Science.gov

Sample records for solid polymers crosslinking

  1. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    NASA Astrophysics Data System (ADS)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  2. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    SciTech Connect

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-22

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  3. Interfacial fracture between highly crosslinked polymer networks and a solid surface: Effect of interfacial bond density

    SciTech Connect

    STEVENS,MARK J.

    2000-03-23

    For highly crosslinked, polymer networks bonded to a solid surface, the effect of interfacial bond density as well as system size on interfacial fracture is studied molecular dynamics simulations. The correspondence between the stress-strain curve and the sequence of molecular deformations is obtained. The failure strain for a fully bonded surface is equal to the strain necessary to make taut the average minimal path through the network from the bottom solid surface to the top surface. At bond coverages less than full, nanometer scale cavities form at the surface yielding an inhomogeneous strain profile. The failure strain and stress are linearly proportional to the number of bonds at the interface unless the number of bonds is so few that van der Waals interactions dominate. The failure is always interfacial due to fewer bonds at the interface than in the bulk.

  4. Cross-linking of Ordered Pluronic/Ionic Liquid Blends for Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Miranda, Daniel; Versek, Craig; Tuominen, Mark; Watkins, James; Russell, Thomas

    2012-02-01

    Ion gels were fabricated by cross-linking PPO-PEO-PPO triblock copolymers swollen in a room temperature ionic liquid (IL). The copolymers are modified by esterification to replace the terminal hydroxyl endgroups with methacrylate endgroups. This allows the copolymer/IL blends to be cross-linked by a UV cure, forming a gel. The strong interaction of the IL with the PEO block suppresses PEO crystallization which is necessary for good ion conduction. In addition, the interaction between the IL and PEO is strongly selective for PEO, strengthening microphase separation. Despite this, the low molecular weight copolymers remain disordered in the melt even when blended with the IL. However, high molecular weight copolymers are capable of microphase separating into highly ordered block copolymer morphologies. This difference allows the effect of microphase separation on ion transport to be studied. The effect of block copolymer composition is also studied, by varying the PEO fraction of the copolymer. The resultant gels show high ionic conductivity and solid-like behavior, indicating that these materials may be effective as solid polymer electrolytes.

  5. All Solid-State Lithium Metal Batteries Using Cross-linked Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Pan, Qiwei; Li, Christopher; Soft Materials Team

    Nowadays, to prepare all solid-state lithium metal batteries with high rate capability and stability using solid polymer electrolytes (SPEs) is still a grand challenge because of the interfaces between the SPE and the electrodes. In this presentation, we report a series of hybrid SPEs with controlled network structures by using POSS as cross-linker. These hybrid network SPEs show promising ionic conductivity, mechanical properties, and lithium dendrite growth resistance. All solid-state LiFePO4/Li batteries were also prepared using these SPEs as the electrolytes to study the effect of conductivity and mechanical properties of the SPEs on the performance of the batteries. At 90 °C, the prepared cells show high rate capability and stability. Capacity up to 160 mAh/g can be obtained at a C/2 rate during the galvanostatic cycling. Capacity retention of the cells is higher than 80% after 250 cycles. Battery performance at 60 °C and decay mechanism of the batteries will also be discussed.

  6. Gas-phase transfer of polymer cross-linking agents and by-products to solid oral pharmaceuticals.

    PubMed

    Maus, Russell G; Li, Min; Clement, Christopher M; Kinzer, Jeffery A

    2007-11-01

    In the pharmaceutical industry, solid oral compressed tablets (OCT) are frequently transported in bulk containers prior to packaging. While in this state, the product is generally protected from interaction with liquid and solid contaminants by physical barriers (e.g., polyethylene bags, drums, etc.). Vapor phase contamination, although generally less frequently observed, is possible. A specific example of the detection and identification of volatile by-products (acetophenone and 2-phenyl-2-propanol) of a common polymer cross-linking agent (dicumyl peroxide) is presented. The product tablets were compressed, placed into double polyethylene bags, and subsequently placed into a polyethylene drum for shipment overseas. To cushion the product during transit, a cross-linked polyethylene foam disk (designed to fit into the bottom of the drum) was placed below the bag of tablets. Initially, these contaminants were detected by HPLC with UV detection at the receiving laboratory, and assumed to be degradates of the active components of the product. Further analysis showed that neither the collected UV absorbance data nor the observed levels of the contaminants were consistent with known degradates of the product. Liquid extraction followed by GC-MS analysis of the product as well as the cross-linked foam disk exhibited measurable quantities of the contaminants in question. Vapor phase transfer of these cross-linking agent by-products, originating in the cross-linked foam pads, was determined to be the root cause for the presence of these compounds in the product. PMID:17686599

  7. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  8. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  9. Radiation induced estane polymer crosslinking

    SciTech Connect

    Fletcher, M.; Foster, P.

    1997-12-01

    The exposure of polymeric materials to radiation has been known to induce the effects of crosslinking and degradation. The crosslinking phenomena comes about when two long chain polymers become linked together by a primary bond that extends the chain and increases the viscosity, molecular weight and the elastic modules of the polymer. This process has been observed in relatively short periods of time with fairly high doses of radiation, on the order of several megarads/hour. This paper address low dose exposure over long periods of time to determine what the radiation effects are on the polymeric binder material in PBX 9501. An experimental sample of binder material without explosives will be placed into a thermal and radiation field produced from a W-48 put mod 0. Another sample will be placed in a thermal environment without the radiation. The following is the test plan that was submitted to the Pantex process. The data presented here will be from the first few weeks of exposure and this test will be continued over the next few years. Subsequent data will hopefully be presented in the next compatibility and aging conference.

  10. Microbes encapsulated within crosslinkable polymers

    SciTech Connect

    Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H

    2013-02-05

    The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.

  11. Viscoelastic behavior of polymers undergoing crosslinking reactions.

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Aklonis, J. J.

    1971-01-01

    Previously a method was developed for predicting the viscoelastic response of polymers undergoing scission reactions. These results are now extended to include crosslinking reactions. As for scission, at any given time the character of the network chains is determined by the instantaneous crosslink density. For scission all chains were assumed to carry the same stress; for crosslinking, however, the stress is distributed between the 'new' and 'old' chains. Equations for calculating the creep response of a system which experiences a step increase in crosslink density are derived.

  12. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  13. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.

    PubMed

    Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan

    2015-09-01

    A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. PMID:26248230

  14. Driven Polymer Translocation into a Crosslinked Gel

    NASA Astrophysics Data System (ADS)

    Sean, David; Slater, Gary

    2015-03-01

    In a typical polymer translocation setup, a thin membrane is used to separate two chambers and a polyelectrolyte is driven by an electric field to translocate from one side of the membrane to the other via a small nanopore. However, the high translocation rate that results from the forces required to drive this process makes optical and/or electrical analysis of the translocating polymer challenging. Using coarse-grained Langevin Dynamics simulations we investigate how the translocation process can be slowed down by placing a crosslinked gel on the trans-side of the membrane. Since the driving electric field is localized in the neighborhood of the nanopore, electrophoretic migration is only achieved by a ``pushing'' action from the polymer segment residing in the nanopore. For the case of a flexible polymer we find that the polymer fills the gel pores via multiple ``herniation'' processes, whereas for a semi-flexible chain in a tight gel there are no hernias and the polymer follows a smooth curvilinear path. Moreover, for the case of a semi-flexible polymer the gel makes the translocation process more uniform by reducing the acceleration at the end of the process.

  15. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  16. Crosslinked crystalline polymer and methods for cooling and heating

    DOEpatents

    Salyer, Ival O.; Botham, Ruth A.; Ball, III, George L.

    1980-01-01

    The invention relates to crystalline polyethylene pieces having optimum crosslinking for use in storage and recovery of heat, and it further relates to methods for storage and recovery of heat using crystalline polymer pieces having optimum crosslinking for these uses. Crystalline polymer pieces are described which retain at least 70% of the heat of fusion of the uncrosslinked crystalline polymer and yet are sufficiently crosslinked for the pieces not to stick together upon being cycled above and below the melting point of said polymer, preferably at least 80% of the heat of fusion with no substantial sticking together.

  17. Recovery system containing lanthanide-crosslinked polymers

    SciTech Connect

    Dovan, H.T.; Hutchins, R.D.

    1993-07-13

    A recovery system is described comprising: (a) a subterranean formation; (b) a well bore penetrating at least a portion of the subterranean formation; and (c) a composition capable of forming a gel present in at least a portion of the well bore, wherein the composition comprises: (i) a crosslinkable polymer (CP) selected from the group consisting of heteropolysaccharides obtained by the fermentation of starch-derived sugar, ammonium salts, and alkali metal salts; (ii) a lanthanide; and (iii) an ingredient selected from the group consisting of gel breakers, sequestering agents, proppants for use in hydraulically fracturing, particulate agents for forming a gravel pack, and base precursors selected from the group consisting of ammonium slats, urea, thiourea, and mixtures of these. A second recovery system is described in which the gel composition comprises: (i) a CP selected from the group consisting of acrylic acid-acrylamide copolymers, acrylic acid-methacrylamide copolymers, polyacrylamides, polymethacrylamides, partially hydrolyzed polyacrylamides, partially hydrolyzed polymethacrylamides, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyalkyleneoxides, lignosulfonates, ammonium salts, alkali metal salts, and alkaline earth salts of lignosulfonates; and (ii) a crosslinking agent selected from the group consisting of lanthanides, sequestered lanthanides, and mixtures thereof. A third system is described in which the gel composition comprises: (i) a CP, hydroxyethylcellulose; and (ii) a crosslinking agent selected from the group consisting of lanthanides, sequestered lanthanides, and mixtures thereof. A fourth system is described in which the gel composition comprises: (i) a CP selected from the group consisting of polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyalkyleneoxides, lignosulfonates, ammonium salts, alkali metal salts, and alkaline earth salts of lignosulfonates; and (ii) a lanthanide.

  18. Covalently crosslinked diels-alder polymer networks.

    SciTech Connect

    Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  19. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  20. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  1. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes.

    PubMed

    Mamiya, Jun-ichi; Kuriyama, Akito; Yokota, Naoki; Yamada, Munenori; Ikeda, Tomiki

    2015-02-16

    Cross-linked liquid-crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross-linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross-linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed-ring to open-ring isomerization, the bent films revert to the initial flat state. Without visible-light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross-linked diarylethene LC polymers. PMID:25581255

  2. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  3. Viscoelasticity of reversibly crosslinked networks of semiflexible polymers

    NASA Astrophysics Data System (ADS)

    Plagge, Jan; Fischer, Andreas; Heussinger, Claus

    2016-06-01

    We present a theoretical framework for the linear and nonlinear viscoelastic properties of reversibly crosslinked networks of semiflexible polymers. In contrast to affine models where network strain couples to the polymer end-to-end distance, in our model strain rather serves to locally distort the network structure. This induces bending modes in the polymer filaments, the properties of which are slaved to the surrounding network structure. Specifically, we investigate the frequency-dependent linear rheology, in particular in combination with crosslink binding-unbinding processes. We also develop schematic extensions to describe the nonlinear response during creep measurements as well as during constant strain-rate ramps.

  4. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers

    PubMed Central

    Hearon, K.; Gall, K.; Ware, T.; Maitland, D. J.; Bearinger, J. P.; Wilson, T. S.

    2011-01-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at Tg, and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  5. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.

    PubMed

    Hearon, K; Gall, K; Ware, T; Maitland, D J; Bearinger, J P; Wilson, T S

    2011-07-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at T(g), and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  6. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X

  7. Solid polymer membrane program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented for a solid polymer electrolyte fuel cell development program. Failure mechanism was identified and resolution of the mechanism experienced in small stack testing was demonstrated. The effect included laboratory analysis and evaluation of a matrix of configurations and operational variables for effects on the degree of hydrogen fluoride released from the cell and on the degree of blistering/delamination occurring in the reactant inlet areas of the cell and to correlate these conditions with cell life capabilities. The laboratory evaluation tests were run at conditions intended to accelerate the degradation of the solid polymer electrolyte in order to obtain relative evaluations as quick as possible. Evaluation of the resolutions for the identified failure mechanism in space shuttle configuration cell assemblies was achieved with the fabrication and life testing of two small stack buildups of four cell assemblies and eight cells each.

  8. Photonic multilayer sensors from photo-crosslinkable polymer films

    NASA Astrophysics Data System (ADS)

    Chiappelli, Maria; Hayward, Ryan C.

    2012-02-01

    Photo-crosslinkable copolymers containing pendent benzophenone (BP) groups provide a convenient means to fabricate multilayer polymer films. We describe the preparation of alternating multilayers of photo-crosslinkable poly(N-isopropylacrylamide) (PNIPAM), a water-swellable, temperature sensitive polymer, and poly(para-methylstyrene) (PpMS), a non-swellable polymer, by sequential spin-coating and photo-crosslinking. This route provides well-defined layered structures with minimal interfacial broadening between layers and uniformity of thickness from layer to layer as determined by dynamic secondary ion mass spectrometry (d-SIMS). Appropriate choices of layer thicknesses yield 1-D photonic gel sensors. The reflectance peak is shifted through the visible spectrum upon swelling or de-swelling of the PNIPAM layers in water, providing an accessible means for colorimetric temperature sensing.

  9. Composite solid polymer electrolyte membranes

    SciTech Connect

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  10. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  11. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  12. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  13. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  14. Process for crosslinking and extending conjugated diene-containing polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1977-01-01

    A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.

  15. A computational molecular design framework for crosslinked polymer networks.

    PubMed

    Eslick, J C; Ye, Q; Park, J; Topp, E M; Spencer, P; Camarda, K V

    2009-05-21

    Crosslinked polymers are important in a very wide range of applications including dental restorative materials. However, currently used polymeric materials experience limited durability in the clinical oral environment. Researchers in the dental polymer field have generally used a time-consuming experimental trial-and-error approach to the design of new materials. The application of computational molecular design (CMD) to crosslinked polymer networks has the potential to facilitate development of improved polymethacrylate dental materials. CMD uses quantitative structure property relations (QSPRs) and optimization techniques to design molecules possessing desired properties. This paper describes a mathematical framework which provides tools necessary for the application of CMD to crosslinked polymer systems. The novel parts of the system include the data structures used, which allow for simple calculation of structural descriptors, and the formulation of the optimization problem. A heuristic optimization method, Tabu Search, is used to determine candidate monomers. Use of a heuristic optimization algorithm makes the system more independent of the types of QSPRs used, and more efficient when applied to combinatorial problems. A software package has been created which provides polymer researchers access to the design framework. A complete example of the methodology is provided for polymethacrylate dental materials. PMID:23904665

  16. Mechanical properties of crosslinked polymer coatings

    NASA Technical Reports Server (NTRS)

    Csernica, Jeffrey

    1994-01-01

    The objectives of this experiment are to: fabricate and test thin films to explore relations between a polymer's structure and its mechanical properties; expose students to testing methods for hardness and impact energy that are simple to perform and which have results that are easy to comprehend; show importance of polymer properties in materials that students frequently encounter; illustrate a system which displays a tradeoff between strength and impact resistance, the combination of which would need to be optimized for a particular application; and to expose students to coatings technology and testing.

  17. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-01

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents. PMID:26862769

  18. Preparation of crosslinked 1,2,4-oxadiazole polymer

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Shalhoub, I. M.; Kwong, H. (Inventor)

    1981-01-01

    New crosslinked 1,2,4-oxadiazole elastomers were prepared by thermally condensing a monomer having the formula H2N(HON)C-R-Q, wherein Q is a triazine ring-forming group such as nitrile or amidine or a mixture of such group with amidoxime, or a mixture of said monomer with R C(NOH)NH2 sub 2 with R in these formulas standing for a bivalent organic radical. In the monomer charge, the overall proportions of amidoxime groups to triazine ring-forming groups varies depending on the extent of crosslinking desired in the final polymer.

  19. Photo-crosslinkable polymers for fabrication of photonic multilayer sensors

    NASA Astrophysics Data System (ADS)

    Chiappelli, Maria; Hayward, Ryan C.

    2013-03-01

    We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.

  20. Tunable photonic multilayer sensors from photo-crosslinkable polymers

    NASA Astrophysics Data System (ADS)

    Chiappelli, Maria; Hayward, Ryan

    2014-03-01

    The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.

  1. Simulations of Polymer Crazing: Effect of Crosslinks and Dilution

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Barsky, Sandra

    2000-03-01

    Molecular dynamics simulations were used to study the growth and structure of crazes in adhesive films of entangled linear polymers that have been either (a) crosslinked or (b) diluted by smaller molecules. The films were ruptured by separating the two bounding walls (adherends) at a small constant velocity. In all systems the force on the walls rose to the same value before the first yield event caused cavities to form in the film. These cavities grew as the walls were displaced further. In systems that formed a stable craze, cavity growth was eventually stopped by entanglements or crosslinks. Stress concentrations then caused new cavities to form in neighboring regions. This process continued at a constant plateau stress until the entire film had been stretched by an extension ratio λ. The plateau stress increased slightly with increasing crosslink density, and decreased with decreasing fraction of long chains in diluted systems. As in experiments, when the fraction decreased below about 30plateau stress vanished and there was no longer a stable craze. The extension ratio fell with increasing crosslink density and rose as the fraction of long chains dropped. These changes can be fit with a simple geometric model based on the ability to stretch a random coil whose length is the mean spacing between crosslinks or entanglements. No chain scission was found for reasonable bond strengths. Void formation and elastic constants were also studied.

  2. Polymer-additive extraction via pressurized fluids and organic solvents of variously cross-linked poly(methylmethacrylates).

    PubMed

    Nazem, N; Taylor, L T

    2002-04-01

    Variously cross-linked poly(methylmethacrylates) (PMMAs) are synthesized with three additives incorporated at theoretically 1000 microg of the additive per gram of prepared polymer. The additives are Irganox 1010, Irganox 1076, and Irgafos 168. The in-house" synthesized polyacrylates are then subjected to supercritical fluid extraction (SFE) to determine if additive recovery is a function of percent cross-linking. Although considerable work in this regard has been performed with non-cross-linked polyolefins, the literature is lacking regarding polyacrylates. Some additive degradation apparently occurs during the synthesis, as judged by the increased complexity of the extract high-performance liquid chromatographic trace and the low percent recoveries observed especially for the Irganoxes. For low polymer cross-linking (1%), it appears that both PMMA synthetic reproducibility and readily observed polymer swelling during SFE are serious issues that adversely affect additive percent recovery and precision of results. Higher percent cross-linking yields more consistent analytical data than low percent cross-linking, even though the amount of additive extracted in all PMMA samples (regardless of cross-linking percentage) is essentially the same whether the extraction is via SFE or liquid-solid extraction with methylene chloride. Results for comparably cross-linked poly(ethylmethacrylate) and poly(butylmethacrylate) are similar to PMMA. PMID:12004935

  3. Nonaffine chain and primitive path deformation in crosslinked polymers

    NASA Astrophysics Data System (ADS)

    Davidson, J. D.; Goulbourne, N. C.

    2016-08-01

    Chains in a polymer network deform nonaffinely at small length scales due to the ability for extensive microscopic rearrangement. Classically, the conformations of an individual chain can be described solely by an end-to-end length. This picture neglects interchain interactions and therefore does not represent the behavior of a real polymer network. The primitive path concept provides the additional detail to represent interchain entanglements, and techniques have recently been developed to identify the network of primitive paths in a polymer simulation. We use coarse-grained molecular dynamics (MD) to track both chain end-to-end and primitive path deformation in crosslinked polymer networks. The range of simulated materials includes short chain unentangled networks to long, entangled chain networks. Both chain end-to-end and primitive path length are found to be linear functions of the applied deformation, and a simple relationship describes the behavior of a network in response to large stretch uniaxial, pure shear, and equi-biaxial deformations. As expected, end-to-end chain length deformation is nonaffine for short chain networks, and becomes closer to affine for networks of long, entangled chains. However, primitive path deformation is found to always be nonaffine, even for long, entangled chains. We demonstrate how the microscopic constraints of crosslinks and entanglements affect nonaffine chain deformation as well as the simulated elastic behavior of the different networks.

  4. Kinetics of Microphase Separation in Crosslinked Polymer Blend

    SciTech Connect

    Bettachy, A.; Benhamou, M.; Derouiche, A.; Fazni, A.

    2009-04-19

    The solvent effect on the early kinetics of the microphase separation (MPS) in binary crosslinked polymer was studied. In the presence of a good solvent, calculations were done using first the random phase approximation method and second an extended blob model, where a crosslinked chain is viewed as a sequence having blobs as new units. Kinetics were studied through the variation of the relaxation rate, {tau}{sub q}, upon the wave number, q, in the region around the spinodal temperature. When the temperature is changed from an initial value, T{sub i}, toward the final value, T{sub f}, very close to the critical point, the only motion allowed to the crosslinked chains is of Rouse type because of the presence of the crosslinks. The swelling effect on the MPS leads to a multiplicative renormalization of critical parameters of the molten state by factors as power of the overall monomer volume fraction, {phi}. The characteristic frequency, {omega}{sub (q)}, inverse of {tau}{sub q}, scales as {omega}(q) congruent with q{sup 6}{epsilon}{sup 3}, where {epsilon} stands for the traditional screening length. The study of kinetics of MPS is then extended in the presence of a theta solvent.

  5. Polymer-Fullerene Network Formation via Light-Induced Crosslinking.

    PubMed

    Sugawara, Yuuki; Hiltebrandt, Kai; Blasco, Eva; Barner-Kowollik, Christopher

    2016-09-01

    A facile and efficient methodology for the formation of polymer-fullerene networks via a light-induced reaction is reported. The photochemical crosslinking is based on a nitrile imine-mediated tetrazole-ene cycloaddition reaction, which proceeds catalyst-free under UV-light irradiation (λmax = 320 nm) at ambient temperature. A tetrazole-functionalized polymer (Mn = 6500 g mol(-1) , Ð = 1.3) and fullerene C60 are employed for the formation of the hybrid networks. The tetrazole-functionalized polymer as well as the fullerene-containing networks are carefully characterized by NMR spectrometry, size exclusion chromatography, infrared spectroscopy, and elemental analysis. Furthermore, thermal analysis of the fullerene networks and their precursors is carried out. The current contribution thus induces an efficient platform technology for fullerene-based network formation. PMID:27336692

  6. Chemistry of crosslinking processes for self-healing polymers.

    PubMed

    Billiet, Stijn; Hillewaere, Xander K D; Teixeira, Roberto F A; Du Prez, Filip E

    2013-02-25

    Recent developments in material design have seen an exponential increase of polymers and polymer composites that can repair themselves in response to damage. In this review, a distinction is made between extrinsic materials, where the self-healing property is obtained by adding healing agents to the material to be repaired, and intrinsic materials, where self-healing is achieved by the material itself through its chemical nature. An overview of the crosslinking chemistries used in self-healing materials will be given, discussing the advantages and drawbacks of each system. The review is not only aiming to enable researchers to compare their ongoing research with the state-of-the-art but also to serve as a guide for the newcomers, which allows for a selection of the most promising self-healing chemistries. PMID:23255325

  7. Gradiently crosslinked polymer electrolyte membranes in fuel cells

    NASA Astrophysics Data System (ADS)

    An, De; Wu, Bin; Zhang, Genlei; Zhang, Wen; Wang, Yuxin

    2016-01-01

    Polymer electrolyte membranes in fuel cells should be high in both ionic conductivity and mechanical strength. However, the two are often exclusive to each other. To solve this conundrum, a novel strategy is proposed in this paper, with extensively researched sulfonated poly (ether ether ketone) (SPEEK) membrane as a paradigm. A SPEEK membrane of high sulfonation degree is simply post-treated with NaBH4 and H2SO4 solution at ambient temperature for a certain time to afford the membrane with a gradient crosslinking structure. Measurements via 1H NMR, ATR-FTIR and SEM-EDS are conducted to verify such structural changes. The gradient crosslinks make practically no damage to proton conductance, but effectively restrain the membrane from over swelling and greatly enhance its tensile strength. A H2-O2 fuel cell with the gradiently crosslinked SPEEK membrane shows a maximal power density of 533 mW cm-2 at 80 °C, whereas the fuel cell with the pristine SPEEK membrane cannot be operated beyond 30 °C.

  8. A tour-de-force in polymer crosslinked aerogels

    NASA Astrophysics Data System (ADS)

    Mulik, Sudhir M.

    In the quest of building mechanically strong materials with low density and high porosity, polymer crosslinked aerogels stand as the most promising nano-engineered examples. Covalent attachment of polymers and bridging of skeletal nanoparticles of typical aerogels is demonstrated by using surface initiated polymerization (SIP) with a bidentate free-radical initiator structurally related to azobisisobutyronitrile (AIBN) and confined on mesoporous silica surfaces. Different monomers were introduced in the mesopores and upon heating at 70 °C, all mesoporous surfaces throughout the entire skeletal framework were coated conformally with a 10-12 nm thick polymer layer indistinguishable spectroscopically from the respective commercial bulk materials. The new materials combine hydrophobicity with vastly improved mechanical properties. Resorcinol formaldehyde (RF) aerogels are pursued as precursors of carbon aerogels, which are electrically conducting. We have developed a HCl-catalyzed gelation process in CH3CN, which is completed in ˜ 2 h at room temperature as opposed to the week-long base-catalyzed literature process. The final aerogels are spectroscopically indistinguishable from typical base-catalyzed samples. Carbon (C-) aerogels are made by pyrolysis of RF aerogels, and combine electrical conductivity with a high open mesoporosity. Nevertheless, macropores facilitate mass-transfer and they could be beneficial for applications in separations or as fuel cell and battery electrodes. Here, we report a method where an open macroporosity is introduced by pyrolysing RF aerogels whose skeletal nanoparticles have been coated conformally and crosslinked chemically with an isocyanate-derived polymer. The new macroporous material was evaluated electrochemically for possible application as an electrode in batteries and fuel cells.

  9. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect

    Kim, Yu Seung; Lee, Kwan Soo; Jeong, Myung - Hwan; Lee, Jae - Suk

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  10. Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers

    PubMed Central

    Kloxin, Christopher J.; Scott, Timothy F.; Adzima, Brian J.; Bowman, Christopher N.

    2010-01-01

    Polymer networks possessing reversible covalent crosslinks constitute a novel material class with the capacity for adapting to an externally applied stimulus. These covalent adaptable networks (CANs) represent a trend in polymer network fabrication towards the rational design of structural materials possessing dynamic characteristics for specialty applications. Herein, we discuss the unique attributes of CANs that must be considered when designing, fabricating, and characterizing these smart materials that respond to either thermal or photochemical stimuli. While there are many reversible reactions which to consider as possible crosslink candidates in CANs, there are very few that are readily and repeatedly reversible. Furthermore, characterization of the mechanical properties of CANs requires special consideration owing to their unique attributes. Ultimately, these attributes are what lead to the advantageous properties displayed by CANs, such as recyclability, healability, tunability, shape changes, and low polymerization stress. Throughout this perspective, we identify several trends and future directions in the emerging field of CANs that demonstrate the progress to date as well as the essential elements that are needed for further advancement. PMID:20305795

  11. Microscopic mechanisms of the shape memory effect in crosslinked polymers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2015-05-01

    In this work we perform coarse-grained molecular dynamics (MD) simulations to study the molecular origins of the thermal shape memory effect in crosslinked polymer materials. Thermal shape memory polymers (SMPs) are materials able to hold a deformed shape when cooled below the glass transition temperature, and subsequently recover the initial shape when heated. To use SMPs in various applications requires materials which reliably hold and recover their shapes; this has sparked recent synthesis work to create new SMP materials with optimized properties. Here we use coarse-grained MD simulations with different polymer chain models to determine which parameters affect relevant SMP behavior and to investigate the molecular mechanisms at the level of individual chains during temperature cycling. The simulations show how temperature-dependent chain mobility leads to shape memory polymer behavior. In particular, we demonstrate the importance of attractive monomer interactions in leading to ‘good’ SMP behavior. The results suggest promising routes for material development. Additionally, the mechanisms identified with the simple simulation model can be used to inform multi-scale models of SMP material behavior.

  12. Solid polymer electrolyte photovoltaic cell

    SciTech Connect

    Skotheim, T.; Lundstrom, I.

    1982-04-01

    Solid photoelectrochemical cells are described based on PEO-KI/I/sub 2/ electrolytes, n-Si/Pt/PPy photoanodes, and conductive tin-oxide glass counter electrodes. The performance of the present devices is limited by a high series resistance in the polymer film. 22 refs.

  13. Structural, Vibrational, Thermal And Electrical Characterization Of Gamma Radiation-Crosslinked Poly (Vinyl Alcohol)-Based Solid Polymer Electrolytes Blended With LiOH{center_dot}H{sub 2}O Salt

    SciTech Connect

    Khafagy, Rasha M.; Madani, M.; Badr, Y. A.

    2008-09-23

    Solid polymer electrolytes based on poly(vinyl alcohol)(PVA) blended with different concentrations of LiOH{center_dot}H{sub 2}O salt were prepared using casting and {gamma}-irradiation techniques. The structure and blending of the poly-electrolytes were studied by X-ray diffraction (XRD) and Fourier transform Raman spectroscopy. The thermal properties of these solid polymer electrolytes were examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The XRD spectra for the electrolytes indicated that the crystalline ratio of PVA decreases with the concentration of Lithium salt. Crystallinity, isotacticity and syndiotacticity percentages were also determined from Raman spectra at different salt concentrations revealing that the crystallinity and the Isotactic regularity of PVA molecule is reduced with salt addition, while the syndiotacticity increases linearly. DSC thermograms showed good accordance with these facts by detecting two melting temperatures corresponding to the two regularities, and these melting points change with the salt content. All characterizing techniques revealed the blend formation between LiOH{center_dot}H{sub 2}O salt and the polymer matrix. To account for the performance of the prepared solid polymer electrolytes, thermally stimulated depolarization current (TSDC) studies of the prepared blends were done. Short circuit TSDC at a polarizing temperature 353 K with a polarizing field of 3 kV cm{sup -1} have been analyzed in the temperature range 300-410 K. Two peaks are evident from the global TSDC measurements on the pure PVA homopolymer. Meanwhile, in all blended samples; there is only one broad peak with a shoulder on the high temperature side due to the relaxation of the poly-blend system. The prepared solid polymer electrolytes showed good charge storage capacity, and moderate current density values near the ambient.

  14. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  15. Effects of Crosslinking on the Mechanical Properties Drug Release, and Cytocompatibility of Protein Polymers

    PubMed Central

    Martinez, Adam W.; Caves, Jeffrey M.; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L.

    2013-01-01

    Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor phase crosslinking strategies decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA) (24.5%), GTA vapor crosslinking (31.6%), disulfide (SS) (18.2%), and SS vapor crosslinking (25.5%) (p <0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure, and ultimate tensile strength (UTS). In all cases, vapor phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor phase approaches influenced drug delivery rates; with decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical, and drug delivery properties of protein polymers. PMID:23993944

  16. Mechanophore activation in a crosslinked polymer matrix via instrumented indentation

    NASA Astrophysics Data System (ADS)

    Davis, Chelsea; Forster, Aaron; Woodcock, Jeremiah; Wang, Muzhou; Gilman, Jeffrey; Material Measurement Laboratory Team

    Recent advances in mechanically-activated fluorophores will enable a host of unique scientific challenges and opportunities to be addressed. Several mechanophores (MPs) in polymers have been reported, yet the specific deformation required to activate these molecules in a bulk polymer network has not been sufficiently specified. In an effort to develop the mechano-activation/deformation relationship of a spirolactam-based MP, scratches were applied to a MP-functionalized glassy crosslinked material at varying normal loads and lateral displacement rates. This experimental design allowed strain and strain rate effects to be decoupled. The fluorescence activation was then observed with a laser scanning confocal microscope. Areas of elastic and plastic deformation as well as brittle fracture were observed within each scratch as the normal loading of the indenter increased. The fluorescence intensity increased with increasing strain. Contact mechanics models are employed to demonstrate that relatively high degrees of strain are required to initiate the ring-opening activation transition within the spirolactam-based MP. These self-reporting damage sensors can be incorporated within polymeric coatings to allow real time structural health monitoring for a myriad of applications.

  17. Elucidation of the Cross-Link Structure of Nadic-End-Capped Polyimides Using NMR of C-13-Labeled Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.

    1997-01-01

    Solid NMR of C-13 isotope-labeled samples of PMR-15 was used to follow the cross-linking reaction of the nadic end cap. Some samples were labeled on one of the carbon atoms of the nadic end cap, and others on the methylene carbon atom of the methylenedianiline portion of the polymer. NMR spectra were run on these samples both before and after cross-linking. In this way, direct evidence of the major products of cross-linking under normal cure conditions is provided. The majority (approximately 85%) of the cross-linking derives from olefin polymerization through the double bond of the end cap. Approximately 15% of the products could come from a pathway involving a retro-Diels-Alder reaction. However, all of the products could be explained by a biradical intermediate without a retro-Diels-Alder reaction. Evidence is also presented that the methylene moiety in the methylenedianiline part of the polymer chain also participates in the cross-linking, albeit to a small extent, by a radical transfer reaction. Different cure conditions (higher temperatures, longer times) could change the relative distribution of the products.

  18. Chemorheology of phenylboronate-salicylhydroxamate crosslinked hydrogel networks with a sulfonated polymer backbone

    PubMed Central

    Roberts, Meredith C.; Mahalingam, Alamelu; Hanson, Melissa C.; Kiser, Patrick F.

    2012-01-01

    Hydrogel networks crosslinked with polymer-bound phenylboronic acid (PBA) and salicylhydroxamic acid (SHA) demonstrate pH-reversible gel behavior due to the pH-dependent equilibrium of the crosslinking moieties that form the gel network. Furthermore, the pH at which gels behave dynamically can be controlled by use of a polyelectrolyte backbone. Here we report on the frequency-dependent chemorheological characterization of PBA-SHA crosslinked hydrogel networks with a sulfonated polymer backbone. Our results suggest that the anionic nature of the polymers allows reversible crosslinking at neutral pH that an otherwise neutral-backboned PBA-SHA crosslinked network cannot, and that these charge-induced dynamics can be effectively screened by ions in solution. Moreover, moduli-frequency data can effectively be reduced into a single master curve with a neutral-backboned PBA-SHA gel data set as the reference condition. PMID:23132956

  19. Process for crosslinking methylene-containing aromatic polymers with ionizing radiation

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1990-01-01

    A process for crosslinking aromatic polymers containing radiation-sensitive methylene groups (-CH2-) by exposing the polymers to ionizing radiation thereby causing crosslinking of the polymers through the methylene groups is described. Crosslinked polymers are resistant to most organic solvents such as acetone, alcohols, hydrocarbons, methylene, chloride, chloroform, and other halogenated hydrocarbons, to common fuels and to hydraulic fluids in contrast to readily soluble uncrosslinked polymers. In addition, the degree of crosslinking of the polymers depends upon the percentage of the connecting groups which are methylene which ranges from 5 to 50 pct and preferably from 25 to 50 pct of the connecting groups, and is also controlled by the level of irradiation which ranges from 25 to 1000 Mrads and preferably from 25 to 250 Mrads. The temperature of the reaction conditions ranges from 25 to 200 C and preferably at or slightly above the glass transition temperature of the polymer. The crosslinked polymers are generally more resistant to degradation at elevated temperatures such as greater than 150 C, have a reduced tendency to creep under load, and show no significant embrittlement of parts fabricated from the polymers.

  20. A novel supramolecular polymer gel constructed by crosslinking pillar[5]arene-based supramolecular polymers through metal-ligand interactions.

    PubMed

    Wang, Pi; Xing, Hao; Xia, Danyu; Ji, Xiaofan

    2015-12-21

    A novel heteroditopic A-B monomer was synthesized and used to construct linear supramolecular polymers utilizing pillar[5]arene-based host-guest interactions. Specifically, upon addition of Cu(2+) ions, the supramolecular polymer chains are crosslinked through metal-ligand interactions, resulting in the formation of a supramolecular polymer gel. Interestingly, this self-organized supramolecular polymer can be used as a novel fluorescent sensor for detecting Cu(2+) ions. PMID:26466511

  1. Water and polymer dynamics in highly crosslinked polyamide membranes

    NASA Astrophysics Data System (ADS)

    Frieberg, Bradley; Chan, Edwin; Tyagi, Madhu; Stafford, Christopher; Soles, Christopher

    Highly crosslinked polyamides for reverse osmosis are the state-of-the-art active material in membranes for desalination. The thin film composite membrane structure that is used commercially has been empirically designed to selectively allow the passage of water molecules and minimize the passage of solutes such as salt. However, due to the large roughness and variability of the polyamide layer, there is a limited understanding of the structure-property relationship for these materials as well as the transport mechanism. To better understand the water transport mechanism we measure the water and polymer dynamics of polyamide membranes using quasi-elastic neutron scattering (QENS). By hydrating the membrane with deuterated water, we are able to isolate the dynamics of the hydrogenated membrane on the pico- and nanosecond time scales. By subsequently hydrating the membranes with hydrogenated water, the QENS measurements on the same times scales reveal information about both the translational and rotational dynamics of water confined within the polyamide membrane. Further understanding of the water diffusion mechanism will establish design rules in which the performance of future membrane materials can be improved.

  2. Recyclable Crosslinked Polymer Networks via One-Step Controlled Radical Polymerization.

    PubMed

    Jin, Kailong; Li, Lingqiao; Torkelson, John M

    2016-08-01

    A nitroxide-mediated polymerization strategy allows one-step synthesis of recyclable crosslinked polymeric materials from any monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. The resulting materials with dynamic covalent bonds can show full property recovery after multiple melt-reprocessing recycles. This one-step strategy provides for both robust, relatively sustainable recyclability of crosslinked polymers and design of networks for advanced technologies. PMID:27206061

  3. Gellan gum microspheres crosslinked with trivalent ion: effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties.

    PubMed

    Boni, Fernanda Isadora; Prezotti, Fabíola Garavello; Cury, Beatriz Stringhetti Ferreira

    2016-08-01

    Gellan gum microspheres were obtained by ionotropic gelation technique, using the trivalent ion Al(3+). The percentage of entrapment efficiency ranged from 48.76 to 87.52% and 2(2) randomized full factorial design demonstrated that both the increase of polymer concentration and the decrease of crosslinker concentration presented a positive effect in the amount of encapsulated drug. Microspheres size and circularity ranged from 700.17 to 938.32 μm and from 0.641 to 0.796 μm, respectively. The increase of polymer concentration (1-2%) and crosslinker concentration (3-5%) led to the enlargement of particle size and circularity. However, the association of increased crosslinker concentration and reduced polymer content made the particles more irregular. In vitro and ex vivo tests evidenced the high mucoadhesiveness of microspheres. The high liquid uptake ability of the microspheres was demonstrated and the pH variation did not affect this parameter. Drug release was pH dependent, with low release rates in acid pH (42.40% and 44.93%) and a burst effect in phosphate buffer pH (7.4). The Weibull model had the best correlation with the drug release data, demonstrating that the release process was driven by a complex mechanism involving the erosion and swelling of the matrix or by non-Fickian diffusion. PMID:26616390

  4. Solid polymer electrolyte water electrolysis

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  5. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  6. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles.

    PubMed

    Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng

    2015-10-28

    This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications. PMID:26416568

  7. The interplay of ion crosslinking, free ion content, and polymer mobility in PEO-based single-ion conductors

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2010-03-01

    We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.

  8. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  9. Mechanochromism and Mechanical-Force-Triggered Cross-Linking from a Single Reactive Moiety Incorporated into Polymer Chains.

    PubMed

    Zhang, Huan; Gao, Fei; Cao, Xiaodong; Li, Yanqun; Xu, Yuanze; Weng, Wengui; Boulatov, Roman

    2016-02-01

    Incorporation of small reactive moieties, the reactivity of which depends on externally imposed load (so-called mechanophores) into polymer chains offers access to a broad range of stress-responsive materials. Here, we report that polymers incorporating spirothiopyran (STP) manifest both green mechanochromism and load-induced addition reactions in solution and solid. Stretching a macromolecule containing colorless STP converts it into green thiomerocyanine (TMC), the mechanically activated thiolate moiety of which undergoes rapid thiol-ene click reactions with certain reactive C=C bonds to form a graft or a cross-link. The unique dual mechanochemical response of STP makes it of potentially great utility both for the design of new stress-responsive materials and for fundamental studies in polymer physics, for example, the dynamics of physical and mechanochemical remodeling of loaded materials. PMID:26805709

  10. Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer

    PubMed Central

    Matos-Pérez, Cristina R.; White, James D.; Wilker, Jonathan J.

    2012-01-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels, however bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examined the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) were distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to cyanoacrylate “Krazy” or “Super” glue. Performance was also examined using low (e.g., plastics) and high (e.g., metals, wood) energy surfaces. Adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  11. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    PubMed

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  12. Strain Hardening and Strain Softening of Reversibly Cross-linked Supramolecular Polymer Networks

    PubMed Central

    Xu, Donghua; Craig, Stephen L.

    2011-01-01

    The large amplitude oscillatory shear behavior of metallo-supramolecular polymer networks formed by adding bis-Pd(II) cross-linkers to poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO) solution is reported. The influence of scanning frequency, dissociation rate of cross-linkers, concentration of cross-linkers, and concentration of PVP solution on the large amplitude oscillatory shear behavior is explored. In semidilute unentangled PVP solutions, above a critical scanning frequency, strain hardening of both storage moduli and loss moduli is observed. In the semidilute entangled regime of PVP solution, however, strain softening is observed for samples with faster cross-linkers (kd ∼ 1450 s−1), whereas strain hardening is observed for samples with slower cross-linkers (kd ∼ 17 s−1). The mechanism of strain hardening is attributed primarily to a strain-induced increase in the number of elastically active chains, with possible contributions from non-Gaussian stretching of polymer chains at strains approaching network fracture. The divergent strain softening of samples with faster cross-linkers in semidilute entangled PVP solutions, relative to the strain hardening of samples with slower cross-linkers, is consistent with observed shear thinning/shear thickening behavior reported previously and is attributed to the fact that the average time that a cross-linker remains detached is too short to permit the local relaxation of polymer chain segments that is necessary for a net conversion of elastically inactive to elastically active cross-linkers. These and other observations paint a picture in which strain softening and shear thinning arise from the same set of molecular mechanisms, conceptually uniting the two nonlinear responses for this system. PMID:22043083

  13. Photo-induced in situ crosslinking of polymer brushes with dimethyl maleimide moieties for dynamically stimulating stem cell differentiation.

    PubMed

    Arisaka, Yoshinori; Nishijima, Yuka; Yusa, Shin-Ichi; Takeda, Naoya

    2016-09-01

    We designed photo-crosslinkable polymer brushes with dimethylmaleimide moieties, in order to demonstrate dynamic stimulation of cell differentiation in mesenchymal stem cells (MSCs). The polymer brushes were synthesized by surface-initiated reversible addition fragmentation chain transfer polymerization using dimethylmaleimide ethyl methacrylate and methyl methacrylate on a chain transfer agent-immobilized glass surface. The polymer brushes were crosslinked by photodimerization of the dimethylmaleimide moieties within polymer chains with stem cells present on the surface. In order to evaluate the effects of in situ photo-induced crosslinking of the polymer brushes on gene expression of stem cells, human bone marrow MSCs were cultured under static and dynamic culture conditions for 7 days. Expression of the osteocalcin (Ocn) gene in MSCs was used as an indicator of osteoblast differentiation under dynamic culture conditions. Structural conversion from non-crosslinked polymer brushes to crosslinked polymer brushes increased the expression of Ocn by 1.4-fold in the presence of adhered cells, compared with non-crosslinked polymer brushes under static culture conditions. These results suggest that MSCs recognized surface conversion from non-crosslinked to crosslinked structures, which resulted in altered differentiation lineages. Therefore, photo-crosslinkable surfaces with dimethyl maleimide moieties are potential novel materials for dynamically stimulating MSC differentiation. PMID:27255343

  14. 3D Mapping of Polymer Crosslink Density with Magnetic Resonance Imaging

    SciTech Connect

    Herberg, J L; Gjersing, E L; Chinn, S C; Maxwell, R S

    2005-03-11

    Magnetic Resonance Imaging (MRI) techniques have been used to detect areas of low crosslink density in damaged silicone parts in an effort to develop a QA/QC protocol to be used in the development of new parts. Model materials of varying crosslink density first demonstrated the applicability of the method. Analysis of damaged pads has been shown to be clearly distinguishable by MRI. It is our belief that both the T{sub 2} weighted SPI NMR and the T{sub 2} weighted water/fat suppression MRI experiments can be used to map out the location of different cross-linking densities, ultimately determining the quality or homogeneity in polymers.

  15. Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions

    PubMed Central

    Benmouna, Farida; Zemmour, Samira; Benmouna, Mustapha

    2016-01-01

    ABSTRACT Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices. PMID:27134310

  16. A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing.

    PubMed

    Ji, Xiaofan; Yao, Yong; Li, Jinying; Yan, Xuzhou; Huang, Feihe

    2013-01-01

    A supramolecular cross-linked network was fabricated and demonstrated to act as a multiple fluorescent sensor. It was constructed from a fluorescent conjugated polymer and a bisammonium salt cross-linker driven by dibenzo[24]crown-8/secondary ammonium salt host-guest interactions. Compared with the conjugated polymer, the network has weak fluorescence due to the aggregation of polymer chains. Thanks to the multiple stimuli-responsiveness of host-guest interactions, the fluorescence intensity of the system can be enhanced by four types of signals, including potassium cation, chloride anion, pH increase, and heating. Hence, the network can serve as a cation sensor, an anion sensor, a pH sensor, and a temperature sensor. It can be used in both solution and thin film. Interestingly, exposure of a film made from this supramolecular cross-linked network to ammonia leads to an increase of fluorescence, making it a good candidate for gas detection. PMID:23259828

  17. Predicting the glass transition temperature as function of crosslink density and polymer interactions in rubber compounds

    NASA Astrophysics Data System (ADS)

    D'Escamard, Gabriella; De Rosa, Claudio; Auriemma, Finizia

    2016-05-01

    Crosslink sulfur density in rubber compounds and interactions in polymer blends are two of the composition elements that affect the rubber compound properties and glass transition temperature (Tg), which is a marker of polymer properties related to its applications. Natural rubber (NR), butadiene rubber (BR) and styrene-butadiene rubber (SBR) compounds were investigated using calorimetry (DSC) and dynamic mechanical analysis (DMA). The results indicate that the Di Marzio's and Schneider's Models predict with accuracy the dependence of Tg on crosslink density and composition in miscible blends, respectively, and that the two model may represent the base to study the relevant "in service" properties of real rubber compounds.

  18. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Yoshii, Fumio; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Poly(ɛ-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  19. Electron Beam Crosslinked Polyurethane Shape Memory Polymers with Tunable Mechanical Properties

    PubMed Central

    Hearon, Keith; Nash, Landon D.; Volk, Brent L.; Ware, Taylor; Lewicki, James P.; Voit, Walter E.; Wilson, Thomas S.

    2014-01-01

    Novel electron beam crosslinked polyurethane shape memory polymers with advanced processing capabilities and tunable thermomechanical properties have been synthesized and characterized. We demonstrate the ability to manipulate crosslink density in order to finely tune rubbery modulus, strain capacity, ultimate tensile strength, recovery stress, and glass transition temperature. This objective is accomplished for the first time in a low-molecular-weight polymer system through the precise engineering of thermoplastic resin precursors suitable for mass thermoplastic processing. Neurovascular stent prototypes were fabricated by dip-coating and laser machining to demonstrate processability. PMID:25411531

  20. In situ Synthesis of Oligonucleotide Arrays on Surfaces Coated with Crosslinked Polymer Multilayers.

    PubMed

    Broderick, Adam H; Lockett, Matthew R; Buck, Maren E; Yuan, Yuan; Smith, Lloyd M; Lynn, David M

    2012-03-13

    We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the 'reactive' layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA). Post-fabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays. Glucamine-functionalized films yielded arrays of oligonucleotides with fluorescence intensities and signal-to-noise ratios (after hybridization with fluorescently labeled complementary strands) comparable to those of arrays fabricated on conventional silanized glass substrates. These arrays could be exposed to multiple hybridization-dehybridization cycles with only moderate loss of hybridization density. The versatility of the layer-by-layer approach also permitted synthesis directly on thin sheets of film-coated poly(ethylene terephthalate) (PET) to yield flexible oligonucleotide arrays that could be readily manipulated (e.g., bent) and cut into smaller arrays. To our knowledge, this work presents the first use of polymer multilayers as a substrate for the multi-step synthesis of complex molecules. Our results demonstrate that these films are robust and able to withstand the ~450 individual chemical processing steps associated with MAS (as well as manipulations required to hybridize, image, and dehybridize the arrays) without large-scale cracking, peeling, or delamination of the thin films. The combination of layer-by-layer assembly and MAS provides a means of fabricating functional oligonucleotide arrays on a range of different materials and substrates. This approach may also prove useful for the fabrication of supports for the solid-phase synthesis and screening of other macromolecular or small

  1. Surface morphology control of cross-linked polymer particles via dispersion polymerization.

    PubMed

    Peng, Bo; Imhof, Arnout

    2015-05-14

    Cross-linked polymer colloids (poly(methyl methacrylate) and polystyrene) with diverse shapes were prepared in polar solvents (ethanol, methanol and water) via dispersion polymerization, in which a linear addition of the cross-linker was used during reaction. Apart from spherical particles we found dented spheres or particles covered with nodules, or a combination of both. A comprehensive investigation was carried out, mainly concentrating on the effect of the experimental conditions (e.g., the addition start time and total addition time, cross-linker density and the solvency of the solvents) on particle morphologies. Consequently, we suggest a number of effective ways for the synthesis of regular (spherical) colloidal particles through maintaining a relatively low concentration of the cross-linker during the entire reaction, or forcing the co-polymerization (of monomer and cross-linker) locus to the continuous medium, or using a high quality or quantity of the stabilizer. Moreover, the size of the particles was also precisely manipulated by varying the polarity of the solvents, the concentration of the cross-linker, and the amount and average molecular weight of the stabilizer. In addition, the formation of the heavily dented particles with a very rough surface prepared under a pure or oxygen-'contaminated' nitrogen environment was monitored over time. The results accumulated in this article are of use for a better understanding of the mechanism of the polymerization and control over the structure and property of polymer particles. PMID:25793973

  2. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  3. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng

    2015-10-01

    This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the

  4. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  5. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  6. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  7. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer

    PubMed Central

    Chin, Yuk Ping; Mohamad, Sharifah; Abas, Mhd Radzi Bin

    2010-01-01

    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results. PMID:20957106

  8. Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer.

    PubMed

    Chin, Yuk Ping; Mohamad, Sharifah; Abas, Mhd Radzi Bin

    2010-01-01

    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results. PMID:20957106

  9. Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross-Link Agents.

    PubMed

    Squillaci, Marco A; Qiu, Feng; Aliprandi, Alessandro; Zhang, Fan; Feng, Xinliang; Samorì, Paolo

    2016-07-01

    A new technique for direct patterning of functional organic polymers using commercial photolithography setups with a minimal loss of the materials' performances is reported. This result is achieved through novel cross-link agents made by boron- and fluorine-containing heterocycles that can react between themselves upon UV- and white-light exposure. PMID:27153351

  10. Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxyfatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel crosslinked thin polymer networks based on vegetable oil hydroxyfatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, r...

  11. Influence of radiation-crosslinking on flame retarded polymer materials-How crosslinking disrupts the barrier effect

    NASA Astrophysics Data System (ADS)

    Sonnier, Rodolphe; Caro-Bretelle, Anne-Sophie; Dumazert, Loïc; Longerey, Marc; Otazaghine, Belkacem

    2015-01-01

    Fire behavior of flame retardant-free and flame retarded PP/PA6 blends was studied using pyrolysis-combustion flow calorimeter, cone calorimeter and epiradiator equipped with infrared camera and pyrometer. Blends were previously γ-irradiated in presence of crosslinking agents at various doses (up to 100 kGy) in order to assess the influence of irradiation crosslinking on flame retardancy. Crosslinked specimens exhibit a solid-like behavior under high temperature gradient in cone calorimeter and then distort considerably. The influence of such a behavior depends on the material properties. When the flame retardancy is provided by heat shielding effect, heat distortion disrupts the top protective layer leading to a substantial increase of peak of heat release rate (pHRR). The barrier layer is no longer able to prevent the heat transfer to the underlying condensed phase. In other cases (flame retardant-free blends or flame retardancy provided by other effects than heat shielding), heat distortion has negligible influence on heat release rate curves in cone calorimeter tests.

  12. Effects of plasticization on ionic conductivity enhancement of crosslinked polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Kyu, Thein; Kyu's Team, Dr.

    Glass transition temperatures (Tg) of solid polymer electrolyte membranes (PEM), comprised of polyethylene glycol diacrylate (PEGDA) prepolymer, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and succinonitrile (SCN) plasticizer, were systematically examined before and after crosslinking in the isotropic region guided by their ternary phase diagram. With increasing LiTFSI concentration, the Tg of uncured binary PEGDA/LiTFSI mixture increases drastically due to molecular complexation between lithium cation and ether oxygen, but ionic conductivity is very low (<10-6 S cm-1). Upon curing, this Tg increases and further reduces ionic conductivity. Upon adding SCN plasticizer, the Tg of PEM has significantly decreased to -60 oC and ionic conductivity also increased to the superionic conductor level of 10-3 S cm-1. The analysis of ionic conductivity vs. Tg behavior by Vogel-Tamman-Fulcher(VTF) equation revealed that this ionic conductivity enhancement is due to SCN plasticization resulting in lowering the network Tg as well as lowering the activation energy. Supported by NSF-DMR 1161070.

  13. Evaluation of a cross-linked polyurethane acrylate as polymer electrolyte for lithium batteries

    SciTech Connect

    Santhosh, P.; Gopalan, A. . E-mail: algopal_99@yahoo.com; Vasudevan, T.; Lee, Kwang-Pill

    2006-06-15

    A cross-linked polyurethane acrylate (CL-PUA) was synthesized by end capping 2,6-toluene diisocyanate (TDI)/poly(ethylene glycol) (PEG) based prepolymer with hydroxybutyl methacrylate (HBMA). Differential scanning calorimetry (DSC) and Fourier transform infra-red (FT-IR) spectroscopy measurements reveal the possible presence of significant interactions between lithium ions and soft/hard segments of the CL-PUA, when CL-PUA was complexed with lithium perchlorate (LiClO{sub 4}). CL-PUA follows the VTF relationship for the ion transport. Predominant formation of contact ion pairs of LiClO{sub 4} has been observed through AC conductivity and DSC measurements. The lithium stripping-plating process is a reversible and implies better electrochemical stability in the working voltage range. Also, CL-PUA electrolyte shows better compatibility with lithium metal as inferred from impedance measurements and has a good cationic transference number suitable to be used as a solid polymer electrolyte. The addition of HBMA into PU matrix improves tensile strength of the CL-PUA. Swelling measurements of CL-PUA with plasticizer showed better dimensional stability. Also, a cell was constructed using CL-PUA as electrolyte and the performance was assessed.

  14. Preparation and Characterization of a pH-Responsive Core Cross-linked Polymer Micelle

    NASA Astrophysics Data System (ADS)

    Kousaka, Shouta; Sugahara, Makoto; Endo, Tatsuya; Yusa, Shin-ichi

    2011-01-01

    Poly(ethylene glycol)-b-poly(2-(diethylamino) ethyl methacrylate-co-2-cinnamoyl-oxyethyl acrylate) (PEG-b-P(DEA/CEA)) was prepared by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. pH-responsive association behaviour of PEG-b-P(DEA/CEA) in 0.1 M NaCl was characterized by dynamic light scattering (DLS). As solution pH is increased from an acidic pH, the hydrodynamic radius (Rh) increases, indicative of the polymer micelle formation. The formation of a micelle was also supported by static light scattering (SLS) data. The cinnamoyl groups in the core of the polymer micelle undergo photodimerization, yielding cross-links between polymer chains. The core of the polymer micelle was fixed, which was confirmed by DLS, SLS, and small angle X-ray scattering (SAXS) techniques. When pH is decreased to 3, Rh of the core cross-linked (CCL) polymer micelle slightly increases due to the protonation of the DEA unit in the cross-linked core. The reversible pH-induced swelling and shrinking behaviour can be observed.

  15. Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.

    2009-03-01

    We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.

  16. Order-Disorder Transitions in Cross-Linked Block Copolymer Solids

    SciTech Connect

    Das, J.

    2005-01-12

    With a view toward creating solid block copolymers wherein the order-disorder transition can be accessed many times they investigated the nature of order-disorder transitions in cross-linked diblock copolymer melts using synergistic theory and experiment. A mean-field theory based on a coarse grained free-energy and the Random Phase Approximation (RPA) is developed for the system of interest. The quenched distribution of cross-links is averaged using the replica method. The phase behavior of a particular A-B block copolymer melt with a randomly cross-linked B-Block is determined as a function of the Florry-Huggins interaction parameter ({chi}) and the average number of cross-links per chain N{sub c}. They find for a cross-link density greater than N*{sub c} the B monomers are localized within a region of size {zeta} {approx} (N{sub c} - N*{sub c}){sup -1/2}. The cross-links strongly oppose ordering in the system as {zeta} becomes comparable to the radius of gyration of the block copolymer chain. As such the order-disorder transition temperature T{sub ODT} decreases precipitously when N{sub c} > N*{sub c}. When N{sub c} < N*{sub c}, T{sub ODT} increases weakly with N{sub c}. Experiments were conducted on cross-linked polystyrene-block-polyisoprene copolymer samples wherein the polyisoprene block was selectively cross-linked at a temperature well above the order-disorder transition temperature of the pure block copolymer. Small angle X-ray scattering (SAXS) and birefringence measurements on the cross-linked samples are consistent with the theoretical prediction. T{sub ODT} decreases rapidly when the cross-linking density exceeds the critical cross-linking density.

  17. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    SciTech Connect

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  18. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    PubMed Central

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272

  19. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  20. Amino resins crosslinked polymer gels for permeability profile control

    SciTech Connect

    Shu, P.

    1989-05-30

    This patent describes a process for closing pores in a hydrocarbonaceous fluid bearing formation to obtain improved sweep efficiency during a waterflood oil recovery operation which comprises injecting a gellable composition comprising: (a) water; (b) 0.2 to 5.0 wt. percent of a cross linkable polymer which is a member selected from the group consisting of xanthan biopolymers, heteropolysaccharide S-130, poly (acrylamide-co-acrylamido-2-methyl-propanesulfonate), and acrylamide modified polyvinyl alcohol; and (c) 0.02 to 50.0 wt. percent of a partially methylated aminoplast resin which cross links with the polymer thereby forming a gel in the absence of a salt which is acid generating upon the application of heat which gel is of a strength sufficient to close pores in one or more permeable zones of the formation.

  1. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    PubMed

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale. PMID:27254797

  2. Morphology control in solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Christopher

    2015-03-01

    Solid polymer electrolytes (SPEs) with high ionic conductivity are important for energy-related applications, such as solid state batteries and fuel cells. In this talk, I will discuss how nanoscale morphology affects the properties of SPEs. In the first part of the talk, I will show quantitatively that the effect of polymer crystallization on ion transport is twofold: structural (tortuosity) and dynamic (tethered chain confinement). We decouple these two effects by designing and fabricating a model polymer single crystal electrolyte system with controlled crystal structure, size, crystallinity, and orientation. Ion conduction is confined within the chain fold region and guided by the crystalline lamellae. We show that, at low ion content, due to the tortuosity effect, the in-plane conductivity is 2000 times greater than through-plane one. Contradictory to the general view, the dynamic effect is negligible at moderate ion contents. Our results suggest that semicrystalline polymer is a valid system for practical polymer electrolytes design. In the second part of the talk, I will discuss how to use holographic photopolymerization (HP) to fabricate long-range, defect-free, ordered SPEs with tunable ion conducting pathways. By incorporating polymer electrolytes into the carefully selected HP system, electrolyte layers/ion channels with length scales of a few tens of nanometers to micrometers can be formed. Confinement effects on ion transport will be reported.

  3. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    PubMed

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial. PMID:25647407

  4. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H.; Ghalei, Behnam; Al-Muhtaseb, Shaheen A.; Terentjev, Eugene M.; Cheetham, Anthony K.; Sivaniah, Easan

    2014-09-01

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  5. Cross-linked supramolecular polymer metallogels constructed via a self-sorting strategy and their multiple stimulus-response behaviors.

    PubMed

    Wang, Xu-Qing; Wang, Wei; Yin, Guang-Qiang; Wang, Yu-Xuan; Zhang, Chang-Wei; Shi, Jia-Meng; Yu, Yihua; Yang, Hai-Bo

    2015-12-01

    Novel cross-linked supramolecular polymer metallogels were successfully constructed from four components via a self-sorting strategy, and feature interesting multiple stimulus-response behaviors under various external stimuli, including halide, base, and competitive guests. PMID:26436148

  6. Effects of sensitizer length on radiation crosslinked shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor; Voit, Walter; Gall, Ken

    2010-04-01

    Shape-memory polymers (SMPs) are smart materials that can be designed to retain a metastable state and upon activation, recover a preprogrammed shape. In this study, poly(methyl acrylate) (PMA) is blended with poly(ethylene glycol) diacrylate (PEGDA) of various molecular weights in various concentrations and subsequently exposed to ionizing radiation. PEGDA sensitizes the radiation crosslinking of PMA, lowering the minimum absorbed dose for gelation and increasing the rubbery modulus, after crosslinking. Minimum dose for gelation, as determined by the Charlesby-Pinner equation, decreases from 25.57 kGy for unblended PMA to 2.06 kGy for PMA blended with 10.00 mole% PEGDA. Moreover, increase in the blend concentration of PEGDA increases the crosslinking density of the resulting networks. Sensitizer length, namely Mn of PEGDA, also affects crosslinking and final mechanical properties. Increase in the length of the PEGDA molecule at a constant molar ratio increases the efficacy of the molecule as a radiation sensitizer as determined by the increase in gel fraction and rubbery modulus across doses. However, at a constant weight ratio of PEGDA to PMA, shorter PEGDA chains sensitize more crosslinking because they have more reactive ends per weight fraction. Sensitized samples of PMA with PEGDA were tested for shape-memory properties and showed shape fixity of greater than 99%. Samples had a glass transition temperature near 28 °C and recovered between 97% and 99% of the induced strain when strained to 50%.

  7. Effective-medium approach for stiff polymer networks with flexible cross-links

    NASA Astrophysics Data System (ADS)

    Broedersz, C. P.; Storm, C.; Mackintosh, F. C.

    2009-06-01

    Recent experiments have demonstrated that the nonlinear elasticity of in vitro networks of the biopolymer actin is dramatically altered in the presence of a flexible cross-linker such as the abundant cytoskeletal protein filamin. The basic principles of such networks remain poorly understood. Here we describe an effective-medium theory of flexibly cross-linked stiff polymer networks. We argue that the response of the cross-links can be fully attributed to entropic stiffening, while softening due to domain unfolding can be ignored. The network is modeled as a collection of randomly oriented rods connected by flexible cross-links to an elastic continuum. This effective medium is treated in a linear elastic limit as well as in a more general framework, in which the medium self-consistently represents the nonlinear network behavior. This model predicts that the nonlinear elastic response sets in at strains proportional to cross-linker length and inversely proportional to filament length. Furthermore, we find that the differential modulus scales linearly with the stress in the stiffening regime. These results are in excellent agreement with bulk rheology data.

  8. Mechanochemically induced disordered structures of vincamine: the different mediation of two cross-linked polymers.

    PubMed

    Hasa, Dritan; Perissutti, Beatrice; Chierotti, Michele Remo; Gobetto, Roberto; Grabnar, Iztok; Bonifacio, Alois; Dall'Acqua, Stefano; Invernizzi, Sergio; Voinovich, Dario

    2012-10-15

    The aims of this research were to prepare highly bioavailable binary cogrounds (vincamine-AcDiSol(®) or PVP-Cl) by means of a mechanochemical process and to study the mediation of each polymer in the induction of physical transformations of the drug. From a set of fifteen cogrounds for each crosslinked polymer, two samples were selected in each group on the basis of the AUC of in vitro dissolution profiles with the help of a statistical comparison. The chosen samples were analysed by means of TEM, XRPD, Raman-spectroscopy/imaging, SSNMR, also including the study of (1)H spin-lattice relaxation times. The research encompassed in vivo oral absorption studies in rats, pharmacokinetic analysis and physical stability studies during 1 year. An intimate drug-polymer mixing was found in the coground samples with domain average dimensions smaller than 100 Å; this reflected in a remarkable enhancement of the in vitro and in vivo bioavailability. Different disordered states were detected in the coground samples as a function of cogrinding time and the type and amount of polymer used. Though both crosslinked polymers produced a remarkable enhancement of the oral bioavailability, coground systems based on AcDiSol(®) are preferable in terms of pharmacokinetic performance and physical stability. PMID:22721852

  9. Computational modeling of mechanical response of dual cross-linked polymer grafted nanoparticle networks

    NASA Astrophysics Data System (ADS)

    v S, Balaji; Yashin, Victor; Salib, Isaac; Kowalewski, Tomasz; Matyjaszewski, Krzystof; Balazs, Anna; Anna Balazs Collaboration; Krzystof Matyjaszewski Collaboration

    2013-03-01

    We develop a hybrid computational model for the behavior of a network of cross-linked polymer-grafted nanoparticles (PGNs). The individual nanoparticles are composed of a rigid core and a corona of grafted polymers that encompass reactive end groups. With the overlap of the coronas on adjacent particles, the reactive end groups can form permanent or labile bonds, which lead to the formation of a ``dual cross-linked'' network. To capture these multi-scale interactions, our approach integrates the essential structural features of the polymer grafted nanoparticles, the interactions between the overlapping coronas, and the kinetics of bond formation and rupture between the reactive groups on the chain ends. We investigate the mechanical response of the dual-cross linked network to an applied tensile deformation. We find that the response depends on the bond energies of the labile bonds, the fraction of permanent bonds in the network, and thickness of the corona. This model provides a powerful tool for the computational design of dual cross-linked PGN's by predicting how the structural features of the system affect the mechanical performance.

  10. Diffusion Coefficients of Water and Leachables in Methacrylate-based Crosslinked Polymers using Absorption Experiments

    PubMed Central

    Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette

    2012-01-01

    The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592

  11. Organic field-effect transistors based on a crosslinkable polymer blend as the semiconducting layer

    NASA Astrophysics Data System (ADS)

    Yan, He; Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J.

    2005-10-01

    For fabrication of top-gate polymer-based organic field-effect transistors (OFETs), it is essential that the semiconducting layer remain intact during spin coating of the overlying dielectric layer. This requirement severely limits the applicable solvent and materials combinations. We show here that a crosslinkable polymer blend consisting of a p-type semiconducting polymer {e.g., TFB; poly[9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine]} and an electroactive crosslinkable silyl reagent {e.g., TPDSi2; 4,4'-bis[(p-trichloro-silylpropylphenyl)phenylamino]biphenyl} is effective as the semiconducting layer in a top-gate bottom-contact OFET device. The TFB +TPDSi2 semiconducting blend is prepared by spin-coating in ambient. The crosslinking process occurs during spin-coating in air and is completed by curing at 90 °C, which renders the resulting film insoluble in common organic solvents and allows subsequent deposition of dielectric layers from a wide range of organic solvents. We also show that the presence of TPDSi2 in the semiconductor layer significantly reduces typical TFB-source-drain threshold voltages in bottom-contact devices, likely due to favorable interfacial TPDSi2-gold electrode interactions.

  12. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    SciTech Connect

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

  13. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGESBeta

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for furthermore » development of this new class of solid electrolytes.« less

  14. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  15. Synthesis and characterization of cross-linkable polyurethane-imide electro-optic waveguide polymer

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Tang, Jie; Li, Ruo-Zhou; Zhang, Tong; Tong, Ling; Tang, Jing

    2016-01-01

    The novel electro-optic (EO) polymers of fluorinated cross-linkable polyurethane-imides (CLPUI) were designed and synthesized by polycondensation of azo chromophore C1 and C2, diisocyanate MDI, and aromatic dianhydride 6FDA. Molecular structural characterization for the resulting polymers was achieved by 1HNMR, FT-IR, elemental analysis, and gel permeation chromatography. The polymers exhibit good film-forming properties, high glass transition temperature ( T g) in the range of 193-200 °C, and thermal stability up to 290 °C. The polymers that possess a high EO coefficient (γ_{33} = 48 and 56 pm/V) at 1550 nm for poled polymer thin films were measured by the simple reflection technique. Excellent temporal stability and low optical losses in the range of 1.1-1.7 dB/cm at 1550 nm were observed for these polymers. Using the synthesized side-chain electro-optic CLPUI as the active core material and of a fluorinated polyimide as cladding material, we have designed and successfully fabricated the high-performance polymer waveguide Mach-Zehnder EO modulators.

  16. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    SciTech Connect

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto; Adroher-Benítez, Irene

    2014-05-28

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

  17. Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery

    PubMed Central

    Gyawali, Dipendra; Nair, Parvathi; Zhang, Yi; Tran, Richard T.; Zhang, Chi; Samchukov, Mikhail; Makarov, Marina; Kim, Harry; Yang, Jian

    2010-01-01

    Herein, we report the first citric acid (CA)-derived in situ crosslinkable biodegradable polymer, poly(ethylene glycol) maleate citrate (PEGMC). The synthesis of PEGMC could be carried out via a one-pot polycondensation reaction without using organic solvents or catalysts. PEGMC could be in-situ crosslinked into elastomeric PPEGMC hydrogels. The performance of hydrogels in terms of swelling, degradation, and mechanical properties were highly dependent on the molar ratio of monomers, crosslinker concentration, and crosslinking mechanism used in the synthesis process. Cyclic conditioning tests showed that PPEGMC hydrogels could be compressed up to 75% strain without permanent deformation and with negligible hysteresis. Water-soluble PEGMC demonstrated excellent cytocompatibilty in vitro. The degradation products of PPEGMC also showed minimal cytotoxicity in vitro. Animal studies in rats clearly demonstrated the excellent injectability of PEGMC and degradability of the in situ-formed PPEGMC. PPEGMC elicited minimal inflammation in the early stages post-injection and was completely degraded within 30 days in rats. In conclusion, the development of CA-derived injectable biodegradable PEGMC presents numerous opportunities for material innovation and offers excellent candidate materials for in situ tissue engineering and drug delivery applications. PMID:20800893

  18. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    NASA Astrophysics Data System (ADS)

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-12-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics.

  19. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin.

    PubMed

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S V; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-01-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics. PMID:26619814

  20. Microstructured Films Formed on Liquid Substrates via Initiated Chemical Vapor Deposition of Cross-Linked Polymers.

    PubMed

    Bradley, Laura C; Gupta, Malancha

    2015-07-28

    We studied the formation of microstructured films at liquid surfaces via vapor phase polymerization of cross-linked polymers. The films were composed of micron-sized coral-like structures that originate at the liquid-vapor interface and extend vertically. The growth mechanism of the microstructures was determined to be simultaneous aggregation of the polymer on the liquid surface and wetting of the liquid on the growing aggregates. We demonstrated that we can increase the height of the microstructures and increase the surface roughness of the films by either decreasing the liquid viscosity or decreasing the polymer deposition rate. Our vapor phase method can be extended to synthesize functional, free-standing copolymer microstructured thin films for potential applications in tissue engineering, electrolyte membranes, and separations. PMID:26176742

  1. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    PubMed Central

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-01-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics. PMID:26619814

  2. Analyses of viscoelastic solid polymers undergoing degradation

    NASA Astrophysics Data System (ADS)

    Davoodi, Bentolhoda; Muliana, Anastasia; Tscharnuter, Daniel; Pinter, Gerald

    2015-08-01

    In this paper we study the three-dimensional response of isotropic viscoelastic solid-like polymers undergoing degradation due to mechanical stimuli. A single integral model is used to describe the time-dependent behaviors of polymers under general loading histories. The degradation is associated to excessive deformations in the polymers as strains continuously increase when the mechanical stimuli are prescribed, and therefore we consider a degradation threshold in terms of strains. The degradation part of the deformations is unrecoverable, and upon removal of the prescribed external stimuli, the accumulation of the degradation strains lead to residual strains. We also systematically present material parameter characterization from available experimental data under various loading histories, i.e., ramp loading with different constant rates, creep-recovery under different stresses, and relaxation under several strains. We analyze viscoelastic-degradation response of two polymers, namely polyethylene and polyoxymethylene under uniaxial tensile tests. Longer duration of loading can lead to increase in the degradation of materials due to the substantial increase in the deformations. The single integral model is capable in predicting the time-dependent responses of the polymers under various loading histories and capturing the recovery and residual strains at different stages of degradations.

  3. Improved lithium-metal/vanadium pentoxide polymer battery incorporating crosslinked ternary polymer electrolyte with N-butyl-N-methylpyrrolidinium bis(perfluoromethanesulfonyl)imide

    NASA Astrophysics Data System (ADS)

    Osada, Irene; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-12-01

    Li metal polymer batteries incorporating crosslinked ternary PEO/PYR14TFSI/LiTFSI solid polymer electrolyte (SPE) have been prepared, using V2O5 as active cathode material. As a result of the optimization of the SPE as well as the cell assembly and cycling conditions, V2O5 lithium metal polymer batteries allow reaching 796 Wh kg-1 (of V2O5) at C/10 at 40 °C and maintaining 663 Wh kg-1 after 200 cycles at 40 °C. This is higher than the theoretical specific energy of LiCoO2 vs. Li of 609 Wh kg-1. Cycling at 80 °C allows reaching 270 mAh g-1 at C/2 and 210 mAh g-1 at 1 C, while at 20 °C it is still possible to reach a discharge capacity of almost 100 mAh g-1 at low rates. Post-cycling SEM and EDX imaging showed that, after 200 cycles at 40 °C, if the plating of Li is not fully homogeneous, no sign of dendrite growth nor obvious vanadium dissolution and redeposition on the anode side occurred.

  4. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  5. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state. PMID:26609912

  6. A Synthetic Fibrin-Crosslinking Polymer for Modulating Clot Properties and Inducing Hemostasis

    PubMed Central

    Chan, Leslie W.-G.; Wang, Xu; Wei, Hua; Pozzo, Lilo D.; White, Nathan J.; Pun, Suzie H.

    2015-01-01

    Clotting factor replacement is the standard management of acute bleeding in congenital and acquired bleeding disorders. We present a synthetic approach to hemostasis using an engineered hemostatic polymer (PolySTAT) that circulates innocuously in the blood, identifies sites of vascular injury, and promotes clot formation to stop bleeding. PolySTAT induces hemostasis by crosslinking the fibrin matrix within clots, mimicking the function of the transglutaminase Factor XIII. Furthermore, synthetic PolySTAT binds specifically to fibrin monomers and is uniformly integrated into fibrin fibers during fibrin polymerization, resulting in a fortified, hybrid polymer network with enhanced resistance to enzymatic degradation. In vivo hemostatic activity was confirmed in a rat model of trauma and fluid resuscitation in which intravenous administration of PolySTAT improved survival by reducing blood loss and resuscitation fluid requirements. PolySTAT-induced fibrin crosslinking is a novel approach to hemostasis utilizing synthetic polymers for non-invasive modulation of clot architecture with potentially wide-ranging therapeutic applications. PMID:25739763

  7. Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation

    PubMed Central

    Hunger, Katharina; Schmeling, Nadine; Jeazet, Harold B. Tanh; Janiak, Christoph; Staudt, Claudia; Kleinermanns, Karl

    2012-01-01

    Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs). Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs) with MOFs as additives (fillers) have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first). The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes. PMID:24958427

  8. Synthesis and optical properties of a crosslinkable polymer system containing TCF and TCP chromophores with excellent electro-optic activity and thermal stability

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Bo, Shuhui; Zhen, Zhen; Liu, Xinhou

    2012-10-01

    Crosslinkable polymer with side-chain system was investigated to increase the content of NLO chromophores and improve the stability of oriented chromophores. In this work, a series of crosslinkable copolymers which beared different concentrations of chromophores with the tricyanofurane (TCF) acceptor and a kind of crosslinkable copolymers beared chromophores with dendritic tricyanopyrroline (TCP) acceptor were successfully synthesized and characterized. The crosslinked EO polymers which beared chromophores with the tricyanofurane (TCF) acceptor revealed the highest EO coefficient (r33) of 47.0 pm/V at 1310 nm, which was similar with the r33 of uncrosslinked systems. Compared to the uncrosslinked EO polymer systems, the crosslinked ones exhibited significantly enhanced temporal stability. Keywords: Nonlinear optics; Crosslinkable system; Chromophore-containing copolymers; Side-chain; Crosslinking reaction; Thermally stable polymer

  9. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  10. Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone.

    PubMed

    Wang, Yun; Wang, Enlan; Wu, Ziming; Li, Huan; Zhu, Zhi; Zhu, Xinsheng; Dong, Ying

    2014-01-30

    Chitosan molecularly imprinted polymers (CHI-MIPs) for selective extraction of methandrostenolone (MA) was synthesized by cross-linking of chitosan with epichlorohydrin in the presence of MA as the template molecule. Systematic investigations of the influences of template, functional polymer, cross-linker as well as porogen concentrations on the rebinding capacity of CHI-MIPs were carried out. Adsorption and kinetic binding experiments indicated that the synthesized CHI-MIPs had high adsorption and excellent affinity to MA. Solid-phase extraction (SPE) using the prepared CHI-MIPs as adsorbent was then investigated, and the optimum loading and eluting conditions for SPE of the MA were established. The optimized SPE procedure was used to extract the MA from several spiked samples and a good sample clean-up was obtained with the average recoveries ranged from 95.97 to 101.79%. PMID:24299807

  11. Integrated reactive ion etching to pattern cross-linked hydrophilic polymer structures for protein immobilization

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat; Strickland, Aaron D.; Kim, Il; Malliaras, George G.; Batt, Carl A.

    2007-04-01

    Patterning of cross-linked hydrophilic polymer features using reactive ion etching (RIE) capable of covalently immobilizing proteins has been achieved. Projection photolithography was used to pattern photoresist to create micromolds. Vapor phase molecular self-assembly of polymerizable monolayer in molds allowed covalent binding of hydrogel on surface during free-radical polymerization. Excess hydrogel blanket film was consumed with oxygen RIE resulting into hydrogel pattern of 1μm size aligned to prefabricated silicon oxide structures. Proteins were finally coupled through their primary amine groups selectively to acid functionalized hydrogel features through stable amide linkages using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride and N-hydroxysulfosuccinimide.

  12. Ionic liquids-based crosslinked copolymer sorbents for headspace solid-phase microextraction of polar alcohols.

    PubMed

    Feng, Juanjuan; Sun, Min; Wang, Xusheng; Liu, Xia; Jiang, Shengxiang

    2012-07-01

    Halogen-based polymeric ionic liquid (PIL) fibers, which have proved efficient for solid-phase microextraction (SPME) of polar compounds, were with very limited fiber lifetimes. In this work, a novel crosslinked PIL sorbent with satisfactory stability and durability was prepared in situ via crosslinking polymerization processes on microstructured-silver coated stainless steel wire. 1,1'-(1,6-Hexanediyl)bis(1-vinylimidazolium) bibromide ionic liquid was synthesized and used as the crosslinking agent, with 1-vinyl-3-octylimidazolium bromide as monomer. Extraction properties of the fiber for polar alcohols in polar aqueous matrix were examined using headspace SPME (HS-SPME) coupled to gas chromatography-flame ionization detection (GC-FID). Under the optimized extraction and desorption conditions, the established method exhibited high extraction capacity. Wide linear ranges were obtained with correlation coefficients (R) ranging from 0.9947 to 0.9999. Limits of detection were in the range of 0.5-20 μg L⁻¹. Compared with the non-crosslinked PIL fiber, the proposed crosslinked PIL fiber was with higher thermal stability and durability and longer lifetime. Four different liquor beverages were analyzed as real samples and good results were obtained. PMID:22673810

  13. Flexible solid polymer electrolyte membran formed by photopolymerization

    NASA Astrophysics Data System (ADS)

    Cao, Jinwei; Kyu, Thein

    2014-03-01

    Binary and ternary phase diagrams of poly(ethylene glycol) dimethacrylate (PEGDMA,succinonitrile(SCN), and bis(trifluoromethane)sulfonimide (LiTFSI) blends have been established to provide guidance to fabricationof polymer electrolyte membrane (PEM). The phase diagram of binary PEGDMA/SCN mixture is of a typical eutectic typ, whereas the binary PEGDMA/LiTFSI mixture reveals a eutectic trend exhibiting a wide single phase region at intermediate composition. Likewise, the ternary phase diagram of PEGDMA/SCN/LiTFSI mixture shows a wide isotropic regio. The PEM network, formed by UV-crosslinking of PEGDMA in the isotropic region, is a solid amorphous network, but flexible and stretchable. Ion conductivity of PEMwas measured as a function of temperature at different ratios of PEGDMA/SCN and SCN/LiTFSI. Of particular importance is that these PEM networks possessvery high roo-temperature ion conductivity on the order of 10-3 S cm-1, which reaches the level of 10-2 S cm-1 at elevated temperatures of 60-70 °C. The electrochemical stability of the solid PEM will be evaluated by cyclic voltammetry and its potential applicabilityinflexible lithium ion battery will be discussed.

  14. Diffusivity and Transient Localization of Filler Particles in Polymer Melts and Crosslinked Systems

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    2013-03-01

    Building on recent progress in describing the microscopic equilibrium structure of polymer nanocomposites (PRISM theory), as well as the naïve mode coupling and nonlinear Langevin equation approaches for predicting localization and activated barrier hopping, we have initiated the study of dynamical phenomena in nanocomposites at finite filler loading. A colloidal suspension perspective is adopted whereby the polymer dynamics are assumed to remain unperturbed by fillers. Both entangled polymer melts and crosslinked systems are studied. The long time behavior of a tagged nanoparticle (localization and diffusivity) is calculated for various melt (tube diameter, polymer radius of gyration) and nanoparticle (filler size and volume fraction, polymer-filler attraction strength) parameters. For transiently localized particles, a dynamic free energy is constructed and employed to compute the nanoparticle localization length, mean barrier hopping time, and self-diffusion constant. The influence of filler-filler interactions on the Stokes-Einstein violation phenomenon in entangled melts is established. In addition, the influence of nanocomposite statistical structure (e.g., in the depletion, steric stabilization, or bridging regimes) on slow dynamics and localization is investigated.

  15. Rheology of cross-linked polymers and polymer foams: Theory and experimental results

    NASA Astrophysics Data System (ADS)

    Herman, John N.

    Typical polymers have a time-dependent response to loading which results in stress relaxation or creep. Models using springs/dashpots or Volterra integrals are capable of predicting the material response, but place little or no emphasis on the reasoning behind the response. This research proposes a microscopic reasoning behind polymer chain movement, while developing a model to predict the creep and stress relaxation of a polymer foam. Based on the theorized slip/stick of polymer chains as they slide past each other, this model successfully predicts the behavior of a PMI polymer foam under tensile loads. This model lends insights into polymer microscopic behavior, which may be used for the development of future polymer materials. When possible, industry standard test methods are used to obtain tensile creep and stress relaxation results from rectangular specimens of Rohacell 31 IG foam. A common set of material parameters is fitted to the data, validating the micromechanic reasoning to polymer chain movement. To gain insight into observed test result variability, an investigation of the elastic modulus and material density relationship is performed using nominal foam densities of 31 kg/m3, 51 kg/m3,, 71 kg/m3. Additional testing and modeling is performed to validate the model under load/partial-unload/ hold, load/unload/recovery, and load/instantaneous-unload test cycles. The model successfully captures the observed material nuances during these more complex loading cycles.

  16. Fabrication of Hollow Microporous Carbon Spheres from Hyper-Crosslinked Microporous Polymers.

    PubMed

    Wang, Kewei; Huang, Liang; Razzaque, Shumaila; Jin, Shangbin; Tan, Bien

    2016-06-01

    Porous carbon materials prepared from the porous organic polymers are currently the subject of extensive investigation. On the basis of their interesting applications, it is highly desirable to develop new synthetic methodologies to obtain carbon materials with controllable pore size and morphology. Herein, a facile synthesis of hollow microporous carbon spheres (HCSs) from hollow microporous organic capsules (HMOCs) with a good control over the pore morphology, hollow cavity, and the shell thickness is reported. The highly porous hollow carbon spheres are prepared by the pyrolysis of HMOCs-based microporous polymers. The synthetic parameters, such as hypercrosslinking and pyrolysis conditions, are optimized to modify the porous structures and the properties. The morphology and porosity as well as energy storage applications of the microporous structures HCSs, derived through a combination of divinylbenzene-crosslinking and micropore-generating hypercrosslinking, are discussed. These findings provide a new benchmark for fabricating well-defined HCSs with great promise for various applications. PMID:27145206

  17. Long-term biostability of self-assembling protein polymers in the absence of covalent crosslinking.

    PubMed

    Sallach, Rory E; Cui, Wanxing; Balderrama, Fanor; Martinez, Adam W; Wen, Jing; Haller, Carolyn A; Taylor, Jeannette V; Wright, Elizabeth R; Long, Robert C; Chaikof, Elliot L

    2010-02-01

    Unless chemically crosslinked, matrix proteins, such as collagen or silk, display a limited lifetime in vivo with significant degradation observed over a period of weeks. Likewise, amphiphilic peptides, lipopeptides, or glycolipids that self-assemble through hydrophobic interactions to form thin films, fiber networks, or vesicles do not demonstrate in vivo biostability beyond a few days. We report herein that a self-assembling, recombinant elastin-mimetic triblock copolymer elicited minimal inflammatory response and displayed robust in vivo stability for periods exceeding 1 year, in the absence of either chemical or ionic crosslinking. Specifically, neither a significant inflammatory response nor calcification was observed upon implantation of test materials into the peritoneal cavity or subcutaneous space of a mouse model. Moreover, serial quantitative magnetic resonance imaging, evaluation of pre- and post-explant ultrastructure by cryo-high resolution scanning electron microscopy, and an examination of implant mechanical responses revealed substantial preservation of form, material architecture, and biomechanical properties, providing convincing evidence of a non-chemically or ionically crosslinked protein polymer system that exhibits long-term stability in vivo. PMID:19854505

  18. H2O2-treated actin: assembly and polymer interactions with cross-linking proteins.

    PubMed Central

    DalleDonne, I; Milzani, A; Colombo, R

    1995-01-01

    During inflammation, hydrogen peroxide, produced by polymorphonuclear leukocytes, provokes cell death mainly by disarranging filamentous (polymerized) actin (F-actin). To show the molecular mechanism(s) by which hydrogen peroxide could alter actin dynamics, we analyzed the ability of H2O2-treated actin samples to polymerize as well as the suitability of actin polymers (from oxidized monomers) to interact with cross-linking proteins. H2O2-treated monomeric (globular) actin (G-actin) shows an altered time course of polymerization. The increase in the lag phase and the lowering in both the polymerization rate and the polymerization extent have been evidenced. Furthermore, steady-state actin polymers, from oxidized monomers, are more fragmented than control polymers. This seems to be ascribable to the enhanced fragility of oxidized filaments rather than to the increase in the nucleation activity, which markedly falls. These facts; along with the unsuitability of actin polymers from oxidized monomers to interact with both filamin and alpha-actinin, suggest that hydrogen peroxide influences actin dynamics mainly by changing the F-actin structure. H2O2, via the oxidation of actin thiols (in particular, the sulfhydryl group of Cys-374), likely alters the actin C-terminus, influencing both subunit/subunit interactions and the spatial structure of the binding sites for cross-linking proteins in F-actin. We suggest that most of the effects of hydrogen peroxide on actin could be explained in the light of the "structural connectivity," demonstrated previously in actin. Images FIGURE 3 FIGURE 9 PMID:8599677

  19. Solid-Phase Cross-Linking (SPCL): a new tool for protein structure studies.

    PubMed

    Paramelle, David; Enjalbal, Christine; Amblard, Muriel; Forest, Eric; Heymann, Michaël; Cantel, Sonia; Geourjon, Christophe; Martinez, Jean; Subra, Gilles

    2011-04-01

    A wide range of chemical reagents are available to study the protein-protein interactions or protein structures. After reaction with such chemicals, covalently modified proteins are digested, resulting in shorter peptides that are analyzed by mass spectrometry (MS). Used especially when NMR of X-ray data are lacking, this methodology requires the identification of modified species carrying relevant information, among the unmodified peptides. To overcome the drawbacks of existing methods, we propose a more direct strategy relying on the synthesis of solid-supported cleavable monofunctional reagents and cross-linkers that react with proteins and that selectively release, after protein digestion and washings, the modified peptide fragments ready for MS analysis. Using this Solid-Phase Cross-Linking (SPCL) strategy, only modified sequences are analyzed and consistent data can be easily obtained since the signals of interest are not masked or suppressed by over-represented unmodified materials. PMID:21319301

  20. Strain recovery in dual cross-linked polymer grafted nanoparticle networks

    NASA Astrophysics Data System (ADS)

    v S, Balaji; Yashin, Victor; Salib, Isaac; Kowalewski, Tomasz; Matyjaszewski, Krzystof; Balazs, Anna; Anna Balazs Collaboration; Krzystof Matyjaszewski Collaboration

    2013-03-01

    Via computational modeling, we investigate the mechanism of strain-recovery in dual cross-linked polymer grafted nanoparticle networks. The individual nanoparticles are composed of a rigid core and a corona of grafted polymers that encompass reactive end groups. With the overlap of the coronas on adjacent particles, the reactive end groups form permanent or labile bonds, and thus form a ``dual cross-linked'' network. We consider the strain recovery of the material after it is allowed to relax from the application of the tensile force. We apply multiple cycles of tension and relaxation and determine how the stress-strain curves change in the course of these repetitive deformations. Notably, the existing labile bonds can break and new bonds can form in the course of deformation. Hence, a damaged material could be ``rejuvenated'' both in terms of the recovery of strain and the number of bonds, if the relaxation occurs over a sufficiently long time. We show that this rejuvenation depends on the fraction of permanent bonds, strength of labile bonds, and maximal strain.

  1. Molecular-level modeling of the viscoelasticity of crosslinked polymers: Effect of time and temperature

    SciTech Connect

    Simon, P.P.; Ploehn, H.J.

    1997-05-01

    We present a new molecular-level picture of chain dynamics for describing the viscoelasticity of crosslinked polymers. The associated mathematical model consists of a time-dependent momentum balance on a representative polymer segment in the crosslinked network, plus phenomenological expressions for forces acting on the segments. These include a cohesive force that accounts for intermolecular attraction, an entropic force describing the thermodynamics governing chain conformations, and a frictional force that captures the temperature dependence of relative chain motion. We treat the case of oscillatory uniaxial deformation. Solution of the model equations in the frequency domain yields the dynamic moduli as functions of temperature and frequency. The model reproduces all of the qualitative features of experimental dynamic modulus data across the complete spectrum of time and temperature, spanning the glassy zone, the {beta} transition, the dynamic glass transition, and the rubbery zone. All of the model parameters can be evaluated through the use of independent experimental data. Comparison of model predictions with experimental data yields good quantitative agreement outside of the glass transition region. {copyright} {ital 1997 Society of Rheology.}

  2. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  3. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  4. Ionic polymer metal composite actuators employing irradiation-crosslinked sulfonated poly(styrene-ran-ethylene) as ion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Wang, Xuanlun; Cheng, Tai-Hong; Xu, Liang; Oh, Il-Kwon

    2009-07-01

    Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in moist environments or water. This type of actuators consists of an ionic membrane and noble metal electrodes plated on both surfaces. The ion-exchange membrane, Nafion, remains as the benchmark for a majority of research and development in IPMC technology. In this research, we employed sulfonated poly(styrene-ran-ethylene) (SPSE) that is crosslinked by UV irradiation as a novel ionic membrane. The crosslinking reaction between polymer matrix and crosslinking agent was proved by FTIR analysis. The sulfonic acid groups were stable during the UV irradiation crosslinking process. Water uptake, ion exchange capacity, and sulfonation degree are characterized for both pure SPSE and crosslinked SPSE membrane. The bending responses of SPSE actuators under both direct current (DC) and alternating current (AC) excitations were investigated. The voltage-current behaviors of the actuators under AC excitations are also measured. Results showed the crosslinked SPSE actuators have better electromechanical performance than that of pure SPSE actuator with regard to tip displacement.

  5. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network

    PubMed Central

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-01-01

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246

  6. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  7. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  8. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    PubMed

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  9. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  10. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  11. Solid Polymer Electrolyte Fuel Cell Technology Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  12. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  13. Solid particle erosion of polymers and composites

    NASA Astrophysics Data System (ADS)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  14. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  15. Fluorescent cross-linked supramolecular polymers constructed from a novel self-complementary AABB-type heteromultitopic monomer.

    PubMed

    Fang, Le; Hu, Yuanli; Li, Qiang; Xu, Shutao; Dhinakarank, Manivannan Kalavathi; Gong, Weitao; Ning, Guiling

    2016-04-26

    A novel AABB-type heteromultitopic monomer (), having a self-complementary perpendicular structure, could solely self-assemble to fluorescent cross-linked supramolecular polymers. Interestingly, the supramolecular gel film shows a sensitive fluorescence change on exposure to acid and base vapor, endowing this system with a potential application in gas detection. PMID:27005489

  16. Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...

  17. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    PubMed Central

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2012-01-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal

  18. Construction of monomer-free, highly crosslinked, water-compatible polymers.

    PubMed

    Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W

    2014-12-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. PMID:25248612

  19. Construction of Monomer-free, Highly Crosslinked, Water-compatible Polymers

    PubMed Central

    Dailing, E.A.; Lewis, S.H.; Barros, M.D.; Stansbury, J.W.

    2014-01-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. PMID:25248612

  20. Polymer coating of porcine decellularized and cross-linked aortic grafts.

    PubMed

    Heidenhain, Christoph; Weichert, Wilko; Schmidmaier, Gerhard; Wildemann, Britt; Hein, Moritz; Neuhaus, Peter; Heise, Michael

    2010-07-01

    This article investigates a method of modifying and optimizing the biocompatibility of decellularized vascular bioimplants when treated with a specialized, drug eluting coating. For this purpose, we carried out aortic transplantations using a porcine model. Decellularized, cross-linked aortic grafts were coated with poly(D,L-lactide) (PDLLA). To this coating, we added the anticoagulant drug lepirudin which, following transplantation, would be linearly eluted. These aortic grafts are easily manipulated in surgery. It was shown that, as a result of the lepirudin-eluting coating, the rate of thrombogenesis was reduced and the patency rate was significantly improved. However, lumen-stenosing pseudointima developed in all of the transplants and was not effected by PDLLA coating. Furthermore, no evidence of recellularisation was documented. This trial demonstrates that polymer coating of decellularized tissue is possible. Neointimal hyperplasia and the absence of cellular repopulation mark the negative consequences of this concept. PMID:20524202

  1. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions.

    PubMed

    Ube, Toru; Ikeda, Tomiki

    2014-09-22

    Crosslinked liquid-crystalline polymer materials that macroscopically deform when irradiated with light have been extensively studied in the past decade because of their potential in various applications, such as microactuators and microfluidic devices. The basic motions of these materials are contraction-expansion and bending-unbending, which are observed mainly in polysiloxanes and polyacrylates that contain photochromic moieties. Other sophisticated motions such as twisting, oscillation, rotation, and translational motion have also been achieved. In recent years, efforts have been made to improve the photoresponsive and mechanical properties of this novel class of materials through the modification of molecular structures, development of new fabrication methods, and construction of composite structures. Herein, we review structures, functions, and working mechanisms of photomobile materials and recent advances in this field. PMID:25196371

  2. Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromatography.

    PubMed

    Perrier-Cornet, R; Héroguez, V; Thienpont, A; Babot, O; Toupance, T

    2008-01-25

    Highly crosslinked functional polymer particles with narrow size distribution have been produced by precipitation copolymerization of divinylbenzene, ethylene glycol dimethacrylate and vinylbenzyl chloride using a simple reflux protocol. After establishing the satisfactory synthesis conditions, we produced uniform chlorobenzyl particles with different size depending on the polymerization times. The porosity of those particles was modulated from microporous to mesoporous structure by using various porogens such as toluene, dodecanol, cyclohexanol and polypropylene glycol. These particles were tested as stationary phase in high-performance liquid chromatography for the separation of polycyclic aromatic hydrocarbons in reversed-phase mode. The separation was observed even for elution 100% organic (methanol) without any participation of water fraction in the eluent composition. The influences of particles size, specific surface area and packing conditions on the separation behavior were investigated. PMID:17936766

  3. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  4. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  5. Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution.

    PubMed

    Udoetok, Inimfon A; Dimmick, Raquel M; Wilson, Lee D; Headley, John V

    2016-01-20

    Cellulose was cross-linked with epichlorohydrin (EP) at variable levels (CLE-0.5, CLE-2 and CLE-4), where CLE-i denotes the cellulose to EP mole ratios. The cross-linked products were characterized by TGA and FT-IR spectroscopy, pH at the point of zero charge (pHpzc), water swelling, and dye-adsorption methods employing two types of dyes [phenolphthalein (phth) and p-nitrophenol (PNP)]. The characterization methods provide evidence of cross-linking of cellulose in accordance with variations in surface area, PZC, available surface hydroxyl groups, and thermal stability when compared against pristine cellulose. The pHpzc of the sorbent materials was ∼ 6.5 indicating a negative surface charge occurs above pHpzc. The cross-linked polymers possess greater swelling properties relative to pristine cellulose. Detailed adsorption studies were carried out at pH 9 for cellulose and CLE-i with five types single component carboxylate anions [2-hexyldecanoic acid (S1), trans-4-pentylcyclohexanecarboxylic acid (S2), 2-dicyclohexylacetic acid (S3), adamantane carboxylic acid (S4), and cyclohexane carboxylic acid (S5)] at 295 K. The uptake properties of PNP with cellulose and CLE-i were also compared at pH 5 and 9, respectively. CLE-2 had the highest uptake of PNP (Qm=1.22 × 10(-1)mmol/g, pH 9) and S1 (Qm=4.27 mg/g) while cellulose and CLE-4 had the strongest binding affinity (1.43 L/mmol and 5.90 × 10(-2)L/mg), respectively. Uptake of PNP by CLE-0.5 at pH 5 (Q m=5.30 × 10(-2)mmol/g) was higher than uptake at pH 9 (Qm=3.11 × 10(-2)mmol/g). Sorption of CLE-4 with S1, S2 and S3 showed that relative uptake of the surrogates had the following order: S3>S2>S1, where S2 had the strongest binding affinity to CLE-i. CLE-2 had the highest sorption capacity towards Si in an equimolar mixture with evidence of molecular selective uptake. At pH 9, low uptake was mainly related to electrostatic repulsion between the negatively charged sorbent surface and the carboxylate head groups of Si

  6. Ionically Crosslinked Polymer Networks for Underwater Adhesion and Long-Term Controlled Release

    NASA Astrophysics Data System (ADS)

    Lawrence, Patrick G.

    Underwater adhesives have several potential applications in industry as well as in medicine. Much of the recent research in this area has focused on adhesive preparation from biological or custom-designed biomimetic polymers. As a simpler alternative, we have recently shown that ionically crosslinked, gel-like underwater adhesive complexes can be prepared by the mixing of the readily-available and inexpensive polyelectrolyte, poly(allylamine hydrochloride) (PAH), with commonly-used multivalent anions, pyrophosphate (PPi) and tripolyphosphate (TPP). Remarkably, these gel-like complexes adhere to both hydrophilic and hydrophobic substrates under water with tensile adhesive strength considerably greater than that of Scotch Permanent Double Sided Tape (up to ˜400 kPa vs. ˜85 kPa when used as a pressure-sensitive adhesives) and due to the reversible nature of the ionic crosslinks, self-heal when torn. These complexes also exhibit very high storage moduli (greater than 100 kPa), indicative of a very high crosslink density. The high crosslink density allow these gel-like complexes to also entrap and deliver small molecule payloads over multiple-month timescales. Moreover, their formation and rheological/adhesion properties can be controlled using external stimuli (pH and ionic strength). In this thesis we characterize formation and rheological/adhesion properties of gel-like PAH/PPi and PAH/TPP complexes the through the use of dynamic and electrophoretic light scattering, rheology and tensile adhesion tests. We also describe their sensitivity to pH and ionic strength, and explain how the complexes can be dissolved on demand by raising or lowering the ambient pH, and can form spontaneously by increasing the NaCl concentration (which can be used for developing injectable underwater adhesive formulations). Finally, we demonstrate the ability of these adhesives to release small molecule payloads over multiple-month timescales by characterizing their ability to take up and

  7. The shape memory effect in crosslinked polymers: effects of polymer chemistry and network architecture

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Li, Yali; Goulbourne, N. C.

    2013-04-01

    The thermal shape memory effect in polymeric materials refers to the ability of a sample to retain a deformed shape when cooled below Tg, and then recover its initial shape when subsequently heated. Although these properties are thought to be related to temperature-dependent changes in network structure and polymer chain mobility, a consistent picture of the molecular mechanisms which determine shape memory behavior does not exist. This, along with large differences in the shape memory cycling response for different materials, has made model development and specific property optimization difficult. In this work we use coarse-grained molecular dynamics (MD) simulations of the thermal shape memory effect to inform micro-macro relationships and systematically identify the salient features leading to desirable shape behavior. We consider a simulation test set including chains with increasing levels of the microscopic restrictions on chain motion (the freely-jointed, freely-rotating, and rotational isomeric state chain models), each simulated with both the NPT and NVT ensembles. It is found that the NPT ensemble with attractive interactions between monomers enabled is the most appropriate for simulating the temperature-dependent mechanical behavior of a polymer using coarse-grained MD. Of the different models, the freely-jointed chain system shows the most desirable shape memory characteristics; this behavior is attributed to the ability of the particles in this system to pack closely together in an energetically favorable configuration. A comparison with experimental data demonstrates that the coarse-grained simulations display all of the relevant trends in mechanical behavior during constant strain shape memory cycling. We conclude that atomistic detail is not needed to represent a shape memory polymer, and that multi-scale modeling techniques may build on the mechanisms embodied in the simple coarse-grained model.

  8. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    PubMed

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. PMID:26896916

  9. Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-based crosslinked composite polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Anis, Arfat; Banthia, A. K.; Bandyopadhyay, S.

    Polymer electrolyte membrane fuel cells (PEMFCs) are very promising as future energy source due to their high-energy conversion efficiency and will help to solve the environmental concerns of energy production. Polymer electrolyte membrane (PEM) is recognised as the key element for an efficient PEMFC. Chemically crosslinked composite membranes consisting of a poly(vinyl alcohol-co-vinyl acetate-co-itaconic acid) (PVACO) and phosphomolybdic acid (PMA) have been prepared by solution casting and evaluated as proton conducting polymer electrolytes. The proton conductivity of the membranes is investigated as a function of PMA composition, crosslinking density and temperature. The membranes have also been characterized by FTIR spectroscopy, TGA, AFM and TEM. The proton conductivity of the composite membranes is of the order of 10 -3 S cm -1 and shows better resistance to methanol permeability than Nafion 117 under similar measurement conditions.

  10. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  11. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  12. Effect of reactive species on surface crosslinking of plasma-treated polymers investigated by surface force microscopy

    SciTech Connect

    Tajima, S.; Komvopoulos, K.

    2006-09-18

    Polymer surface modification by ions, uncharged particles, and photons of inductively coupled Ar plasma was investigated with a surface force microscope. Optical windows consisting of crystals with different cutoff wavelengths and a metal shield were used to deconvolute the effects of the various plasma species on the modification of the surface nanomechanical properties of polyethylene. The extent of surface crosslinking was related to the frictional energy dissipated during nanoscratching. It is shown that surface crosslinking is primarily due to the simultaneous effects of uncharged particles and vacuum ultraviolet photons, while the ion bombardment effect is secondary.

  13. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    NASA Astrophysics Data System (ADS)

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2015-09-01

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10-4 S cm-1 at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  14. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    SciTech Connect

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  15. Prediction of crosslink density of solid propellant binders. [curing of elastomers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.

    1976-01-01

    A quantitative theory is outlined which allows calculation of crosslink density of solid propellant binders from a small number of predetermined parameters such as the binder composition, the functionality distributions of the ingredients, and the extent of the curing reaction. The parameter which is partly dependent on process conditions is the extent of reaction. The proposed theoretical model is verified by independent measurement of effective chain concentration and sol and gel fractions in simple compositions prepared from model compounds. The model is shown to correlate tensile data with composition in the case of urethane-cured polyether and certain solid propellants. A formula for the branching coefficient is provided according to which if one knows the functionality distributions of the ingredients and the corresponding equivalent weights and can measure or predict the extent of reaction, he can calculate the branching coefficient of such a system for any desired composition.

  16. AIE-Active Tetraphenylethylene Cross-Linked N-Isopropylacrylamide Polymer: A Long-Term Fluorescent Cellular Tracker.

    PubMed

    Ma, Hengchang; Qi, Chunxuan; Cheng, Chao; Yang, Zengming; Cao, Haiying; Yang, Zhiwang; Tong, Jinhui; Yao, Xiaoqiang; Lei, Ziqiang

    2016-04-01

    There is a great demand to understand cell transplantation, migration, division, fusion, and lysis. Correspondingly, illuminant object-labeled bioprobes have been employed as long-term cellular tracers, which could provide valuable insights into detecting these biological processes. In this work, we designed and synthesized a fluorescent polymer, which was comprised of hydrophilic N-isopropylacrylamide polymers as matrix and a hydrophobic tetraphenylethene (TPE) unit as AIE-active cross-linkers (DDBV). It was found that when the feed molar ratio of N-isopropylacrylamides to cross-linkers was 22:1, the produced polymers demonstrated the desirable LCST at 37.5 °C. And also, the temperature sensitivity of polymers could induce phase transfer within a narrow window (32-38 °C). Meanwhile, phase transfer was able to lead the florescent response. And thus, we concluded that two responses occur when one stimulus is input. Therefore, the new cross-linker of DDBV rendered a new performance from PNIPAm and a new chance to create new materials. Moreover, the resulted polymers demonstrated very good biocompatibility with living A549 human lung adenocarcinoma cells and L929 mouse fibroblast cells, respectively. Both of these cells retained very active viabilities in the concentration range of 7.8-125 μL/mg of polymers. Notably, P[(NIPAm)22-(DDBV)1] (P6) could be readily internalized by living cells with a noninvasive manner. The cellular staining by the fluorescent polymer is so indelible that it enables cell tracing for at least 10 passages. PMID:26966832

  17. Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers.

    PubMed

    Yu, C; Mosbach, K

    2000-08-01

    A series of experiments were conducted to investigate elements which affect the enantiomeric recognition properties of molecularly imprinted polymers (MIPs) in the HPLC mode. Our results show that the recognition properties of MIPs are greatly influenced by the mobile phase used. For a polymer prepared in acetonitrile, a good enantiomeric separation was observed when acetonitrile-based mobile phase was used, when the mobile phase was changed to chloroform-based, no enantiomeric recognition was observed although the sample molecule was retarded. This indicates that the specific co-operative binding interactions between the functional groups at the imprinted polymer's recognition sites and the sample molecule were considerably disrupted and only non-specific interactions remained. When the mobile phase was changed back to acetonitrile-based, the recognition was regained. In contrast, for polymers prepared in chloroform, chloroform-based mobile phase gave much better separation than acetonitrile-based mobile phase. When other solvents were tested, significant solvent effects were generally observed. Based on these observations, the recognition properties of the methacrylic acid (MAA)-co-ethylene glycol dimethacrylate (EGDMA) polymers were reinvestigated, and the results show that by simply using an optimised mobile phase system, significantly improved recognition over previously reported results was observed. For a polymer made against Cbz-L-Trp, 100 microg of Cbz-D,L-Trp was separated with a separation factor (alpha) of 4.23 and a resolution (Rs) of 3.87, whereas in the previous report, 10 microg of Cbz-D,L-Trp was only separated with alpha = 1.67 and Rs = 0.1. It is generally realised that the imprinted polymer's recognition property is also very much influenced by the nature of the polymer network. It was shown that the recognition decreased with a decrease in the apparent degree of cross-linking (molar percentage of cross-linker in the polymerisation mixture

  18. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  19. Nonlinear viscoelasticity and relaxation phenomena of polymer solids

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.; Valanis, K. C.

    1977-01-01

    In the light of a three-chain model of statistical network theories of rubberlike elastic models, it is assumed that the free energy function of incompressible viscoelastic polymer solids is a separable, symmetric function of the principle stretch ratios and the hidden thermodynamic coordinates along the same directions. This assumption leads to a characterization of those viscoelastic polymer solids which exhibit the property of factorizability between the time and strain functions.

  20. On the Influence of Crosslinker on Template Complexation in Molecularly Imprinted Polymers: A Computational Study of Prepolymerization Mixture Events with Correlations to Template-Polymer Recognition Behavior and NMR Spectroscopic Studies

    PubMed Central

    Shoravi, Siamak; Olsson, Gustaf D.; Karlsson, Björn C. G.; Nicholls, Ian A.

    2014-01-01

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer–crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity. PMID:24927149

  1. [Preparation of a novel polymer monolith using atom transfer radical polymerization method for solid phase extraction].

    PubMed

    Shen, Ying; Qi, Li; Qiao, Juan; Mao, Lanqun; Chen, Yi

    2013-04-01

    In this study, a novel polymer monolith based solid phase extraction (SPE) material has been prepared by two-step atom transfer radical polymerization (ATRP) method. Firstly, employing ethylene glycol dimethacrylate (EDMA) as a cross-linker, a polymer monolith filled in a filter head has been in-situ prepared quickly under mild conditions. Then, the activators generated by electron transfer ATRP (ARGET ATRP) was used for the modification of poly(2-(dimethylamino)ethyl-methacrylate) (PDMAEMA) on the monolithic surface. Finally, this synthesized monolith for SPE was successfully applied in the extraction and enrichment of steroids. The results revealed that ATRP can be developed as a facile and effective method with mild reaction conditions for monolith construction and has the potential for preparing monolith in diverse devices. PMID:23898628

  2. Preparation and characterization of light-switchable polymer networks attached to solid substrates.

    PubMed

    Schenderlein, Helge; Voss, Agnieszka; Stark, Robert W; Biesalski, Markus

    2013-04-01

    Surface-attached polymer networks that carry light-responsive nitrospiropyran groups in a hydrophilic PDMAA matrix were prepared on planar silicon and glass surfaces and were characterized with respect to their switching behavior under the influence of an external light trigger. Functional polymers bearing light-responsive units as well as photo-cross-linkable benzophenone groups were first synthesized using free radical copolymerization. The number of spiropyran groups in the copolymer was controlled by adjusting the concentration of the respective monomer in the copolymerization feed. The polymer films were prepared by spin-coating the functional polymers from solution and by ultraviolet light (UV)-induced cross-linking utilizing benzophenone photochemistry. On substrates with immobilized benzophenone groups, the complete polymer network is linked to the surface. The dry thickness of the films can be controlled over a wide range from a few nanometers up to more than 1 μm. The integration of such light-switchable organic moieties into a surface-attached polymer network allows one to increase the overall number of light-responsive groups per surface area by adjusting the amount of surface-attached polymer networks. The spiropyran's function in dry (solvent-free) and swollen polymer films can be reversibly switched by UV and visible irradiation. In addition, the switching in water is faster than in the dry state. Therefore, implementing light-responsive spiropyran functions in polymer films linked to solid surfaces could allow for switching of the chemical and optical surface properties in a fast and spatially controlled fashion. PMID:23461870

  3. Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules.

    PubMed

    Lawrence, Patrick G; Patil, Pritam S; Leipzig, Nic D; Lapitsky, Yakov

    2016-02-01

    Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants). PMID:26811936

  4. Photoinduced bending behavior of cross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone.

    PubMed

    Lv, Jiu-an; Wang, Weiru; Xu, Jixiang; Ikeda, Tomiki; Yu, Yanlei

    2014-07-01

    Cross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation. PMID:24771514

  5. Optimization of β-cyclodextrin cross-linked polymer for monitoring of quercetin

    NASA Astrophysics Data System (ADS)

    Zhu, Xiashi; Ping, Wenhui

    2014-11-01

    A novel method for the separation/analysis of quercetin was described, which was based on the investigation of the inclusion interactions of β-cyclodextrin cross-linked polymer (β-CDCP) with quercetin (Qu) and the adsorption behavior of Qu on β-CDCP. The inclusion interaction of β-CDCP with Qu was studied through FTIR, TGA and 13C NMR. Under the optimum conditions, the preconcentration factor of the proposed method was approximately 8.8, the β-CDCP could be used repeatedly for 30 times and offered better recovery. The linear range, limit of detection (LOD) and the relative standard deviation (RSD) was found to be 0.10-12.0 μg mL-1, 4.6 ng mL-1 and 3.10% (n = 3, c = 2.0 μg mL-1) respectively. This technique had been successfully applied to the determination of Qu in real samples.

  6. High internal quantum efficiency in fullerene solar cells based on crosslinked polymer donor networks

    PubMed Central

    Liu, Bo; Png, Rui-Qi; Zhao, Li-Hong; Chua, Lay-Lay; Friend, Richard H.; Ho, Peter K.H.

    2012-01-01

    The power conversion efficiency of organic photovoltaic cells depends crucially on the morphology of their donor–acceptor heterostructure. Although tremendous progress has been made to develop new materials that better cover the solar spectrum, this heterostructure is still formed by a primitive spontaneous demixing that is rather sensitive to processing and hence difficult to realize consistently over large areas. Here we report that the desired interpenetrating heterostructure with built-in phase contiguity can be fabricated by acceptor doping into a lightly crosslinked polymer donor network. The resultant nanotemplated network is highly reproducible and resilient to phase coarsening. For the regioregular poly(3-hexylthiophene):phenyl-C61-butyrate methyl ester donor–acceptor model system, we obtained 20% improvement in power conversion efficiency over conventional demixed biblend devices. We reached very high internal quantum efficiencies of up to 0.9 electron per photon at zero bias, over an unprecedentedly wide composition space. Detailed analysis of the power conversion, power absorbed and internal quantum efficiency landscapes reveals the separate contributions of optical interference and donor–acceptor morphology effects. PMID:23271655

  7. Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis

    SciTech Connect

    Xie, Zhigang; Wang, Cheng; deKrafft, Kathryn E.; Lin, Wenbin

    2011-02-23

    Porous cross-linked polymers (PCPs) with phosphorescent [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} building blocks were obtained via octacarbonyldicobalt (Co₂(CO)₈)-catalyzed alkyne trimerization reactions. The resultant Ru- and Ir-PCPs exhibited high porosity with specific surface areas of 1348 and 1547 m²/g, respectively. They are thermally stable at up to 350 °C in air and do not dissolve or decompose in all solvents tested, including concentrated hydrochloric acid. The photoactive PCPs were shown to be highly effective, recyclable, and reusable heterogeneous photocatalysts for aza-Henry reactions, α-arylation of bromomalonate, and oxyamination of an aldehyde, with catalytic activities comparable to those of the homogeneous [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} photocatalysts. This work highlights the potential of developing photoactive PCPs as highly stable, molecularly tunable, and recyclable and reusable heterogeneous photocatalysts for a variety of important organic transformations.

  8. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I.; Pino, Gustavo A.; Ferrero, Juan C.; Rossa, Maximiliano

    2016-04-01

    This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  9. Plasticization and crosslinking effects of acetone-formaldehyde and tannin resins on wheat protein-based natural polymers.

    PubMed

    Zhang, Xiaoqing; Do, My Dieu

    2009-07-01

    Efficient plasticization and sufficient crosslinking were achieved by using an acetone-formaldehyde (AF) resin as an additive in the thermal processing of wheat protein-based natural polymers. The mobile AF resin and its strong intermolecular interactions with a wheat protein matrix produced sufficient flexibility for the plastics, while the covalent bonds formed between AF and the protein chains also caused the water-soluble resin to be retained in the materials under wet conditions. The mechanical properties of the materials were also enhanced as an additional benefit due to the formation of crosslinked networks through the polymer matrix. Tensile strength was further enhanced when using AF in conjunction with tannin resin (AFTR) in the systems as rigid aromatic structures were formed in the crosslinking segments. Different components in wheat proteins (WPs) or wheat gluten (WG) (e.g., proteins, residual starch and lipids) displayed different capabilities in interaction and reaction with the AFTR additives, and thus resulted in different performances when the ratio of these components varied in the materials. The application of the AFTR additives provides a feasible methodology to thermally process wheat protein-based natural polymers with improved mechanical performance and water-resistant properties. PMID:19447383

  10. New Solid Polymer Electrolytes for Improved Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  11. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes

    SciTech Connect

    Tenhaeff, Wyatt E; Yu, Xiang; Hong, Kunlun; Perry, Kelly A; Dudney, Nancy J

    2011-01-01

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO{sub 4} salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  12. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  13. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state NMR.

    PubMed

    Zhang, Rongchun; Yu, Shen; Chen, Shengli; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Li, Baohui; Ding, Datong

    2014-01-30

    Polyurethane material is widely utilized in industry and daily life due to its versatile chemistry and relatively easy handling. Here, we focused on a novel thermally reversible cross-linked polyurethane with comprehensive remarkable mechanical properties as reported in our recent work (Adv. Mater. 2013, 25, 4912). The microphase-separated structure and heterogeneous segmental dynamics were well revealed by T2 relaxometry experiments, which was also first utilized to in situ monitor the reversible cross-linking associated with Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions. On the basis of T2 relaxometry results, we determined the actual temperature of the (R)DA reaction as well as the corresponding activation energies of the motion of soft segments. Besides, the roles of the temperature and cross-linker contents on the microdomain structure and dynamics are discussed in detail. It is found that the microphase separation is enhanced by the increase of temperature as well as the incorporation of cross-linkers. Also, the polyurethane samples are still thermal-stable even at a high temperature beyond the disassociation of the cross-linkages. Furthermore, Baum-Pines and three-pulse multiple-quantum NMR experiments are utilized to investigate the heterogeneous structures and dynamics of the mobile and rigid segments, respectively. Both the results obtained from the T2 relaxometry and multiple-quantum NMR experiments are in good agreement with the macroscopic mechanical properties of the polyurethane. Finally, it is also well demonstrated that proton T2 relaxometry combined with multiple-quantum NMR is a powerful method to study the heterogeneous structures and dynamics of a multiphase polymer system. PMID:24400980

  14. Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Won Hyo; Lee, Kang Hyuck; Shin, Dong Won; Hwang, Doo Sung; Kang, Na Rae; Cho, Doo Hee; Kim, Ji Hoon; Lee, Young Moo

    2015-05-01

    End-group crosslinkable sulfonated poly(arylene ether sulfone) copolymer (ESPAES) and imidazolium poly(arylene ether sulfone) copolymer (IPAES) are synthesized as a proton exchange membrane and ionic crosslinker, respectively. A novel dually cross-linked membrane (DCM) based on ESPAES is similar to an inter-penetrating network and is prepared via blending IPAES and thermal treatment for direct methanol fuel cell (DMFC) applications. The synergistic effects of end-group crosslinking and ionic crosslinking improve chemical and thermal stability and mechanical properties. In addition, the DMFC performance of the DCM outperforms that of the end-group cross-linked SPAES and Nafion® 212 due to its excellent fuel barrier property in spite of relatively low proton conductivity, which is derived from the content of the non-proton conducting IPAES copolymer. Consequently, the DCM has great potential as an electrolyte membrane for DMFC applications.

  15. Solid polymer electrolytes for rechargeable batteries. Final report

    SciTech Connect

    Narang, S.C.; Ventura, S.C.

    1992-02-01

    SRI International has synthesized and tested new, dimensionally stable polymer electrolytes for high energy density rechargeable lithium batteries. We have prepared semi-interpenetrating networks of sulfur-substituted polyethyleneoxide with tetmethylorthosilicate (TEOS). The in situ hydrolysis of TEOS produces a mechanically stable three-dimensional network that entangles the polymer electrolytes and makes the film dimensionally flexible and stable. With this approach, the best dimensionally stable polymer electrolyte of this type produced so far, has a room temperature lithium ion conductivity of 7.5 {times} 10{sup {minus}4} S cm{sup {minus}1}. Another type of solid polymer electrolytes, polydiacetylene-based single-ion conductors with high room temperature proton conductivity were also developed. The best conductivity of these polymers is two orders of magnitude higher than that of Nafion under comparable experimental conditions. With further appropriate chemical modification, the new polymers could be used in fuel cells.

  16. Removal of highly crosslinked resists and hybrid polymers for single micro parts fabrication and nanoimprint stamp rework

    NASA Astrophysics Data System (ADS)

    Voigt, Anja; Engelke, Rainer; Ahrens, Gisela; Bullerjahn, Franziska; Schleunitz, Arne; Klein, Jan J.; Grützner, Gabi

    2014-03-01

    Thick photoresists, e.g. up to 1 mm layer thickness, are widely used for the manufacture of high aspect ratio microstructures, e.g. as mould for the fabrication of metallic micro parts. Such resists or materials exhibit high mechanical and chemical stability to non-deformably withstand a pattern transfer process, e.g. by electroplating. After the pattern transfer a solvent based removal is difficult or not possible in many cases. A selective mould removal - without the damage of electroplated metal structures - is required for the fabrication of single micro parts. As second application example UV curable and strongly crosslinkable inorganic-organic hybrid polymers such as OrmoComp ® and OrmoStamp ® are used in UV moulding. The cleaning and rework of these moulds or also of stamps for nanoimprint lithography (NIL) is a challenging task with increasing importance. The life time of an expensive master mould or stamp as well as of the replicated working stamps is important, and therefore the ability to rework such stamps without any defect or decreased resolution. Hence, we demonstrate the application of a plasma-assisted removal using the STP 2020 etching tool from MUEGGE [1] for remote dry etching of strongly crosslinked materials, i.e. the development of processes for the isotropical etching of highly crosslinked photoresists and hybrid polymer materials will be presented. In combination with this specific etching tool this technique shows a high potential to make plasma-assisted removal ready for industrial production.

  17. Solid polymer battery electrolyte and reactive metal-water battery

    DOEpatents

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  18. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOEpatents

    Skotheim, Terje A.; Lee, Hung S.; Okamoto, Yoshiyuki

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  19. Silicone oil emulsions stabilized by polymers and solid particles.

    PubMed

    Kawaguchi, Masami

    2016-07-01

    Silicone oil emulsions stabilized by various emulsifiers such as polymers, solid particles alone, and solid particles with pre-adsorbed surfactants or polymers are reviewed, focusing on their emulsion stability and rheological properties as a function of the emulsifier concentration. An increase in the concentration of the emulsifier leads to a decrease in the droplet size and an increase in the emulsion stability, irrespective of the emulsifier. Moreover, the overlapping concentration of polymer can be regarded as a criterion for the preparation of emulsions using polymeric emulsifiers. Changes in the emulsion stability and rheological responses of the emulsions prepared by the solid particles with pre-adsorbed polymers are discussed in terms of the amounts of the emulsifiers adsorbed. For emulsions prepared from hydrophilic silica particles with pre-adsorbed polymers, a decrease in the droplet size of an order of magnitude can be controlled by an increase in the concentration of polymer, whereas hydrophilic silica particles alone cannot produce stable silicone oil emulsions. PMID:26170165

  20. Solid Rocket Fuel Constitutive Theory and Polymer Cure

    NASA Technical Reports Server (NTRS)

    Ream, Robert

    2006-01-01

    Solid Rocket Fuel is a complex composite material for which no general constitutive theory, based on first principles, has been developed. One of the principles such a relation would depend on is the morphology of the binder. A theory of polymer curing is required to determine this morphology. During work on such a theory an algorithm was developed for counting the number of ways a polymer chain could assemble. The methods used to develop and check this algorithm led to an analytic solution to the problem. This solution is used in a probability distribution function which characterizes the morphology of the polymer.

  1. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  2. Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2015-11-10

    Interfacial polymerization of tri- and bifunctional monomers (A3B2 polymerization) is investigated by dissipative particle dynamics to reveal an effect of cross-linking on the reaction kinetics and structure of the growing polymer film. Regardless of the comonomer reactivity and miscibility, the kinetics in an initially bilayer melt passes from the reaction to diffusion control. Within the crossover period, branched macromolecules undergo gelation, which drastically changes the scenario of the polymerization process. Comparison with the previously studied linear interfacial polymerization (Berezkin, A. V.; Kudryavtsev, Y. V. Linear Interfacial Polymerization: Theory and Simulations with Dissipative Particle Dynamics J. Chem. Phys. 2014, 141, 194906) shows similar conversion rates but very different product characteristics. Cross-linked polymer films are markedly heterogeneous in density, their average polymerization degree grows with the comonomer miscibility, and end groups are mostly trapped deeply in the film core. Products of linear interfacial polymerization demonstrate opposite trends as they are spontaneously homogenized by a convective flow of macromolecules expelled from the reactive zone to the film periphery, which we call the reactive extrusion effect and which is hampered in branched polymerization. Influence of the comonomer architecture on the polymer film characteristics could be used in various practical applications of interfacial polymerization, such as fabrication of membranes, micro- and nanocapsules and 3D printing. PMID:26471239

  3. [Preparation and application of solid phase extraction packing of zirconia microsphere coated with sulfonated crosslinked polystyrene].

    PubMed

    Shen, Shuchang; Liu, Yuhui; Xiao, Xiaoxing

    2013-08-01

    Zirconia microsphere was prepared by polymerization-induced colloid aggregation (PICA) method and carbon-carbon double bond was grafted onto its surface by titanic acid ester coupling reagent. Poly(styrene-divinylbenzene) was synthesized by free radical polymerization by using styrene, divinylbenzene and carbon-carbon double bond on the microsphere surface in solution system, so the polymer was coated on the microsphere surface. After the benzene ring of the polymer was sulfonated, the cation exchange packing for solid phase extraction (SPE) was obtained. The material was characterized by Fourier transform infrared spectroscopy, scanning electron microscope and X-ray energy dispersive spectroscopy. Three herbicides of mesotrione, atrazine and acetochlor in water were determined by the SPE cartridge coupled with high performance liquid chromatography (HPLC). In the range of 0.5 - 3.0 mg/L, the relationships between the peak areas and mass concentrations of mesotrione, atrazine and acetochlor were linear with the correlation coefficients of 0.9936, 0.9925, 0.9919, respectively. The limits of detection were 5.41, 6.72 and 13.4 microg/L for mesotrione, atrazine and acetochlor, respectively. The results showed that the zirconium dioxide microspheres coated with polymer have diameters in the range of about 6 to 8 microm, the SPE cartridges of which have high adsorption rate for the targets. PMID:24369611

  4. Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers

    SciTech Connect

    Hammer, Brenton A. G.; Bokel, Felicia A.; Hayward, Ryan C.; Emrick, Todd

    2011-09-27

    A series of poly(3-hexyl thiophene) (P3HT)-based diblock copolymers were prepared and examined in solution for their assembly into fibrils, and post-assembly cross-linking into robust nanowire structures. P3HT-b-poly(3-methanol thiophene) (P3MT), and P3HT-b-poly(3-aminopropyloxymethyl thiophene) (P3AmT) diblock copolymers were synthesized using Grignard metathesis (GRIM) polymerization. Fibrils formed from solution assembly of these copolymers are thus decorated with hydroxyl and amine functionality, and cross-linking is achieved by reaction of diisocyanates with the hydroxyl and amine groups. A variety of cross-linked structures, characterized by transmission electron microscopy (TEM), were produced by this method, including dense fibrillar sheets, fibril bundles, or predominately individual fibrils, depending on the chosen reaction conditions. In solution, the cross-linked fibrils maintained their characteristic vibronic structure in solvents that would normally disrupt (dissolve) the structures.

  5. Elastin-Mimetic Protein Polymers Capable of Physical and Chemical Crosslinking

    PubMed Central

    Sallach, Rory E.; Cui, Wanxing; Wen, Jing; Martinez, Adam; Conticello, Vincent P.; Chaikof, Elliot L.

    2008-01-01

    We report the synthesis of a new class of recombinant elastin-mimetic triblock copolymer capable of both physical and chemical crosslinking. These investigations were motivated by a desire to capture features unique to both physical and chemical crosslinking schemes so as to exert optimal control over a wide range of potential properties afforded by protein-based mutiblock materials. We postulated that by chemically locking a multiblock protein assembly in place, functional responses that are linked to specific domain structures and morphologies may be preserved over a broader range of loading conditions that would otherwise disrupt microphase structure solely stabilized by physical crosslinking. Specifically, elastic modulus was enhanced and creep strain reduced through the addition of chemical crosslinking sites. Additionally, we have demonstrated excellent in vivo biocompatibility of glutaraldehyde treated multiblock systems. PMID:18954902

  6. Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk.

    PubMed

    Lata, Kiran; Sharma, Rajan; Naik, Laxmana; Rajput, Y S; Mann, Bimlesh

    2015-10-01

    Molecular imprinted polymer (MIP) against cephalexin was synthesized by co-polymerization of functional monomer, cross-linker, radical initiator, along with target molecule (cephalexin) in a porogenic material. Binding of cephalexin towards prepared MIP was studied in different solvents (water, methanol, 1M NaCl, acetone and acetonitrile) and best binding was observed in methanol. Partition coefficient and selectivity of prepared imprint and non-imprint was also studied. Cross reactivity in terms of binding efficiency was also assessed with other antibiotics. Chromatographic study of MIP was carried out by packing prepared imprint into glass column. MIP was used as matrix in solid phase extraction (SPE) for recovery of cephalexin from spiked milk samples for further estimation by high performance liquid chromatography. No interference was observed from milk components after elution of cephalexin from MIP, indicating selectivity and affinity of MIP. On the other hand, interference was observed in eluate obtained from C18 SPE column. PMID:25872441

  7. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng.

    PubMed

    Ji, Wenhua; Xie, Hongkai; Zhou, Jie; Wang, Xiao; Ma, Xiuli; Huang, Luqi

    2016-01-01

    Specific molecularly imprinted polymers for dencichine were developed for the first time in this study by the bulk polymerization using phenylpyruvic acid and dl-tyrosine as multi-templates. The photographs confirmed that molecularly imprinted polymers prepared using N,N'-methylene diacrylamide as cross-linker and glycol dimethyl ether as porogen displayed excellent hydrophilicity. Selectivity, adsorption isotherm and adsorption kinetics were investigated. The sample loading-washing-eluting solvent was optimized to evaluate the property of molecularly imprinted solid phase extract. Compared with LC/WCX-SPE, water-compatible molecularly imprinted solid phase extraction displayed more excellent specific adsorption performance. The extracted dencichine from Panax notoginseng with the purity of 98.5% and the average recovery of 85.6% (n=3) was obtained. PMID:26680322

  8. Design of Hybrid Solid Polymer Electrolytes: Structure and Properties

    NASA Technical Reports Server (NTRS)

    Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.

    2003-01-01

    This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.

  9. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  10. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films

    SciTech Connect

    Chan, Edwin P.; Chung, Jun Young; Stafford, Christopher M.; Lee, Jung-Hyun

    2012-11-15

    We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.

  11. Fabrication and characterization of solid-state, conducting polymer actuators

    SciTech Connect

    Xie, J.; Sansinena, J. M.; Gao, J.; Wang, H. L.

    2004-01-01

    We report here the fabrication and characterization of solid-state, conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhere to a lever arm of an force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torques generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, current, on the bending angle and displacement is also studied using square wave potential.

  12. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels.

    PubMed

    Nam, Kwangwoo; Kimura, Tsuyoshi; Kishida, Akio

    2007-01-01

    2-methacryloyloxyethyl phosphorylcholine (MPC)-immobilized collagen gel was developed. Using 1-ethyl-3-(3-dimethyl aminopropyl)-1-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), we cross-linked a collagen film in 2-morpholinoethane sulfonic acid (MES) buffer (EN gel). EN gel was prepared under both pH 4.5 and pH 9.0 in order to observe changes in cross-linking ability. To cross-link MPC to collagen gel, poly(MPC-co-methacrylic acid) (PMA) having a carboxyl group side chain was chosen. E/N gel was added to the MES buffer having pre-NHS activated PMA to make MPC-immobilized collagen gel (MiC gel). MiC gel was prepared under both acidic and alkaline conditions to observe the changes in the cross-linking ability of PMA. X-ray photoelectron spectroscopy showed that the PMA was cross-linked with collagen under both acidic and alkaline conditions. Differential scanning calorimetry (DSC) results showed that the shrinkage temperature increased for the MiC gels and that the increase would be greater for the MiC gel prepared under alkaline conditions. The data showed that swelling would be less when the MiC gel was prepared under alkaline conditions. The biodegradation caused by collagenase was suppressed for the MiC gel prepared under alkaline conditions due to stable inter- and intrahelical networks. PMID:16959313

  13. Synthesis, characterization and biocompatibility of novel biodegradable cross-linked co-polymers based on poly(propylene oxide) diglycidylether and polyethylenimine.

    PubMed

    Ding, Yunsheng; Wang, Jing; Wong, Cynthia S; Halley, Peter J; Guo, Qipeng

    2011-01-01

    Novel biodegradable cross-linked co-polymers were prepared from poly(propylene glycol) diglycidylether (PPGDGE) and poly(ethylene imine) (PEI). PPGDGE and PEI were mixed at ambient temperature with varying PEI concentrations of 10, 15, 18.5, 25, 30, 40 and 50 wt%; the homogenous PPGDGE/PEI mixtures obtained were cured at elevated temperatures, resulting in formation of PPG-PEI cross-linked co-polymers via ring-opening reaction of PPGDGE with PEI. The physicochemical and biological properties of these co-polymers were dependent on the PEI content and the extent of curing reaction. The glass transition temperature of PPG-PEI cross-linked co-polymers varied in the range from -14 to +42°C, while the co-polymers displayed composition-dependent mechanical behavior, from brittle to ductile with increasing PEI content from 18.5 wt% to 40 wt%. Chinese hamster ovary (CHO) cells were cultured on the PPG-PEI co-polymers; the MTT assay was used to measure cell viability and determine the cytotoxicity. The cell viability rate, relative to tissue-culture polystyrene (TCPS), increased from 49% to 125% with increasing PEI content from 18.5 wt% to 40 wt%. Although epoxy monomers usually exhibit cytotoxicity, the epoxy groups were exhausted via curing reaction in the fully cross-linked co-polymers. The PEI-cured PPG epoxy resin, i.e., PPG-PEI cross-linked co-polymers obtained in this study, showed excellent biocompatibility. PMID:20566040

  14. Solving the Problem of Building Models of Crosslinked Polymers: An Example Focussing on Validation of the Properties of Crosslinked Epoxy Resins

    PubMed Central

    Hall, Stephen A.; Howlin, Brendan J; Hamerton, Ian; Baidak, Alex; Billaud, Claude; Ward, Steven

    2012-01-01

    The construction of molecular models of crosslinked polymers is an area of some difficulty and considerable interest. We report here a new method of constructing these models and validate the method by modelling three epoxy systems based on the epoxy monomers bisphenol F diglycidyl ether (BFDGE) and triglycidyl-p-amino phenol (TGAP) with the curing agent diamino diphenyl sulphone (DDS). The main emphasis of the work concerns the improvement of the techniques for the molecular simulation of these epoxies and specific attention is paid towards model construction techniques, including automated model building and prediction of glass transition temperatures (Tg). Typical models comprise some 4200–4600 atoms (ca. 120–130 monomers). In a parallel empirical study, these systems have been cast, cured and analysed by dynamic mechanical thermal analysis (DMTA) to measure Tg. Results for the three epoxy systems yield good agreement with experimental Tg ranges of 200–220°C, 270–285°C and 285–290°C with corresponding simulated ranges of 210–230°C, 250–300°C, and 250–300°C respectively. PMID:22916182

  15. Molecularly imprinted polymers-curcuminoids and its application for solid phase extraction

    NASA Astrophysics Data System (ADS)

    Wulandari, Meyliana; Amran, M. B.; Lopez, A. B. Descalzo; Urraca, J. L.; Moreno-Bondi, M. C.

    2014-03-01

    Molecularly Imprinted Polymers (MIPs) for the selective recognition properties of curcumin (CUR), a cancer chemopreventive agent were obtained by a non-covalent imprinting approach with bisdemetoxycurcumin (BDMC) as the template molecule. The double bond of BDMC has been reduced in order not to be involved in polymerization and make the template molecules easy to be eluted. Several functional monomers have been evaluated to maximize the interactions with the template molecule during polymerization. MIPs prepared by bulk of N-(2-aminoethyl) metacrylamid hydrochlorideas functional monomer, ethylene glycol dimethacrylate as crosslinker, 2,2'-azobis (2'4-dimethyl valeronitril) as initiator and acetonitrile as porogen. Non-imprinted polymer (NIP) have been also synthesized for reference purposes. UV-vis spectroscopy has been used to predict the template to functional monomer ratio which indicates the formation of 2:1 complexes between monomer and curcumin and the association constants (K11 = 2529 μM and K12 = 1960.75 μM in acetonitrile). The capacity and imprinting factor have been evaluated as stationary phases in high-pressure liquid chromatography to CUR and BDMC. The binding properties and the homogeneity of the binding sites of the different polymers have been studied by Freundlich isotherm modeling and weight average affinity and number of binding sites. One of the foremost applications of molecular imprinting has been in molecularly imprinted solid phase extraction and it has the ability to separate and preconcentrate between closely related compounds in curcuminoids.

  16. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  17. In situ infrared spectroscopic and density-functional studies of the cross-linked structure of one-dimensional C{sub 60} polymer

    SciTech Connect

    Takashima, A.; Onoe, J.; Nishii, T.

    2010-08-15

    We have examined the infrared (IR) spectra of electron-beam (EB) irradiated C{sub 60} films, using in situ IR spectroscopy in the temperature range of 60-300 K. The irradiation-time evolution of the IR spectra shows that two highly intense new peaks finally appear around 565 and 1340 cm{sup -1} when the EB-induced C{sub 60} polymerization was saturated. To determine the cross-linked structure of the polymer explicitly, we have compared the IR spectra with theoretical spectra obtained from the cross-linked structure of all C{sub 120} stable isomers derived from the general Stone-Wales (GSW) rearrangement, using first-principles density-functional calculations. Since each C{sub 120} isomer has the same cross-linked structure as that of its corresponding one-dimensional (1D) C{sub 60} polymer, the IR modes obtained from the cross-linked structure of C{sub 120} are close to those obtained from the corresponding 1D polymer. Comparison between the experimental and theoretical IR spectra suggests that the 1D peanut-shaped C{sub 60} polymer has a cross-linked structure roughly similar to that of the P08 peanut-shaped C{sub 120} isomer.

  18. In vitro and in vivo evaluation of novel cross-linked saccharide based polymers as bile acid sequestrants.

    PubMed

    Lopez-Jaramillo, Francisco Javier; Giron-Gonzalez, Maria Dolores; Salto-Gonzalez, Rafael; Hernandez-Mateo, Fernando; Santoyo-Gonzalez, Francisco

    2015-01-01

    Bile acid sequestrants (BAS) represent a therapeutic approach for the management of hypercholesterolemia that relies on the cationic polymeric nature of BAS to selectively bind negatively charged bile acids. We hypothesized that the cross-linking of β-cyclodextrin (β-CD) and saccharides such as starch or dextrin with divinyl sulfone (DVS) yields homo- and hetero-polymeric materials with the ability to trap sterols. Our hypothesis was put to test by synthesizing a library of 22 polymers that were screened to evaluate their capability to sequester both cholesterol (CHOL) and cholic and deoxycholic acids (CA and DCA). Three polymers synthesized in high yield were identified as promising. Two were neutral hetero-polymers of β-CD and starch or dextrin and the third was a weakly cationic homo-polymer of starch, highlighting the importance of the cavity effect. They were tested in hypercholesterolemic male Wistar rats and their ability to regulate hypercholesterolemia was similar to that for the reference BAS cholestyramine, but with two additional advantages: (i) they normalized the TG level and (ii) they did not increase the creatinine level. Neither hepatotoxicity nor kidney injury was detected, further supporting them as therapeutical candidates to manage hypercholesterolemia. PMID:25719741

  19. Chemical immobilization of crosslinked polymeric ionic liquids on nitinol wires produces highly robust sorbent coatings for solid-phase microextraction.

    PubMed

    Ho, Tien D; Toledo, Bruna R; Hantao, Leandro W; Anderson, Jared L

    2014-09-16

    Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix. PMID:25150693

  20. A hybrid solid-liquid polymer photodiode for the bioenvironment

    NASA Astrophysics Data System (ADS)

    Antognazza, M. R.; Ghezzi, D.; Musitelli, D.; Garbugli, M.; Lanzani, G.

    2009-06-01

    We demonstrate that a prototypical semiconducting polymer, poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) maintains unaltered its optoelectronic properties throughout the various steps for neural preparation. Films of MEH-PPV, after prolonged immersion in water or buffer solution, are characterized by linear and nonlinear optical spectroscopy. Based on this result, we introduce a hybrid solid-liquid photodiode based on MEH-PPV, in which we use culturing media as liquid, ionic cathodes. The hybrid device is proposed as an active interface between living tissue and conducting polymers for cell diagnostic and neural implants.

  1. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  2. Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Echeverri, Mauricio; Kyu, Thein

    2014-03-01

    With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.

  3. Quasi Solid Polymer Electrolytes for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dissanayake, M. A. K. Lakshman

    2013-07-01

    Dye-sensitized solar cell (DSSC) has been considered as an alternative to the conventional silicon solar cell because of low cost, easy fabrication and relatively high conversion efficiency. A DSSC consists of a dye-sensitized nanoparticulated TiO2 electrode, an electrolyte containing redox couple and a Pt coated counter electrode. Such solar cells based on an I-/I3- redox couple in an organic solvent usually have conversion efficiencies reaching around 11%. However, a major drawback of these solution based solar cells, originally developed by Gratzel and coworkers is the lack of long-term stability due to liquid leakage, usage of volatile liquids such as acetonitrile, electrode corrosion, and photodecomposition of the dye in the solvent medium. Therefore considerable research efforts have been made in recent years to replace the liquid electrolytes with solid polymer or quasi-solid polymer (gel) electrolytes. Among these approaches, the use of gel polymer electrolytes appears to give rise to successful results in terms of conversion efficiency. Conventional poly (ethylene oxide)(PEO)-based solid polymer electrolytes exhibit poor ionic conductivities at room temperature, which is not sufficient for practical applications. Therefore, most of the recent studies have been directed to the preparation and characterization of gel polymer electrolytes which exhibit higher ionic conductivity at ambient temperature while maintain quai-solid structure. These gel polymer electrolytes prepared by incorporating a liquid electrolyte into a matrix polymer such as polyacrylonitrile(PAN), poly(vinylidene fluoride)(PVdF), poly (methyl methacrylate) (PMMA) and PEO have been employed in quasi-solid-state DSSCs to achieve power conversion efficiencies of more than 5%. Significant improvements have been achieved in recent years by modifications of the electrolytes by optimizing the ionic salt, introducing additives such as inorganic nanofillers, organic molecules and ionic liquids in

  4. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID

  5. Robust Cross-Linked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization.

    PubMed

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-08-01

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust cross-linked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site-controlled propagation mechanism. Postfunctionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible cross-linked thin-film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Cross-linking of such complexes affords robust cross-linked stereocomplexes that are solvent-resistant and also exhibit considerably enhanced thermal and mechanical properties compared with the un-cross-linked stereocomplexes. PMID:27388024

  6. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  7. Performance of differently cross-linked, partially fluorinated proton exchange membranes in polymer electrolyte fuel cells

    SciTech Connect

    Buechi, F.N.; Gupta, B.; Haas, O.; Scherer, G.G.

    1995-09-01

    A series of differently cross-linked FEP-g-polystyrene proton exchange membranes has been synthesized by the preirradiation grafting method [FEP: poly(tetrafluoroethylene-co-hexafluoropropylene)]. Divinylbenzene (DVB) and/or triallyl cyanurate (TAC) were used as cross-linkers in the membranes. It was found that the physical properties of the membranes, such as water-uptake and specific resistance, are strongly influenced by the nature of the cross-linker. Generally it can be stated that DVB decreases water-uptake and increases specific resistance; on the other hand TAC increases swelling and decreases specific resistance to values as low as 5.0 {Omega} cm at 60 C. The membranes were tested in H{sub 2}/O{sub 2} fuel cells for stability and performance. It was found that thick (170 {micro}m) DVB cross-linked membranes showed stable operation for 1,400 h at temperatures up to 80 C. The highest power density in the fuel cell was found for the DVB and TAC double-cross-linked membrane; it exceeded the value of a cell with a Nafion{reg_sign} 117 membrane by more than 60%.

  8. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    SciTech Connect

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; Ren, Fei; Keum, Jong Kahk; Ahn, Suk-Kyun; Li, Dawen; Chen, Jihua

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition that is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.

  9. Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2002-01-01

    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.

  10. New paradigm for stabilization of liquid polymer films on solids

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Jiang, Naisheng; Wang, Jiaxun; di, Xiaoyu; Cheung, Justin; Endoh, Maya

    2015-03-01

    We report that wetting/dewetting behavior of liquid polymer films on solids can be controlled by nanoscale architectures of polymer chains irreversibly adsorbed on the impenetrable surfaces. Monodisperse polystyrene (PS) ultrathin films (20 nm in thickness) with different molecular weights on silicon (Si) substrates with a natural amorphous Si dioxide layer were used as models. The PS thin films were annealed at high temperatures at T>Tg (Tg is the bulk glass transition temperature) for several days, and the surface structures were studied by using optical and atomic force microscopes. At the same time, the annealed PS films were further leached with a good solvent and the residue films (i.e., irreversibly adsorbed layers) were characterized by x-ray reflectivity. The experimental data reveals a strong correlation between the conformations of the adsorbed polymer chains and the stability of the liquid films on top. T. K. acknowledges the partial financial support from NSF Grant No. CMMI-1332499.

  11. A theory for species migration in a finitely strained solid with application to polymer network swelling

    NASA Astrophysics Data System (ADS)

    Duda, Fernando P.; Souza, Angela C.; Fried, Eliot

    2010-04-01

    We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.

  12. Compressed antisolvent precipitation and photopolymerization for the formation of crosslinked polymer microparticles useful for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Owens, Jennifer Lani

    This work presents novel antisolvent processing technique entitled Compressed Antisolvent Precipitation and Photopolymerization (CAPP) useful for forming crosslinked polymer microparticles. In this process, an organic solvent dissolves monomer and polymerization photoinitiators to form a homogeneous solution. Photopolymerization and microparticle formation occur when the homogeneous solution is sprayed into a compressed antisolvent while being simultaneously exposed to initiating light. We investigated the method of particle formation in the CAPP process to explain the repeatable bimodal particle size distribution obtained under a variety of operating conditions. Ternary phase diagrams of antisolvent, monomer, and solvent solutions were constructed and specific spray paths from the resulting ternary phase diagrams were investigated and the significance of crossing the binodal, as well as the importance of where the binodal was crossed, was discovered. In addition, manipulation of injection conditions, varying process residence times, and nucleation rate calculations were explored to further investigate the means of particle formation. We demonstrate the feasibility of encapsulating therapeutic agents into highly crosslinked polymer particles using the CAPP process. Ion-paired tacrine, erythromycin, erythromycin estolate, and erythromycin ethyl succinate were CAPP processed with poly(ethylene glycol) diacrylate monomers of several molecular weights so that the resulting particles would entrap different sized drugs in networks with varying mesh sizes. In vitro drug release profiles were obtained for all of the various drug-monomer combinations. Diffusion coefficients were estimated by fitting a short time approximation of Fickian release from a sphere of fixed diameter to the release data and were applied to a model of Fickian release from polydisperse spheres, and the results were compared to the in vitro release data. CAPP particle processing was explored in

  13. Defects in electro-optically active polymer solids

    NASA Technical Reports Server (NTRS)

    Martin, David C.

    1993-01-01

    There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult

  14. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.

    PubMed

    Kurtz, Steven M; Mazzucco, Dan; Rimnac, Clare M; Schroeder, Dave

    2006-01-01

    Solid-state deformation processing is a promising technique for modifying the physical and mechanical properties of highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) beyond simple thermal treatment cycles that have been employed previously. This study evaluates anisotropy and oxidative resistance in a novel, radiation crosslinked (50 kGy) UHMWPE material (ArComXL: Biomet, Inc., Warsaw, IN), incorporating solid-state, deformation processing by extrusion below the melt transition for application in total hip arthroplasty. Tensile, compression, and small punch tests were conducted to evaluate the material properties in the three principal axes of the resulting material. Furthermore, short-term oxidative resistance was evaluated using Fourier transform infrared spectroscopy and the small punch test in conjunction with accelerated shelf aging protocols. The results of this testing indicate that the material is anisotropic, with significantly enhanced strength oriented along the long axis of the rod. For certain other properties, the magnitude of the anisotropy was relatively slight, especially in the elastic regime, in which only a 20% difference was noted between the long axis of the rod and the orthogonal, radial direction. The highly crosslinked material contains detectable free radicals, at a concentration that is 90% less than control, gamma inert sterilized UHMWPE. An unexpected finding of this study was evidence of oxidative stability of the deformation-processed material, even after 4 weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003), which resulted in macroscopic embrittlement of the control material. The oxidative stability observed in ArComXL suggests that the deformation-processed material may be suitable for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPE. PMID:16085308

  15. Inexpensive cross-linked polymeric separators made from water soluble polymers

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.

    1979-01-01

    Polyvinyl alcohol (PVA) crosslinked chemically with aldehyde reagents produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity, low zincate diffusivity, and low zinc dendrite penetration rate which make them suitable for use as alkaline battery separators. They are intrinsically low in cost and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  16. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels

    PubMed Central

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E.; Kerr, Sheena C.; Dunican, Eleanor M.; Daniel, Brian M.; Ghosh, Sudakshina; Erzurum, Serpel C.; Willard, Belinda; Hazen, Stanley L.; Huang, Xiaozhu; Carrington, Stephen D.; Oscarson, Stefan; Fahy, John V.

    2015-01-01

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates. PMID:25717100

  17. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.

    PubMed

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V

    2015-02-25

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates. PMID:25717100

  18. Architectures for controlling solid state properties of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Nambiar, Rakesh R.

    Conjugated polymers and oligomers are great materials for use in the next generation devices namely organic field effect transistors, light emitting diodes and polymeric solar cells. Apart from having the potential for developing power-efficient, flexible, robust and inexpensive devices, conjugated polymers can also be tuned by molecular design to optimize device characteristics. One key problem for the full commercial exploitation of conjugated polymers is that the charge carrier mobility of the state-of-the-art polymer semiconductors is much lower than required for many applications. The performance of the devices is strongly dependent on the molecular structure and supermolecular assembly of the conjugated polymer chains. This thesis covers our attempts to design molecular structure to control and improve the solid state properties of conjugated polymers. The relative placement of side chains along the backbone has a great influence on the solid state ordering of conjugated polymers. Poly(2,5-disubstituted-1,4-phenylene ethynylene)s (PPE)s, an important class of conjugated polymers, are generally synthesized by Pd-catalyzed coupling polymerizations of appropriately substituted diiodo and diethynyl benzenes (i.e., A-A and B-B type monomers). In asymmetrically substituted PPEs, this results in an irregular substitution pattern of the side chains along the polymer backbone. We report a new synthetic approach to prepare regioregular unsymmetrically substituted PPEs by polymerization of 4-iodophenylacetylenes (i.e., A-B type monomer). We provide a detailed discussion of various approaches to the synthesis of PPEs with different regioregularities and provide a description of the differences between regioregular and regiorandom analogs. The effect of regioregularity becomes even more important when the two side chains are very dissimilar or amphiphilic. We explore the effect of relative placement hydrophobic (dodecyloxy)/hydrophilic (tri(ethylene glycol) and

  19. Enhancement in dose sensitivity of polymer gel dosimeters composed of radiation-crosslinked gel matrix and less toxic monomers

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Yamashita, S.; Taguchi, M.

    2015-01-01

    Polymer gel dosimeters based on radiation-crosslinked hydroxypropyl cellulose gel were prepared, which comprised 2-hydroxyethyl methacrylate (HEMA) and polyethylene glycol #400 dimethacrylate (9G) as less toxic monomers and tetrakis (hydroxymethyl) phosphonium chloride (THPC) as an antioxidant. The dosimeters exposed to 60Co γ-rays became cloudy at only 1 Gy. The irradiated dosimeters were optically analyzed by using a UV- vis spectrophotometer to evaluate dose response. Absorbance of the dosimeters linearly increased in the dose range from 0 to 10 Gy, in which dose sensitivity increased with increasing 9G concentration. The dose sensitivity of the dosimeters with 2 wt% HEMA and 3 wt% 9G was also enhanced by increment in THPC.

  20. High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte.

    PubMed

    Kuo, Ping-Lin; Wu, Ching-An; Lu, Chung-Yu; Tsao, Chin-Hao; Hsu, Chun-Han; Hou, Sheng-Shu

    2014-03-12

    A polyacrylonitrile (PAN)-interpenetrating cross-linked polyoxyethylene (PEO) network (named XANE) was synthesized acting as separator and as gel polymer electrolytes simultaneously. SEM images show that the surface of the XANE membrane is nonporous, comparing to the surface of the commercial separator to be porous. This property results in excellent electrolyte uptake amount (425 wt %), and electrolyte retention for XANE membrane, significantly higher than that of commercial separator (200 wt %). The DSC result indicates that the PEO crystallinity is deteriorated by the cross-linked process and was further degraded by the interpenetration of the PAN. The XANE membrane shows significantly higher ionic conductivity (1.06-8.21 mS cm(-1)) than that of the commercial Celgard M824 separator (0.45-0.90 mS cm(-1)) ascribed to the high electrolyte retention ability of XANE (from TGA), the deteriorated PEO crystallinity (from DSC) and the good compatibility between XANE and electrode (from measuring the interfacial-resistance). For battery application, under all charge/discharge rates (from 0.1 to 3 C), the specific half-cell capacities of the cell composed of the XANE membrane are all higher than those of the aforementioned commercial separator. More specifically, the cell composed of the XANE membrane has excellent cycling stability, that is, the half-cell composed of the XANE membrane still exhibited more than 97% columbic efficiency after 100 cycles at 1 C. The above-mentioned advantageous properties and performances of the XANE membrane allow it to act as both an ionic conductor as well as a separator, so as to work as separator-free gel polymer electrolytes. PMID:24521309

  1. Study of Hydrophobic and Ionizable Hydrophilic Copolymers at Polymer/Solid and Polymer/Liquid Interfaces

    SciTech Connect

    Perahia, Dvora

    2011-11-01

    Joint experimental-computational efforts were set to characterize the interfacial effects on the structure and dynamics of polymers consisting of highly rigid hydrophilic-ionizable and hydrophobic sub-units within one polymeric chain casted into thin films of several molecular dimensions. Focusing on the ultra thin film region we separate out the interfacial effects from bulk characteristics. Specifically, the study sought to: identify the parameters that control the formation of a stable polymer-solid interface. The study consists of two components, experimental investigations and computational efforts. The experimental component was designed to derive empirical trends that can be used to correlate the set of coupled polymer molecular parameters with the interfacial characteristics of these polymers, and their response to presence of solvents. The computational study was designed to provide molecular insight into the ensemble averages provided by the experimental efforts on multiple length scales from molecular dimensions, to the nanometer lengths to a macroscopic understanding of solvent interactions with structured polymers. With the ultimate goal of correlating molecular parameters to structure, dynamics and properties of ionic polymers, the first stage of the research began with the study of two systems, one which allowed tailoring the flexibility of the backbone without the presence of ionic groups, but with a potential to sulfonate groups at a later stage, and a polymer whose backbone is rigid and the density of the ionic group can be varied. The combined experimental and computational studies significantly extended the understanding of polymers at interfaces from model systems to polydispersed copolymers with blocks of varying nature and complexity. This new insight directly affects the design of polymers for sustainable energy applications from batteries and fuel cells to solar energy.

  2. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  3. Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors.

    PubMed

    Li, Chun-Yan; Wang, Hai-Jiao; Cao, Jing-Ming; Zhang, Ji; Yu, Xiao-Qi

    2014-11-24

    A series of cationic polymers based on low generation (G1) peptide dendrimer were synthesized with disulfide-containing linkages. The DNA binding abilities of the target polymers were studied by gel electrophoresis and fluorescence quenching assay. The bioreducible property of the disulfide-containing polymers P2 and P3 was also investigated in the presence of dithiothreitol (DTT). Results from dynamic light scattering (DLS) and transmission electron microscopy (TEM) assays reveal that these materials may condense DNA into nanoparticles with proper sizes and zeta-potentials. In vitro cell experiments show that compared to branched 25 KDa PEI, P2 and P3 may exhibit much higher gene transfection efficiency and lower cytotoxicity in both HEK293 and U-2OS cells. Additionally, polymer prepared from Michael addition gives better gene transfection ability, while polymer prepared from ring-opening reaction has better serum tolerance. Results indicate that these polymers might be promising non-viral gene vectors for their easy preparation, very low cytotoxicity, and good transfection efficiency. PMID:25282264

  4. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer.

    PubMed

    Hsieh, Chao-Hsiang; Cheng, Yen-Ju; Li, Pei-Jung; Chen, Chiu-Hsiang; Dubosc, Martin; Liang, Ru-Meng; Hsu, Chain-Shu

    2010-04-01

    A novel PCBM-based n-type material, [6,6]-phenyl-C(61)-butyric styryl dendron ester (PCBSD), functionalized with a dendron containing two styryl groups as thermal cross-linkers, has been rationally designed and easily synthesized. In situ cross-linking of PCBSD was carried out by heating at a low temperature of 160 degrees C for 30 min to generate a robust, adhesive, and solvent-resistant thin film. This cross-linked network enables a sequential active layer to be successfully deposited on top of this interlayer to overcome the problem of interfacial erosion and realize a multilayer inverted device by all-solution processing. An inverted solar cell device based on an ITO/ZnO/C-PCBSD/P3HT:PCBM/PEDOT:PSS/Ag configuration not only achieves enhanced device characteristics, with an impressive PCE of 4.4%, but also exhibits an exceptional device lifetime without encapsulation; it greatly outperforms a reference device (PCE = 3.5%) based on an ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag configuration without the interlayer. This C-PCBSD interlayer exerts multiple positive effects on both P3HT/C-PCBSD and PCBM/C-PCBSD localized heterojunctions at the interface of the active layer, including improved exciton dissociation efficiency, reduced charge recombination, decreased interface contact resistance, and induction of vertical phase separation to reduce the bulk resistance of the active layer as well as passivation of the local shunts at the ZnO interface. Moreover, this promising approach can be applied to another inverted solar cell, ITO/ZnO/C-PCBSD/PCPDTBT:PC(71)BM/PEDOT:PSS/Ag, using PCPDTBT as the p-type low-band-gap conjugated polymer to achieve an improved PCE of 3.4%. Incorporation of this cross-linked C(60) interlayer could become a standard procedure in the fabrication of highly efficient and stable multilayer inverted solar cells. PMID:20222734

  5. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells

    PubMed Central

    2014-01-01

    Background The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). Results In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Conclusions Results showed that curcumin entrapped folate conjugated cross-linked acrylic

  6. Adhesive force assisted imprinting of soft solid polymer films by flexible foils.

    PubMed

    Mukherjee, Rabibrata; Sharma, Ashutosh; Gonuguntla, Manoj; Patil, Ganesh K

    2008-07-01

    We report a simple, rapid, room temperature, pressure-less and large area (approximately cm2) imprinting technique for high fidelity patterning of soft solid polymer films and surfaces like cross-linked polydimethylsiloxane (PDMS) and polyacrylamide (PAA) based hydrogels, both on planar and curved surfaces. The key element of the method is the use of patterned thin flexible foils that readily and rapidly attain a conformal contact with soft (shear modulus < 0.1 MPa) solid surfaces because of adhesive interfacial interactions. The conformal contact is established at all length scales by bending of the foil at scales larger than the feature size, in conjunction with the spontaneous elastic deformations of the surface on the scale of the features. For example, we used the protective aluminum foils of commercial data storage discs, both with or without data stored, for micron and sub-micron pattern transfer. The patterns are made permanent by UV-ozone treatment (for PDMS) or by controlled drying (for hydrogels). Interestingly, elastic contact imprinting of very thin (< 300 nm) films results in about 50% miniaturization of the original foil feature sizes. Complex two dimensional patterns could also be formed even by using a simple one dimensional master by multiple imprinting. The technique can be particularly useful for the bulk nano applications requiring routine fabrication of templates, for example, in the study of confined chemistry phenomena, nanofluidics, bio-MEMS, micro-imprinting, optical coatings and controlled dewetting. PMID:19051887

  7. Wet air oxidation of solid waste made of polymers

    SciTech Connect

    Krisner, E.; Ambrosio, M.; Massiani, C.

    2000-03-01

    Wet air oxidation was attempted on synthetic (mixture of plastics of various compositions) and natural (cellulose substances) solid polymers. The temperature was maintained at 270 C and the oxygen pressure varied from 0 to 2 MPa (from understoichiometric conditions to oxygen excess). No valorizable compounds were found, even in runs carried out under an oxygen deficit. Suitable conditions for the total destruction of the initial polymers were temperatures above 270 C, an excess of oxygen, and a residence time of less than 1 h. Only such degradable compounds as acetic and benzoic acids are found at low concentrations. Formation of chlorine and gaseous hydrochloric acid can be limited by adding CaCO{sub 3} as a neutralizing agent.

  8. Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.

    PubMed

    Jang, Hyounguk; Pfefer, T Joshua; Chen, Yu

    2015-09-15

    Stable tissue phantoms that incorporate the spectral absorption properties of hemoglobin would benefit a wide range of biophotonic technologies. Toward this end, we have developed and validated a novel polymer material incorporating hemoglobin. Our solid hemoglobin-polymer (SHP) material is fabricated by mixing liquid silicone base with a hemoglobin solution, followed by sonication and low temperature curing. The optical properties of samples were determined over 450-1000 nm using the inverse adding-doubling method and the Beer-Lambert law. Measurements indicated SHP optical stability over four months. Near-infrared spectroscopy and hyperspectral imaging measurements of SHP samples were performed to demonstrate the utility of this approach. SHP materials have the potential to improve tissue-simulating phantoms used for development, evaluation, and standardization of optical devices for oximetry and other applications. PMID:26371926

  9. Robust solid polymer electrolyte for conducting IPN actuators

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  10. Fuel cells with solid polymer electrolyte and their application on vehicles

    SciTech Connect

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.