experimental results in this study. A key outcome of the study is the realization that van der Waals interactions between the reactant and the active catalyst surface must be included in the theoretic models in order to be able to accurately predict product selectivities. This information, in turn, significantly advances our ability to develop catalyst materials with designed active centers in order to achieve desired regioselectivities.

  5. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield. PMID:25839825

  6. Nanocasting Design and Spatially Selective Sulfonation of Polystyrene-Based Polymer Networks as Solid Acid Catalysts.

    PubMed

    Richter, Felix H; Sahraoui, Laila; Schüth, Ferdi

    2016-09-12

    Nanocasting is a general and widely applied method in the generation of porous materials during which a sacrificial solid template is used as a mold on the nanoscale. Ideally, the resulting structure is the inverse of the template. However, replication is not always as direct as anticipated, so the influences of the degree of pore filling and of potential restructuring processes after removal of the template need to be considered. These apparent limitations give rise to opportunities in the synthesis of poly(styrene-co-divinylbenzene) (PSD) polymer networks of widely varying porosities (BET surface area=63-562 m(2)  g(-1) ; Vtot =0.18-1.05 cm(3)  g(-1) ) by applying a single synthesis methodology. In addition, spatially selective sulfonation on the nanoscale seems possible. Together, nanocasting and sulfonation enable rational catalyst design. The highly porous nanocast and predominantly surface-sulfonated PSD networks approach the activity of the corresponding molecular catalyst, para-toluenesulfonic acid, and exceed those of commercial ion-exchange polymers in the depolymerization of macromolecular inulin. PMID:27561365

  7. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst.

    PubMed

    Yan, Lulu; Liu, Nian; Wang, Yu; Machida, Hiroshi; Qi, Xinhua

    2014-12-01

    A carbonaceous solid acid was prepared by hydrothermal carbonization of corn stalk followed by sulfonation and was characterized by FT-IR, XRD, SEM and elemental analysis techniques. The as-prepared corn stalk-derived carbonaceous solid acid catalyst contained SO3H, COOH, and phenolic OH groups, and was used for the one-step conversion of intact corn stalk to 5-hydroxymethylfurfural (5-HMF) in the ionic liquid 1-butyl-3-methyl imidazolium chloride ([BMIM][Cl]), where a 5-HMF yield of 44.1% was achieved at 150 °C in 30 min reaction time. The catalytic system was applicable to initial corn stalk concentration of up to ca. 10 wt.% for the production of 5-HMF. The synthesized catalyst and the developed process of using corn stalk-derived carbon catalyst for corn stalk conversion provide a green and efficient strategy for crude biomass utilization. PMID:25444888

  8. Schiff base structured acid-base cooperative dual sites in an ionic solid catalyst lead to efficient heterogeneous knoevenagel condensations.

    PubMed

    Zhang, Mingjue; Zhao, Pingping; Leng, Yan; Chen, Guojian; Wang, Jun; Huang, Jun

    2012-10-01

    An acid-base bifunctional ionic solid catalyst [PySaIm](3)PW was synthesized by the anion exchange of the ionic-liquid (IL) precursor 1-(2-salicylaldimine)pyridinium bromide ([PySaIm]Br) with the Keggin-structured sodium phosphotungstate (Na(3) PW). The catalyst was characterized by FTIR, UV/Vis, XRD, SEM, Brunauer-Emmett-Teller (BET) theory, thermogravimetric analysis, (1)H NMR spectroscopy, ESI-MS, elemental analysis, and melting points. Together with various counterparts, [PySaIm](3)PW was evaluated in Knoevenagel condensation under solvent and solvent-free conditions. The Schiff base structure attached to the IL cation of [PySaIm](3)PW involves acidic salicyl hydroxyl and basic imine, and provides a controlled nearby position for the acid-base dual sites. The high melting and insoluble properties of [PySaIm](3)PW are relative to the large volume and high valence of PW anions, as well as the intermolecular hydrogen-bonding networks among inorganic anions and IL cations. The ionic solid catalyst [PySaIm](3)PW leads to heterogeneous Knoevenagel condensations. In solvent-free condensation of benzaldehyde with ethyl cyanoacetate, it exhibits a conversion of 95.8 % and a selectivity of 100 %; the conversion is even much higher than that (78.2 %) with ethanol as a solvent. The solid catalyst has a convenient recoverability with only a slight decrease in conversion following subsequent recyclings. Furthermore, the new catalyst is highly applicable to many substrates of aromatic aldehydes with activated methylene compounds. On the basis of the characterization and reaction results, a unique acid-base cooperative mechanism within a Schiff base structure is proposed and discussed, which thoroughly explains not only the highly efficient catalytic performance of [PySaIm](3)PW, but also the lower activities of various control catalysts. PMID:22907828

  9. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  10. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO42-/Zr-MCM-48 and SO42-/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH3-TPD and N2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)-MCM-48 samples, SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO42-/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h-1 and the reaction temperature is 140 °C.

  11. Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst.

    PubMed

    Xu, Wei; Gao, Lijing; Wang, Songcheng; Xiao, Guomin

    2014-05-01

    Production of biodiesel from the transesterification between soybean oil and methanol was conducted in this study by a membrane reactor, in which ceramic membrane was packed with MCM-41 supported p-toluenesulfonic acid (PTSA). Box-Behnken design and response surface methodology (RSM) were used to investigate the effects of reaction temperature, catalyst amount and circulation velocity on the yield of biodiesel. A reduced cubic model was developed to navigate the design space. Reaction temperature was found to have most significant effect on the biodiesel yield while the interaction of catalyst amount and circulation velocity have minor effect on it. 80°C of reaction temperature, 0.27 g/cm(3) of catalyst amount and 4.15 mL/min of circulation velocity were proved to be the optimum conditions to achieve the highest biodiesel yield. PMID:24657760

  12. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    SciTech Connect

    Jiang, Tingshun Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  13. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst

    SciTech Connect

    Yu Hao Jin Yuguang; Li Zhili; Peng Feng Wang Hongjuan

    2008-03-15

    Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 deg. C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree ({approx}20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH{sub 3} temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications. - Graphical abstract: Sulfonated SWCNTs with 20 wt% -SO{sub 2}OH groups were prepared by a high-temperature H{sub 2}SO{sub 4} process, which transformed the hydrophobic surface of pristine SWCNTs to a hydrophilic surface and provided an excellent performance as solid acid catalyst.

  14. Solid Molecular Phosphine Catalysts for Formic Acid Decomposition in the Biorefinery.

    PubMed

    Hausoul, Peter J C; Broicher, Cornelia; Vegliante, Roberta; Göb, Christian; Palkovits, Regina

    2016-04-25

    The co-production of formic acid during the conversion of cellulose to levulinic acid offers the possibility for on-site hydrogen production and reductive transformations. Phosphorus-based porous polymers loaded with Ru complexes exhibit high activity and selectivity in the base-free decomposition of formic acid to CO2 and H2 . A polymeric analogue of 1,2-bis(diphenylphosphino)ethane (DPPE) gave the best results in terms of performance and stability. Recycling tests revealed low levels of leaching and only a gradual decrease in the activity over seven runs. An applicability study revealed that these catalysts even facilitate selective removal of formic acid from crude product mixtures arising from the synthesis of levulinic acid. PMID:27043017

  15. Reactions of aqueous glucose solution over solid-acid Y-zeolite catalyst at 110-160 C

    SciTech Connect

    Lourvanij, K.; Rorrer, G.L. )

    1993-01-01

    Reactions of glucose with solid-acid Y-zeolite catalyst were studied to see if this heterogeneous system could produce oxygenated hydrocarbons by shape-selective, acid-catalyzed processes at fairly low temperatures. Experimentally, aqueous solutions of glucose (12 wt %) were reacted with HY-zeolite powder in a well-mixed batch reactor at temperatures ranging from 110 to 160 C and catalyst concentrations ranging from 2 to 20 g/150 ml. Unreacted glucose and oxygenated hydrocarbon products were measured by HPLC as a function of reaction time (0-24 h) and process conditions. Glucose conversions of 100% were obtained at 160 C after an 8-h reaction time. The apparent activation energy based on glucose conversion was 23.25 [plus minus] 0.40 kcal/mol. Several acid-catalyzed reactions were identified, including isomerization of glucose to fructose, partial dehydration of glucose to 5-(hydroxymethyl)furfural (HMF), rehydration and cleavage of HMF to formic acid and 4-oxo-pentanoic acid, and carbonization . Polymers of HMF and seven minor additional products in the lower molecular weight organic acids/aldehydes/ketones elution range were also isolated by HPLC. High yields of organic acids relative to HMF and lowered selectivity of HMF in the bulk phase relative to the homogeneous acid-catalyzed reaction suggests the possibility of molecular sieving reactions within the Y-zeolite in addition to reactions on the outer surface of the Y-zeolite particle.

  16. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-02-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied.

  17. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    PubMed Central

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-01-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied. PMID:26856604

  18. Ultrasound-assisted one-pot synthesis of substituted coumarins catalyzed by poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst.

    PubMed

    Khaligh, Nader Ghaffari

    2013-07-01

    Poly(4-vinylpyridinium) hydrogen sulfate solid acid was found to be efficient catalyst for synthesis of substituted coumarins via Pechmann reaction using ultrasound irradiation at room temperature and neat condition in high yields with short reaction times. This methodology offers momentous improvements over various options for the synthesis of coumarins with regard to yield of products, simplicity in operation and green aspects by avoiding toxic catalysts and solvents. Further, the catalyst can be reused and recovered for several times. PMID:23395258

  19. Low-quality vegetable oils as feedstock for biodiesel production using K-pumice as solid catalyst. Tolerance of water and free fatty acids contents.

    PubMed

    Díaz, L; Borges, M E

    2012-08-15

    Waste oils are a promising alternative feedstock for biodiesel production due to the decrease of the industrial production costs. However, feedstock with high free fatty acids (FFA) content presents several drawbacks when alkaline-catalyzed transesterification reaction is employed in biodiesel production process. Nowadays, to develop suitable processes capable of treating oils with high free fatty acids content, a two-step process for biodiesel production is being investigated. The major problem that it presents is that two catalysts are needed to carry out the whole process: an acidic catalyst for free fatty acids esterification (first step) and a basic catalyst for pretreated product transesterification (second step). The use of a bifunctional catalyst, which allows both reactions to take place simultaneously, could minimize the production costs and time. In the present study, the behavior of pumice, a natural volcanic material used as a heterogeneous catalyst, was tested using oils with several FFA and water contents as feedstock in the transesterification reaction to produce biodiesel. Pumice as a bifunctional solid catalyst, which can catalyze simultaneously the esterification of FFA and the transesterification of fatty acid glycerides into biodiesel, was shown to be an efficient catalyst for the conversion of low-grade, nonedible oil feedstock into biodiesel product. Using this solid catalyst for the transesterification reaction, high FAME yields were achieved when feedstock oils presented a FFA content until approximately 2% wt/wt and a water content until 2% wt/wt. PMID:22799882

  20. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid.

    PubMed

    Zhang, Luxin; Yu, Hongbing; Wang, Pan

    2013-05-01

    With the aim to develop an ecologically viable catalytic pathway for furfural production without the use of inorganic acids, H3PW12O40, Amberlyst-5 and NKC-9 (macroporous styrene-based sulfonic acid resin) were used as catalysts for producing furfural from xylose, xylan and lignocellulosic biomass in [BMIM]Cl under microwave irradiation at atmospheric pressure. A surprisingly high furfural yield of 93.7% from xylan was obtained by H3PW12O40 at 160 °C in 10 min. The degradation of furfural affected by single addition of [BMIM]Cl and solid acids was also investigated. The IL could be easily recycled and reused with stable solvent capacity for multiple runs (5×) after the product furfural was extracted with ethyl acetate. PMID:23567725

  1. Efficient solid acid catalyst containing Lewis and Brønsted Acid sites for the production of furfurals.

    PubMed

    Mazzotta, Michael G; Gupta, Dinesh; Saha, Basudeb; Patra, Astam K; Bhaumik, Asim; Abu-Omar, Mahdi M

    2014-08-01

    Self-assembled nanoparticulates of porous sulfonated carbonaceous TiO2 material that contain Brønsted and Lewis acidic sites were prepared by a one-pot synthesis method. The material was characterized by XRD, FTIR spectroscopy, NH3 temperature-programmed desorption, pyridine FTIR spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, N2 -sorption, atomic absorbance spectroscopy, and inductively coupled plasma optical emission spectroscopy. The carbonaceous heterogeneous catalyst (Glu-TsOH-Ti) with a Brønsted-to-Lewis acid density ratio of 1.2 and more accessible acid sites was effective to produce 5-hydroxymethylfurfural and furfural from biomass-derived mono- and disaccharides and xylose in a biphasic solvent that comprised water and biorenewable methyltetrahydrofuran. The catalyst was recycled in four consecutive cycles with a total loss of only 3 % activity. Thus, Glu-TsOH-Ti, which contains isomerization and dehydration catalytic sites and is based on a cheap and biorenewable carbon support, is a sustainable catalyst for the production of furfurals, platform chemicals for biofuels and chemicals. PMID:24807741

  2. Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions

    SciTech Connect

    Shiju N. R.; Syed K.; Alberts A.; Brown D. and Rothenberg G.

    2011-09-15

    A bifunctional solid catalyst is prepared by combining acid and base functions on mesoporous silica supports. The co-existence of these functions is shown by a two-step reaction sequence in one pot. Excellent product yields, which cannot be obtained by separated acid and base functions in one pot, show the validity of our concept.

  3. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol.

    PubMed

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-04-01

    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil. PMID:24561631

  4. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-02-01

    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. PMID:21183335

  5. Synthesis of phenoxy ethers of methyl lesquerolate over solid acid catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerolic acid is the primary fatty acid found in Lesquerella. The seeds are 33% oil of which about 55% is the 20 carbon unsaturated hydroxyl fatty acid, lesquerolic acid. A simple derivatization of this fatty acid could expand its potential as an industrial oil. We have used a heterogeneous Le...

  6. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts.

    PubMed

    Sahu, Ramakanta; Dhepe, Paresh Laxmikant

    2012-04-01

    We present a solid-acid catalyzed one-pot method for the selective conversion of solid hemicellulose without its separation from other lignocellulosic components, such as cellulose and lignin. The reactions were carried out in aqueous and biphasic media to yield xylose, arabinose, and furfural. To overcome the drawbacks posed by mineral acid methods in converting hemicelllulose, we used heterogeneous catalysts that work at neutral pH. In a batch reactor, these heterogeneous catalysts, such as solid acids (zeolites, clays, metal oxides etc.), resulted in >90 % conversion of hemicellulose. It has been shown that the selectivity for the products can be tuned by changing the reaction conditions, for example, a reaction carried out in water at 170 °C for 1 h with HBeta (Si/Al=19) and HUSY (Si/Al=15) catalysts gave yields of 62 and 56 % for xylose and arabinose, respectively. With increased reaction time (6 h) and in presence of only water, HUSY resulted in yields of 30 % xylose + arabinose and 18 % furfural. However, in a biphasic reaction system (water + p-xylene, 170 °C, 6 h) yields of 56 % furfural with 17 % xylose+arabinose could be achieved. It was shown that with the addition of organic solvent the furfural yield could be increased from 18 to 56 %. Under optimized reaction conditions, >90 % carbon balance was observed. The study revealed that catalysts were recyclable with a 20 % drop in activity for each subsequent run. It was observed that temperature, pressure, reaction time, substrate to catalyst ratio, solvent, and so forth had an effect on product formation. The catalysts were characterized by means of X-ray diffraction, temperature-programmed desorption of NH(3), inductively coupled plasma spectroscopy, elemental analysis, and solid-state NMR ((29)Si, (27)Al) spectroscopy techniques. PMID:22411884

  7. SYNTHESIS AND CHARACTERIZATION OF A NOVEL SOLID ACID CATALYST FOR IMPROVED USE OF WASTE OIL FEEDSTOCK FOR BIODIESEL PRODUCTION

    EPA Science Inventory

    Carbon Catalyst Synthesis - Sucrose was treated directly with excess sulfuric acid sulfuric acid (9:1 mol/mol, 25°C). A carbon foam (nearly 20 fold increase in bulk volume) was immediately formed. The foam was then washed until no sulfate was dete...

  8. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst.

    PubMed

    Zhang, Zehui; Dong, Kun; Zhao, Zongbao Kent

    2011-01-17

    A clean, facile, and environment-friendly catalytic method has been developed for the conversion of furfuryl alcohol into alkyl levulinates making use of the novel solid catalyst methylimidazolebutylsulfate phosphotungstate ([MIMBS]₃PW₁₂O₄₀). The solid catalyst is an organic-inorganic hybrid material, which consists of an organic cation and an inorganic anion. A study for optimizing the reaction conditions such as the reaction time, the temperature and the catalyst loading has been performed. Under optimal conditions, a high n-butyl levulinate yield of up to 93 % is obtained. Furthermore, the kinetics of the reaction pathways and the mechanism for the alcoholysis of furfuryl alcohol are discussed. This method is environmentally benign and economical for the conversion of biomass-based derivatives into fine chemicals. PMID:21226220

  9. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. PMID:25045161

  10. Supercritical/Solid Catalyst (SSC)

    SciTech Connect

    2010-01-01

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  11. Supercritical/Solid Catalyst (SSC)

    ScienceCinema

    None

    2013-05-28

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  12. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods. PMID:25843280

  13. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    PubMed

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-01

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. PMID:26549016

  14. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  15. Solid superacids as coal liquefaction catalysts

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1989-01-01

    Direct coal liquefaction under mild conditions can be achieved by the use of strong acid catalysts. This research is aimed at exploring the possibility of mile coal liquefaction in the presence of solid superacids, especially oxides of iron, titanium, zirconium, and hafnium treated with sulfate ions. Fe{sub 2}O{sub 3}/SO{sub 4}{sup 2{minus}} has been shown to be an impressively active catalyst in coal conversion at 400{degree}C. Our objective is to find conditions under which Fe{sub 2}O{sub 3}/SO{sub 4}{sup 2{minus}} and similar systems catalyze the conversion of coal at mild conditions of temperature and pressure. To date, Fe{sub 2}O{sub 3}/SO{sub 4}{sup 2{minus}}, Ti{sub 2}/SO{sub 4}{sup 2{minus}}, ZrO{sub 2}/SO{sub 4}{sup 2{minus}} catalysts have been synthesized and characterized by XRD, BET, IR, acidity measurement, and sulfur analysis, and a comparison of the relative reactivity of these superacids for n- pentane isomerization and conversion of diphenyl ether and diphenylmethane in both batch and fixed bed reactor systems has been carried out. In this quarter we extended our study of pentane conversion and tested the above catalysts in hydrocracking of longer linear alkanes. We investigated the conversion of coal model compounds including diphenylmethane, dibenyl ether and phenyl benzyl ether at room temperature. We have started work on the conversion of coal at 400{degree}C under hydrogen pressure using an Fe{sub 2}O{sub 3}/SO{sub 4}{sup 2{minus}} catalyst. 3 refs., 3 figs.

  16. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. PMID:25461009

  17. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  18. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  19. Acidic Cs{sup +}, NH{sub 4}{sup +}, and K{sup +} salts of 12-tungstophosphoric acid as solid catalysts for isobutane/2-butene alkylation

    SciTech Connect

    Corma, A.; Martinez, A.; Martinez, C.

    1996-12-01

    The cesium, ammonium, and potassium salts of 12-tungstophosphoric acid (HPW) have been prepared with different stoichiometries (1{le}x{le}3) and their catalytic behavior measured for the liquid phase alkylation of isobutane with 2-butene at 80{degrees}C. The salts with a cation content of 2.5 {le}x{le}3, and that of Cs{sup +} with x=2, showed a much higher surface area than the parent acid, which is partially due to the formation of micropores. The micropores presented a fairly homogeneous distribution, with an average diameter in the range of 6-11 {Angstrom}, depending on the type of cation and cation content. The activity of the heteropoly acid and their monovalent type B salts for isobutane alkylation could be correlated with the surface acidity of the solids. Thus, the initial (1 min TOS) olefin conversion went through a maximum for the NH{sub 4}{sup +} and K{sup +} salts with a cation content of x = 2.5, and in the range of 2{le}x{le}2.5 in the case of the Cs{sup +} compounds. (NH{sub 4}){sup 2.5}PW showed a very high initial cracking activity (ca. 72 wt% C{sub 5}-C{sub 7} in C{sub 5+}), suggesting the presence of surface acid sites of a higher acid strength in the ammonium salt, as compared to the caesium and potassium salts with similar composition. In all cases the desired trimethylpentanes (TMPs) were the predominant compounds in the C{sub 8} fraction formed in the initial reaction stages. The deactivation rate also depended on the nature of the cation exchanged in the heteropoly salts. 57 refs., 7 figs., 4 tabs.

  20. [Preparation of Cu/ZrO2/S2O8(2-)/gamma-Al2O3 solid acid catalyst and its catalytic activity to selective reduction of NO].

    PubMed

    Guo, Xi-kun; Wang, Xiao-ming

    2008-06-01

    Cu/ZrO2/S2O8(2-)/gamma-Al2O3 solid acid catalyst was prepared by loading of (NH4)2S2O8, ZrOCl2, and Cu(NO3)2 onto gamma-Al2O3 step by step, which was obtained from calcining of pseudoboehmite. The catalytic property of Cu/ZrO2/S2O8(2-)/gamma-Al2O3 on the selective reduction of NO by C3H6 in excess oxygen was investigated. The relationship between the structure and the catalytic property of Cu/ZrO2/S2O8(2-)/gamma-Al2O3 catalyst was also explored by means of SEM, XRD, Py-IR and TPR. The experimental results of catalytic activity of the title catalyst indicated that the maximum conversion rate of NO could reach 82.9% in the absence of water and was up to 80.2% even in the presence of 10% water vapor. The results of the structural characterization toward the catalyst showed that S2O8(2-) and ZrO2 could restrain the sinteration of gamma-Al2O3 particles and the formation of CuAl2O4 spinelle, and also facilitate the formation of new acidic sites (Brönsted acid) and the enhance of the acidity on the surface of the catalyst. In addition, ZrO2 could increase the reducibility of Cu on the catalyst. Consequently, the catalytic activity and hydrothermal stability of the catalyst were improved effectively. PMID:18763532

  1. Dehydrogenation of Formic Acid by Heterogeneous Catalysts.

    PubMed

    Li, Jun; Zhu, Qi-Long; Xu, Qiang

    2015-01-01

    Formic acid has recently been considered as one of the most promising hydrogen storage materials. The basic concept is briefly discussed and the research progress is detailledly reviewed on the dehydrogenation of aqueous formic acid by heterogeneous catalysts. PMID:26507481

  2. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  3. Formic acid fuel cells and catalysts

    SciTech Connect

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  4. Catalysis by coke deposits: synthesis of isoprene over solid catalysts.

    PubMed

    Ivanova, Irina; Sushkevich, Vitaly L; Kolyagin, Yury G; Ordomsky, Vitaly V

    2013-12-01

    A help rather than a hindrance: Carbonaceous deposits have been found to play a key role in the selective synthesis of isoprene from formaldehyde and isobutene over solid catalysts. They accumulate on the catalyst surface during the induction period and promote the interaction of the substrates at the steady state. The proposed mechanism shows the way forward for the design of efficient solid catalysts for the synthesis of isoprene. PMID:24129943

  5. Synthesis and structural study of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide obtained using H6P2W18O62 as acidic solid catalyst

    NASA Astrophysics Data System (ADS)

    Bougheloum, Chafika; Barbey, Carole; Berredjem, Malika; Messalhi, Abdelrani; Dupont, Nathalie

    2013-06-01

    At room temperature and under acidic conditions, acylation of sulfamides derivatives in various solvents using diverse solid catalysts has been investigated. The best yields are obtained in acetonitrile with a Wells-Dawson type heteropolyacid H6P2W18O62 as acidic solid catalyst. Crystals of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide suitable for X-ray study have been obtained after recrystallization in toluene. The detailed analysis of molecular and crystal structure is presented in comparison with the structure of 1,2,3,4-tetrahydroisoquinoline-2-sulfonamide, before acylation, previously studied by our team. The role of both intra- and intermolecular weak interactions is discussed. The Hirshfeld surfaces analysis in form of dnorm representation and decomposed fingerprint plots were used to find out different weak but directional hydrogen bonds and π interactions. Both structures present similar sandwich structures with alternation of primary layers involving strong hydrogen bonds with secondary layers involving mostly weaker interactions.

  6. Catalysts for portable, solid state hydrogen genration systems

    NASA Astrophysics Data System (ADS)

    Gabl, Jason Robert

    Hydrogen and air powered proton exchange membrane fuel cells are a potential alternative to batteries. In portable power systems, the design requirements often focus on cost efficiency, energy density, storability, as well as safety. Ammonia borane (AB), a chemical hydride containing 19.6 wt. % hydrogen, has a high hydrogen capacity and is a stable and non-toxic candidate for storing hydrogen in portable systems. Throughout this work, Department of Energy guidelines for low power portable hydrogen power systems were used as a baseline and comparison with commercially available systems. In order to make this comparison, the system parameters of a system using AB hydrolysis were estimated by developing capacity and cost correlations from the commercial systems and applying them to this work. Supporting experiments were designed to evaluate a system that would use a premixed solid storage bed of AB and a catalyst. This configuration would only require a user input of water in order to initiate the hydrogen production. Using ammonia borane hydrolysis, the hydrogen yield is ˜9 wt. %, when all reactants are considered. In addition to the simplicity of initiating the reaction, hydrolysis of AB has the advantage of suppressing the production of some toxic borazines that are present when AB is thermally decomposed. However, ammonia gas will be formed and this problem must be addressed, as ammonia is damaging to PEM fuel cells. The catalyst focused on throughout this work was Amberlyst - 15; an ion exchange resin with an acid capacity of 4.7 eq/kg and ammonia adsorbent. At less than 0.30/g, this is a cost effective alternative to precious metal catalysts. The testing with this catalyst was compared to a traditional catalyst in literature, 20% platinum in carbon, costing more than 40/g. The Amberlyst catalyst was found to reduce the formation of ammonia in the gas products from ˜3.71 wt. % with the Pt/C catalyst to <0.01 wt. %. Since Amberlyst adsorbs ammonia, it acts as a

  7. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  8. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  9. Hydroxyalkylation of phenol to bisphenol F over heteropolyacid catalysts: The effect of catalyst acid strength on isomer distribution and kinetics.

    PubMed

    Wu, Xianzhang; Liu, Yutang; Liu, Ran; Wang, Longlu; Lu, Yanbing; Xia, Xinnian

    2016-11-01

    Hydroxyalkylation of phenol with formaldehyde to bisphenol F over heteropolyacid impregnated on clay was investigated. These catalysts displayed excellent catalytic performance for this reaction, especially that the effects of acid sites on the isomer distribution are obvious. Various solid catalysts were prepared by impregnating heteropolyacid on different kind of clay matrices, and their chemical compositions, textural properties, and acid strength of the heteropolyacid catalysts were characterized by EDX, BET, NH3-TPD, XRD, and FT-IR. Moreover, the effects of acid sites and reaction temperature on the yield and 4,4'-isomer distribution were launched by comparing the data obtained from the two kinds of catalysts. Furthermore, the kinetics of the hydroxyalkylation of phenol to BPF was established. PMID:27451037

  10. Method for reactivating solid catalysts used in alkylation reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  11. Method For Reactivating Solid Catalysts Used For Alklation Reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2005-05-03

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  12. Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts.

    PubMed

    Cole, Amanda C; Jensen, Jessica L; Ntai, Ioanna; Tran, Kim Loan T; Weaver, Kristin J; Forbes, David C; Davis, James H

    2002-05-29

    The reaction of triphenylphosphine or N-butylimidazole with cyclic sultones gives zwitterions that are subsequently converted into ionic liquids by reaction with trifluoromethane sulfonic acid or p-toluenesulfonic acid. The resulting ionic liquids have cations to which are tethered alkane sulfonic acid groups. These Brønsted acidic ionic liquids are useful solvent/catalysts for several organic reactions, including Fischer esterification, alcohol dehydrodimerization and the pinacol rearrangement. The new ionic liquids combine the low volatility and ease of separation from product normally associated with solid acid catalysts, with the higher activity and yields normally found using conventional liquid acids. PMID:12022828

  13. Application of solid ash based catalysts in heterogeneous catalysis.

    PubMed

    Wang, Shaobin

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe2O3 could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H2 production, deSO(x), deNO(x), hydrocarbon oxidation,and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. PMID:18939526

  14. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  15. Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.

    PubMed

    Lee, Young Yi; Ok, Hye Jeong; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2013-01-01

    Liquid-phase dehydration of glycerol to acrolein over nanosized niobia-supported silicotungstic acid catalysts was performed to investigate the effect of the silicotungstic acid loading on the catalytic performance of the catalysts. The catalysts were prepared by following an impregnation method with different HSiW loadings in the range of 10-50 wt%. The prepared catalysts were characterized by N2 physisorption, XRD, FT-IR, TPD of ammonia, and TGA. Dehydration of glycerol was conducted in an autoclave reactor under the conditions of controlled reaction temperatures under corresponding pressure. Increasing HSiW loading rapidly increased the acidity of HSiW/Nb205 catalyst and rate of glycerol conversion, but acrolein selectivity decreased due to enhanced deactivation of the catalyst by carbon deposit. Consequently, it was confirmed that catalytic activity for the dehydration of glycerol to acrolein was dependant on the acidity of catalyst and can be controlled by HSiW loading. PMID:23646735

  16. Novel, benign, solid catalysts for the oxidation of hydrocarbons.

    PubMed

    Ratnasamy, Paul; Raja, Robert; Srinivas, Darbha

    2005-04-15

    The catalytic properties of two classes of solid catalysts for the oxidation of hydrocarbons in the liquid phase are discussed: (i) microporous solids, encapsulating transition metal complexes in their cavities and (ii) titanosilicate molecular sieves. Copper acetate dimers encapsulated in molecular sieves Y, MCM-22 and VPI-5 use dioxygen to regioselectively ortho-hydroxylate L-tyrosine to L-dopa, phenol to catechol and cresols to the corresponding o-dihydroxy and o-quinone compounds. Monomeric copper phthalocyanine and salen complexes entrapped in zeolite-Y oxidize methane to methanol, toluene to cresols, naphthalene to naphthols, xylene to xylenols and phenol to diphenols. Trimeric mu3-oxo-bridged Co/Mn cluster complexes, encapsulated inside Y-zeolite, oxidize para-xylene, almost quantitatively, to terephthalic acid. In almost all cases, the intrinsic catalytic activity (turnover frequency) of the metal complex is enhanced very significantly, upon encapsulation in the porous solids. Spectroscopic and electrochemical studies suggest that the geometric distortions of the complex on encapsulation change the electron density at the metal ion site and its redox behaviour, thereby influencing its catalytic activity and selectivity in oxidation reactions. Titanosilicate molecular sieves can oxidize hydrocarbons using dioxygen when loaded with transition metals like Pd, Au or Ag. The structure of surface Ti ions and the type of oxo-Ti species generated on contact with oxidants depend on several factors including the method of zeolite synthesis, zeolite structure, solvent, temperature and oxidant. Although, similar oxo-Ti species are present on all the titanosilicates, their relative concentrations vary among different structures and determine the product selectivity. PMID:15901549

  17. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  18. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone.

    PubMed

    Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2015-12-01

    A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in γ-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10 min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100 min). PMID:26454364

  19. Alumino-rhenium-sulphide catalysts in hydrogenation of carboxylic acids

    SciTech Connect

    Ryashentseva, M.A.; Minachev, Kh.M.; Yunusov, M.P.; Serodzhev, A.T.

    1982-01-01

    Alumino-rhenium sulfide catalysts containing 1.5, 5 and 8% rhenium are active in hydrogenation of mono-, dicarboxylic acids (isobutyric, valeric, pelargonic and succinic) and a fraction of synthetic fatty acids to corresponding alcohols at 210 to 270/sup 0/C and a partial pressure of hydrogen of 25 MPa. These catalysts appear to be more selective and are more stable than other well-known oxide catalysts. 2 tables.

  20. Liquefaction of solid carbonaceous material with catalyst recycle

    DOEpatents

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  1. High-throughput screening of solid-state catalyst libraries

    NASA Astrophysics Data System (ADS)

    Senkan, Selim M.

    1998-07-01

    Combinatorial synthesis methods allow the rapid preparation and processing of large libraries of solid-state materials. The use of these methods, together with the appropriate screening techniques, has recently led to the discovery of materials with promising superconducting, magnetoresistive, luminescent and dielectric properties. Solid-state catalysts, which play an increasingly important role in the chemical and oil industries, represent another class of material amenable to combinatorial synthesis. Yet typically, catalyst discovery still involves inefficient trial-and-error processes, because catalytic activity is inherently difficult to screen. In contrast to superconductivity, magnetoresistivity and dielectric properties, which can be tested by contact probes, or luminescence, which can be observed directly, the assessment of catalytic activity requires the unambiguous detection of a specific product molecule above a small catalyst site on a large library. Screening by in situ infrared thermography and microprobe sampling mass spectrometry, have been suggested, but the first method, while probing activity, provides no information on reaction products, whereas the second is difficult to implement because it requires the transport of minute gas samples from each library site to the detection system. Here I describe the use of laser-induced resonance-enhanced multiphoton ionization for sensitive, selective and high-throughput screening of a library of solid-state catalysts that activate the dehydrogenation of cyclohexane to benzene. I show that benzene, the product molecule, can be selectively photoionized in the vicinity of the catalytic sites, and that the detection of the resultant photoions by an array of microelectrodes provides information on the activity of individual sites. Adaptation of this technique for the screening of other catalytic reactions and larger libraries with smaller site size seems feasible, thus opening up the possibility of exploiting

  2. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    PubMed

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work. PMID:26154033

  3. Biguanide-functionalized mesoporous SBA-15 silica as an efficient solid catalyst for interesterification of vegetable oils.

    PubMed

    Xie, Wenlei; Hu, Libing

    2016-04-15

    The biguanide-functionalized SBA-15 materials were fabricated by grafting of organic biguanide onto the SBA-15 silica through covalent attachments, and then this organic-inorganic hybrid material was employed as solid catalysts for the interesterification of triacylglycerols for the modification of vegetable oils. The prepared catalyst was characterized by FTIR, XRD, SEM, TEM, nitrogen adsorption-desorption and elemental analysis. The biguanide base was successfully tethered onto the SBA-15 silica with no damage to the ordered mesoporous structure of the silica after the organo-functionalization. The solid catalyst had stronger base strength and could catalyze the interesterification of triacylglycerols. The fatty acid compositions and triacylglycerol profiles of the interesterified products were noticeably varied following the interesterification. The reaction parameters, namely substrate ratio, reaction temperature, catalyst loading and reaction time, were investigated for the interesterification of soybean oil with methyl decanoate. The catalyst could be reused for at least four cycles without significant loss of activity. PMID:26616928

  4. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  5. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    PubMed

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. PMID:24768105

  6. Reactivity and Characterization of Solid State Hydrodesulfurization Catalysts.

    NASA Astrophysics Data System (ADS)

    Lindner, James Henry

    1990-01-01

    The identification of the phase responsible for hydrodesulfurization (HDS) activity has been the subject of extensive research. In this study, model solid state catalysts prepared from elemental starting materials were synthesized, characterized, and then used to desulfurize thiophene at temperatures ranging from 200-400 ^circC and a pressure of one atmosphere. The results of this work indicate that an increased HDS activity can be correlated with the presence of a poorly crystalline molybdenum sulfide-like phase detected by XRD, HREM, or AEM. The formation of this sulfur-deficient, non-stoichiometric phase could be accomplished by either removing sulfur directly from the catalyst synthesis mixture to yield a non-stoichiometric MoS_{ rm 2-x} moiety, or by introducing a transition metal promoter such as Fe, Co, Ni, or Cu into the system. The promoter atoms induced structural changes in the molybdenum sulfide edge planes by effectively scavenging sulfur during catalyst synthesis to form promoter sulfide species, which enhanced the formation of a non-stoichiometric, highly active molybdenum sulfide. This morphological effect was the primary function of the promoter in this system. All model catalysts displayed similar structure in the (0002) basal plane of MoS_2; however, only the catalytically active samples showed a high concentration of defects and disorder in the (1010), (1011), and (1012) edge planes. The HREM images obtained from these edge planes and their correlation with HDS activity dramatically illustrated the importance of the often-discussed edge plane structure of MoS_2 and its significance on HDS catalysis. Normalization of the HDS activities for the solid state models and a commercial catalyst with O_2 or CO chemisorption uptakes suggested that a similarity may exist between the catalytically active sites of these materials. In-situ XPS revealed that increasing promoter atom concentrations resulted in a more complete reduction of the promoter atom; but

  7. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste

    PubMed Central

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-01-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis–sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m2 g−1, which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g−1 of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)–sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste. PMID:23939253

  8. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste.

    PubMed

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-01-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis-sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m(2) g(-1), which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g(-1) of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)-sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste. PMID:23939253

  9. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste

    NASA Astrophysics Data System (ADS)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-08-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis-sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m2 g-1, which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g-1 of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)-sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste.

  10. Surface acidity and degree of carburization of modified silver catalysts

    SciTech Connect

    Pestryakov, A.N.; Belousova, V.N.; Roznina, M.I.

    1993-11-10

    The effect has been studied of some compounds as modifying additives on the surface acidity, degree of carburization, aggregation and silver entrainement of silver-pumice catalysts for methanol oxidation. Catalyst samples have been tested in an industrial reactor. The probable mechanism of modifying action of the additives is discussed.

  11. EPA'S CATALYST RESEARCH PROGRAM: ENVIRONMENTAL IMPACT OF SULFURIC ACID EMISSIONS

    EPA Science Inventory

    A sulfuric acid review conference sponsored by EPA's automotive Catalyst Research Program was held recently at Hendersonville, NC, for researchers whose work is funded by EPA. Emissions characterization research indicated that in-use catalyst-equipped vehicles emit low levels of ...

  12. Method for producing iron-based acid catalysts

    SciTech Connect

    Farcasiu, M.; Kathrein, H.; Kaufman, P.B.; Diehl, J.R.

    1998-04-01

    A method for preparing an acid catalyst with a long shelf-life is described. Crystalline iron oxides are doped with lattice compatible metals which are heated with halogen compounds at elevated temperatures.

  13. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  14. Sulfonic acid catalysts prepared by radiation-induced graft polymerization

    SciTech Connect

    Mizota, Tomotoshi; Tsuneda, Satoshi; Saito, Kyoichi, Saito

    1994-09-01

    In this study, the authors prepared two variations of graft-type acid catalysts with different adjacent groups by radiation-induced graft polymerization (RIGP), and compared the hydrolytic activity of the resultant acid catalysts for methyl acetate with that of commercially available SO{sub 3}H-type ion-exchange beads with different degrees of cross-linking. 8 refs., 3 figs.

  15. Metallopeptide Catalysts and Artificial Metalloenzymes Containing Unnatural Amino Acids

    PubMed Central

    Lewis, Jared C.

    2014-01-01

    Metallopeptide catalysts and artificial metalloenzymes built from peptide scaffolds and catalytically active metal centers possess a number of exciting properties that could be exploited for selective catalysis. Control over metal catalyst secondary coordination spheres, compatibility with library based methods for optimization and evolution, and biocompatibility stand out in this regard. A wide range of unnatural amino acids have been incorporated into peptide and protein scaffolds using several distinct methods, and the resulting unnatural amino acid containing scaffolds can be used to create novel hybrid metal-peptide catalysts. Promising levels of selectivity have been demonstrated for several hybrid catalysts, and these provide a strong impetus and important lessons for the design of and optimization of hybrid catalysts. PMID:25545848

  16. Application of waste eggshell as low-cost solid catalyst for biodiesel production.

    PubMed

    Wei, Ziku; Xu, Chunli; Li, Baoxin

    2009-06-01

    Waste eggshell was investigated in triglyceride transesterification with a view to determine its viability as a solid catalyst for use in biodiesel synthesis. Effect of calcination temperature on structure and activity of eggshell catalysts was investigated. Reusability of eggshell catalysts was also examined. It was found that high active, reusable solid catalyst was obtained by just calcining eggshell. Utilization of eggshell as a catalyst for biodiesel production not only provides a cost-effective and environmental friendly way of recycling this solid eggshell waste, significantly reducing its environmental effects, but also reduces the price of biodiesel to make biodiesel competitive with petroleum diesel. PMID:19201602

  17. Manganese Triazacyclononane Oxidation Catalysts Grafted under Reaction Conditions on Solid Co-Catalytic Supports

    SciTech Connect

    Schoenfeldt, Nicholas J.; Ni, Zhenjuan; Korinda, Andrew W.; Meyer, Randall J.; Notestein, Justin M.

    2012-01-23

    Manganese complexes of 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) are highly active and selective alkene oxidation catalysts with aqueous H{sub 2}O{sub 2}. Here, carboxylic acid-functionalized SiO{sub 2} simultaneously immobilizes and activates these complexes under oxidation reaction conditions. H{sub 2}O{sub 2} and the functionalized support are both necessary to transform the inactive [(tmtacn)Mn{sup IV}({mu}-O)3Mn{sup IV}(tmtacn)]{sup 2+} into the active, dicarboxylate-bridged [(tmtacn)Mn{sup III}({mu}-O)({mu}-RCOO){sub 2}Mn{sup III}(tmtacn)]{sup 2+}. This transformation is assigned on the basis of comparison of diffuse reflectance UV-visible spectra to known soluble models, assignment of oxidation state by Mn K-edge X-ray absorption near-edge spectroscopy, the dependence of rates on the acid/Mn ratios, and comparison of the surface structures derived from density functional theory with extended X-ray absorption fine structure. Productivity in cis-cyclooctene oxidation to epoxide and cis-diol with 2-10 equiv of solid cocatalytic supports is superior to that obtained with analogous soluble valeric acid cocatalysts, which require 1000-fold excess to reach similar levels at comparable times. Cyclooctene oxidation rates are near first order in H{sub 2}O{sub 2} and near zero order in all other species, including H{sub 2}O. These observations are consistent with a mechanism of substrate oxidation following rate-limiting H{sub 2}O{sub 2} activation on the hydrated, supported complex. This general mechanism and the observed alkene oxidation activation energy of 38 {+-} 6 kJ/mol are comparable to H{sub 2}O{sub 2} activation by related soluble catalysts. Undesired decomposition of H{sub 2}O{sub 2} is not a limiting factor for these solid catalysts, and as such, productivity remains high up to 25 C and initial H{sub 2}O{sub 2} concentration of 0.5 M, increasing reactor throughput. These results show that immobilized carboxylic acids can be utilized and understood

  18. Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst

    DOE PAGESBeta

    Soorholtz, Mario; Jones, Louis C.; Samuelis, Dominik; Weidenthaler, Claudia; White, Robin J.; Titirici, Maria-Magdalena; Cullen, David A.; Zimmermann, Tobias; Antonietti, Markus; Maier, Joachim; et al

    2016-02-16

    Combining advantages of homogeneous and heterogeneous catalysis by incorporating active species on a solid support is often an effective strategy for improving overall catalyst performance, although the influences of the support are generally challenging to establish, especially at a molecular level. In this paper, we report the local compositions, and structures of platinum species incorporated into covalent triazine framework (Pt-CTF) materials, a solid analogue of the molecular Periana catalyst, Pt(bpym)Cl2, both of which are active for the selective oxidation of methane in the presence of concentrated sulfuric acid. By using a combination of solid-state 195Pt nuclear magnetic resonance (NMR) spectroscopy,more » aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), important similarities and differences are observed between the Pt-CTF and Periana catalysts, which are likely related to their respective macroscopic reaction properties. In particular, wide-line solid-state 195Pt NMR spectra enable direct measurement, identification, and quantification of distinct platinum species in as-synthesized and used Pt-CTF catalysts. The results indicate that locally ordered and disordered Pt sites are present in as-synthesized Pt-CTF, with the former being similar to one of the two crystallographically distinct Pt sites in crystalline Pt(bpym)Cl2. A distribution of relatively disordered Pt moieties is also present in the used catalyst, among which are the principal active sites. Similarly XAS shows good agreement between the measured data of Pt-CTF and a theoretical model based on Pt(bpym)Cl2. Analyses of the absorption spectra of Pt-CTF used for methane oxidation suggests ligand exchange, as predicted for the molecular catalyst. XPS analyses of Pt(bpym)Cl2, Pt-CTF, as well as the unmodified ligands, further corroborate platinum coordination by pyridinic N atoms

  19. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    PubMed

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. PMID:24661813

  20. MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization.

    PubMed

    Wang, Peng; Feng, Jian; Zhao, Yupei; Wang, Shaobin; Liu, Jian

    2016-09-14

    A strong solid acid, tungstated zirconia (WZ), has been prepared first using tungstate immobilized UiO-66 as precursors through a "double-solvent" impregnation method under mild calcination temperature. With moderate W contents, the as-synthesized WZ catalysts possess a high density of acid sites, and the proper heat treatment also has facilely led to a bunch of oligomeric tungsten clusters on stabilized tetragonal ZrO2. The resultant solid acids show an improved catalytic performance toward the benzaldehyde's acetalization in comparison with traditional zirconium hydroxide-prepared WZ. Notably, due to large surface area and additionally introduced strong acid sites, the MOF-derived WZ catalysts afforded conversion up to 86.0%. The facile method endows the WZ catalysts with superior catalytic activities and excellent recyclability, thus opening a new avenue for preparation of metal oxide-based solid superacids and superbases. PMID:27557351

  1. A prolific catalyst for dehydrogenation of neat formic acid.

    PubMed

    Celaje, Jeff Joseph A; Lu, Zhiyao; Kedzie, Elyse A; Terrile, Nicholas J; Lo, Jonathan N; Williams, Travis J

    2016-01-01

    Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. While many catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons. These are avoided here. The catalyst utilizes an interesting chemical mechanism, which is described on the basis of kinetic and synthetic experiments. PMID:27076111

  2. A prolific catalyst for dehydrogenation of neat formic acid

    PubMed Central

    Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.; Terrile, Nicholas J.; Lo, Jonathan N.; Williams, Travis J.

    2016-01-01

    Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. While many catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons. These are avoided here. The catalyst utilizes an interesting chemical mechanism, which is described on the basis of kinetic and synthetic experiments. PMID:27076111

  3. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  4. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    PubMed

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. PMID:27072349

  5. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  6. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  7. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  8. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  9. Green chemistry: Biodiesel made with sugar catalyst

    NASA Astrophysics Data System (ADS)

    Toda, Masakazu; Takagaki, Atsushi; Okamura, Mai; Kondo, Junko N.; Hayashi, Shigenobu; Domen, Kazunari; Hara, Michikazu

    2005-11-01

    The production of diesel from vegetable oil calls for an efficient solid catalyst to make the process fully ecologically friendly. Here we describe the preparation of such a catalyst from common, inexpensive sugars. This high-performance catalyst, which consists of stable sulphonated amorphous carbon, is recyclable and its activity markedly exceeds that of other solid acid catalysts tested for `biodiesel' production.

  10. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Chisholm, Calum (Inventor); Narayanan, Sekharipuram R. (Inventor); Boysen, Dane (Inventor); Haile, Sossina M. (Inventor)

    2002-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting. The solid acid material has the general form M.sub.a H.sub.b (XO.sub.t).sub.c.

  11. Spectroscopic studies of alumina-supported nickel catalysts precursors. Part I. Catalysts prepared from acidic solutions

    NASA Astrophysics Data System (ADS)

    Pasieczna-Patkowska, S.; Ryczkowski, J.

    2007-04-01

    Nickel alumina-supported catalysts were prepared from acidic solutions of nickel nitrate by the CIM and DIM methods (classical and double impregnation, respectively). The catalysts exhibited different nickel species due to the existence of various metal-support interaction strengths. As a consequence, the reducibility and other surface properties changed as a function of the preparation method. The aim of this work was to study the interaction between the metal precursor and the alumina surface by means of FT-IR (Fourier transform infrared) and FT-IR/PAS (FT-IR photoacoustic spectroscopy).

  12. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  13. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  14. Analysis of recycled poly (styrene-co-butadiene) sulfonation: a new approach in solid catalysts for biodiesel production.

    PubMed

    Aguilar-Garnica, Efrén; Paredes-Casillas, Mario; Herrera-Larrasilla, Tito E; Rodríguez-Palomera, Felicia; Ramírez-Arreola, Daniel E

    2013-01-01

    The disposal of solid waste is a serious problem worldwide that is made worse in developing countries due to inadequate planning and unsustainable solid waste management. In Mexico, only 2% of total urban solid waste is recycled. One non-recyclable material is poly (styrene-co-butadiene), which is commonly used in consumer products (like components of appliances and toys), in the automotive industry (in instrument panels) and in food services (e.g. hot and cold drinking cups and glasses). In this paper, a lab-scale strategy is proposed for recycling poly (styrene-co-butadiene) waste by sulfonation with fuming sulfuric acid. Tests of the sulfonation strategy were carried out at various reaction conditions. The results show that 75°C and 2.5 h are the operating conditions that maximize the sulfonation level expressed as number of acid sites. The modified resin is tested as a heterogeneous catalyst in the first step (known as esterification) of biodiesel production from a mixture containing tallow fat and canola oil with 59% of free fatty acids. The preliminary results show that esterification can reach 91% conversion in the presence of the sulfonated polymeric catalyst compared with 67% conversion when the reaction is performed without catalyst. PMID:24098857

  15. Concluding remarks: progress toward the design of solid catalysts.

    PubMed

    Gates, Bruce C

    2016-07-01

    The 2016 Faraday Discussion on the topic "Designing New Heterogeneous Catalysts" brought together a group of scientists and engineers to address forefront topics in catalysis and the challenge of catalyst design-which is daunting because of the intrinsic non-uniformity of the surfaces of catalytic materials. "Catalyst design" has taken on a pragmatic meaning which implies the discovery of new and better catalysts on the basis of fundamental understanding of the catalyst structure and performance. The presentations and discussion at the meeting illustrate the rapid progress in this understanding linked with improvements in spectroscopy, microscopy, theory, and catalyst performance testing. The following text includes a statement of recurrent themes in the discussion and examples of forefront science that evidences progress toward catalyst design. PMID:27222485

  16. Superprotonic solid acids: Structure, properties, and applications

    NASA Astrophysics Data System (ADS)

    Boysen, Dane Andrew

    In this work, the structure and properties of superprotonic MH nXO4-type solid acids (where M = monovalent cation, X = S, Se, P, As, and n = 1, 2) have been investigated and, for the first time, applied in fuel cell devices. Several MH nXO4-type solid acids are known to undergo a "superprotonic" solid-state phase transition upon heating, in which the proton conductivity increases by several orders of magnitude and takes on values of ˜10 -2O-1cm-1. The presence of superprotonic conductivity in fully hydrogen bonded solid acids, such as CsH2PO4, has long been disputed. In these investigations, through the use of pressure, the unequivocal identification of superprotonic behavior in both RbH2PO4 and CsH2PO 4 has been demonstrated, whereas for chemically analogous compounds with smaller cations, such as KH2PO4 and NaH2PO 4, superprotonic conductivity was notably absent. Such observations have led to the adoption of radius ratio rules, in an attempt to identify a critical ion size effect on the presence of superprotonic conductivity in solid acids. It has been found that, while ionic size does play a prominent role in the presence of superprotonic behavior in solid acids, equally important are the effects of ionic and hydrogen bonding. Next, the properties of superprotonic phase transition have been investigated from a thermodynamic standpoint. With contributions from this work, a formulation has been developed that accounts for the entropy resulting from both the disordering of both hydrogen bonds and oxy-anion librations in the superprotonic phase of solid acids. This formulation, fundamentally derived from Linus Pauling's entropy rules for ice, accurately accounts for the change in entropy through a superprotonic phase transition. Lastly, the first proof-of-priniciple fuel cells based upon solid acid electrolytes have been demonstrated. Initial results based upon a sulfate electrolyte, CsHSO4, demonstrated the viability of solid acids, but poor chemical stability

  17. Organic–inorganic supramolecular solid catalyst boosts organic reactions in water

    PubMed Central

    García-García, Pilar; Moreno, José María; Díaz, Urbano; Bruix, Marta; Corma, Avelino

    2016-01-01

    Coordination polymers and metal-organic frameworks are appealing as synthetic hosts for mediating chemical reactions. Here we report the preparation of a mesoscopic metal-organic structure based on single-layer assembly of aluminium chains and organic alkylaryl spacers. The material markedly accelerates condensation reactions in water in the absence of acid or base catalyst, as well as organocatalytic Michael-type reactions that also show superior enantioselectivity when comparing with the host-free transformation. The mesoscopic phase of the solid allows for easy diffusion of products and the catalytic solid is recycled and reused. Saturation transfer difference and two-dimensional 1H nuclear Overhauser effect NOESY NMR spectroscopy show that non-covalent interactions are operative in these host–guest systems that account for substrate activation. The mesoscopic character of the host, its hydrophobicity and chemical stability in water, launch this material as a highly attractive supramolecular catalyst to facilitate (asymmetric) transformations under more environmentally friendly conditions. PMID:26912294

  18. Organic-inorganic supramolecular solid catalyst boosts organic reactions in water.

    PubMed

    García-García, Pilar; Moreno, José María; Díaz, Urbano; Bruix, Marta; Corma, Avelino

    2016-01-01

    Coordination polymers and metal-organic frameworks are appealing as synthetic hosts for mediating chemical reactions. Here we report the preparation of a mesoscopic metal-organic structure based on single-layer assembly of aluminium chains and organic alkylaryl spacers. The material markedly accelerates condensation reactions in water in the absence of acid or base catalyst, as well as organocatalytic Michael-type reactions that also show superior enantioselectivity when comparing with the host-free transformation. The mesoscopic phase of the solid allows for easy diffusion of products and the catalytic solid is recycled and reused. Saturation transfer difference and two-dimensional (1)H nuclear Overhauser effect NOESY NMR spectroscopy show that non-covalent interactions are operative in these host-guest systems that account for substrate activation. The mesoscopic character of the host, its hydrophobicity and chemical stability in water, launch this material as a highly attractive supramolecular catalyst to facilitate (asymmetric) transformations under more environmentally friendly conditions. PMID:26912294

  19. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  20. Reactivation of a commercial diesel oxidation catalyst by acid washing.

    PubMed

    Galisteo, Francisco Cabello; Mariscal, Rafael; Granados, Manuel López; Fierro, José Luis García; Brettes, Pilar; Salas, Oscar

    2005-05-15

    The catalytic activity of samples taken from an oxidation catalyst mounted on diesel-driven automobiles and aged under road conditions was recovered to a significant extent by washing with a dilute solution of citric acid. The characterization of samples arising from a fresh, a vehicle-aged, and a regenerated catalyst was carried out by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Relatively high levels of S and P, in the form of aluminum sulfate and phosphate, respectively, together with contaminant Si were detected in the used catalyst. Washing of the vehicle-aged catalytic oxidation converter revealed high efficiency in the extraction of the main contaminants detected (S and P) by this nondestructive methodology. The results of the experiments reported here should encourage the development of a technology based on this reactivation procedure for the rejuvenation of the catalytic device mounted on diesel exhaust pipes. PMID:15952394

  1. Kl-impregnated Oyster Shells as a Solid Catalyst for Soybean Oil Transesterificaton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on inexpensive and green catalysts is needed for economical production of biodiesel. The goal of the research was to test KI-impregnated oyster shell as a solid catalyst for transesterification of soybean oil. Specific objectives were to characterize KI-impregnated oyster shell, determine t...

  2. Wet spinning of solid polyamic acid fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1991-01-01

    The invention is a process for the production of solid aromatic polyamic acid and polyimide fibers from a wet gel or coagulation bath wet gel using N,N-dimethylacetamide (DMAc) solutions of the polyamic acid derived from aromatic dianhydrides such as 3,3',4,4' benzophenonetetra carboxylic dianhydride (BTDA) and aromatic diamines such as 4,4'-oxydianiline (4,4'-ODA). By utilizing the relationship among coagulation medium and concentration, resin inherent viscosity, resin percent solids, filament diameter, and fiber void content, it is possible to make improved polyamic acid fibers. Solid polyimide fibers, obtained by the thermal cyclization of the polyamic acid precursor, have increased tensile properties compared to fibers containing macropores from the same resin system.

  3. Solid electrolyte potentiometry study of butene oxidation over vanadium phosphate catalyst

    SciTech Connect

    Breckner, E.M.; Sundaresan, S.; Benziger, J.B.

    1985-01-01

    A system which includes a solid state electrochemical cell has been used to study the complex behavior of a vanadium phosphate (VPO) catalyst during hydrocarbon oxidation. Under reaction conditions of high temperature (750 K) and near-atmosphere pressure, the open circuit voltage of the cell is indicative of the oxygen activity in the catalyst. Oxygen activity changes in the catalyst due to changes in flowrate and feed composition have been examined. It was found that as the relative degree of reduction of the catalyst increased, the selectivity to partial oxidation products also increased, while catalytic activity decreased.

  4. Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites.

    PubMed

    Guo, Zhen; Theng, De Sheng; Tang, Karen Yuanting; Zhang, Lili; Huang, Lin; Borgna, Armando; Wang, Chuan

    2016-09-14

    Lanthanum phosphate (LaP) nano-rods were synthesized using n-butylamine as a shape-directing agent (SDA). The resulting catalysts were applied in the dehydration of lactic acid to acrylic acid. Aiming to understand the nature of the active sites, the chemical and physical properties of LaP materials were studied using a variety of characterization techniques. This study showed that the SDA not only affected the porosity of the LaP materials but also modified the acid-base properties. Clearly, the modification of the acid-base properties played a more critical role in determining the catalytic performance than porosity. An optimized catalytic performance was obtained on the LaP catalyst with a higher concentration of Lewis acid sites. Basic sites showed negative effects on the stability of the catalysts. Good stability was achieved when the catalyst was prepared using the appropriate SDA/La ratio. PMID:27514871

  5. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. PMID:23186664

  6. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts.

    PubMed

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-04-11

    Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6 O4 (OH)4 (HCO2 )6 ] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities. PMID:26954885

  7. Cu Cr O nanocomposites: Synthesis and characterization as catalysts for solid state propellants

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cheng, Hua

    2007-08-01

    In this article we present the synthesis of Cu-Cr-O nanocomposites via a citric acid (CA) complexing approach and the evaluation of the as-synthesized Cu-Cr-O nanocomposites as additives for the catalytic combustion of AP (ammonium perchlorate)-based solid state propellants. Techniques of thermo-gravimetric/differential thermal analyzer (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM) have been employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials, respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced by using a temperature as low as 600 °C. Phase structure of the as-obtained Cu-Cr-O nanocomposites depends on the Cu/Cr molar ratio in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid state propellants considerably. Noticeably, solid state propellants containing Cu-Cr-O nanocomposites with a Cu/Cr molar ratio of 0.7 exhibits the most stable combustion at all pressures.

  8. Radiation-induced reactions of COH 2 gas mixtures over various solid catalysts

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Arai, H.; Hatada, M.

    Studies have been carried out of radiation-induced reactions of COH 2 gas mixtures in the presence of various solid catalysts in order to find possibilities of synthesizing organic raw materials from COH 2 by radiation for the future. The solid catalysts studied include Fischer-Tropsch catalyst (FeCu supported by diatomaceous earth), titania(TiO 2), and silica gel. Analysis of the reaction products over Fischer-Tropsch catalyst or semiconductors such as TiO 2 and ZnOCr 2O 3 reveals that these solid catalysts do not sensitize the radiation chemical reaction of COH 2 but show the secondary effects on the reaction so as to induce the hydrogenation of olefins produced by the catalytic reaction and of aldehydes produced in gas phase by radiation. On the other hand, silica gel and other insulators such as alumina have been found to exhibit high catalytic activity in the formation of hydrocarbons from COH 2 under electron beam irradiation at 300°C. It has been shown experimentally that secondary reactions between H 2 and carbonaceous solid produced from CO make a substantial contribution to the formation of hydrocarbons from COH 2 over silica gel. In an attempt to find the role of silica gel in the reaction to produce hydrocarbons, radiation-induced reactions have been studied of H 2 with the carbonaceous solid that had been produced by irradiation of CO in the absence of solid catalyst, over TiO 2, or over silica gel. The results indicate that silica gel not only enhances the yields of CO 2 and carbonaceous solid from CO but also promotes hydrogenation reactions of the carbonaceous solid under electron beam irradiation.

  9. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts

    SciTech Connect

    Not Available

    1993-01-01

    The research has involved the characterization of catalyst acidity, [sup 2]D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  10. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    NASA Astrophysics Data System (ADS)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  11. The acrylation of glycerol over solid base catalysts: A precursor to functionalized lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transesterification of lipids using lipases is a common strategy used to incorporate novel acids into triacylglycerides. This approach, however, is limited to acids with pKa’s similar to common fatty acids. To overcome this limitation, we have used heterogeneous basic catalysts for the synthesis o...

  12. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  13. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  14. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  15. Zirconium-titanium phosphate acid catalysts synthesized by sol gel techniques

    SciTech Connect

    Jackson, N.B.; Thoma, S.G.; Kohler, S.; Nenoff, T.M.

    1998-03-01

    Recently a large effort has been put into identifying solid acid materials, particularly sulfated zirconia and other sulfated metal oxides, that can be used to replace environmentally hazardous liquid acids in industrial processes. The authors are studying a group of mixed metal phosphates, some of which have also been sulfated, for their catalytic and morphological characteristics. Zirconium and titanium are the metals used in this study and the catalysts are synthesized from alkoxide starting materials with H{sub 3}PO{sub 4}, H{sub 2}O, and sometimes H{sub 2}SO{sub 4} as gelling agents. The measurement of acidity was achieved by using the isomerization of 2-methyl-2-pentene as a model reaction. The phosphate stabilized the mixed metal sulfates, preventing them from calcining to oxides boosting their initial catalytic activity. The addition of sulfate prevented the formation of the catalytically inactive mixed metal pyrophosphates when calcined at high temperatures (> 773 K).

  16. Geometrical isomerization of fatty acids with sulfur as a catalyst

    SciTech Connect

    Grompone, M.A.; Tancredi, N.A. )

    1991-08-01

    This paper reports on the kinetics of the geometrical isomerization of oleic and palmitoleic acids, both contained in U.S.P. oleic acid that were studied. Sulfur powder was used as a catalyst. The methyl esters of fatty acids were analyzed by GLC with 15% OV-275 columns. The sulfur-catalyzed isomerization at 180 and 225{degrees} C proceeds via two consecutive mechanisms. The position of equilibrium is reached by the second mechanism. For this, at any particular initial concentration of sulfur, the pseudo- first-order rate dependence on substrate for a reversible reaction holds. The full rate has been shown to be proportional to the initial sulfur concentration taken to the 1.2 power. The rate constants at both temperatures and the activation energies were calculated.

  17. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.

    PubMed

    Lee, Jin Young; Rao, S Venkateswara; Kumar, B Nagaphani; Kang, Dong Jun; Reddy, B Ramachandra

    2010-04-15

    Pharmaceutical industry makes extensive use of Raneynickel catalyst for various organic drug intermediates/end products. Spent catalysts contain environmentally critical and economically valuable metals. In the present study, a simple hydrometallurgical process using dilute sulfuric acid leaching was described for the recovery of nickel from spent Raneynickel catalyst. Recovery of nickel varied with acid concentration and time, whereas temperature had negligible effect. Increase of S/L ratio to 30% (w/v) showed marginal effect on nickel (90%) recovery, whereas Al recovery decreased drastically to approximately 20%. Under the optimum conditions of leaching viz: 12 vol.% H(2)SO(4), 30 degrees C, 20% solid to liquid (S/L) ratio and 120 min reaction time, it was possible to recover 98.6% Ni along with 39.2% Al. Leach liquor [pH 0.7] containing 85.0 g/L Ni and 3.25 g/L Al was adjusted to pH 5.4 with 30 wt.% alkali for quantitative aluminum removal. Nickel loss was about 2% during this Al removal step. Nickel from the purified leach liquor was recovered as nickel carbonate by adding required amount of Na(2)CO(3). The purity of NiCO(3) product was found to be 100% with a Ni content of 48.6%. Na(2)SO(4) was recovered as a by-product with a purity of 99%. Complete process is presented. PMID:20018448

  18. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  19. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

    PubMed Central

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  20. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst.

    PubMed

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  1. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF). PMID:26859328

  2. Diesel steam reforming with a nickel-alumina spinel catalyst for solid oxide fuel cell application

    NASA Astrophysics Data System (ADS)

    Fauteux-Lefebvre, Clémence; Abatzoglou, Nicolas; Braidy, Nadi; Achouri, Ines Esma

    Liquid hydrocarbons (LC) are considered as fuel cells feed and, more particularly, as solid oxide fuel cell feed. Cost-effective LC-reforming catalysts are critically needed for the successful commercialization of such technologies. An alternative to noble metal catalysts, proposed by the authors in a previous publication, has been proven efficient for diesel steam reforming (SR). Nickel, less expensive and more readily available than noble metals, was used in a form that prevents deactivation. The catalyst formulation is a Ni-alumina spinel (NiAl 2O 4) supported on alumina (Al 2O 3) and yttria-stabilized zirconia (YSZ). SR of commercial diesel was undertaken for more than 15 h at high gas hourly space velocities and steam-to-carbon ratios lower than 2. Constant diesel conversion and high hydrogen concentrations were obtained. Ni catalyst characterization revealed no detectable amounts of carbon on the spinel catalyst surface Ni. The effect of catalyst composition (Ni concentration and YSZ presence) was studied to understand and optimize the developed catalyst. Two phenomena were found to be influenced by relative catalyst composition: water-gas-shift vs reforming reaction extent, and concentration of light hydrocarbons in products.

  3. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2015-06-01

    Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.

  4. Comparison of catalysts for direct transesterification of fatty acids in freeze-dried forage samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preparation of fatty acid methyl esters from forages comparing BF3 in CH3OH to HCl in CH3OH as a catalyst in single-step direct transesterification has not been reported. Our objective was to compare 1.09 M methanolic HCl to 7% BF3 in CH3OH as catalysts for direct transesterification of fatty acids ...

  5. Synthesis of multi-functionalized benzofurans through the condensation of ninhydrin and phenols using SSA as a recyclable heterogeneous acid catalyst.

    PubMed

    Kundu, Ashis; Pramanik, Animesh

    2016-08-01

    A simple and efficient one-pot methodology has been developed for the synthesis of biologically important multi-functionalized 3-(2[Formula: see text]-hydroxyaryl)-2-(2[Formula: see text]-carboxyphenyl)benzofurans using silica sulfuric acid (SSA) as a heterogeneous acid catalyst in DMF medium. The significant advantages of this methodology are the use of SSA as a recyclable solid acid catalyst, operational simplicity, easy availability of the starting materials, and good yield of the products with high atom-economy. PMID:26829938

  6. Sonophotochemical Degradation of Bisphenol A with Solid Catalysts

    NASA Astrophysics Data System (ADS)

    Myunghee Lim,; Younggyu Son,; Beomguk Park,; Jeehyeong Khim,

    2010-07-01

    In order to investigate the degradation of bisphenol A (BPA) solution under sono, photo, sonocatalytic, photocatalytic and sonophotocatalytic processes, the BPA concentration and the total organic carbon (TOC) concentration were analyzed. The degradation rate of BPA was higher at high frequency (1 MHz) than at low frequency (300 kHz). At high frequency the acoustic period is shorter, and a high H2O2 concentration is therefore produced in aqueous solutions, which can enhance the degradation rate. The degradation rates of BPA were 0.0060, 0.0258, and 0.0451 min-1 under the sonocatalytic (1 MHz), photocatalytic and sonophotocatalytic processes respectively. The combined system of the sonochemical and photocatalytic processes can enhance the degradation rate of BPA compared with individual processes (sono and photocatalytic processes). The order of degradation of BPA (CuO>ZnO≈TiO2) and TOC (TiO2>ZnO>CuO) differed for each of the three types of catalysts. The separation characteristics of catalysts were dissimilar for each of the two frequencies.

  7. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.

    PubMed

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2012-07-01

    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid. PMID:22609656

  8. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst

    NASA Astrophysics Data System (ADS)

    Manna, Joydev; Roy, Binayak; Sharma, Pratibha

    2015-02-01

    A heterogeneous acid catalyst, silica sulfuric acid, was prepared from silica gel (SiO2) and sulfuric acid (H2SO4). Addition of SO3H functional group to SiO2 has been confirmed through various characterization techniques. The effect of this heterogeneous acid catalyst on hydrogen generation from sodium borohydride hydrolysis reaction was studied for different ratios of catalyst to NaBH4 and at different temperatures. The catalyst exhibited high catalytic activity towards sodium borohydride hydrolysis reaction. The activation energy of the NaBH4 hydrolysis reaction in the presence of silica sulfuric acid was calculated to be the lowest (17 kJ mol-1) among reported heterogeneous catalysts till date.

  9. Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO4(2-)/MxOy solid superacid catalyst.

    PubMed

    Yang, Fang; Li, Yang; Zhang, Qian; Sun, Xiaofeng; Fan, Hongxian; Xu, Nian; Li, Gang

    2015-10-20

    This paper presented a mild hydrothermal process for degradation of cotton cellulose with solid superacid catalyst and selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural (HMF). Five kinds of solid superacid catalyst such as SO4(2-)/SnO2, SO4(2-)/TiO2, SO4(2-)/ZrO2, SO4(2-)/Fe2O3 and SO4(2-)/Al2O3 were prepared by impregnation method. The BET surface area of catalyst SO4(2-)/SnO2 was up to 118.8m(2)g(-1) when impregnation was performed with 1molL(-1) H2SO4 of impregnating solution at 550°C calcination temperature for 3h. It made the hydrothermal temperature of cellulose degradation decrease to 190°C successfully and suppressed the side reaction. The NH3-TPD profile of SO4(2-)/SnO2 indicated there was a wide region of stronger acid sites on the catalyst surface. The depolymerization of cotton cellulose obtained 11.0% yield and 22.0% selectivity of HMF and 26.8% yield and 53.4% selectivity of glucose, respectively. The regeneration and reuse of solid superacid catalyst were also discussed in this paper. PMID:26256154

  10. Efficient dehydrogenation of formic acid using an iron catalyst.

    PubMed

    Boddien, Albert; Mellmann, Dörthe; Gärtner, Felix; Jackstell, Ralf; Junge, Henrik; Dyson, Paul J; Laurenczy, Gábor; Ludwig, Ralf; Beller, Matthias

    2011-09-23

    Hydrogen is one of the essential reactants in the chemical industry, though its generation from renewable sources and storage in a safe and reversible manner remain challenging. Formic acid (HCO(2)H or FA) is a promising source and storage material in this respect. Here, we present a highly active iron catalyst system for the liberation of H(2) from FA. Applying 0.005 mole percent of Fe(BF(4))(2)·6H(2)O and tris[(2-diphenylphosphino)ethyl]phosphine [P(CH(2)CH(2)PPh(2))(3), PP(3)] to a solution of FA in environmentally benign propylene carbonate, with no further additives or base, affords turnover frequencies up to 9425 per hour and a turnover number of more than 92,000 at 80°C. We used in situ nuclear magnetic resonance spectroscopy, kinetic studies, and density functional theory calculations to explain possible reaction mechanisms. PMID:21940890

  11. Solid phase catalysts and reagents. Final technical report, July 1, 1977-December 31, 1983

    SciTech Connect

    Regen, S.L.

    1983-12-01

    Research supported under this grant for the period 1/1/80-12/31/83 has involved six major areas: (1) defining polymer structure-activity relationships in triphase catalytic systems, (2) developing polyether- and polyamide-based catalysts for practical organic synthesis, (3) establishing new synthetic entries into macrolides based on triphase and phase-transfer catalytic principles, (4) introducing new polymeric and monomeric mercury reagents for use in organic synthesis, (5) clarifying and quantifying kinetic isolation within cross-linked polystyrene, and (6) elucidating the kinetic and mechanistic features of the hydrolysis of organic halides in aqueous - liquid organic two phase systems. Detailed reports are presented for the six areas. For the period 7/1/77-12/31/79 brief summaries are presented for the following areas: (1) insolubilized hexamethylphosphoramide as a solid solvent; (2) triphase catalysis, consideration of catalyst and experimental conditions for simple nucleophilic displacement; (3) selectivity features of polystrene-based triphase catalysts; (4) evidence for an S/sub N//sup 1/ reaction occurring at a toluene-water interface; (5) solid phase cosolvents - triphase catalytic hydrolysis of 1-bromoadamantane; (6) consideration of the role of stirring and catalyst efficiency of polystyrene-based triphase catalysts. 24 references.

  12. Low-temperature, vapor-liquid-solid, laterally grown silicon films using alloyed catalysts

    NASA Astrophysics Data System (ADS)

    LeBoeuf, Jerome L.; Brodusch, Nicolas; Gauvin, Raynald; Quitoriano, Nathaniel J.

    2014-12-01

    Using amorphous oxide templates known as micro-crucibles which confine a vapor-liquid-solid catalyst to a specific geometry, two-dimensional silicon thin-films of a single orientation have been grown laterally over an amorphous substrate and defects within crystals have been necked out. The vapor-liquid-solid catalysts consisted nominally of 99% gold with 1% titanium, chromium, or aluminum, and each alloy affected the processing of micro-crucibles and growth within them significantly. It was found that chromium additions inhibited the catalytic effect of the gold catalysts, titanium changed the morphology of the catalyst during processing and aluminum stabilized a potential third phase in the gold-silicon system upon cooling. Two mechanisms for growing undesired nanowires were identified both of which hindered the VLS film growth, fast silane cracking rates and poor gold etching, which left gold nanoparticles near the gold-vapor interface. To reduce the silane cracking rates, growth was done at a lower temperature while an engineered heat and deposition profile helped to reduce NWs caused by the second mechanism. Through experimenting with catalyst compositions, the fundamental mechanisms which produce concentration gradients across the gold-silicon alloy within a given micro-crucible have been proposed. Using the postulated mechanisms, micro-crucibles were designed which promote high-quality, single crystal growth of semiconductors.

  13. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.

    PubMed

    Erust, Ceren; Akcil, Ata; Bedelova, Zyuldyz; Anarbekov, Kuanysh; Baikonurova, Aliya; Tuncuk, Aysenur

    2016-03-01

    Catalysts are used extensively in industry to purify and upgrade various feeds and to improve process efficiency. These catalysts lose their activity with time. Spent catalysts from a sulfuric acid plant (main elemental composition: 5.71% V2O5, 1.89% Al2O3, 1.17% Fe2O3 and 61.04% SiO2; and the rest constituting several other oxides in traces/minute quantities) were used as a secondary source for vanadium recovery. Experimental studies were conducted by using three different leaching systems (citric acid with hydrogen peroxide, oxalic acid with hydrogen peroxide and sulfuric acid with hydrogen peroxide). The effects of leaching time, temperature, concentration of reagents and solid/liquid (S/L) ratio were investigated. Under optimum conditions (1:25 S/L ratio, 0.1 M citric acid, 0.1 M hydrogen peroxide, 50°C and 120 min), 95% V was recovered in the presence of hydrogen peroxide in citric acid leaching. PMID:26711187

  14. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.

    PubMed

    Mellmann, Dörthe; Sponholz, Peter; Junge, Henrik; Beller, Matthias

    2016-07-11

    Formic acid (FA, HCO2H) receives considerable attention as a hydrogen storage material. In this respect, hydrogenation of CO2 to FA and dehydrogenation of FA are crucial reaction steps. In the past decade, for both reactions, several molecularly defined and nanostructured catalysts have been developed and intensively studied. From 2010 onwards, this review covers recent advancements in this area using homogeneous catalysts. In addition to the development of catalysts for H2 generation, reversible H2 storage including continuous H2 production from formic acid is highlighted. Special focus is put on recent progress in non-noble metal catalysts. PMID:27119123

  15. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  16. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    PubMed

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. PMID:25045049

  17. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst.

    PubMed

    Xu, Kun; Ding, Hui; Jia, Kaicheng; Lu, Xiuli; Chen, Pengzuo; Zhou, Tianpei; Cheng, Han; Liu, Si; Wu, Changzheng; Xie, Yi

    2016-01-26

    Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires. PMID:26695560

  18. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid

    PubMed Central

    Rao, K. R. S. Sambasiva; Nagabhushanam, M V; Chowdary, K. P. R.

    2011-01-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid. PMID:22303074

  19. Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams.

    PubMed

    Ordomsky, Vitaly V; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander

    2013-09-01

    A solid acid foam-structured catalyst based on a binderless zirconium phosphate (ZrPO) coating on aluminum foam was prepared. The catalyst layer was obtained by performing a multiple washcoating procedure of ZrPO slurry on the anodized aluminum foam. The effect of the pretreatment of ZrPO, the concentration of the slurry, and the amount of coating on the properties of the foam was studied. The catalytic properties of the prepared foams have been evaluated in the dehydration of glucose to 5-hydroxymethylfurfural (HMF) in a biphasic reactor. The catalytic behavior of ZrPO foam-based catalysts was studied in a rotating foam reactor and compared with that of bulk ZrPO. The effect of a silylation procedure on the selectivity of the process was shown over bulk and foam catalysts. This treatment resulted in a higher selectivity due to the deactivation of unselective Lewis acid sites. Addition of methylisobutylketone leads to extraction of HMF from the aqueous phase and stabilization of the selectivity to HMF over bulk ZrPO. A more intensive contact of the foam with the aqueous and organic phases leads to an increase in the selectivity and resistance to deactivation of the foam in comparison with a bulk catalyst. PMID:23616489

  20. Displacement of Hexanol by the Hexanoic Acid Overoxidation Product in Alcohol Oxidation on a Model Supported Palladium Nanoparticle Catalyst

    SciTech Connect

    Buchbinder, Avram M.; Ray, Natalie A.; Lu, Junling; Van Duyne, Richard P.; Stair, Peter C.; Weitz, Eric; Geiger, Franz M.

    2011-11-09

    This work characterizes the adsorption, structure, and binding mechanism of oxygenated organic species from cyclohexane solution at the liquid/solid interface of optically flat alumina-supported palladium nanoparticle surfaces prepared by atomic layer deposition (ALD). The surface-specific nonlinear optical vibrational spectroscopy, sum-frequency generation (SFG), was used as a probe for adsorption and interfacial molecular structure. 1-Hexanoic acid is an overoxidation product and possible catalyst poison for the aerobic heterogeneous oxidation of 1-hexanol at the liquid/solid interface of Pd/Al₂O₃ catalysts. Single component and competitive adsorption experiments show that 1-hexanoic acid adsorbs to both ALD-prepared alumina surfaces and alumina surfaces with palladium nanoparticles, that were also prepared by ALD, more strongly than does 1-hexanol. Furthermore, 1-hexanoic acid adsorbs with conformational order on ALD-prepared alumina surfaces, but on surfaces with palladium particles the adsorbates exhibit relative disorder at low surface coverage and become more ordered, on average, at higher surface coverage. Although significant differences in binding constant were not observed between surfaces with and without palladium nanoparticles, the palladium particles play an apparent role in controlling adsorbate structures. The disordered adsorption of 1-hexanoic acid most likely occurs on the alumina support, and probably results from modification of binding sites on the alumina, adjacent to the particles. In addition to providing insight on the possibility of catalyst poisoning by the overoxidation product and characterizing changes in its structure that result in only small adsorption energy changes, this work represents a step toward using surface science techniques that bridge the complexity gap between fundamental studies and realistic catalyst models.

  1. Solid state 13C NMR characterisation study on fourth generation Ziegler-Natta catalysts.

    PubMed

    Heikkinen, Harri; Liitiä, Tiina; Virkkunen, Ville; Leinonen, Timo; Helaja, Tuulamari; Denifl, Peter

    2012-01-01

    In this study, solid state (13)C NMR spectroscopy was utilised to characterize and identify the metal-ester coordination in active fourth generation (phthalate) Ziegler-Natta catalysts. It is known that different donors affect the active species in ZN catalysts. However, there is still limited data available of detailed molecular information how the donors and the active species are interplaying. One of the main goals of this work was to get better insight into the interactions of donor and active species. Based on the anisotropy tensor values (δ(11), δ(22), δ(33)) from low magic-angle spinning (MAS) (13)C NMR spectra in combination with chemical shift anisotropy (CSA) calculations (δ(aniso) and η), both the coordinative metal (Mg/Ti) and the symmetry of this interaction between metal and the internal donor in the active catalyst (MgCl(2)/TiCl(4)/electron donor) system could be identified. PMID:22425229

  2. Activity and structure of perovskites as diesel reforming catalysts for solid oxide fuel cells.

    SciTech Connect

    Liu, D.-J.; Krumpelt, M.; Chemical Engineering

    2005-01-01

    Recent progress in developing perovskite materials as more cost-effective catalysts in autothermal reforming (ATR) of diesel fuel to hydrogen-rich reformate for solid oxide fuel cell (SOFC) application is reported. Perovskite-type metal oxides with B sites partially exchanged by ruthenium were prepared and evaluated under ATR reaction conditions. The hydrogen yield, reforming efficiency, and CO{sub x} selectivity of these catalysts were investigated using diesel surrogate fuel with 50 ppm sulfur. The catalyst performances have approached or exceeded a benchmark, high-cost rhodium-based material. In parallel with the reactivity study, we also investigated the physical properties of B-site doped perovskites and their impact on the reforming performance using various characterization techniques such as BET, X-ray powder diffraction, temperature programmable reduction, scanning electron microscopy, and synchrotron X-ray absorption spectroscopy. We found that ruthenium is highly dispersed into perovskite lattice and its redox behavior is directly associated with reforming activity.

  3. Phase Behavior of Complex Superprotonic Solid Acids

    NASA Astrophysics Data System (ADS)

    Panithipongwut, Chatr

    Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4) 2-RbHSO4 system, Rb3H(SeO4)2-Cs 3H(SeO4)2 solid solution system, and Cs6 (H2SO4)3(H1.5PO4) 4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems. Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO 4 and the previously unknown compound Rb5H3(SO 4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3m of Cs5H 3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity. The compounds Rb3H(SeO4)2 and Cs 3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member. The compound Cs6(H2

  4. Method of performing sugar dehydration and catalyst treatment

    DOEpatents

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  5. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.

    PubMed

    Pukale, Dipak D; Maddikeri, Ganesh L; Gogate, Parag R; Pandit, Aniruddha B; Pratap, Amit P

    2015-01-01

    Transesterification based biodiesel production from waste cooking oil in the presence of heterogeneous solid catalyst has been investigated in the present work. The effect of different operating parameters such as type of catalyst, catalyst concentration, oil to methanol molar ratio and the reaction temperature on the progress of the reaction was studied. Some studies related to catalyst reusability have also been performed. The important physicochemical properties of the synthesized biodiesel have also been investigated. The results showed that tri-potassium phosphate exhibits high catalytic activity for the transesterification of waste cooking oil. Under the optimal conditions, viz. catalyst concentration of 3wt% K3PO4, oil to methanol molar ratio of 1:6 and temperature of 50°C, 92.0% of biodiesel yield was obtained in 90min of reaction time. Higher yield was obtained in the presence of ultrasound as compared to conventional approach under otherwise similar conditions, which can be attributed to the cavitational effects. Kinetic studies have been carried out to determine the rate constant at different operating temperatures. It was observed that the kinetic rate constant increased with an increase in the temperature and the activation energy was found to be 64.241kJ/mol. PMID:24935026

  6. Heterogeneous catalysts for the transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vadim A.; Khromova, Sofia A.; Bukhtiyarov, Valerii I.

    2011-10-01

    The results of studies devoted to the catalysts for transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons are presented and described systematically. Various approaches to the use of heterogeneous catalysts for the production of biofuel from these raw materials are considered. The bibliography includes 134 references.

  7. Electroreductive dechlorination of chlorophenols with Pd catalyst supported on solid electrode.

    PubMed

    Caixia; Matsunaga, Atsushi; Tezuka, Meguru

    2013-12-01

    Electroreductive dechlorination of chlorophenols with Pd catalyst supported on solidelectrode was studied. As solid electrodes, carbon cloth (CC), carbon felt (CF) and titanium mesh were used, and palladium was plated on solid electrodes by either electrolytic or electroless method. On each electrode with Pd, chlorophenols were qualitatively dechlorinated to phenol, while they were entirely intact on electrodes without Pd. Moreover, neither base electrode nor plating method significantly affected the activity of Pd as far as it was sufficiently loaded on the electrode. Based on the results in the experiments using one electrode repeatedly, Pd catalyst proved to possess a satisfactory duarability under the present condition. It was suggested that the reactive species responsinble for the dechlorination of chlorophenols could be formed during preliminary electrolysis. Thus, (Pd)x-H resulting from the adsorption of electrogenerated hydrogen on metallic Pd might be assumed most probable. PMID:25078820

  8. Solid-state actinide acid phosphites from phosphorous acid melts

    NASA Astrophysics Data System (ADS)

    Oh, George N.; Burns, Peter C.

    2014-07-01

    The reaction of UO3 and H3PO3 at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH2(CH3)2)[UO2(HPO2OH)(HPO3)]. This compound crystallizes in space group P21/n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO2OH)4 (An=U, Th) and of the mixed acid phosphite-phosphite U(HPO3)(HPO2OH)2(H2O)·2(H2O). α- and β-An(HPO2OH)4 crystallize in space groups C2/c and P21/n, respectively, and comprise a three-dimensional network of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO3)(HPO2OH)2(H2O)2·(H2O) crystallizes in a layered structure in space group Pbca that is composed of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized.

  9. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts. PMID:26373149

  10. Chance and necessity in the selection of nucleic acid catalysts

    NASA Technical Reports Server (NTRS)

    Lorsch, J. R.; Szostak, J. W.

    1996-01-01

    In Tom Stoppard's famous play [Rosencrantz and Guildenstern are Dead], the ill-fated heroes toss a coin 101 times. The first 100 times they do so the coin lands heads up. The chance of this happening is approximately 1 in 10(30), a sequence of events so rare that one might argue that it could only happen in such a delightful fiction. Similarly rare events, however, may underlie the origins of biological catalysis. What is the probability that an RNA, DNA, or protein molecule of a given random sequence will display a particular catalytic activity? The answer to this question determines whether a collection of such sequences, such as might result from prebiotic chemistry on the early earth, is extremely likely or unlikely to contain catalytically active molecules, and hence whether the origin of life itself is a virtually inevitable consequence of chemical laws or merely a bizarre fluke. The fact that a priori estimates of this probability, given by otherwise informed chemists and biologists, ranged from 10(-5) to 10(-50), inspired us to begin to address the question experimentally. As it turns out, the chance that a given random sequence RNA molecule will be able to catalyze an RNA polymerase-like phosphoryl transfer reaction is close to 1 in 10(13), rare enough, to be sure, but nevertheless in a range that is comfortably accessible by experiment. It is the purpose of this Account to describe the recent advances in combinatorial biochemistry that have made it possible for us to explore the abundance and diversity of catalysts existing in nucleic acid sequence space.

  11. Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst.

    PubMed

    Olutoye, M A; Lee, S C; Hameed, B H

    2011-12-01

    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. PMID:21983406

  12. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  13. Production of biodiesel and lactic acid from rapeseed oil using sodium silicate as catalyst.

    PubMed

    Long, Yun-Duo; Guo, Feng; Fang, Zhen; Tian, Xiao-Fei; Jiang, Li-Qun; Zhang, Fan

    2011-07-01

    Biodiesel and lactic acid from rapeseed oil was produced using sodium silicate as catalyst. The transesterification in the presence of the catalyst proceeded with a maximum yield of 99.6% under optimized conditions [3% (w/w) sodium silicate, methanol/oil molar ratio 9/1, reaction time 60 min, reaction temperature 60°C, and stirring rate 250 rpm]. After six consecutive transesterification reactions, the catalyst was collected and used for catalysis of the conversion of glycerol to lactic acid. A maximum yield of 80.5% was achieved when the reaction was carried out at a temperature of 300°C for 90 min. Thus, sodium silicate is an effective catalyst for transesterification and lactic acid production from the biodiesel by-product, glycerol. PMID:21530245

  14. Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Pingbo; Han, Qiuju; Fan, Mingming; Jiang, Pingping

    2014-10-01

    A novel magnetic solid base catalyst CaO/CoFe2O4 was successfully prepared with CoFe2O4 synthesized by hydrothermal method as the magnetic core and applied to the transesterification of soybean oil for the production of biodiesel. The magnetic solid base catalysts were characterized by a series of techniques including CO2-TPD, powder XRD, TGA, TEM and the contact angle measurement of the water droplet. It was demonstrated that CaO/CoFe2O4 has stronger magnetic strength indicating perfect utility for repeated use and better basic strength. Compared with CaO/ZnFe2O4 and CaO/MnFe2O4, solid base catalyst CaO/CoFe2O4 has better catalytic performance, weaker hydroscopicity and stronger wettability, demonstrating that catalytic performance was relative to both basicity of catalyst and the full contact between the catalyst and the reactants, but the latter was a main factor in the catalytic system.

  15. Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism

  16. Electrical properties of phosphorus in situ doped Au-catalyst vapor liquid solid silicon nanowires

    NASA Astrophysics Data System (ADS)

    Pichon, L.; Rogel, R.; Jacques, E.

    2015-11-01

    N-type in-situ doped silicon nanowire-based resistors are fabricated following a CMOS process fabrication. Silicon nanowires are prepared by a Vapour Liquid Solid (VLS) method using gold as the catalyst. The doping level is adjusted by varying the phosphine to silane mole ratio during silicon nanowire growth. A macroscopic electrical model is presented to extract the average silicon nanowire electrical resistivity over a large doping level range (varying from undoped to highly doped nanowires). Carrier transport is strongly affected by the trapping effect of gold impurities into silicon nanowires, and silicon nanowire electrical resistivity is three decades higher than for silicon bulk at low doping levels. The technological requirement in terms of doping level control for the fabrication of devices based on a gold catalyst VLS is demonstrated.

  17. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts]. Technical progress report

    SciTech Connect

    Not Available

    1993-07-01

    The research has involved the characterization of catalyst acidity, {sup 2}D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  18. Effect of calcination temperature on the activity of solid Ca/Al composite oxide-based alkaline catalyst for biodiesel production.

    PubMed

    Meng, Yong-Lu; Wang, Bo-Yang; Li, Shu-Fen; Tian, Song-Jiang; Zhang, Min-Hua

    2013-01-01

    A solid Ca/Al composite oxide-based alkaline catalyst containing Ca(12)Al(14)O(33) and CaO was prepared by chemical synthesis and thermal activation from sodium aluminate solution and calcium hydroxide emulsion. The effect of calcination temperatures ranging from 120 °C to 1000 °C on activity of the catalyst was investigated. The catalyst calcined at 600 °C showed the highest activity with >94% yield of fatty acid methyl esters (i.e. biodiesel) when applied to the transesterification of rapeseed oil at a methanol:oil molar ratio of 15:1 at 65 °C for 3h. Structure and properties of the catalyst were studied and the characterizations with XRD, TGA, FTIR, BET, and SEM demonstrated that the performance of the catalyst was closely related to its specific surface area and crystalline structure. In particular, the generation of crystalline Ca(12)Al(14)O(33) improved the catalytic activity due its synergistic effect with CaO. PMID:23196252

  19. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts.

    PubMed

    Wang, Yuehu; Agarwal, Shilpa; Kloekhorst, Arjan; Heeres, Hero Jan

    2016-05-10

    The catalytic hydrotreatment of humins, which are the solid byproducts from the conversion of C6 sugars (glucose, fructose) into 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), by using supported ruthenium catalysts has been investigated. Reactions were carried out in a batch setup at elevated temperatures (400 °C) by using a hydrogen donor (formic acid (FA) in isopropanol (IPA) or hydrogen gas), with humins obtained from d-glucose. Humin conversions of up to 69 % were achieved with Ru/C and FA, whereas the performance for Ru on alumina was slightly poorer (59 % humin conversion). Humin oils were characterized by using a range of analytical techniques (GC, GC-MS, GCxGC, gel permeation chromatography) and were shown to consist of monomers, mainly alkyl phenolics (>45 % based on compounds detectable by GC) and higher oligomers. A reaction network for the reaction is proposed based on structural proposals for humins and the main reaction products. PMID:26836970

  20. Characterisation of coke from FCC catalysts by solid state {sup 13}C NMR and mass spectrometry

    SciTech Connect

    Andresen, J.M.; McGhee, B.; Snape, C.E.

    1995-12-31

    Coke has been concentrated by demineralisation from deactivated FCC catalysts from both refinery operations with actual feeds and MAT tests using n-hexadecane to facilitate detailed characterisation by solid state {sup 13}C NMR and mass spectrometry. All the catalysts investigated contained about 1% w/w carbon. As for solid fuels, the use of a low-field spectrometer for solid state {sup 13}C NMR in conjunction with the single pulse excitation (SPE or Bloch decay) technique has enabled quantitative carbon skeletal parameters to be obtained for the cokes. Internal standard measurements demonstrated that most of the carbon was observed by SPE and, therefore, NMR-invisible graphitic layers are not thought to be major structural features of the cokes. Differences in feedstock composition were reflected in the structure of the refinery cokes with the aromatic nuclei from a residue feed (5% Conradson carbon) corresponding to 15-20 peri-condensed aromatic rings and being more highly condensed than those from a hydrotreated vacuum gas oil. Mass spectrometry (EI, CI and FIMS) has confirmed that the refinery cokes are highly condensed, but those obtained from n-hexadecane in the MAT tests displayed significant aliphatic character.

  1. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  2. Superprotonic Solid Acids Thermochemistry, Structure, and Conductivity

    NASA Astrophysics Data System (ADS)

    Ikeda, Ayako

    In this work, in order to investigate the thermochemistry and property of the superprotonic solid acid compounds, the measurement methods were established for in situ observation, because superprotonic phases are neither stable at room temperature nor freezable to room temperature. A humidity-controlled TG, DSC and AC impedance measurement system, and high temperature stage for XRD were built for thermal analysis and characterization of the solid acid compounds. The thermodynamic and kinetics of the dehydration and hydration of CsH 2PO4 is investigated by TG, DSC, and XRD analysis. By making use of the enhanced kinetics afforded by SiO2, the phase boundary between CsH2PO4, CsPO3, and dehydrated liquid was precisely determined. The stability of CsH2PO4 and the liquid dehydrate, CsH2(1-x)PO4-x(l), were confirmed by the complete reversal of dehydration to recover these phases in the appropriate temperature and water partial pressure ranges. Rehydration and conversion of CsPO3(s) to CsH2PO4(s) occurs over a period of several hours, depending on temperature, water partial pressure, and morphology of the metaphosphate. High and small particles favor rapid dehydration, whereas the temperature dependence of the rehydration kinetics is nonmonotonic, reaching its fastest rate in the vicinity of the superprotonic transition. Doping Rb and K into CDP was examined and the stable region of Cs 1-xRbxH2PO4 and Cs1-xKxH2PO 4 are determined by in situ XRD and DSC measurement. Then the effects of doping to the structure and conductivity are discussed. It was found that Rb has whole-range solubility for both cubic and monoclinic CDP. Ts increases and Td decrease with Rb content. K has 27% solubility for cubic CDP, T s and Td decrease with K content. The eutectic temperature is 208 +/- 2°C. The lattice size of Rb- or K- doped CDP depends on the averaged cation size. Conductivity linearly decreases by dopant concentration. The impact of K doping is deeper than that of Rb for the

  3. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  4. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    SciTech Connect

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  5. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.

    PubMed

    Wright, William R H; Palkovits, Regina

    2012-09-01

    γ-Valerolactone (GVL) has been identified as a potential intermediate for the production of fuels and chemicals based on renewable feedstocks. Numerous heterogeneous catalysts have been used for GVL production, alongside a range of reaction setups. This Minireview seeks to outline the development of heterogeneous catalysts for the targeted conversion of levulinic acid (LA) to GVL. Emphasis has been placed on discussing specific systems, including heterogeneous noble and base metal catalysts, transfer hydrogenation, and application of scCO₂ as reaction medium, with the aim of critically highlighting both the achievements and remaining challenges associated with this field. PMID:22890968

  6. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  7. Efficient synthesis of spironaphthopyrano [2,3-d]pyrimidine-5,3'-indolines under solvent-free conditions catalyzed by SBA-Pr-SO3H as a nanoporous acid catalyst.

    PubMed

    Ziarani, Ghodsi Mohammadi; Lashgari, Negar; Faramarzi, Sakineh; Badiei, Alireza

    2014-01-01

    A green, simple one-pot synthesis of spironaphthopyrano[2,3-d]pyrimidine-5,3'-indoline derivatives by a three-component reaction of isatins, 2-naphthol, and barbituric acids under solvent-free conditions in the presence of SBA-Pr-SO(3)H has been accomplished. Sulfonic acid functionalized SBA-15 (SBA-Pr-SO(3)H) as a heterogeneous nanoporous solid acid catalyst was found to be an efficient and recyclable acid catalyst in this synthesis. PMID:25286212

  8. Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes

    SciTech Connect

    Kooti, M.; Afshari, M.

    2012-11-15

    Highlights: ► Phosphotungstic acid supported on functionalized cobalt ferrite was prepared. ► Silica coated cobalt ferrite nanoparticles were used as support. ► This composite was successfully used as catalyst for epoxidation of alkenes. ► Oxidation reactions were carried out in the presence of t-BuOOH as oxidant. ► The catalyst can be readily separated from solution by magnetic field. -- Abstract: A new magnetically separable catalyst consisting of phosphotungstic acid supported on imidazole functionalized silica coated cobalt ferrite nanoparticles was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and inductively coupled plasma atomic emission spectroscopy (ICP-AES). This immobilized phosphotungstic acid was shown to be an efficient heterogeneous catalyst for the epoxidation of various alkenes using tert-butylhydroperoxide (t-BuOOH) as oxidant. The catalyst is readily recovered by simple magnetic decantation and can be recycled several times with no significant loss of catalytic activity.

  9. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  10. Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst.

    PubMed

    Tran, Thi Tuong Vi; Kaiprommarat, Sunanta; Kongparakul, Suwadee; Reubroycharoen, Prasert; Guan, Guoqing; Nguyen, Manh Huan; Samart, Chanatip

    2016-06-01

    The application of an environmentally benign sulfonated carbon microsphere catalyst for biodiesel production from waste cooking oil was investigated. This catalyst was prepared by the sequential hydrothermal carbonization and sulfonation of xylose. The morphology, surface area, and acid properties were analyzed. The surface area and acidity of the catalyst were 86m(2)/g and 1.38mmol/g, respectively. In addition, the presence of sulfonic acid on the carbon surface was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The catalytic activity was tested for biodiesel production from waste cooking oil via a two-step reaction to overcome reaction equilibrium. The highest biodiesel yield (89.6%) was obtained at a reaction temperature of 110°C, duration time of 4h, and catalyst loading of 10wt% under elevated pressure 2.3bar and 1.4bar for first and second step, respectively. The reusability of the catalyst was investigated and showed that the biodiesel yield decreased by 9% with each cycle; however, this catalyst is still of interest because it is an example of green chemistry, is nontoxic, and makes use of xylose waste. PMID:27053375

  11. Stability of mechanical properties of vanadium catalysts for sulfuric acid manufacture in a humid atmosphere

    SciTech Connect

    Manaeva, L.N.; Malikman, V.I.; Dobkina, E.I.; Mukhlenov, I.P.

    1982-01-10

    Experience of the industrial use of catalysts in sulfuric acid manufacture shows that as the result of saturation with moisture the catalyst grains may lose strength and disintegrate during use. However, this question has not been examined experimentally and the mechanism of the effect has not been studied. Fresh catalyst may come into contact with atmospheric moisture during storage, and used catalyst as the result of uncontrolled leakages during stoppages and recharging of the catalytic converters. In the course of normal operation water vapor enters the catalytic converters together with sulfuric acid mist with the gas stream if the latter has not been adequately dried. The purpose of the present work was to study the mechanical stability, in a humid atmosphere, of industrial sulfuric acid catalysts: granulated SVD (5 mm in diameter) and SVS rings (8 x 8 x 2.5 mm). The catalysts were studied both in the fresh state and after use in a laboratory catalytic apparatus of the flow type.

  12. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system

    NASA Astrophysics Data System (ADS)

    Chandra, Manish; Xu, Qiang

    Pure hydrogen generation under mild conditions in a controllable way is important for portable devices. Recently, we have found that an aq. ammonia-borane (NH 3BH 3) solution is a potential hydrogen source with noble metal catalysts. For practical use, the development of a low-cost, efficient and safe system is desired. In this study, we found that solid acids such as cation exchange resins and zeolites, which are low-cost and safe, also exhibit high activities for the dissociation and hydrolysis of NH 3BH 3 to generate hydrogen with an H 2 to NH 3BH 3 ratio up to 3.0 at room temperature. The reaction rate depends on the type of solid acid. Especially, Dowex and Amberlyst, the two low-cost solid acids often used as catalysts in a variety of reactions, exhibit reaction kinetics higher than the noble metal catalysts. Carbon dioxide is also active as an acid for this reaction. The reaction products in solution have been identified by 11B NMR, and the evolved gases have been analyzed by mass spectrometry which indicates high purity hydrogen. This new system may have a high potential for application in fuel cells.

  13. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    SciTech Connect

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  14. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.

    PubMed

    Santhiya, Deenan; Ting, Yen-Peng

    2005-03-16

    A spent refinery processing catalyst was physically and chemically characterized, and subjected to one-step and two-step bioleaching processes using Aspergillus niger. During bioleaching of the spent catalysts of various particle sizes ("as received", 100-150 microm, <37 microm, and x =2.97 (average) microm) and pulp densities, the biomass dry weight and pH were determined. The corresponding leach liquor was analysed for excreted organic acids along with heavy metal values extracted from the catalyst. Chemical characterization of the spent catalyst confirmed the presence of heavy metal including Al (33.3%), Ni (6.09%) and Mo (13.72%). In general, the presence of the spent catalyst caused a decrease in the biomass yield and an increase in oxalic acid secretion by A. niger. The increase in oxalic acid secretion with a decrease in the catalyst particle size (up to <37 microm) led to corresponding increase in the extraction of metal values. The highest extraction of metal values from the spent catalyst (at 1% w/v pulp density and particle size <37 microm) were found to be 54.5% Al, 58.2% Ni and 82.3% Mo in 60 days of bioleaching. Oxalic acid secretion by A. niger in the presence of the spent catalyst was stimulated using 2-[N-Morpholino]ethanesulfonic acid (MES) buffer (pH 6), which resulted in comparable metal extraction (58% Al, 62.8% Ni and 78.9% Mo) in half the time required by the fungus in the absence of the buffer. Spent medium of A. niger grown in the absence and in the presence of MES buffer were found to leach almost similar amounts of Al and Ni, except Mo for which the spent medium of buffered culture was significantly more effective than the non-buffered culture. Overall, this study shows the possible use of bioleaching for the extraction of metal resources from spent catalysts. It also demonstrated the advantages of buffer-stimulated excretion of organic acids by A. niger in bioleaching of the spent catalyst. PMID:15664081

  15. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  16. Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst.

    PubMed

    Lu, Zexiang; Zheng, Huaiyu; Fan, Liwei; Liao, Yiqiang; Ding, Bingjing; Huang, Biao

    2013-08-01

    Acidic ionic liquids (AILs) as a novel catalyst in biomass liquefaction can accord with the demand of green chemistry and enhance the development of biomass thermal chemical conversion. A series of AILs containing HSO4- were synthesized by the imidazolium cation functionalization and applied to the Chinese fir sawdust liquefaction in 1-octanol in this paper. The experimental results showed that the liquefaction rate was gradually improved with the AILs acidity increasing, and reached 71.5% when 1-(4-sulfobutyl)-3-methylmidazolium hydrosulfate was used as catalyst with the 6:1 mass ratio of 1-octanol to sawdust at 423K after 60 min. Lignin, hemicellulose and cellulose were orderly desquamated, and then depolymerized and liquefied with the catalyst acidity increasing in the sawdust liquefaction process. The light oil was mainly composed of the octyl ether and the octyl ester compounds, suggesting that the solvent may play an important role in producing the high octane rating biofuel. PMID:23770997

  17. Vanadium phosphate catalysts for biodiesel production from acid industrial by-products.

    PubMed

    Domingues, Carina; Correia, M Joana Neiva; Carvalho, Renato; Henriques, Carlos; Bordado, João; Dias, Ana Paula Soares

    2013-04-10

    Biodiesel production from high acidity industrial by-products was studied using heterogeneous acid catalysts. These by-products contain 26-39% of free fatty acids, 45-66% of fatty acids methyl esters and 0.6-1.1% of water and are consequently inadequate for direct basic catalyzed transesterification. Macroporous vanadyl phosphate catalysts with V/P=1 (atomic ratio) prepared via sol-gel like technique was used as catalyst and it was possible to produce in one reaction batch a biodiesel contain 87% and 94% of FAME, depending on the by-product used as raw material. The initial FAME content in the by-products had a beneficial effect on the reactions because they act as a co-solvent, thus improving the miscibility of the reaction mixture components. The water formed during esterification process seems to hinder the esters formation, possibly due to competitive adsorption with methanol and to the promotion of the FAME hydrolysis reaction.The observed catalyst deactivation seems to be related to the reduction of vanadium species. However, spent catalysts can be regenerated, even partially, by reoxidation of the reduced vanadium species with air. PMID:22902409

  18. Organo-niobate Ionic Liquids: Synthesis, Characterization and Application as Acid Catalyst in Pechmann Reactions

    PubMed Central

    Soares, Valerio C. D.; Alves, Melquizedeque B.; Souza, Ernesto R.; Pinto, Ivana O.; Rubim, Joel C.; Andrade, Carlos Kleber Z.; Suarez, Paulo A. Z.

    2007-01-01

    The combinations of 1-butyl-3-methylimidazolium chloride with NbCl5 yielded ionic mixtures with different melting point temperatures and acidity depending on the niobium molar fraction. The mixtures were characterized by thermal (DSC) and spectroscopic (FT-IR and 1H NMR) analysis. The Pechmann reactions of different phenols with ethylacetoacetate, producing coumarins, was used as model to evaluate the catalytic behavior of these mixtures as acid Lewis catalyst. These reactions were carried out using acidic mixtures of 60 mol%.

  19. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 [Angstrom]) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 [times] r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm[sup 2] catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on Pt-on-alumina'' and on alumina-on-Pt'' are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  20. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 {Angstrom}) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 {times} r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm{sup 2} catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on ``Pt-on-alumina`` and on ``alumina-on-Pt`` are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  1. Ammonolysis of esters of hydroxybenzoic acids on a boron phosphate catalyst

    SciTech Connect

    Suvorov, B.V.; Bukeikhanov, N.R.; Li, L.V.; Zulkasheva, A.Z.

    1987-09-10

    In this investigation boron phosphate catalyst was used for ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids. It was shown that ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids in presence of boron phosphate catalyst at a ratio of 3-7 moles of ammonia per mole of ester in a contact time of 1-5 sec at 380-400/sub 0/ can be used for obtaining o- and p- hydroxybenzonitriles in yields of over 90% of the theoretical.

  2. Hydrothermal microwave valorization of eucalyptus using acidic ionic liquid as catalyst toward a green biorefinery scenario.

    PubMed

    Xu, Ji-Kun; Chen, Jing-Huan; Sun, Run-Cang

    2015-10-01

    The application of the acidic ionic liquid (IL), 1-butyl-3-methylimidazolium hydrogensulfate ([bmim]HSO4), as a catalyst in the hydrothermal microwave treatment (HMT) and green upgradation of eucalyptus biomass has been investigated. The process was carried out in a microwave reactor system at different temperatures (140-200°C) and evaluated for severities. The xylooligosaccharides (XOS, refers to a DP of 2-6) yield up to 5.04% (w/w) of the initial biomass and 26.72% (w/w) of xylan were achieved. Higher temperature resulted in lower molecular weight product, and enhanced the concentration of monosaccharides and byproducts. The morphology and structure of the solid residues were performed using an array of techniques, such as SEM, XRD, FTIR, BET surface area, and CP/MAS (13)C NMR, by which the increase of crystallinity, the destruction of surface structure, and the changes in functional groups and compositions were studied after the pretreatment, thus significantly enhancing the enzymatic hydrolysis. PMID:26119053

  3. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    PubMed Central

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  4. Optimizing treatment of benzoic acid by ozone process with recyclable catalyst of magnetism.

    PubMed

    Hong, Gui-Bing; Chiou, Chyow-San; Su, Te-Li; Chang, Ching-Yuan; Chena, Hua-Wei; Lin, Ya-Fen

    2013-01-01

    This study is to optimize the multi-quality performance of magnetic catalyst/ozone process by combining a technique for order performance by similarity to ideal solution (TOPSIS) with the Taguchi method, which simultaneously has the best decomposition rate constant of benzoic acid and removal rate constant of total organic carbon (TOC). The optimal experimental parameters were pH of 7, initial concentration of 75 ppm and catalyst loading of 0.05 g/L. More than 93% of the magnetic catalyst was easily separated and redispersed for reuse by the magnetic force due to the paramagnetic behaviours of the prepared SiO2/Fe3O4. It is believed that through the joint efforts improvement, design and manufacturing, new separation and recycling technologies will be available and more easily recyclable magnetic catalysts will be developed in the future. PMID:24617073

  5. Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation

    SciTech Connect

    Datka, J.; Turek, A.M.; Jehng, J.M.; Wachs, I.E. )

    1992-05-01

    Chemisorption of pyridine was applied as a method for studying the acidic properties of niobium pentoxide supported on silica, magnesia, alumina, titania, and zirconia. The infrared spectra of adsorbed pyridine were used to evaluate the concentration and the relative strength of Broensted and Lewis acid sites. Lewis acidity was found in all the supported niobium oxide systems, while Broensted acid sites were only detected for niobia supported on the alumina and silica supports. The origin and characteristics of the surface acid sites present in supported niobium oxide catalysts are discussed in the present study.

  6. Acidity studies of fluid catalytic cracking catalysts by microcalorimetry and infrared spectroscopy

    SciTech Connect

    Chen, D.; Sharma, S.; Dumesic, J.A. ); Martinez, N. Cardona; Bell, V.A.; Hodge, G.D.; Madon, R.J. )

    1992-08-01

    The acidic properties of a USY-based fluid catalytic cracking catalyst steamed at various severities and amorphous silica-alumina were investigated by microcalorimetry and infrared spectroscopy using pyridine adsorption at 473 K. Microcalorimetric measurements of the differential heat of pyridine adsorption versus adsorbate coverage revealed a heterogeneous acid site distribution for the catalysts. Besides showing the expected progressive decrease in the number of acid sites for pyridine adsorption, measurements showed that the strength of Broensted acid sites decreased with increasing severity of steam treatment. Infrared spectra of adsorbed pyridine revealed a significant decrease in the ratio of Broensted to Lewis acid sites upon steaming. Amorphous silica-alumina had a relatively large number of acid sites of which a large proportion were Broensted acid sites. However, the strength of these Broensted sites was lower than that of the mildly steamed USY catalysts. This lower Broensted acid strength, the authors believe, is related to lower activity for gas-oil cracking over silica-alumina.

  7. An evaluation of Pt sulfite acid (PSA) as precursor for supported Pt catalysts

    SciTech Connect

    Regalbuto, J.R.; Ansel, O.; Miller, J.T.

    2010-11-12

    As a catalyst precursor, platinum sulfite acid (PSA) is easy to use and not relatively expensive, and is a potentially attractive precursor for many types of supported catalysts. The ultimate usefulness for many catalyst applications will depend on the extent that Pt can be dispersed and sulfur eliminated. To our knowledge, there exists no detailed characterization in the catalysis literature of PSA and the nanoparticulate Pt phases derived from it during catalyst pretreatment. To this end a series of supports including alumina, silica, magnesia, niobia, titania, magnesia and carbon were contacted with PSA solutions and subsequently analyzed with extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) analysis, and x-ray photoelectron spectroscopy (XPS) to characterize the Pt species formed upon impregnation, calcination, and reduction. While all catalysts show retention of some S, reasonably small particle sizes with relatively little Pt-S can in some instances be produced using PSA. The amount of retained sulfur appears to decrease with decreasing surface acidity, although even the most acidic supports (niobia and silica) display some storage of S even while only Pt-O bands are observed after calcination or reoxidation. More sulfur was eliminated by high temperature calcinations followed by reduction in hydrogen, at the expense of increasing Pt particle size.

  8. Immobilizing Cr3+ with SO3H-functionalized solid polymeric ionic liquids as efficient and reusable catalysts for selective transformation of carbohydrates into 5-hydroxymethylfurfural.

    PubMed

    Li, Hu; Zhang, Qiuyun; Liu, Xiaofang; Chang, Fei; Zhang, Yuping; Xue, Wei; Yang, Song

    2013-09-01

    A series of functional polymeric ionic liquids (FPILs) were prepared by coupling of SO3H-functionalized polymeric ionic liquids with different counterpart anions containing or excluding CrCl3·6H2O, and characterized by SEM, FT-IR, XRD, NH3-TPD, TG, melting point, ICP-AES, and TEM. The catalytic activity of the prepared solid FPILs was investigated for the conversion of biomass including fructose, glucose and cellulose into 5-hydroxymethylfurfural (HMF) with the presence of DMSO-mediated solvents, successively producing moderate to excellent yields of HMF under atmospheric pressure. The FPILs catalysts developed in this study present improved performance on fructose-to-HMF conversion over other solid catalysts, such as functional ionic liquids supported by silica, metal oxides and strong acid ion exchange resin catalysts, and can be very easily recycled at least five times without significant loss of activity. In addition, a kinetic analysis was carried out to illustrate the formation of HMF. PMID:23850822

  9. Solid Phase Synthesis of C-Terminal Boronic Acid Peptides.

    PubMed

    Behnam, Mira A M; Sundermann, Tom R; Klein, Christian D

    2016-05-01

    Peptides and peptidomimetics with a C-terminal boronic acid group have prolific applications in numerous fields of research, but their synthetic accessibility remains problematic. A convenient, high yield synthesis of peptide-boronic acids on a solid support is described here, using commercially available 1-glycerol polystyrene resin. The method is compatible with Fmoc chemistry and offers a versatile approach to aryl and alkyl aminoboronic acids without additional purification steps. PMID:27104613

  10. Strontium Ferrite Coupled Solid Acid (SO4 2-/ZrO2-SrFe12O19): Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Xie, Taiping; Xu, Longjun; Liu, Chenglun; Cheng, Wenxia

    2013-05-01

    Magnetic solid acid catalysts (SO4 2-/ZrO2-SrFe12O19) were synthesized by loading SO4 2-/ZrO2 onto strontium ferrite (SrFe12O19). The properties of the magnetic solid acid catalysts were investigated with x-ray powder diffraction (XRD), Fourier transformation infrared (FTIR) spectra, vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET). The catalytic activity of the as-prepared catalyst was probed through synthesis of n-butyl acetate. The results showed that the SrFe12O19 could improve the crystalline phase transition temperature of ZrO2 and stabilize the metastable tetragonal phase (t-ZrO2) at 600 °C. The saturation magnetization ( M s) and coercivity ( H c) of catalyst sintered at 600 °C were 16.8 emu/g and 4412 G, respectively, which conduced towards the recovery and reuse of the catalyst. After the catalyst was reused four times, the yield was still more than 70%, which revealed the catalyst had a high activity and better stability.

  11. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    SciTech Connect

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  12. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    PubMed

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. PMID:26472903

  13. Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst.

    PubMed

    Ding, Zhen-Dong; Shi, Jin-Cai; Xiao, Jing-Jing; Gu, Wen-Xiu; Zheng, Chang-Ge; Wang, Hai-Jun

    2012-10-01

    Efficient catalytic conversion of microcrystalline cellulose (MCC) to 5-hydroxymethyl furfural (HMF), is achieved using acidic ionic liquids (ILs) as the catalysts and metal salts as co-catalysts in the solvent of 1-ethyl-3-methylimidazo-lium acetate ([emim][Ac]). A series of acidic ILs has been synthesized and tested in conversion of MCC to HMF. The effect of reaction conditions, such as reaction time, temperature, catalyst dosage, metal salts, water dosage, Cu(2+) concentration and various acidic ILs are investigated in detail. The results show that CuCl(2) in 1-(4-sulfonic acid) butyl-3-methylimidazolium methyl sulfate ([C(4)SO(3)Hmim][CH(3)SO(3)]), is found to be an efficient catalyst for catalytic conversion of MCC to HMF, and 69.7% yield of HMF is obtained. A mechanism to explain the high activity of CuCl(2) in [C(4)SO(3)Hmim][CH(3)SO(3)] is proposed. To the best of our knowledge, this report first proposes that the Cu(2+) and [C(4)SO(3)Hmim][CH(3)SO(3)] show better catalytic performance in catalytic conversion of MCC to HMF. PMID:22840003

  14. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    PubMed

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  15. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    PubMed

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%. PMID:19121897

  16. A chiral phosphoric acid catalyst for asymmetric construction of 1,3-dioxanes.

    PubMed

    Matsumoto, Akira; Asano, Keisuke; Matsubara, Seijiro

    2015-07-25

    A novel method of enantioselective 1,3-dioxane construction via a hemiacetalization/intramolecular oxy-Michael addition cascade by a chiral phosphoric acid catalyst was developed. The product was successfully transformed into an optically active 1,3-polyol motif, indicating that the proposed reaction can provide useful chiral building blocks for the de novo synthesis of polyketides. PMID:26103581

  17. A Rhodium Nanoparticle-Lewis Acidic Ionic Liquid Catalyst for the Chemoselective Reduction of Heteroarenes.

    PubMed

    Karakulina, Alena; Gopakumar, Aswin; Akçok, İsmail; Roulier, Bastien L; LaGrange, Thomas; Katsyuba, Sergey A; Das, Shoubhik; Dyson, Paul J

    2016-01-01

    We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups. PMID:26577114

  18. Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides.

    PubMed

    Dhakshinamoorthy, Amarajothi; Alvaro, Mercedes; Concepción, Patricia; Fornés, Vicente; Garcia, Hermenegildo

    2012-06-01

    The minute amount of hydrogen sulfate groups introduced into the graphene oxide (GO) obtained by Hummers oxidation of graphite renders this material as a highly efficient, recyclable acid catalyst for the ring opening of epoxides with methanol and other primary alcohols as nucleophile and solvent. PMID:22534622

  19. Triarylsulfonium hexafluorophosphate salts as photoactivated acidic catalysts for ring-opening polymerisation.

    PubMed

    Barker, Ian A; Dove, Andrew P

    2013-02-11

    Triarylsulfonium hexafluorophosphate salts were shown to be effective catalysts for the ring-opening polymerisation of various cyclic monomers under UV irradiation. A dual basic/acidic catalytic system demonstrated the potential for UV-triggered formation of poly(δ-valerolactone)-b-poly(L-lactide)-b-poly(δ-valerolactone) in a 'one-pot' reaction. PMID:23283246

  20. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts

    SciTech Connect

    Rapp, Jennifer; Huang, Yulin; Natella, Michael; Cai, Yang; Lin, Victor S.-Y.; Pruski, Marek

    2009-01-04

    A detailed study of the chemical structure of mesoporous silica catalysts containing rhodium ligands and nanoparticles (RhP-MSN) was carried out by multi-dimensional solid-state NMR techniques. The degree of functionalization of the rhodium-phosphinosilyl complex to the surface of the RhP-MSN channels was determined by {sup 29}Si NMR experiments. The structural assignments of the rhodium-phosphinosilyl complex were unambiguously determined by employing the novel, indirectly detected heteronuclear correlation ({sup 13}C-{sup 1}H and {sup 31}P-{sup 1}H idHETCOR) techniques, which indicated that oxidation of the attached phosphinosilyl groups and detachment of Rh was enhanced upon syngas conversion.

  1. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  2. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  3. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  4. Improved synthesis of isostearic acid using zeolite catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  5. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  6. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-07-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3‑xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity.

  7. Reactivation of an aged commercial three-way catalyst by oxalic and citric acid washing.

    PubMed

    Christou, Stavroula Y; Birgersson, Henrik; Fierro, José L G; Efstathiou, Angelos M

    2006-03-15

    The efficiency of dilute oxalic and citric acid solutions on improving the oxygen storage capacity (OSC) and catalytic activity of a severely aged (83,000 km) commercial three-way catalyst (TWC) has been investigated. Washing procedures applied after optimization of experimental parameters, namely, temperature, flow-rate, and concentration of acid solution, led to significant improvements of OSC and catalytic activity (based on dynamometer test measurements) of the aged TWC. The latterwas made possible due to the removal of significant amounts of various contaminants accumulated on the catalyst surface (e.g., P, S, Pb, Ca, Zn, Si, Fe, Cu, and Ni) during driving conditions, as revealed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and X-ray Photoelectron Spectroscopy (XPS) analyses. For the first time, it is demonstrated that dilute oxalic acid solution significantly improves the catalytic activity of an aged commercial TWC toward CO, Cx,Hy, and NOx conversions under real exhaust gas conditions (dynamometer tests) by two to eight times in the 250-450 degrees C range and the OSC quantity by up to 50%. Oxalic acid appears to be more efficient than citric acid in removing specifically P- and S-containing compounds from the catalyst surface, whereas citric acid in removing Pb- and Zn-containing compounds, thus uncovering surface active catalytic sites. PMID:16570632

  8. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid.

    PubMed

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-01-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3-xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity. PMID:27431610

  9. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    PubMed Central

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-01-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3−xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity. PMID:27431610

  10. Solid Acid Fuel Cell Stack for APU Applications

    SciTech Connect

    Duong, Hau H.

    2011-04-15

    Solid acid fuel cell technology affords the opportunity to operate at the 200-300 degree centigrade regime that would allow for more fuel flexibility, compared to polymer electrode membrane fuel cell, while avoiding the relatively more expensive and complex system components required by solid oxide fuel cell. This project addresses many factors such as MEA size scalability, fuel robustness, stability, etc., that are essential for successful commercialization of the technology.

  11. Isotope composition of carbon in amino acids of solid bitumens

    NASA Astrophysics Data System (ADS)

    Shanina, S. N.; Bushnev, D. A.

    2014-06-01

    Primary data are presented on the isotope composition of carbon in individual amino acids from solid bitumens and several biological objects. The amino acids of biological objects are characterized by wide variations of the isotope composition of carbon. This fact occurs owing to the difference in biochemical paths of metabolism resulting in the synthesis of individual amino acids. The δ13C values are somewhat decreased for individual amino acids in asphaltenes, varying from -7.7 to -31.7‰. The carbon of amino acids is weighted in kerits from Bad'el' compared to asphaltenes. All the natural bitumens retain the characteristic trend for natural substances: the isotopically heavy and light amino acids by carbon are glycine and leucine, respectively. The isotope composition of amino-acid carbon is lightened compared to natural bitumens in the samples formed under a pronounced thermal impact (asphalt-like crust and kirishite).

  12. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Kong, Weiqian; Liu, Juan; Liu, Yang; Zhou, Lei; Zhang, Xing; Lee, Shuit-Tong; Kang, Zhenhui

    2013-12-01

    Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ΔpH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34.7-46.2%, respectively) in water solution under visible light, while the 1-4 nm CQDs and 10-2000 nm graphite do not have such excellent catalytic activity. The use of 5-10 nm CQDs as a light responsive and controllable photocatalyst is truly a novel application of carbon-based nanomaterials, which may significantly push research in the current catalytic industry, environmental pollution and energy issues.Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ΔpH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34

  13. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst.

    PubMed

    Inagaki, Satoshi; Sato, Koki; Hayashi, Shunsuke; Tatami, Junichi; Kubota, Yoshihiro; Wakihara, Toru

    2015-03-01

    The acid sites associated with the external surface of zeolite particles are responsible for undesirable consecutive reactions, such as isomerization, alkylation, and oligomerization, resulting in a lower selectivity to a target product; therefore, the selective modification (deactivation) of the external surface of zeolite particles has been an important issue in zeolite science. Here, a new method for surface deactivation of zeolite catalyst was tested via a mechanochemical approach using powder composer. Postsynthetic mechanochemical treatment of ZSM-5 zeolite causes a selective deactivation of catalytically active sites existing only on the external surface, as a potentially useful catalyst for highly selective production of p-xylene. PMID:25654542

  14. Organocatalytic Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Ketimines with Pyrroles using Imidazolinephosphoric Acid Catalysts.

    PubMed

    Nakamura, Shuichi; Matsuda, Nazumi; Ohara, Mutsuyo

    2016-07-01

    Organocatalytic enantioselective aza-Friedel-Crafts reactions of cyclic ketimines with pyrroles or indoles were catalyzed by imidazoline/phosphoric acid catalysts. The reaction was applied to various 3H-indol-3-ones to afford products in excellent yields and enantioselectivities. The chiral catalysts can be recovered by a single separation step using column chromatography and are reusable without further purification. Based on the experimental investigations, a possible transition state has been proposed to explain the origin of the asymmetric induction. PMID:27124556

  15. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments. PMID:27561513

  16. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  17. Mechanism of hydrodenitrogenation (Part 4) infrared spectroscopy of acidic molybdena catalysts

    SciTech Connect

    Miranda, R.

    1990-01-01

    Mo oxide catalysts supported over a complete series of silica-aluminas have been characterized in the oxidic and reduced states, by means of total acidity measurements and by infrared spectroscopy. Ammonia chemisorption was used to titrate the total acidity of the catalysts, and IR absorption of adsorbed pyridine to distinguish Bronsted from Lewis acid sites. The formation of new acidity upon deposition of molybdena on silica-alumina supports was then explained on the basis of a simple surface model. The new acidity is of both Lewis and Bronsted type, the preponderance of one over the other depending on support composition, as well as loading and state of oxidation of Mo. High-alumina supports and low Mo loading favor dispersed Mo species, in particular bidentate and monodentate di-oxo Mo species. The latter is responsible for the new Bronsted acidity. Coordinative unsaturation of polymolybdates is responsible for the new Lewis acidity, which is increased upon reduction of Mo. High-silica supports favor monodentate species (high Bronsted acidity) up to 4 wt % MoO{sub 3}. Beyond that, polymolybdates species and Lewis acidity predominate. 7 refs., 4 figs.

  18. Impact of catalyst metal-acid balance in n-hexadecane hydroisomerization and hydrocracking

    SciTech Connect

    Girgis, M.J.; Tsao, Y.P.

    1996-02-01

    The reaction pathways and kinetics of n-hexadecane hydroisomerization and hydrocracking were determined in the presence of each of three platinum-containing dual-function catalysts: (a) Pt on a proprietary zeolite (Pt/Z), (b) Pt on silica-alumina (Pt/Si-Al), and (c) Pt on MCM-41 (Pt/MCM-41). The reaction networks were used to interpret differences in isomerization selectivity. The low isomerization selectivity observed in the presence of Pt/Si-Al was shown to be a consequence of changes in both relative isomerization/cracking rates and reaction pathways. Using the classical bifunctional reaction scheme, the changes in pathway were hypothesized to be consistent with changes in the relative concentrations of metal and acid sites (i.e., the metal-acid balance). On the basis of a recently proposed model of dual-function catalysis, the different observed pathways were subsequently shown to be those expected in two limiting cases of the metal-acid balance. The simplified quantitative picture given here provides a preliminary basis for relating catalyst preparation variables to catalyst performance for dual-function catalysts.

  19. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.

    PubMed

    Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou

    2014-06-01

    A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2)  g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites. PMID:24861954

  20. Preorganized Hydrogen Bond Donor Catalysts: Acidities and Reactivities.

    PubMed

    Samet, Masoud; Kass, Steven R

    2015-08-01

    Measured DMSO pKa values for a series of rigid tricyclic adamantane-like triols containing 0-3 trifluoromethyl groups (i.e., 3(0)-3(3)) are reported. The three compounds with CF3 substituents are similar or more acidic than acetic acid (pKa = 13.5 (3(1)), 9.5 (3(2)), 7.3 (3(3)) vs 12.6 (HOAc)), and the resulting hydrogen bond network enables a remote γ-trifluoromethyl group to enhance the acidity as well as one located at the α-position. Catalytic abilities of 3(0)-3(3) were also examined. In a nonpolar environment a rate enhancement of up to 100-fold over flexible acyclic analogs was observed presumably due to an entropic advantage of the locked-in structure. Gas-phase acidities are found to correlate with the catalytic activity better than DMSO pKa values and appear to be a better measure of acidities in low dielectric constant media. These trends are reduced or reversed in polar solvents highlighting the importance of the reaction environment. PMID:26140305

  1. Multinuclear solid film state NMR studies of metal oxide catalysts and minerals

    SciTech Connect

    Maxwell, R.S.; Stec, D.F.; Ellis, P.D.

    1996-10-01

    Several of our investigations of heterogeneous process by novel NMR experiments and analyses are reviewed and the utility and limitations of NMR spectroscopy for these areas discussed. Out studies have included the following: dynamics and arrangements of proton-containing adsorbates, primarily Bronsted acid sites and water, on the surface of zirconia and alumina catalysts; hydrogen dynamics and coordinates in synthetic aluminum oxyhydroxides; phase separation and crystallinity of synthetic minerals. In combination with the complementary results obtained in our laboratory via infrared spectroscopy, thermal analysis (primarily TGA and DSC), and catalytic activity measurements, these NMR data provide unique and valuable information on atomic and molecular dynamics, identities, and structures without requiring pristine, single crystal specimens.

  2. Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Qin, Yuan-Hang; Yue-Jiang; Yang, Hou-Hua; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2011-05-01

    Highly dispersed and active palladium/carbon nanofiber (Pd/CNF) catalyst is synthesized by NaBH4 reduction with trisodium citrate as the stabilizing agent. The obtained Pd/CNF catalyst is characterized by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the Pd nanoparticles with an average particle size of ca. 3.8 nm are highly dispersed on the CNF support even with a small ratio of citrate to Pd precursor, which is believed to be due to the pH adjustment of citrate stabilized colloidal Pd nanoparticles. The cyclic voltammetry and chronoamperometry techniques show that the obtained Pd/CNF catalyst exhibits good catalytic activity and stability for the electrooxidation of formic acid.

  3. MTBE Hydrolysis in Dilute Aqueous Solution Using Heterogeneous Strong Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Rixey, W. G.

    2003-12-01

    The objective of this research has been the development of a potential in situ catalytic process for the hydrolysis of methyl tertiary butyl ether (MTBE) to tertiary butyl alcohol (TBA) and methanol in ground water. Bench-scale batch reactor studies were conducted over a temperature range of 23 deg C to 50 deg C with several heterogeneous strong acid catalysts to obtain rates of hydrolysis of MTBE to TBA and methanol at dilute concentrations in water. Continuous flow experiments were then conducted to obtain kinetic data over a temperature range of 15 deg C to 50 deg C for various flow rates for the most active catalysts. It was found that the batch and continuous flow experiments yielded similar intrinsic kinetic rate constants when sorption of MTBE to the catalyst was accounted for. Additional fixed-bed experiments were conducted with deionized water and 0.005 M CaCl2 feed solutions containing 100 mg/L MTBE, respectively, to assess the deactivation of the catalyst, and deactivation was found to be controlled by ion exchange of H+ in the catalyst with Ca+2 in the feed. Our results indicate that, for low to moderate groundwater velocities and cation concentrations at ambient temperatures, an in situ reactive barrier process using the most active catalysts studied in this research could be a viable process in terms of both suitable conversion of MTBE and catalyst life. Although application to in situ remediation is emphasized, the results of this research are also applicable to ex-situ groundwater treatment.

  4. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports.

    PubMed

    Skowerski, Krzysztof; Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina; Grela, Karol

    2016-01-01

    An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  5. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    PubMed Central

    Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina

    2016-01-01

    Summary An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  6. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.

    PubMed

    Li, Ming; Zheng, Yan; Chen, Yixin; Zhu, Xifeng

    2014-02-01

    A solid acid catalyst was prepared by sulfonating pyrolyzed rice husk with concentrated sulfuric acid, and the physical and chemical properties of the catalyst were characterized in detail. The catalyst was then used to simultaneously catalyze esterification and transesterification to produce biodiesel from waste cooking oil (WCO). In the presence of the as-prepared catalyst, the free fatty acid (FFA) conversion reached 98.17% after 3h, and the fatty acid methyl ester (FAME) yield reached 87.57% after 15 h. By contrast, the typical solid acid catalyst Amberlyst-15 obtained only 95.25% and 45.17% FFA conversion and FAME yield, respectively. Thus, the prepared catalyst had a high catalytic activity for simultaneous esterification and transesterification. In addition, the catalyst had excellent stability, thereby having potential use as a heterogeneous catalyst for biodiesel production from WCO with a high FFA content. PMID:24405650

  7. Reducing Pt use in the catalysts for formic acid electrooxidation via nanoengineered surface structure

    NASA Astrophysics Data System (ADS)

    Liao, Mengyin; Wang, Yulu; Chen, Guoqin; Zhou, Hua; Li, Yunhua; Zhong, Chuan-Jian; Chen, Bing H.

    2014-07-01

    The design of active and durable catalysts for formic acid (FA) electrooxidation requires controlling the amount of three neighboring platinum atoms in the surface of Pt-based catalysts. Such requirement is studied by preparing Pt decorated Pd/C (donated as Pt-Pd/C) with various Pt:Pd molar ratios via galvanic displacement making the amount of three neighboring Pt atoms in the surface of Pt-Pd/C tunable. The decorated nanostructures are confirmed by XPS, HS-LEIS, cyclic voltammetry and chronoamperometric measurements, demonstrating that Pt-Pd/C (the optimal molar ratio, Pt:Pd = 1:250) exhibits superior activity and durability than Pd/C and commercial Pt/C (J-M, 20%) catalysts for FA electrooxidation. The mass activity of Pt-Pd/C (Pt:Pd = 1:250) (3.91 A mg-1) is about 98 and 6 times higher than that of commercial Pt/C (0.04 A mg-1) and Pd/C (0.63 A mg-1) at a given potential of 0.1 V vs SCE, respectively. The controlled synthesis of Pt-Pd/C lead to the formation of largely discontinuous Pd and Pt sites and inhibition of CO formation, exhibiting unprecedented electrocatalytic performance toward FA electrooxidation while the cost of the catalyst almost the same as Pd/C. These findings have profound implications to the design and nanoengineering of decorated surfaces of catalysts for FA electrooxidation.

  8. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. PMID:22177528

  9. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  10. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGESBeta

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM basedmore » systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  11. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  12. Ammonia as an efficient catalyst for decomposition of carbonic acid: a quantum chemical investigation.

    PubMed

    Bandyopadhyay, Biman; Biswas, Partha; Kumar, Pradeep

    2016-06-21

    Electronic structure calculations using M06-2X, MP2 and CCSD(T) methods have been employed to show ammonia as an efficient catalyst for decomposition of carbonic acid. The results predict that ammonia can catalyze the reaction as both a monomer and dimer, the latter being more efficient as it makes the reaction nearly barrierless. It has been shown that monomeric ammonia makes the process significantly faster compared with the water monomer (the rate constant being 10(4) to 10(5) times higher) as well as the water dimer (10-20 times faster). Dimeric ammonia has been shown to be a better catalyst than its monomeric counterpart (the rate constant being 10(3) to 10(4) times higher). Its efficiency as a catalyst was found to be close to that of formic acid. Owing to the fact that ammonia is present in the Earth's atmosphere at a significant trace level, it is expected to play a nontrivial, if not pivotal, role in atmospheric chemistry as a catalyst. PMID:27241826

  13. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  14. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  15. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  16. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  17. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.

    PubMed

    Savourey, Solène; Lefèvre, Guillaume; Berthet, Jean-Claude; Thuéry, Pierre; Genre, Caroline; Cantat, Thibault

    2014-09-22

    The disproportionation of formic acid to methanol was unveiled in 2013 using iridium catalysts. Although attractive, this transformation suffers from very low yields; methanol was produced in less than 2% yield, because the competitive dehydrogenation of formic acid (to CO2 and H2) is favored. We report herein the efficient and selective conversion of HCOOH to methanol in 50% yield, utilizing ruthenium(II) phosphine complexes under mild conditions. Experimental and theoretical (DFT) results show that different convergent pathways are involved in the production of methanol, depending on the nature of the catalyst. Reaction intermediates have been isolated and fully characterized and the reaction chemistry of the resulting ruthenium complexes has been studied. PMID:25088282

  18. Geminal Brønsted Acid Ionic Liquids as Catalysts for the Mannich Reaction in Water

    PubMed Central

    He, Leqin; Qin, Shenjun; Chang, Tao; Sun, Yuzhuang; Zhao, Jiquan

    2014-01-01

    Quaternary ammonium geminal Brønsted acid ionic liquids (GBAILs) based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (where the carbon number of the alkyl chain is 4, 8, 10, 12, 14, 16, or 18) and p-toluenesulfonic acid monohydrate were synthesized. The catalytic ionic liquids were applied in three-component Mannich reactions with an aldehyde, ketone, and amine at 25 °C in water. The effects of the type and amount of catalyst and reaction time as well as the scope of the reaction were investigated. Results showed that GBAIL-C14 has excellent catalytic activity and fair reusability. The catalytic procedure was simple, and the catalyst could be recycled seven times via a simple separation process without noticeable decreases in catalytic activity. PMID:24837832

  19. The glmS Ribozyme Cofactor is a General Acid-Base Catalyst

    PubMed Central

    Viladoms, Julia; Fedor, Martha J.

    2012-01-01

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  20. The glmS ribozyme cofactor is a general acid-base catalyst.

    PubMed

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  1. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity. PMID:24245272

  2. Conversion of isoamyl alcohol over acid catalysts: Reaction dependence on nature of active centers

    SciTech Connect

    Babu, G.P.; Murthy, R.S.; Krishnan, V.

    1997-02-01

    Acid catalysts are known to catalyze the dehydration of alcohols. In addition some oxide catalysts with basic properties have also been shown to play an important role in such dehydration reactions. The dehydration of aliphatic alcohols to olefins has been studied in detail using alumina silica-alumina and zeolite catalysts. The olefin products further undergo isomerization in presence of acidic sites. The reaction of isoamyl alcohol on catalytic surfaces has not been investigated in greater detail. The dehydration of isoamyl alcohol is of considerable interest in fine chemicals. Isoamyl alcohol may also undergo dehydrogenation as observed in the case of n-butanol. The scope of the present work is to identify the nature of the active sites selective for dehydration and dehydrogenation of isoamyl alcohol and to modify the active sites to promote isomerization of dehydrated products. Four catalytic surfaces on which the acidic strength can be varied, as well as selectively suppressed, are chosen for this study. 17 refs., 1 fig., 3 tabs.

  3. Essential role of catalysts (Mn, Au, and Sn) in the vapor liquid solid growth kinematics of ZnS nanowires

    SciTech Connect

    Rehman, S.; Shehzad, M. A.; Hafeez, M.; Bhatti, A. S.

    2014-01-14

    In this paper, we demonstrate that surface energy of the catalyst is a vital parameter for the growth rate, self doping of the self assembled nanowires synthesized by employing vapor liquid solid growth technique. The synthesis of ZnS nanowires was done by selectively using three different catalysts (Mn, Au, and Sn), where Au, is the most common catalyst, was used as a reference. The distinctive difference in the growth rate was due to the surface energy of the metal alloy droplet and the interface energies, as explained theoretically using thermodynamic approach. We have found that the activation energy of diffusion of (Zn, S) species in the catalyst droplet was low in Sn (0.41 eV for Zn and 0.13 eV for S) and high in Mn (1.79 eV for Zn and 0.61 eV for S) compared to Au (0.62 eV for Zn and 0.21 eV for S) catalyzed ZnS nanostructures. The thermodynamic calculations predicted the growth rates of Sn (7.5 nm/s) catalyzed nanowires was faster than Au (5.1 nm/s) and Mn (4.6 nm/s) catalyzed ZnS nanostructures, which were in agreement with the experimental results. Finally, the location of the catalyst as dopant in the grown nanostructure was predicted and compared with experimental observations.

  4. First-Principles Design of Hydrogen Dissociation Catalysts Based on Isoelectronic Metal Solid Solutions.

    PubMed

    Seo, Dong-Hwa; Shin, Hyeyoung; Kang, Kisuk; Kim, Hyungjun; Han, Sang Soo

    2014-06-01

    We report an innovative route for designing novel functional alloys based on first-principles calculations, which is an isoelectronic solid solution (ISS) of two metal elements to create new characteristics that are not native to the constituent elements. Neither Rh nor Ag exhibits hydrogen storage properties, whereas the Rh50Ag50 ISS exhibits properties similar to Pd; furthermore, Au cannot dissociate H2, and Ir has a higher energy barrier for the H2 dissociation reaction than Pt, whereas the Ir50Au50 ISS can dissociate H2 in a similar way to Pt. In the periodic table, Pd is located between Rh and Ag, and Pt is located between Ir and Au, leading to similar atomic and electronic structures between the pure metals (Pd and Pt) and the ISS alloys (Rh50Ag50 and Ir50Au50). From a practical perspective, the Ir-Au ISS would be more cost-effective to use than pure Pt, and could exhibit catalytic activity equivalent to Pt. Therefore, the Ir50Au50 ISS alloy can be a potential catalyst candidate for the replacement of Pt. PMID:26273859

  5. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  6. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.

    PubMed

    Kolev, Joshua N; Zaengle, Jacqueline M; Ravikumar, Rajesh; Fasan, Rudi

    2014-05-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active-site positions of a substrate-promiscuous CYP102A1 variant. The resulting "uP450s" were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small-molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para-acetyl-Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp(3))-H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity-enhancing effect of active-site substitutions involving the unnatural amino acid para-amino-Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  7. Enhancing the Efficiency and Regioselectivity of P450 Oxidation Catalysts via Unnatural Amino Acid Mutagenesis

    PubMed Central

    Kolev, Joshua N.; Zaengle, Jacqueline M.; Ravikumar, Rajesh

    2014-01-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. In this work, we investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. To this end, four unnatural amino acids comprising a diverse set of aromatic side-chain groups were incorporated into eleven active site positions of a substrate-promiscuous CYP102A1 variant. The resulting ‘uP450s’ were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates consisting of a small-molecule drug and a natural product. Large shifts in regioselectivity were obtained as a result of these single mutations and, in particular, via para-acetyl-Phe substitutions at positions in close proximity to the heme cofactor. Notably, screening of this mini library of uP450s enabled the rapid identification of P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp3)—H site not oxidized by the parent enzyme. Furthermore, our studies led to the discovery of a general activity-enhancing effect of active site substitutions involving the unnatural amino acid para-amino-Phe, resulting in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650 turnovers). The functional changes induced by the unnatural amino acids could not be recapitulated by any of the twenty natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising, new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  8. Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal-Ligand Cooperativity Enables Selective Alkyne Hydrogenation.

    PubMed

    Tseng, Kuei-Nin T; Kampf, Jeff W; Szymczak, Nathaniel K

    2016-08-24

    A new series of bifunctional Ru complexes with pendent Lewis acidic boranes were prepared by late-stage modification of an active hydrogen-transfer catalyst. The appended boranes modulate the reactivity of a metal hydride as well as catalytic hydrogenations. After installing acidic auxiliary groups, the complexes become multifunctional and catalyze the cis-selective hydrogenation of alkynes with higher rates, conversions, and selectivities compared with the unmodified catalyst. PMID:27472301

  9. Niobium Complexes As Lewis Acid and Radical Catalysts

    SciTech Connect

    Wayne Tikkanen

    2005-10-01

    The reaction of lithium pentaphenylcyclopentadiende (Li C{sub 5}Ph{sub 5}) with niobium pentachloride in dichloromethane or toluene produces insoluble red-orange solids whose C/H/Cl analyses are not consistent with C{sub 5}Ph{sub 5}NbCl{sub 4}. Addition of an acetonitrile solution of LiC{sub 5}Ph{sub 5} with NbCl{sub 5} gives C{sub 5}Ph{sub 5}NbCl{sub 4} observed as a transient product by NMR spectroscopy, which then abstracts H from the acetonitrile solvent to give HC{sub 5}Ph{sub 5} and presumably NbCl{sub 4}CH{sub 2}CN. Reversal of the order of addition gives the {center_dot}C{sub 5}Ph{sub 5} radical as characterized by MS and EPR spectroscopy. Attempts to prepare the trimethylsilyl derivative Me{sub 3}SiC{sub 5}Ph{sub 5} (a less reducing cyclopentadienyl group) were unsuccessful. Reaction was observed only in tetrahydrofuran, producing only Me{sub 3}SiO(CH{sub 2}){sub 4}C{sub 5}Ph{sub 4}(m-C{sub 6}H{sub 4}(CH3)) characterized by {sup 1}H, {sup 13}C NMR and mass spectroscopy. The trimethylsilyltetraphenylcyclopentadienyl derivative, Me{sub 3}Si(H)C{sub 5}Ph{sub 4}, was characterized by {sup 1}H, {sup 13}C NMR and mass spectroscopy. This compound reacts with NbCl{sub 5} to give HCl and ClSiMe{sub 3} and a mixture of HC{sub 5}Ph{sub 4}NbCl{sub 4} and Me{sub 3}SiC{sub 5}Ph{sub 4}NbCl{sub 4}.

  10. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  11. Manganese(II)/Picolinic Acid Catalyst System for Epoxidation of Olefins.

    PubMed

    Moretti, Ross A; Du Bois, J; Stack, T Daniel P

    2016-06-01

    An in situ generated catalyst system based on Mn(CF3SO3)2, picolinic acid, and peracetic acid converts an extensive scope of olefins to their epoxides at 0 °C in <5 min, with remarkable oxidant efficiency and no evidence of radical behavior. Competition experiments indicate an electrophilic active oxidant, proposed to be a high-valent Mn = O species. Ligand exploration suggests a general ligand sphere motif contributes to effective oxidation. The method is underscored by its simplicity and use of inexpensive reagents to quickly access high value-added products. PMID:27191036

  12. Enhanced formic acid electro-oxidation reaction on ternary Pd-Ir-Cu/C catalyst

    NASA Astrophysics Data System (ADS)

    Chen, Jinwei; Zhang, Jie; Jiang, Yiwu; Yang, Liu; Zhong, Jing; Wang, Gang; Wang, Ruilin

    2015-12-01

    Aim to further reduce the cost of Pd-Ir for formic acid electro-oxidation (FAEO), the Cu was used to construct a ternary metallic alloy catalyst. The prepared catalysts are characterized using XRD, TGA, EDX, TEM, XPS, CO-stripping, cyclic voltammetry and chronoamperometry. It is found that the Pd18Ir1Cu6 nanoparticles with a mean size of 3.3 nm are highly dispersed on carbon support. Componential distributions on catalyst are consistent with initial contents. Electrochemical measurements show that the PdIrCu/C catalyst exhibits the highest activity for FAEO. The mass activity of Pd in Pd18Ir1Cu6/C at 0.16 V (vs. SCE) is about 1.47, 1.62 and 2.08 times as high as that of Pd18Cu6/C, Pd18Ir1/C and Pd/C, respectively. The activity enhancement of PdIrCu/C should be attributed to the weakened CO adsorption strength and the removal of adsorbed intermediates at lower potential with the addition of Cu and Ir.

  13. Revisiting formic acid decomposition on metallic powder catalysts: Exploding the HCOOH decomposition volcano curve

    NASA Astrophysics Data System (ADS)

    Tang, Yadan; Roberts, Charles A.; Perkins, Ryan T.; Wachs, Israel E.

    2016-08-01

    This study revisits the classic volcano curve for HCOOH decomposition by metal catalysts by taking a modern catalysis approach. The metal catalysts (Au, Ag, Cu, Pt, Pd, Ni, Rh, Co and Fe) were prepared by H2 reduction of the corresponding metal oxides. The number of surface active sites (Ns) was determined by formic acid chemisorption. In situ IR indicated that both monodentate and bidentate/bridged surface HCOO* were present on the metals. Heats of adsorption (ΔHads) for surface HCOO* values on metals were taken from recently reported DFT calculations. Kinetics for surface HCOO* decomposition (krds) were determined with TPD spectroscopy. Steady-state specific activity (TOF = activity/Ns) for HCOOH decomposition over the metals was calculated from steady-state activity (μmol/g-s) and Ns (μmol/g). Steady-state TOFs for HCOOH decomposition weakly correlated with surface HCOO* decomposition kinetics (krds) and ΔHads of surface HCOO* intermediates. The plot of TOF vs. ΔHads for HCOOH decomposition on metal catalysts does not reproduce the classic volcano curve, but shows that TOF depends on both ΔHads and decomposition kinetics (krds) of surface HCOO* intermediates. This is the first time that the classic catalysis study of HCOOH decomposition on metallic powder catalysts has been repeated since its original publication.

  14. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  15. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.

    PubMed

    Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide

    2016-05-01

    A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. PMID:27023919

  16. Novel Ordered Mesoporous Carbon Based Sulfonic Acid as an Efficient Catalyst in the Selective Dehydration of Fructose into 5-HMF: the Role of Solvent and Surface Chemistry.

    PubMed

    Karimi, Babak; Mirzaei, Hamid M; Behzadnia, Hesam; Vali, Hojatollah

    2015-09-01

    Novel ionic liquid derived ordered mesoporous carbons functionalized with sulfonic acid groups IOMC-ArSO3H and GIOMC-ArSO3H were prepared, characterized, and examined in the dehydration reaction of fructose into 5-hydroxymethylfurfural (5-HMF) both in aqueous and nonaqueous systems. To study and correlate the surface properties of these carbocatalysts and some other SBA-15 typed solid acids with 5-HMF yield, hydrophilicity index (H-index) were employed in the fructose dehydration. Our study systematically declared that almost a criterion may be expected for application of solid acids in which by increasing H-index value up to 0.8 the HMF yield enhances accordingly. More increase in H-index up to 1.3 did not change the HMF yield profoundly. Although, it has been shown that the catalyst with larger H-index (∼1.3) resulted in higher activity both in aqueous and 2-propanol systems, during the recycling process deactivation occurs because of more water uptake and the catalysts with optimum amount of H-index (∼0.8) is more robust in the dehydration of fructose. PMID:26259108

  17. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    SciTech Connect

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  18. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  19. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts.

    PubMed

    Yu, Xin; Wu, Ting; Yang, Xue-Jing; Xu, Jing; Auzam, Jordan; Semiat, Raphael; Han, Yi-Fan

    2016-03-15

    An advanced method for the degradation of trichloroethylene (TCE) over Pd/MCM-41 catalysts through a hydrogen-transfer was investigated. Formic acid (FA) was used instead of gaseous H2 as the hydrogen resource. As a model H-carrier compound, FA has proven to yield less by-products and second-hand pollution during the reaction. Several factors have been studied, including: the property of catalyst supports, Pd loading and size, temperature, initial concentrations of FA and TCE (potential impact on the reaction rates of TCE degradation), and FA decomposition. The intrinsic kinetics for TCE degradation were measured, while the apparent activation energies and the reaction orders with respect to TCE and FA were calculated through power law models. On the basis of kinetics, we assumed a plausible reaction pathway for TCE degradation in which the catalytic degradation of TCE is most likely the rate-determining step for this reaction. PMID:26685065

  20. Mechanism of hydrodenitrogenation low temperature oxygen chemisorption over acidic molybdenum catalysts: Part 7

    SciTech Connect

    Miranda, R.

    1991-01-01

    The low temperature oxygen chemisorption over acidic molybdena catalysts has evidenced the strong reducibility of near-surface Mo, and the effect of catalyst loading and support composition on such reducibility. It was determined that for supports with compositions under 50% silica, the optimum loading producing maximum surface reducibility is 8 wt% MoO{sub 3}, while for supports with more than 50% silica, the optimum loading is 4 wt% MoO{sub 3}. At this loading, a substantial portion of the support (containing acidic sites) is also exposed. The role of Lewis sites produced on the molybdena surface by coordinative unsaturation is the strong adsorption of aromatic or unsaturated amines, and the destabilization of C-C and C-N bonds. Hydrogenation and hydrogenolysis can then occur by H addition. The highly acidic Bronsted sites, present on the support as well as on the molybdena, strongly chemisorb the hydrogenated amines. The acidic sites contribute to denitrogenation by Hofmann elimination mechanism, as shown by the the abundance of unsaturated hydrocarbons produced, and are also active for cracking and cyclization, as shown by the selectivity towards methane and cyclopentene. 13 refs., 3 figs., 1 tab.

  1. Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Zhao, Yaopeng; Xu, Shutao; Yang, Yan; Liu, Jia; Wei, Yingxu; Yang, Qihua

    2014-01-01

    Tightening environmental legislation is driving the chemical industries to develop efficient solid acid catalysts to replace conventional mineral acids. Polystyrene sulphonic acid resins, as some of the most important solid acid catalysts, have been widely studied. However, the influence of the morphology on their acid strength—closely related to the catalytic activity—has seldom been reported. Herein, we demonstrate that the acid strength of polystyrene sulphonic acid resins can be adjusted through their reversible morphology transformation from aggregated to swelling state, mainly driven by the formation and breakage of hydrogen bond interactions among adjacent sulphonic acid groups within the confined nanospace of hollow silica nanospheres. The hybrid solid acid catalyst demonstrates high activity and selectivity in a series of important acid-catalysed reactions. This may offer an efficient strategy to fabricate hybrid solid acid catalysts for green chemical processes.

  2. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  3. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.

    PubMed

    Song, Jinliang; Zhou, Baowen; Zhou, Huacong; Wu, Lingqiao; Meng, Qinglei; Liu, Zhimin; Han, Buxing

    2015-08-01

    The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5 nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA. PMID:26177726

  4. A solid form of ambazone with lactic acid

    NASA Astrophysics Data System (ADS)

    Borodi, Gh.; Muresan-Pop, M.; Kacsó, I.; Bratu, I.

    2012-02-01

    In recent years, much research has been carried out on the preparation of pharmaceutical solid forms due to their improved physical-chemical parameters such as solubility, dissolution rate of the drug, chemical stability, melting point and hygroscopic parameter. The aim of this study was to obtain and to investigate the structural properties of the ambazone (AMB) with lactic acid (LA) solid form. The solid form was obtained starting from the mixture of ambazone with lactic acid (1:1), by grinding method at constant temperature. The obtained compound was investigated via X-ray powder diffraction (PXRD), thermal analysis (DSC, TG-DTA) and infrared (FTIR) spectroscopy. The difference between the patterns of AMB•LA and of the starting compounds evidenced a new compound. Using X-ray powder diffraction method, by indexing procedure the unit cell and the lattice parameters were determined. Thermal and FTIR measurements on the pure compounds and on the (1:1) ground mixture of AMB with LA confirm the new salt form formation.

  5. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  6. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    SciTech Connect

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T; Bauer, Christopher; Wang, Xiqing; Veith, Gabriel M; Dai, Sheng

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contents were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.

  7. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  8. Isoselenazolones as catalysts for the activation of bromine: bromolactonization of alkenoic acids and oxidation of alcohols.

    PubMed

    Balkrishna, Shah Jaimin; Prasad, Ch Durga; Panini, Piyush; Detty, Michael R; Chopra, Deepak; Kumar, Sangit

    2012-11-01

    Isoselenazolones were synthesized by a copper-catalyzed Se-N bond forming reaction between 2-halobenzamides and selenium powder. The catalytic activity of the various isoselenazolones was studied in the bromolactonization of pent-4-enoic acid. Isoselenazolone 9 was studied as a catalyst in several reactions: the bromolactonization of a series of alkenoic acids with bromine or N-bromosuccinimide (NBS) in the presence of potassium carbonate as base, the bromoesterification of a series of alkenes using NBS and a variety of carboxylic acids, and the oxidation of secondary alcohols to ketones using bromine as an oxidizing reagent. Mechanistic details of the isoselenazolone-catalyzed bromination reaction were revealed by (77)Se NMR spectroscopic and ES-MS studies. The oxidative addition of bromine to the isoselenazolone gives the isoselenazolone(IV) dibromide, which could be responsible for the activation of bromine under the reaction conditions. Steric effects from an N-phenylethyl group on the amide of the isoselenazolone and electron-withdrawing fluoro substituents on the benzo fused-ring of the isoselenazolone appear to enhance the stability of the isoselenazolone as a catalyst for the bromination reaction. PMID:23046286

  9. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGESBeta

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; Gerdes, Kirk; Sabolsky, Edward M.

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  10. Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Liu, Renjie; Xu, Yan; Ma, Xinbin

    2015-08-01

    Iron-based catalysts supported on N-doped CNTs (NCNTs) treated by various concentrations of nitric acid for Fischer-Tropsch synthesis (FTS) were investigated. An improved catalytic performance for the iron catalyst supported on acid treated NCNTs was obtained and the suitable nitric acid concentration was 10 M. The physiochemical properties of the NCNTs and the corresponding catalysts were characterized by BET, TEM, XRD, XPS, TGA and H2-TPR. The acid treatment removed the impurity and amorphous carbon, damaged the bamboo-like structure and increased the number of oxygen-containing functional groups and graphitization degree on the NCNTs. The more iron particles located inside the channels of NCNTs, the better catalytic FTS performance due to high dispersion and reducibility.

  11. Enhanced catalytic performance of Pd catalyst for formic acid electrooxidation in ionic liquid aqueous solution

    NASA Astrophysics Data System (ADS)

    Feng, Yuan-Yuan; Yin, Qian-Ying; Lu, Guo-Ping; Yang, Hai-Fang; Zhu, Xiao; Kong, De-Sheng; You, Jin-Mao

    2014-12-01

    A protic ionic liquid (IL), n-butylammonium nitrate (N4NO3), is prepared and employed as the electrolyte for formic acid electrooxidation reaction (FAOR) on Pd catalysts. The oxidation peak potential of FAOR in the IL solution shows about a 200 mV negative shift as compared with those in traditional H2SO4/HClO4 electrolytes, suggesting that FAOR can be more easily carried out on Pd catalysts in IL media. The catalytic properties of Pd toward FAOR are not only dependent on the concentration of IL, as a consequence of the varied electronic conductivity of the IL solution, but also on the high potential limit of the cyclic voltammograms. When the Pd catalyst is cycled up to 1.0 V (vs. SCE), which induces a significant oxidation of Pd, it shows ca. 4.0 times higher activity than that not subjected to the Pd oxidation (up to 0.6 V). The Pd oxides, which are more easily formed in IL solution than in traditional H2SO4/HClO4 electrolytes, may play a crucial role in increasing the catalytic activities of Pd toward FAOR. Our work would shed new light on the mechanism of FAOR and highlight the potential applications of IL as green and environment-friendly electrolytes in fuel cells and other technologies.

  12. Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy.

    PubMed

    Choi, Chang Hyuck; Baldizzone, Claudio; Grote, Jan-Philipp; Schuppert, Anna K; Jaouen, Frédéric; Mayrhofer, Karl J J

    2015-10-19

    Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium. PMID:26314711

  13. Neopentane and solid acids: direct hydron exchange before cracking.

    PubMed

    Walspurger, Stéphane; Sun, Yinyong; Souna Sido, Abdelkarim Sani; Sommer, Jean

    2006-09-21

    The hydrogen/deuterium exchange reaction of 2,2-dimethylpropane (neopentane) over D(2)O-exchanged zeolites (MOR, FAU, BEA, MFI) using a batch recirculation reactor was studied by means of gas chromatography coupled with mass spectrometer. In the temperature range 473-573 K, H/D exchange proceeds without side reaction such as cracking at short contact times. Indeed the C-H bond has appeared favorably involved in the activation of neopentane compared to the less accessible C-C bond. The transition state allowing hydron exchange is most likely a carbonium species (pentacoordinated carbon) as in the case of the H/D exchange between methane and solid acid. The activation energies of the H/D exchange between neopentane and zeolites are the same for all zeolites indicating a common carbonium ion type transition state. On the basis of previous results in the case of the exchange between methane and liquid superacids, the deuterium exchange rates in neopentane were tentatively related to the acidity of the solids. However the order of activity MOR > MFI > BEA > FAU seems to be related to the size of the pores, which may suggest the involvement of a confinement effect in the zeolites cavities. Moreover we found that H/D exchange takes also place between neopentane and deuterated sulfated zirconia (SZ) emphasizing its strong acidity. PMID:16970460

  14. Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2005-12-01

    Supercritical isobutane regeneration of a USY zeolite alkylation catalyst was examined in a continuous, automated reaction / regeneration system. Two feeds were studied; a synthetic isobutane / 2-butene blend, and a commercial refinery isoparaffin / olefin blend. The refinery blend was minimally treated, containing a variety of light olefins, and contaminants, including butadiene, oxygenates and sulfur, which are well known to cause severe catalyst deactivation. Synthetic feed experiments showed that high levels of butene conversion was maintained for more than 200 hours time on stream, and that product quality and catalyst maintenance was relatively stable over the course of the experiment using a 3 hour reaction / 3 hour regeneration cycle. Catalyst activity maintenance was lower when the commercial feed was employed. High levels of alkene conversion were maintained for 78 hours and 192 hours using a 3 hour reaction / 3 hour regeneration cycle and a 2 hour reaction / 2 hour regeneration cycle, respectively.

  15. From molecular complexes to complex metallic nanostructures--2H solid-state NMR studies of ruthenium-containing hydrogenation catalysts.

    PubMed

    Gutmann, Torsten; del Rosal, Iker; Chaudret, Bruno; Poteau, Romuald; Limbach, Hans-Heinrich; Buntkowsky, Gerd

    2013-09-16

    In the last years, the combination of (2)H solid-state NMR techniques with quantum-chemical calculations has evolved into a powerful spectroscopic tool for the characterization of the state of hydrogen on the surfaces of heterogeneous catalysts. In the present minireview, a brief summary of this development is given, in which investigations of the structure and dynamics of hydrogen in molecular complexes, clusters and nanoparticle systems are presented, aimed to understand the reaction mechanisms on the surface of hydrogenation catalysts. The surface state of deuterium/hydrogen is analyzed employing a combination of variable-temperature (2)H static and magic-angle spinning (MAS) solid-state NMR techniques, in which the dominant quadrupolar interactions of deuterium give information on the binding situation and local symmetry of deuterium/hydrogen on molecular species. Using a correlation database from molecular complexes and clusters, the possibility to distinguish between terminal Ru-D, bridged Ru2-D, three-fold Ru3-D, and interstitial Ru6-D is demonstrated. Combining these results with quantum-chemical density functional theory (DFT) calculations allows the interpretation of (2)H solid-state data of complex "real world" nanostructures, which yielded new insights into reaction pathways at the molecular level. PMID:23658058

  16. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural.

    PubMed

    Tian, Chengcheng; Zhu, Xiang; Chai, Song-Hai; Wu, Zili; Binder, Andrew; Brown, Suree; Li, Lin; Luo, Huimin; Guo, Yanglong; Dai, Sheng

    2014-06-01

    Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid. PMID:24729382

  17. Chiral Nanoparticles/Lewis Acids as Cooperative Catalysts for Asymmetric 1,4-Addition of Arylboronic Acids to α,β-Unsaturated Amides.

    PubMed

    Yasukawa, Tomohiro; Saito, Yuuki; Miyamura, Hiroyuki; Kobayashi, Shū

    2016-07-01

    Cooperative catalysts consisting of chiral Rh/Ag nanoparticles and Sc(OTf)3 have been developed that catalyze asymmetric 1,4-addition reactions of arylboronic acids with α,β-unsaturated amides efficiently. The reaction has been considered one of the most challenging reactions because of the low reactivity of the amide substrates. The new catalysts provide the desired products with outstanding enantioselectivities (>98 % ee) in the presence of low loadings (<0.5 mol %) of the catalyst. PMID:27193210

  18. A Powerful Chiral Phosphoric Acid Catalyst for Enantioselective Mukaiyama-Mannich Reactions.

    PubMed

    Zhou, Fengtao; Yamamoto, Hisashi

    2016-07-25

    A new BINOL-derived chiral phosphoric acid bearing 2,4,6-trimethyl-3,5-dinitrophenyl substituents at the 3,3'-positions was developed. The utility of this chiral phosphoric acid is demonstrated by a highly enantioselective (ee up to >99 %) and diastereoselective (syn/anti up to >99:1) asymmetric Mukaiyama-Mannich reaction of imines with a wide range of ketene silyl acetals. Moreover, this method was successfully applied to the construction of vicinal tertiary and quaternary stereogenic centers with excellent diastereo- and enantioselectivity. Significantly, BINOL-derived N-triflyl phosphoramide constitutes a complementary catalyst system that allows the title reaction to be applied to more challenging imines without an N-(2-hydroxyphenyl) moiety. PMID:27265881

  19. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts.

    PubMed

    Falletta, Ermelinda; Della Pina, Cristina; Rossi, Michele; He, Qian; Kiely, Christopher J; Hutchings, Graham J

    2011-01-01

    One of the strategic building blocks in organic synthesis is 3-hydroxypropionic acid, which is particularly important for the manufacture of high performance polymers. However, to date, despite many attempts using both biological and chemical routes, no large scale effective process for manufacturing 3-hydroxypropionic acid has been developed. One potentially useful starting point is from allyl alcohol, as this can be obtained in principle from the dehydration of glycerol, thereby presenting a bio-renewable green pathway to this important building block. The catalytic transformation of allyl alcohol to 3-hydroxypropionic acid presents interesting challenges in catalyst design, particularly with respect to the control of selectivity among the products that can be expected, as acrylic acid, acrolein and glyceric acid can also be formed. In this paper, we present a novel eco-sustainable catalytic pathway leading to 3-hydroxypropionic acid, which highlights the outstanding potential of gold-based and bimetallic catalysts in the aerobic oxidation of allyl alcohol. PMID:22455056

  20. Solid state radiolysis of amino acids in an astrochemical perspective

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Angelini, Giancarlo; Iglesias-Groth, Susana; Manchado, Arturo

    2011-01-01

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T1/2 for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6×109 years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6×109 years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant krac.

  1. Atomically mixed Fe-group nanoalloys: catalyst design for the selective electrooxidation of ethylene glycol to oxalic acid.

    PubMed

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Ozawa, Nobuki; Kubo, Momoji; Yamauchi, Miho

    2015-05-01

    We demonstrate electric power generation via the electrooxidation of ethylene glycol (EG) on a series of Fe-group nanoalloy (NA) catalysts in alkaline media. A series of Fe-group binary NA catalysts supported on carbon (FeCo/C, FeNi/C, and CoNi/C) and monometallic analogues (Fe/C, Co/C, and Ni/C) were synthesized. Catalytic activities and product distributions on the prepared Fe-group NA catalysts in the EG electrooxidation were investigated by cyclic voltammetry and chronoamperometry, and compared with those of the previously reported FeCoNi/C, which clarified the contributory factors of the metal components for the EG electrooxidation activity, C2 product selectivity, and catalyst durability. The Co-containing catalysts, such as Co/C, FeCo/C, and FeCoNi/C, exhibit relatively high catalytic activities for EG electrooxidation, whereas the catalytic performances of Ni-containing catalysts are relatively low. However, we found that the inclusion of Ni is a requisite for the prevention of rapid degradation due to surface modification of the catalyst. Notably, FeCoNi/C shows the highest selectivity for oxalic acid production without CO2 generation at 0.4 V vs. the reversible hydrogen electrode (RHE), resulting from the synergetic contribution of all of the component elements. Finally, we performed power generation using the direct EG alkaline fuel cell in the presence of the Fe-group catalysts. The power density obtained on each catalyst directly reflected the catalytic performances elucidated in the electrochemical experiments for the corresponding catalyst. The catalytic roles and alloying effects disclosed herein provide information on the design of highly efficient electrocatalysts containing Fe-group metals. PMID:25848911

  2. Approaches to mitigate metal catalyst deactivation in solid oxide fuel cell (SOFC) fuel electrodes

    NASA Astrophysics Data System (ADS)

    Adijanto, Lawrence

    While Ni/YSZ cermets have been used successfully in SOFCs, they also have several limitations, thus motivating the use of highly conductive ceramics to replace the Ni components in SOFC anodes. Ceramic electrodes are promising for use in SOFC anodes because they are expected to be less susceptible to sintering and coking, be redox stable, and be more tolerant of impurities like sulfur. In this thesis, for catalytic studies, the infiltration procedure has been used to form composites which have greatly simplified the search for the best ceramics for anode applications. In the development of ceramic fuel electrodes for SOFC, high performance can only be achieved when a transition metal catalyst is added. Because of the high operating temperatures, deactivation of the metal catalyst by sintering and/or coking is a severe problem. In this thesis, two approaches aimed at mitigating metal catalyst deactivation which was achieved by: 1) designing a catalyst that is resistant to coking and sintering and 2) developing a new method for catalyst deposition, will be presented. The first approach involved synthesizing a self-regenerating, "smart" catalyst, in which Co, Cu, or Ni were inserted into the B-site of a perovskite oxide under oxidizing conditions and then brought back to the surface under reducing conditions. This restores lost surface area of sintered metal particles through an oxidation/reduction cycle. Results will be shown for each of the metals, as well as for Cu-Co mixed metal systems, which are found to exhibit good tolerance to carbon deposition and interesting catalytic properties. The second strategy involves depositing novel Pd CeO2 core-shell nanostructure catalysts onto a substrate surface which had been chemically modified to anchor the nanoparticles. The catalyst deposited onto the chemically modified, hydrophobic surface is shown to be uniform and well dispersed, and exhibit excellent thermal stability to temperatures as high as 1373 K. Similar metal

  3. Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zhou, Yiming; Tang, Yawen; Lu, Tianhong

    A series of carbon-supported bimetallic Pt-Ru catalysts with high alloying degree and different Pt/Ru atomic ratio have been prepared by a chemical reduction method in the H 2O/ethanol/tetrahydrofuran (THF) mixture solvent. The structural and electronic properties of catalysts are characterized using X-ray reflection (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The electrooxidation of formic acid on these Pt-Ru nanoparticles are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The results of electrochemical measurements illustrate that the alloying degree and Pt/Ru atomic ratio of Pt-Ru catalyst play an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for formic acid electrooxidation due to the bifunctional mechanism and the electronic effect. Since formic acid is an intermediate in the methanol electrooxidation on Pt electrode in acidic electrolyte, the observation provides an additional fundamental understanding of the structure-activity relationship of Pt-Ru catalyst for methanol electrooxidation.

  4. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel-Crafts acylation

    NASA Astrophysics Data System (ADS)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu

    2016-01-01

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H3PW12O40 denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6-31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%.

  5. An investigation of the effect of carbon support on ruthenium/carbon catalysts for lactic acid and butanone hydrogenation.

    PubMed

    Jones, Daniel R; Iqbal, Sarwat; Kondrat, Simon A; Lari, Giacomo M; Miedziak, Peter J; Morgan, David J; Parker, Stewart F; Hutchings, Graham J

    2016-06-29

    A series of ruthenium catalysts supported on two different carbons were tested for the hydrogenation of lactic acid to 1,2-propanediol and butanone to 2-butanol. The properties of the carbon supports were investigated by inelastic neutron scattering and correlated with the properties of the ruthenium deposited onto the carbons by wet impregnation or sol-immobilisation. It was noted that the rate of butanone hydrogenation was highly dependent on the carbon support, while no noticeable difference in rates was observed between different catalysts for the hydrogenation of lactic acid. PMID:27079275

  6. Evidence of Bronsted acidity on sulfided promoted and unpromoted Mo/Al sub 2 O sub 3 catalysts

    SciTech Connect

    Topsoe, N.Y.; Topsoe, H. ); Massoth, F.E. )

    1989-09-01

    It is uncertain what effect acidity, especially protonic (Bronsted) acidity, has on typical hydrotreating reactions over molybdenum-containing, sulfided catalysts. In a study of the hydrogenation of 1-hexene, small amounts of propylene were found together with the major product, hexane. The amount of the former increased with increase in the H{sub 2}S partial pressure, leading to the supposition that H{sub 2}S increased the Bronsted acidity of the sulfided catalyst. The hydrodenitrogenation of quinoline was also found to be promoted by H{sub 2}S, which was attributed to an increase in the number of Bronsted acid sites. However, no direct evidence for the presence of Bronsted acid sites was obtained. One of the advantages of using pyridine as the probe molecule for monitoring acidity is that it can adsorb both as coordinated and protonated pyridine on Lewis and Bronsted acid sites, respectively. These adsorbed pyridine species can be easily distinguished by infrared spectroscopy. Bronsted and Lewis acid sites have been detected for oxidic promoted and unpromoted Mo/Al{sub 2}/O{sub 3} catalysts but only Lewis acidity has been found on the corresponding sulfided catalysts. It should be pointed out that most of the previous IR studies have been carried out with pyridine adsorption at relatively low temperatures (below 423 K). It occurred to the authors that since the Bronsted acidity, if it exists, must be weak, higher temperatures may be required to produce the pyridinium ion. The present not reports IR evidence of Bronsted acidity at elevated temperatures corresponding to those typically employed under hydroprocessing reactions.

  7. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  8. Continuous Isosorbide Production From Sorbitol Using Solid Acid Catalysis

    SciTech Connect

    Williamson, R.; Holladay,J.; Jaffe, M.; Brunelle, D.

    2006-09-29

    This is a final report for a project funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board was the principal contracting entity for the grant. The Iowa Corn Promotion Board subcontracted with General Electric, Pacific Northwest National Lab and New Jersey Institute of Technology to conduct research in this project. The Iowa Corn Promotion Board and General Electric provided cost share for the project. The purpose of this diverse collaboration was to integrate both the conversion and the polymer applications into one project and increase the likelihood of success. This project has led to additional collaborations among other polymer companies. The goals of the project were to develop a renewable route to isosorbide for commercialization that is economically competitive with all existing production technologies and to develop new applications for isosorbide in various products such as polymers and materials. Under this program a novel process for the production of isosorbide was developed and evaluated. The novel process converts corn based sorbitol into isosorbide using a solid catalyst with integrated water removal and product recovery. In addition the work under this program has identified several novel products based on isosorbide chemistries. These market applications include: epoxy resins, UV stabilizers, plasticizers and polyesters. These market applications have commercial interest within the current polymer industry. This report contains an overview summary of the accomplishments. Six inventions and four patent applications have been written as a result of this project. Additional data will be published in the patent applications. The data developed at New Jersey Institute of Technology was presented at two technical conferences held in June of 2006. Several companies have made inquiries about using this material in their products.

  9. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.

    PubMed

    Gernigon, Nicolas; Al-Zoubi, Raed M; Hall, Dennis G

    2012-10-01

    The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state. PMID:23013456

  10. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane) Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol.

    PubMed

    Saito, Kei; Miyamoto, Koji; Nanayakkara, Sepa; Ihara, Hirotaka; Hearn, Milton T W

    2016-01-01

    A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane) copper(I) complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene) solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl)-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide) was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst. PMID:26821005

  11. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst.

    PubMed

    Ramachandran, Kasirajan; Sivakumar, Pandian; Suganya, Tamilarasan; Renganathan, Sahadevan

    2011-08-01

    Al(HSO(4))(3) heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl(3). This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220°C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO(3)H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751. PMID:21621409

  12. A review on synthesis and characterization of solid acid materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohammad, Norsyahida; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Loh, Kee Shyuan

    2016-08-01

    Solid acids emerged as an electrolyte material for application in fuel cells due to their high protonic conductivity and stability at high temperatures between 100 °C and 250 °C. This paper gives an overview of the different solid acid materials and their properties, such as high protonic conductivity and thermal stability, in relation to phase transitions and mechanisms of proton transport. Various solid acid synthesis methods including aqueous and dry mixing, electrospinning, sol-gel, impregnation and thin-film casting will be discussed, and the impact of synthesis methods on the properties of solid acids will be highlighted. The properties of solid acids synthesized as either single crystals and or polycrystalline powders were identified via X-ray diffraction, nuclear magnetic resonance, thermal analyses, optical microscopy and infrared spectroscopy. A selection of electrolyte-electrode assembly methods and the performance of solid acid fuel cell prototypes are also reviewed.

  13. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts.

    PubMed

    Yang, Feng; Wang, Xiao; Zhang, Daqi; Yang, Juan; Luo, Da; Xu, Ziwei; Wei, Jiake; Wang, Jian-Qiang; Xu, Zhi; Peng, Fei; Li, Xuemei; Li, Ruoming; Li, Yilun; Li, Meihui; Bai, Xuedong; Ding, Feng; Li, Yan

    2014-06-26

    Carbon nanotubes have many material properties that make them attractive for applications. In the context of nanoelectronics, interest has focused on single-walled carbon nanotubes (SWNTs) because slight changes in tube diameter and wrapping angle, defined by the chirality indices (n, m), will shift their electrical conductivity from one characteristic of a metallic state to one characteristic of a semiconducting state, and will also change the bandgap. However, this structure-function relationship can be fully exploited only with structurally pure SWNTs. Solution-based separation methods yield tubes within a narrow structure range, but the ultimate goal of producing just one type of SWNT by controlling its structure during growth has proved to be a considerable challenge over the last two decades. Such efforts aim to optimize the composition or shape of the catalyst particles that are used in the chemical vapour deposition synthesis process to decompose the carbon feedstock and influence SWNT nucleation and growth. This approach resulted in the highest reported proportion, 55 per cent, of single-chirality SWNTs in an as-grown sample. Here we show that SWNTs of a single chirality, (12, 6), can be produced directly with an abundance higher than 92 per cent when using tungsten-based bimetallic alloy nanocrystals as catalysts. These, unlike other catalysts used so far, have such high melting points that they maintain their crystalline structure during the chemical vapour deposition process. This feature seems crucial because experiment and simulation both suggest that the highly selective growth of (12, 6) SWNTs is the result of a good structural match between the carbon atom arrangement around the nanotube circumference and the arrangement of the catalytically active atoms in one of the planes of the nanocrystal catalyst. We anticipate that using high-melting-point alloy nanocrystals with optimized structures as catalysts paves the way for total chirality

  14. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  15. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGESBeta

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  16. Preparation and characterization of a composite hydrogel with graphene oxide as an acid catalyst.

    PubMed

    Jiang, Ting; Sui, Zhu-Yin; Yang, Quan-Sheng; Zhang, Xuetong; Han, Bao-Hang

    2015-04-28

    In this study, a facile method for synthesizing a novel graphene oxide/pyrrole-formaldehyde (GOP-1) composite hydrogel was developed via in situ polymerization of pyrrole and formaldehyde in the presence of graphene oxide sheets without any additional catalyst. During the polymerization, graphene oxide can act as a two-dimensional template to regulate the aggregation state of polymer and as an acid catalyst to accelerate the reaction rate of pyrrole and formaldehyde. The morphology and microstructure were investigated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, respectively. The chemical properties were analyzed via X-ray photoelectron spectroscopy, infrared spectroscopy, and Raman spectroscopy. The freeze-dried GOP-1 composite hydrogel exhibited a large specific surface area, high nitrogen content, and three-dimensional network structure. Based on the above features, the freeze-dried GOP-1 composite hydrogel used as a gas adsorbent showed a high carbon dioxide uptake capacity at 1.0 bar and 273 K (11.1 wt%), in sharp contrast to that of graphene oxide (7.4 wt%). Furthermore, the as-prepared composite hydrogel may possess attractive potential in the fields of electrode material, tissue engineering, and water treatment. PMID:25760407

  17. Formic Acid Decomposition on Au catalysts: DFT, Microkinetic Modeling, and Reaction Kinetics Experiments

    SciTech Connect

    Singh, Suyash; Li, Sha; Carrasquillo-Flores, Ronald; Alba-Rubio, Ana C.; Dumesic, James A.; Mavrikakis, Manos

    2014-04-01

    A combined theoretical and experimental approach is presented that uses a comprehensive mean-field microkinetic model, reaction kinetics experiments, and scanning transmission electron microscopy imaging to unravel the reaction mechanism and provide insights into the nature of active sites for formic acid (HCOOH) decomposition on Au/SiC catalysts. All input parameters for the microkinetic model are derived from periodic, self-consistent, generalized gradient approximation (GGA-PW91) density functional theory calculations on the Au(111), Au(100), and Au(211) surfaces and are subsequently adjusted to describe the experimental HCOOH decomposition rate and selectivity data. It is shown that the HCOOH decomposition follows the formate (HCOO) mediated path, with 100% selectivity toward the dehydrogenation products (CO21H2) under all reaction conditions. An analysis of the kinetic parameters suggests that an Au surface in which the coordination number of surface Au atoms is 4 may provide a better model for the active site of HCOOH decomposition on these specific supported Au catalysts.

  18. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.

    PubMed

    Xie, Wenlei; Yang, Dong

    2011-10-01

    The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability. PMID:21871795

  19. Stannic chloride-para toluene sulfonic acid as a novel catalyst-co-catalyst system for the designing of hydroxyl terminated polyepichlorohydrin polymer: Synthesis and characterization.

    PubMed

    Ahmad, Muhammad; Sirajuddin, Muhammad; Akther, Zareen; Ahmad, Waqar

    2015-12-01

    Hydroxy terminated polyepichlorohydrin (PECH) was synthesized in good yield (85-88%) with improved functionality (2.01-2.53) and desired number average molecular weight (∼3000), using a novel catalyst-co-catalyst combination. The effect of various molar ratios (4-12) of p-toluenesulphonic acid and SnCl4 on molecular weight of PECH was investigated. Different polymerization conditions like temperature, time and monomer addition rates were found to have pronounced effect on molecular weight, polydispersity and functionality of the products. The molecular weight distribution and polydispersity of the synthesized polymers were determined by Gel permeation chromatography (GPC). Absolute value of Number average molecular weight (Mn) was established with vapor pressure osmometry and structural elucidations were carried out by FT-IR and NMR spectroscopic techniques. Terminal Hydroxyl groups were quantified by acetylation method and functionality was derived from hydroxyl value and Mn. PMID:26135537

  20. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts.

    PubMed

    Alcala, Rafael; Shabaker, John W; Huber, George W; Sanchez-Castillo, Marco A; Dumesic, James A

    2005-02-17

    Reaction kinetics studies were conducted for the conversions of ethanol and acetic acid over silica-supported Pt and Pt/Sn catalysts at temperatures from 500 to 600 K. Addition of Sn to Pt catalysts inhibits the decomposition of ethanol to CO, CH4, and C2H6, such that PtSn-based catalysts are active for dehydrogenation of ethanol to acetaldehyde. Furthermore, PtSn-based catalysts are selective for the conversion of acetic acid to ethanol, acetaldehyde, and ethyl acetate, whereas Pt catalysts lead mainly to decomposition products such as CH4 and CO. These results are interpreted using density functional theory (DFT) calculations for various adsorbed species and transition states on Pt(111) and Pt3Sn(111) surfaces. The Pt3Sn alloy slab was selected for DFT studies because results from in situ (119)Sn Mössbauer spectroscopy and CO adsorption microcalorimetry of silica-supported Pt/Sn catalysts indicate that Pt-Sn alloy is the major phase present. Accordingly, results from DFT calculations show that transition-state energies for C-O and C-C bond cleavage in ethanol-derived species increase by 25-60 kJ/mol on Pt3Sn(111) compared to Pt(111), whereas energies of transition states for dehydrogenation reactions increase by only 5-10 kJ/mol. Results from DFT calculations show that transition-state energies for CH3CO-OH bond cleavage increase by only 12 kJ/mol on Pt3Sn(111) compared to Pt(111). The suppression of C-C bond cleavage in ethanol and acetic acid upon addition of Sn to Pt is also confirmed by microcalorimetric and infrared spectroscopic measurements at 300 K of the interactions of ethanol and acetic acid with Pt and PtSn on a silica support that had been silylated to remove silanol groups. PMID:16851198

  1. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity.

    PubMed

    Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia; Zhang, Jiaguang; De, Sudipta; Yan, Ning

    2016-07-11

    In coordination chemistry, catalytically active metal complexes in a zero- or low-valent state often adopt four-coordinate square-planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single-atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)-modified active carbon. This was achieved by anchoring Pt on the four-fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square-planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities. PMID:27240266

  2. N-Co-O Triply Doped Highly Crystalline Porous Carbon: An Acid-Proof Nonprecious Metal Oxygen Evolution Catalyst.

    PubMed

    Yang, Shiliu; Zhan, Yi; Li, Jingfa; Lee, Jim Yang

    2016-02-10

    In comparison with nonaqueous Li-air batteries, aqueous Li-air batteries are kinetically more facile and there is more variety of non-noble metal catalysts available for oxygen electrocatalysis, especially in alkaline solution. The alkaline battery environment is however vulnerable to electrolyte carbonation by atmospheric CO2 resulting in capacity loss over time. The acid aqueous solution is immune to carbonation but is limited by the lack of effective non-noble metal catalysts for the oxygen evolution reaction (OER). This is contrary to the oxygen reduction reaction (ORR) in acid solution where a few good candidates exist. We report here the development of a N-Co-O triply doped carbon catalyst with substantial OER activity in acid solution by the thermal codecomposition of polyaniline, cobalt salt and cyanamide in nitrogen. Cyanamide and the type of cobalt precursor salt were found to determine the structure, crystallinity, surface area, extent of Co doping and consequently the OER activity of the final carbon catalyst in acid solution. We have also put forward some hypotheses about the active sites that may be useful for guiding further work. PMID:26795393

  3. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst.

    PubMed

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M A; Han, Jin Wook; Uozumi, Yasuhiro

    2016-01-01

    A porous phenolsulphonic acid-formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631

  4. Selective conversion of organic pollutant p-chlorophenol to formic acid using zeolite Fenton catalyst.

    PubMed

    Shen, Chensi; Ma, Jianqing; Liu, Wanpeng; Wen, Yuezhong; Rashid, Sadia

    2016-10-01

    Effective remediation technologies which can converse the harmful organic pollutants to high-value chemicals are crucial both for wastewater treatment and energy regeneration. This study provides an evidence that extracting useful chemicals from wastewater is feasible through selective conversion of p-chlorophenol to high value formic acid as an example. The reported system works with a readily available Fe-containing ZSM-5 catalyst, water as the solvent and hydrogen peroxide as the oxidant. The yield of formic acid reached up to 50.7% when the Si/Al ratio of ZSM-5 was 80 and the Fe-content was 1.4%. By X-ray adsorption fine structure (XAFS), NH3 temperature-programmed desorption (NH3-TPD) technique, the pyridine adsorption Fourier-transition infrared (Py-IR) spectroscopy and adsorption measurements, it was concluded that the controllable degradation of p-CP could be approached through selective adsorption, the moderate Brønsted acid sites for H2O2 activation and the properly selective conversion control due to extra-framework coordination unsaturated sites (CUS) of Fe. This approach might provide a new avenue for the field of organic pollutant remediation. PMID:27459155

  5. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.

    PubMed

    Ruppert, A M; Grams, J; Jędrzejczyk, M; Matras-Michalska, J; Keller, N; Ostojska, K; Sautet, P

    2015-05-11

    A series of titania-supported ruthenium and platinum catalysts was investigated in the levulinic acid hydrogenation towards γ-valerolactone, a key reaction for the catalytic transformation of biomass. It was shown that various morphologies and phases of titania strongly influence the physicochemical and catalytic properties of supported Ru and Pt catalysts in different ways. In the case of the catalyst supported on mixed TiO2 phases, Ru particles are exclusively located on the minority rutile crystallites, whereas such an effect was not observed for platinum. The platinum catalyst activity could be increased when the metal was dispersed on the large surface-area anatase, which was not the case for ruthenium as a result of its agglomeration on this support. The activity of ruthenium on anatase could be increased in two ways: a) when RuO2 formation during catalyst preparation was avoided; b) when pure anatase support material was modified so that it exhibited no microporosity. The obtained results allow a better understanding of the role of the support for Ru and Pt catalysts. PMID:25641864

  6. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ∼260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  7. Utility of monitoring mycophenolic acid in solid organ transplant patients.

    PubMed Central

    Oremus, Mark; Zeidler, Johannes; Ensom, Mary H H; Matsuda-Abedini, Mina; Balion, Cynthia; Booker, Lynda; Archer, Carolyn; Raina, Parminder

    2008-01-01

    OBJECTIVES To investigate whether monitoring concentrations of mycophenolic acid (MPA) in the serum or plasma of persons who receive a solid organ transplant will result in a lower incidence of transplant rejections and adverse events versus no monitoring of MPA. To investigate whether the incidence of rejection or adverse events differs according to MPA dose or frequency, type of MPA, the form of MPA monitored, the method of MPA monitoring, or sample characteristics. To assess whether monitoring is cost-effective versus no monitoring. DATA SOURCES The following databases were searched from their dates of inception (in brackets) until October 2007: MEDLINE (1966); BIOSIS Previews (1976); EMBASE (1980); Cochrane Database of Systematic Reviews (1995); and Cochrane Central Register of Controlled Trials (1995). REVIEW METHODS Studies identified from the data sources went through two levels of screening (i.e., title and abstract, full text) and the ones that passed were abstracted. Criteria for abstraction included publication in the English language, study design (i.e., randomized controlled trial [RCT], observational study with comparison group, case series), and patient receipt of allograft solid organ transplant. Additionally, any form of MPA had to be measured at least once in the plasma or serum using any method of measurement (e.g., AUC0-12, C0). Furthermore, these measures had to be linked to a health outcome (e.g., transplant rejection). Certain biomarkers (e.g., serum creatinine, glomular filtration rate) and all adverse events were also considered health outcomes. RESULTS The published evidence on MPA monitoring is inconclusive. Direct, head-to-head comparison of monitoring versus no monitoring is limited to one RCT in adult, kidney transplant patients. Inferences about monitoring can be made from some observational studies, although the evidence is equivocal for MPA dose and dose frequency, nonexistent for type of MPA, inconclusive for form of MPA monitored

  8. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst.

    PubMed

    Lee, Jong-Min; Upare, Pravin P; Chang, Jong-San; Hwang, Young Kyu; Lee, Jeong Ho; Hwang, Dong Won; Hong, Do-Young; Lee, Seung Hwan; Jeong, Myung-Geun; Kim, Young Dok; Kwon, Young-Uk

    2014-11-01

    Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation. PMID:25123894

  9. Sono-synthesis of biodiesel from soybean oil by KF/γ-Al₂O₃ as a nano-solid-base catalyst.

    PubMed

    Shahraki, H; Entezari, M H; Goharshadi, E K

    2015-03-01

    In this work, biodiesel has successfully prepared via ultrasonic method in a short time and low temperature by nano-solid-base catalyst (KF/γ-Al₂O₃). The catalyst was obtained by calcination of a mixture of KF and γ-Al₂O₃ m(KF)/m(γ-Al₂O₃) at 500 °C for 3 h. Nano-solid-base catalyst was characterized with scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermal gravimetry (TG) and the Hammett indicator methods. The TEM image depicted nanoparticles and uniform dispersion of active phase over alumina. The XRD analysis confirmed the formation of potassium aluminum fluoride (K₃AlF₆) and potassium oxide, active catalyst for transesterification. The transesterification of soybean oil with methanol was performed by using both low frequency ultrasonic reactor (20 kHz) and mechanical stirring in the presence of KF/γ-Al₂O₃. The influence of various parameters such as ultrasonic power, oil/methanol molar ratio, catalyst concentration, time, and temperature were studied on the biodiesel formation. The maximum yield (95%) was achieved by applying 45 W acoustic power, molar ratio of alcohol to oil at 12:1, catalyst concentration of 2.0 wt%, 40 min sonication, and temperature of 50 °C. The transesterification was performed in 360 min using mechanical stirring with 76% yield. The results confirm that ultrasound significantly accelerates the transesterification reaction in comparison with the mechanical stirring. PMID:25445716

  10. Solid-supported reagents composed of a copolymer possessing 2-O-sulfonyl mannosides and phase-transfer catalysts for the synthesis of 2-fluoroglucose.

    PubMed

    Takeuchi, Ryota; Sakai, Yuki; Tanaka, Hiroshi; Takahashi, Takashi

    2015-12-01

    We described the synthesis of a solid-supported co-polymer possessing mannosides and phase-transfer catalysts and synthesis of 2-fluoroglucoside from it. We first prepared a soluble copolymer from two allene monomers possessing a precursor for the synthesis of 2-fluoroglycose and a crown ether. The copolymerization of the monomers via the π-ally nickel-catalyst smoothly proceeded at room temperature to provide a desired copolymer without decomposition of the sulfonate esters. The copolymer exhibited high reactivity towards fluorination in comparison with a conventional precursor. We next synthesized the solid-supported copolymer by using the solid-supported initiator attached with TentaGel® resins. TentaGel® enabled polymerization under stirring with stirring bar without decomposition. The solid-supported copolymer exhibited comparable reactivity towards fluorination in comparison with the soluble copolymer. In addition, it can be easily separated from the reaction vessel by filtration. PMID:26525864

  11. The influence of metal and carrier natures on the effectiveness of catalysts of the deoxygenation of fatty acids into hydrocarbons

    NASA Astrophysics Data System (ADS)

    Berenblyum, A. S.; Shamsiev, R. S.; Podoplelova, T. A.; Danyushevsky, V. Ya.

    2012-08-01

    The activity and selectivity of palladium, copper, platinum, and nickel catalysts in the decarbonylation of stearic acid into hydrocarbons were studied at a 14 atm hydrogen pressure and temperatures of 300-350°C. If γ-alumina was used as a carrier, the catalysts formed the series Pd > Cu > Pt > Ni according to desired product yields. Quantum-chemical simulation was performed to show that the free energy of activation increased in the same series. The same metals deposited on mixed tungsten and zirconium oxides catalyzed decarbonylation with a low yield of C17 hydrocarbons, likely because such a superacidic carrier could catalyse cracking of olefins or their oligomers formed.

  12. Carboxylation of alkylboranes by N-heterocyclic carbene copper catalysts: synthesis of carboxylic acids from terminal alkenes and carbon dioxide.

    PubMed

    Ohishi, Takeshi; Zhang, Liang; Nishiura, Masayoshi; Hou, Zhaomin

    2011-08-22

    Caught in the act: N-Heterocyclic carbene copper(I) complexes (1; IPr=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) serve as an excellent catalyst for the carboxylation of alkylboranes (2; R=alkyl) with CO(2) to afford a variety of functionalized carboxylic acids (3) in high yields. A novel copper methoxide/alkylborane adduct (A) and its subsequent CO(2) insertion product (B) have been isolated and shown to be true active catalyst species. PMID:21739544

  13. Steroid-Derived Naphthoquinoline Asphaltene Model Compounds: Hydriodic Acid Is the Active Catalyst in I2-Promoted Multicomponent Cyclocondensation Reactions.

    PubMed

    Schulze, Matthias; Scott, David E; Scherer, Alexander; Hampel, Frank; Hamilton, Robin J; Gray, Murray R; Tykwinski, Rik R; Stryker, Jeffrey M

    2015-12-01

    A multicomponent cyclocondensation reaction between 2-aminoanthracene, aromatic aldehydes, and 5-α-cholestan-3-one has been used to synthesize model asphaltene compounds. The active catalyst for this reaction has been identified as hydriodic acid, which is formed in situ from the reaction of iodine with water, while iodine is not a catalyst under anhydrous conditions. The products, which contain a tetrahydro[4]helicene moiety, are optically active, and the stereochemical characteristics have been examined by VT-NMR and VT-CD spectroscopies, as well as X-ray crystallography. PMID:26584791

  14. Selective catalytic reduction of NOx with NH3 over a Cu-SSZ-13 catalyst prepared by a solid state ion exchange method

    SciTech Connect

    Wang, Di; Gao, Feng; Peden, Charles HF; Li, Junhui; Kamasamudram, Krishna; Epling, William S.

    2014-06-01

    A novel solid state method was developed to synthesize Cu-SSZ-13 catalysts with excellent NH3-SCR performance and durable hydrothermal stability. After the solid state ion exchange (SSIE) process, the SSZ framework structure and surface area was maintained. In-situ DRIFTS and NH3-TPD experiments provide evidence that isolated Cu ions were successfully exchanged into the pores, which are the active centers for the NH3-SCR reaction.

  15. Stability and spinodal decomposition of the solid-solution phase in the ruthenium-cerium-oxide electro-catalyst.

    PubMed

    Li, Yanmei; Wang, Xin; Shao, Yanqun; Tang, Dian; Wu, Bo; Tang, Zhongzhi; Lin, Wei

    2015-01-14

    The phase diagram of Ru-Ce-O was calculated by a combination of ab initio density functional theory and thermodynamic calculations. The phase diagram indicates that the solubility between ruthenium oxide and cerium oxide is very low at temperatures below 1100 K. Solid solution phases, if existing under normal experimental conditions, are metastable and subject to a quasi-spinodal decomposition to form a mixture of a Ru-rich rutile oxide phase and a Ce-rich fluorite oxide phase. To study the spinodal decomposition of Ru-Ce-O, Ru0.6Ce0.4O2 samples were prepared at 280 °C and 450 °C. XRD and in situ TEM characterization provide proof of the quasi-spinodal decomposition of Ru0.6Ce0.4O2. The present study provides a fundamental reference for the phase design of the Ru-Ce-O electro-catalyst. PMID:25418197

  16. Regeneration of spent three-way catalysts with nano-structured platinum group metals by gas and acid treatments.

    PubMed

    Kim, Sang Chai; Nahm, Seung Won; Wang, Geun Shim; Seo, Seong Gyu; Lee, Jae Wook

    2008-10-01

    The influence of physicochemical treatments on the catalytic activity of the spent nano-structured three way catalysts (TWCs) was examined to evaluate the possibility of using spent TWCs for removing VOCs. Thermal gases and acid aqueous solutions were used to regenerate the spent nano-structured TWCs. The characterization of the spent catalyst and its modified forms was carried out by using XRD, TEM, ICP, and N2 adsorption-desorption isotherms. The catalytic activity tests revealed that the spent nano-structured TWCs have a great potential for removing toxic compounds. The activities of catalysts were also found to be highly dependent on the treatment conditions. The acid aqueous treatments were very useful for improving the catalytic activity because they removed various contaminants such as fuel additives, lubricant oil additives, and metallic compounds. However, the thermal gas treated TWCs were less active than the parent TWCs. Furthermore, the activities of the catalysts treated with acids were closely connected with the remaining Pt/Al ratios. PMID:19198464

  17. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other. PMID:22730195

  18. Low-grade oils and fats: effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts.

    PubMed

    Morales, Gabriel; Bautista, L Fernando; Melero, Juan A; Iglesias, Jose; Sánchez-Vázquez, Rebeca

    2011-10-01

    Different lipidic wastes and low-grade oils and fats have been characterized and evaluated as feedstocks for the acid-catalyzed production of FAME. The characterization of these materials has revealed significant contents of free fatty acids, Na, K, Ca, Mg, P, unsaponifiable matter and humidity. Arenesulfonic acid-functionalized SBA-15 silica catalyst has provided yields to FAME close to 80% in the simultaneous esterification-transesterification of the different feedstocks, regardless of their nature and properties, using methanol under the following reaction conditions: 160 °C, 2 h, methanol to oil molar ratio of 30, 8 wt.% catalyst loading, and 2000 rpm stirring rate. Nevertheless, reutilization of the catalyst is compromised by high levels of impurities, especially because of deactivation by strong interaction of unsaponifiable matter with the catalytic sites. The conditioning of these materials by aqueous washing in the presence of cationic-exchange resin Amberlyst-15, followed by a drying step, resulted in a lower deactivation of the catalyst. PMID:21862322

  19. Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst.

    PubMed

    Li, Jinbao; Zhang, Xiangrong; Zhang, Meiyun; Xiu, Huijuan; He, Hang

    2015-03-01

    The effect of ultrasonic pretreatment coupled with HCl-FeCl3 catalyst was evaluated to hydrolyze cellulose amorphous regions. The ultrasonic pretreatment leads to cavitation that affects the morphology and microstructure of fibers, enhancing the accessibility of chemical reagent to the loosened amorphous regions of cellulose. In this work, Fourier transform infrared spectroscopy (FTIR) was used to identify characteristic absorption bands of the constituents and the crystallinity was evaluated by the X-ray diffraction (XRD) technique. The results indicated that appropriate ultrasonic pretreatment assisted with FeCl3 can enhance the acid hydrolysis of amorphous regions of cellulose, thus improving the crystallinity of the remaining hydrocellulose. It was observed that sonication samples that were pretreated for 300 W and 20 min followed by acid hydrolysis had maximum of 78.9% crystallinity. The crystallinity was 9.2% higher than samples that were not subjected to ultrasound. In addition, the average fines length decreased from 49 μm to 37 μm. PMID:25498717

  20. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts.

    PubMed

    Lopes, André M da Costa; Bogel-Łukasik, Rafał

    2015-03-01

    The use of ionic liquids (ILs) for biomass processing has attracted considerable attention recently as it provides distinct features for pre-treated biomass and fractionated materials in comparison to conventional processes. Process intensification through integration of dissolution, fractionation, hydrolysis and/or conversion in one pot should be accomplished to maximise economic and technological feasibility. The possibility of using alternative ILs capable not only of dissolving and deconstructing selectively biomass but also of catalysing reactions simultaneously are a potential solution of this problem. In this Review a critical overview of the state of the art and perspectives of the hydrolysis and conversion of cellulose and lignocellulosic biomass using acidic ILs using no additional catalyst are provided. The efficiency of the process is mainly considered with regard to the hydrolysis and conversion yields obtained and the selectivity of each reaction. The process conditions can be easily tuned to obtain sugars and/or platform chemicals, such as furans and organic acids. On the other hand, product recovery from the IL and its purity are the main challenges for the acceptance of this technology as a feasible alternative to conventional processes. PMID:25703380

  1. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in...

  2. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  3. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in...

  4. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  5. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  6. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    PubMed Central

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-01-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631

  7. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-05-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity.

  8. Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid.

    PubMed

    Chieregato, Alessandro; Soriano, M Dolores; García-González, Ester; Puglia, Giuseppe; Basile, Francesco; Concepción, Patricia; Bandinelli, Claudia; López Nieto, José M; Cavani, Fabrizio

    2015-01-01

    Glycerol surplus from biodiesel synthesis still represents a major problem in the biofuel production chain. Meanwhile, those in the acrylic acid market are looking for new processes that are able to offer viable alternatives to propylene-based production. Therefore, acrylic acid synthesis from glycerol could be an effective solution to both issues. Among the viable routes, one-pot synthesis theoretically represents the most efficient process, but it is also highly challenging from the catalyst design standpoint. A new class of complex W--Mo--V mixed-oxide catalysts, which are strongly related to the hexagonal tungsten bronze structure, able to directly convert glycerol into acrylic acid with yields of up to 51 % are reported. PMID:25488515

  9. A General, Simple Catalyst for Enantiospecific Cross Couplings of Benzylic Ammonium Triflates and Boronic Acids: No Phosphine Ligand Required

    PubMed Central

    Basch, Corey H.; Song, Ye-Geun; Watson, Mary P.

    2014-01-01

    Highly improved conditions for the enantiospecific cross coupling of benzylic ammonium triflates with boronic acids are reported. This method relies on the use of Ni(cod)2 without ancillary phosphine or N-heterocyclic carbene ligands as catalyst. These conditions enable the coupling of new classes of boronic acids and benzylic ammonium triflates. In particular, both heteroaromatic and vinyl boronic acids are well tolerated as coupling partners. In addition, these conditions enable the use of ammonium triflates with a variety of substituents at the benzylic stereocenter. Further, naphthyl-substitution is not required on the benzylic ammonium triflate; ammonium triflates with simple aromatic substituents also undergo this coupling. Good to high yields and levels of stereochemical fidelity are observed. This new catalyst system greatly expands the utility of enantiospecific cross couplings of these amine-derived substrates for the preparation of highly enantioenriched products. PMID:25364060

  10. Acidic and basic properties of zeolite-containing cracking catalyst in the process of butene-1 isomerization

    NASA Astrophysics Data System (ADS)

    Mursalova, L. A.; Guseinova, E. A.; Adzhamov, K. Yu.

    2016-08-01

    The process of butene-1 isomerization in the presence of two groups of samples of zeolite-containing catalyst (ZCC) that earlier participated in the traditional and oxidative catalytic cracking of vacuum gasoil is investigated. It is established that the nature of the reaction mixture and conditions of the cracking process are key factors in forming the acidic and basic properties of the catalyst. It is shown that the highest activity in the butene-1 isomerization into cis-/ trans-butene-2 is demonstrated by ZCC samples that participated in the oxidative catalytic cracking (oxycracking). It is suggested that the enhanced catalytic activity of this group of ZCC samples was related to the availability of acid-base centers in the form of radical-like oxygen along with protic- and aprotic-type acidic centers in the structure of the oxidative compaction products.

  11. Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective.

    PubMed

    Garg, Bhaskar; Bisht, Tanuja; Ling, Yong-Chien

    2014-01-01

    Acid catalysis is quite prevalent and probably one of the most routine operations in both industrial processes and research laboratories worldwide. Recently, "graphene", a two dimensional single-layer carbon sheet with hexagonal packed lattice structure, imitative of nanomaterials, has shown great potential as alternative and eco-friendly solid carbocatalyst for a variety of acid-catalyzed reactions. Owing to their exceptional physical, chemical, and mechanical properties, graphene-based nanomaterials (G-NMs) offer highly stable Brønsted acidic sites, high mass transfer, relatively large surface areas, water tolerant character, and convenient recoverability as well as recyclability, whilst retaining high activity in acid-catalyzed chemical reactions. This comprehensive review focuses on the chemistry of G-NMs, including their synthesis, characterization, properties, functionalization, and up-to-date applications in heterogeneous acid catalysis. In line with this, in certain instances readers may find herein some criticisms that should be taken as constructive and would be of value in understanding the scope and limitations of current approaches utilizing graphene and its derivatives for the same. PMID:25225721

  12. Environmentally benign production of biodiesel using heterogeneous catalysts.

    PubMed

    Hara, Michikazu

    2009-01-01

    Fuelling the future: The production of esters of higher fatty acids from plant materials is of great interest for the manufacture of biodiesel. Heterogeneous catalysts can provide new routes for the environmentally benign production of biodiesel. Particulate heterogeneous catalysts can be readily separated from products following reaction allowing the catalyst to be reused, generating less waste, and consuming less energy. Diesel engines are simple and powerful, and exhibit many advantages in energy efficiency and cost. Therefore, the production of higher fatty acid esters from plant materials has become of interest in recent years for the manufacture of biodiesel, a clean-burning alternative fuel. The industrial production of biodiesel mostly proceeds in the presence of "soluble" catalysts such as alkali hydroxides and liquid acids. A considerable amount of energy is required for the purification of products and catalyst separation, and furthermore these catalysts are not reusable. This process results in substantial energy wastage and the production of large amounts of chemical waste. Particulate heterogeneous catalysts can be readily separated from products following reaction, allowing the catalyst to be reused and consuming less energy. This Minireview describes the environmentally benign production of biodiesel using heterogeneous catalysts such as solid bases, acid catalysts, and immobilized enzymes. PMID:19180600

  13. An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water.

    PubMed

    Jadhav, Arvind H; Kim, Hern; Hwang, In Taek

    2013-03-01

    Acidity modified silver exchanged silicotungstic acid (AgSTA) catalyst was prepared and characterized by X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy, FT-IR pyridine adsorption, SEM imaging, EDX mapping, and antimicrobial activity was also tested. The catalytic activity was evaluated for the dehydration of fructose and sucrose in superheated water. As a result, 98% conversion of fructose with 85.7% HMF yield and 87.4% HMF selectivity in 120 min reaction time at 120 °C reaction temperature using 10 wt.% of AgSTA catalyst was achieved. While, 92% sucrose conversion with 62.5% of HMF yield was obtained from sucrose at uniform condition in 160 min. The effect of reaction parameters, such as reaction temperature, time, catalyst dosage, and effect acidity on HMF yield was also investigated. The AgSTA catalyst was separated from the reaction mixture by filtration process at end of the reaction and reused eight times without loss of catalytic activity. PMID:23435221

  14. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.

    PubMed

    Fermoso, Javier; Gil, María V; Rubiera, Fernando; Chen, De

    2014-11-01

    High yield of high-purity H2 from acetic acid, a model compound of bio-oil obtained from the fast pyrolysis of biomass, was produced by sorption-enhanced steam reforming (SESR). An oxygen carrier was introduced into a chemical loop (CL) coupled to the cyclical SESR process to supply heat in situ for the endothermic sorbent regeneration to increase the energy efficiency of the process. A new multifunctional 1 %Pd/20 %Ni-20 %Co catalyst was developed for use both as oxygen carrier in the CL and as reforming catalyst in the SESR whereas a CaO-based material was used as CO2 sorbent. In the sorbent-air regeneration step, the Ni-Co atoms in the catalyst undergo strong exothermic oxidation reactions that provide heat for the CaO decarbonation. The addition of Pd to the Ni-Co catalyst makes the catalyst active throughout the whole SESR-CL cycle. Pd significantly promotes the reduction of Ni-Co oxides to metallic Ni-Co during the reforming stage, which avoids the need for a reduction step after regeneration. H2 yield above 90 % and H2 purity above 99.2 vol % were obtained. PMID:25209388

  15. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    SciTech Connect

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  16. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1987-05-12

    A process is described for polymerizing at least one alpha olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst system which comprises: a supported catalyst prepared under anhydrous conditions by the sequential steps of: preparing a slurry of inert particulate support material; adding to the slurry a solution of an organomagnesium compound; adding to the slurry and reacting a solution of a zirconium halide compound, hafnium compound or mixtures thereof; adding to the slurry and reacting a halogenator; adding to the slurry and reacting a tetravalent titanium halide compound; and recovering solid catalyst.

  17. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1986-10-21

    A process is described for polymerizing at least one alpha-olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst comprising: a supported catalyst prepared under anhydrous conditions by the steps of: (1) sequentially; (a) preparing a slurry of inert particulate support material; (b) adding to the slurry a solution of an organomagnesium compound; (c) adding to the slurry and reacting a solution of zirconium compound; and (2) thereafter; (d) adding to the slurry and reacting a halogenator; (e) adding to the slurry and reacting a tetravalent titanium compound; (f) recovering solid catalyst; and an organoaluminum compound.

  18. Correlation between the acid-base properties of the La2O3 catalyst and its methane reactivity.

    PubMed

    Chu, Changqing; Zhao, Yonghui; Li, Shenggang; Sun, Yuhan

    2016-06-28

    Density functional theory and coupled cluster theory calculations were carried out to study the effects of the acid-base properties of the La2O3 catalyst on its catalytic activity in the oxidative coupling of methane (OCM) reaction. The La(3+)-O(2-) pair site for CH4 activation is considered as a Lewis acid-Brönsted base pair. Using the Lewis acidity and the Brönsted basicity in the fluoride affinity and proton affinity scales as quantitative measures of the acid-base properties, the energy barrier for CH4 activation at the pair site can be linearly correlated with these acid-base properties. The pair site consisting of a strong Lewis acid La(3+) site and a strong Brönsted base O(2-) site is the most reactive for CH4 activation. In addition, the basicity of the La2O3 catalyst was traditionally measured by temperature-programmed desorption of CO2, but the CO2 chemisorption energy is better regarded as a combined measure of the acid-base properties of the pair site. A linear relationship of superior quality was found between the energy barrier for CH4 activation and the CO2 chemisorption energy, and the pair site favorable for CO2 chemisorption is also more reactive for CH4 activation, leading to the conflicting role of the "basicity" of the La2O3 catalyst in the OCM reaction. The necessity for very high reaction temperatures in the OCM reaction is rationalized by the requirement for the recovery of the most reactive acid-base pair site, which unfortunately also reacts most readily with the byproduct CO2 to form the very stable CO3(2-) species. PMID:27265027

  19. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  20. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    PubMed

    Lange, Jean-Paul

    2015-11-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions. PMID:26457585

  1. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts.

    PubMed

    de Clippel, Filip; Dusselier, Michiel; Van Rompaey, Ruben; Vanelderen, Pieter; Dijkmans, Jan; Makshina, Ekaterina; Giebeler, Lars; Oswald, Steffen; Baron, Gino V; Denayer, Joeri F M; Pescarmona, Paolo P; Jacobs, Pierre A; Sels, Bert F

    2012-06-20

    A novel catalyst design for the conversion of mono- and disaccharides to lactic acid and its alkyl esters was developed. The design uses a mesoporous silica, here represented by MCM-41, which is filled with a polyaromatic to graphite-like carbon network. The particular structure of the carbon-silica composite allows the accommodation of a broad variety of catalytically active functions, useful to attain cascade reactions, in a readily tunable pore texture. The significance of a joint action of Lewis and weak Brønsted acid sites was studied here to realize fast and selective sugar conversion. Lewis acidity is provided by grafting the silica component with Sn(IV), while weak Brønsted acidity originates from oxygen-containing functional groups in the carbon part. The weak Brønsted acid content was varied by changing the amount of carbon loading, the pyrolysis temperature, and the post-treatment procedure. As both catalytic functions can be tuned independently, their individual role and optimal balance can be searched for. It was thus demonstrated for the first time that the presence of weak Brønsted acid sites is crucial in accelerating the rate-determining (dehydration) reaction, that is, the first step in the reaction network from triose to lactate. Composite catalysts with well-balanced Lewis/Brønsted acidity are able to convert the trioses, glyceraldehyde and dihydroxyacetone, quantitatively into ethyl lactate in ethanol with an order of magnitude higher reaction rate when compared to the Sn grafted MCM-41 reference catalyst. Interestingly, the ability to tailor the pore architecture further allows the synthesis of a variety of amphiphilic alkyl lactates from trioses and long chain alcohols in moderate to high yields. Finally, direct lactate formation from hexoses, glucose and fructose, and disaccharides composed thereof, sucrose, was also attempted. For instance, conversion of sucrose with the bifunctional composite catalyst yields 45% methyl lactate in

  2. In situ fourier transform infrared study of crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride oxidation on a V-P-O industrial catalyst

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1987-10-22

    Crotyl alcohol, maleic acid, crotonic (2-butenoic) acid, and maleic anhydride were fed to an in situ infrared cell at 300/sup 0/C containing a P/V = 1.1 vanadium-phosphorous-oxide (V-P-O) catalyst used for the selective oxidation of n-butane. Crotyl alcohol was used as a mechanistic probe for the formation of reactive olefin species observed during previous n-butane and 1-butene studies. Crotonic acid, maleic acid, and maleic anhydride were fed as probes for the existence of other possible adsorbed intermediates. Olefin species and maleic acid are proposed as possible reaction intermediates in n-butane selective oxidation to maleic anhydride. The involvement of peroxide species in the oxidation of butadiene to maleic acid is also discussed.

  3. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  4. Ferrocenyl-derived electrophilic phosphonium cations (EPCs) as Lewis acid catalysts.

    PubMed

    Mallov, Ian; Stephan, Douglas W

    2016-04-01

    Oxidation of diphenylphosphinoferrocene and 1,1'-bis(diphenylphosphino)ferrocene with XeF2, resulted in the formation of CpFe(η(5)-C5H4PF2Ph2) 1 and Fe(η(5)-C5H4PF2Ph2)22 respectively. Subsequent reactions with [SiEt3][B(C6F5)4] yielded [CpFe(η(5)-C5H4PFPh2)][B(C6F5)4] 3 and [Fe(η(5)-C5H4PFPh2)2] [B(C6F5)4]24. PhP(η(5)-C5H4)2Fe 5 was prepared, converted to [PhMeP(η(5)-C5H4)2Fe][O3SCF3] 6 and then to [PhMeP(η(5)-C5H4)2Fe][B(C6F5)4] 7. The ability of the salts 3, 4 and 7 to catalyze Friedel-Crafts dimerization of 1,1-diphenylethylene, dehydrocoupling of phenol and triethylsilane, deoxygenation of acetophenone and hydrodefluorination of 1-fluoropentane were probed. While compound 7 proved to be ineffective, compounds 3 and 4 were useful Lewis acid catalysts. Compounds 3 and 4 were shown to catalyze the deoxygenation of a series of ketones. PMID:26911641

  5. Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Senthilraja, A.; Subash, B.; Dhatshanamurthi, P.; Swaminathan, M.; Shanthi, M.

    2015-03-01

    In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications.

  6. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst.

    PubMed

    Huang, Dahong; Yin, Lifeng; Niu, Junfeng

    2016-06-01

    Cleavage of the strong carbon-fluorine bonds is critical for elimination of perfluorooctanoic acid (PFOA) from the environment. In this work, we investigated the decomposition of PFOA with the SiC/graphene catalyst under UV light irradiation. The decomposition rate constant (k) with SiC/graphene was 0.096 h(-1), 2.2 times higher than that with commercial nano-TiO2. Surface fluorination on SiC/graphene was analyzed by X-ray photoelectron spectroscopy (XPS), revealing the conversions of Si-H bonds into Si-F bonds. A different route was found to generate the reactive Si-H bonds on SiC/graphene, substituting for silylium (R3Si(+)) to activate C-F bonds. During the activation process, photogenerated electrons on SiC transfer rapidly to perfluoroalkyl groups by the medium of graphene, further reducing the electron cloud density of C-F bonds to promote the activation. The hydrogen-containing hydrodefluorination intermediates including (CF3(CF2)2CFH, CF3(CF2)3CH2, CF3(CF2)4CH2, and CF3(CF2)4CFHCOOH) were detected to verify the hydrodefluorination process. The photoinduced hydrodefluorination mechanisms of PFOA can be consequently inferred as follows: (1) fluorine atoms in perfluoroalkyl groups were replaced by hydrogen atoms due to the nucleophilic substitution reaction via the Si-H/C-F redistribution, and (2) generation of CH2 carbene from the hydrogen-containing perfluoroalkyl groups and the C-C bonds scission by the Photo-Kolbe decarboxylation reaction under UV light excitation. This photoinduced hydrodefluorination provides insight into the photocatalytic decomposition of perfluorocarboxylic acids (PFCAs) in an aqueous environment. PMID:27128100

  7. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  8. A Simple, Efficient Synthesis of 2-Aryl Benzimidazoles Using Silica Supported Periodic Acid Catalyst and Evaluation of Anticancer Activity

    PubMed Central

    Sontakke, Vyankat A.; Ghosh, Sougata; Lawande, Pravin P.; Chopade, Balu A.; Shinde, Vaishali S.

    2013-01-01

    A new, efficient method for the synthesis of 2-aryl substituted benzimidazole by using silica supported periodic acid (H5IO6-SiO2) as a catalyst has been developed. The salient feature of the present method includes mild reaction condition, short reaction time, high yield and easy workup procedure. The synthesized benzimidazoles exhibited potent anticancer activity against MCF7 and HL60 cell lines. PMID:24052861

  9. Esterification of pseudoephedrine hydrochloride by citric acid in a solid dose pharmaceutical preparation.

    PubMed

    Goel, Alok; Zhao, Zhicheng; Sørensen, Dan; Zhou, Jay; Zhang, Fa

    2016-09-10

    Esterification of pseudoephedrine hydrochloride (PSE) by citric acid was observed in a solid dose pharmaceutical preparation at room temperature and accelerated stability condition (40°C/75% relative humidity). The esterification of PSE with citric acid was confirmed by a solid-state binary reaction in the presence of minor level of water at elevated temperature to generate three isomeric esters. The structures of the pseudoephedrine citric acid esters were elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy (NMR). Occurrence of esterification in solid state, instead of amidation which is generally more favorable than esterification, is likely due to remaining HCl salt form of solid pseudoephedrine hydrochloride to protect its amino group from amidation with citric acid. In contrast, the esterification was not observed from solution reaction between PSE and citric acid. PMID:27474946

  10. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with

  11. Degradation of acid scarlet 3R with CuO/SiO2 hollow sphere catalyst

    NASA Astrophysics Data System (ADS)

    Xie, F.; Zhong, J.; Wang, L.; Wang, K.; Hua, D. X.

    2015-07-01

    Silica-supported copper catalyst materials have been synthesized via an incipient wetness impregnation. The resulting samples were characterized using X-ray diffraction (XRD) and Scanning electron microscope (SEM). The heterogeneous Fenton-like oxidation of reactive azo dye solutions by this catalyst was also investigated. The effects of various operating conditions on decolorization performance were evaluated, namely hydrogen peroxide dosage, initial pH, catalyst loading and initial dye concentration. The results indicated that by using 34 mmol/L of H2O2 and 6.0 g L-1 of the catalyst at 60°C, pH 3.5, 97% of decolorization efficiency was achieved within 90 min. CuO/SiO2 hollow sphere is shown a promising catalyst for degradation of azo dye aqueous solution by Fenton-like processes.

  12. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  13. Generation of WO{sub 3}-ZrO{sub 2} catalysts from solid solutions of tungsten in zirconia

    SciTech Connect

    Cortes-Jacome, Maria A.; Angeles-Chavez, Carlos; Bokhimi, Xim; Toledo-Antonio, J.A. . E-mail: jtoledo@imp.mx

    2006-08-15

    WO{sub 3}-ZrO{sub 2} samples were obtained by precipitating zirconium oxynitrate in presence of WO{sub 4} {sup =} species in solution from ammonium metatungstate at pH=10.0. Samples were characterized by atomic absorption spectroscopy, thermal analysis, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and energy filtered-TEM. The ammonia retained in the dried sample produced a reductive atmosphere to generate W{sup 5+} ions coexisting with W{sup 6+} ions to produce a solid solution of tungsten in the zirconia lattice to stabilize the zirconia tetragonal phase when the sample was annealed at 560 deg. C. When the sample was annealed at 800 deg. C, the W atoms near crystallite surface were oxidized to W{sup 6+}, producing patches of WO{sub 3} on the zirconia crystallite. The HR-TEM analysis confirmed the existence of the solid solution when the sample was annealed at 560 deg. C, and two types of crystalline regions were identified: One with nearly spherical morphology, an average diameter of 8 nm and the atomic distribution of tetragonal zirconia. The second one had a non-spherical morphology with well-faceted faces and dimensions larger than 30 nm, and the atom distribution of tetragonal zirconia. When samples were annealed at 800 deg. C two different zirconia crystallites were formed: Those where only part of the dissolved tungsten atoms segregated to crystallite surface producing patches of nanocrystalline WO{sub 3} on the crystallite surface of tetragonal zirconia stabilized with tungsten. The second type corresponded to monoclinic zirconia crystallites with patches of nanocrystalline WO{sub 3} on their surface. The tungsten segregation gave rise to the WO{sub 3}-ZrO{sub 2} catalysts. - Graphical abstract: WO {sub x} -ZrO{sub 2} catalysts were obtained by precipitating zirconium oxynitrate in presence of WO{sub 4} {sup =}species. Initially, the W atoms remained inside the crystallite after

  14. Selective oxidation catalysts obtained by immobilization of iron(III) porphyrins on thiosalicylic acid-modified Mg-Al layered double hydroxides.

    PubMed

    de Freitas Castro, Kelly Aparecida Dias; Wypych, Fernando; Antonangelo, Ariana; Mantovani, Karen Mary; Bail, Alesandro; Ucoski, Geani Maria; Ciuffi, Kátia Jorge; Cintra, Thais Elita; Nakagaki, Shirley

    2016-09-15

    Nitrate-intercalated Mg-Al layered double hydroxides (LDHs) were synthesized and exfoliated in formamide. Reaction of the single layer suspension with thiosalicylic acid under different conditions afforded two types of solids: LDHA1, in which the outer surface was modified with the anion thiosalicylate, and LDHA2, which contained the anion thiosalicylate intercalated between the LDH layers. LDHA1 and LDHA2 were used as supports to immobilize neutral (FeP1 and FeP2) and anionic (FeP3) iron(III) porphyrins. For comparison purposes, the iron(III) porphyrins (FePs) were also immobilized on LDH intercalated with nitrate anions obtained by the co-precipitation method. Chemical modification of LDH facilitated immobilization of the FePs through interaction of the functionalizing groups in LDH with the peripheral substituents on the porphyrin ring. The resulting FePx-LDHAy solids were characterized by X-ray diffraction (powder) and UV-Vis and EPR spectroscopies and were investigated as catalysts in the oxidation of cyclooctene and cyclohexane. The immobilized neutral FePs and their homogeneous counterparts gave similar product yields in the oxidation of cyclooctene, suggesting that immobilization of the FePs on the thiosalicylate-modified LDHs only supported the catalyst species without interfering in the catalytic outcome. On the other hand, in the oxidation of cyclohexane, the thiosalicylate anions on the outer surface of LDHA1 or intercalated between the LDHA2 layers influenced the catalytic activity of FePx-LDHAy, leading to different efficiency and selectivity results. FeP1-LDHA2 performed the best (29.6% alcohol yield) due to changes in the polarity of the surface of the support and the presence of FeP1. Interestingly, FeP1 also performed better in solution as compared to the other FePs. Finally, it was possible to recycle FeP1-LDHA2 at least three times. PMID:27322950

  15. Encapsulation of ployunsaturated fatty acid esters with solid lipid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA) such as a-linolenic acid (ALA) and docosahexaenoic acid (DHA) are known to improve cardiovascular and nervous system health. These compounds are increasingly used in food and animal feed formulations. However, the high degree of unsaturation in these structures can...

  16. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    SciTech Connect

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  17. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  18. Radiation-induced reactions of amino acids adsorbed on solid surfaces

    NASA Astrophysics Data System (ADS)

    López-Esquivel Kranksith, L.; Negrón-Mendoza, A.; Mosqueira, F. G.; Ramos-Bernal, Sergio

    2010-07-01

    The purpose of this work is to study the adsorption of compounds such as amino acids on clays and carbon nanotubes (CNTs) as a possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments. We further study the behavior of amino acids adsorbed on these solid surfaces at different conditions of pH and levels of irradiation, simulating a high-radiation field at early Earth conditions. The relevance of this work is to explain the possible contribution of solids (clays and CNTs) as promoters of polymerization and as shields for the adsorbed organic compounds against external sources of energy. To this end, tryptophan, aspartic acid, and glutamic acid were adsorbed on fixed amounts of solid surfaces and were irradiated by a 60Co source for different periods of time at fixed dose rates. After irradiation, the amino acids were extracted from the solid and analyzed with UV and IR spectroscopes and high-performance liquid chromatography. The most efficient surface for adsorption of amino acids was clay, followed by CNTs. Studies of the gamma irradiation of amino acids adsorbed on clay (in the solid phase) show a low yield of recovery of the amino acid.

  19. Nano-Structured Solids and Heterogeneous Catalysts: Powerful Tools for the Reduction of CBRN Threats

    NASA Astrophysics Data System (ADS)

    Guidotti, M.; Rossodivita, A.; Ranghieri, M. C.

    In the field of non-conventional CBRN weapons, the recent rapid development of nanotechnology and catalysis over nanosized solids provides innovative tools for the detection, protection and decontamination against these threats. By improving the efficiency of the countermeasures and by minimizing the negative effects of a deliberate use of CBRN agents, the practical application of the new technologies will readily represent a step forward in lowering the vulnerability of the civilian populations and in preventing the use of mass destruction weapons by terrorist groups or by `rogue states' supporting terrorists' activity. In such scenario, some relevant examples of nanosystems applied to the defense from non-conventional warfare agents will be here presented and commented. The key role of nanotechnology and heterogeneous catalysis for a multidisciplinary approach in counteracting CBRN threats will be highlighted too.

  20. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.

    PubMed

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong

    2015-04-15

    We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. PMID:25585283

  1. An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production.

    PubMed

    Du, Dong-Ying; Qin, Jun-Sheng; Sun, Zhong; Yan, Li-Kai; O'Keeffe, Michael; Su, Zhong-Min; Li, Shun-Li; Wang, Xiao-Hong; Wang, Xin-Long; Lan, Ya-Qian

    2013-01-01

    A novel 3D hexadecanuclear heteropolyoxozincate organic framework, IFMC-200, has been successfully synthesized based on a late transition metal-oxygen cluster. IFMC-200 not only represents the first example of (3,4,24)-connected framework but also contains the first 24-connected single metal cluster in a crystal structure. It exhibits superior thermal stability, good water-stability, and even insensitivity to the existence of acid and base within a certain range of pH values. Furthermore, it performs as a heterogeneous crystalline Lewis acid catalyst with good activity for the conversion of long-chain fatty acids rather than short-chain ones, and high recycling efficiency for esterification reaction of fatty acids with alcohols to produce biodiesel. PMID:24019078

  2. Mesoporous Aluminosilicate Catalysts for the Selective Isomerization of n-Hexane: The Roles of Surface Acidity and Platinum Metal.

    PubMed

    Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2015-08-19

    Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed. PMID:26168190

  3. Effect of phosphoric acid as a catalyst on the hydrothermal pretreatment and acidogenic fermentation of food waste.

    PubMed

    Shen, Dongsheng; Wang, Kun; Yin, Jun; Chen, Ting; Yu, Xiaoqin

    2016-05-01

    The hydrothermal method was applied to food waste (FW) pretreatment with phosphoric acid as a catalyst. The content of soluble substances such as protein and carbohydrate in the FW increased after the hydrothermal pretreatment with phosphoric acid addition (⩽5%). The SCOD approached approximately 29.0g/L in 5% phosphoric acid group, which is almost 65% more than the original FW. The hydrothermal condition was 160°C for 10min, which means that at least 40% of energy and 60% of reaction time were saved to achieve the expected pretreatment effect. Subsequent fermentation tests showed that the optimal dosage of phosphoric acid was 3% with a VFA yield of 0.763g/gVSremoval, but the increase in salinity caused by phosphoric acid could adversely affect the acidogenesis. With an increase in the quantity of phosphoric acid, among the VFAs, the percentage of propionic acid decreased and that of butyric acid increased. The PCR-DGGE analysis indicated that the microbial diversity could decrease with excessive phosphoric acid, which resulted in a low VFA yield. PMID:26965213

  4. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution.

    PubMed

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-04-16

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  5. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution

    PubMed Central

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-01-01

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  6. Hydrodechlorination of Silicon Tetrachloride to Trichlorosilane Over Ordered Mesoporous Carbon Catalysts: Effect of Pretreatment of Oxygen and Hydrochloric Acid.

    PubMed

    Kwak, Do-Hwan; Akhtar, M Shaheer; Kim, Ji Man; Yang, O Bong

    2016-02-01

    This paper reports on the catalytic reaction for the conversion of silicon tetrachloride (STC) to trichlorosilane (TCS) over pretreated ordered mesoporous carbon (OMC) catalysts by oxygen (denoted as OMC-O2) and hydrochloric acid (denoted as OMC-HCl) at 300 degrees C under N2 atmosphere. The OMC-O2 shows significantly improved the surface area (1341.2 m2/g) and pore volume (1.65 cm3/g), which results in the highest conversion rate of 7.3% as compared to bare OMC (4.3%) and OMC-HCI (5.7%). It is found that the conversion rate of STC to TCS is proportional to the number of Si-O bond over OMC catalysts, which suggests that Si-O-C bond formation is crucial to the reaction as active sites. The O2 pretreatment seems to promote the generation of oxygenated species for the formation of Si-O-C. PMID:27433674

  7. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation.

    PubMed

    Yang, Sudong; Shen, Chengmin; Liang, Yanyu; Tong, Hao; He, Wei; Shi, Xuezhao; Zhang, Xiaogang; Gao, Hong-jun

    2011-08-01

    A novel electrode material based on graphene oxide (GO)-polypyrrole (PPy) composites was synthesized by in situ chemical oxidation polymerization. Palladium nanoparticles (NPs) with a diameter of 4.0 nm were loaded on the reduced graphene oxide(RGO)-PPy composites by a microwave-assisted polyol process. Microstructure analysis showed that a layer of coated PPy film with monodisperse Pd NPs is present on the RGO surface. The Pd/RGO-PPy catalysts exhibit excellent catalytic activity and stability for formic acid electro-oxidation when the weight feed ratio of GO to pyrrole monomer is 2:1. The superior performance of Pd/RGO-PPy catalysts may arise from utilization of heterogeneous nucleation sites for NPs and the greatly increased electronic conductivity of the supports. PMID:21713273

  8. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.

    PubMed

    Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R

    2015-03-01

    The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step. PMID:25224854

  9. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition.

    PubMed

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya

    2015-12-01

    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL‑11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as СaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions. PMID:26646686

  10. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition

    NASA Astrophysics Data System (ADS)

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya

    2015-12-01

    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL-11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2 θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as CaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.

  11. Solvent effects by ionic liquid-water mixtures on the heterogeneous hydrolysis of lignocellulosic biomass with solid catalysts

    NASA Astrophysics Data System (ADS)

    Prosser, Jacob H.

    Ionic liquids are novel solvents proposed as alternatives for the liquid phase catalysis of lignocellulosic biomass because these can molecularly dissolve lignocellulose to high concentrations. However, solvent effects caused by ionic liquids for this application, such as how they shift the kinetics and equilibrium of lignocellulose conversion relative to other solvents, as well as if these change the nature of catalysts used and inhibit catalytic activity or unfavorably alter catalytic selectivity have not been rigorously considered. Additionally, many issues associated with the use of ionic liquids as solvents in lignocellulose conversion arise. Firstly, most ionic liquids readily undergo liquid phase thermal degradation at moderately low temperatures relevant for catalysis. Secondly, solvothermal degradation of solid catalytic materials by ILs can occur and is something not widely evaluated. Furthermore, the catalytic nature of many commonly used catalysts is altered through ion exchange between ionizable surface groups and ionic liquid ions. To understand how hydrophilic imidazolium-based ionic liquids influence the hydrolysis of lignocellulose, I examine with the aid of spectroscopic ellipsometry, UV-Vis spectrophotometry, high performance liquid chromatography, reflectance-small angle x-ray scattering, and powder x-ray diffraction the: (1) thermal degradation of a 1,2,3-trialkylimidzaolium ionic liquid; (2) solvothermal stability of mesoporous silica and gamma-alumina catalytsts; (3) behavior of the hydrolysis reaction of a lignin model compound in 1,2,3-trialkylimidzaolium ionic liquid-water mixtures; and (4) this same reaction catalyzed by gamma-alumina. From my investigations, I discover that: (1) water is able to diminish the thermal degradation of imidazolium ionic liquids when its composition is above about 35 mol% in these mixtures, an effect I propose is from two different mechanisms; (2) mesoporous silica and gamma-alumina are solvothermally stable

  12. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  13. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol.

    PubMed

    Nishiyabu, Ryuhei; Shimizu, Ai

    2016-07-28

    We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions. PMID:27311634

  14. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    DOEpatents

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, Si02, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  15. Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water.

    PubMed

    Cai, Chun; Wang, Liguo; Gao, Hong; Hou, Liwei; Zhang, Hui

    2014-06-01

    Bimetallic Fe-Co/GAC (granular activated carbon) was prepared and used as heterogeneous catalyst in the ultrasound enhanced heterogeneous activation of peroxydisulfate (PS, S2O(2-)8) process. The effect of initial pH, PS concentration, catalyst addition and stirring rate on the decolorization of Acid Orange 7 (AO7) was investigated. The results showed that the decolorization efficiency increased with an increase in PS concentration from 0.3 to 0.5 g/L and an increase in catalyst amount from 0.5 to 0.8 g/L. But further increase in PS concentration and catalyst addition would result in an unpronounced increase in decolorization efficiency. In the range of 300 to 900 r/min, stirring rate had little effect on AO7 decolorization. The catalyst stability was evaluated by measuring decolorization efficiency for four successive cycles. PMID:25079835

  16. Comparative study of CoFeNx/C catalyst obtained by pyrolysis of hemin and cobalt porphyrin for catalytic oxygen reduction in alkaline and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Jiang, Rongzhong; Chu, Deryn

    2014-01-01

    Comparative studies of the oxygen reduction kinetics and mechanisms of CoFeNx/C catalysts have been conducted with rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) in aqueous acid and alkaline solutions, as well as acidic and alkaline polymer electrolytes. The CoFeNx/C catalysts in this study were obtained by the pyrolysis of hemin and a cobalt porphyrin. In an alkaline electrolyte, a larger electron transfer coefficient (0.63) was obtained in comparison to that in an acidic electrolyte (0.44), signifying a lower free energy barrier for oxygen reduction. The kinetic rate constant (2.69 × 10-2 cm s-1) for catalytic oxygen reduction in alkaline solution at 0.6 V (versus RHE) is almost 4 times larger than that in acidic solution (7.3 × 10-3 cm s-1). A synergetic catalytic mechanism is proposed. The overall reduction is a 4-electron reduction of oxygen. The obtained CoFeNx/C catalyst was further evaluated as a cathode catalyst in single fuel cells with acidic, neutral and alkaline electrolyte membranes. The order of the single cell performances either for power density or for stability is acidic > neutral > alkaline. The different behaviors of the CoFeNx/C catalyst in half cell and single cell are discussed.

  17. Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media

    SciTech Connect

    Román-Leshkov, Yuriy; Davis, Mark E.

    2011-09-28

    Current interest in reacting carbonyl-containing molecules in aqueous media is primarily due to the growing emphasis on conversion of biomass to fuels and chemicals. Recently, solid Lewis acids have been shown to perform catalytic reactions with carbonyl-containing molecules such as sugars in aqueous media. Here, catalysis mediated by Lewis acids is briefly discussed, Lewis acid solids that perform catalysis in aqueous media are then described, and the review is concluded with a few comments on the outlook for the future.

  18. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  19. Effects of acid catalyst type on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2013-03-01

    The effects of different acid catalysts of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and citric acid on structural, morphological, and optoelectrical properties of nanocrystalline spin-coated TiO2 thin films synthesized via alkoxide sol-gel route were investigated. It was found that only the sols with HNO3 and HCl are suitable for film preparation. The X-ray diffractometry and Raman analysis showed that crystalline phases could be controlled by the type of acid catalyst. Although the H2SO4 sol shows good stability, it causes extremely different morphology to form due to its different sol nature and high contact angle. Fourier transformed infrared spectra confirmed the presence of acid anion species in all samples even after calcination. Furthermore, it was inferred from UV-visable absorption spectra that although the band gap and thickness of the films are independent of acid catalyst type, the refractive index and porosity of the films are strongly affected by the type of acids.

  20. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    PubMed

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  1. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3−4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  2. Study on the structure, acidic properties of V-Zr nanocrystal catalysts in oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Ma, Fei; Xu, Aixin; Wang, Lina; Chen, Fang; Lu, Weimin

    2014-01-01

    A series of V-doped zirconia nanocrystal (the molar ratio of V/Zr varying from 0.001 to 0.15) were prepared via hydrothermal method and performed in oxidative dehydrogenation of propane. It was found that vanadium was highly dispersed on the surface and in the bulk of ZrO2. The distribution of the vanadium species, the valence states and the aggregation state of V species on the surface, as well as the acid properties of the catalysts including kinds, number and strength were detected by the various characteristic methods. The correlation between the V content and the surroundings of the different V species has been studied. The function of acid properties, especially Brønsted acid in the catalytic performance has been discussed. Oxidative dehydrogenation reactions were carried out in a continuous flow fixed bed reactor and ZrV0.01 catalyst showed good conversion and selectivity with a yield of propylene of 21.3%.

  3. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  4. Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts: effect of acidity and redox property on the catalytic behavior.

    PubMed

    Huang, Qinqin; Xue, Xiaomin; Zhou, Renxian

    2010-11-15

    CeO(2) modified ultrastable Y zeolite (CeO(2)-USY) catalysts were prepared and were used as the catalysts for the decomposition of 1,2-dichloroethane (DCE). The catalytic behavior of these catalysts was evaluated by micro-reaction and temperature-programmed surface reaction (TPSR) technique. The results reveal that CeO(2)-USY catalysts exhibit good catalytic activity for DCE decomposition and high selectivity to the formation of CO(2) and HCl. Both acidity and redox property play important roles in the DCE decomposition, and the synergy between CeO(2) species and USY zeolite shows an enhancement in the catalytic activity for DCE decomposition. CeO(2)-USY (1:8) with high dispersion of CeO(2) species and a much more suitable combination of acidity and redox property exhibits the best catalytic activity. PMID:20709452

  5. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.

    PubMed

    Sahu, K K; Agrawal, Archana; Mishra, D

    2013-08-15

    Recovery of valuable materials/metals from waste goes hand in hand with environmental protection. This paper deals with the development of a process for the recovery of metals such as Mo, V, Ni, Al from spent hydroprocessing catalyst which may otherwise cause a nuisance if dumped untreated. A detailed study on the separation of molybdenum and vanadium from the leach solution of spent hydroprocessing catalyst of composition: 27.15% MoO₃, 1.7% V₂O₅, 3.75% NiO, 54.3% Al₂O₃, 2.3% SiO₂ and 10.4% LOI is reported in this paper. The catalyst was subjected to roasting under oxidizing atmosphere at a temperature of about 550 °C and leaching in dilute sulphuric acid to dissolve molybdenum, vanadium, nickel and part of aluminium. Metals from the leach solution were separated by solvent extraction. Both molybdenum and vanadium were selectively extracted with a suitable organic solvent leaving nickel and dissolved aluminium in the raffinate. Various parameters such as initial pH of the aqueous feed, organic to aqueous ratio (O:A), solvent concentration etc. were optimized for the complete extraction and recovery of Mo and V. Molybdenum and vanadium from the loaded organic were stripped by ammonia solution. They were recovered as their corresponding ammonium salt by selective precipitation, and were further calcined to get the corresponding oxides in pure form. PMID:23644591

  6. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  7. One-pot three-component Mannich-type reactions using sulfamic acid catalyst under ultrasound irradiation.

    PubMed

    Zeng, Hongyao; Li, Hua; Shao, Huawu

    2009-08-01

    Sulfamic acid (NH(2)SO(3)H, SA) was used as an efficient, inexpensive, non-toxic and recyclable green catalyst for the ultrasound-assisted one-pot Mannich reaction of aldehydes with ketones and amines. This ultrasound protocol has advantages of high yield, mild condition, no environmental pollution, and simple work-up procedures. Most importantly, beta-aminocarbonyl compounds with ortho-substituted aromatic amines are obtained in acceptable to good yields by this methodology for the first time. PMID:19394889

  8. Chiral Pyridinium Phosphoramide as a Dual Brønsted Acid Catalyst for Enantioselective Diels-Alder Reaction.

    PubMed

    Nishikawa, Yasuhiro; Nakano, Saki; Tahira, Yuu; Terazawa, Kanako; Yamazaki, Ken; Kitamura, Chitoshi; Hara, Osamu

    2016-05-01

    Chiral pyridinium phosphoramide 1·HX was designed to be a new class of chiral Brønsted acid catalyst in which both the pyridinium proton and the adjacent imide-like proton activated by the electron-withdrawing pyridinium moiety could work cooperatively as strong dual proton donors. The potential of 1·HX was shown in the enantioselective Diels-Alder reactions of 1-amino dienes with various dienophiles including N-unsubstituted maleimide, which has yet to be successfully used in an asymmetric Diels-Alder reaction. PMID:27093584

  9. Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Ziwu; Shi, Qianqian; Zhang, Rufan; Wang, Quande; Kang, Guojun; Peng, Feng

    2014-12-01

    To develop low-cost and efficient cathode electrocatalysts for fuel cells in acidic media, phosphorus-doped carbon nanotubes (P-CNTs) supported low Pt loading catalyst (0.85% Pt) is designed. The as-prepared Pt/P-CNTs exhibit significantly enhanced electrocatalytic oxygen reduction reaction (ORR) activity and long-term stability due to the stronger interaction between Pt and P-CNTs, which is proven by X-ray photoelectron spectroscopic analysis and density functional theory calculations. Moreover, the as-prepared Pt/P-CNTs also display much better tolerance to methanol crossover effects, showing a good potential application for future proton exchange membrane fuel cell devices.

  10. The Synergize effect of Chain extender to Phosporic acid catalyst to the ultimate property of Soy-Polyurethane

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2016-04-01

    The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.

  11. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.

    PubMed

    Gowda, Ravikumar R; Chen, Eugene Y-X

    2016-01-01

    Nanoparticles (NPs) derived from earth-abundant metal(0) carbonyls catalyze conversion of bio-derived levulinic acid into γ-valerolactone in up to 93% isolated yield. This sustainable and green route uses non-precious metal catalysts and can be performed in aqueous or ethanol solution without using hydrogen gas as the hydrogen source. Generation of metal NPs using microwave irradiation greatly enhances the rate of the conversion, enables the use of ethanol as both solvent and hydrogen source without forming the undesired ethyl levulinate, and affords recyclable polymer-stabilized NPs. PMID:26735911

  12. Magnesium oxide-supported ziegler catalyst modified with acid and higher alkanol, and process for preparing narrow MWD HDPE

    SciTech Connect

    Hsieh, J.T.T.

    1989-09-05

    This patent describes a coordination-catalyst suitable for the polymerization of olefins. It comprises a titanium component and an organoaluminum compound reducing agent on a magnesium oxide support which has been pre-treated with a molar deficiency of a carboxylic acid with respect to the magnesium oxide support. The titanium component is the reaction product of an alkanol having 5 to 12 carbon atoms and TiCl/sub 4/ with the molar ratio of the alkanol to the TiCl/sub 4/ being about 0.5 to about 1.5.

  13. Influence of solid-state acidity on the decomposition of sucrose in amorphous systems. I.

    PubMed

    Alkhamis, Khouloud A

    2008-10-01

    It was of interest to develop a method for solid-state acidity measurements using pH indicators and to correlate this method to the degradation rate of sucrose. Amorphous samples containing lactose 100mg/ml, sucrose 10mg/ml, citrate buffer (1-50mM) and sodium chloride (to adjust the ionic strength) were prepared by freeze-drying. The lyophiles were characterized using powder X-ray diffraction, differential scanning calorimetry and Karl Fischer titremetry. The solid-state acidity of all lyophiles was measured using diffuse reflectance spectroscopy and suitable indicators (thymol blue or bromophenol blue). The prepared lyophiles were subjected to a temperature of 60 degrees C and were analyzed for degradation using the Trinder kit. The results obtained from this study have shown that the solid-state acidity depends mainly on the molar ratio of the salt and the acid used in buffer preparation and not on the initial pH of the solution. The degradation of sucrose in the lyophiles is extremely sensitive to the solid-state acidity and the ionic strength. Reasonable correlation was obtained between the Hammett acidity function and sucrose degradation rate. The use of cosolvents (in the calibration plots) can provide good correlations with the rate of an acid-catalyzed reaction, sucrose inversion, in amorphous lyophiles. PMID:18647642

  14. Selective aerobic oxidation of 1,3-propanediol to 3-hydroxypropanoic acid using hydrotalcite supported bimetallic gold nanoparticle catalyst in water

    NASA Astrophysics Data System (ADS)

    Mohammad, Mujahid; Nishimura, Shun; Ebitani, Kohki

    2015-02-01

    Selective oxidation of 1,3-propanediol (1,3-PD) to 3-hydroxypropanoic acid (3-HPA), an important industrial building block, was successfully achieved using hydrotalcite-supported bimetallic Au nanoparticle catalysts in water at 343 K under aerobic and base-free conditions. The highest yield of 42% with 73% selectivity towards 3-HPA was afforded by 1wt% Au0.8Pd0.2-PVP/HT catalyst.

  15. Conjugate addition of indoles to alpha,beta-unsaturated ketones using a Brønsted acid ionic liquid as an efficient catalyst.

    PubMed

    Yu, Chuan-Ji; Liu, Chen-Jiang

    2009-01-01

    The Brønsted acid ionic liquid [PyN(CH(2))(4)SO(3)H][p-CH(3)PhSO(3)] has been reported as an efficient catalyst for the Michael addition reaction of indoles to alpha,beta-unsaturated ketones. Satisfactory results were obtained, with excellent yields and a simple experimental procedure. The catalyst could be recycled and reused up to three times without any noticeable decrease in the catalytic activity. PMID:19783920

  16. Solid-state-reaction synthesis of cotton-like CoB alloy at room temperature as a catalyst for hydrogen generation.

    PubMed

    Wang, Xingpu; Liao, Jinyun; Li, Hao; Wang, Hui; Wang, Rongfang

    2016-08-01

    A novel room-temperature solid-state reaction is developed to synthesize cotton-like CoB alloy (CoBSSR) catalysts with a large specific surface area of 222.4m(2)g(-1). In the hydrolysis of ammonia borane catalyzed by the CoBSSR, the rate of hydrogen generation can reach 68.7mLmin(-1) with a turnover frequency (TOF) value of ca. 6.9Lhydrogenmin(-1)gcatalyst(-1) at 25°C. The TOF value is about 2 times as large as that of CoB alloy prepared by a regular solid-state reaction, which is also much higher than those of the CoB catalysts recently reported in the literature. The activation energy of the hydrolysis of ammonia borane catalyzed by the CoBSSR is as low as 22.78kJmol(-1), hinting that the CoBSSR possesses high catalytic activity, which may be attributed to the large specific surface area and the abundant porous structure. The high catalytic performance, good recoverability and low cost of the CoBSSR enable it to be a promissing catalyst condidate in the hydrolysis of ammonia borane for hydrogen production in commercial application. PMID:27163841

  17. Impact of Dry Solids and Bile Acid Concentrations on Bile Acid Binding Capacity of Extruded Oat Cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extruded breakfast cereals (EBC), processed from two oat lines, N979-5-2-4 (N979) and ‘Jim’, with beta-glucan concentrations of 8.7 and 4.9%, respectively, were used to determine the impact of dry solids (DS) and bile acid (BA) concentrations on in vitro BA binding efficiency. A full fractional fact...

  18. Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Kim, Jeong Kwon; Lee, Joongwon; Lee, Jong Kwon; Yi, Jongheop; Song, In Kyu

    2014-11-01

    Copper-containing mesoporous carbons (XCu-MC) with different copper content (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) were prepared by a single-step surfactant-templating method. Rhenium nano-catalysts supported on copper-containing mesoporous carbons (Re/XCu-MC) were then prepared by an incipient wetness method. Re/XCu-MC (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) catalysts were characterized by nitrogen adsorption-desorption isotherm, HR-TEM, FT-IR, and H2- TPR analyses. Liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO) via dimethyl succinate (DMS) was carried out over Re/XCu-MC catalysts in a batch reactor. The effect of copper content on the physicochemical properties and catalytic activities of Re/XCu-MC catalysts in the hydrogenation of succinic acid to BDO was investigated. Re/XCu-MC catalysts retained different physicochemical properties depending on copper content. In the hydrogenation of succinic acid to BDO, yield for BDO showed a volcano-shaped trend with respect to copper content. Thus, an optimal copper content was required to achieve maximum catalytic performance of Re/XCu-MC. It was also observed that yield for BDO increased with increasing the amount of hydrogen consumption by copper in the Re/XCu-MC catalysts. PMID:25958619

  19. Biomass acid-catalyzed liquefaction – Catalysts performance and polyhydric alcohol influence

    PubMed Central

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, João Carlos; Santos, Rui Galhano dos

    2015-01-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments. PMID:26693504

  20. Biomass acid-catalyzed liquefaction - Catalysts performance and polyhydric alcohol influence.

    PubMed

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, João Carlos; Santos, Rui Galhano Dos

    2015-12-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments. PMID:26693504

  1. Biodiesel production by free fatty acid esterification using Lanthanum (La3+) and HZSM-5 based catalysts.

    PubMed

    Vieira, Sara S; Magriotis, Zuy M; Santos, Nadiene A V; Saczk, Adelir A; Hori, Carla E; Arroyo, Pedro A

    2013-04-01

    In this work the use of the heterogeneous catalysts pure (LO) and sulfated (SLO) lanthanum oxide, pure HZSM-5 and SLO/HZSM-5 (HZSM-5 impregnated with sulfated lanthanum oxide (SO4(2-)/La2O3)) was evaluated. The structural characterization of the materials (BET) showed that the sulfation process led to a reduction of the SLO and SLO/HZSM-5 surface area values. FTIR showed bands characteristic of the materials and, FTIR-pyridine indicated the presence of strong Brønsted sites on the sulfated material. In the catalytic tests the temperature was the parameter that most influenced the reactions. The best reaction conditions were: 10% catalyst, 100°C temperature and 1:5 m(OA)/m(meOH) for LO, SLO, SLO/HZSM-5 and 10% catalyst, 100°C temperature and 1:20 m(OA)/m(meOH) for HZSM-5. Under these conditions the conversions were: 67% and 96%, for LO and SLO, respectively and 80% and 100%, for HZSM-5 and SLO/HZSM-5, respectively. All catalysts deactivated after the first use, but the deactivation of SLO/HZSM-5 was smaller. PMID:23428822

  2. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.

    PubMed

    Qiao, S; Sun, D D; Tay, J H; Easton, C

    2003-01-01

    A novel TiO2 coated haematite photocatalyst was prepared and used for removal of colored humic acids from wastewater in an UV bubble photocatalytic reactor. XRD analysis confirmed that nano-size anatase crystals of TiO2 were formed after calcination at 480 degrees C. SEM results revealed that nano-size particles of TiO2 were uniformly coated on the surface of Fe2O3 to form a bulk of nano-structured photocatalyst Fe2O3/TiO2. The porous catalyst had a BET surface area of 168 m2/g. Both the color and total organic carbon (TOC) conversion versus the residence time were measured at various conditions. The effects of pH value, catalyst loaded, initial humic acid concentration and reaction temperature on conversion were monitored. The experimental results proved that the photocatalytic oxidation process was not temperature sensitive and the optimum catalyst loading was found to be 0.4 g/l. Degradation and decolorization of humic acids have higher efficiency in acidic medium and at low initial humic acid concentration. The new catalyst was effective in removing TOC at 61.58% and color400 at 93.25% at 180 minutes illumination time and for 20 mg/l neutral humic acid aqueous solution. The kinetic analysis showed thatthe rate of photocatalytic degradation of humic acids obeyed the first order reaction kinetics. PMID:12578197

  3. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates

    NASA Astrophysics Data System (ADS)

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-07-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br- afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity.

  4. Solid Dose Form of Metformin with Ethyl Eicosapentaenoic Acid Does Not Improve Metformin Plasma Availability

    PubMed Central

    Burton, Jeffrey H.; Johnson, William D.; Greenway, Frank L.

    2016-01-01

    Background The purpose of the study was to investigate effects of ethyl eicosapentaenoic acid on pharmacokinetics of metformin. Pharmacokinetic profiles of metformin and ethyl eicosapentaenoic acid when delivered separately or together in solid dose form were investigated and compared to determine whether the solid dose resulted in an altered metforminpharmacokinetics when given with or without food. Methods A single-center, open-label, repeated dose study investigated the pharmacokinetic (PK) profile of metformin when administered in solid dose form with ethyl eicosapentaenoic acid compared to co-administration with icosapent ethyl, an ester of eicosapentaenoic acid and ethyl alcohol used to treat severe hypertriglyceridemia with metformin hydrochloride. Non-compartmental PK methods were used to compare area under the plasma concentration curve (AUC) and maximum plasma concentration (Cmax) between patients randomized to either the ester or separate medications group under both fasting and fed conditions. Results Using these two PK parameters, results showed that metformin availability was higher under fasting conditions when delivered separately from icosapent ethyl. There were no group differences in the fed condition. Conclusions The solid dose form of metformin and ethyl eicosapentaenoic acid did not improve the pharmacokinetics of metformin in terms of plasma availability, suggesting that little is to be gained over the separate administration of ethyl eicosapentaenoic acid and metformin hydrochloride. PMID:26893954

  5. The utilization of catalyst sorbent in scrubbing acid gases from incineration flue gas.

    PubMed

    Wey, Ming-Yen; Lu, Chi-Yuan; Tseng, Hui-Hsin; Fu, Cheng-Hao

    2002-04-01

    Catalyst sorbents based on alumina-supported CuO, CeO2, and CuO-CeO2 were applied to a dry scrubber to clean up the SO2/HCl/NO simultaneously from pilot-scale fluidized-bed incineration flue gas. In the presence of organic compounds, CO and the submicron particles SO2 and HCI removed by the fresh catalyst sorbents and NO reduced to N2 by NH3 under the catalysis of fresh and spent desulfurization/dechloridization (DeSO2/DeHCl) catalyst sorbents (copper compounds, Cu, CuO, and CuSO4) were evaluated in this paper. The fresh and spent catalyst sorbents were characterized by the Brunner-Emmett-Teller method (BET), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), inductively coupled plasma-mass spectrometry (ICP-MS), and the elemental analyzer (EA). The study showed that the performances of CuO, CeO2, and CuO-CeO2/gamma-Al2O3 were better than that of Ca(OH)2. The removal efficiency of SO2 and HCl was 80-95% in the dry scrubber system. Under NH3/NO = 1, NO could not be reduced to N2 because it was difficult to control the ratio of air/fuel in the flue gas. For estimating the feasibility of regenerating the spent catalyst sorbents, BET and EA analyses were used. They indicated that the pore structures were nearly maintained and a small amount of carbon accumulated on their surface. PMID:12002190

  6. Determination of coordination modes and estimation of the 31P-31P distances in heterogeneous catalyst by solid state double quantum filtered 31P NMR spectroscopy.

    PubMed

    Zhang, Si-Yong; Wang, Mei-Tao; Liu, Qing-Hua; Hu, Bing-Wen; Chen, Qun; Li, He-Xing; Amoureux, Jean-Paul

    2011-04-01

    To overcome the separation difficulty of the palladium-based homogeneous catalyst, the palladium complex can be anchored on various supports such as silica. However, it is difficult to determine the amounts of the two coordination modes of the Pd nucleus, that is, Pd coordinates with one phosphorus atom and Pd coordinates with two phosphorus atoms. Here a (31)P double-quantum filtered (DQ-filtered) method in solid-state NMR is introduced for the palladium-based heterogenous catalyst system. With the DQ-filtered method, we can not only determine the amounts of the two different kinds of palladium coordination modes, we can also estimate the interatomic distance of two (31)P nuclei bonded to a palladium nucleus. With the help of this method, we can quickly estimate interatomic distances in our designed system and accurately re-design the palladium system to accommodate either one (31)P or two (31)P. PMID:21301702

  7. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  8. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  9. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    PubMed Central

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h−1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  10. Development of acidity on sol-gel prepared TiO{sub 2}-SiO{sub 2} catalysts

    SciTech Connect

    Calvino, J.J.; Cauqui, M.A.; Gatica, J.M.; Perez, J.A.; Rodriguez-Izquierdo, J.M.

    1994-12-31

    Three different TiO{sub 2}-SiO{sub 2} gels (Xerogel, Carbogel and Aerogel) are more active acid catalysts than other reference samples used here. As deduced from FTIR, XRD and XANES studies, the structural properties of these gels are quite different to each other, thus revealing the strong influence of the drying treatment. It is found that the degree of Si-O-Ti linking and the surface acidity follows the same trend (X > C > A). The authors conclude that supercritical drying at 600 K and 190 bars can induce Ti leaching followed by redeposition in the narrower pores of the gel. These effects modify both the textural and surface chemical properties of the resulting material.

  11. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-07-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h-1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.

  12. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst.

    PubMed

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h(-1) at 25°C and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  13. [*C]octanoic acid breath test to measure gastric emptying rate of solids.

    PubMed

    Maes, B D; Ghoos, Y F; Rutgeerts, P J; Hiele, M I; Geypens, B; Vantrappen, G

    1994-12-01

    We have developed a breath test to measure solid gastric emptying using a standardized scrambled egg test meal (250 kcal) labeled with [14C]octanoic acid or [13C]octanoic acid. In vitro incubation studies showed that octanoic acid is a reliable marker of the solid phase. The breath test was validated in 36 subjects by simultaneous radioscintigraphic and breath test measurements. Nine healthy volunteers were studied after intravenous administration of 200 mg erythromycin and peroral administration of 30 mg propantheline, respectively. Erythromycin significantly enhanced gastric emptying, while propantheline significantly reduced gastric emptying rates. We conclude that the [*C]octanoic breath test is a promising and reliable test for measuring the gastric emptying rate of solids. PMID:7995200

  14. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect

    Davis, Mark E.

    2009-03-13

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  15. High-resolution transmission electron microscopy study of carbon deposited on the NiO/MgO solid solution catalysts

    SciTech Connect

    Hu, Y.H.; Ruckenstein, E.

    1999-05-15

    The carbon deposition due to the CH{sub 4} decomposition at 790 C over NiO/MgO catalysts was investigated by high-resolution transmission electron microscopy. While no deposits could be detected over the catalysts with a NiO content smaller than 9.1 wt%, they were detected over the catalysts with NiO contents of 23 and 50 wt%. The carbon deposits are composed of platelets located at distances of about 0.34 nm, corresponding to the graphitic carbon. Various structures of the deposited carbon were observed: (a) carbon consisting of platelets parallel to the surface of the particle, which covers a catalyst particle, (b) nanotubes composed of platelets parallel to their axis, and (c) carbon vortexes consisting of platelets parallel to their axis.

  16. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  17. Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction

    PubMed Central

    Li, Peng; Regati, Sridhar; Butcher, Raymond J.; Arman, Hadi D.; Chen, Zhenxia; Xiang, Shengchang; Chen, Banglin; Zhao, Cong-Gui

    2011-01-01

    Two new Zn(II) and Cd(II) MOFs have been synthesized. These MOFs have been applied as heterogeneous catalysts for the green synthesis of a variety of dihydropyrimidinone derivatives through the Biginelli reaction and the desired products were obtained in high yields with short reaction time under mild solvent- free conditions. Moreover, the MOF catalysts may be readily recovered after the reaction and reused for many cycles. PMID:22043110

  18. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  19. Comparison of the acidities of WO/sub 3//Al/sub 2/O/sub 3/ and ultrastable faujasite catalysts

    SciTech Connect

    Soled, S.L.; McVicker, G.B.; Murrell, L.L.; Sherman, L.G.; Dispenziere, N.C. Jr.; Hsu, S.L.; Waldman, D.

    1988-06-01

    The acidity of WO/sub 3/ on ..gamma..-alumina is compared with that of ultrastable faujasite using both base adsorption techniques and model compound conversion studies. The addition of WO/sub 3/ to ..gamma..-alumina introduces Broensted acidity, and the density of Broensted sites is increased by high-temperature calcination. The acid sites displayed by the supported tungsten oxide catalyst are considerably weaker than those found in ultrastable faujasite.

  20. Immobilization of metal-humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors.

    PubMed

    Cruz-Zavala, Aracely S; Pat-Espadas, Aurora M; Rangel-Mendez, J Rene; Chazaro-Ruiz, Luis F; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2016-05-01

    Metal-humic acid complexes were synthesized and immobilized by a granulation process in anaerobic sludge for their application as solid-phase redox mediators (RM) in the biotransformation of iopromide. Characterization of Ca- and Fe-humic acid complexes revealed electron accepting capacities of 0.472 and 0.556milli-equivalentsg(-1), respectively. Once immobilized, metal-humic acid complexes significantly increased the biotransformation of iopromide in upflow anaerobic sludge blanket (UASB) reactors. Control UASB reactor (without humic material) achieved 31.6% of iopromide removal, while 80% was removed in UASB reactors supplied with each metal-humic acid complex. Further analyses indicated multiple transformation reactions taking place in iopromide including deiodination, N-dealkylation, decarboxylation and deacetylation. This is the first successful application of immobilized RM, which does not require a supporting material to maintain the solid-phase RM in long term operation of bioreactors. The proposed redox catalyst could be suitable for enhancing the redox conversion of different recalcitrant pollutants present in industrial effluents. PMID:26868154

  1. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results.

    PubMed

    Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando

    2016-01-01

    Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported. PMID:26938518

  2. Synthesis, structure, and properties of a mixed-valent triiron complex of tetramethyl reductic acid, an ascorbic acid analogue, and its relationship to a functional non-heme iron oxidation catalyst system.

    PubMed

    Kim, YooJin; Feng, Xudong; Lippard, Stephen J

    2007-07-23

    The purple triiron(II,III,III) complex, [Fe(3)Cl(2)(TMRASQ)(4)(HTMRA)(2)] x C(5)H(12) (1 x C(5)H(12)), where H(2)TMRA is a tetramethyl reductic acid, 4,4,5,5-tetramethyl-2,3-dihydroxy-2-cyclopenten-1-one, and HTMRASQ is the semiquinone form of this ligand, was prepared from (Et(4)N)(2)[Fe(2)OCl(6)] and H(2)TMRA and characterized by X-ray crystallography, Mössbauer spectroscopy, and redox titrations. The physical properties of the complex in solution are consistent with its mixed-valent character, as delineated by a solid-state structure analysis. Assignments of the iron and ligand oxidation states in the crystal were made on the basis of a valence bond sum analysis and the internal ligand geometry. As the first well-characterized iron complex of an ascorbic acid H(2)AA analogue, 1 provides insight into the possible coordination geometry of the family of complexes containing H(2)AA and its analogues. In the presence of air and H(2)TMRA, 1 is able to catalyze the oxidation of cyclohexane to cyclohexanol with remarkable selectivity, but the nature of the true catalyst remains unknown. PMID:17579400

  3. Synthesis, Structure, and Properties of a Mixed-Valent Triiron Complex of Tetramethyl Reductic Acid, an Ascorbic Acid Analog, and its Relationship to a Functional Non-Heme Iron Oxidation Catalyst System

    PubMed Central

    Kim, YooJin; Feng, Xudong; Lippard, Stephen J.

    2011-01-01

    The purple triiron(II,III,III) complex, [Fe3Cl2(TMRASQ)4(HTMRA)2]·C5H12 (1·C5H12), where H2(TMRA) is tetramethyl reductic acid, 4,4,5,5-tetramethyl-2,3-dihydroxy-2-cyclopenten-1-one, and H(TMRASQ) is the semiquinone form of this ligand, was prepared from (Et4N)2[Fe2OCl6] and H2(TMRA) and characterized by X-ray crystallography, Mössbauer spectroscopy, and redox titrations. The physical properties of the complex in solution are consistent with its mixed-valent character, as delineated by a solid-state structure analysis. Assignments of the iron and ligand oxidation states in the crystal were made on the basis of a valence bond sum analysis and the internal ligand geometry. As the first well-characterized iron complex of an ascorbic acid H2(AA) analog, 1 provides insight into the possible coordination geometry of the family of complexes containing H2AA and its analogues. In the presence of air and H2TMRA, 1 is able to catalyze the oxidation of cyclohexane to cyclohexanol with remarkable selectivity, but the nature of the true catalyst remains unknown. PMID:17579400

  4. Lewis acid activation of carbodicarbene catalysts for Rh-catalyzed hydroarylation of dienes.

    PubMed

    Roberts, Courtney C; Matías, Desirée M; Goldfogel, Matthew J; Meek, Simon J

    2015-05-27

    The activation of carbodicarbene (CDC)-Rh(I) pincer complexes by secondary binding of metal salts is reported for the catalytic site-selective hydro-heteroarylation of dienes (up to 98% yield and >98:2 γ:α). Reactions are promoted by 5 mol % of a readily available tridentate (CDC)-Rh complex in the presence of an inexpensive lithium salt. The reaction is compatible with a variety of terminal and internal dienes and tolerant of ester, alkyl halide, and boronate ester functional groups. X-ray data and mechanistic experiments provide support for the role of the metal salts on catalyst activation and shed light on the reaction mechanism. The increased efficiency (120 to 22 °C) made available by catalytic amounts of metal salts to catalysts containing C(0) donors is a significant aspect of the disclosed studies. PMID:25961506

  5. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  6. Solid-State Forms of β-Resorcylic Acid: How Exhaustive Should a Polymorph Screen Be?

    PubMed Central

    2010-01-01

    A combined experimental and computational study was undertaken to establish the solid-state forms of β-resorcylic acid (2,4-dihydroxybenzoic acid). The experimental search resulted in nine crystalline forms: two concomitantly crystallizing polymorphs, five novel solvates (with acetic acid, dimethyl sulfoxide, 1,4-dioxane, and two with N,N-dimethyl formamide), in addition to the known hemihydrate and a new monohydrate. Form II°, the thermodynamically stable polymorph at room temperature, was found to be the dominant crystallization product. A new, enantiotropically related polymorph (form I) was obtained by desolvation of certain solvates, sublimation experiments, and via a thermally induced solid−solid transformation of form II° above 150 °C. To establish their structural features, interconversions, and relative stability, all solid-state forms were characterized with thermal, spectroscopic, X-ray crystallographic methods, and moisture-sorption analysis. The hemihydrate is very stable, while the five solvates and the monohydrate are rather unstable phases that occur as crystallization intermediates. Complementary computational work confirmed that the two experimentally observed β-resorcylic acid forms I and II° are the most probable polymorphs and supported the experimental evidence for form I being disordered in the p-OH proton position. These consistent outcomes suggest that the most practically important features of β-resorcylic acid crystallization under ambient conditions have been established; however, it appears impractical to guarantee that no additional metastable solid-state form could be found. PMID:21218174

  7. A Copper-Based Metal-Organic Framework Acts as a Bifunctional Catalyst for the Homocoupling of Arylboronic Acids and Epoxidation of Olefins.

    PubMed

    Parshamoni, Srinivasulu; Telangae, Jyothi; Sanda, Suresh; Konar, Sanjit

    2016-02-18

    A copper(I)-based metal-organic framework ({[Cu2 Br2 (pypz)]n ⋅nH2 O} (Cu-Br-MOF) [pypz=bis[3,5-dimethyl-4-(4'-pyridyl)pyrazol-1-yl] methane] has been synthesized by using an elongated and flexible bridging ligand. The structure analysis reveals that each pypz ligand acts as a tritopic ligand connected to two Cu2 Br2 dimeric units, forming a one-dimensional zig-zag chain, and these chains further connected by a Cu2 Br2 unit, give a two-dimensional framework on the bc-plane. In the Cu2 Br2 dimeric unit, the copper ions are four coordinated, thereby possessing a tetrahedral geometry; this proves to be an excellent heterogeneous catalyst for the aerobic homocoupling of arylboronic acids under mild reaction conditions. This method requires only 3 mol % of catalyst and it does not require any base or oxidant-compared to other conventional (Cu, Pd, Fe, and Au) catalysts-for the transformation of arylboronic acids in very good yields (98 %). The shape and size selectivity of the catalyst in the homocoupling was investigated. The use of the catalyst was further extended to the epoxidation of olefins. Moreover, the catalyst can be easily separated by simple filtration and reused efficiently up to 5 cycles without major loss of reactivity. PMID:26629650

  8. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  9. Recovery of nickel from spent NiO/Al2O3 catalyst through sulfuric acid leaching, precipitation and solvent extraction.

    PubMed

    Nazemi, M K; Rashchi, F

    2012-05-01

    Effective recovery of nickel (Ni) from spent NiO/Al(2)O(3) catalyst in a simple hydrometallurgical route is suggested. Nickel recovery of 99.5% was achieved with sulfuric acid leaching. The leach liquor was partly neutralized and nickel ammonium sulfate was precipitated by adding ammonia. The nickel in the supernatant was concentrated by solvent extraction using D2EHPA and subsequently stripped back into sulfuric acid and returned to the precipitation stage. Necessary counter current extraction and stripping stages were determined in McCabe-Thiele diagrams. The suggested method appears simple and very effective in recovering nickel from spent catalysts from the petrochemical industry. PMID:21930525

  10. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    DOEpatents

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  11. Catalyst development gets federal funding

    SciTech Connect

    Rotman, D.

    1995-09-20

    Despite the threat of Republican-led budget cuts, the National Institute of Standards and Technology`s (Gaithersburg, MD) Advanced Technology Program (ATP) has awarded backing to a handful of US chemical companies to conduct long-term projects to develop novel catalysts. The projects--which read like a wish list of next generation catalyst technology--includes $16 million to Eastman Chemical and Genencor International (Rochester, NY), Eastman`s joint venture with Cultor (Helsinki), to develop biocatalysts to make industrial chemicals from renewable resources. Eastman hopes the project will allow it to commercialize fine and specialty chemical products based on biocatalysts in three to five years and eventually pay off in new processes to make commodity chemicals. ATP also plans to provide $10 million to Amoco for further work on metallocene catalysts to make elastomeric homopolymer polypropylene (EHPP). The research, which also involves Stanford University and Fiberweb North America, aims to further develop EHPP to compete with a range of flexible polyolefins. Other ATP-funded projects include long-time industry goals such as the direct oxidation of propylene to propylene oxide, a solid-acid catalyst for alkylation, and a single-step oxidation of alkanes to acrylic acid. The ATP funding, however, is endangered by proposed Congressional budget cuts that would reduce ATP spending this year and eliminate the program thereafter.

  12. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  13. On the acidity of saponite materials: a combined HRTEM, FTIR, and solid-state NMR study.

    PubMed

    Bisio, C; Gatti, G; Boccaleri, E; Marchese, L; Bertinetti, L; Coluccia, S

    2008-03-18

    Acid clays were prepared by exchanging a synthetic saponite in HCl solutions of different concentration (0.01 and 1M, respectively). A combined experimental approach (XRD, HRTEM, N2 physisorption, solid-state MAS NMR, and TGA) was used to investigate on the structural, morphological, and textural features of the samples treated under mild and strong acid conditions. FTIR spectroscopy of adsorbed probe molecules with different basicity (e.g., CO and NH3) was used to monitor the surface acid properties and acid site distribution. XRD and SS-MAS NMR indicated that the activation under mild acid conditions does not alter the clay structure, while a deep modification of the saponite framework occurred after ion exchange in 1 M HCl solution. The presence of porous amorphous silica phase after treatment under strong acid conditions was confirmed by TEM inspection augmented by SS-MAS NMR and FTIR spectroscopy. N2 and Ar physisorption measurements suggested that cavitation phenomena occurred in saponite structure. N2 physisorption confirmed that the porosity and surface area of the samples are strongly modified upon strong acid treatment. FTIR spectroscopy of adsorbed NH3 pointed out that the H-exchange in mild conditions increased the number of surface Brønsted acid sites. Conversely, these sites are significantly depleted after treatment under strong acid conditions. The use of CO as a FTIR probe molecule, which is applied for the first time to study synthetic acid clays, allowed to monitor distribution and strength of Brønsted acid sites, whose acidity is similar to that of strong acid zeolites. The Al-OH sites with medium acidity are also found in acid-activated saponites. The distribution of strong and medium acid sites is strictly dependent on the acid conditions adopted. PMID:18251562

  14. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.

    PubMed

    Zhong, Ziyi; Ang, Hanwee; Choong, Catherine; Chen, Luwei; Huang, Lin; Lin, Jianyi

    2009-02-01

    Rh catalysts supported on ZrO(2)-based oxides were studied for ethanol steam reforming (SR) reaction. Pure ZrO(2) as the support resulted in higher H(2) production yield compared to the ZrO(2) oxide decorated with CeO(2), Al(2)O(3), La(2)O(3) or Li(2)O at the reaction temperature of 300 degrees C. Above 450 degrees C, all the catalysts exhibited similar catalytic activity. However, at low reaction temperatures (below 400 degrees C), a significant enhancement in the catalytic activity, selectivity and stability was achieved by replacing the ZrO(2) support prepared by a precipitation method (ZrO(2)-CP) with that prepared by a hydrothermal method (ZrO(2)-HT). A deactivation was observed during the EtOH SR reaction at 300 degrees C on the two catalysts of Rh/ZrO(2)-CP and Rh/ZrO(2)-HT. NH(3)-TPD experiments confirmed that the ZrO(2)-HT support had two types of acidic sites while the ZrO(2)-CP support had only one type of weak acidic sites. DRIFTS studies showed that the absorption of EtOH molecules was strong on the Rh/ZrO(2)-HT catalyst and a number of C(2) oxygenates were accumulated on the catalyst surface. Meanwhile, the EtOH absorption on the Rh/ZrO(2)-CP catalyst was weak and the accumulation of CO, carbonate and CH(x) was observed. It is concluded that the relatively strong Lewis acidic sites in the Rh/ZrO(2)-HT catalyst is responsible for the strong absorption of EtOH molecules, and the subsequent C-H breakage step (formation of acetaldehyde or called as dehydrogenation reaction) is a fast reaction on it; on the Rh/ZrO(2)-CP catalyst, the EtOH adsorption was weak and the C-C breakage was the dominating reaction which led to the accumulation of surface CO, CH(x) and CO(2) species. Therefore, it is believed that, in order to promote the absorption of EtOH molecules and to reduce the formation of metastable carbonaceous species (C(2) oxygenates) during the reaction, the catalyst should be enhanced both with Lewis acidity and with C-C bond breakage function. Also

  15. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.

    PubMed

    Choudhary, Vinit; Mushrif, Samir H; Ho, Christopher; Anderko, Andrzej; Nikolakis, Vladimiros; Marinkovic, Nebojsa S; Frenkel, Anatoly I; Sandler, Stanley I; Vlachos, Dionisios G

    2013-03-13

    5-(Hydroxymethyl)furfural (HMF) and levulinic acid production from glucose in a cascade of reactions using a Lewis acid (CrCl3) catalyst together with a Brønsted acid (HCl) catalyst in aqueous media is investigated. It is shown that CrCl3 is an active Lewis acid catalyst in glucose isomerization to fructose, and the combined Lewis and Brønsted acid catalysts perform the isomerization and dehydration/rehydration reactions. A CrCl3 speciation model in conjunction with kinetics results indicates that the hydrolyzed Cr(III) complex [Cr(H2O)5OH](2+) is the most active Cr species in glucose isomerization and probably acts as a Lewis acid-Brønsted base bifunctional site. Extended X-ray absorption fine structure spectroscopy and Car-Parrinello molecular dynamics simulations indicate a strong interaction between the Cr cation and the glucose molecule whereby some water molecules are displaced from the first coordination sphere of Cr by the glucose to enable ring-opening and isomerization of glucose. Additionally, complex interactions between the two catalysts are revealed: Brønsted acidity retards aldose-to-ketose isomerization by decreasing the equilibrium concentration of [Cr(H2O)5OH](2+). In contrast, Lewis acidity increases the overall rate of consumption of fructose and HMF compared to Brønsted acid catalysis by promoting side reactions. Even in the absence of HCl, hydrolysis of Cr(III) decreases the solution pH, and this intrinsic Brønsted acidity drives the dehydration and rehydration reactions. Yields of 46% levulinic acid in a single phase and 59% HMF in a biphasic system have been achieved at moderate temperatures by combining CrCl3 and HCl. PMID:23432136

  16. Preparation and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO 2 catalysts and their photocatalytic activity under UV and Vis illumination

    NASA Astrophysics Data System (ADS)

    Kun, Robert; Tarján, Sándor; Oszkó, Albert; Seemann, Torben; Zöllmer, Volker; Busse, Matthias; Dékány, Imre

    2009-11-01

    Nitrogen-doped TiO 2 catalysts were prepared by a precipitation method. The samples were calcined at 400 °C for 4 h in air. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low temperature N 2-adsorption was used for structural characterization and UV-diffuse reflectance (UV-DR) was applied to investigate the optical properties of the as-prepared samples. It was found that microporous N-doped catalysts have solely anatase crystalline structure. Acidic treatment of the calcined samples was performed using sulfuric acid agitation. The crystalline structure remained unchanged due to surface treatment, while the porosity and the surface areas (aBETS) were decreased dramatically. Optical characterization of the doped catalysts showed that they could be excited by visible light photons in the 400-500 nm wavelength range ( λ g,1=˜390 nm, λ g,2=˜510 nm). It was also established that surface treatment enhances the Vis-light absorption of the N-TiO 2 powders. Finally the catalysts were tested in the photocatalytic degradation of phenol in aqueous suspensions. Two different light sources were used; one of them was a UV-rich high pressure Hg-lamp, while the other was a tubular visible light source. We found that using visible light illumination N-doped, acid treated TiO 2 samples were more catalytically active than non-doped TiO 2 catalysts.

  17. Novel fabrication of solid-state NaBH 4/Ru-based catalyst composites for hydrogen evolution using a high-energy ball-milling process

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Hong; Chen, Bing-Hung; Hsueh, Chan-Li; Ku, Jie-Ren; Tsau, Fanghei

    Solid-state NaBH 4/Ru-based catalyst composites have been fabricated for hydrogen generation through a high-energy ball-milling process, providing uniform dispersion of resin-supported Ru 3+ catalysts among pulverized NaBH 4 (SBH) particles, so as to increase the contacts of SBH with active catalytic sites. Consequently, the gravimetric hydrogen storage capacity as high as 7.3 wt% could be achieved by utilizing water as a limiting reagent to overcome the issue of deactivated catalysts whose active sites are often blocked by precipitates caused by limited NaBO 2 solubility occurring in conventional aqueous SBH systems for hydrogen productions. Products of hydrolyzed SBH that greatly influence the gravimetric H 2 storage capacity are found to be most likely NaBO 2·2H 2O and NaBO 2·4H 2O from SBH/H 2O reacting systems with initial weight ratios, SBH/H 2O = 1/2 and 1/10, respectively, according to the TGA and XRD analyses.

  18. Unique properties of silver cations in solid-acid catalysis by zeolites and heteropolyacids.

    PubMed

    Ono, Yoshio; Baba, Toshihide

    2015-06-28

    Ag(+)-exchanged zeolites exhibit unique catalytic properties caused by the combination of their redox and acidic properties. Partial reduction of Ag(+) ions in zeolites with hydrogen leads to the formation of acidic protons and silver metal particles, which can be observed using X-ray powder diffraction patterns (XRD). By simply evacuating hydrogen from the system, the silver metal particles are returned back to Ag(+) ions and at the same time, acidic protons are eliminated. This interconversion of Ag(+) ions and silver metal or gaseous hydrogen and surface protons is reflexed in the catalytic activities of Ag(+)-exchanged zeolites for acid-catalyzed reactions: the activity of Ag(+)-exchanged Y zeolite (Ag-Y) reversibly changes with the partial pressure of hydrogen. Furthermore, the activity of Ag-Y in the presence of hydrogen is higher than that of H(+)-exchanged Y zeolite (H-Y). Similar phenomena are also observed for the silver salt of dodecatungstophosphoric acid (Ag3PW12O40). Ag(+)-exchanged ZSM-5 zeolite (Ag-ZSM-5) is a very selective catalyst for aromatization of alkanes, alkenes and methanol. Examination of the activation step of lower alkanes revealed that Ag(+) ions dramatically enhance the dehydrogenation of the alkanes via heterolytic dissociation of the alkanes into carbenium ions and hydride species. Ag(+)-exchanged zeolites can also activate methane. The reaction of methane with ethene and benzene gives propene and toluene, respectively. Ag-ZSM-5 is a very stable catalyst under hydrothermal conditions because of the interconversion properties of Ag(+) ions and silver metal in the zeolite. PMID:26018842

  19. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  20. Matrix solid-phase dispersion for the liquid chromatographic determination of phenolic acids in Melissa officinalis.

    PubMed

    Ziaková, Alica; Brandsteterová, Eva; Blahová, Eva

    2003-01-01

    Matrix solid-phase dispersion (MSPD) was used for sample preparation of plant material (Melissa officinalis, Lemon Balm) prior to liquid chromatography of rosmarinic, caffeic and protocatechuic acids, phenolic compounds present in this herb. Different MSPD sorbents and various elution agents were tested and the optimal extraction conditions determined with the aim to obtain extraction recoveries greater than 90% for all analytes. PMID:12568390

  1. Relationship of soluble solids, acidity and aroma volatiles to flavor in late-season navel oranges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Navel orange flavor development during early fruit maturation is strongly dependent on changes in soluble solids concentration (SSC) and titratable acidity (TA), while later in the season other factors, such as aroma volatiles, also become important. The flavor of individual oranges can differ gre...

  2. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates.

    PubMed

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-12-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br(-) afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity. PMID:27365001

  3. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    PubMed

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance. PMID:27553251

  4. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts.

    PubMed

    Ng, Pei Fang; Li, Li; Wang, Shaobin; Zhu, Zhonghua; Lu, Gaoqing; Yan, Zifeng

    2007-05-15

    Industrial solid wastes (fly ash and red mud) have been employed as supports for preparation of Ru-based catalysts. Physical and chemical treatments on red mud were conducted and these modified supports were also used for preparation of Ru-based catalysts. Those Ru catalysts were characterized by various techniques such as N2 adsorption, H2 adsorption, XRD, XPS, and temperature-programmed reduction (TPR), and were then tested for catalytic ammonia decomposition to hydrogen. It was found that red-mud-supported Ru catalyst exhibits higher ammonia conversion and hydrogen production than fly-ash-supported catalyst. Heat and chemical treatments of the red mud greatly improve the catalytic activity. Moreover, a combination of acid and heat treatments produces the highest catalytic conversion of ammonia. PMID:17547209

  5. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts

    SciTech Connect

    Pei Fang Ng; Li Li; Shaobin Wang; Zhonghua Zhu; Gaoqing Lu; Zifeng Yan

    2007-05-15

    Industrial solid wastes (fly ash and red mud, a by-product of the aluminium industry) have been employed as supports for preparation of Ru-based catalysts. Physical and chemical treatments on red mud were conducted and these modified supports were also used for preparation of Ru-based catalysts. Those Ru catalysts were characterized by various techniques such as N2 adsorption, H{sub 2} adsorption, XRD, XPS, and temperature-programmed reduction (TPR), and were then tested for catalytic ammonia decomposition to hydrogen. It was found that red-mud-supported Ru catalyst exhibits higher ammonia conversion and hydrogen production than fly-ash-supported catalyst. Heat and chemical treatments of the red mud greatly improve the catalytic activity. Moreover, a combination of acid and heat treatments produces the highest catalytic conversion of ammonia. 35 refs., 4 figs., 4 tabs.

  6. Sorption of tylosin and sulfamethazine on solid humic acid.

    PubMed

    Guo, Xuetao; Tu, Bei; Ge, Jianhua; Yang, Chen; Song, Xiaomei; Dang, Zhi

    2016-05-01

    Tylosin (TYL) and sulfamethazine (SMT) are ionizable and polar antimicrobial compounds, which have seeped into the environment in substantial amounts via fertilizing land with manure or sewage. Sorption of TYL and SMT onto humic acid (HA) may affect their environmental fate. In this study, the sorption of TYL and SMT on HA at different conditions (pH, ionic strength) was investigated. All sorption isotherms fitted well to the Henry and Freundlich models and they were highly nonlinear with values of n between 0.5 and 0.8, which suggested that the HA had high heterogeneity. The sorption of TYL and SMT on HA decreased with increasing pH (2.0-7.5), implying that the primary sorption mechanism could be due to cation exchange interactions between TYL(+)/SMT(+) species and the functional groups of HA. Increasing ionic strength resulted in a considerable reduction in the Kd values of TYL and SMT, hinting that interactions between H bonds and π-π EDA might be an important factor in the sorption of TYL and SMT on HA. Results of Fourier transform infrared (FT-IR) and (13)C-nuclear magnetic resonance (NMR) analysis further demonstrated that carboxyl groups and O-alkyl structures in the HA could interact with TYL and SMT via ionic interactions and H bonds, respectively. Overall, this work gives new insights into the mechanisms of sorption of TYL and SMT on HA and hence aids us in assessing the environmental risk of TYL and SMT under diverse conditions. PMID:27155426

  7. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    SciTech Connect

    Gao, Feng; Washton, Nancy M.; Wang, Yilin; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of

  8. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  9. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  10. Synthesis of Nitro-Containing Compounds through Multistep Continuous Flow with Heterogeneous Catalysts.

    PubMed

    Ishitani, Haruro; Saito, Yuki; Tsubogo, Tetsu; Kobayashi, Shū

    2016-03-18

    Synthesis of β-nitrostyrene derivatives and their following reactions through two-step continuous-flow protocols with heterogeneous catalysts are described. In the first step to provide β-nitrostyrenes from aromatic aldehydes and nitromethane, readily available amino-functionalized silica gel was employed as a catalyst and gave the products continuously for at least 100 h with high selectivity. In the second step, reactions of β-nitrostyrenes, solid bases, immobilized bases, solid acids, and chiral supported metals and nonmetals were used as catalysts, and seven kinds of nitro-containing organic compounds could be effectively synthesized through the two-step continuous-flow systems. PMID:26926210

  11. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions.

    PubMed

    Wang, Yehong; Wang, Feng; Song, Qi; Xin, Qin; Xu, Shutao; Xu, Jie

    2013-01-30

    The use of a heterogeneous Lewis acid catalyst, which is insoluble and easily separable during the reaction, is a promising option for hydrolysis reactions from both environmental and practical viewpoints. In this study, ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260, which is rather high for bulk oxide catalysts, whose TONs are usually less than 100. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and (31)P magic-angle-spinning NMR spectroscopy, Na(+)/H(+) exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO(2)(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. This explains why the ceria catalyst is water-tolerant. PMID:23228093

  12. Preparation and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO{sub 2} catalysts and their photocatalytic activity under UV and Vis illumination

    SciTech Connect

    Kun, Robert; Tarjan, Sandor; Oszko, Albert; Seemann, Torben; Zoellmer, Volker; Busse, Matthias; Dekany, Imre

    2009-11-15

    Nitrogen-doped TiO{sub 2} catalysts were prepared by a precipitation method. The samples were calcined at 400 deg. C for 4 h in air. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low temperature N{sub 2}-adsorption was used for structural characterization and UV-diffuse reflectance (UV-DR) was applied to investigate the optical properties of the as-prepared samples. It was found that microporous N-doped catalysts have solely anatase crystalline structure. Acidic treatment of the calcined samples was performed using sulfuric acid agitation. The crystalline structure remained unchanged due to surface treatment, while the porosity and the surface areas (a{sub BET}{sup S}) were decreased dramatically. Optical characterization of the doped catalysts showed that they could be excited by visible light photons in the 400-500 nm wavelength range (lambda{sub g,1}={approx}390 nm, lambda{sub g,2}={approx}510 nm). It was also established that surface treatment enhances the Vis-light absorption of the N-TiO{sub 2} powders. Finally the catalysts were tested in the photocatalytic degradation of phenol in aqueous suspensions. Two different light sources were used; one of them was a UV-rich high pressure Hg-lamp, while the other was a tubular visible light source. We found that using visible light illumination N-doped, acid treated TiO{sub 2} samples were more catalytically active than non-doped TiO{sub 2} catalysts. - Graphical abstract: The effect of the acid treatment on the visible-light-driven photocatalytic activity of the N-doped, anatase TiO{sub 2} catalysts.

  13. Catalyst-Free Photoredox Addition–Cyclisations: Exploitation of Natural Synergy between Aryl Acetic Acids and Maleimide

    PubMed Central

    Manley, David W; Mills, Andrew; O'Rourke, Christopher; Slawin, Alexandra M Z; Walton, John C

    2014-01-01

    Suitably functionalised carboxylic acids undergo a previously unknown photoredox reaction when irradiated with UVA in the presence of maleimide. Maleimide was found to synergistically act as a radical generating photoxidant and as a radical acceptor, negating the need for an extrinsic photoredox catalyst. Modest to excellent yields of the product chromenopyrroledione, thiochromenopyrroledione and pyrroloquinolinedione derivatives were obtained in thirteen preparative photolyses. In situ NMR spectroscopy was used to study each reaction. Reactant decay and product build-up were monitored, enabling reaction profiles to be plotted. A plausible mechanism, whereby photo-excited maleimide acts as an oxidant to generate a radical ion pair, has been postulated and is supported by UV/Vis. spectroscopy and DFT computations. The radical-cation reactive intermediates were also characterised in solution by EPR spectroscopy. PMID:24652772

  14. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst

    PubMed Central

    Oveisi, Ali R.; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880 m2/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  15. A closed loop for municipal organic solid waste by lactic acid fermentation.

    PubMed

    Probst, Maraike; Walde, Janette; Pümpel, Thomas; Wagner, Andreas Otto; Insam, Heribert

    2015-01-01

    In order to investigate the feasibility of producing lactic acid from municipal organic solid waste different pH values (4-7) and temperatures (37°C and 55°C) were tested. For the evaluation of fermentation conditions the chemical, physical, and microbial characters were monitored over a period of 7days. Quantitative real time PCR, PCR-DGGE, and next generation sequencing of a 16S rRNA gene library were applied to identify the key players of the lactic acid production and their association. Lactobacillus acidophilus and its closest relatives were found to be efficient lactic acid producers (>300mM) under most suitable fermentation conditions tested in this study: 37°C with either uncontrolled pH or at a pH of 5. These data provide the first step in the realization of the idea "reuse, reduce, and recycle" of municipal organic solid waste. PMID:25459815

  16. Solid supported in situ derivatization extraction of acidic degradation products of nerve agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Dubey, D K; Pardasani, Deepak

    2014-09-12

    This study deals with the solid supported in situ derivatization extraction of acidic degradation products of nerve agents present in aqueous samples. Target analytes were alkyl alkylphosphonic acids and alkylphosphonic acids, which are important environmental signatures of nerve agents. The method involved tert-butyldimethylchlorosilane mediated in situ silylation of analytes on commercially available diatomaceous solid phase extraction cartridges. Various parameters such as derivatizing reagent, its concentration, reaction time, temperature and eluting solvent were optimized. Recoveries of the analytes were determined by GC-MS which ranged from 60% to 86%. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes were achieved down to 78 and 213ngmL(-1) respectively, in selected ion monitoring mode. The successful applicability of method was also demonstrated on samples of biological origin such as plasma and to the samples received in 34th official proficiency test conducted by the Organization for Prohibition the of Chemical Weapons. PMID:25103280

  17. Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions.

    PubMed

    Li, Baiyan; Leng, Kunyue; Zhang, Yiming; Dynes, James J; Wang, Jian; Hu, Yongfeng; Ma, Dingxuan; Shi, Zhan; Zhu, Liangkui; Zhang, Daliang; Sun, Yinyong; Chrzanowski, Matthew; Ma, Shengqian

    2015-04-01

    We report a strategy of combining a Brønsted acid metal-organic framework (MOF) with Lewis acid centers to afford a Lewis acid@Brønsted acid MOF with high catalytic activity, as exemplified in the context of MIL-101-Cr-SO3H·Al(III). Because of the synergy between the Brønsted acid framework and the Al(III) Lewis acid centers, MIL-101-Cr-SO3H·Al(III) demonstrates excellent catalytic performance in a series of fixed-bed reactions, outperforming two benchmark zeolite catalysts (H-Beta and HMOR). Our work therefore not only provides a new approach to achieve high catalytic activity in MOFs but also paves a way to develop MOFs as a new type of highly efficient heterogeneous catalysts for fixed-bed reactions. PMID:25773275

  18. Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition of n-Butylamine to a Ru(III) Catalyst.

    PubMed

    Podolean, Iunia; Rizescu, Cristina; Bala, Camelia; Rotariu, Lucian; Parvulescu, Vasile I; Coman, Simona M; Garcia, Hermenegildo

    2016-09-01

    A new pathway for the catalytic wet oxidation (CWO) of glucose is described. Employing a cationic Ru@MNP catalyst, succinic acid is obtained in unprecedently high yield (87.5 %) for a >99.9 % conversion of glucose, most probably through a free radical mechanism combined with catalytic didehydroxylation of vicinal diols and hydrogenation of the resulted unsaturated intermediate. PMID:27511900

  19. Microwave-promoted, metal- and catalyst-free decarboxylative α,β-difunctionlization of secondary α-amino acids via pseudo-four-component reactions.

    PubMed

    Manjappa, Kiran B; Jhang, Wei-Fang; Huang, Shin-Yi; Yang, Ding-Yah

    2014-11-01

    A microwave-promoted, metal- and catalyst-free decarboxylative α,β-difunctionlization of secondary α-amino acids via a pseudo-four-component coupling of proline, aldehyde, and 1,3-diketone to generate multifunctionalized pyrano[2,3-b]pyrrole and pyrrolizinone derivatives is reported. PMID:25343174

  20. An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds.

    PubMed

    Hoang, Linh T M; Ngo, Long H; Nguyen, Ha L; Nguyen, Hanh T H; Nguyen, Chung K; Nguyen, Binh T; Ton, Quang T; Nguyen, Hong K D; Cordova, Kyle E; Truong, Thanh

    2015-12-14

    An azobenzene-containing zirconium metal-organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds. PMID:26455380

  1. Conversion of Saccharides into Formic Acid using Hydrogen Peroxide and a Recyclable Palladium(II) Catalyst in Aqueous Alkaline Media at Ambient Temperatures

    PubMed Central

    Zargari, N.; Kim, Y.; Jung, K. W.

    2015-01-01

    We have developed an effective method that converts a variety of mono- and disaccharides into formic acid predominantly. Our recyclable NHC-amidate palladium(II) catalyst facilitated oxidative degradation of carbohydrates without using excess oxidant. Stoichiometric amounts of hydrogen peroxide and sodium hydroxide were employed at ambient temperatures. PMID:26421000

  2. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone.

    PubMed

    Michel, Carine; Zaffran, Jérémie; Ruppert, Agnieszka M; Matras-Michalska, Joanna; Jędrzejczyk, Marcin; Grams, Jacek; Sautet, Philippe

    2014-10-25

    While Ru is a poor hydrogenation catalyst compared to Pt or Pd in the gas phase, it is efficient under aqueous phase conditions in the hydrogenation of ketones such as the conversion of levulinic acid into gamma-valerolactone. Combining DFT calculations and experiments, we demonstrate that water is responsible for the enhanced reactivity of Ru under those conditions. PMID:24980805

  3. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere. PMID:23090634

  4. Microcalorimetric Studies of Surface Acid/Base Properties of Magnesium Iron Catalysts Prepared from Hydrotalcite-Type Precursors

    NASA Astrophysics Data System (ADS)

    Tu, Mai; Shen, Jianyi; Chen, Yi

    1997-01-01

    Magnesium-iron mixed oxides with Mg/Fe molar ratios 1,3, and 6 were prepared from hydrotalcite-type precursors. Microcalorimetric adsorption of NH 3and CO 2showed that the surface acidity and basicity of the mixed oxides after calcination at 673 K are similar despite the different Mg/Fe ratios. Increasing calcination temperature from 673 to 773 K significantly decreased the surface area of the 3 Mg/Fe oxide, but the densities of both the acid and base sites were not changed. Mössbauer spectroscopy revealed that the reduction of the 3 Mg/Fe oxide (Fe 2O 3/MgO) in H 2at 673 K converted all Fe 3+to Fe 2+. The resulted FeO/MgO exhibited the same acidity as that of the Fe 2O 3/MgO, but the basicity of the FeO/MgO was greatly enhanced. Reduction at 773 K resulted in the formation of 76% Fe 2+and 24% Fe 0as detected by Mössbauer spectroscopy. The Fe/FeO/MgO sample formed exhibited very low heat for the adsorption of NH 3(40 kJ/mol) indicating that all iron atoms on the surface are Fe 0. However, a substantial basicity remained on the surface of this sample that may account for its high olefin selectivity compared with pure iron catalyst in the Fischer-Tropsch synthesis.

  5. A kinetic study of plutonium dioxide dissolution in hydrochloric acid using iron (II) as an electron transfer catalyst

    SciTech Connect

    Fife, K.W.

    1996-09-01

    Effective dissolution of plutonium dioxide has traditionally been accomplished by contact with strong nitric acid containing a small amount of fluoride at temperatures of {approximately} 100 C. In spite of these aggressive conditions, PuO{sub 2} dissolution is sometimes incomplete requiring additional contact with the solvent. This work focused on an alternative to conventional dissolution in nitric acid where an electron transfer catalyst, Fe(II), was used in hydrochloric acid. Cyclic voltammetry was employed as an in-situ analytical technique for monitoring the dissolution reaction rate. The plutonium oxide selected for this study was decomposed plutonium oxalate with > 95% of the material having a particle diameter (< 70 {micro}m) as determined by a scanning laser microscopy technique. Attempts to dry sieve the oxide into narrow size fractions prior to dissolution in the HCl-Fe(II) solvent system failed, apparently due to significant interparticle attractive forces. Although sieve splits were obtained, subsequent scanning laser microscopy analysis of the sieve fractions indicated that particle segregation was not accomplished and the individual sieve fractions retained a particle size distribution very similar to the original powder assemblage. This phenomena was confirmed through subsequent dissolution experiments on the various screen fractions which illustrated no difference in kinetic behavior between the original oxide assemblage and the sieve fractions.

  6. p-Nitromandelic acid as a highly acid-stable safety-catch linker for solid-phase synthesis of peptide and depsipeptide acids.

    PubMed

    Isidro-Llobet, Albert; Alvarez, Mercedes; Burger, Klaus; Spengler, Jan; Albericio, Fernando

    2007-04-12

    [reaction: see text] p-Nitromandelic acid as a safety-catch linker for Boc/Bzl-SPPS of base-labile compounds like peptides and depsipeptides is described. This linker permits acidic removal of side-chain protection groups from the resin. For cleavage from the solid support, the p-nitro group was reduced with tin(II) chloride. After washing off the reducing agents, the (depsi)peptide acids with or without the side-chain protection schemes were obtained by microwave irradiation at 50 degrees C with 5% TFA in dioxane. PMID:17367151

  7. Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt

    NASA Astrophysics Data System (ADS)

    Qing, Xin; Shi, Jingjing; Ma, Chengyu; Fan, Mengyang; Bai, Zhengyu; Chen, Zhongwei; Qiao, Jinli; Zhang, Jiujun

    2014-11-01

    In this work, we report a spontaneous formation of copper (Cu-N-S/C) catalysts containing both nitrogen (N) and sulfur (S) elements using a one-step pyrolysis of carbon supported copper phthalocyanine tetrasulfonic acid tetrasodium salt (CuTSPc/C). The obtained catalysts exhibit high catalytic activities for oxygen reduction reaction (ORR) in alkaline media. Through electrochemical measurements and physical characterizations, several observations are reached as follows: (1) different pyrolysis temperatures can result in different catalyst structures and performances, and the optimum pyrolysis temperature is found to be 700 °C; (2) the electron transfer number of the ORR process catalyzed by the unpyrolyzed catalyst is about 2.5, after the pyrolysis, this number is increased to 3.5, indicating that the pyrolysis process can change the ORR pathway from a 2-electron transfer dominated process to a 4-electron transfer dominated one; (3) increasing catalyst loading from 40 μg cm-2 to 505 μg cm-2 can effectively improve the catalytic ORR activity, under which the percentage of H2O2 produced decreases sharply from 39.5% to 7.8%; and (4) the Cu ion can bond on pyridinic-N, graphite-N and C-Sn-C to form Cu-N-S/C catalyst active sites, which play the key role in the ORR activity.

  8. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalyst- and Additive-Free Conditions.

    PubMed

    Yao, Shun-Jiang; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2016-05-20

    A simple and efficient protocol for the fluoroacetylation of indoles is reported. The reaction uses fluorinated acetic acids as the fluoroacetylation reagents to synthesize diverse fluoromethyl indol-3-yl ketones in good yields under catalyst- and additive-free conditions. In addition, the only byproduct is water in this transformation. The synthetic utility of this reaction was also demonstrated by the concise synthesis of α-(trifluoromethyl)(indol-3-yl)methanol and indole-3-carboxylic acid. PMID:27101475

  9. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  10. Radionuclide Leaching from Residual Solids Remaining after Acid Dissolution of Composite K East Canister Sludge

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Soderquist, C.Z.; Fadeff, S.K.

    1999-04-02

    Laboratory tests were performed to examine mixed nitric/hydrofluoric acid leach treatments for decontaminating dissolver residual solids (KECDVSR24H-2) produced during a 20- to 24-hr dissolution of a composite K East (KE) Basin canister sludge in 95 C 6 M nitric acid (HNO{sub 3}). The scope of this testing has been described in Section 4.5 of ''Testing Strategy to Support the Development of K Basin Sludge Treatment Process'' (Flament 1998). Radionuclides sorbed or associated with the residual solids generated in the K Basin sludge treatment process can restrict disposal of this solid to the Environmental Restoration Disposal Facility (ERDF). The starting dissolver residual solid for this testing, KECDVSR24H-2, contains radionuclides at concentrations which exceed the ERDF Waste Acceptance Criteria for TRU by about a factor of 70, for {sup 239}Pu by a factor of 200, and for {sup 241}Am by a factor of 50. The solids also exceed the ERDF criterion for {sup 137}Cs by a factor of 2 and uranium by a factor of 5. Therefore, the radionuclides of greatest interest in this leaching study are first {sup 239}Pu and {sup 241}Am (both components of TRU) and then uranium and {sup 137}Cs.

  11. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid.

    PubMed

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-12-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L(-1) limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol. PMID:26979727

  12. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  13. Preparation of solid drug/cyclodextrin complexes of acidic and basic drugs.

    PubMed

    Loftsson, T; Sigurdsson, H H; Másson, M; Schipper, N

    2004-01-01

    One of the main obstacles in pharmaceutical applications of cyclodextrins is their increase of the formulation bulk. Even at maximum incorporation 500 mg of a solid drug/cyclodextrin complex will only contain between 50 and 125 mg of the drug, assuming a low molecular weight drug (MW 200 to 400 Dalton) and an average molecular weight cyclodextrin (MW about 1500 Dalton). In general, the complexation efficiency is low and consequently the complex powder contains a significant amount of empty cyclodextrin molecules. In the present study the complexation efficiency is increased by ionization of the drug molecule through addition of volatile acid (i.e. acetic acid) or base (i.e. ammonia) to the aqueous complexation media of basic or acidic drugs, respectively. The volatile acid or base was then removed during lyophilization and heating in a vacuum oven resulting in formation of solid cyclodextrin complexes of the unionized drug. Thus, the complexation efficiency was temporary increased by the ionization but then again decreased leading to formation of the thermodynamically unstable solid drug/cyclodextrin complexes. When dissolved the energy of the system was lowered by expelling the drug molecules from the cyclodextrin cavities resulting in formation of supersaturated drug solutions and ultimately precipitation of the drug. PMID:14964417

  14. A Brønsted Acid-Amino Acid as a Synergistic Catalyst for Asymmetric List-Lerner-Barbas Aldol Reactions.

    PubMed

    Ramachary, Dhevalapally B; Shruthi, Kodambahalli S

    2016-03-18

    Herein, for the first time, a combination of L-amino acid, (R)-5,5-dimethyl thiazolidinium-4-carboxylate (L-DMTC) with simple Brønsted acid TFA is reported as the suitable synergistic catalyst for the List-Lerner-Barbas aldol (LLB-A) reaction of less reactive 2-azidobenzaldehydes with various ketones at ambient temperature to furnish the optically active functionalized (2-azidophenyl)alcohols with very good yields, dr's, and ee's. This method gives first time access to the novel azido-containing multifunctional compounds, which are applicable in material to medicinal chemistry. Chiral functionalized (2-azidophenyl)alcohols were transformed into different molecular scaffolds in good yields with high selectivity through Lewis acid mediated NaBH4 reduction, aza-Wittig and Staudinger reaction (azide reduction), followed by oxidative cyclizations, allenone synthesis, and click reaction, respectively. Chiral LLB-A products might become suitable starting materials for the total synthesis of natural products, ingredients, and inhibitors in medicinal chemistry. The mechanistic synergy of L-DMTC with TFA to increase the rate and selectivity of LLB-A reaction in DMSO-D6 is explained with the controlled and online NMR experiments. PMID:26907463

  15. Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water—“silver mirror”: From stoichiometric to catalytic

    PubMed Central

    Liu, Mingxin; Wang, Haining; Zeng, Huiying; Li, Chao-Jun

    2015-01-01

    The first example of a homogeneous silver(I)-catalyzed aerobic oxidation of aldehydes in water is reported. More than 50 examples of different aliphatic and aromatic aldehydes, including natural products, were tested, and all of them successfully underwent aerobic oxidation to give the corresponding carboxylic acids in extremely high yields. The reaction conditions are very mild and greener, requiring only a very low silver(I) catalyst loading, using atmospheric oxygen as the oxidant and water as the solvent, and allowing gram-scale oxidation with only 2 mg of our catalyst. Chromatography is completely unnecessary for purification in most cases. PMID:26601150

  16. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using choline chloride-oxalic acid eutectic mixture as catalyst/solvent system.

    PubMed

    Khandelwal, Sarita; Rajawat, Anshu; Tailor, Yogesh Kumar; Kumar, Mahendra

    2014-01-01

    An efficient and environmentally benign domino protocol has been presented for the synthesis of structurally diverse spirooxindoles spiroannulated with pyranopyridopyrimidines, indenopyridopyrimidines, and chromenopyridopyrimidines involving three-component reaction of aminouracils, isatins and cyclic carbonyl compounds in deep eutectic solvent (choline chloride-oxalic acid: 1:1) which acts as efficient catalyst and environmentally benign reaction medium. The present protocol offers several advantages such as operational simplicity with easy workup, shorter reaction times excellent yields with superior atom economy and environmentally benign reaction conditions with the use of cost-effective, recyclable, non-toxic and bio-degradable DES as catalyst/solvent. PMID:25329839

  17. Cycloisomerization of acetylenic acids to γ-alkylidene lactones using a palladium(II) catalyst supported on amino-functionalized siliceous mesocellular foam.

    PubMed

    Nagendiran, Anuja; Verho, Oscar; Haller, Clémence; Johnston, Eric V; Bäckvall, Jan-E

    2014-02-01

    Cycloisomerization of various γ-acetylenic acids to their corresponding γ-alkylidene lactones by the use of a heterogeneous Pd(II) catalyst supported on amino-functionalized siliceous mesocellular foam is described. Substrates containing terminal as well as internal alkynes were cyclized in high to excellent yields within 2–24 h under mild reaction conditions. The protocol exhibited high regio- and stereoselectivity, favoring the exo-dig product with high Z selectivity. Moreover, the catalyst displayed excellent stability under the employed reaction conditions, as demonstrated by its good recyclability and low leaching. PMID:24467515

  18. Catalyst-Free Three-Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummerer-Type Rearrangement.

    PubMed

    Wang, Peng-Min; Pu, Fan; Liu, Ke-Yan; Li, Chao-Jun; Liu, Zhong-Wen; Shi, Xian-Ying; Fan, Juan; Yang, Ming-Yu; Wei, Jun-Fa

    2016-04-25

    A catalyst-free multicomponent CDC reaction is rarely reported, especially for the intermolecular tandem CDC cyclization, which represents an important strategy for constructing cyclic compounds. Herein, a three-component tandem CDC cyclization by a Pummerer-type rearrangement to afford biologically relevant isoindolinones from aromatic acids, amides, and DMSO, is described. This intermolecular tandem reaction undergoes a C(sp(2) )-H/C(sp(3) )-H cross-dehydrogenative coupling, C-N bond formation, and intramolecular amidation. A notable feature of this novel protocol is avoiding a catalyst and additive (apart from oxidant). PMID:26998754

  19. Selective Oxidation of 1,6-Hexanediol to 6-Hydroxycaproic Acid over Reusable Hydrotalcite-Supported Au-Pd Bimetallic Catalysts.

    PubMed

    Tuteja, Jaya; Nishimura, Shun; Choudhary, Hemant; Ebitani, Kohki

    2015-06-01

    Selective oxidation of 1,6-hexanediol into 6-hydroxycaproic acid was achieved over hydrotalcite-supported Au-Pd bimetallic nanoparticles as heterogeneous catalyst using aqueous H2 O2 . N,N-dimethyldodecylamine N-oxide (DDAO) was used as an efficient capping agent. Spectroscopic analyses by UV/Vis, TEM, XPS, and X-ray absorption spectroscopy suggested that interactions between gold and palladium atoms are responsible for the high activity of the reusable Au40 Pd60 -DDAO/HT catalyst. PMID:25990616

  20. Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel.

    PubMed

    Petronikolou, Nektaria; Nair, Satish K

    2015-11-19

    Transesterification of fatty acids yields the essential component of biodiesel, but current processes are cost-prohibitive and generate waste. Recent efforts make use of biocatalysts that are effective in diverting products from primary metabolism to yield fatty acid methyl esters in bacteria. These biotransformations require the fatty acid O-methyltransferase (FAMT) from Mycobacterium marinum (MmFAMT). Although this activity was first reported in the literature in 1970, the FAMTs have yet to be biochemically characterized. Here, we describe several crystal structures of MmFAMT, which highlight an unexpected structural conservation with methyltransferases that are involved in plant natural product metabolism. The determinants for ligand recognition are analyzed by kinetic analysis of structure-based active-site variants. These studies reveal how an architectural fold employed in plant natural product biosynthesis is used in bacterial fatty acid O-methylation. PMID:26526103