Science.gov

Sample records for solid fuels kiinteiden

  1. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  2. Solid oxide fuel cell generator

    DOEpatents

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  3. Solid oxide fuel cell generator

    DOEpatents

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  4. Solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Ackerman, J. P.

    Solid-Oxide Fuel Cell (SOFC) systems offer significant advantages for a variety of fuels and applications. The simplicity and high efficiency of a direct reforming, contaminant-tolerant power system is advantageous for small natural gas or volatile liquid-fueled utility and industrial congeneration plants, as well as residential use. The further gain in efficiency from the incorporation of a bottoming cycle in large-scale plants is advantageous for coal-fueled utility baseload or industrial cogeneration facilities. Development of SOFC components is well advanced. The present effort focuses on improving cell life and performance as well as integration of cells into an array.

  5. Solid Fuel Ramjet Combustor Design

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; George, Philmon

    1998-03-01

    Combustion aspects of solid fuel ramjet (SFRJ) are reviewed. On the point of view of the ability of an SFRJ to operate satisfactorily at all off-design conditions the areas of concern to propulsion system designer are (1) selection of a fuel type, (2) flame holding requirements that limit maximum fuel loading, (3) understanding the fuel regression rate behaviour as a function of flight speed and altitude, (4) diffusion-controlled combustion process and its efficiency enhancement, and (5) inlet/combustor matching. Considering these areas, the following aspects are reviewed from the information available in open literature: (1) different experimental set-up conditions adopted in combustor research, (2) various suitable fuel types, (3) flammability limits, (4) fuel regression rate behaviour, (5) methods of achieving high efficiency in metallized fuel, and (6) various modelling efforts. Detailed discussion is presented on two different types of regression rate mechanism in SFRJ: one that is controlled by the heat transfer processes downstream of the reattachment region and the other by that in the region itself. With a view to demonstrate the use of the information collected through this review, a preliminary design procedure is presented for an SFRJ-assisted gun launched projectile of pseudo-vacuum trajectory.

  6. Combustion engineering issues for solid fuel systems

    SciTech Connect

    Bruce Miller; David Tillman

    2008-05-15

    The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

  7. Solid fuel applications to transportation engines

    SciTech Connect

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  8. Energy properties of solid fossil fuels and solid biofuels

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  9. Interfacial material for solid oxide fuel cell

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  10. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  11. Combustion behavior of solid fuel ramjets

    NASA Technical Reports Server (NTRS)

    Netzer, D. W.; Binn, B. A.; Scott, W. E.; Metochianakis, M.

    1980-01-01

    Nonreacting flowfield characteristics and fundamental fuel properties are considered with respect to their use in estimating the obtainable combustion efficiency for fuels and/or combustor geometries. It is shown that near wall turbulence intensity in nonreacting flow appears to correlate reasonably well with the fuel regression pattern in identical geometries. The HTPB based fuels exhibit solid phase exothermic reactions in contrast to purely endothermic reactions for plexiglas. It is further shown that combustion pressure oscillations appear to be related to physically induced disturbances to the fluctuating shear layers at the fuel grain and aft mixing chamber inlets.

  12. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  13. Interconnection of bundled solid oxide fuel cells

    SciTech Connect

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  14. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  15. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Jet fuel based high pressure solid oxide fuel cell system

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2013-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  17. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  18. Solid-oxide fuel-cell performance

    SciTech Connect

    Fee, D.C.; Zwick, S.A.; Ackerman, J.P.

    1983-01-01

    Two models have been developed to describe the performance of solid-oxide fuel cells: (1) a cell model which calculates cell performance for various conditions of temperature, current density, and gas composition; and (2) a systems model which performs detailed heat and mass balances around each component in a power plant. The cell model provides insight into the performance tradeoffs in cell design. Further, the cell model provides the basis for predicting fuel cell performance in a power plant environment as necessary for the systems code. Using these two tools, analysis of an atmospheric pressure, natural gas fueled, internally reforming power plant confirms the simplicity and increased efficiency of a solid oxide fuel cell system compared to existing plants.

  19. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  20. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, Charles C.; Mrazek, Franklin C.

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  1. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  2. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  3. Solid recovered fuels in the steel industry.

    PubMed

    Kepplinger, Werner L; Tappeiner, Tamara

    2012-04-01

    By using waste materials as alternative fuels in metallurgical plants it is possible to minimize the traditionally used reducing agents, such as coke, coal, oil or natural gas. Moreover, by using waste materials in the metallurgical industry it is feasible to recover these materials as far as possible. This also represents another step towards environmental protection because carbon dioxide emissions can be reduced, if the H(2) content of the waste material is greater in comparison with that of the substituted fuel and the effects of global warming can therefore be reduced. In the present article various solid recovered fuels and their applications in the metallurgical industry are detailed. PMID:22086964

  4. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  5. Sealant materials for solid oxide fuel cells

    SciTech Connect

    Krumpelt, M.

    1995-08-01

    The objective of this work is to complete the development of soft glass-ceramic sealants for the solid oxide fuel cell (SOFC). Among other requirements, the materials must soften at the operation temperature of the fuel cell (600-1000{degrees}C) to relieve stresses between stack components, and their thermal expansions must be tailored to match those of the stack materials. Specific objectives included addressing the needs of industrial fuel cell developers, based on their evaluation of samples we supply, as well as working with commercial glass producers to achieve scaled-up production of the materials without changing their properties.

  6. Mathematical modeling of solid oxide fuel cells

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  7. Solid oxide fuel cell process and apparatus

    DOEpatents

    Cooper, Matthew Ellis; Bayless, David J.; Trembly, Jason P.

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  8. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  9. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  10. Thermal dissolution of solid fossil fuels

    SciTech Connect

    E.G. Gorlov

    2007-10-15

    The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

  11. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  12. Generator configuration for solid oxide fuel cells

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  13. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  14. Solid Surface Combustion Experiment: Thick Fuel Results

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Bhattacharjee, Subrata; West, Jeff; Tang, Lin; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The results of experiments for spread over polymethylmethacrylate, PMMA, samples in the microgravity environment of the Space Shuttle are described. The results are coupled with modelling in an effort to describe the physics of the spread process for thick fuels in a quiescent, microgravity environment and uncover differences between thin and thick fuels. A quenching phenomenon not present for thin fuels is delineated, namely the fact that for thick fuels the possibility exists that, absent an opposing flow of sufficient strength to press the flame close enough to the fuel surface to allow the heated layer in the solid to develop, the heated layer fails to become 'fully developed.' The result is that the flame slows, which in turn causes an increase in the relative radiative loss from the flame, leading eventually to extinction. This potential inability of a thick fuel to develop a steady spread rate is not present for a thin fuel because the heated layer is the fuel thickness, which reaches a uniform temperature across the thickness relatively rapidly.

  15. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  16. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  17. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  18. Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect

    J. Weber

    2001-12-12

    Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market.

  19. Intermediate temperature solid oxide fuel cells.

    PubMed

    Brett, Daniel J L; Atkinson, Alan; Brandon, Nigel P; Skinner, Stephen J

    2008-08-01

    High temperature solid oxide fuel cells (SOFCs), typified by developers such as Siemens Westinghouse and Rolls-Royce, operate in the temperature region of 850-1000 degrees C. For such systems, very high efficiencies can be achieved from integration with gas turbines for large-scale stationary applications. However, high temperature operation means that the components of the stack need to be predominantly ceramic and high temperature metal alloys are needed for many balance-of-plant components. For smaller scale applications, where integration with a heat engine is not appropriate, there is a trend to move to lower temperatures of operation, into the so-called intermediate temperature (IT) range of 500-750 degrees C. This expands the choice of materials and stack geometries that can be used, offering reduced system cost and, in principle, reducing the corrosion rate of stack and system components. This review introduces the IT-SOFC and explains the advantages of operation in this temperature regime. The main advances made in materials chemistry that have made IT operation possible are described and some of the engineering issues and the new opportunities that reduced temperature operation affords are discussed. This tutorial review examines the advances being made in materials and engineering that are allowing solid oxide fuel cells to operate at lower temperature. The challenges and advantages of operating in the so-called 'intermediate temperature' range of 500-750 degrees C are discussed and the opportunities for applications not traditionally associated with solid oxide fuel cells are highlighted. This article serves as an introduction for scientists and engineers interested in intermediate temperature solid oxide fuel cells and the challenges and opportunities of reduced temperature operation. PMID:18648682

  20. Stability of solid oxide fuel cell materials

    SciTech Connect

    Armstrong, T.R.; Bates, J.L.; Chick, L.A.

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  1. ClampOn acoustic solid fuel monitor

    SciTech Connect

    Vesterhus, T.

    1999-07-01

    The general idea of the project is to develop a ClampOn Solid Fuel Monitor, enabling optimization of the combustion process in pulverized coal fired boilers. The development will be based on adapting existing technology for measuring the content of sand particles in a flow of natural gas. The Norwegian firm ClampOn AS develops equipment for such measurements, and has already a proven track record as a result of its work with major oil companies throughout the world. The industry wants some sort of fuel indicator, e.g. a piece of equipment that enables the operator to measure and control the amounts of the fuel to each individual burner. The best techniques available today--as far as the author knows--can only offer samples of the fuel stream at discrete points of time. To truly optimize the combustion process, it is vital to continuously monitor the mass of fuel to each burner, and optimize the combustion process through continuous and infinitesimal adjustments of the fuel flow. This will minimize the NO{sub x} created by uneven temperature-distribution in the combustion chamber. In this way maximum power generation can be obtained at minimal emission of pollutants for a given amount of coal burned.

  2. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  3. Solid Polymer Electrolyte Fuel Cell Technology Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  4. Producing usable fuel from municipal solid waste

    NASA Astrophysics Data System (ADS)

    Ohlsson, O. O.

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  5. Producing usable fuel from municipal solid waste

    SciTech Connect

    Ohlsson, O.O.

    1995-03-01

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  6. Gasification of ash-containing solid fuels

    SciTech Connect

    Moss, G.

    1983-03-01

    Ash-contaminated solid or semi-solid fuel is passed into the bottom zone of a fluidized bed gasifier, preferably containing cao to fix labile sulfur moieties, and gasified at a temperature below the ash-softening point. The resulting char and ash of relatively low size and/or weight pass to a top zone of the bed wherein the char is gasified at a temperature above the ash-softening point whereby a substantial proportion of the ash sticks to and agglomerates with solids in the top zone until the particle size and/or weight of the resulting agglomerates causes them to sink to the bottom of the gasifier from where they can be recovered. The hot gases leaving the top of the gasifying bed have a reduced burden of entrained ash, and may be cooled to prevent any entrained ash adhering to downstream equipment through which the gases pass.

  7. Computational modeling of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Penmetsa, Satish Kumar

    In the ongoing search for alternative and environmentally friendly power generation facilities, the solid oxide fuel cell (SOFC) is considered one of the prime candidates for the next generation of energy conversion devices due to its capability to provide environmentally friendly and highly efficient power generation. Moreover, SOFCs are less sensitive to composition of fuel as compared to other types of fuel cells, and internal reforming of the hydrocarbon fuel cell can be performed because of higher operating temperature range of 700°C--1000°C. This allows us to use different types of hydrocarbon fuels in SOFCs. The objective of this study is to develop a three-dimensional computational model for the simulation of a solid oxide fuel cell unit to analyze the complex internal transport mechanisms and sensitivity of the cell with different operating conditions, and also to develop SOFC with higher operating current density with a more uniform gas distributions in the electrodes and with lower ohmic losses. This model includes mass transfer processes due to convection and diffusion in the gas flow channels based on the Navier-Stokes equations as well as combined diffusion and advection in electrodes using Brinkman's hydrodynamic equation and associated electrochemical reactions in the trilayer of the SOFC. Gas transport characteristics in terms of three-dimensional spatial distributions of reactant gases and their effects on electrochemical reactions at the electrode-electrolyte interface, and in the resulting polarizations, are evaluated for varying pressure conditions. Results show the significance of the Brinkman's hydrodynamic model in electrodes to achieve more uniform gas concentration distributions while using a higher operating pressure and over a higher range of operating current densities.

  8. Open end protection for solid oxide fuel cells

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Tomlins, Gregory W.; Toms, James M.; Folser, George R.; Schmidt, Douglas S.; Singh, Prabhakar; Hager, Charles A.

    2001-01-01

    A solid oxide fuel cell (40) having a closed end (44) and an open end (42) operates in a fuel cell generator (10) where the fuel cell open end (42) of each fuel cell contains a sleeve (60, 64) fitted over the open end (42), where the sleeve (60, 64) extends beyond the open end (42) of the fuel cell (40) to prevent degradation of the interior air electrode of the fuel cell by fuel gas during operation of the generator (10).

  9. Solid Acid Fuel Cell Stack for APU Applications

    SciTech Connect

    Duong, Hau H.

    2011-04-15

    Solid acid fuel cell technology affords the opportunity to operate at the 200-300 degree centigrade regime that would allow for more fuel flexibility, compared to polymer electrode membrane fuel cell, while avoiding the relatively more expensive and complex system components required by solid oxide fuel cell. This project addresses many factors such as MEA size scalability, fuel robustness, stability, etc., that are essential for successful commercialization of the technology.

  10. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  11. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  12. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, B.

    1988-04-22

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.

  13. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  14. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  15. Solid fuel volatilization to produce synthesis gas

    SciTech Connect

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  16. Tubular solid oxide fuel cell development program

    SciTech Connect

    1995-08-01

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  17. Solid fuel grindability: a literature review

    SciTech Connect

    Hills, L.

    2007-07-01

    The most commonly used measurement of coal grindability is the Hardgrove Grindability Index (HGI) however, many solid fuels do not exhibit the grinding performance predicted by this index. Parameters which can influence grindability and possibly lead to inaccurate prediction of grindability as determined by HGI include: composition and texture, mineral components, brittleness, and rank (which establishes carbon, volatile matter, and moisture contents). Descriptions of these parameters are provided. Alternative measurements of grindability from literature are presented. The most promising may be a revision on the standard HGI, in which a mill capacity factor is derived from the number of mill rotations to crush coal to a specific fineness. 88 refs.

  18. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  19. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  20. Monolithic Solid Oxide Fuel Cell development

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; McPheeters, C. C.

    1989-12-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  1. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, Brian

    1990-01-01

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  2. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  3. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  4. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  5. Energy storage in ultrathin solid oxide fuel cells.

    PubMed

    Van Overmeere, Quentin; Kerman, Kian; Ramanathan, Shriram

    2012-07-11

    The power output of hydrogen fuel cells quickly decreases to zero if the fuel supply is interrupted. We demonstrate thin film solid oxide fuel cells with nanostructured vanadium oxide anodes that generate power for significantly longer time than reference porous platinum anode thin film solid oxide fuel cells when the fuel supply is interrupted. The charge storage mechanism was investigated quantitatively with likely identified contributions from the oxidation of the vanadium oxide anode, its hydrogen storage properties, and different oxygen concentration at the electrodes. Fuel cells capable of storing charge even for short periods of time could contribute to ultraminiaturization of power sources for mobile energy. PMID:22712483

  6. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  7. Solid oxide fuel cell power system development

    SciTech Connect

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  8. Plasma-aided solid fuel combustion

    SciTech Connect

    E.I. Karpenko; V.E. Messerle; A.B. Ustimenko

    2007-07-01

    Plasma supported solid fuel combustion is promising technology for use in thermal power plants (TPP). The realisation of this technology comprises two main steps. The first is the execution of a numerical simulation and the second involves full-scale trials of plasma supported coal combustion through plasma-fuel systems (PFS) mounted on a TPP boiler. For both the numerical simulation and the full-scale trials, the boiler of 200 MW power of Gusinoozersk TPP (Russia) was selected. The optimization of the combustion of low-rank coals using plasma technology is described, together with the potential of this technology for the general optimization of the coal burning process. Numerical simulation and full-scale trials have enabled technological recommendations for improvement of existing conventional TPP to be made. PFS have been tested for boilers plasma start-up and flame stabilization in different countries at 27 power boilers steam productivity of 75-670 tons per hour (TPH) equipped with different type of pulverised coal burners. At PFS testing power coals of all ranks (brown, bituminous, anthracite and their mixtures) were used. Volatile content of them varied from 4 to 50%, ash from 15 to 48% and calorific values from 6700 to 25,100 KJ/kg. In summary, it is concluded that the developed and industrially tested PFS improve coal combustion efficiency and decrease harmful emission from pulverised coal-fired TPP. 9 refs., 14 figs., 2 tabs.

  9. Nanostructured Solid Oxide Fuel Cell Electrodes

    SciTech Connect

    Sholklapper, Tal Zvi

    2007-12-15

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  10. Nanotubular array solid oxide fuel cell.

    PubMed

    Motoyama, Munekazu; Chao, Cheng-Chieh; An, Jihwan; Jung, Hee Joon; Gür, Turgut M; Prinz, Friedrich B

    2014-01-28

    This report presents a demonstration and characterization of a nanotubular array of solid oxide fuel cells (SOFCs) made of one-end-closed hollow tube Ni/yttria-stabilized zirconia/Pt membrane electrode assemblies (MEAs). The tubular MEAs are nominally ∼5 μm long and have <500 nm outside diameter with total MEA thickness of nearly 50 nm. Open circuit voltages up to 660 mV (vs air) and power densities up to 1.3 μW cm(-2) were measured at 550 °C using H2 as fuel. The paper also introduces a fabrication methodology primarily based on a template process involving atomic layer deposition and electrodeposition for building the nanotubular MEA architecture as an important step toward achieving high surface area ultrathin SOFCs operating in the intermediate to low-temperature regime. A fabricated nanotubular SOFC theoretically attains a 20-fold increase in the effective surface, while projections indicate the possibility of achieving up to 40-fold. PMID:24266776

  11. Alternative materials for solid oxide fuel cells

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.

    1994-08-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal, and electrochemical properties. A second objective is to develop synthesis and fabrication methods for these materials whereby they can be processed in air into SOFCs. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFCs, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions. This paper summarizes a comprehensive study that assessed the effect of ambient oxygen partial pressure on the stability of air-sinterable chromites and the sintering behavior of doped lanthanum manganites.

  12. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  13. Intermediate Temperature Solid Oxide Fuel Cell Development

    SciTech Connect

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  14. Tubular screen electrical connection support for solid oxide fuel cells

    DOEpatents

    Tomlins, Gregory W.; Jaszcar, Michael P.

    2002-01-01

    A solid oxide fuel assembly is made of fuel cells (16, 16', 18, 24, 24', 26), each having an outer interconnection layer (36) and an outer electrode (28), which are disposed next to each other with rolled, porous, hollow, electrically conducting metal mesh conductors (20, 20') between the fuel cells, connecting the fuel cells at least in series along columns (15, 15') and where there are no metal felt connections between any fuel cells.

  15. Solid state lift for micrometering in a fuel injector

    DOEpatents

    Milam, David M.; Carroll, Thomas S.; Lee, Chien-Chang; Miller, Charles R.

    2002-01-01

    A fuel injector performs main fuel injection by raising fuel pressure in a nozzle chamber to lift a check valve member to a fully open position, and performs preinjection or microinjection by operating a solid state motor to lift the check valve member a much smaller distance.

  16. Stability of solid oxide fuel cell materials

    SciTech Connect

    Armstrong, T.R.; Bates, J.L.; Coffey, G.W.; Pederson, L.R.

    1996-08-01

    Chromite interconnection materials in an SOFC are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. Because such conditions could lead to component failure, the authors have evaluated thermal, electrical, chemical, and structural stabilities of these materials as a function of temperature and oxygen partial pressure. The crystal lattice of the chromites was shown to expand for oxygen partial pressures smaller than 10{sup {minus}10} atm, which could lead to cracking and debonding in an SOFC. Highly substituted lanthanum chromite compositions were the most susceptible to lattice expansion; yttrium chromites showed better dimensional stability by more than a factor of two. New chromite compositions were developed that showed little tendency for lattice expansion under strongly reducing conditions, yet provided a good thermal expansion match to other fuel cell components. Use of these new chromite interconnect compositions should improve long-term SOFC performance, particularly for planar cell configurations. Thermodynamic properties of substituted lanthanum manganite cathode compositions have been determined through measurement of electromotive force as a function of temperature. Critical oxygen decomposition pressures for Sr and Ca-substituted lanthanum manganites were established using cells based on a zirconia electrolyte. Strontium oxide and calcium oxide activities in a lanthanum manganite matrix were determined using cells based on strontium fluoride and calcium fluoride electrolytes, respectively. The compositional range of single-phase behavior of these ABO{sub 3}-type perovskites was established as a function of A/B cation ratios and the extent of acceptor doping. Before this work, very little thermodynamic information was in existence for substituted manganite compositions. Such information is needed to predict the long-term stability of solid oxide fuel cell assemblies.

  17. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  18. Low NOx nozzle tip for a pulverized solid fuel furnace

    SciTech Connect

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  19. Stack configurations for tubular solid oxide fuel cells

    SciTech Connect

    Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  20. Recent anode advances in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Chunwen; Stimming, Ulrich

    Solid oxide fuel cells (SOFCs) are electrochemical reactors that can directly convert the chemical energy of a fuel gas into electrical energy with high efficiency and in an environment-friendly way. The recent trends in the research of solid oxide fuel cells concern the use of available hydrocarbon fuels, such as natural gas. The most commonly used anode material Ni/YSZ cermet exhibits some disadvantages when hydrocarbons were used as fuels. Thus it is necessary to develop alternative anode materials which display mixed conductivity under fuel conditions. This article reviews the recent developments of anode in SOFCs with principal emphasis on the material aspects. In addition, the mechanism and kinetics of fuel oxidation reactions are also addressed. Various processes used for the cost-effective fabrication of anode have also been summarized. Finally, this review will be concluded with personal perspectives on the future research directions of this area.

  1. Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hurst, Janet B.; Choi, Sung R.

    2007-01-01

    A material consisting of a barium calcium aluminosilicate glass reinforced with 4 weight percent of boron nitride nanotubes (BNNTs) has shown promise for use as a sealant in planar solid oxide fuel cells (SOFCs).

  2. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  3. Recommended guidelines for solid fuel use in cement plants

    SciTech Connect

    Young, G.L.; Jayaraman, H.; Tseng, H.

    2007-07-01

    Pulverized solid fuel use at cement plants in North America is universal and includes bituminous and sub-bituminous coal, petroleum coke, and any combination of these materials. Provided are guidelines for the safe use of pulverized solid fuel systems in cement plants, including discussion of the National Fire Protection Association and FM Global fire and explosion prevention standards. Addressed are fire and explosion hazards related to solid fuel use in the cement industry, fuel handling and fuel system descriptions, engineering design theory, kiln system operations, electrical equipment, instrumentation and safety interlock issues, maintenance and training, and a brief review of code issues. New technology on fire and explosion prevention including deflagration venting is also presented.

  4. Solid fuel gasification in the global energy sector (a review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2015-07-01

    In the review of the Conference on Gasification of Solid Fuels, which was held on October 2013 by the United States, the commercial use of the most advanced coal gasification systems in the chemical and power industry is considered. Data on the projects of integrated solid fuel gasification combined-cycle plants, either being developed or exploited in the United States, as well as the nature and results performed in specialized organizations to improve the existing gasification equipment and systems, are presented.

  5. Symmetrical, bi-electrode supported solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  6. Solid-fuel cook stoves: Fuel efficiency and emissions testing--Austin

    EPA Science Inventory

    The World Health Organization estimates that approximately 1.6 million people prematurely die each year due to exposure to air pollutants from burning solid fuels for residential cooking and heating (WHO, 2010). Residential solid-fuel use accounts for approximately 25 percent of ...

  7. Lowering the temperature of solid oxide fuel cells.

    PubMed

    Wachsman, Eric D; Lee, Kang Taek

    2011-11-18

    Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy. PMID:22096189

  8. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  9. Connections for solid oxide fuel cells

    DOEpatents

    Collie, Jeffrey C.

    1999-01-01

    A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

  10. Apparatus and method for solid fuel chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  11. Plasma enhancement of combustion of solid fuels

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.

    2006-03-15

    Plasma fuel systems that increase the coal burning efficiency are discussed. The systems were tested for fuel oil-free startup of boilers and stabilizating a pulverized-coal flame in power-generating boilers equipped with different types of burner and burning all types of power-generating coal. Plasma ignition, thermochemical treatment of an air-fuel mixture prior to combustion, and its burning in a power-generating boiler were numerically simulated. Environmental friendliness of the plasma technology was demonstrated.

  12. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    SciTech Connect

    Hardy, John S.; Stevenson, Jeffry W.; Singh, Prabhakar; Mahapatra, Manoj K.; Wachsman, E. D.; Liu, Meilin; Gerdes, Kirk R.

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  13. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  14. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  15. Solid-oxide fuel cell electrolyte

    DOEpatents

    Bloom, Ira D.; Hash, Mark C.; Krumpelt, Michael

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  16. Application of Vacuum Deposition Methods to Solid Oxide Fuel Cells

    SciTech Connect

    Pederson, Larry R.; Singh, Prabhakar; Zhou, Xiao Dong

    2006-07-01

    The application of vacuum deposition techniques to the fabrication of solid oxide fuel cell materials and structures are reviewed, focusing on magnetron sputtering, vacuum plasma methods, laser ablation, and electrochemical vapor deposition. A description of each method and examples of use to produce electrolyte, electrode, and/or electrical interconnects are given. Generally high equipment costs and relatively low deposition rates have limited the use of vacuum deposition methods in solid oxide fuel cell manufacture, with a few notable exceptions. Vacuum methods are particularly promising in the fabrication of micro fuel cells, where thin films of high quality and unusual configuration are desired.

  17. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  18. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  19. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  20. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  1. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  2. Electricity production from municipal solid waste using microbial fuel cells.

    PubMed

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed. PMID:27231132

  3. Thin-film solid-oxide fuel cells

    SciTech Connect

    Jankowski, A.F.

    1997-05-01

    Fuel cells are energy conversion devices that would save billions of dollars in fuel costs alone each year in the United States if they could be implemented today for stationary and transportation applications (1-5). There are a wide variety of fuel cells available, e.g. molten carbonate, phosphoric acid, proton exchange membrane and solid-oxide. However, solid-oxide fuel cells (SOFCS) are potentially more efficient and less expensive per kilowatt of power in comparison to other fuel cells. For transportation applications, the energy efficiency of a conventional internal combustion engine would be increased two-fold as replaced with a zero-emission SOFC. The basic unit of a SOFC consists of an anode and cathode separated by an oxygen-ion conducting, electrolyte layer. Manifolded stacks of fuel cells, with electrical interconnects, enable the transport and combination of a fuel and oxidant at elevated temperature to generate electrical current. Fuel cell development has proceeded along different paths based on the configuration of the anode-electrolyte-cathode. Various configurations include the tubular, monolithic and planar geometries. A planar geometry for the anode-electrolyte-cathode accompanied by a reduction in layer thickness offers the potential for high power density. Maximum power densities will require yet additional innovations in the assembly of fuel cell stacks with all of the manifolding stipulations for gas flow and electrical interconnects.

  4. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  5. Materials for Intermediate-Temperature Solid-Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Kilner, John A.; Burriel, Mónica

    2014-07-01

    Solid-oxide fuel cells are devices for the efficient conversion of chemical energy to electrical energy and heat. Research efforts are currently addressed toward the optimization of cells operating at temperatures in the region of 600°C, known as intermediate-temperature solid-oxide fuel cells, for which materials requirements are very stringent. In addition to the requirements of mechanical and chemical compatibility, the materials must show a high degree of oxide ion mobility and electrochemical activity at this low temperature. Here we mainly examine the criteria for the development of two key components of intermediate-temperature solid-oxide fuel cells: the electrolyte and the cathode. We limit the discussion to novel approaches to materials optimization and focus on the fluorite oxide for electrolytes, principally those based on ceria and zirconia, and on perovskites and perovskite-related families in the case of cathodes.

  6. Solid fuel cooking stoves: International directory

    SciTech Connect

    Not Available

    1981-02-01

    Optimal design and promotion of the use of fuel efficient cooking stoves demand continued interaction and exchange of information between researchers, extension workers, policy makers and others concerned with stove projects. The directory is aimed at listing all the known organisations in this area.

  7. Pressurized solid oxide fuel cell testing

    SciTech Connect

    Basel, R.A.; Pierre, J.F.

    1995-08-01

    The goals of the SOFC pressurized test program are to obtain cell voltage versus current (VI) performance data as a function of pressure; to evaluate the effects of operating parameters such as temperature, air stoichiometry, and fuel utilization on cell performance, and to demonstrate long term stability of the SOFC materials at elevated pressures.

  8. SYNTHETIC FUEL PRODUCTION FROM SOLID WASTES

    EPA Science Inventory

    The work described in this report has two objectives: first, to evaluate potential catalysts for the commercial practice of the gasification of chars produced by the pyrolysis of municipal or industrial wastes; second, to determine the potential for synthetic fuel production from...

  9. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  10. Process for separating water and solids from fuels

    SciTech Connect

    Filho, J.H.; Bachmann, D.L.

    1987-11-17

    A process for separating water and solid particles from a fuel oil feedstock is described comprising: subjecting the feedstock to a first separation in a scroll type centrifugal separator to form a first recovered fuel stream and an oil cake; subjecting at least the first recovered fuel stream to a second separation in a centrifugal disc separator to form a clean fuel stream, an oil-bearing water stream and a sludge stream; treating the oil-bearing water stream in a separator to recover the oil; treating the oil cake removed from the first separation with a solvent in order to form a suspension; mixing the suspension with the sludge stream to form a mixture; feeding the mixture to a filter press to yield a solid reject and a filtrate; separating the filtrate into a decantate and recovered oil; mixing at least a portion of the recovered oil with first recovered fuel stream to form a semi-cleaned fuel stream; and subjecting the semi-cleaned fuel stream to the second separation in a centrifugal disc separator to form the clean fuel stream.

  11. Apparatus for the pulverization and burning of solid fuels

    SciTech Connect

    Sayler, W.H.; White, J.C.

    1988-06-07

    This patent describes an apparatus for pulverizing coarsely-divided, solid fuel, such as coal, and for feeding the pulverized fuel to a burner. It comprises an upstanding housing having side, bottom and top walls; an upstanding shaft axially mounted for rotation within the housing; means for rotating the shaft; a slinger having an annular opening therethrough concentric with and closely encircling the shaft; fan means secured to the shaft immediately below the top wall of the housing; air-turbulating means comprising a pair of spiders; air-inlet means in the housing below the slinger so that air will flow upwardly through the annular opening as well as peripherally of the slinger, entraining fine solid fuel particles during passage through the housing interior for further pulverization by size attrition between the spiders; outlet means provided through the side of the housing adjacent to the fan means; and outlet means being adapted for connection with the burner; and solid fuel input mans leading into the housing and positioned to feed coarsely-divided solid fuel onto the slinger.

  12. Solid oxide fuel cell steam reforming power system

    DOEpatents

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  13. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  14. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  15. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  16. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  17. Contaminant effects in solid oxide fuel cells

    SciTech Connect

    Maskalisk, N.J.; Ray, E.R.

    1992-09-01

    Two full scale (50-cm length) SOFCS, each representative of generator cells in the field, were electrically connected in series; then operated at 1000{degrees}C and 350 mA/cm{sup 2}. An initial run of approximately 150 hours served to establish baseline performance in 89% H{sub 2}, 11% H{sub 2}0 fuel at 85% fuel utilization and 4 stoichs, air. Then, for approximately 200 hours, a similar base-line was established for operation in simulated coal gas fuel. Finally, the fuel impurity components were sequentially added. The cumulative effect on performance as shown in Table 3. These data reveal no strong association of cell resistance with cell performance change in the cases of NH{sub 3} and HCI. When H{sub 2}S is added, resistance increases account for a minor part of the 0.06V decline observed for each cell over the first 24 hours. However, cell resistances thereafter change linearly, along with linearly declining voltages. In this latter phase, resistance accounts for a major part of each observed cell voltage decline. The same two SOFCs were subsequently continued in operation, but at a moderately higher temperature, 1025{degrees}C. As Figure 2 demonstrates, No. 1 cell tended to decline more slowly, and No. 2 cell continued to decline at the same rate as before, when it was operating at 1OOO{degrees}C. Later operation, without impurities, at 1025{degrees}C for 450 hours served to improve performance and stabilize the cells. When operation at 1000{degrees}C resumed, the cell resistance trend lines returned to approximately the original R vs. t slopes observed during 0-500 hours on test, signifying cessation of impurity-related voltage degradation.

  18. Contaminant effects in solid oxide fuel cells

    SciTech Connect

    Maskalisk, N.J.; Ray, E.R.

    1992-01-01

    Two full scale (50-cm length) SOFCS, each representative of generator cells in the field, were electrically connected in series; then operated at 1000{degrees}C and 350 mA/cm{sup 2}. An initial run of approximately 150 hours served to establish baseline performance in 89% H{sub 2}, 11% H{sub 2}0 fuel at 85% fuel utilization and 4 stoichs, air. Then, for approximately 200 hours, a similar base-line was established for operation in simulated coal gas fuel. Finally, the fuel impurity components were sequentially added. The cumulative effect on performance as shown in Table 3. These data reveal no strong association of cell resistance with cell performance change in the cases of NH{sub 3} and HCI. When H{sub 2}S is added, resistance increases account for a minor part of the 0.06V decline observed for each cell over the first 24 hours. However, cell resistances thereafter change linearly, along with linearly declining voltages. In this latter phase, resistance accounts for a major part of each observed cell voltage decline. The same two SOFCs were subsequently continued in operation, but at a moderately higher temperature, 1025{degrees}C. As Figure 2 demonstrates, No. 1 cell tended to decline more slowly, and No. 2 cell continued to decline at the same rate as before, when it was operating at 1OOO{degrees}C. Later operation, without impurities, at 1025{degrees}C for 450 hours served to improve performance and stabilize the cells. When operation at 1000{degrees}C resumed, the cell resistance trend lines returned to approximately the original R vs. t slopes observed during 0-500 hours on test, signifying cessation of impurity-related voltage degradation.

  19. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  20. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOEpatents

    Ruka, Roswell J.; Vora, Shailesh D.

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  1. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  2. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  3. Solid Hydrogen Particles Analyzed for Atomic Fuels

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    Solid hydrogen particles have been selected as a means of storing atomic propellants in future launch vehicles (refs. 1 to 2). In preparation for this, hydrogen particle formation in liquid helium was tested experimentally. These experiments were conducted to visually characterize the particles and to observe their formation and molecular transformations (aging) while in liquid helium. The particle sizes, molecular transformations, and agglomeration times were estimated from video image analyses. The experiments were conducted at the NASA Glenn Research Center in the Supplemental Multilayer Insulation Research Facility (SMIRF, ref. 3). The facility has a vacuum tank, into which the experimental setup was placed. The vacuum tank prevented heat leaks and subsequent boiloff of the liquid helium, and the supporting systems maintained the temperature and pressure of the liquid helium bath where the solid particles were created. As the operation of the apparatus was developed, the hydrogen particles were easily visualized. The figures (ref. 1) show images from the experimental runs. The first image shows the initial particle freezing, and the second image shows the particles after the small particles have agglomerated. The particles finally all clump, but stick together loosely. The solid particles tended to agglomerate within a maximum of 11 min, and the agglomerate was very weak. Because the hydrogen particles are buoyant in the helium, the agglomerate tends to compact itself into a flat pancake on the surface of the helium. This pancake agglomerate is easily broken apart by reducing the pressure above the liquid. The weak agglomerate implies that the particles can be used as a gelling agent for the liquid helium, as well as a storage medium for atomic boron, carbon, or hydrogen. The smallest particle sizes that resulted from the initial freezing experiments were about 1.8 mm. About 50 percent of the particles formed were between 1.8 to 4.6 mm in diameter. These very

  4. Evaluation of solid oxide fuel cell systems for electricity generation

    NASA Technical Reports Server (NTRS)

    Somers, E. V.; Vidt, E. J.; Grimble, R. E.

    1982-01-01

    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.

  5. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  6. Nanofiber Scaffold for Cathode of Solid Oxide Fuel Cell

    SciTech Connect

    Zhi, Mingjia; Mariani, Nicholas; Gemmen, Randall; Gerdes, Kirk; Wu, Nianqiang

    2010-10-01

    A high performance solid oxide fuel cell cathode using the yttria-stabilized zirconia (YSZ) nanofibers scaffold with the infiltrated La1-xSrxMnO3 (LSM) shows an enhanced catalytic activity toward oxygen reduction. Such a cathode offers a continuous path for charge transport and an increased number of triple-phase boundary sites.

  7. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  8. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  9. Comparative Study of the Thermal Conductivity of Solid Biomass Fuels

    PubMed Central

    2016-01-01

    The thermal conductivity of solid biomass fuels is useful information in the investigation of biomass combustion behavior and the development of modeling especially in the context of large scale power generation. There are little published data on the thermal conductivity of certain types of biomass such as wheat straw, miscanthus, and torrefied woods. Much published data on wood is in the context of bulk materials. A method for determining the thermal conductivities of small particles of biomass fuels has been developed using a custom built test apparatus. Fourteen different samples of various solid biomass fuel were processed to form a homogenized pellet for analysis. The thermal conductivities of the pelletized materials were determined and compared against each other and to existing data. PMID:27041819

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  11. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  12. Stationary market applications potential of solid oxide and solid polymer fuel cell systems

    SciTech Connect

    Baker, J.N.; Fletcher, W.H.

    1996-12-31

    The UK DTI`s Advanced Fuel Cells Programme currently focuses on two main fuel cell technologies, namely the solid oxide and solid polymer systems (SOFC and SPFC), respectively. The provision of accurate and timely market data is regarded as an important part of the overall programme objectives, such as to assist both Government and industry in their appraisals of the technologies. The present study was therefore commissioned against this background, with a complementary study addressing transportation and mobile applications. The results reported herein relate to the stationary market applications potential of both SOFC and SPFC systems.

  13. Gasoline-fueled solid oxide fuel cell using MoO2-Based Anode

    NASA Astrophysics Data System (ADS)

    Hou, Xiaoxue; Marin-Flores, Oscar; Kwon, Byeong Wan; Kim, Jinsoo; Norton, M. Grant; Ha, Su

    2014-12-01

    This short communication describes the performance of a solid oxide fuel cell (SOFC) fueled by directly feeding premium gasoline to the anode without using external reforming. The novel component of the fuel cell that enables such operation is the mixed conductivity of MoO2-based anode. Using this anode, a fuel cell demonstrating a maximum power density of 31 mW/cm2 at 0.45 V was successfully fabricated. Over a 24 h period of operation, the open cell voltage remained stable at ∼0.92 V. Scanning electron microscopy (SEM) examination of the anode surface pre- and post-testing showed no evidence of coking.

  14. Status of solid polymer fuel cell system development

    NASA Astrophysics Data System (ADS)

    Shoesmith, J. P.; Collins, R. D.; Oakley, M. J.; Stevenson, D. K.

    1994-04-01

    Solid polymer fuel cell (SPFC) systems are expected to see service in a wide variety of applications, including road vehicles, trains, ships, undersea power, and small scale stationary power generation. Each application brings unique requirements in terms of fuel, power, efficiency, volume and weight and, consequently, SPFC systems are expected to take a variety of forms. This paper reviews the development issues which must be resolved before SPFC systems can enter commercial service. It includes the results of system studies completed by Rolls-Royce and Associates during the last two years. Development priorities are highlighted, particularly for the stack and fuel processing system. Results of the testing of a novel compact fuel processing system are presented.

  15. Nondestructive characterization methods for monolithic solid oxide fuel cells

    SciTech Connect

    Ellingson, W.A.

    1993-01-01

    Monolithic solid oxide fuel cells (MSOFCS) represent a potential breakthrough in fuel cell technology, provided that reliable fabrication methods can be developed. Fabrication difficulties arise in several steps of the processing: First is the fabrication of uniform thin (305 {mu}m) single-layer and trilayer green tapes (the trilayer tapes of anode/electrolyte/cathode and anode/interconnect/cathode must have similar coefficients of thermal expansion to sinter uniformly and to have the necessary electrochemical properties); Second is the development of fuel and oxidant channels in which residual stresses are likely to develop in the tapes; Third is the fabrication of a ``complete`` cell for which the bond quality between layers and the quality of the trilayers must be established; and Last, attachment of fuel and oxidant manifolds and verification of seal integrity. Purpose of this report is to assess nondestructive characterization methods that could be developed for application to laboratory, prototype, and full-scale MSOFCs.

  16. Novel Low Temperature Solid State Fuel Cells

    SciTech Connect

    Chen, Chonglin; Nash, Patrick; Liu, Jian; Collins, Gregory

    2009-12-15

    We have successfully fabricated (PrBa)Co{sub 2}O{sub 5+{delta}} and (LaBa)Co{sub 2}O{sub 5+{deleta}} epitaxial thin film on various single crystal substrates. Physical and electrochemical properties characterizations were carried out. Highly conductive oxygen-deficient double perovskite LnBaCo2O5+? thin films were grown on single crystal (001) SrTiO{sub 3} (STO), (001) MgO, (001) LaAlO{sub 3} and (110) NdGaO{sub 3} substrate by pulsed laser deposition. Microstructure studies from synchrotron X-ray diffraction and Transmission electron microscopy. High temperature transport properties was carried in different atmosphere (O{sub 2},Air, N{sub 2}) up to ~900K. Resistance response of (LaBa)Co{sub 2}O{sub 5+{delta}} epitaxial thin film was characterized in oxygen, nitrogen and 4% hydrogen over a wide range of temperature from 400�C up to 800�C. To determine the electrode performance and oxygen exchange kinetics of PrBaCo{sub 2}O{sub 5+{delta}}, multi-layered thin film based half cell was deposited on LaAlO{sub 3}(001) substrate. The temperature dependence of the resistance of this half ?cell structure was characterized by electrochemical impedance spectroscopy (EIS) within different temperature and gas environments. Anode supported fuel cells, with GCO:YSZ multilayer thin film as electrolyte and PBCO thin film as electrode, are fabricated on tape casted NiO/YSZ substrate. Full cell performance is characterized up to 800�C.

  17. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II

  18. Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells.

    PubMed

    Pomfret, Michael B; Demircan, Oktay; Sukeshini, A Mary; Walker, Robert A

    2006-09-01

    Solid oxide fuel cells (SOFCs) are electrochemical devices that rely on ion migration through a solid-state electrolyte to oxidize fuel and produce electricity. The present study employs Fourier transform infrared spectroscopy to quantify the exhaust of an SOFC operating with fuel flows of methane over Ni/YSZ cermet anodes and butane over Ni/YSZ and Cu/CeO2/YSZ cermet anodes. Data show that hydrocarbon fuels can participate in a variety of different reactions including direct electrochemical oxidation, various reforming processes, and surface-catalyzed carbon deposition. These findings have direct consequences for assessing the environmental impact of SOFCs in terms of the exhaust discharged from devices operating with common hydrocarbon fuel feeds. In the work presented below, a measure of fuel oxidation efficiency is found by comparing the partial pressure of CO2 (P(CO2)) in the SOFC exhaust to the partial pressure of CO (P(CO)). The fuel anode combination with the largest P(CO2)/P(CO) ratio is the C4H10 over Cu/CeO2 combination (0.628 +/- 0.016). The CH4 over Ni cell type has the second highest ratio (0.486 +/- 0.023). The C4H10 over Ni cell type gives a ratio of 0.224 +/- 0.001. Attempts to balance the carbon content of the fuel feed and exhaust lead to predictions of SOFC fuel oxidation mechanisms. PMID:16999142

  19. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  20. System for operating solid oxide fuel cell generator on diesel fuel

    NASA Technical Reports Server (NTRS)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  1. Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project

    SciTech Connect

    Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

    2009-11-14

    The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

  2. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. PMID:25568089

  3. Review on anode material development in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Siong @ Mahmud, Lily; Muchtar, Andanastuti; Somalu, Mahendra Rao

    2015-05-01

    New developments in technology require highly efficient, affordable, and green electrical energy. The materials to be used must also be reusable and environment friendly. These characteristics are among the major factors that may lead to the production of new and highly efficient power generation systems. Solid oxide fuel cells (SOFCs) have become major devices in producing electricity that emphasize the advance usage of material science and technological development. As part of the key elements of SOFCs, anodes have the primary function of stimulating the electrochemical oxidation of fuel. In this review, the progress in developing anode materials for SOFCs is briefly discussed.

  4. Modules for estimating solid waste from fossil-fuel technologies

    SciTech Connect

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  5. Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives

    SciTech Connect

    DeCorso, M.; Newby, R.; Anson, D.; Wenglarz, R.; Wright, I.

    1996-06-01

    This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

  6. New techniques for the characterization of refuse-derived fuels and solid recovered fuels.

    PubMed

    Rotter, Vera Susanne; Lehmann, Annekatrin; Marzi, Thomas; Möhle, Edda; Schingnitz, Daniel; Hoffmann, Gaston

    2011-02-01

    Solid recovered fuel (SRF) today refers to a waste-derived fuel meeting defined quality specifications, in terms of both origin (produced from non-hazardous waste) and levels of certain fuel properties. Refuse-derived fuel (RDF) nowadays is more used for unspecified waste after a basic processing to increase the calorific value and therefore this term usually refers to the segregated, high calorific fraction of municipal solid waste (MSW), commercial or industrial wastes. In comparison with conventional fuels, both types of secondary fuel show waste of inherently varying quality and an increased level of waste-specific contaminants.The transition from RDF to SRF in the emerging national and European market requires a quality assurance system with defined quality parameters and analytical methods to ensure reliable fuel characterization. However, due to the quality requirements for RDF and SRF, the current standardized analysis methods often do not meet these practical demands. Fast test methods, which minimize personnel, financial and time efforts and which are applicable for producers as well as users can be an important supporting tool for RDF- and SRF-characterization. Currently, a fast test system based on incineration and correlation analyses which enable the determination of relevant fuel parameters is under development. Fast test methods are not aimed at replacing current standardized test methods, but have to be considered as practical supporting tools for the characterization of RDF and SRF. PMID:20392788

  7. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  8. Determination of solid mass fraction in partially frozen hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Cotterell, E. M.; Mossadegh, R.; Bruce, A. J.; Moynihan, C. T.

    1986-01-01

    Filtration procedures alone are insufficient to determine the amounts of crystalline solid in a partially frozen hydrocarbon distillate fraction. This is due to the nature of the solidification process by which a large amount of liquid becomes entrapped within an interconnected crystalline structure. A technique has been developed to supplement filtration methods with an independent determination of the amount of liquid in the precipitate thereby revealing the actual value of mass percent crystalline solid, %S. A non-crystallizing dye is injected into the fuel and used as a tracer during the filtration. The relative concentrations of the dye in the filtrate and precipitate fractions is subsequently detected by a spectrophotometric comparison. The filtration apparatus was assembled so that the temperature of the sample is recorded immediately above the filter. Also, a second method of calculation has been established which allows significant reduction in test time while retaining acceptable accuracy of results. Data have been obtained for eight different kerosene range hydrocarbon fuels.

  9. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  10. New insights in Microbial Fuel Cells: novel solid phase anolyte.

    PubMed

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-01-01

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system. PMID:27375205

  11. New insights in Microbial Fuel Cells: novel solid phase anolyte

    PubMed Central

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-01-01

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system. PMID:27375205

  12. Method to fabricate high performance tubular solid oxide fuel cells

    SciTech Connect

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  13. New insights in Microbial Fuel Cells: novel solid phase anolyte

    NASA Astrophysics Data System (ADS)

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-07-01

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  14. Current status of Westinghouse tubular solid oxide fuel cell program

    SciTech Connect

    Parker, W.G.

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  15. Electrode Performance in Reversible Solid Oxide Fuel Cells

    SciTech Connect

    Marina, Olga A.; Pederson, Larry R.; Williams, Mark C.; Coffey, Greg W.; Meinhardt, Kerry D.; Nguyen, Carolyn D.; Thomsen, Ed C.

    2007-03-22

    The performance of several negative (fuel) and positive (air) electrode compositions for use in reversible solid oxide fuel cells (SOFC) that are capable of operating both as a fuel cell and as an electrolyzer was investigated in half-cell and full-cell tests. Negative electrode compositions studied were a nickel/zirconia cermet (Ni/YSZ) and lanthanum-substituted strontium titanate/ceria composite, whereas positive electrode compositions examined included mixed ion and electron-conducting lanthanum strontium ferrite (LSF), lanthanum strontium copper ferrite (LSCuF), lanthanum strontium cobalt ferrite (LSCoF), and lanthanum strontium manganite (LSM). While titanate/ceria and Ni/YSZ electrodes performed similarly in the fuel cell mode in half-cell tests, losses associated with electrolysis were lower for the titanate/ceria electrode. Positive electrodes all gave higher losses in the electrolysis mode when compared to the fuel cell mode. This behavior was most apparent for mixed-conducting LSF, LSCuF, and LSCoF electrodes, and discernible but smaller for LSM; observations are consistent with expected trends in the interfacial oxygen vacancy concentration under anodic and cathodic polarization. Full-cell tests conducted for cells with a thin electrolyte (7 um YSZ) similarly showed higher polarization losses in the electrolysis than fuel cell direction.

  16. Electrical contact structures for solid oxide electrolyte fuel cell

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

  17. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  19. Unsteady flame spread over solid fuels in microgravity

    NASA Astrophysics Data System (ADS)

    Bullard, D. B.; Tang, L.; Altenkirch, R. A.; Bhattacharjee, S.

    1993-07-01

    For flame spreading over solid fuels at microgravity in a quiescent environment, experimental, and computational, results show that the spread rate following ignition is steady because the leading edge of the flame itself establishes the flow field into which it spreads. Spreading into an opposing forced flow is inherently unsteady because of the changing character of the boundary-layer flow with location. The development of an unsteady flame spread model is presented and applied to thermally thick polymethylmethacrylate. The unsteady model is constructed such that interfacial phenomena, e.g., fuel surface reradiation, are accounted for as volumetric source terms in differential, conservation equations, so that the solid and gas fields may be treated simultaneously without iteration between phases. Care must be taken such that communication between the solid and gas at the interface is computed accurately. For forced flows with velocity much larger than the spread rate, radiative processes are unimportant, but for the lower flow rates, comparable to the spread rate, the opposite is true. Solutions for a quiescent environment are difficult to obtain. Conduction scales become large, and conduction heat transfer from the flame to the solid is reduced. Because of this, quiescent environment solutions could not be obtained without at least an approximate treatment of gas-phase, flame radiation.

  20. Yttria-stabilized zirconia solid oxide electrolyte fuel cells, monolithic solid oxide fuel cells

    SciTech Connect

    Not Available

    1989-01-01

    The MSOFC features of thin ceramic components, small cell size, and 1000{degree}C operating temperature combine to provide very high power densities of about 8 kW/kg or 4 kW/L for the MSOFC (fuel cell only, coflow version). This very high power density coupled with expected efficiencies of over 50 percent offers the possibility of successful competition with existing electrical generation systems. The ability of the MSOFC to reform hydrocarbon fuels within the fuel channels allows existing fuels and fuel distribution methods to be used with minor modifications for most applications. The power density of the MSOFC is high enough to meet the demands of many diverse applications such as aerospace, transportation, portable power systems, and micro-cogeneration systems, as well as more conventional utilities systems. The primary development challenge is to fabricate the MSOFC structure by co-sintering all four fuel cell materials into the corrugated honeycomb'' structure (stack). The objectives of the cost study are: To assess the manufacturing cost for the MSOFC assuming a nominal production rate of 200 MW/year for coal-based system applications. To define an integrated coal gasification MSOFC system with a potential for reducing plant heat rate and capital costs below 7,100 BTU/kWh and $1,300/kW, respectively.

  1. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell

  2. Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010

    PubMed Central

    Bonjour, Sophie; Adair-Rohani, Heather; Wolf, Jennyfer; Bruce, Nigel G.; Mehta, Sumi; Lahiff, Maureen; Rehfuess, Eva A.; Mishra, Vinod; Smith, Kirk R.

    2013-01-01

    Background: Exposure to household air pollution from cooking with solid fuels in simple stoves is a major health risk. Modeling reliable estimates of solid fuel use is needed for monitoring trends and informing policy. Objectives: In order to revise the disease burden attributed to household air pollution for the Global Burden of Disease 2010 project and for international reporting purposes, we estimated annual trends in the world population using solid fuels. Methods: We developed a multilevel model based on national survey data on primary cooking fuel. Results: The proportion of households relying mainly on solid fuels for cooking has decreased from 62% (95% CI: 58, 66%) to 41% (95% CI: 37, 44%) between 1980 and 2010. Yet because of population growth, the actual number of persons exposed has remained stable at around 2.8 billion during three decades. Solid fuel use is most prevalent in Africa and Southeast Asia where > 60% of households cook with solid fuels. In other regions, primary solid fuel use ranges from 46% in the Western Pacific, to 35% in the Eastern Mediterranean and < 20% in the Americas and Europe. Conclusion: Multilevel modeling is a suitable technique for deriving reliable solid-fuel use estimates. Worldwide, the proportion of households cooking mainly with solid fuels is decreasing. The absolute number of persons using solid fuels, however, has remained steady globally and is increasing in some regions. Surveys require enhancement to better capture the health implications of new technologies and multiple fuel use. PMID:23674502

  3. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  4. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  5. Design and quality assurance for solid recovered fuel.

    PubMed

    Lorber, Karl E; Sarc, Renato; Aldrian, Alexia

    2012-04-01

    This contribution describes the processing and the quality assurance of solid recovered fuel (SRF) that is increasingly used in a wide range of co-incineration plants. As an example, the preparation of municipal, commercial and industrial wastes for recovering of two different specifications of waste fuels (i.e. primary burner fuel and hot disc fuel used in cement industry) is reported and the multiple stage processing scheme used in SRF production is presented as well as the quality of SRF obtained. It will be shown, that removing of metals and sorting out of unwanted inert materials like stones, glass and concrete only after disintegration of the waste matrix during several crushing and separation steps can be carried out efficiently. In the following chapters, the quality assurance of SRF is demonstrated and described by using two different scenarios (i.e. different sizes of waste streams with different particle sizes, delivered to a cement plant by walking floor trucks). Based on CEN/TS-guidelines for SRF as well as national norms (ÖNORM), two sampling procedures and sample preparation schemes are elaborated for the scenarios and own practical experiences in quality assessment of heterogeneous waste fuels are reported. Finally, references are given on new, innovative laboratory equipment like cutting mills with attached cyclones and a mobile, hand-sized XRF-instrument for fast identification of extraneous materials removed from the laboratory sample prior to chemical analysis. PMID:22504629

  6. Compact hydrogen production systems for solid polymer fuel cells

    NASA Astrophysics Data System (ADS)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  7. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have

  8. Solid oxidized fuel cells seals leakage setup and testing

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.

    2004-01-01

    As the world s reserves of fossil fuels are depleted, the U.S. Government, as well as other countries and private industries, is researching solutions for obtaining power, answers that would be more efficient and environmentally friendly. For a long time engineers have been trying to obtain the benefits of clean electric power without heavy batteries or pollution-producing engines. While some of the inventions proved to be effective (i.e. solar panels or windmills) their applications are limited due to dependency on the energy source (i.e. sun or wind). Currently, as energy concerns increase, research is being carried out on the development of a Solid Oxide Fuel Cell (SOFC). The United States government is taking a proactive role in expanding the technology through the Solid State Energy Conversion Alliance (SECA) Program, which is coordinated by the Department of Energy. into an electrical energy. This occurs by the means of natural tendency of oxygen and hydrogen to chemically react. While controlling the process, it is possible to harvest the energy given off by the reaction. SOFCs use currently available fossil fuels and convert a variety of those fuels with very high efficiency (about 40% more efficient than modem thermal power plants). At the same time they are almost entirely nonpolluting and due to their size they can be placed in remote areas. The main fields where the application of the fuel cells appears to be the most useful for are stationary energy sources, transportation, and military applications. structure and materials must be resolved. All the components must be operational in harsh environments including temperatures reaching 800 C and cyclic thermal- mechanical loading. Under these conditions, the main concern is the requirement for hermetic seals to: (1) prevent mixing of the fuel and oxidant within the stack, (2) prevent parasitic leakage of the fuel from the stack, (3) prevent contamination of the anode by air leaking into the stack, (4

  9. Indoor air pollution from unprocessed solid fuels in developing countries.

    PubMed

    Kaplan, Charlotte

    2010-01-01

    Approximately half of the world's population relies on biomass (primarily wood and agricultural residues) or coal fuels (collectively termed solid fuels) for heating, lighting, and cooking. The incomplete combustion of such materials releases byproducts with well-known adverse health effects, hence increasing the risk of many diseases and death. Among these conditions are acute respiratory infections, chronic obstructive pulmonary disease, heart disease, stroke, lung cancer, cataracts and blindness, tuberculosis, asthma, and adverse pregnancy outcomes. The International Agency for Research on Cancer has classified the indoor combustion of coal emissions as Group 1, a known carcinogen to humans. Indoor air pollution exposure is greatest in individuals who live in rural developing countries. Interventions have been limited and show only mixed results. To reduce the morbidity and mortality from indoor air pollution, countermeasures have to be developed that are practical, efficient, sustainable, and economical with involvement from the government, the commercial sector, and individuals. This review focuses on the contribution of solid fuels to indoor air pollution. PMID:21038757

  10. Scalable nanostructured membranes for solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Masaru; Lai, Bo-Kuai; Ramanathan, Shriram

    2011-05-01

    The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800 °C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes. However, although proof-of-concept thin-film devices have been demonstrated, scaling up remains a significant challenge because large-area membranes less than ~100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm-2 at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

  11. Method for producing synthetic fuels from solid waste

    DOEpatents

    Antal, Jr., Michael J.

    1976-11-23

    Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.

  12. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    SciTech Connect

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  13. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    SciTech Connect

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid Electrolytes. Ionically

  14. AlliedSignal solid oxide fuel cell technology

    SciTech Connect

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K.

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  15. Planar solid oxide fuel cells: the Australian experience and outlook

    NASA Astrophysics Data System (ADS)

    Godfrey, Bruce; Föger, Karl; Gillespie, Rohan; Bolden, Roger; Badwal, S. P. S.

    Since 1992, Ceramic Fuel Cells (CFCL) has grown to what is now the largest focussed program globally for development of planar ceramic (solid oxide) fuel cell, SOFC, technology. A significant intellectual property position in know-how and patents has been developed, with over 80 people involved in the venture. Over $A60 million in funding for the activities of the company has been raised from private companies, government-owned corporations and government business-support programs, including from energy — particularly electricity — industry shareholders that can facilitate access to local markets for our products. CFCL has established state-of-the-art facilities for planar SOFC R&D, with their expansion and scaling-up to pilot manufacturing capability underway. We expect to achieve commercial introduction of our market-entry products in 2002, with prototype systems expected to be available from early 2001.

  16. Iron aluminide alloy container for solid oxide fuel cells

    DOEpatents

    Judkins, Roddie Reagan; Singh, Prabhakar; Sikka, Vinod Kumar

    2000-01-01

    A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

  17. The effect of chromium oxyhydroxide on solid oxide fuel cells.

    SciTech Connect

    Krumpelt, M.; Cruse, T. A.; Ingram, B. J.; Routbort, J. L.; Wang, S.; Salvador, P. A.; Chen, G.; Carnegie Mellon Univ.; NETL; Ohio Univ.

    2010-01-01

    Hexavalent chromium species like the oxyhydroxide, CrO{sub 2}(OH){sub 2}, or hexoxide, CrO{sub 3}, are electrochemically reduced to Cr{sub 2}O{sub 3} in solid oxide fuel cells and adversely affect the cell operating potentials. Using a narrowly focused beam from the Advanced Photon Source, such chromium oxide deposits were unequivocally identified in the active region of the cathode by X-ray diffraction, suggesting that the triple phase boundaries were partially blocked. Under fuel cell operating conditions, the reaction has an equilibrium potential of about 0.9 V and the rate of chromium oxide deposition is therefore dependent on the operating potential of the cell. It becomes diffusion limited after several hours of steady operation. At low operating potentials, lanthanum manganite cathodes begin to be reduced to MnO, which reacts with the chromium oxide to form the MnCr{sub 2}O{sub 4} spinel.

  18. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  19. Cost projections for planar solid oxide fuel cell systems

    SciTech Connect

    Krist, K.; Wright, J.D.; Romero, C.; Chen, Tan Ping

    1996-12-31

    The Gas Research Institute (GRI) is funding fundamental research on solid oxide fuel cells (SOFCs) that operate at reduced temperature. As part of this effort, we have carried out engineering analysis to determine what areas of research can have the greatest effect on the commercialization of SOFCs. Previous papers have evaluated the markets for SOFCs and the amount which a customer will be willing to pay for fuel cell systems or stacks in these markets, the contribution of materials costs to the total stack cost, and the benefits and design requirements associated with reduced temperature operation. In this paper, we describe the cost of fabricating SOFC stacks by different methods. The complete analysis is available in report form.

  20. Solid oxide fuel cell application in district cooling

    NASA Astrophysics Data System (ADS)

    Al-Qattan, Ayman; ElSherbini, Abdelrahman; Al-Ajmi, Kholoud

    2014-07-01

    This paper presents analysis of the performance of a combined cooling and power (CCP) system for district cooling. The cogeneration system is designed to provide cooling for a low-rise residential district of 27,300 RT (96 MWc). A solid oxide fuel cell (SOFC) generates electric power to operate chillers, and the exhaust fuel and heat from the SOFC run gas turbines and absorption chillers. Thermal energy storage is utilized to reduce system capacity. Part-load operation strategies target maximizing energy efficiency. The operation of the system is compared through an hourly simulation to that of packaged air-conditioning units typically used to cool homes. The CCP system with the district cooling arrangement improves the cooling-to-fuel efficiency by 346%. The peak power requirement is reduced by 57% (24 MW) and the total fuel energy is reduced by 54% (750 TJ y-1). The system cuts annual carbon dioxide emissions to less than half and reduces other harmful emissions. A cost analysis of the system components and operation resulted in a 53% reduction in the cost per ton-hour of cooling over traditional systems.

  1. Production of gaseous fuel by pyrolysis of municipal solid waste

    NASA Technical Reports Server (NTRS)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  2. Solid Rocket Fuel Constitutive Theory and Polymer Cure

    NASA Technical Reports Server (NTRS)

    Ream, Robert

    2006-01-01

    Solid Rocket Fuel is a complex composite material for which no general constitutive theory, based on first principles, has been developed. One of the principles such a relation would depend on is the morphology of the binder. A theory of polymer curing is required to determine this morphology. During work on such a theory an algorithm was developed for counting the number of ways a polymer chain could assemble. The methods used to develop and check this algorithm led to an analytic solution to the problem. This solution is used in a probability distribution function which characterizes the morphology of the polymer.

  3. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOEpatents

    Marchant, David D.; Bates, J. Lambert

    1984-01-01

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  4. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOEpatents

    Bates, J.L.; Marchant, D.D.

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In/sub 2/O/sub 3/. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  5. Recent advances in solid polymer electrolyte fuel cell technology

    SciTech Connect

    Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

    1988-01-01

    With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

  6. Glass Mica Composite Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-07-20

    A novel glass-mica composite seal was developed based on the previous concept of ''infiltrated'' mica seals for solid oxide fuel cells. A Ba-Al-Ca silicate sealing glass was mixed with mica flakes to form the glass-mica composite seals. The glass-mica composite seals were tested thermal cycle stability in terms of the high temperature leakage and compressive stresses. Post mortem analyses were used to characterize the fracture and leak path of the glass-mica composite seals.

  7. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  8. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  9. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    SciTech Connect

    Tao, Greg, G.

    2007-03-31

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  10. Compressive Mica Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.

    2006-08-01

    Sealing technology is currently considered a top priority task for planar solid oxide fuel cell stack development. Compressive mica seals are among the major candidates for sealing materials due to their thermal, chemical, and electrical properties. In this paper, a comprehensive study of mica seals will be presented. Two natural micas, Muscovite and Phlogopite, were investigated in either a monolithic single crystal sheet form or a paper form composed of discrete mica flakes. A ''hybrid'' mica seal, developed after identification of the major leak paths in compressive mica seals, demonstrated leak rates which were hundreds to thousands times lower than leak rates for conventional mica seals. The hybrid mica seals were further modified by infiltration with wetting materials; these ''infiltrated'' micas showed excellent thermal cycle stability with very low leak rates (10-3 sccm/cm). The micas were also subjected to studies to evaluate thermal stability in a reducing environment as well as the effect of compressive stresses on leak rates. In addition, long-term open circuit voltage measurements versus thermal cycling showed constant voltages over 1000 cycles. The comprehensive study clearly demonstrated the potential of compressive mica seals as sealing candidates for solid oxide fuel cells.

  11. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  12. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  13. Ultra-thin solid oxide fuel cells: Materials and devices

    NASA Astrophysics Data System (ADS)

    Kerman, Kian

    Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide

  14. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. PMID:23201905

  15. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  16. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    SciTech Connect

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  17. High temperature seals for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Parihar, Shailendra S.

    Solid Oxide Fuel cells (SOFCs) represent a clean and efficient alternative to existing methods of energy production. But, they need hermetic seals to prevent fuel-oxidant mixing within the stack. Glasses are attractive options for fabrication of these high temperature seals but suffer from their inherent brittleness and tend to crack during thermal cycling. In this study, an innovative concept of self-healing glass seals is developed to solve the problem of cracking of glasses in a SOFC seal. Rationale behind this concept is that a glass of suitable viscosity characteristics can flow and heal cracks at SOFC operating temperatures and thus can provide seals which can self-repair. A novel method, based on in-situ video imaging of cracks on the glass surface during high temperature treatment is developed and used to select and evaluate the suitability of different glasses for making self-healing seals. Promising glasses are studied experimentally to determine kinetics of healing of Vickers indented cracks at various temperatures. In addition, the effect of crystallization of glass on its healing kinetics is studied. A model is developed for crack healing behavior and is used to validate the experimental data. Studies on Cracks healing and crystallization of glasses showed that glasses with no crystallization tendency show fast crack healing response, whereas glasses which crystallize display sluggish healing. A glass displaying fast healing kinetics and good stability against crystallization is used to fabricate self healing glass seals for SOFCs. Seals fabricated using this glass not only remained hermetic but also maintained their self i healing ability for as long as 3000 hours at 800°C and 300 thermal cycles between room temperature and 800°C. These results clearly indicated that self-healing glasses are promising candidates for SOFC seals. Key words. Solid Oxide Fuel Cells, Glass Seals, Self-Healing Glasses, Seal Leak Testing.

  18. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    PubMed

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed. PMID:22467662

  19. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  20. Impact of anode microstructure on solid oxide fuel cells.

    PubMed

    Suzuki, Toshio; Hasan, Zahir; Funahashi, Yoshihiro; Yamaguchi, Toshiaki; Fujishiro, Yoshinobu; Awano, Masanobu

    2009-08-14

    We report a correlation between the microstructure of the anode electrode of a solid oxide fuel cell (SOFC) and its electrochemical performance for a tubular design. It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to yield a highly porous microstructure. The SOFC had a power density of greater than 1 watt per square centimeter at an operating temperature as low as 600 degrees C with a conventional zirconia-based electrolyte, a nickel cermet anode, and a lanthanum ferrite perovskite cathode material. The effect of the hydrogen fuel flow rate (linear velocity) was also examined for the optimization of operating conditions. Higher linear fuel velocity led to better cell performance for the cell with higher anode porosity. A zirconia-based cell could be used for a low-temperature SOFC system under 600 degrees C just by optimizing the microstructure of the anode electrode and operating conditions. PMID:19679808

  1. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  2. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  3. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, J.E.

    1985-05-20

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  4. 40 kW Stirling engine for solid fuel

    SciTech Connect

    Carlsen, H.; Ammundsen, N.; Traerup, J.

    1996-12-31

    The external combustion in a Stirling engine makes it very attractive for utilization of solid fuels in decentralized combined heat and power (CHP) plants. Only few projects have concentrated on the development of Stirling engines specifically for biomass. In this project a Stirling engine has been designed primarily for utilization of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurized crankcase so that dynamic seals are avoided. Grease lubricated bearings are used in a special designed crank mechanism, which eliminates guiding forces on the pistons Helium is used as working gas at 4 MPa mean pressure. The first test of the 40 kW engine with natural gas as fuel has been made in the laboratory, and the results are in agreement with predicted results from simulation programs. The wood chips combustion system has been tested for some time with very promising results. When the laboratory test of the engine is finished, the test of the complete system will be initiated. The paper describes the engine and results from the test program. Expectations to maintenance and operation problems are also discussed.

  5. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water.

    PubMed

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-01

    Hydrothermal treatments using subcritical water (HTSW) such as that at 234°C and 3MPa (LT condition) and 295°C and 8MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel. PMID:22104615

  6. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE

    SciTech Connect

    Hamid Farzan

    2001-09-24

    fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

  7. On the Piloted Ignition of Solid Fuels in Spacecraft Environments

    NASA Astrophysics Data System (ADS)

    Fereres-Rapoport, Sonya M.

    The effect of environmental variables on the ignition of solid combustible materials is explored through a combination of experimental, analytical and numerical analyses. This research stems from NASA's design requirement to reduce the cabin internal pressure and increase the oxygen concentration in human space vehicles and in future lunar habitats of the Constellation Program. These new environmental conditions may result in an increased fire risk of combustible solid materials due to higher flame temperatures (attributed to enhanced oxygen) and reduced convective heat losses from heated surfaces (attributed to reduced pressure). In particular, the influence of low pressure on ignition is emphasized here because little is known concerning this topic. A series of experiments conducted in a laboratory-scale combustion wind tunnel with externally irradiated samples of PMMA (polymethyl-methacrylate) showed that both the ignition delay time and the fuel mass flux at ignition decrease when the ambient pressure is lowered. An analytical model is used to identify the governing processes that lead to these results and then a numerical model is applied to quantify the influence of ambient variables (particularly pressure) on the piloted ignition of PMMA. The numerical model verifies the phenomenological explanations inferred from the experimental findings and the qualitative analytical results, and correctly simulates the thermo-physical mechanisms leading to ignition. It is concluded that reduced pressure environments result in: (1) smaller convective heat losses from the heated material to the surroundings due to a thickening of the thermal boundary layer next to the solid fuel surface, allowing for the material to heat more rapidly and pyrolyze faster; and, (2) a lower mass flux of volatiles required to reach the lean flammability limit of the gases at the pilot, leading to earlier ignition, due mainly to an enlarged boundary layer and a thicker fuel species profile

  8. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  9. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  10. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  11. Molten metal electrodes in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Javadekar, Ashay Dileep

    Molten metal electrodes in solid oxide fuel cells are electrochemically characterized for their possible use in direct carbon oxidation and energy storage. The cells were operated in the battery mode at 973 K, without added fuel, in order to understand the oxidation characteristics of Sb alloys as anodes at electrolyte interfaces. The cells using 50-mol% In-Sb and Sn-Sb mixtures exhibited open-circuit voltages (OCV) of 1.0 and 0.93 V, values similar to those of cells with pure In and Sn anodes respectively, and insulating In2O3 and SnO2 layers formed at the electrolyte interface. The 50-mol% Sb-Bi cell had an OCV of 0.73 V initially, close to that with pure Sb anode. The OCV remained constant until all of the Sb had been oxidized, after which it dropped to 0.43 V, similar to the value for pure Bi. SEM analysis of the spent cell showed two distinct phases, with metallic Bi at the bottom and Sb2O3 at the top. The cell with 50-mol% Sb-Pb anode exhibited an OCV that changed continuously with conversion, from 0.73 V initially to 0.67 V following the addition of charge equivalent to oxidation of 120% the Sb. The total cell impedance remained low for this entire period. EDS measurements on the sectioned Sb-Pb cell suggested formation of a mixed oxide of Pb and Sb. An energy-storage concept using molten Sb as the fuel in a reversible solid-oxide electrochemical cell was tested using a button cell with a Sc-stabilized zirconia electrolyte at 973 K, by measuring the impedances under fuel-cell and electrolyzer conditions for a range of stirred Sb-Sb2O 3 compositions. The Sb-Sb2O3 electrode impedances were found to be on the order of 0.15 ohm.cm2 for both fuel-cell and electrolyzer conditions, for compositions up to 30% Sb and 70% Sb2O3. The OCVs were 0.75 V, independent of conversion. The use of molten neat Ag and alloyed Ag-Sb for direct-carbon anodes in SOFCs has been examined at 1273 K. For Ag, an OCV typical of that expected for carbon oxidation, 1.12 V, was observed when

  12. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Feng; Ran, Ran; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-11-01

    In this study, pyridine was used to suppress the coke formation in solid oxide fuel cells (SOFCs) operating on liquid fuels. Pyridine can selectively occupy acidic sites of the Ni/Al2O3 catalyst layer and solves the problem of dehydration of ethanol in principle, resulting in a significant reduction in the coke formation rate for operating on ethanol fuel. At 600 °C, by adding 12.5 vol.% pyridine into the ethanol fuel, the coke formation rate over the Ni/Al2O3 catalyst is reduced by 64% while a cell power output comparable to that operating on hydrogen is still achieved based on total potential hydrogen available from ethanol. The effective reduction of carbon deposition on the catalyst layer thus protects the anode layer from carbon deposition by strongly suppressing coke formation, especially near the anode-electrolyte interface. Pyridine is adsorbed onto the acidic sites of the Ni/Al2O3 catalyst and the adsorbed pyridine may reduce the amount of carbonium ions formed, thereby reducing coke formation. This study suggested that the addition of pyridine could suppress the coke formation in SOFCs with Ni/Al2O3 catalyst layer operated on ethanol or some other similar liquid fuels.

  13. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    SciTech Connect

    Gug, JeongIn Cacciola, David Sobkowicz, Margaret J.

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  14. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  15. Functionally graded composite cathodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hart, N. T.; Brandon, N. P.; Day, M. J.; Lapeña-Rey, N.

    Functionally graded solid oxide fuel cell (SOFC) cathodes have been prepared from mixtures of strontium-doped lanthanum manganite (LSM) and gadolinia-doped ceria (CGO) using slurry spraying techniques. Similar samples were also prepared from mixtures of LSM and ytrria-stabilised zirconia (YSZ). A current collector comprising a mixture of LSM and strontium-doped lanthanum cobaltite (LSCO) was then applied to both cathode types. Samples were characterised using scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Characterisation using EIS techniques showed that cathodes incorporating CGO into the structure gave improved performance over those fabricated using YSZ. These performance gains were most noticeable as the temperature was decreased towards 700 °C, and were maintained during the testing of three cell membrane electrode assemblies fabricated to the Rolls-Royce design.

  16. Resilient Sealing Materials for Solid Oxide Fuel Cells

    SciTech Connect

    Signo T. Reis; Richard K. Brow

    2006-09-30

    This report describes the development of ''invert'' glass compositions designed for hermetic seals in solid oxide fuel cells (SOFC). Upon sealing at temperatures compatible with other SOFC materials (generally {le}900 C), these glasses transform to glass-ceramics with desirable thermo-mechanical properties, including coefficients of thermal expansion (CTE) over 11 x 10{sup -6}/C. The long-term (>four months) stability of CTE under SOFC operational conditions (e.g., 800 C in wet forming gas or in air) has been evaluated, as have weight losses under similar conditions. The dependence of sealant properties on glass composition are described in this report, as are experiments to develop glass-matrix composites by adding second phases, including Ni and YSZ. This information provides design-guidance to produce desirable sealing materials.

  17. Failure analysis of electrolyte-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  18. Technology assessment: Municipal solid waste as a utility fuel

    NASA Astrophysics Data System (ADS)

    Neparstek, M. I.; Cymny, G. A.

    1982-05-01

    This study updates a 1974 EPRI technology assessment of municipal solid waste (MSW) as a utility fuel. An independent and consistent assessment of the development status and conceptual design and economics is presented for the following refuse-to-electricity technologies; mass burning of MSW in a dedicated boiler; preparation of coarse RDF and firing in a dedicated boiler; preparation of wet RDF and firing in a dedicated boiler; preparation of fluff RDF and cofiring with coal in a utility boiler; and preparation of dust RDF and cofiring with coal in a utility boiler. The generated steam is used to drive a turbine-generator and produce electricity. Utility ownership and financing are assumed for the coal-fired power plant used for RDF cofiring and the turbine generators driven by refuse-generated steam. Municipal ownership is assumed for the RDF preparation facilities and the MSW mass burning and RDF-fired dedicated boilers.

  19. Improved solid oxide fuel cell performance with nanostructured electrolytes.

    PubMed

    Chao, Cheng-Chieh; Hsu, Ching-Mei; Cui, Yi; Prinz, Fritz B

    2011-07-26

    Considerable attention has been focused on solid oxide fuel cells (SOFCs) due to their potential for providing clean and reliable electric power. However, the high operating temperatures of current SOFCs limit their adoption in mobile applications. To lower the SOFC operating temperature, we fabricated a corrugated thin-film electrolyte membrane by nanosphere lithography and atomic layer deposition to reduce the polarization and ohmic losses at low temperatures. The resulting micro-SOFC electrolyte membrane showed a hexagonal-pyramid array nanostructure and achieved a power density of 1.34 W/cm(2) at 500 °C. In the future, arrays of micro-SOFCs with high power density may enable a range of mobile and portable power applications. PMID:21657222

  20. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  1. Solid oxide fuel cell having a glass composite seal

    DOEpatents

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  2. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Riley, Brian; Szreders, Bernard E.

    1988-04-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approx. 1100 to 1300 C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20 and 50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  3. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  4. Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Goldsby, John C.; Choi, Sung R.

    2004-01-01

    Tests have shown that modification of chemical compositions can increase the strengths and fracture toughnesses of solid oxide fuel-cell (SOFC) electrolytes. Heretofore, these solid electrolytes have been made of yttria-stabilized zirconia, which is highly conductive for oxygen ions at high temperatures, as needed for operation of fuel cells. Unfortunately yttria-stabilized zirconia has a high coefficient of thermal expansion, low resistance to thermal shock, low fracture toughness, and low mechanical strength. The lack of strength and toughness are especially problematic for fabrication of thin SOFC electrolyte membranes needed for contemplated aeronautical, automotive, and stationary power-generation applications. The modifications of chemical composition that lead to increased strength and fracture toughness consist in addition of alumina to the basic yttria-stabilized zirconia formulations. Techniques for processing of yttria-stabilized zirconia/alumina composites containing as much as 30 mole percent of alumina have been developed. The composite panels fabricated by these techniques have been found to be dense and free of cracks. The only material phases detected in these composites has been cubic zirconia and a alumina: this finding signifies that no undesired chemical reactions between the constituents occurred during processing at elevated temperatures. The flexural strengths and fracture toughnesses of the various zirconia-alumina composites were measured in air at room temperature as well as at a temperature of 1,000 C (a typical SOFC operating temperature). The measurements showed that both flexural strength and fracture toughness increased with increasing alumina content at both temperatures. In addition, the modulus of elasticity and the thermal conductivity were found to increase and the density to decrease with increasing alumina content. The oxygen-ion conductivity at 1,000 C was found to be unchanged by the addition of alumina.

  5. Flow Effects on the Flammability Diagrams of Solid Fuels

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.

    1997-01-01

    A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.

  6. Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2005-01-01

    A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.

  7. Challenge for lowering concentration polarization in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  8. Thermal Plasma Spraying Applied on Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Soysal, D.; Arnold, J.; Szabo, P.; Henne, R.; Ansar, S. A.

    2013-06-01

    Solid oxide fuel cells (SOFCs), attractive for diverse applications in a broad range from small portable and auxiliary power units, up to central power systems, are conventionally produced by sintering methods. However, plasma spraying promises some advantages particularly for cells with metal support. In the present paper, research activities conducted in recent years at DLR as well as latest developments on plasma sprayed functional layers for SOFC as cathodes, electrolytes, and anodes are reported. Power densities of more than 800 mW/cm2 were achieved for plasma sprayed single cells of 12.56 cm2 size, and 300 mW/cm2, respectively, with a 250 W stack made of 10 cells. These values were attained at 0.7 V and 800 °C, with H2:N2 = 1:1 as fuel gas and air as oxidizing gas. Furthermore, continuous operation of more than 5000 h was attained with a plasma sprayed metal-supported SOFC stack which could also withstand more than 30 redox and thermal cycles.

  9. Molten-Metal Electrodes for Solid Oxide Fuel Cells

    SciTech Connect

    Jayakumar, A.; Vohs, J. M.; Gorte, R. J.

    2010-11-03

    Molten In, Pb, and Sb were examined as anodes in solid oxide fuel cells (SOFC) that operate between 973 and 1173 K. The results for these metals were compared with those reported previously for molten Sn electrodes. Cells were operated under “battery” conditions, with dry He or N2 flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the yttria-stabilized zirconia (YSZ)-electrolyte interface. In most cases, the open-circuit voltages (OCVs) were close to that based on equilibrium between the metals and their oxides. With Sn and In, the cell impedances increased dramatically at all temperatures after drawing current due to formation of insulating, oxide barriers at the electrolyte interface. Similar results were observed for Pb at 973 and 1073 K, but the impedance remained low even after PbO formation at 1173 K because this is above the melting temperature of PbO. Similarly, the impedances of molten Sb electrodes at 973 K were low and unaffected by current flow because of the low melting temperature of Sb{sub 2}O{sub 3}. The potential of using molten-metal electrodes for direct-carbon fuel cells and for energy-storage systems is discussed.

  10. Glass coated compressible solid oxide fuel cell seals

    NASA Astrophysics Data System (ADS)

    Rautanen, M.; Thomann, O.; Himanen, O.; Tallgren, J.; Kiviaho, J.

    2014-02-01

    With the growing footprint of solid oxide fuel cell stacks, there is a need to extend the operating range of compressible gaskets towards lower stress levels. This article describes a method to manufacture SOFC seals by coating a compressible sealing material (Thermiculite 866) with glass to obtain good sealing performance even at compression stresses as low as 0.1 MPa. Glass layer can be coated using an organic carrier consisting of terpineol, ethanol and ethyl cellulose. The coated seals can be heat treated by simply ramping the temperature up to operating temperature at 60 Kh-1 and therefore no extra steps, which are typical to glass seals, are required. Coated seals were manufactured using this route and evaluated both ex-situ and in a real stack. Leak rates of 0.1-0.3 ml (m min)-1 were measured at 2-25 mbar overpressure using 50/50 H2/N2. A 30-cell stack was manufactured and tested using coated seals. At nominal operating conditions of 0.25 A cm-2 and 650 °C average cathode temperature, 46% fuel utilization and 20% air utilization the stack had a total hydrogen cross leak of 60 ml min-1 corresponding to 0.7% of the inlet hydrogen flow rate.

  11. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  12. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  13. High-temperature seals for solid oxide fuel cells (SOFC)

    NASA Astrophysics Data System (ADS)

    Singh, Raj N.

    2006-08-01

    A functioning solid oxide fuel-cell (SOFC) may require all types of seals, such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600 and 900 °C and in the oxidizing and reducing environments of fuels and air. Among the different types of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses also require significant attention and technology development for reliable SOFC operation. This paper is prepared to primarily address the needs and possible approaches for high-temperature seals for SOFC and seals fabricated using some of these approaches. A new concept of self-healing glass seals is proposed for making seals among material combinations with a significant expansion mismatches.

  14. Solid fuel production by hydrothermal carbonization of black liquor.

    PubMed

    Kang, Shimin; Li, Xianglan; Fan, Juan; Chang, Jie

    2012-04-01

    Formaldehyde was used as a polymerization agent to perform hydrothermal carbonization of black liquor for solid fuel production from 220 to 285°C. Compared to hydrochar prepared without formaldehyde, hydrochar produced in the presence of a 2.8wt.% formaldehyde solution (hydrochar-F) had 1.27-2.13 times higher yield, 1.02-1.36 times higher heating value (HHV), 1.20-2.31 times higher C recovery efficiency, 1.20-2.44 times higher total energy recovery efficiency, 0.51-0.64 times lower sulfur content, and 0.48-0.89 times lower ash content. The HHV of hydrochar-Fs ranged from 2.2×10(4) to 3.0×10(4)kJ/kg, while the HHV of hydrochar-F produced at 285°C was 1.90 times greater than that of the raw material (black liquor solid). These considerable improvements indicated that formaldehyde was an effective additive in hydrothermal carbonization of black liquor. PMID:22330593

  15. Metal Interconnects for Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    S. Elangovan

    2006-04-01

    Interconnect development is identified by the US Department of energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm2 at 750 C in air. The oxide scale was also found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm2 in humidified hydrogen at 750 c, and was stable through multiple thermal cycles. Measurement of interconnect resistance when it was exposed to both air and humidified hydrogen on opposite sides also showed low, stable resistance after additional modification to the pre-treatment process. Resistance stacks, using an interconnect stack with realistic gas flows, also provided favorable results. Chromium evaporation issue however requires testing of fuel stacks and was outside of the scope of this project. based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

  16. Solid recovered fuel: An experiment on classification and potential applications.

    PubMed

    Bessi, C; Lombardi, L; Meoni, R; Canovai, A; Corti, A

    2016-01-01

    The residual urban waste of Prato district (Italy) is characterized by a high calorific value that would make it suitable for direct combustion in waste-to-energy plants. Since the area of central Italy lacks this kind of plant, residual municipal waste is quite often allocated to mechanical treatment plants in order to recover recyclable materials (such as metals) and energy content, sending the dry fractions to waste-to-energy plants outside the region. With the previous Italian legislation concerning Refuse Derived Fuels, only the dry stream produced as output by the study case plant, considered in this study, could be allocated to energy recovery, while the other output flows were landfilled. The most recent Italian regulation, introduced a new classification for the fuel streams recovered from waste following the criteria of the European standard (EN 15359:2011), defining the Solid Recovered Fuel (SRF). In this framework, the aim of this study was to check whether the different streams produced as output by the study case plant could be classified as SRF. For this reason, a sampling and analysis campaign was carried out with the purpose of characterizing every single output stream that can be obtained from the study case mechanical treatment plant, when operating it in different ways. The results showed that all the output flows from the study case mechanical treatment plant were classified as SRF, although with a wide quality range. In particular, few streams, of rather poor quality, could be fed to waste-to-energy plants, compatibly with the plant feeding systems. Other streams, with very high quality, were suitable for non-dedicated facilities, such as cement plants or power plants, as a substitute for coal. The implementation of the new legislation has hence the potential for a significant reduction of landfilling, contributing to lowering the overall environmental impact by avoiding the direct impacts of landfilling and by exploiting the beneficial

  17. Solid oxide fuel cell with single material for electrodes and interconnect

    DOEpatents

    McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

    1994-07-19

    A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

  18. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    SciTech Connect

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  19. In situ studies of fuel oxidation in solid oxide fuel cells.

    PubMed

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2007-03-15

    Existing electrochemical experiments and models of fuel oxidation postulate about the importance of different oxidation pathways and relative fuel conversion efficiencies, but specific information is often lacking. Experiments described below present the first direct, in situ measurements of relevant chemical species formed on solid oxide fuel cell (SOFC) cermet anodes operating with both butane and CO fuel feeds. Raman spectroscopy is used to acquire vibrational spectra from SOFC anodes at 715 degrees C during operation. Both C4H10 and CO form graphitic intermediates. In the limit of a large oxide flux, excess butane forms ordered graphite but only transiently. At higher cell potentials (e.g., less current being drawn) ordered and disordered graphite form on the Ni cermet anode following exposure to butane, and under open circuit voltage (OCV) conditions the graphite persists indefinitely. The chemistry of CO oxidation is such that ordered graphite and a Ni-COO intermediate form only at intermediate cell potentials. Concurrent voltammetry studies show that the formation of graphite with butane at OCV leads first to decreased cell performance after exposure to 25 cm3 butane, then recovered performance after 75 cm3. CO voltammetry data show that at lower potentials the oxide flux through the YSZ electrolyte is sufficient to oxidize the Ni in the anode especially near the interface with the electrolyte. PMID:17295449

  20. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  1. Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells

    PubMed Central

    Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.

    2016-01-01

    Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502

  2. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    Harry Abernathy; Meilin Liu

    2006-12-31

    One primary suspected cause of long-term performance degradation of solid oxide fuels (SOFCs) is the accumulation of chromium (Cr) species at or near the cathode/electrolyte interface due to reactive Cr molecules originating from Cr-containing components (such as the interconnect) in fuel cell stacks. To date, considerable efforts have been devoted to the characterization of cathodes exposed to Cr sources; however, little progress has been made because a detailed understanding of the chemistry and electrochemistry relevant to the Cr-poisoning processes is still lacking. This project applied multiple characterization methods - including various Raman spectroscopic techniques and various electrochemical performance measurement techniques - to elucidate and quantify the effect of Cr-related electrochemical degradation at the cathode/electrolyte interface. Using Raman microspectroscopy the identity and location of Cr contaminants (SrCrO{sub 4}, (Mn/Cr){sub 3}O{sub 4} spinel) have been observed in situ on an LSM cathode. These Cr contaminants were shown to form chemically (in the absence of current flowing through the cell) at temperatures as low as 625 C. While SrCrO{sub 4} and (Mn/Cr){sub 3}O{sub 4} spinel must preferentially form on LSM, since the LSM supplies the Sr and Mn cations necessary for these compounds, LSM was also shown to be an active site for the deposition of Ag{sub 2}CrO{sub 4} for samples that also contained silver. In contrast, Pt and YSZ do not appear to be active for formation of Cr-containing phases. The work presented here supports the theory that Cr contamination is predominantly chemically-driven and that in order to minimize the effect, cathode materials should be chosen that are free of cations/elements that could preferentially react with chromium, including silver, strontium, and manganese.

  3. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2005-11-17

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode--electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. In this report, the oxygen exchange kinetics of a P2 composition are described in detail. The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) have been determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells.

  4. Electrochemically Deposited Ceria Structures for Advanced Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Brown, Evan C.

    As the pursuit towards emissions reduction intensifies with growing interest and nascent technologies, solid oxide fuel cells (SOFCs) remain an illustrious candidate for achieving our goals. Despite myriad advantages, SOFCs are still too costly for widespread deployment, even as unprecedented materials developments have recently emerged. This suggests that, in addition to informed materials selection, the necessary power output--and, thereby, cost-savings--gains must come from the fuel cell architecture. The work presented in this manuscript primarily investigates cathodic electrochemical deposition (CELD) as a scalable micro-/nanoscale fabrication tool for engineering ceria-based components in a SOFC assembly. Also, polymer sphere lithography was utilized to deposit fully connected, yet fully porous anti-dot metal films on yttira-stabilized zirconia (YSZ) with specific and knowable geometries, useful for mechanistic studies. Particular attention was given to anode structures, for which anti-dot metal films on YSZ served as composite substrates for subsequent CELD of doped ceria. By tuning the applied potential, a wide range of microstructures from high surface area coatings to planar, thin films was possible. In addition, definitive deposition was shown to occur on the electronically insulating YSZ surfaces, producing quality YSZ|ceria interfaces. These CELD ceria deposits exhibited promising electrochemical activity, as probed by A.C. Impedance Spectroscopy. In an effort to extend its usefulness as a SOFC fabrication tool, the CELD of ceria directly onto common SOFC cathode materials without a metallic phase was developed, as well as templated deposition schemes producing ceria nanowires and inverse opals.

  5. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect

    Uday B. Pal; Srikanth Gopalan

    2006-01-12

    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  6. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  7. A metallic interconnect for a solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    England, Diane Mildred

    A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale

  8. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    PubMed Central

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  9. Ionic conductivity studies of solid oxide fuel cell electrolytes and theoretical modeling of an entire solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Pornprasertsuk, Rojana

    Because of the steep increase in oil prices, the global warming effect and the drive for energy independence, alternative energy research has been encouraged worldwide. The sustainable fuels such as hydrogen, biofuel, natural gas, and solar energy have attracted the attention of researchers. To convert these fuels into a useful energy source, an energy conversion device is required. Fuel cells are one of the energy conversion devices which convert chemical potentials into electricity. Due to their high efficiency, the ease to scale from 1 W range to megawatts range, no recharging requirement and the lack of CO2 and NOx emission (if H2 and air/O 2 are used), fuel cells have become a potential candidate for both stationary power generators and portable applications. This thesis has been focused primarily on solid oxide fuel cell (SOFC) studies due to its high efficiency, varieties of fuel choices, and no water management problem. At the present, however, practical applications of SOFCs are limited by high operating temperatures that are needed to create the necessary oxide-ion vacancy mobility in the electrolyte and to create sufficient electrode reactivities. This thesis introduces several experimental and theoretical approaches to lower losses both in the electrolyte and the electrodes. Yttria stabilized zirconia (YSZ) is commonly used as a solid electrolyte for SOFCs due to its high oxygen-ion conductivity. To improve the ionic conductivity for low temperature applications, an approach that involves dilating the structure by irradiation and introducing edge dislocations into the electrolyte was studied. Secondly, to understand the activation loss in SOFC, the kinetic Monte Carlo (KMC) technique was implemented to model the SOFC operation to determining the rate-limiting step due to the electrodes on different sizes of Pt catalysts. The isotope exchange depth profiling technique was employed to investigate the irradiation effect on the ionic transport in different

  10. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    PubMed

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-01

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. PMID:22191490

  11. Exergy & economic analysis of biogas fueled solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Siefert, Nicholas S.; Litster, Shawn

    2014-12-01

    We present an exergy and an economic analysis of a power plant that uses biogas produced from a thermophilic anaerobic digester (AD) to fuel a solid oxide fuel cell (SOFC). We performed a 4-variable parametric analysis of the AD-SOFC system in order to determine the optimal design operation conditions, depending on the objective function of interest. We present results on the exergy efficiency (%), power normalized capital cost ( kW-1), and the internal rate of return on investment, IRR, (% yr-1) as a function of the current density, the stack pressure, the fuel utilization, and the total air stoichiometric ratio. To the authors' knowledge, this is the first AD-SOFC paper to include the cost of the AD when conducting economic optimization of the AD-SOFC plant. Our calculations show that adding a new AD-SOFC system to an existing waste water treatment (WWT) plant could yield positives values of IRR at today's average electricity prices and could significantly out-compete other options for using biogas to generate electricity. AD-SOFC systems could likely convert WWT plants into net generators of electricity rather than net consumers of electricity while generating economically viable rates of return on investment if the costs of SOFC systems are within a factor of two of the DOE/SECA cost targets.

  12. Exergy & economic analysis of biogas fueled solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Siefert, Nicholas S.; Litster, Shawn

    2014-12-01

    We present an exergy and an economic analysis of a power plant that uses biogas produced from a thermophilic anaerobic digester (AD) to fuel a solid oxide fuel cell (SOFC). We performed a 4-variable parametric analysis of the AD-SOFC system in order to determine the optimal design operation conditions, depending on the objective function of interest. We present results on the exergy efficiency (%), power normalized capital cost ($ kW-1), and the internal rate of return on investment, IRR, (% yr-1) as a function of the current density, the stack pressure, the fuel utilization, and the total air stoichiometric ratio. To the authors' knowledge, this is the first AD-SOFC paper to include the cost of the AD when conducting economic optimization of the AD-SOFC plant. Our calculations show that adding a new AD-SOFC system to an existing waste water treatment (WWT) plant could yield positives values of IRR at today's average electricity prices and could significantly out-compete other options for using biogas to generate electricity. AD-SOFC systems could likely convert WWT plants into net generators of electricity rather than net consumers of electricity while generating economically viable rates of return on investment if the costs of SOFC systems are within a factor of two of the DOE/SECA cost targets.

  13. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. PMID:26608898

  14. Recent progress in tubular solid oxide fuel cell technology

    SciTech Connect

    Singhal, S.C.

    1997-12-31

    The tubular design of solid oxide fuel cells (SOFCs) and the materials used therein have been validated by successful, continuous electrical testing over 69,000 h of early technology cells built on a calcia-stabilized zirconia porous support tube (PST). In the latest technology cells, the PST has been eliminated and replaced by a doped lanthanum manganite air electrode tube. These air electrode supported (AES) cells have shown a power density increase of about 33% with a significantly improved performance stability over the previously used PST type cells. These cells have also demonstrated the ability to thermally cycle over 100 times without any mechanical damage or performance loss. In addition, recent changes in processes used to fabricate these cells have resulted in significant cost reduction. This paper reviews the fabrication and performance of the state-of-the-art AES tubular cells. It also describes the materials and processing studies that are underway to further reduce the cell cost, and summarizes the recently built power generation systems that employed state-of-the-art AES cells.

  15. Method and apparatus for assembling solid oxide fuel cells

    DOEpatents

    Szreders, Bernard E.; Campanella, Nicholas

    1989-01-01

    A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. The vanes, which each include a plurality of spaced slots along the facing edges thereof, may be pivotally displaced from a generally vertical orientation, wherein each jet air tube is positioned within and engaged by the aligned slots of a plurality of paired upper and lower vanes to facilitate their insertion in respective aligned SOFC tubes arranged in a matrix array, to an inclined orientation, wherein the jet air tubes may be removed from the positioning/insertion assembly after being inserted in the SOFC tubes. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing.

  16. Impacts of environmental product legislation on solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wright, E. I.; Rahimifard, S.; Clegg, A. J.

    Ongoing development of solid oxide fuel cell (SOFC) technology coincides with a rapid increase in legislation aiming to control the environmental impacts of products across their life cycle. A risk-based method is used to explore the potential future impacts of this body of legislation on the technology. Legislation controlling the use of hazardous materials is one area of significance. Under the new European REACH Regulation some nickel compounds, used widely throughout general industry but also in the fabrication of anode structures, may fall under the classification of a substance of very high concern (SVHC) in future, which presents a risk of restrictions being placed on their continued use. This risk must drive the development of alternative anode materials, or requires the SOFC industry to identify a socio-economic argument justifying exemption from any future restrictions. A legislative trend establishing recycling requirements for end-of-life products is also identified as having a potential future impact on the technology. Recycling strategies for SOFC products must be considered, prior to commercialisation. It is proposed that failure to meet these future environmental requirements may be detrimental to the perception of SOFC technology, the demand for which is substantially driven by the environmental benefits offered over incumbent power generation technologies. The consideration of these issues in the design of commercial products will mitigate this risk.

  17. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    SciTech Connect

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  18. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  19. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. PMID:26896004

  20. Evaluation of solid fuel char briquettes from human waste.

    PubMed

    Ward, Barbara J; Yacob, Tesfayohanes W; Montoya, Lupita D

    2014-08-19

    The developing world faces dual crises of escalating energy demand and lack of urban sanitation infrastructure that pose significant burdens on the environment. This article presents results of a study evaluating the feasibility of using human feces-derived char as a solid fuel for heating and cooking and a potential way to address both crises. The study determined the energy content and the elemental composition of chars pyrolyzed at 300, 450, and 750 °C. Fecal chars made at 300 °C were found to be similar in energy content to wood chars and bituminous coal, having a heating value of 25.6 ± 0.08 MJ/kg, while fecal chars made at 750 °C had an energy content of 13.8 ± 0.48 MJ/kg. The higher heating values of the studied chars were evaluated using their elemental composition and a published predictive model; results found good agreement between the measured and predicted values. Fecal chars made at low temperatures were briquetted with molasses/lime and starch binders. Briquettes made with 10% starch had an average impact resistance index of 79 and a higher heating value of 25 MJ/kg. These values are comparable to those of commercial charcoal briquettes, making fecal char briquettes a potential substitute that also contributes to the preservation of the environment. PMID:25020243

  1. Strength of an electrolyte supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-11-01

    For the proper function of solid oxide fuel cells (SOFC) their structural integrity must be maintained during their whole lifetime. Any cell fracture would cause leakage and partial oxidization of the anode, leading to a reduced performance, if not catastrophic failure of the whole stack. In this study, the mechanical strength of a state of the art SOFC, developed and produced by Hexis AG/Switzerland, was investigated with respect to the influence of temperature and ageing, whilst for the anode side of the cell the strength was measured under reducing and oxidizing atmospheres. Ball-on-3-Ball bending strength tests and fractography conducted on anode and cathode half-cells revealed the underlying mechanisms, which lead to cell fracture. They were found to be different for the cathode and the anode side and that they change with temperature and ageing. Both anode and cathode sides exhibit the lowest strength at T = 850 °C, which is greatly reduced to the initial strength of the bare electrolyte. This reduction is the consequence of the formation of cracks in the electrode layer which either directly penetrate into the electrolyte (anode side) or locally increase the stress intensity level of pre-existing flaws of the electrolytes at the interface (cathode side).

  2. Internal reforming development for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, A. L.

    1987-02-01

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) should simplify the overall system design and make the SOFC an attractive means for producing electrical power. This program was undertaken to investigate the catalytic properties of nickel cermets, which are prime candidates for SOFC anodes. The initial task in this program was an extensive literature search for information on steam reforming of light hydrocarbons. The second task was to modify and calibrate the reactor systems that were used in the experimental kinetic studies. Two systems were used in this investigation; a continuously stirred tank reactor system (CSTR) and a plug flow reactor system (PFR). In the third task, 16 nickel-zirconia cermets were prepared using four procedures, tape casting, Westinghouse slurry, incorporation of performers, and granulation. The catalytic behavior of three cermets was determined in the fourth task. The reaction was first order with respect to methane and -1.25 for steam. Ethane and propane in the feed did not affect the methane conversion rate. The cermet has a higher initial tolerance for sulfur than standard nickel reforming catalysts. The final task was a mechanistic study of the steam reforming reaction on nickel and nickel-zirconia catalysts.

  3. Fault diagnosis and prognostic of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, XiaoJuan; Ye, Qianwen

    2016-07-01

    One of the major hurdles for solid oxide fuel cell (SOFC) commercialization is poor long-term performance and durability. Accurate fault diagnostic and prognostic technologies are two important tools to improve SOFC durability. In literature, plenty of diagnosis techniques for SOFC systems have been successfully designed. However, no literature studies SOFC fault prognosis approaches. In this paper a unified fault diagnosis and prognosis strategy is presented to identify faults (anode poisoning, cathode humidification or normal) and predict the remaining useful life for SOFC systems. Using a squares support vector machine (LS-SVM) classifier, a diagnosis model is built to identify SOFC different types of faults. After fault detection, two hidden semi-Mark models (HSMMs) are respectively employed to estimate SOFC remaining useful life in the case of anode poisoning and cathode humidification. The simulation results show that the fault recognition rates with the LS-SVM model are at best 97%, and the predicted error of the remaining useful life is within ±20%.

  4. Robust Joining Technology for Solid Oxide Fuel Cells Applications

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah P.; Needham, Robert J.; Singh, M.; Kung, S. C.

    2004-01-01

    Recently there has been a great deal of interest in research development and commercialization of solid oxide fuel cells (SOFCs). Joining and sealing are critical issues that will need to be addressed before SOFCs can truly perform as expected. Ceramics and metals can be difficult to join together, especially when the joint must withstand up to 900 C operating temperature of the SOFCs. The goal of the present study is to find the most suitable braze material for joining of yttria stabilized zirconia (YSZ) to stainless steel. A number of commercially available braze materials TiCuSil, TiCuNi, Copper-ABA, Gold-ABA and Gold-ABA-V have been evaluated. The oxidation behavior of the braze materials and steel substrates in air was also examined through thermogravimetric analysis. The microstructure and composition of the brazed regions have been examined by optical and scanning electron microscopy and eDS analysis. Effect of braze composition and processing conditions on the interfacial microstructure and composition of the joint regions will be presented.

  5. Reinforced composite sealants for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gross, Sonja M.; Federmann, Dirk; Remmel, Josef; Pap, Michael

    Glass-ceramic sealants are commonly used as joining materials for planar solid oxide fuel cells stacks. Several requirements need to be fulfilled by these materials: beside of electrical insulation and appropriate thermal expansion, a good adhesion on the ceramic and metallic components of a SOFC stack is necessary to form a gas-tight joint. Even though the joining process might have been successful, failures and leaks often occur during the stack operation due to fracture of the brittle material under thermal stresses or during thermal cycling of the components. This study focusses on composite materials consisting of a glass matrix based on the system of BaO-CaO-SiO 2 and various filler materials, e.g. yttria-stabilized zirconia fibres or particles and silver particles. In order to evaluate a possible reinforcing influence of the filler material of the composite, tensile strength tests were carried out on circular butt joints. The highest strength values were found for the composite material with addition of silver particles, followed by the glass matrix itself without any filler addition and the lowest values were measured for the composite with YSZ particles. SEM investigations of cross-sections of the joints elucidated these results by the microstructure of the glass-ceramic sealants.

  6. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  7. Application of symmetric solid oxide fuel cell in fuel containing sulfur: I. Effect of electrodes

    NASA Astrophysics Data System (ADS)

    Tan, Wenyi; Pan, Cai; Yang, Song; Zhong, Qin

    2015-03-01

    Symmetric solid oxide fuel cells (SFCs) with double perovskite materials serving as symmetric electrodes are applied for the first time in fuel containing sulfur, aiming to explore solution to sulfur poison. Temperature-programmed techniques, including H2-TPR, O2-TPD, were used to evaluate catalytic activities of electrodes in different atmosphere, while stabilities of electrode materials in sulfur containing fuel gas were characterized in terms of phase structures, conductivity, and microstructures by SEM, four-probe method and XRD as a function of temperature and operating time. It is evidenced that Sr2CoMoO6 (denoted as SCMO) possesses better hydrogen reducibility, oxygen desorption and stability in sulfur containing fuel gas. In configuration of Sr2XMoO6 (X = Co, Ni)|Ce0.85Sm0.15O2-δ (SDC)|Sr2XMoO6, the maximum power density Pmax reaches 95 mW cm-2 for SCMO and 68 mW cm-2 for SNMO with H2-0.1% H2S at 750 °C. Lower polarization resistance of SCMO (about 2.7 Ω cm2 at 750 °C) is achieved. It is interestingly noted that SFC performance composed of ex-situ regenerated symmetric electrodes SCMO falls only by 21%, as compared to that of fresh electrodes. The combinations of thermal analysis (TG-DTA) and surface analysis (XPS) convince that an ex-situ regeneration of symmetric electrode can be realized.

  8. Direct internal reforming of hydrocarbon fuels in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang

    2005-07-01

    The direct operation of solid oxide fuel cells (SOFCs) on hydrocarbon fuels is desired since it could reduce power plant size, weight and complexity. The primary challenge is to find effective means through which anode-coking could be suppressed or avoided. Throughout the research, conventional Ni-anode supported SOFCs were employed because they provide high power densities and are being actively developed for commercial applications. Various strategies were used to reduce or avoid anode-coking during the SOFC operation. Firstly, air or CO2/H2O was added to hydrocarbon fuels, such that coking was less thermodynamically favorable, and the resulting internal partial oxidation or dry/steam reforming reactions provided H 2 and CO to the fuel cell. For example, for low hydrocarbons like propane, coke-free operation was achieved on 8% yttrium-stabilized zirconia (YSZ) electrolyte SOFCs via internal partial oxidation, yielding stable and high power densities, e.g. 0.7 W·cm-2 at 790°C. Secondly, a novel design for hydrocarbon fueled SOFCs was proposed, i.e. a separate supported catalyst (Ru-CeO2) layer was placed against the anode side. The catalyst layer provided good catalytic activity for the hydrocarbon reforming reactions, while the nickel-based anode was retained to provide excellent electrochemical activity for the oxidation of the hydrogen and carbon monoxide reforming products. For heavy hydrocarbons like iso-octane, the catalyst layer was crucial far allowing stable cell operation without coking. The lack of coking at the Ni-YSZ anode can be explained by reforming at the Ru-Ceria catalyst layer, which eliminated most of the hydrocarbon species before the fuel reached the anode. A key element of this strategy was the choice of a catalyst metal, Ru, that promotes hydrocarbon reforming but does not itself cause coking. Thirdly, reduced-temperature SOFCs with thin samarium-doped Ceria (SDC) electrolytes were developed; these devices have potentially improved

  9. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  10. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  11. Reactive vaporization of oxides in solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Key, Camas Fought

    Metals such as chromium, aluminum and silicon are of extreme technological and industrial importance due to the corrosion resistance they offer in oxidizing environments at high temperature. Much of this robustness is based on the formation of a thin, well-adhered metal-oxide (MO) layer on the surface of the metal. In particularly corrosive environments or at high-enough temperatures and or pressures, the MO will chemically react with constituents in the surrounding gas, removing atoms from the solid. For many systems, material loss and subsequent mechanical failure is the foremost concern. However, in solid oxide fuel cell (SOFC) systems, the presence of gaseous metal species leads to severe degradation in electrochemical performance well before mechanical limits are reached. Reactive vaporization from ferritic stainless steels, chromia, aluminosilicates and a candidate electrode material (Sr2VMoO6), was investigated using the transpiration method. Two novel collection methods were employed: condensation of vapors on wafer collectors analyzed with Rutherford backscattering spectrometry (RBS); and, condensation of vapors on quartz wool analyzed via inductively coupled plasma mass spectroscopy (ICP-MS). Identification and quantification of vapor species provided assessment of material performance in SOFC environments. Experiments demonstrated that Cr vapor species from ferritic stainless steels used for SOFC interconnect applications could be reduced by as much as one order of magnitude through the application of barrier coatings. Base alloys were compared and exhibited a variety of Cr vaporization rates despite being similar in composition, thus illustrating the importance of minor elemental constituents in the alloy. Measurements identified Si as the primary volatile element in aluminosilicate materials when Si concentrations in the bulk material were as low as one percent. Aluminosilicate materials demonstrated a burn out phase during the first hundred hours at

  12. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  13. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect

    Uday B. Pal; Srikanth Gopalan

    2005-01-24

    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  14. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    SciTech Connect

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymeric pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.

  15. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  16. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  17. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE PAGESBeta

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  18. CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana

    2003-10-01

    Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably well developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work

  19. Fuel cells with solid polymer electrolyte and their application on vehicles

    SciTech Connect

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  20. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  1. The effectiveness of the small-tonnage solid composite fuel production from biomass

    NASA Astrophysics Data System (ADS)

    Tabakaev, R. B.; Astafev, A. V.; Kazakov, A. V.; Zavorin, A. S.; Polsongkram, M.

    2015-10-01

    The relevance of the work is caused by necessity of the involving of local low-grade raw materials in the fuel energy balance. The purpose of the work is technical and economical evaluation to implementation possibility of the solid composite fuel production from peat as an example of the Tomsk region. The results of a processing of the low-grade raw materials at certain types from Tomsk region into the solid composite fuel are shown, their competitiveness is evaluated, the process line to production of this fuel is suggested and the economical calculation of the production organization by its basis is made. As a result, the prime cost of solid composite fuel and technical and economical parameters of investments efficiency are determined.

  2. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    NASA Astrophysics Data System (ADS)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  3. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  4. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krumpelt, M.; Myles, K. M.

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed.

  5. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    PubMed

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations. PMID:25053926

  6. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.

    PubMed

    Wagland, S T; Kilgallon, P; Coveney, R; Garg, A; Smith, R; Longhurst, P J; Pollard, S J T; Simms, N

    2011-06-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidized bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal+10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal+10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel. PMID:21288710

  7. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    SciTech Connect

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-06-15

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  8. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  9. SOLID-FUEL HOUSEHOLD COOK STOVES: CHARACTERIZATION OF PERFORMANCE AND EMISSIONS

    EPA Science Inventory

    Previous studies have shown that some fuel-efficient solid-fuel cook stoves have had worse pollutant emissions of PICs (products of incomplete combustion) than traditional cooking methods. Better stoves have been developed to reduce emissions, but test results have not previously...

  10. Low circumferential voltage gradient self supporting electrode for solid oxide fuel cells

    DOEpatents

    Reichner, Philip

    1989-01-01

    The porous, self-supporting, elongated electrode is made, having at least two chambers through its axial length, the chambers separated by an electronically conductive member. This electrode can be an air electrode of a fuel cell, having a superimposed solid electrolyte and fuel electrode.

  11. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 2: solid fuels.

    PubMed

    Claxton, Larry D

    2014-01-01

    The combustion of solid fuels (like wood, animal dung, and coal) usually involves elevated temperatures and altered pressures and genotoxicants (e.g., PAHs) are likely to form. These substances are carcinogenic in experimental animals, and epidemiological studies implicate these fuels (especially their emissions) as carcinogens in man. Globally, ∼50% of all households and ∼90% of all rural households use solid fuels for cooking or heating and these fuels often are burnt in simple stoves with very incomplete combustion. Exposed women and children often exhibit low birth weight, increased infant and perinatal mortality, head and neck cancer, and lung cancer although few studies have measured exposure directly. Today, households that cannot meet the expense of fuels like kerosene, liquefied petroleum gas, and electricity resort to collecting wood, agricultural residue, and animal dung to use as household fuels. In the more developed countries, solid fuels are often used for electric power generation providing more than half of the electricity generated in the United States. The world's coal reserves, which equal approximately one exagram, equal ∼1 trillion barrels of crude oil (comparable to all the world's known oil reserves) and could last for 600 years. Studies show that the PAHs that are identified in solid fuel emissions react with NO2 to form direct-acting mutagens. In summary, many of the measured genotoxicants found in both the indoor and electricity-generating combustors are the same; therefore, the severity of the health effects vary with exposure and with the health status of the exposed population. PMID:25475420

  12. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  13. A review on synthesis and characterization of solid acid materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohammad, Norsyahida; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Loh, Kee Shyuan

    2016-08-01

    Solid acids emerged as an electrolyte material for application in fuel cells due to their high protonic conductivity and stability at high temperatures between 100 °C and 250 °C. This paper gives an overview of the different solid acid materials and their properties, such as high protonic conductivity and thermal stability, in relation to phase transitions and mechanisms of proton transport. Various solid acid synthesis methods including aqueous and dry mixing, electrospinning, sol-gel, impregnation and thin-film casting will be discussed, and the impact of synthesis methods on the properties of solid acids will be highlighted. The properties of solid acids synthesized as either single crystals and or polycrystalline powders were identified via X-ray diffraction, nuclear magnetic resonance, thermal analyses, optical microscopy and infrared spectroscopy. A selection of electrolyte-electrode assembly methods and the performance of solid acid fuel cell prototypes are also reviewed.

  14. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    YongMan Choi; Meilin Liu

    2006-09-30

    This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a

  15. Effects of ion irradiation on solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cheng, Jeremy

    The solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical to electrical energy. It is usually based around an oxide conducting ceramic electrolyte that requires temperatures above 800°C to operate. There are many advantages to lowering this operation temperature such as more gas sealing options and more efficient startup. One of the key limitations is in the transport of ions across the electrolyte. The most common electrolyte material used is Yttria-Stabilized Zirconia (YSZ). The ionic conductivity can be greatly affected by grain boundaries, dislocations, and point defects. In this study, dislocations were introduced by heavy ion irradiation. Irradiation with Xe+ or Ar+ produced a large number of point defects and dislocations via a mechanism similar to Frank partial dislocation formation. The dislocation density was on the order of 1012/cm2 and the Burgers vector was 1/2<110>. Heat treatment at temperatures from 800-1400°C changed the defect structure, eliminated point defects, and allowed dislocations to react and grow. Thin films of YSZ were deposited on silicon substrates using pulsed laser deposition (PLD). Films deposited on a metallized substrate were polycrystalline while films deposited directly onto conductive silicon could be epitaxially grown. Ion irradiation caused the film conductivity to drop by a factor of 2-3 due to additional point defects in the film. Heat treatment removed these point defects allowing the conductivity to recover. A novel method was developed to produce freestanding YSZ membranes without a silicon substrate by using the Focused Ion Beam (FIB). Thick, single-crystal YSZ pieces were thinned using in-situ X-Ray Energy Dispersive Spectroscopy (EDS) for end point detection. The final membranes were single crystal, less than 350nm thick, and pinhole free. IV curves and impedance measurements were made after irradiation and heat treatment. The conductivity showed similar trends to the PLD deposited thin

  16. Interconnects for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Wenhua

    Presently, one of the principal goals of solid oxide fuel cells (SOFCs) research is to reduce the stack operating temperature to between 600 and 800°C. However, one of the principal technological barriers is the non-availability of a suitable material satisfying all of the stability requirements for the interconnect. In this work two approaches for intermediate temperature SOFC interconnects have been explored. The first approach comprises an interconnect consisting of a bi-layer structure, a p-type oxide (La0.96Sr0.08MnO 2.001/LSM) layer exposed to a cathodic environment, and an n-type oxide (Y0.08Sr0.88Ti0.95Al0.05O 3-delta/YSTA) layer exposed to anodic conditions. Theoretical analysis based on the bi-layer structure has established design criteria to implement this approach. The analysis shows that the interfacial oxygen partial pressure, which determines the interconnect stability, is independent of the electronic conductivities of both layers but dependent on the oxygen ion layer interconnects, the oxygen ion conductivities of LSM and YSTA were measured as a function of temperature and oxygen partial pressure. Based on the measured data, it has been determined that if the thickness of YSTA layer is around 0.1cm, the thickness of LSM layer should be around 0.6 mum in order to maintain the stability of LSM. In a second approach, a less expensive stainless steel interconnect has been studied. However, one of the major concerns associated with the use of metallic interconnects is the development of a semi-conducting or insulating oxide scale and chromium volatility during extended exposure to the SOFC operating environment. Dense and well adhered Mn-Cu spinet oxide coatings were successfully deposited on stainless steel by an electrophoretic deposition (EPD) technique. It was found that the Mn-Cu-O coating significantly reduced the oxidation rate of the stainless steel and the volatility of chromium. The area specific resistance (ASR) of coated Crofer 22 APU is

  17. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  18. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  19. Opposed flow flame spread over an array of thin solid fuel sheets in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Malhotra, Vinayak; Kumar, Chenthil; Kumar, Amit

    2013-10-01

    In this work a numerical study has been carried out to gain physical insight into the phenomena of opposed flow flame spread over an array of thin solid fuel sheets in a microgravity environment. The two-dimensional (2D) simulations show that the flame spread rates for the multiple-fuel configuration are higher than those for the flame spreading over a single fuel sheet. This is due to reduced radiation losses from the flame and increased heat feedback to the solid fuel. The flame spread rate exhibits a non-monotonic variation with decrease in the interspace distance between the fuel sheets. Higher radiation heat feedback primarily as gas/flame radiation was found to be responsible for the increase in the flame spread rate with the reduction of the interspace distance. It was noted that as the interspace distance between the fuel sheets was reduced below a certain value, no steady solution could be obtained. However, at very small interspace distances, steady state spread rates were obtained. Here, due to oxygen starvation the flame spread rate decreased and eventually at some interspace distance the flame extinguished. With fuel emittance (equal to absorptance) reduced to '0' the flame spread rate was nearly independent of the interspace distance, except at very small distances where the flame spread rate dropped due to oxygen starvation. A flame extinction plot with the extinction oxygen level was constructed for the multiple-fuel configuration at various interspace distances. The default fuel with an emittance of 0.92 was found to be more flammable in the multiple-fuel configuration than in a single fuel sheet configuration. For a fuel emittance equal to zero, the extinction oxygen limit decreases for both the single and the multiple fuel sheet configurations. However, the two flammability curves cross over at a certain fuel separation distance. The multiple-fuel configurations become less flammable compared to the single fuel sheet configuration below a certain

  20. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Many previously demonstrated improved fuel cell features were consolidated to (1) obtain a better understanding of the observed characteristics of the operating laboratory-sized cells; (2) evaluate appropriate improved fuel cell features in 0.7 sq ft cell hardware; and (3) study the resultant fuel cell capability and determine its impact on various potential fuel cell space missions. The observed performance characteristics of the fuel cell at high temperatures and high current densities were matched with a theoretical model based on the change in Gibbs free energy voltage with respect to temperature and internal resistance change with current density. Excellent agreement between the observed and model performance was obtained. The observed performance decay with operational time on cells with very low noble metal loadings (0.05 mg/sq cm) were shown to be related to loss in surface area. Cells with the baseline amount of noble catalyst electrode loading demonstrated over 40,000 hours of stable performance.

  1. Manufacturing costs for planar solid oxide fuel cells

    SciTech Connect

    Krist, K.; Wright, J.D.; Romero, C.

    1995-12-31

    In this paper the authors calculate how much one can afford to pay for a fuel cell, and set quantitative performance and cost targets that if met, will result in SOFC technology where the performance is high enough and the cost is low enough to generate commercial interest. To do this, the authors first calculate how much one can afford to pay for a fuel cell stack in two important applications: small scale cogeneration (200 kW{sub e}) and large scale power generation (50 MW{sub e}). They then compare the cost of the materials needed to fabricate the fuel cell with the allowable cost. Finally, they use a mathematical model of fuel cell performance to quantify some of the improvements that will be needed if planar fuel cells are to operate efficiently at 800 C or below.

  2. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications.

    PubMed

    Garg, Anurag; Smith, Richard; Hill, Daryl; Simms, Nigel; Pollard, Simon

    2007-07-15

    European Union (EU) member states are adopting the mechanical-biological treatment (MBT) of municipal solid waste (MSW) to comply with EU Landfill Directive (LD) targets on landfill diversion. We review the policy framework for MSW-derived solid recovered fuel (SRF), composed of paper, plastic, and textiles, in the energy-intensive industries. A comparatively high calorific value (15-18 MJ/ kg) fuel, SRF has the potential to partially replace fossil fuel in energy-intensive industries, alongside MSW in dedicated combustion facilities. Attempts by the European standards organization (CEN) to classify fuel properties consider net calorific value (CV) and chlorine and mercury content. However, the particle size, moisture content, and fuel composition also require attention and future studies must address these parameters. We critically review the implications of using SRF as a co-fuel in thermal processes. A thermodynamic analysis provides insight into the technical and environmental feasibility of co-combusting SRF in coal-fired power plants and cement kilns. Results indicate the use of SRF as co-fuel can reduce global warming and acidification potential significantly. This policy analysis is of value to waste managers, policy specialists, regulators, and the waste management research community. PMID:17711195

  3. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications

    SciTech Connect

    Anurag Garg; Richard Smith; Daryl Hill; Nigel Simms; Simon Pollard

    2007-07-15

    European Union (EU) member states are adopting the mechanical-biological treatment (MBT) of municipal solid waste (MSW) to comply with EU Landfill Directive (LD) targets on landfill diversion. We review the policy framework for MSW-derived solid recovered fuel (SRF), composed of paper, plastic, and textiles, in the energy-intensive industries. A comparatively high calorific value (15-18 MJ/kg) fuel, SRF has the potential to partially replace fossil fuel in energy-intensive industries, alongside MSW in dedicated combustion facilities. Attempts by the European standards organization (CEN) to classify fuel properties consider net calorific value (CV) and chlorine and mercury content. However, the particle size, moisture content, and fuel composition also require attention and future studies must address these parameters. We critically review the implications of using SRF as a co-fuel in thermal processes. A thermodynamic analysis provides insight into the technical and environmental feasibility of co-combusting SRF in coal-fired power plants and cement kilns. Results indicate the use of SRF as co-fuel can reduce global warming and acidification potential significantly. This policy analysis is of value to waste managers, policy specialists, regulators, and the waste management research community. 63 refs., 3 figs., 3 tabs.

  4. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John

    1989-01-01

    Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.

  5. Automated brush plating process for solid oxide fuel cells

    SciTech Connect

    Long, Jeffrey William

    2003-01-01

    A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.

  6. A novel thin film solid oxide fuel cell for microscale energy conversion

    SciTech Connect

    Jankowiski, A F; Morse, J D

    1999-05-01

    A novel approach for the fabrication and assembly of a solid oxide fuel cell system is described which enables effective scaling of the fuel delivery, mainfold, and fuel cell stack components for applications in miniature and microscale energy conversion. Electrode materials for solid oxide fuel cells are developed using sputter deposition techniques. A thin film anode is formed by codeposition of nickel and yttria-stabilized zirconia (YSZ). This approach provides a mixed conducting interfacial layer between the nickel electrode and electrolyte layer. Similarly, a thin film cathode is formed by co-deposition of silver and yttria-stabilized zirconia. Additionally, sputter deposition of yttria-stabilized zirconia thin film electrolyte enables high quality, continuous films to be formed having thickness on the order of 1-2 {micro}m. This will effectively lower the temperature of operation for the fuel cell stack significantly below the traditional ranges at which solid oxide electrolyte systems are operated (600--1000 C), thereby rendering this fuel cell system suitable for miniaturization. Scaling towards miniaturization is accomplished by utilizing novel micromaching approaches which allow manifold channels and fuel delivery system to be formed within the substrate which the thin film fuel cell stack is fabricated on, thereby circumventing the need for bulky manifold components which are not directly scalable.

  7. Production of new biomass/waste-containing solid fuels

    SciTech Connect

    Akers, D.; Shirey, G.; Zitron, Z.; Nowak, M.

    2000-07-01

    The electric utility industry is interested in the use of biomass and waste byproducts as fuel to reduce both emissions and fuel costs. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. One method of addressing these issues is to produce composite fuels composed of a pelletized mixture of biomass and other constituents. However, for composite fuels to be extensively used in the US, especially in the steam market, a lower cost method of producing these fuels must be developed. Also, standard formulations of biomass and coal (possibly including waste) with broad application to US boilers must be identified. In addition to acceptable cost, these standard formulations can provide environmental benefits relative to coal. The Department of Energy along with the Electric Power Research Institute and various industry partners has funded CQ Inc. to develop both a dewatering/pelletizing die and three standard formulations of biomass, coal, and waste byproducts. Six biomass/waste sources were initially selected for study: petroleum coke, mixed waste plastic, switchgrass, waxed cardboard, poultry manure, and sewage sludge. A sample representative of each source was collected and analyzed. Also, two sources of coal, recovered from waste ponds, were collected for use in the project.

  8. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  9. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    SciTech Connect

    Kevin Peavey; Norm Bessette

    2007-09-30

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  10. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2006-09-30

    the perovskite compositions that were being investigated at PNNL, in order to assess the relative importance of the intrinsic properties such as oxygen ion diffusion and surface exchange rates as predictors of performance in cell tests. We then used these measurements to select new materials for scaled up synthesis and performance evaluation in single cell tests. The results of the single cell tests than provided feedback to the materials synthesis and selection steps. In this summary, the following studies are reported: (1) Synthesis, characterization, and DC conductivity measurements of the P1 compositions La{sub 0.8}Sr{sub 0.2}FeO{sub 3-x} and La{sub 0.7}Sr{sub 0.3}FeO{sub 3-x} were completed. A combinational approach for preparing a range P1 (La,Sr)FeO{sub 3} compositions as thin films was investigated. Synthesis and heat treatment of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are described. (2) Oxygen transport properties of K1 compositions La{sub x}Pr{sub 2-x}NiO{sub 4+d} (x =2.0, 1.9, 1.2, 1.0 and 0) measured by electrical conductivity relaxation are presented in this report. Area specific resistances determined by ac impedance measurements for La{sub 2}NiO{sub 4+{delta}} and Pr{sub 2}NiO{sub 4+{delta}} on CGO are encouraging and suggest that further optimization of the electrode microstructure will enable the target to be reached. (3) The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) were determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. The first complete cell measurements were performed on Ni/CGO/CGO/PBCO/CGO cells. (4) The oxygen exchange kinetics of highly epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+{delta}} (PBCO) has been determined by electrical conductivity

  11. Co-combustion of solid recovered fuels in coal-fired power plants.

    PubMed

    Thiel, Stephanie; Thomé-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO₂ allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011. PMID:22143900

  12. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  13. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    NASA Technical Reports Server (NTRS)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  14. Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with gaseous oxygen (GOX) under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from plus or minus 20% of the localized mean pressure to an acceptable range of plus or minus 1.5%. Embedded fine--wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or

  15. Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated- Polybutadiene) fuel cross linked with diisocyanate was burned with GOX under various operating conditions. Large amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed line system and combustion chamber, the pressure oscillations were drastically reduced from +/- 20% of the localized mean pressure to an acceptable range of +/- 1.5%. Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations arc thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison

  16. SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Hickman, Robert R.; Shah, Sandeep

    2005-01-01

    Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.

  17. Feedback control of solid oxide fuel cell spatial temperature variation

    NASA Astrophysics Data System (ADS)

    Fardadi, Mahshid; Mueller, Fabian; Jabbari, Faryar

    A high performance feedback controller has been developed to minimize SOFC spatial temperature variation following significant load perturbations. For thermal management, spatial temperature variation along SOFC cannot be avoided. However, results indicate that feedback control can be used to manipulate the fuel cell air flow and inlet fuel cell air temperature to maintain a nearly constant SOFC electrode electrolyte assembly temperature profile. For example temperature variations of less than 5 K are obtained for load perturbations of ±25% from nominal. These results are obtained using a centralized control strategy to regulate a distributed temperature profile and manage actuator interactions. The controller is based on H-infinity synthesis using a physical based dynamic model of a single co-flow SOFC repeat cell. The model of the fuel cell spatial temperature response needed for control synthesis was linearized and reduced from nonlinear model of the fuel cell assembly. A single 11 state feedback linear system tested in the full nonlinear model was found to be effective and stable over a wide fuel cell operating envelope (0.82-0.6 V). Overall, simulation of the advanced controller resulted in small and smooth monotonic temperature response to rapid and large load perturbations. This indicates that future SOFC systems can be designed and controlled to have superb load following characteristic with less than previously expected thermal stresses.

  18. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  19. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  20. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  1. Pressurized cyclonic combustion method and burner for particulate solid fuels

    SciTech Connect

    Hoffert, F.D.; Milligan, J.D.; Morrison, J.A.

    1989-07-25

    This paper describes an apparatus for burning particulate combustible fuel to produce a pressurized gas for operating a gas turbine. It comprises: a housing having side wall means forming a generally cylindrically shaped primary combustion chamber, a secondary chamber and a choke opening of reduced size between the primary combustion chamber and the secondary chamber; a fuel opening formed through the side wall means of the primary combustion chamber near the end wall means for introducing a particulate fuel under pressure therein generally tangentially to the inner wall of the primary combustion chamber and transverse to its axis; a plurality of spaced apart tuyere openings formed through the side wall means of the primary combustion chamber; at least one quench gas opening formed through side wall means of the choke opening intermediate its ends for introducing a quench gas into the choke opening for cooling the hot gas flowing.

  2. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  3. Yttria-stabilized zirconia solid oxide electrolyte fuel cells, monolithic solid oxide fuel cells. Quarterly report, July--September 1989

    SciTech Connect

    Not Available

    1989-12-31

    The MSOFC features of thin ceramic components, small cell size, and 1000{degree}C operating temperature combine to provide very high power densities of about 8 kW/kg or 4 kW/L for the MSOFC (fuel cell only, coflow version). This very high power density coupled with expected efficiencies of over 50 percent offers the possibility of successful competition with existing electrical generation systems. The ability of the MSOFC to reform hydrocarbon fuels within the fuel channels allows existing fuels and fuel distribution methods to be used with minor modifications for most applications. The power density of the MSOFC is high enough to meet the demands of many diverse applications such as aerospace, transportation, portable power systems, and micro-cogeneration systems, as well as more conventional utilities systems. The primary development challenge is to fabricate the MSOFC structure by co-sintering all four fuel cell materials into the corrugated ``honeycomb`` structure (stack). The objectives of the cost study are: To assess the manufacturing cost for the MSOFC assuming a nominal production rate of 200 MW/year for coal-based system applications. To define an integrated coal gasification MSOFC system with a potential for reducing plant heat rate and capital costs below 7,100 BTU/kWh and $1,300/kW, respectively.

  4. Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer

    NASA Astrophysics Data System (ADS)

    Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.

    2013-11-01

    A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.

  5. Expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Antol, Ronald F.; Zafred, Paolo R.

    2002-01-01

    A solid oxide fuel assembly is made, wherein rows (14, 24) of fuel cells (16, 18, 20, 26, 28, 30), each having an outer interconnection (36) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh (22) between each row of cells, the corrugated mesh (22) having top crown portions (40) and bottom shoulder portions (42), where the top crown portion (40) contacts outer interconnections (36) of the fuel cells (16, 18, 20) in a first row (14), and the bottom shoulder portions (42) contacts outer electrodes (32) of the fuel cells in a second row (24), said mesh electrically connecting each row of fuel cells, and where there are no metal felt connections between any fuel cells.

  6. Chlorine in solid fuels fired in pulverized fuel boilers sources, forms, reactions, and consequences: a literature review

    SciTech Connect

    David A. Tillman; Dao Duong; Bruce Miller

    2009-07-15

    Chlorine is a significant source of corrosion and deposition, both from coal and from biomass, and in PF boilers. This investigation was designed to highlight the potential for corrosion risks associated with once-through units and advanced cycles. The research took the form of a detailed literature investigation to evaluate chlorine in solid fuels: coals of various ranks and origins, biomass fuels of a variety of types, petroleum cokes, and blends of the above. The investigation focused upon an extensive literature review of documents dating back to 1991. The focus is strictly corrosion and deposition. To address the deposition and corrosion issues, this review evaluates the following considerations: concentrations of chlorine in available solid fuels including various coals and biomass fuels, forms of chlorine in those fuels, and reactions - including reactivities - of chlorine in such fuels. The assessment includes consideration of alkali metals and alkali earth elements as they react with, and to, the chlorine and other elements (e.g., sulfur) in the fuel and in the gaseous products of combustion. The assessment also includes other factors of combustion: for example, combustion conditions including excess O{sub 2} and combustion temperatures. It also considers analyses conducted at all levels: theoretical calculations, bench scale laboratory data and experiments, pilot plant experiments, and full scale plant experience. Case studies and plant surveys form a significant consideration in this review. The result of this investigation focuses upon the concentrations of chlorine acceptable in coals burned exclusively, in coals burned with biomass, and in biomass cofired with coal. Values are posited based upon type of fuel and combustion technology. Values are also posited based upon both first principles and field experience. 86 refs., 8 figs., 7 tabs.

  7. Pressurized cyclonic combustion method and burner for particulate solid fuels

    SciTech Connect

    Hoffert, F.D.; Milligan, J.D.; Morrison, J.A.

    1988-02-16

    A system for burning particulate combustible fuel to produce a pressurized gas for operating a gas turbine is described comprising: a housing having side wall means forming a primary combustion chamber, a secondary chamber and a choke opening for reduced size between the primary combustion chamber and the secondary chamber. The secondary chamber is in fluid communication with the primary combustion chamber through the choke opening. The end of the primary combustion chamber opposite the choke opening is closed by end wall means. The end of the secondary chamber opposite the choke opening has an outlet opening for the passage of hot gas therethrough. A gas turbine is coupled to the outlet opening of the secondary chamber for operation by the gas passing through the outlet opening. A fuel opening is formed through the side wall means of the primary combustion chamber near the end wall means for introducing a particulate fuel under pressure therein generally tangentially to the inner wall of the primary combustion chamber and transverse to its axis such that the particulate fuel travels toward the choke opening in a helical path around the inner wall of the primary combustion chamber for burning therein for the production of hot gas under pressure for flow through the choke opening to the secondary chamber.

  8. Solid fuel's future today: pellet and chip experiments

    SciTech Connect

    Flagler, G.

    1982-01-01

    The various projects involving the use of wood pellets and chips as a heating fuel in Charlottetown, Prince Edward Island are described in detail. Carried out by the Institute of Man and Resources (founded in 1977) the goal is to promote renewable energy activities of special interest to Prince Edward Island residents. Four projects involving pellets and chips are described. These are: (1) the wood-fired Residential Heating Demonstration Program designed to research sophisticated central systems and alleviate pressure on the island's hardwood forests; (2) the Wood Fuel Survey Project in which 300 residents were used to gauge the impact of wood heating; (3) evaluation and testing of pellet wood stokers (using currently available coal-fired units); and (4) a demonstration program to determine costs and practicality of fuel supply systems for chips and pellets. The results of these programs are discussed and specific experiences are discussed in detail. Problems (e.g. pellet breakage and dust) are considered. It is concluded that (overall) results are satisfactory; wood chips and pellets are a convenient fuel; appliances function satisfactorily; and homeowners involved in the program are enthusiastic. (MJJ)

  9. Solid Fuel Delivery System Developed for Combustion Testing on the International Space Station

    NASA Technical Reports Server (NTRS)

    Frate, David T.

    2004-01-01

    NASA initiated Bioastronautics and Human Research Initiatives in 2001 and 2003, respectively, to enhance the safety and performance of humans in space. The Flow Enclosure Accommodating Novel Investigations in Combustion of Solids (FEANICS) is a multiuser facility being built at the NASA Glenn Research Center to advance these initiatives by studying fire safety and the combustion of solid fuels in the microgravity environment of the International Space Station (ISS). One of the challenges for the FEANICS team was to build a system that allowed for several consecutive combustion tests to be performed with minimal astronaut crew interaction. FEANICS developed a fuel carousel that contains a various number of fuel samples, depending on the fuel width, and introduces them one at a time into a flow tunnel in which the combustion testing takes place. This approach will allow the science team to run the experiments from the ground, while only requiring the crew to change out carousels after several tests have been completed.

  10. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    SciTech Connect

    Garg, A.; Smith, R.; Hill, D.; Simms, N.J.

    2009-08-15

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  11. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    PubMed

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues. PMID:19443201

  12. Generator module architecture for a large solid oxide fuel cell power plant

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  13. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    SciTech Connect

    Haynes, C.; Wepfer, W.J.

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  14. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  15. Hydrolysis and composition of recovered fibres fractionated from solid recovered fuel.

    PubMed

    Kemppainen, K; Siika-Aho, M; Östman, A; Sipilä, E; Puranen, T; von Weymarn, N; Kruus, K

    2014-10-01

    Fibres fractionated from solid recovered fuel (SRF), a standardised market combustion fuel produced from sorted waste, were considered as a source of lignocellulosic fermentable sugars. The fibre yield from four samples of SRF was 25-45%, and the separated material consisted of 52-54% carbohydrates, mainly glucan, with a high content of ash (12-17%). The enzymatic digestibility of recovered fibres was studied at low and high solids loading and compared with model substrates containing only chemical and mechanical pulps. Above 80% hydrolysis yield was reached at 20% solids loading in 48 h, but variation was observed between different samples of recovered fibres. Surfactants were found to improve the hydrolysis yield of recovered fibres especially in tumbling-type of mixing at low solids loading, where hydrolysis was found to stagnate without surfactants. The results suggest that SRF is a potential source of easily digestible lignocellulosic carbohydrates for use in biorefineries. PMID:25033328

  16. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  17. Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

    SciTech Connect

    Lei Yang; Meilin Liu

    2008-12-31

    One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode

  18. Pressurized cyclonic combustion method and burner for particulate solid fuels

    SciTech Connect

    Hoffert, F.D.; Milligan, J.D.; Morrison, J.A.

    1987-06-09

    This patent describes a method of operating a burner for burning particulate combustible fuel for producing a hot gas under pressure for operating a gas turbine, the burner comprising a housing having side wall means forming a cylindrical shape primary combustion chamber, a secondary chamber, and a choke opening of reduced size between the primary combustion chamber and the secondary chamber, the secondary chamber being in fluid communication with the primary combustion chamber through the choke opening, the end of the primary combustion chamber opposite the choke opening being closed by end wall means, the end of the secondary chamber opposite the choke opening having an outlet opening for the passage of hot gas for use of operating a gas turbine, a particulate fuel opening formed through the side wall means of the primary combustion chamber near the end wall means.

  19. Commercialisation of Solid Oxide Fuel Cells - opportunities and forecasts

    NASA Astrophysics Data System (ADS)

    Dziurdzia, B.; Magonski, Z.; Jankowski, H.

    2016-01-01

    The paper presents the analysis of commercialisation possibilities of the SOFC stack designed at AGH. The paper reminds the final design of the stack, presented earlier at IMAPS- Poland conferences, its recent modifications and measurements. The stack consists of planar double-sided ceramic fuel cells which characterize by the special anode construction with embedded fuel channels. The stack features by a simple construction without metallic interconnectors and frames, lowered thermal capacity and quick start-up time. Predictions for the possible applications of the stack include portable generators for luxurious caravans, yachts, ships at berth. The SOFC stack operating as clean, quiet and efficient power source could replace on-board diesel generators. Market forecasts shows that there is also some room on a market for the SOFC stack as a standalone generator in rural areas far away from the grid. The paper presents also the survey of SOFC market in Europe USA, Australia and other countries.

  20. Investigation of chemical looping combustion by solid fuels. 1. Process analysis

    SciTech Connect

    Yan Cao; Wei-Ping Pan

    2006-10-15

    This paper is the first in a series of two, where we present the concept of a CLC process of solid fuels using a circulating fluidized bed with three loop seals. The riser of this circulating fluidized bed was used as the oxidizer of the oxygen carrier; one of the loop seals was used as the reducer of the oxygen carrier and the separator for ash and oxygen carrier, and the other two loop seals were used for pressure balance in the solid recycle process. Pressure profiles of recycled solids using this process are presented in detail. For the development of an oxygen carrier, we focused on the establishment of a theoretical frame of oxygen transfer capability, reaction enthalpy, a chemical equilibrium, and kinetics. Analysis results indicated that Cu-, Ni-, and Co-based oxygen carriers may be the optimum oxygen carriers for the CLC of solid fuels. Thermodynamic analysis indicated that CO{sub 2} can be concentrated and purified to at least 99% purity for the gas-solid reaction mode or even higher for the solid-solid reaction mode on the basis of the selected oxygen carriers. A Cu-based oxygen carrier is the choice that has the potential to make the reducer self-sustaining or autothermal because of its exothermic nature during reduction. This would be beneficial for simplifying the operation of the reducer. The tendency of the Cu-based oxygen carriers to agglomerate can be eliminated by decreasing the operating temperature in the CLC system. In the second part of the series, we will evaluate the reduction kinetics of selected Cu-based oxygen carriers by coal and other 'opportunity solid fuels' using a simultaneous differential scanning calorimetry-thermogravimetric analysis to simulate a microreactor, using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues, and a thermogravimetric analysis coupled with mass spectra to characterize the evolved gas compositions. 46 refs., 5 figs., 2 tabs.

  1. A techno-economic comparison of fuel processors utilizing diesel for solid oxide fuel cell auxiliary power units

    NASA Astrophysics Data System (ADS)

    Nehter, Pedro; Hansen, John Bøgild; Larsen, Peter Koch

    Ultra-low sulphur diesel (ULSD) is the preferred fuel for mobile auxiliary power units (APU). The commercial available technologies in the kW-range are combustion engine based gensets, achieving system efficiencies about 20%. Solid oxide fuel cells (SOFC) promise improvements with respect to efficiency and emission, particularly for the low power range. Fuel processing methods i.e., catalytic partial oxidation, autothermal reforming and steam reforming have been demonstrated to operate on diesel with various sulphur contents. The choice of fuel processing method strongly affects the SOFC's system efficiency and power density. This paper investigates the impact of fuel processing methods on the economical potential in SOFC APUs, taking variable and capital cost into account. Autonomous concepts without any external water supply are compared with anode recycle configurations. The cost of electricity is very sensitive on the choice of the O/C ratio and the temperature conditions of the fuel processor. A sensitivity analysis is applied to identify the most cost effective concept for different economic boundary conditions. The favourite concepts are discussed with respect to technical challenges and requirements operating in the presence of sulphur.

  2. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    SciTech Connect

    Alan Ludwiszewski

    2009-06-29

    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  3. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. PMID:24561628

  4. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  5. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  6. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOEpatents

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  7. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  8. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2015-06-01

    Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.

  9. Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques

    NASA Astrophysics Data System (ADS)

    Elliott, Louie C.

    This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.

  10. Schlieren and OH* chemiluminescence imaging of combustion in a turbulent boundary layer over a solid fuel

    NASA Astrophysics Data System (ADS)

    Jens, Elizabeth T.; Miller, Victor A.; Cantwell, Brian J.

    2016-03-01

    Combustion in a turbulent boundary layer over a solid fuel is studied using simultaneous schlieren and OH* chemiluminescence imaging. The flow configuration is representative of a hybrid rocket motor combustor. Six different hydrocarbon fuels, including both classical hybrid rocket fuels and a high regression rate fuel (paraffin wax), are burned in an undiluted oxygen free-stream at pressures ranging from atmospheric to 1524.2 kPa (221.1 psi). A detailed explanation of methods for registering the schlieren and OH* chemiluminescence images to one another is presented, and additionally, details of the routines used to extract flow features of interest (like the boundary layer height and flame location) are provided. At atmospheric pressure, the boundary layer location is consistent between all fuels; however, the flame location varies for each fuel. The flame zone appears to be smoothly distributed over the fuel surface at atmospheric pressure. At elevated pressures and correspondingly increased Dahmköhler number (but at constant Reynolds number), flame morphology is markedly different, exhibiting large rollers in a shear layer above the fuel grain and finer structures in the flame. The chemiluminescence intensity is found to be roughly proportional to the fuel burn rate at both atmospheric and elevated chamber pressures.

  11. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    NASA Astrophysics Data System (ADS)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell

  12. The effect of stirring in the hydrothermal process to convert the mixed municipal solid waste into uniform solid fuel

    NASA Astrophysics Data System (ADS)

    Prawisudha, P.; Mu'min, G. F.; Yoshikawa, K.; Pasek, A. D.

    2016-06-01

    An innovative waste treatment technology has been developed in Indonesia to treat the mixed municipal solid waste into a solid fuel by employing the hydrothermal process. A mixture of organic and plastic waste was treated in a 2.5 L reactor using saturated steam in the temperature range of 120 to 180 °C. Two modes of operation were employed to achieve two different goals, i.e. without stirring (NS mode) and with stirring (WS mode). It was observed that both modes resulted in increasing density of product up to twofold of the raw MSW. In NS mode, the processed mixed MSW was converted into two different products; however, in WS mode the bulky plastic was converted into small granules, producing a uniform product. The results suggest that by hydrothermal treatment, the organic fibers in the organic parts are trapped into the plastic, and the stirring breaks the bulky plastics, producing uniform granules suitable as solid fuel. Therefore, the stirring during the hydrothermal process can be a solution to treat the MSW as it is, without any separation, to produce a clean and renewable energy source.

  13. Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes?

    PubMed

    Chen, Kongfa; Liu, Shu-Sheng; Ai, Na; Koyama, Michihisa; Jiang, San Ping

    2015-12-14

    High temperature solid oxide cells (SOCs) are attractive for storage and regeneration of renewable energy by operating reversibly in solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes. However, the stability of SOCs, particularly the deterioration of the performance of oxygen electrodes in the SOEC operation mode, is the most critical issue in the development of high performance and durable SOCs. In this study, we investigate in detail the electrochemical activity and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes in cyclic SOEC and SOFC modes. The results show that the deterioration of LSM oxygen electrodes caused by anodic polarization can be partially or completely recovered by subsequent cathodic polarization. Using in situ assembled LSM electrodes without pre-sintering, we demonstrate that the deteriorated LSM/YSZ interface can be repaired and regenerated by operating the cells under cathodic polarization conditions. This study for the first time establishes the foundation for the development of truly reversible and stable SOCs for hydrogen fuel production and electricity generation in cyclic SOEC and SOFC operation modes. PMID:26548929

  14. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    DOEpatents

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  15. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  16. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  17. CARCINOGENICITY OF HOUSEHOLD SOLID FUEL COMBUSTION AND OF HIGH-TEMPERATURE FRYING

    EPA Science Inventory

    In October, 2006, 19 scientists from eight countries met at the International Agency for Research on Cancer (IARC) in Lyon, France, to assess the carcinogenicity of household solid fuel combustion (coal and biomass) and of high-temperature frying. These assessments will be publi...

  18. Research Opportunities for Cancer Associated with Indoor Air Pollution from Solid-Fuel Combustion

    EPA Science Inventory

    Background: Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most expos...

  19. Health and Household Air Pollution from Solid Fuel Use: The Needfor Improved Exposure Assessment

    EPA Science Inventory

    Background: Nearly half the world’s population relies on solid fuel combustion to meet basic household energy needs (e.g., cooking and heating). Resulting air pollution exposures are estimated to cause 3% of the global burden of disease. Large variability and a lack of resource...

  20. Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.

    2004-01-01

    Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.

  1. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  2. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  3. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  4. Synthesis and Stability of a Nanoparticle-Infiltrated Solid OxideFuel Cell Electrode

    SciTech Connect

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2006-11-20

    Nanoparticulate catalysts infiltrated into SOFC (Solid OxideFUel Cell) electrodes can significantly enhance the cell performance, butthe stability of these electrodes has been an open issue. An infiltrationprocedure is reported that leads to a stable scandia-stablized zirconia(SSZ) cathode electrode performance.

  5. Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1986-10-01

    This fuel ethanol study examined the effects of Saccharomyces cerevisiae inoculum size on solid-phase fermentation of fodder beet pulp. A 5% inoculum (wt/wt) resulted in rapid yeast and ethanol (9.1% (vol/vol)) production. Higher inocula showed no advantages. Lower inocula resulted in lowered final yeast populations and increased fermentation times.

  6. Experimental investigation of laboratory-scale rocket engine fed on solid polyethylene rod as fuel

    NASA Astrophysics Data System (ADS)

    Yemets, V. V.; Sanin, F. P. Dzhur, Ye. O.; Masliany, M. V.; Kostritsyn, O. Yu.; Minteev, G. V.; Ushkanov, V. M.

    Fire testing of the laboratory-scale rocket engine with the consumable solid polyethylene rod as fuel is described. The experimental data on heat flows, gasification rate and heat transfer coefficient are presented. Results of the testing may be useful for designing launch vehicles with combustible polyethylene tank shells.

  7. Development Of A Solid Oxide Fuel Cell Stack By Delphi And Battelle

    SciTech Connect

    Mukerjee, Subhasish; Shaffer, Steven J.; Zizelman, James; Chick, Lawrence A.; Baskaran, Suresh; Chou, Y. S.; Coyle, Christopher A.; Deibler, John E.; Maupin, Gary D.; Meinhardt, Kerry D.; Paxton, Dean M.; Peters, Timothy J.; Sprenkle, Vince L.; Weil, K. Scott; Williford, Rick E.

    2003-01-20

    Delphi and Battelle are developing a Solid Oxide Fuel Cell (SOFC) stack for transportation and residential applications. This paper describes the status of development of the Generation 2 stack and key progress made in addressing some of the challenges in this technology.

  8. Analysis of a heat recirculating cooler for fuel gas sulfur removal in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Richards, Geo. A.; Berry, David A.; Freed, Adam

    When using conventional fossil fuels, most fuel cell systems require sulfur removal as part of their fuel processing. A novel approach to enable conventional sulfur removal in high-temperature fuel processing is presented. Using established principles from heat-recirculating combustors, it is suggested that high-temperature syngas can be momentarily cooled to conditions that would permit conventional sulfur removal to be carried out at relatively low temperatures. The recirculated heat is then used to heat the gas back to conditions that are minimally less than the original temperature. A model for evaluating the performance of this concept is presented, and calculations suggest that relative to fuel cell applications, reasonable physical dimensions can be expected in actual applications. For high-pressure syngas (i.e., coal gasification), the physical dimensions will rise with the operating pressure.

  9. Abundance of {sup 14}C in biomass fractions of wastes and solid recovered fuels

    SciTech Connect

    Fellner, Johann Rechberger, Helmut

    2009-05-15

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO{sub 2} emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes {sup 14}C and {sup 12}C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in {sup 14}C and reflect the {sup 14}CO{sub 2} abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying {sup 14}C content of biogenic matter, depending on the period of growth. In the present paper {sup 14}C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated {sup 14}C content of the materials investigated ranges between 98 and 135 pMC.

  10. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.

    PubMed

    Fellner, Johann; Rechberger, Helmut

    2009-05-01

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC. PMID:19157836

  11. Numerical study of solid fuel evaporation and auto-ignition in a dump combustor

    NASA Astrophysics Data System (ADS)

    Tahsini, A. M.; Farshchi, M.

    2010-10-01

    Evaporation of polymeric solid fuels in backward facing step geometry subject to an inlet oxidizer flow at elevated temperatures is considered and convective heating of the fuel surface by the hot oxidizing inlet flow and subsequent mixing of the evaporated fuel with the oxidizer flow and its combustion is numerically studied. The objective of this work is to gain insight into the auto-ignition of the fuel and its controlling parameters in this configuration. The system of governing equations is solved with a finite volume approach using a structured grid in which the AUSM + scheme is used to calculate the gas phase convective fluxes. The flowfield is turbulent and the Spalart-Allmaras turbulence model is used in these simulations. Special attention is paid to the coupling of gas and solid phase to study the ignition process. Distinct intervals in ignition delay time are studied and evaporation time, mixing time, and reaction time are individually estimated. We have demonstrated that for inlet oxidizer streams with high initial oxygen concentration levels and high enough inlet temperatures a diffusion-controlled ignition mechanism controls the ignition time delay independent of the inlet velocity. This ignition time delay is directly related to the solid fuel evaporation time delay.

  12. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura

    Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, hot springs, and some lakes. Hydrogen sulfide can also result as a by-product from industrial activities, such as food processing, coke ovens, paper mills, tanneries, and petroleum refineries. Sometimes, it is considered to be an industrial pollutant. However, hydrogen can be decomposed from H 2S and then used as fuel for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide as a feedstock in a solid oxide fuel cell is discussed. A system configuration of an SOFC combined with an external H 2S decomposition device is proposed, where a certain amount of natural gas is supplied to the SOFC. The exhaust fuel gas of the SOFC is after-burned with exhaust air from the SOFC, and the heat of the combustion gas is utilized in the decomposition of H 2S in a decomposition reactor (DR) to produce hydrogen to feed the SOFC. The products are electricity and industry-usable sulfur. Through a mass and energy balance, a preliminary thermodynamic analysis of this system is performed, and the system efficiency is calculated. Also in this paper, the challenges in creating the proposed configuration are discussed, and the direction of future work is presented.

  13. Solid waste from Swine wastewater as a fuel source for heat production.

    PubMed

    Park, Myung-Ho; Kumar, Sanjay; Ra, ChangSix

    2012-11-01

    This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg) and low moisture (15.38%) content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98%) with varied temperatures. Thermogravimetry (TG) and differential thermal analysis (DTA) showed five thermal effects (four exothermic and one endothermic), and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer. PMID:25049526

  14. Solid Waste from Swine Wastewater as a Fuel Source for Heat Production

    PubMed Central

    Park, Myung-Ho; Kumar, Sanjay; Ra, ChangSix

    2012-01-01

    This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg) and low moisture (15.38%) content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98%) with varied temperatures. Thermogravimetry (TG) and differential thermal analysis (DTA) showed five thermal effects (four exothermic and one endothermic), and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer. PMID:25049526

  15. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  16. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  17. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; Mao, Yiwu; Wang, Wei; He, Weidong

    2016-05-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  18. Characterization of HTPB-based solid fuel formulations: Performance, mechanical properties, and pollution

    NASA Astrophysics Data System (ADS)

    DeLuca, L. T.; Galfetti, L.; Maggi, F.; Colombo, G.; Merotto, L.; Boiocchi, M.; Paravan, C.; Reina, A.; Tadini, P.; Fanton, L.

    2013-12-01

    Features such as safety, low-cost, and throttleability make hybrid rocket engines an attractive option for suborbital flights and space exploration missions in general. While the domain of possible liquid oxidizers is well characterized, the choice of a suitable solid fuel is still a matter of investigation. Space Propulsion Laboratory (SPLab) at Politecnico di Milano has developed a series of proprietary techniques to evaluate, on a relative grading, the quality of innovative solid fuels while visualizing at the same time their flame structure. But a serious alert was recently notified that soot emission from hydrocarbon fuels has the potential to contribute to global climate change. In this paper, HTPB polymer has been taken as baseline and characterized at laboratory level in terms of ballistic properties, mechanical testing, and thermochemical calculations.

  19. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  20. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  1. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  2. Development of low temperature solid oxide fuel cells

    SciTech Connect

    Bakker, W.T.; Goldstein, R.

    1996-12-31

    The historical focus of the electric utility industry has been central station power plants. These plants are usually sited outside urban areas and electricity was delivered via high voltage transmission lines. Several things are beginning to change this historical precedent One is the popular concern with EMF as a health hazard. This has rendered the construction of new lines as well as upgrading old ones very difficult. Installation of power generating equipment near the customer enables the utility to better utilize existing transmission and distribution networks and defer investments. Power quality and lark of disturbances and interruptions is also becoming increasingly more important to many customers. Grid connected, but dedicated small power plants can greatly improve power quality. Finally the development of high efficiency, low emission, modular fuel cells promises near pollution free localized power generation with an efficiency equal to or exceeding that of even the most efficient central power stations.

  3. Operational comparison of TLD albedo dosemeters and solid state nuclear tracks detectors in fuel fabrication facilities.

    PubMed

    Tsujimura, N; Takada, C; Yoshida, T; Momose, T

    2007-01-01

    The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry. PMID:17337735

  4. Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials

    SciTech Connect

    Basoli, Francesco; Senesi, Roberto; Kolesnikov, Alexander I; Licoccia, Silvia

    2014-01-01

    Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

  5. Modeling of combustion processes in a solid fuel particle

    SciTech Connect

    Howard, D.W.

    1989-01-01

    During the production of granules or uranium oxide, granules of ion-exchange resin, loaded with uranium ions, are burned to remove the resin matrix and leave a uranium oxide ''ash''. Under some conditions of combustion, the oxide granules are produced in a highly fractured, porous state, while other conditions result in hard, dense, solid granules. ABAQUS was used to model the physical processes occurring during combustion: heat transfer with a very non-linear temperature dependent rate of heat generation, diffusion of reactants and products, and stress/strain resulting from the differential temperatures and from the phase changes during the combustion. The ABAQUS simulation was very successful in explaining the differences in morphology of the granules under different conditions, and in leading to control strategies to produce the desired morphology. However, some of the limitations of ABAQUS prevented obtaining as accurate a simulation as desired. 10 figs.

  6. Modeling of combustion processes in a solid fuel particle

    SciTech Connect

    Howard, D.W.

    1990-01-01

    During the production of granules of uranium oxide, granules of ion exchange resin, loaded with uranium ions, are burned to remove the resin matrix and leave a uranium oxide ash''. Under some conditions of combustion, the oxide granules are produced in a highly fractured, porous state, while other conditions result in hard, dense, solid granules. ABAQUS, a commercial finite-element code, run on an IBM 3090, was used to model the physical processes occurring during combustion: heat transfer with a very nonlinear temperature-dependent rate of heat generation, diffusion of reactants and products, and stress/strain resulting from the differential temperatures and from the phase changes during the combustion. The ABAQUS simulation successfully explained the differences in morphology of the granules under different conditions, and lead to control strategies to produce the desired morphology. 10 figs.

  7. Household Solid Fuel Use and Cardiovascular Disease in Rural Areas in Shanxi, China

    PubMed Central

    QU, Weihua; YAN, Zhijun; QU, Guohua; IKRAM, Maria

    2015-01-01

    Background: More than 80 percent of the China’s population is located in the rural areas, 95 percent of which use coal, wood etc for cooking and heating. Limited by data availability, the association between household solid fuels and cardiovascular diseases (CVDs) in China’s rural areas is ignored in prior studies. Methods: This cross sectional study was conducted from 2010–2012 and carried out on rural population aging 20–80 yr, comprised of 13877 participants from eighteen villages. Self-report questionnaire data were collected. Each outcome represents whether the participant has a kind of CVDs or not and it is reported in participants’ questionnaire. Then the collected data is analyzed by logistic regression models with odds ratios (OR) and 95 percent confidence interval. Results: After adjusting for potential confounders, the use of household solid fuels was significantly associated with an increased risk for hypertension (OR 1.751), CHD (OR 2.251), stroke (OR 1.642), diabetes (OR 1.975) and dyslipidemia (OR 1.185). Residents with the highest tertile of the duration of household solid fuel exposure had an increased odd of hypertension (OR 1.651), stroke (OR 1.812), diabetes (OR 2.891) and dyslipidemia (OR 1.756) compared with those in the lowest tertile of the duration of solid fuel exposure. Conclusion: Indoor pollution exposure from household solid fuels combustion may be a positive risk factor for CVDs in the perspectives of China’s rural population. Our findings should be corroborated in longitudinal studies. PMID:26284203

  8. Indoor Air Pollution and Health in Ghana: Self-Reported Exposure to Unprocessed Solid Fuel Smoke.

    PubMed

    Armah, Frederick A; Odoi, Justice O; Luginaah, Isaac

    2015-06-01

    Most countries in Sub-Saharan Africa including Ghana still depend extensively on unprocessed solid cooking fuels with many people exposed on a daily basis to harmful emissions and other health risks. In this study, using complementary log-log multivariate models, we estimated the health effects of exposure to smoke from unprocessed wood in four regions of Ghana while controlling for socio-environmental and socio-demographic factors. The results show that the distribution of self-reported exposure to smoke was highest among participants in the Northern region, rural dwellers, the 25-49 age groups, individuals with no education, and married women. As expected, exposure to smoke was higher in crowded households and in communities without basic social amenities. Region, residential locality, housing quality (type of roofing, floor and exterior materials), self-reported housing condition, and access to toilet facilities were associated with self-reported exposure to solid fuel smoke. Participants living in urban areas were less likely (OR = 0.82, ρ ≤ 0.01) to be exposed to solid fuel smoke compared to their rural counterparts. An inverse relationship between self-reported housing condition and exposure to solid fuel smoke was observed and persisted even after adjustments were made for confounding variables in the demographic model. In Ghana, the cost and intermittent shortages of liquefied petroleum gas and other alternative fuel sources hold implications for the willingness of the poor to shift to their use. Thus, the poorest rural populations with nearly no cash income and electricity, but with access to wood and/or agricultural waste, are unlikely to move to clean fuels or use significantly improved stoves without large subsidies, which are usually not sustainable. However, there appears to be large populations between these extremes that can be targeted by efforts to introduce improved stoves. PMID:24136388

  9. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  10. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end

    DOEpatents

    Zafred, Paolo R.; Draper, Robert

    2012-01-17

    A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).

  11. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Xue, Miao; Chen, Yuanchen; Yang, Chunli; Li, Wei; Shen, Huizhong; Huang, Ye; Zhang, Yanyan; Chen, Han; Zhu, Ying; Wu, Haisuo; Ding, Aijun; Tao, Shu

    2014-06-01

    Uncertainty in the emission factor (EF) usually contributes largely to the overall uncertainty in the emission inventory. In the present study, the locally measured EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC) for solid fuels burned in the residential sector are compiled and compared. These fuels are classified into seven sub-groups of anthracite briquette, anthracite chunk, bituminous briquette, bituminous chunk, crop residue, fuel wood log, and brushwood/branches. The EFs of carbonaceous particles for these fuels vary significantly, generally in the order of anthracite (briquette and chunk) < wood log < brushwood/branches < crop residue < bituminous (briquette and chunk), with an exception that the brushwood/branches have a relatively high EF of EC. The ratio of EC/OC varies significantly among different fuels, and is generally higher for biomass fuel than that for coal because of the intense flaming conditions formed during the biomass burning process in improved stoves. Distinct ratios calls for a future study on the potential health and climate impacts of carbonaceous PM from the residential combustions of different fuels. A narrow classification of these fuels significantly reduces the variations in the EFs of PM, OC, and EC, and the temporal and geographical distributions of the emissions could be better characterized.

  12. A redox-stable efficient anode for solid-oxide fuel cells.

    PubMed

    Tao, Shanwen; Irvine, John T S

    2003-05-01

    Solid-oxide fuel cells (SOFCs) promise high efficiencies in a range of fuels. Unlike lower temperature variants, carbon monoxide is a fuel rather than a poison, and so hydrocarbon fuels can be used directly, through internal reforming or even direct oxidation. This provides a key entry strategy for fuel-cell technology into the current energy economy. Present development is mainly based on the yttria-stabilized zirconia (YSZ) electrolyte. The most commonly used anode materials are Ni/YSZ cermets, which display excellent catalytic properties for fuel oxidation and good current collection, but do exhibit disadvantages, such as low tolerance to sulphur and carbon deposition when using hydrocarbon fuels, and poor redox cycling causing volume instability. Here, we report a nickel-free SOFC anode, La0.75Sr0.25Cr0.5Mn0.5O3, with comparable electrochemical performance to Ni/YSZ cermets. The electrode polarization resistance approaches 0.2 Omega cm2 at 900 degrees C in 97% H2/3% H2O. Very good performance is achieved for methane oxidation without using excess steam. The anode is stable in both fuel and air conditions, and shows stable electrode performance in methane. Thus both redox stability and operation in low steam hydrocarbons have been demonstrated, overcoming two of the major limitations of the current generation of nickel zirconia cermet SOFC anodes. PMID:12692533

  13. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  14. A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni

    2008-01-01

    As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  15. High temperature tubular solid oxide fuel cell development

    SciTech Connect

    Ray, E.R.

    1992-01-01

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98% availability and measured NO{sub x} levels of less than 1.3 ppM. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to The UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO{sub x} was measured at <0.3 ppM (corrected to 15% oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators. 2,300 hours of stable operation has been obtained on the first unit.

  16. High temperature tubular solid oxide fuel cell development

    SciTech Connect

    Ray, E.R.

    1992-09-01

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98% availability and measured NO{sub x} levels of less than 1.3 ppM. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to The UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO{sub x} was measured at <0.3 ppM (corrected to 15% oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators. 2,300 hours of stable operation has been obtained on the first unit.

  17. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect

    Singh, Raj

    2008-06-30

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  18. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  19. Optimum Chemical Regeneration of the Gases Burnt in Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Volkova, Yu. V.; Plotnikov, N. S.

    2014-07-01

    A simplified method of calculating the concentrations of the components of a thermodynamically equilibrium mixture (a synthesis gas) supplied to the anode channel of a battery of solid oxide fuel cells and the change in these concentrations along the indicated channel is proposed and results of corresponding calculations are presented. The variants of reforming of a natural gas (methane) by air and steam as well as by a part of the exhaust combustion products for obtaining a synthesis gas are considered. The amount of the anode gases that should be returned for the complete chemical regeneration of the gases burnt in the fuel cells was determined. The dependence of the electromotive force of an ideal oxide fuel element (the electric circuit of which is open) on the degree of absorption of oxygen in a thermodynamically equilibrium fuel mixture was calculated.

  20. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  1. Interfacial strain effect on gas transport in nanostructured electrodes of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wen, Kechun; Han, Yupei; Zou, Minda; Lv, Weiqiang; He, Weidong

    2015-09-01

    Most efforts regarding strain effect at the interfaces between electrolytes and electrodes are mainly focused on enhancing the ionic conductivity in electrolytes. However, fundamental insights into the strain effect on gas transport properties in electrodes of fuel cells are still lacking. In this report, quantitative analysis is performed to evaluate the correlation between interfacial strain and the important fuel cells parameters, including limiting current density and concentration polarization. We demonstrate that the strain effect plays an important role in the performance of solid oxide fuel cells with nanostructured electrodes. Our studies provide a powerful platform for reducing concentration polarization by engineering quantitatively the interfacial strain, and facilitating the development of high-efficiency nanostructured fuel cells.

  2. Production of a solid fuel using sewage sludge and spent cooking oil by immersion frying.

    PubMed

    Wu, Zhonghua; Zhang, Jing; Li, Zhanyong; Xie, Jian; Mujumdar, Arun S

    2012-12-01

    Sewage sludge and spent cooking oil are two main waste sources of modern Chinese cities. In this paper, the immersion frying method using spent cooking oil as the heating medium was applied to dry and convert wet sewage sludge into a solid fuel. The drying and oil uptake curves were plotted to demonstrate the fry-drying characteristics of the sewage sludge. Parametric studies were carried out to identify the governing parameters in the frying drying operation. It was found that at frying oil temperatures of 140-160°C, the wet sewage sludge could be dried completely in 6-9 min and converted into a solid fuel with a high calorific value of 21.55-24.08 MJ/kg. The fuel structure, chemical components, pyrolysis and combustion characteristics were investigated and the experimental results showed the solid fuel had a porous internal structure and a low ignition temperature of 250°C due to presence of oil. The frying drying mechanism was also discussed. PMID:23158688

  3. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  4. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    SciTech Connect

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the

  5. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review

    PubMed Central

    Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G.

    2013-01-01

    Background: Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. Objectives: We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. Methods: We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as “factors” relating to one of seven domains—fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms—and also recorded issues that impacted equity. Results: We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Conclusions: Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness. Citation: Rehfuess EA, Puzzolo E, Stanistreet D, Pope D, Bruce

  6. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  7. A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming

    2006-01-01

    As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  8. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  9. Corrosion and Protection of Metallic Interconnects in Solid Oxide Fuel Cells

    SciTech Connect

    Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

    2007-12-09

    Energy security and increased concern over environmental protection have spurred a dramatic world-wide growth in research and development of fuel cells, which electrochemically convert incoming fuel into electricity with no or low pollution. Fuel cell technology has become increasingly attractive to a number of sectors, including utility, automotive, and defense industries. Among the various types of fuel cells, solid oxide fuel cells (SOFCs) operate at high temperature (typically 650-1,000 C) and have advantages in terms of high conversion efficiency and the flexibility of using hydrocarbon fuels, in addition to hydrogen. The high temperature operation, however, can lead to increased mass transport and interactions between the surrounding environment and components that are required to be stable during a lifetime of thousands of hours and up to hundreds of thermal cycles. For stacks with relatively low operating temperatures (<800 C), the interconnects that are used to electrically connect a number of cells in series are typically made from cost-effective metals or alloys. The metallic interconnects must demonstrate excellent stability in a very challenging environment during SOFC operation, as they are simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing environment (hydrogen or a reformed hydrocarbon fuel) on the anode side. Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain impurities, such as sulfides. Since the fuel is usually a reformed hydrocarbon fuel, such as natural gas, coal gas, biogas, gasoline, etc., the interconnect is exposed to a wet carbonaceous environment at the anode side. Finally, the interconnect must be stable towards any adjacent components, such as electrodes, seals and electrical contact materials, with which it is in physical contact.

  10. Combustion-derived nanoparticle exposure and household solid fuel use in Xuanwei and Fuyuan, China

    PubMed Central

    Hosgood, H. Dean; Lan, Qing; Vermeulen, Roel; Wei, Hu; Reiss, Boris; Coble, Joseph; Wei, Fusheng; Jun, Xu; Wu, Guoping; Rothman, Nat

    2014-01-01

    Combustion-derived nanoparticles (CDNPs) have not been readably measurable until recently. We conducted a pilot study to determine CDNP levels during solid fuel burning. The aggregate surface area of CDNP (μm2/cm3) was monitored continuously in 15 Chinese homes using varying fuel types (i.e. bituminous coal, anthracite coal, wood) and stove types (i.e. portable stoves, stoves with chimneys, firepits). Information on fuel burning activities was collected and PM2.5 levels were measured. Substantial exposure differences were observed during solid fuel burning (mean: 228.1 μm2/cm3) compared to times without combustion (mean: 14.0 μm2/cm3). The observed levels during burning were reduced by about four-fold in homes with a chimney (mean: 92.1 μm2/cm3; n = 9), and effects were present for all fuel types. Each home’s CDNP measurement was only moderately correlated with the respective PM2.5 measurements (r2 = 0.43; p = 0.11). Our results indicate that household coal and wood burning contributes to indoor nanoparticle levels, which are not fully reflected in PM2.5 measurements. PMID:22639822

  11. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ∼260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  12. Comparison of numerical simulation results for transport and thermodynamic properties of the solid fuels combustion products with experimental data

    NASA Astrophysics Data System (ADS)

    Shmelkov, Yuriy; Samujlov, Eugueny

    2012-04-01

    Comparison of calculation results of transport properties of the solid fuels combustion products was made with known experimental data. Calculation was made by means of the modified program TETRAN developed in G.M. Krzhizhanovsky Power Engineering Institute. The calculation was spent with chemical reactions and phase transformations occurring during combustion. Also ionization of products of solid fuels combustion products at high temperatures was taken into account. In the capacity of fuels various Russian coals and some other solid fuels were considered. As a result of density, viscosity and heat conductivity calculation of a gas phase of solid fuels combustion products the data has been obtained in a range of temperatures 500-20000 K. This comparison has shown good convergence of calculation results with experiment.

  13. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    NASA Astrophysics Data System (ADS)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  14. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    NASA Technical Reports Server (NTRS)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  15. Application of ionic and electronic conducting ceramics in solid oxide fuel cells

    SciTech Connect

    Singhal, S.C.

    1997-12-01

    Solid oxide fuel cells (SOFCs) offer a pollution-free technology to electrochemically generate electricity at high efficiencies. These fuel cells consist of an oxygen ion conducting electrolyte, electronic or mixed electronic and ionic conducting electrodes, and an electronic conducting interconnection. This paper reviews the ceramic materials used for the different cell components, and discusses the performance of cells fabricated using these materials. The paper also discusses the materials and processing studies that are underway to reduce the cell cost, and summarizes the recently built power generation systems that employed state-of-the-art SOFCs.

  16. In-situ Young's moduli of the constitutive layers in a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Pandey, Amit; Shyam, Amit; Liu, Zhien; Goettler, Richard

    2015-01-01

    In-situ Young's moduli of thin constituent layers of a solid oxide fuel cell (SOFC) are needed to estimate the mechanical reliability of the fuel cell unit. Because a robust technique to measure the same is not available, an improved methodology is proposed to determine the in-situ Young's moduli of thin ceramic layers of a substrate-supported SOFC. The measured Young's moduli of the constituent layers were found to be close to those of corresponding bulk materials using the resonant ultrasound spectroscopy (RUS) technique but were different from the values obtained using nanoindentation.

  17. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  18. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    NASA Astrophysics Data System (ADS)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  19. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  20. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs

    SciTech Connect

    Greenspan, E

    2006-04-30

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the

  1. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    NASA Astrophysics Data System (ADS)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  2. Processing of solid fossil-fuel deposits by electrical induction heating

    NASA Astrophysics Data System (ADS)

    Fisher, S. T.

    1980-02-01

    A study has been made to determine the feasibility of extracting the energy commodities electricity, gas, petroleum, chemical feedstocks, and coke from the solid fossil fuels coal, oil shale, oil sand, and heavy oil by the electrical induction heating of the deposits. Available electrical, physical, and chemical data indicate that this process may be technically and economically feasible. Some basic data are missing, and it has been necessary to indicate possible ranges of values for some parameters. The tentative conclusions drawn are the following. All four solid fossil fuels can be processed successfully underground. All five energy commodities can be produced economically in adequate quantities for a period of a century or more in North America, without recourse to any other major energy source. The development and construction time required is short enough to permit an uninterrupted supply of all energy commodities as present sources decline

  3. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOEpatents

    Huang, Kevin; Ruka, Roswell J.

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  4. Characterization of Solid Oxide Fuel Cell Components Using Electromagnetic Model-Based Sensors

    SciTech Connect

    Zilberstein, Vladimir; Craven, Chris; Goldfine, Neil

    2004-12-28

    In this Phase I SBIR, the contractor demonstrated a number of capabilities of model-based sensors such as MWM sensors and MWM-Arrays. The key results include (1) porosity/microstructure characterization for anodes, (2) potential for cathode material characterization, (3) stress measurements in nickel and cobalt, and (4) potential for stress measurements in non-magnetic materials with a ferromagnetic layer. In addition, potential applications for manufacturing quality control of nonconductive layers using interdigitated electrode dielectrometers have been identified. The results indicate that JENTEK's MWM technology can be used to significantly reduce solid oxide fuel cell production and operating costs in a number of ways. Preliminary investigations of solid oxide fuel cell health monitoring and scale-up issues to address industry needs have also been performed.

  5. MTCI/ThermoChem steam reforming process for solid fuels for combined cycle power generation

    SciTech Connect

    Mansour, M.N.; Voelker, G.; Dural-Swamy, K.

    1995-12-31

    Manufacturing and Technology Conversion International, Inc. (MTCI) has developed a novel technology to convert solid fuels including biomass, coal, municipal solid waste (MSW) and wastewater sludges into usable syngas by steam reforming in an indirectly heated, fluid-bed reactor. MTCI has licensed and patented the technology to ThermoChem, Inc. Both MTCI and ThermoChem have built two modular commercial-scale demonstration units: one for recycle paper mill rejects (similar to refuse-derived fuel [RDF]), and another for chemical recovery of black liquor. ThermoChem has entered into an agreement with Ajinkyatara Cooperative Sugar Factory, India, for building a 10 MW combined cycle power generation facility based on bagasse and agro-residue gasification.

  6. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels.

    PubMed

    Matson, Theodore D; Barta, Katalin; Iretskii, Alexei V; Ford, Peter C

    2011-09-01

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a single stage reactor operating at 300-320 °C and 160-220 bar. Little or no char is formed during this process. The reaction medium is supercritical methanol (sc-MeOH) and the catalyst, a copper-doped porous metal oxide, is composed of earth-abundant materials. The major liquid product is a mixture of C(2)-C(6) aliphatic alcohols and methylated derivatives thereof that are, in principle, suitable for applications as liquid fuels. PMID:21806029

  7. Design and performance of tubular flat-plate solid oxide fuel cell

    SciTech Connect

    Matsushima, T.; Ikeda, D.; Kanagawa, H.

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  8. Processing of LaCrO{sub 3} for solid oxide fuel cell applications

    SciTech Connect

    Huebner, W.; Nasrallah, M.M.; Anderson, H.U.

    1993-11-01

    Objectives of this project is to produce LaCrO{sub 3} for the interconnect in solid oxide fuel cells. The project is divided into three areas: reproducible powder synthesis, sintering of LaCrO{sub 3}-based powders, and co-sintering of LaCrO{sub 3}-based powders with cathode and electrolyte materials. The project has been in place for 3 months; construction is underway for the spray pyrolysis system and studies initiated on the organometallic precursor.

  9. Mathematical modeling of thermal processing of individual solid-fuel particles

    SciTech Connect

    Patskov, V.P.; Dudnik, A.N.; Anishchenko, A.A.

    1995-08-01

    A mathematical model, an algorithm, and a program for calculating the thermal processing of individual solid-fuel particles are developed with account for moisture evaporation, escape of volatiles, and burn-out of the carbon residue. Numerical calculations of the influence of regime conditions on the gasification-combustion of individual particles of Chelyabinsk brown coal are performed. A comparison with experiment is made.

  10. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  11. Networked solid oxide fuel cell stacks combined with a gas turbine cycle

    NASA Astrophysics Data System (ADS)

    Selimovic, Azra; Palsson, Jens

    An improved design of fuel cells stacks arrangement has been suggested before for MCFC where reactant streams are ducted such that they are fed and recycled among multiple MCFC stacks in series. By networking fuel cell stacks, increased efficiency, improved thermal balance, and higher total reactant utilisation can be achieved. In this study, a combination of networked solid oxide fuel cell (SOFC) stacks and a gas turbine (GT) has been modelled and analysed. In such a combination, the stacks are operating in series with respect to the fuel flow. In previous studies, conducted on hybrid SOFC/GT cycles by the authors, it was shown that the major part of the output of such cycles can be addressed to the fuel cell. In those studies, a single SOFC with parallel gas flows to individual cells were assumed. It can be expected that if the performance of the fuel cell is enhanced by networking, the overall system performance will improve. In the first part of this paper, the benefit of the networked stacks is demonstrated for a stand alone stack while the second part analyses and discusses the impact networking of the stacks has on the SOFC/GT system performance and design. For stacks with both reactant streams in series, a significant increase of system efficiency was found (almost 5% points), which, however, can be explained mainly by an improved thermal management.

  12. Characterization of Korean solid recovered fuels (SRFs): an analysis and comparison of SRFs.

    PubMed

    Choi, Yeon-Seok; Han, Soyoung; Choi, Hang-Seok; Kim, Seock-Joon

    2012-04-01

    To date, Korea has used four species of solid recovered fuels (SRFs) which have been certified by the Environmental Ministry of Korea: refuse-derived fuel (RDF), refused plastic fuel (RPF), tyre-derived fuel (TDF), and wood chip fuel (WCF). These fuels have been used in many industrial boilers. In this study, seven regulatory properties associated with each of the four species: particle size, moisture and ash content, lower heating value (LHV), total chlorine, sulfur, and heavy metals content (Pb, As, Cd, Hg, Cr) were analysed. These properties are the main regulation criteria for the usage and transfer of SRFs in Korea. Different properties of each SRF were identified on the basis of data collected over the last 3 years in Korea, and the manufacturing process problem associated with the production of SRFs were considered. It was found that the high moisture content of SRFs (especially WCF) could directly lead to the low LHV of SRFs and that the poor screening and sorting of raw materials could cause defective SRF products with high ash or chlorine contents. The information obtained from this study could contribute to the manufacturing of SRF with good quality. PMID:22496248

  13. Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers

    NASA Technical Reports Server (NTRS)

    Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.

    2013-01-01

    Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.

  14. Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

    NASA Astrophysics Data System (ADS)

    Kaniowski, Robert; Poniewski, Mieczysław

    2013-12-01

    Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.

  15. Controlling mechanisms of ignition of solid fuel in a sudden-expansion combustor

    SciTech Connect

    Yang, J.; Wu, C.Y.Y.

    1995-05-01

    Ignition of solid fuel by a hot oxidizing flow in a sudden-expansion combustor was investigated experimentally. The controlled variables of the experiments were concentration of oxygen (12-25%), gas temperature (750-850 C), and flow velocity (19-46 m/s). The step height was 29 mm. The corresponding Reynolds numbers based on the flow velocity and the step heights were 12 x 10(sup 4)-31 x 10(sup 4). The controlling mechanisms of ignition in the flow with abundant oxygen were distinct from those with little oxygen. The initial flame kernels formed near the reattachment point and adjacent to the surface of solid fuel when the oxygen concentration was large. The process was controlled by diffusion and the ignition delay decreased with increased flow velocity. For the flow containing oxygen at a small concentration, the initial flame kernels formed within the recirculation zone and away from the surface of the solid fuel. The process was then controlled by the chemical kinetics and the ignition delay increased with increased flow velocity. 15 refs.

  16. Quantitative Surface Emissivity and Temperature Measurements of a Burning Solid Fuel Accompanied by Soot Formation

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)

    2001-01-01

    Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.

  17. Studies in new materials for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Skinner, Alex W.

    Ceramic materials have historically been of interest for their thermal and mechanical properties. However, certain ceramic materials can have very interesting electrical, magnetic and optical properties, leading to a new subclass, the electroceramics. Perovskites, in particular, have become the subject of intense research in this field. Specifically, doped barium zirconates have shown high proton conductivity in the intermediate temperature range (600--800°C), making them advantageous for use in solid oxide fuel cells. Solid oxide fuel cells (SOFCs) are electrochemical devices that convert chemical energy into electricity using ion-conducting oxide ceramics as electrolytes. The anode component of the cell is also of interest. Cermets or ceramic metals can serve a dual role as substrates for thin film electrolytes and anodes in the cell. Thin films of gadolinium and ytterbium doped barium zirconate were deposited using pulsed laser deposition (KrF; 1--3 J/cm2) on several substrates, including cermets developed in our lab, in a 10--400 mTorr oxygen environment with various substrate temperatures. Crystalline structure and chemical composition was determined by X-ray diffraction (XRD) and energy dispersive x-ray analysis, respectively. Preliminary electrical measurements of the electrolyte/cermet structure were taken using electrochemical impedance spectroscopy. Keywords: solid oxide fuel cells (SOFCs), perovskites, proton conductors, electroceramics, gadolinium-doped barium zirconate (BZG).

  18. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  19. Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Ting Shuai; Xu, Min; Gao, Chongxin; Wang, Baoqing; Liu, Xiyun; Li, Baihai; Wang, Wei Guo

    2014-07-01

    The electrochemical performance and long-term durability of a solid oxide fuel cell have been evaluated with a simulated coal syngas containing 2 ppm H2S as fuel. The resulting impedance spectra indicate that no observable power loss is caused by the addition of 2 ppm H2S, and the cell shows stability of nearly 500 h at 0.625 A cm-2. The composition of mixed gas is analyzed both at a current load of 0.625 A cm-2 and open circuit state. Hydrogen and carbon monoxide are directly consumed as fuels at the anode side, whereas methane stays unchanged during the operation. It seems the internal carbohydrate reforming and impurity poisoning interacts and weakens the poisoning effects. The oxidation of H2 and the water gas shift reaction take advantages over methane reforming at the cell operational conditions.

  20. LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS

    SciTech Connect

    Christopher Milliken; Robert Ruhl; Jennifer Hillman

    2002-06-01

    Technology Management, Inc has evaluated the practical fabrication advantages and potential economic impact of a multi-pass screen printing process on the costs of fabricating planar solid oxide fuel cell stacks. During this program, multiple catalyzed binder systems were considered. Preliminary screening experiments resulted in four systems being selected for further evaluation. Inks were formulated using these binders in combination with at least three fuel cell materials (anode, cathode, and seal material). Reactivity of the binder with catalyst and fuel cell materials was evaluated. Cell tests indicated that the catalyzed binders did not negatively impact cell performance. Tests were conducted demonstrating single cell performance comparable with standard cell fabrication technology. Tailored patterns were also demonstrated. Economic evaluation indicated that a significant reduction in cost could be achieved, primarily through reduced capital equipment needs.

  1. Activity and structure of perovskites as diesel reforming catalysts for solid oxide fuel cells.

    SciTech Connect

    Liu, D.-J.; Krumpelt, M.; Chemical Engineering

    2005-01-01

    Recent progress in developing perovskite materials as more cost-effective catalysts in autothermal reforming (ATR) of diesel fuel to hydrogen-rich reformate for solid oxide fuel cell (SOFC) application is reported. Perovskite-type metal oxides with B sites partially exchanged by ruthenium were prepared and evaluated under ATR reaction conditions. The hydrogen yield, reforming efficiency, and CO{sub x} selectivity of these catalysts were investigated using diesel surrogate fuel with 50 ppm sulfur. The catalyst performances have approached or exceeded a benchmark, high-cost rhodium-based material. In parallel with the reactivity study, we also investigated the physical properties of B-site doped perovskites and their impact on the reforming performance using various characterization techniques such as BET, X-ray powder diffraction, temperature programmable reduction, scanning electron microscopy, and synchrotron X-ray absorption spectroscopy. We found that ruthenium is highly dispersed into perovskite lattice and its redox behavior is directly associated with reforming activity.

  2. Open-source computational model of a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Beale, Steven B.; Choi, Hae-Won; Pharoah, Jon G.; Roth, Helmut K.; Jasak, Hrvoje; Jeon, Dong Hyup

    2016-03-01

    The solid oxide fuel cell is an electro-chemical device which converts chemical energy into electricity and heat. To compete in today's market, design improvements, in terms of performance and life cycle, are required. Numerical prototypes can accelerate design and development progress. In this programme of research, a three-dimensional solid oxide fuel cell prototype, openFuelCell, based on open-source computational fluid dynamics software was developed and applied to a single cell. Transport phenomena, combined with the solution to the local Nernst equation for the open-circuit potential, as well as the Kirchhoff-Ohm relationship for the local current density, allow local electro-chemistry, fluid flow, multi-component species transport, and multi-region thermal analysis to be considered. The underlying physicochemical hydrodynamics, including porous-electrode and electro-chemical effects are described in detail. The openFuelCell program is developed in an object-oriented open-source C++ library. The code is available at

  3. Operational characteristics of thin film solid oxide fuel cells with ruthenium anode in natural gas

    NASA Astrophysics Data System (ADS)

    Takagi, Yuto; Kerman, Kian; Ko, Changhyun; Ramanathan, Shriram

    2013-12-01

    Direct utilization of hydrocarbons in low temperature solid oxide fuel cells is of growing interest in the landscape of alternative energy technologies. Here, we report on performance of self-supported micro-solid oxide fuel cells (μSOFCs) with ruthenium (Ru) nano-porous thin film anodes operating in natural gas and methane. The μSOFCs consist of 8 mol% yttria-stabilized zirconia thin film electrolytes, porous platinum cathodes and porous Ru anodes, and were tested with dry natural gas and methane as fuels and air as the oxidant. At 500 °C, comparable power densities of 410 mW cm-2 and 440 mW cm-2 were obtained with dry natural gas and methane, respectively. In weakly humidified natural gas, open circuit voltage of 0.95 V at 530 °C with peak power density of 800 mW cm-2 was realized. The μSOFC was continuously operated at constant voltage of 0.7 V with methane, where quasi-periodic oscillatory behavior of the performance was observed. Through post-operation XPS studies it was found that the oxidation state of Ru anode surfaces significantly differs depending on the fuel used, oxidation being enhanced with methane or natural gas. The nature of the oscillation is discussed based on the transition in surface oxygen coverage states and electro-catalytic activity of Ru anodes.

  4. Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes

    NASA Astrophysics Data System (ADS)

    Li, Meiling; Ni, Meng; Su, Feng; Xia, Changrong

    2014-08-01

    Sr2Fe1.5Mo0.5O6-δ (SFM) is proposed as the electrodes for symmetric solid oxide fuel cells (SOFCs) based on oxygen-ion conducting electrolytes. In this work SFM is investigated as the cathodes for SOFCs with proton conducting BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte. SFM is synthesized with a combined glycine and citric acid method and shows very good chemical compatibility with BZCY under 1100 °C. Anode-supported single cell (Ni-BZCY anode, BZCY electrolyte, and SFM-BZCY cathode) and symmetrical fuel cell (SFM-BZCY electrodes and BZCY electrolyte) are fabricated and their performances are measured. Impedance spectroscopy on symmetrical cell consisting of BZCY electrolyte and SFM-BZCY electrodes demonstrates low area-specific interfacial polarization resistance Rp, and the lowest Rp, 0.088 Ω cm2 is achieved at 800 °C when cathode is sintered at 900 °C for 2 h. The single fuel cell achieves 396 mW cm-2 at 800 °C in wet H2 (3 vol% H2O) at a co-sintering temperature of 1000 °C. This study demonstrates the potential of SFM-BZCY as a cathode material in proton-conducting intermediate-temperature solid oxide fuel cells.

  5. Design and analysis of a coupled solid oxide fuel cell and metal hydride bed system

    NASA Astrophysics Data System (ADS)

    Song, Ke

    Solid oxide fuel cells have exhibited excellent performance at high temperature for a few years. However, the fuel supply and the practical fuel cell application need to be improved especially for transportation or stand-alone facility usage. Two modified hydrogen storage models (two vessel and three vessel hydrogen storage system) are presented in this study. The gravimetric density and volumetric density are calculated in order to meet the DOE requirements. Furthermore, the time dependence model of hydrogen releasing in metal hydride bed (MHB) is built up. And the simulations are carried on in isothermal and adiabatic conditions. The simulation results indicate: the isothermal model can provide sufficient hydrogen flow until the MHB is emptied; the adiabatic model can only last short period because of the fast temperature decreasing in MHB. The steady state and time dependence model of coupled solid oxide fuel cells (SOFC) and MHB system are also investigated. The steady state model focuses on the heat recycle process for coupled system. The calculation shows the heat generated in system can provide enough energy for inner recycle. On the other hand, the time de-pendence model mainly concerns the time delay in such a coupled system. The simu-lation shows the time delay mainly comes from hydrogen feed.

  6. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect

    Nguyen Minh; Kurt Montgomery

    2004-10-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  7. Direct oxidation solid oxide fuel cell: Aspects of anode performance optimization

    NASA Astrophysics Data System (ADS)

    Costa-Nunes, Olga

    I have examined the impact of high fuel utilization and anode catalyst stability for Cu-based anodes in solid oxide fuel cells (SOFC). First, the performance of SOFC with Cu-ceria-YSZ anodes was studied in n-butane at 973 K as a function of fuel conversion. Conversion led to dilution of the fuel which resulted in a significant decrease in performance at higher fuel conversions. I demonstrated that the inclusion of a steam-reforming catalyst within the anode compartment of direct-oxidation SOFC improved performance at high fuel utilization. The performance of a Cu-CeO2-YSZ SOFC was compared to a conventional SOFC with Ni-YSZ anode while operating on H2, CO, and syngas fuels. Cells with Cu-CeO2-YSZ anodes exhibit similar performance when operating on H2 or CO fuels, while cells with Ni-YSZ anodes exhibited substantially lower performance when operating on CO compared to H2. My work demonstrated that dilution of H2 by H2O has little effect on the kinetics of H2 oxidation on both the Cu-CeO 2-YSZ and Ni-YSZ anodes. In addition, I have investigated the thermal stability of the anode catalyst, ceria, was using thin ceria films supported on YSZ. Special attention was given to the interactions between ceria and YSZ under high temperature treatments in reducing and oxidizing environments. My results have shown that ceria films on YSZ are highly mobile at relatively moderate temperatures and their morphology depends on the gas environment to which they have been exposed. Studies with alpha-Al2O3 assisted in clarifying the role of the substrate in the treatment effects on ceria.

  8. Solid recovered fuel: materials flow analysis and fuel property development during the mechanical processing of biodried waste.

    PubMed

    Velis, Costas A; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2013-03-19

    Material flows and their contributions to fuel properties are balanced for the mechanical section of a mechanical-biological treatment (MBT) plant producing solid recovered fuel (SRF) for the UK market. Insights for this and similar plants were secured through a program of sampling, manual sorting, statistics, analytical property determination, and material flow analysis (MFA) with error propagation and data reconciliation. Approximately three-quarters of the net calorific value (Q(net,p,ar)) present in the combustible fraction of the biodried flow is incorporated into the SRF (73.2 ± 8.6%), with the important contributors being plastic film (30.7 MJ kg(ar)(-1)), other packaging plastic (26.1 MJ kg(ar)(-1)), and paper/card (13.0 MJ kg(ar)(-1)). Nearly 80% w/w of the chlorine load in the biodried flow is incorporated into SRF (78.9 ± 26.2%), determined by the operation of the trommel and air classifier. Through the use of a novel mass balancing procedure, SRF quality is understood, thus improving on the understanding of quality assurance in SRF. Quantification of flows, transfer coefficients, and fuel properties allows recommendations to be made for process optimization and the production of a reliable and therefore marketable SRF product. PMID:23398118

  9. Mutagenicity and Pollutant Emission Factors of Solid-Fuel Cookstoves: Comparison with Other Combustion Sources

    PubMed Central

    Mutlu, Esra; Warren, Sarah H.; Ebersviller, Seth M.; Kooter, Ingeborg M.; Schmid, Judith E.; Dye, Janice A.; Linak, William P.; Gilmour, M. Ian; Jetter, James J.; Higuchi, Mark; DeMarini, David M.

    2016-01-01

    Background: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. Objective: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions. Methods: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Results: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58–0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator. Conclusions: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality. Citation: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter

  10. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  11. Climate and health impacts of the shift from traditional solid cookstove fuels to modern energy sources

    NASA Astrophysics Data System (ADS)

    Lacey, F.; Henze, D. K.; Martin, R.; Lee, C. J.; van Donkelaar, A.; Reed, L.

    2015-12-01

    Globally, 2.8 million people use solid fuels for meal preparation. As regions in which solid fuel cooking is prevalent become more industrialized, this number will decrease leading to commensurate changes in greenhouse gas, aerosol and aerosol precursor emissions from the residential sector. Here we explore the impacts of this shift from traditional solid fuel use to equivalent energy sources from modern power generation on climate change and exposure to ambient air pollution. We use sensitivities calculated with the GEOS-Chem adjoint model, which allows us to estimate the climate and health impacts due to changes in atmospheric composition from grid-scale shifts in energy usage. Various scenarios for alternative energy generation sources are considered. Climate impacts are reported as changes in global averaged surface temperature through the use of absolute regional temperature potentials and health impacts are reported as changes in premature deaths calculated using changes in population-weighted PM2.5 concentrations combined with integrated exposure response functions. Global model PM2.5 surface concentrations are downscaled to improve exposure estimates through application of remotely sensed aerosol optical depth measurements. Our assessment of the impacts of fuel switching allows for estimates of upper and lower bounds, for both climate and health impacts, at the global and national scale. Baseline calculations using these methods estimate impacts of approximately 0.22 K warming and 217,000 premature deaths caused by changes in ambient air quality due to present day cookstove emissions which represents the base case for these comparisons. Overall, the results of this study provide important information to both individual country's governments and non-governmental organizations that are targeting energy infrastructure improvements.

  12. Impact of source segregation intensity of solid waste on fuel consumption and collection costs.

    PubMed

    Di Maria, Francesco; Micale, Caterina

    2013-11-01

    Fuel consumption and collection costs of solid waste were evaluated by the aid of a simulation model for a given collection area of a medium-sized Italian city. Using the model it is possible to calculate time, collected waste and fuel consumption for a given waste collection route. Starting from the data for the current waste collection scenario with a Source Segregated (SS) intensity of 25%, all the main model error evaluated was ⩽1.2. SS intensity scenarios of 25%, 30%, 35% and 52% were simulated. Results showed an increase in the average fuel consumed by the collection vehicles that went from about 3.3L/tonne for 25% SS intensity to about 3.8L/tonne for a SS intensity of 52%. Direct collection costs, including crews and vehicle purchase, ranged from about 40€/tonne to about 70€/tonne, respectively, for 25% and 52% SS intensity. The increase in fuel consumption and collection costs depends on the density of the waste collected, on the collection vehicle compaction ratio and on the waste collection vehicle utilization factor (WCVUF). In particular a reduction of about 50% of the WCVUF can lead to an average increase of about 80% in fuel consumption and 100% in collection costs. PMID:23871186

  13. Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Santiago, Diana; Farmer, Serene C.; Setlock, John A.

    2012-01-01

    The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.

  14. Development of reversible solid oxide fuel cell for power generation and hydrogen production

    NASA Astrophysics Data System (ADS)

    Jung, G. B.; Chen, J. Y.; Lin, C. Y.; Chan, S. H.

    2011-06-01

    A reversible solid oxide fuel cell (RSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the RSOFC acts like an electrolyzer in water electrolysis mode; whereby the electric energy is stored as (electrolyzed) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the RSOFC also acts as a fuel cell in power generation mode to produce electricity when needed. The RSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its membrane electrode assembly using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the RSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization.

  15. Analysis and design of solid oxide fuel cell for railroad applications

    NASA Astrophysics Data System (ADS)

    Kothapally, Adarsh Srivatsav

    Solid oxide fuel cell (SOFC) is a direct chemical-to-electrical energy conversion system using hydrogen and oxygen as reactants, operating at a higher temperature range (800°--1100° C). With the advantages of low-cost materials for anode, cathode, membrane, and the versatility in the use of various types of fuels as compared to other fuel cell types, the SOFC is one of the most recommendable fuel cells for large power generating system. An additional distinct advantage is of using the hot exhaust by-product gases to generate electricity in an advance combined power generation system along with a gas turbine. The objective of the present work is to analyze a tri-layer SOFC using a two-dimensional simulation model. This work was concerned with the evaluation of different fuel cell losses, heat generation, and determining the performance polarization of the SOFC using in-house computer code. The operation characteristics were evaluated with a wide spectrum of cell parameters and operating conditions. Further, a 1-MW SOFC is designed for a locomotive engine based on the selected operating characteristics and using the state-of-the-art SOFC materials.

  16. Modeling, control and integration of a portable solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Adhikari, Puran

    This thesis presents an innovative method for the modeling, control and integration of a portable hybrid solid oxide fuel cell system. The control and integration of the fuel cell system is important not only for its efficient operation, but also for issues related to safety and reliability. System modeling is needed in order to facilitate the controller design. Mathematical models of the various components of the system are built in the matlab/simulink environment. Dynamic modeling of the fuel cell stack, catalytic partial oxidation (CPOX) reformer, heat exchanger, tail gas combustor and tail gas splitter of the balance of plant system is performed first. Followed by, modeling of the three input DC/DC converter and energy storage devices (battery and supercapacitor). A two-level control approach, higher level and lower level, is adopted in this research. Each of the two major subsystems, balance of plant subsystem and power electronics subsystem, has its own local level controller (called lower level controller) that are designed such that they follow exactly the command reference from a higher level controller. The higher level controller is an intelligent controller that makes decisions about how the lower level or local controllers should perform based on the status of fuel cell, energy storage device and external load demand. Linear analysis has been done for the design and development of the local controllers as appropriate. For the higher level controller, a finite state machine model is developed and implemented using stateflow and fuzzy logic toolboxes of matlab. Simulations are carried out for the integrated system. The simulation results verify that the controllers are robust in performance during the transient condition when the energy storage devices supplement fuel cells. The temperature and flow rates of the fuel and air are controlled as desired. The output from the designed fuel cell system is a regulated DC voltage, which verifies the overall

  17. A planar anode-supported Solid Oxide Fuel Cell model with internal reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Chinda, P.; Chanchaona, S.; Brault, P.; Wechsatol, W.

    2011-05-01

    Solid Oxide Fuel Cells (SOFCs) are of great interest due to their high energy efficiency, low emission level, and multiple fuel utilization. SOFC can operate with various kinds of fuels such as natural gas, carbon monoxide, methanol, ethanol, and hydrocarbon compounds, and they are becoming one of the main competitors among environmentally friendly energy sources for the future. In this study, a mathematical model of a co-flow planar anode-supported solid oxide fuel cell with internal reforming of natural gas has been developed. The model simultaneously solves mass, energy transport equations, and chemical as well as electrochemical reactions. The model can effectively predict the compound species distributions as well as the cell performance under specific operating conditions. The main result is a rather small temperature gradient obtained at 800 °C with S/C = 1 in classical operating conditions. The cell performance is reported for several operating temperatures and pressures. The cell performance is specified in terms of cell voltage and power density at any specific current density. The influence of electrode microstructure on cell performance was investigated. The simulation results show that the steady state performance is almost insensitive to microstructure of cells such as porosity and tortuosity unlike the operating pressure and temperature. However, for SOFC power output enhancement, the power output could be maximized by adjusting the pore size to an optimal value, similarly to porosity and tortuosity. At standard operating pressure (1 atm) and 800 °C with 48% fuel utilization, when an output cell voltage was 0.73 V, a current density of 0.38 A cm-2 with a power density of 0.28 W cm-2 was predicted. The accuracy of the model was validated by comparing with existing experimental results from the available literature.

  18. Characterization and quantification of uncertainty in solid oxide fuel cell hybrid power plants

    NASA Astrophysics Data System (ADS)

    Subramanyan, Karthik; Diwekar, Urmila M.

    Distributed power generation is one of the most powerful applications of fuel cell technology. Several types of configurations have been hypothesized and tested for these kinds of applications at the conceptual level, but hybrid power plants are one of the most efficient. These are designs that combine the fuel cell cycle with other thermodynamic cycles to provide higher efficiency. The power plant in focus is the high pressure (HP)-low pressure (LP) solid oxide fuel cells (SOFC)/steam turbine (ST)/gas turbine (GT) configuration which is a part of the vision-21 program, which is a new approach, the U.S. Department of Energy's (DOE's) Office of Fossil Energy has begun, for developing 21st century energy plants that would have virtually no environmental impact. The overall goal is to effectively eliminate—at competitive costs—environmental concerns associated with the use of fossil fuels, for producing electricity and transportation fuels. In this design, coal is gasified in an entrained bed gasifier and the syn-gas produced is cleaned in a transport bed desulfurizer and passed over to cascaded SOFC modules (at two pressure levels). This module is integrated with a reheat GT cycle. The heat of the exhaust from the GT cycle is used to convert water to steam, which is eventually used in a steam bottoming cycle. Since this hybrid technology is new and futuristic, the system level models used for predicting the fuel cells' performance and for other modules like the desulfurizer have significant uncertainties in them. Also, the performance curves of the SOFC would differ depending on the materials used for the anode, cathode and electrolyte. The accurate characterization and quantification of these uncertainties is crucial for the validity of the model predictions and hence is the main focus of this paper. This work performs a two-level uncertainty analysis of the fuel cell module: uncertainty associated with (1) model and (2) material used for anode, cathode and

  19. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235 Protection of Environment...

  20. Factor of explosiveness of pulverized fuel as a basis for classification of natural solid fuels with respect to their storageability in open coal depots

    SciTech Connect

    E.N. Tolchinskii; A.Yu. Lavrent'ev

    2003-01-15

    Existing methods for estimating the storageability of fuel in open coal depots are analyzed. It is inferred that the capacity of coals for oxidation and spontaneous combustion cannot be unambiguously associated with the name of the coal basin, deposit, or grade. Methods for calculating a generalized parameter reflecting a fuel group are suggested. It is shown that the explosiveness factor Kf of solid fuels calculated from the data on technical and elemental compositions can be used as a generalized characteristic for classifying fuels according to their resistance to oxidation and spontaneous combustion.

  1. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    SciTech Connect

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M.; Sherazi, Tauqir A.; Shakir, Imran; Mohsin, Munazza; Javed, Muhammad Sufyan; Zhu, Bin E-mail: zhubin@hubu.edu.cn

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  2. System for transport of mixtures of solid particulate fuel and air, and rotary distributor suitable for use therein

    SciTech Connect

    Boldt, D.M.; Mcclellan, E.

    1982-02-02

    Fine particulate solid fuel particles are delivered from a venturi ejector to a rotating double-armed distributor which distributes fuel and air sequentially to conduits leading to the burner ejector of a kiln. The distributor is sealed and pressurized with air so as to provide the conduits with additional pulses of air following the times at which they receive fuel and air from the distributing operation.

  3. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of

  4. Advanced materials for solid oxide fuel cells: Hafnium-Praseodymium-Indium Oxide System

    SciTech Connect

    Bates, J.L.; Griffin, C.W.; Weber, W.J.

    1988-06-01

    The HfO/sub 2/-PrO/sub 1.83/-In/sub 2/O/sub 3/ system has been studied at the Pacific Northwest Laboratory to develop alternative, highly electrically conducting oxides as electrode and interconnection materials for solid oxide fuel cells. A coprecipitation process was developed for synthesizing single-phase, mixed oxide powders necessary to fabricate powders and dense oxides. A ternary phase diagram was developed, and the phases and structures were related to electrical transport properties. Two new phases, an orthorhombic PrInO/sub 3/ and a rhombohedral Hf/sub 2/In/sub 2/O/sub 7/ phase, were identified. The highest electronic conductivity is related to the presence of a bcc, In/sub 2/O/sub 3/ solid solution (ss) containing HfO/sub 2/ and PrO/sub 1.83/. Compositions containing more than 35 mol % of the In/sub 2/O/sub 3/ ss have electrical conductivities greater than 10/sup /minus/1/ (ohm-cm)/sup /minus/1/, and the two or three phase structures that contain this phase appear to exhibit mixed electronic-ionic conduction. The high electrical conductivities and structures similar to the Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/(HfO/sub 2/) electrolyte give these oxides potential for use as cathodes in solid oxide fuel cells. 21 refs.

  5. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect

    Eric D. Wachsman; Keith L. Duncan

    2001-09-30

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate1 temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid start-up is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research are to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower

  6. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Anil V. Virkar

    2001-09-26

    Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

  7. Thin-film electrolytes for reduced temperature solid oxide fuel cells

    SciTech Connect

    Visco, S.J.; Wang, L.S.; De Souza, S.; De Jonghe, L.C.

    1994-11-01

    Solid oxide fuel cells produce electricity at very high efficiency and have very low to negligible emissions, making them an attractive option for power generation for electric utilities. However, conventional SOFC`s are operated at 1000{degrees}C or more in order to attain reasonable power density. The high operating temperature of SOFC`s leads to complex materials problems which have been difficult to solve in a cost-effective manner. Accordingly, there is much interest in reducing the operating temperature of SOFC`s while still maintaining the power densities achieved at high temperatures. There are several approaches to reduced temperature operation including alternative solid electrolytes having higher ionic conductivity than yttria stabilized zirconia, thin solid electrolyte membranes, and improved electrode materials. Given the proven reliability of zirconia-based electrolytes (YSZ) in long-term SOFC tests, the use of stabilized zirconia electrolytes in reduced temperature fuel cells is a logical choice. In order to avoid compromising power density at intermediate temperatures, the thickness of the YSZ electrolyte must be reduced from that in conventional cells (100 to 200 {mu}m) to approximately 4 to 10 {mu}m. There are a number of approaches for depositing thin ceramic films onto porous supports including chemical vapor deposition/electrochemical vapor deposition, sol-gel deposition, sputter deposition, etc. In this paper we describe an inexpensive approach involving the use of colloidal dispersions of polycrystalline electrolyte for depositing 4 to 10 {mu}m electrolyte films onto porous electrode supports in a single deposition step. This technique leads to highly dense, conductive, electrolyte films which exhibit near theoretical open circuit voltages in H{sub 2}/air fuel cells. These electrolyte films exhibit bulk ionic conductivity, and may see application in reduced temperature SOFC`s, gas separation membranes, and fast response sensors.

  8. Compression and combustion of non-cryogenic targets with a solid thermonuclear fuel for inertial fusion

    SciTech Connect

    Gus'kov, S. Yu.; Zmitrenko, N. V.; Sherman, V. E.

    2013-04-15

    Variants of a target with a solid thermonuclear fuel in the form of deuterium-tritium hydrides of light metals for an inertial fusion have been proposed. The laser-pulse-induced compression of non-cryogenic targets, as well as ignition and combustion of such targets, has been examined. The numerical calculations show that, despite a decrease in the caloric content of the fuel and an increase in the energy losses on intrinsic radiation in the target containing deuterium-tritium hydrides of light metals as compared to the target containing deuterium-tritium ice, the non-cryogenic target can ensure the fusion gain sufficient for its use in the energy cycle of a thermonuclear power plant based on the inertial plasma confinement method.

  9. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode. PMID:25686380

  10. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    PubMed Central

    Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan

    2012-01-01

    Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298

  11. Development of anion-conducting ionomer binder solutions for electrodes of solid alkaline fuel cells.

    PubMed

    Shin, Mun-Sik; Kang, Moon-Sung; Park, Jin-Soo

    2014-10-01

    For solid alkaline fuel cell applications, membrane-electrode assemblies (MEAs) should be prepared. Thus, in this study, anion-conducting ionomer binder was prepared for electrodes of MEAs. Specifically, we synthesized water soluble anionic binder solutions based on quaternized chitosan derivatives (QCDs) and cross-linked QCDs and prepared a novel electrode. The electrochemical and physicochemical properties of ionomer binder and electrode were investigated by FT-IR, NMR and ionic conductivity. The ionic conductivity of these cross-linked QCDs was 9.7 x 10(-3) S cm(-1) in deionized water at room temperature. The membrane electrode assemblies (MEAs) were prepared by a spray method and were investigated in terms of cyclic voltammetry, impedance and fuel cell performance. The MEA with the 35 wt% QCD ionomer showed the highest performance and confirmed the successful formation of ionomer binder at the electrode of the MEA by the on-site crosslinking reaction. PMID:25942868

  12. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  13. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  14. High Fuel Utilization in Solid Oxide Fuel Cells: Experimental Characterization and Data Analysis with Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Esposito, Angelo; Russo, Luigi; Kändler, Christoph; Pianese, Cesare; Ludwig, Bastian; Steiner, Nadia Yousfi

    2016-06-01

    The on-line diagnostics of Solid Oxide Fuel Cells (SOFCs) is a critical tool to achieve optimal performance and extend the lifetime. The Continuous Wavelet Transform (CWT) methodology was applied to the SOFC voltage signal to detect signatures that reveal the presence of a fault in the cell/stack. The selected fault was anode re-oxidation caused by high Fuel Utilization (FU) (higher then nominal). To experimentally emulate the high FU faults, a standard test procedure was developed, which was used to characterize a μ-CHP system at high FU operation. To complete the analysis, data collected on Single Cells were exploited too. The CWT was applied to the voltage signal for each FU level to verify the qualitative difference (signature) between the signals at different FU's within the same tests as well as the correspondence between the same conditions over different tests. A statistical study was performed to quantify the observed differences and to determine the correspondence between CWT coefficients and operating conditions. The approach proves to be suitable to diagnose high FU in SOFC, showing a successful detection rate above 76%. The results show the good potential of using the CWT methodology as diagnostic tools for SOFCs from cell to stack level.

  15. The environmental impact of manufacturing planar and tubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Karakoussis, V.; Brandon, N. P.; Leach, M.; van der Vorst, R.

    This paper examines the environmental impact of manufacturing two types of solid oxide fuel cell (SOFC) system. The tubular SOFC (based on a 100 kW Siemens-Westinghouse design), and the planar SOFC (based on a 1 kW Sulzer design). Using different levels of detail, the environmental impact of the manufacture of the PEN and interconnect, the balance of plant and the production of precursor materials has been assessed for both systems. The results demonstrate that the production and supply of materials for the manufacture of both the balance of plant and the fuel cell are responsible for a significant share of the overall environmental burden associated with each of the fuel cell systems studied. Nonetheless, the total emissions associated with the manufacturing stage still only contribute an additional 1% to lifetime CO 2 emissions for both fuel cell types. The relative contribution arising from the manufacturing phase to several other regulated pollutants is high, but this reflects the low levels associated with the SOFC in use phase, rather than indicating a significant burden arising from manufacture. It is proposed that end-of-life reuse or recycling could play a key role in further reducing environmental burdens.

  16. ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS

    SciTech Connect

    Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.; Korolev, Alexander; Khaleel, Mohammad A.; Singh, Prabhakar

    2007-01-16

    ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated for the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.

  17. Modeling of thermal stresses in a microtubular Solid Oxide Fuel Cell stack

    NASA Astrophysics Data System (ADS)

    Pianko-Oprych, Paulina; Zinko, Tomasz; Jaworski, Zdzisław

    2015-12-01

    A modeling study was carried out to analyze thermal stresses in a microtubular Solid Oxide Fuel Cell (mSOFC) stack and to estimate thermal expansion of the fuel cells inside the stack. A joint analysis by Computational Fluid Dynamics (CFD) and Computational Structural Mechanics Finite Element Method (FEM) was performed. Temperature profiles generated by the thermo-hydrodynamic model were applied in the thermo-mechanical model to calculate thermal stress distributions in the mSOFC stack. The results yield maximum thermal axial elongation equal to 1.34 mm for the mSOFC stack, while the maximum radial elongation was equal to 0.496 mm. Modeled maximum equivalent (von Mises) stress was equal to 538 MPA in the contact areas of the cylindrical housing and manifold on the fuel inlet side. Based on comparison of the total axial stresses and the residual ones with the material strength it was noticed that the anode and electrolyte layers should not be critically deformed, but there is a risk of damage for cathode layers at chosen fuel cell configurations. A high risk of damage was also noticed for the outer housing, near contact points with manifolds as well as at the air distributor due to large number of cut-outs in the material.

  18. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    SciTech Connect

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-05-01

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  19. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    NASA Astrophysics Data System (ADS)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  20. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 2: Empirical model development

    SciTech Connect

    Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R. ); Harris, T.J. )

    1995-01-01

    A parametric model predicting the performance of a solid polymer electrolyte, proton exchange membrane (PEM) fuel cell has been developed using a combination of mechanistic and empirical modeling techniques. This paper details the empirical analysis which yielded the parametric coefficients employed in the model. A 28 run experiment covering a range of operating currents (50 to 300 ASF), temperatures (328 to 358 K), oxygen partial pressures (0.6 to 3.1 atm abs.) and hydrogen partial pressures (2.0 to 3.1 atm abs.) was conducted. Parametric equations for the activation overvoltage and the internal resistance of the fuel cell were obtained from linear regression. The factors to be employed in the linear regression had been previously determined through a mechanistic analysis of fuel cell processes. Activation overvoltage was modeled as a function of the operating temperature, the product of operating temperature, and the logarithm of the operating current, and the product of operating temperature and the logarithm of the oxygen concentration at the catalyst reaction sites. The internal resistance of the fuel cell was modeled as a function of the operating temperature and the current. Correlation of the empirical model to experimental data was very good. It is anticipated that the mechanistic validity yielded by the coupling of mechanistic and empirical modeling techniques will also allow for accurate predictive capabilities outside of the experimental range.

  1. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 1: Mechanistic model development

    SciTech Connect

    Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R. ); Harris, T.J. )

    1995-01-01

    A parametric model predicting the performance of a solid polymer electrolyte, proton exchange membrane (PEM) fuel cell has been developed using a combination of mechanistic and empirical modeling techniques. This paper details the mechanistic model development. Mass transport properties are considered in the mechanistic development via Stefan-Maxwell equations. Thermodynamic equilibrium potentials are defined using the Nernst equation. Activation overvoltages are defined via a Tafel equation, and internal resistance are defined via the Nernst-Planck equation, leading to a definition of ohmic overvoltage via an Ohm's law equation. The mechanistic model cannot adequately model fuel cell performance, since several simplifying approximations have been used in order to facilitate model development. Additionally, certain properties likely to be observed in operational fuel cells, such as thermal gradients, have not been considered. Nonetheless, the insights gained from the mechanistic assessment of fuel cell processes were found to give the resulting empirical model a firmer theoretical basis than many of the models presently available in the literature. Correlation of the empirical model to actual experimental data was very good.

  2. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  3. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  4. An Electrical Energy Storage System Based on Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Luo, T.; Shao, L.; Qian, J. Q.; Wang, S. R.; Zhan, Z. L.

    2013-07-01

    This work studies a proof-of-concept integrated electrical energy storage system of solid oxide fuel cell (SOFC) by using Fe as original fuel and Ca(OH)2 as additive. The design and operation of this cell are based on a conventional anode-supported tubular SOFC, with Ni-SSZ, SSZ, and SSZ-LSM as anode, electrolyte and cathode, respectively. In this design, Fe reacts with H2O generated from the decomposition of Ca(OH)2 at high temperature, as a result, H2 is produced in situ as SOFC fuel. The charging process is realized by electrolysis of water in the SOEC mode along with the reduction of Fe3O4 by the generated H2. It is demonstrated that the open circuit voltage (OCV) for the Fe-Fe3O4 system is above 1.0V at 1073K. By using such fuel, the maximum power density of 124 mW cm-2 has been achieved. Two stable charge/discharge cycles have been tested. Combined with the advantages of environmental friendliness, sustainability promise and excellent performance, the novel SOFC system will be a new choice of grid-scale energy storage.

  5. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  6. Method for Making a Fuel Cell from a Solid Oxide Monolithic Framework

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which a thin electrolyte is supported between electrodes of essentially equal thickness. Individual cell units are made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that subsequent to sintering, is made into either an anode or a cathode by means of appropriate solution and thermal treatment means. Each cell unit is assembled by depositing of a thin coating of ion conducting ceramic material upon the side of each of two pieces of tape surface having the smallest pore openings, and then mating the coated surfaces to create an unsintered electrode scaffold pair sandwiching an electrolyte layer. The opposing major outer exposed surfaces of each cell unit is given a thin coating of electrically conductive ceramic, and multiple cell units are stacked, or built up by stacking of individual cell layers, to create an unsintered fuel cell stack. Ceramic or glass edge seals are installed to create flow channels for fuel and air. The cell stack with edge sealants is then sintered into a ceramic monolithic framework. Said solution and thermal treatments means convert the electrode scaffolds into anodes and cathodes. The thin layers of electrically conductive ceramic become the interconnects in the assembled stack.

  7. Alternative materials for solid oxide fuel cells: Factors affecting air-sintering of chromite interconnections

    SciTech Connect

    Chick, L.A.; Bates, J.L.

    1992-07-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal and electrochemical properties. Another objective is to develop synthesis and fabrication processes for these materials whereby they can be consolidated in air into SOFCs. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFCs, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component compositions and processing on those reactions.

  8. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Achenbach, E.

    1994-04-01

    The mathematical simulation of a planar solid oxide fuel cell (SOFC) is presented. The model accounts for three-dimensional and time-dependent effects. Internal methane-steam reforming and recycling of the anode gas are also considered. The effects of different flow manifolding, i.e., cross-, co-, or counter-flow are discussed. After a short description of the mathematical procedure, computational results are presented. In particular the distribution of the gases, of the current density and of the solid structure temperature across the cell are shown. Furthermore the effects of different flow manifolding, of radiation from the outer stack surface to the surroundings and of anode gas recycling on the operating conditions of the stack are considered. The response of the cell voltage to a load change is also discussed.

  9. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    NASA Astrophysics Data System (ADS)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  10. Design and operation of interconnectors for solid oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Winkler, W.; Koeppen, J.

    Highly efficient combined cycles with solid oxide fuel cell (SOFC) need an integrated heat exchanger in the stack to reach efficiencies of about 80%. The stack costs must be lower than 1000 DM/kW. A newly developed welded metallic (Haynes HA 230) interconnector with a free stretching planar SOFC and an integrated heat exchanger was tested in thermal cycling operation. The design allowed a cycling of the SOFC without mechanical damage of the electrolyte in several tests. However, more tests and a further design optimization will be necessary. These results could indicate that commercial high-temperature alloys can be used as interconnector material in order to fullfil the cost requirements.

  11. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    PubMed Central

    Ji, Sanghoon; Tanveer, Waqas Hassan; Yu, Wonjong; Kang, Sungmin; Cho, Gu Young; Kim, Sung Han

    2015-01-01

    Summary Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C. PMID:26425432

  12. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  13. Time-resolved regression rate of innovative hybrid solid fuel formulations

    NASA Astrophysics Data System (ADS)

    Paravan, C.; Reina, A.; Sossi, A.; Manzoni, M.; Massini, G.; Rambaldi, G.; Duranti, E.; Adami, A.; Seletti, E.; DeLuca, L. T.

    2013-03-01

    Low regression rates limit application of hybrid rocket engines (HREs). In this paper, combustion of HTPB- and solid paraffin wax-based fuels is investigated in a lab-scale burner by a time-resolved optical technique. The effects of pressure are explored over the range 7 to 16 bar. Nanosized (ALEXTM , 100 nm, uncoated) and micronsized (MgB composite, 5 µm) metal additives are tested. For all runs, the instantaneous regression rate is not constant but higher at the beginning of tests. Overall, MgB performance and relatively ease of manufacturing enable to consider this additive as an interesting novel candidate to enhance hybrid rocket engines performance.

  14. LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS (SOFC)

    SciTech Connect

    Dr. Christopher E. Milliken; Dr. Robert C. Ruhl

    2001-05-16

    Under this program, Technology Management, Inc, is evaluating the economic advantages of a multi-pass printing process on the costs of fabricating planar solid oxide fuel cell stacks. The technique, still unproven technically, uses a ''green-field'' or build-up approach. Other more mature processes were considered to obtain some baseline assumptions. Based on this analysis, TMI has shown that multi-pass printing can offer substantial economic advantages over many existing fabrication processes and can reduce costs. By impacting overall production costs, the time is compressed to penetrate early low volume niche markets and more mature high-volume market applications.

  15. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    NASA Astrophysics Data System (ADS)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  16. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    SciTech Connect

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  17. Infiltrated Phlogopite Micas with Superior Thermal Cycle Stability as Compressive Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.

    2005-03-01

    Thermal cycle stability is one of the most stringent requirements for sealants in solid oxide fuel cell stacks. The sealants have to survive several hundreds to thousands of thermal cycles during lifetime operation in stationary and transportation applications. Recently, researchers at the Pacific Northwest National Laboratory have developed a novel method to infiltrate the mica flakes with a wetting or liquid forming material such that the leak path will be reduced from 3-D to 2-D and achieve good thermal cycle stability with low leak rates.

  18. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte.

    PubMed

    Ji, Sanghoon; Tanveer, Waqas Hassan; Yu, Wonjong; Kang, Sungmin; Cho, Gu Young; Kim, Sung Han; An, Jihwan; Cha, Suk Won

    2015-01-01

    Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C. PMID:26425432

  19. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  20. Monolithic solid oxide fuel cell technology advancement for coal- based power generation. Quarterly report, December 1991

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.