Science.gov

Sample records for solid-state nmr probe

  1. 15N solid-state NMR as a probe of flavin H-bonding.

    PubMed

    Cui, Dongtao; Koder, Ronald L; Dutton, P Leslie; Miller, Anne-Frances

    2011-06-23

    Flavins mediate a wide variety of chemical reactions in biology. To learn how one cofactor can be made to execute different reactions in different enzymes, we are developing solid-state NMR (SSNMR) to probe the flavin electronic structure, via the (15)N chemical shift tensor principal values (?(ii)). We find that SSNMR has superior responsiveness to H-bonds, compared to solution NMR. H-bonding to a model of the flavodoxin active site produced an increase of 10 ppm in the ?(11) of N5, although none of the H-bonds directly engage N5, and solution NMR detected only a 4 ppm increase in the isotropic chemical shift (?(iso)). Moreover SSNMR responded differently to different H-bonding environments, as H-bonding with water caused ?(11) to decrease by 6 ppm, whereas ?(iso) increased by less than 1 ppm. Our density functional theoretical (DFT) calculations reproduce the observations, validating the use of computed electronic structures to understand how H-bonds modulate the flavin's reactivity. PMID:21619002

  2. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa (Naperville, IL); Dieckman, Stephen L. (Elmhurst, IL); Ellingson, William A. (Naperville, IL)

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  3. Solid-state STRAFI NMR probe for material imaging of quadrupolar nuclei.

    PubMed

    Tang, Joel A; Zhong, Guiming; Dugar, Sneha; Kitchen, Jason A; Yang, Yong; Fu, Riqiang

    2012-12-01

    Stray field imaging (STRAFI) has provided an alternative imaging method to study solid materials that are typically difficult to obtain using conventional MRI methods. For small volume samples, image resolution is a challenge since extremely strong gradients are required to examine narrow slices. Here we present a STRAFI probe for imaging materials with quadrupolar nuclei. Experiments were performed on a 19.6 T magnet which has a fringe field gradient strength of 72 T/m, nearly 50 times stronger than commercial microimagers. We demonstrate the ability to acquire (7)Li 1D profiles of liquid and solid state lithium phantoms with clearly resolved features in the micrometer scale and as a practical example a Li ion battery electrode material is also examined. PMID:23151490

  4. Probing the interaction of polyphenols with lipid bilayers by solid-state NMR spectroscopy

    PubMed Central

    Yu, Xueting; Chu, Shidong; Hagerman, Ann E.; Lorigan, Gary A.

    2011-01-01

    Polyphenols are bioactive natural products that appear to act against a wide range of pathologies. Mechanisms of activity have not been established, but recent studies have suggested that some polyphenols bind to membranes. We examined the interaction between lipid bilayers and three structurally diverse polyphenols. We hypothesized that features of the polyphenols such as polarity, molecular size, molecular geometry, and number and arrangement of phenol hydroxyl groups would determine the tendency to interact with the bilayer. We examined a mixed polyphenol, (?) epigallocatechin gallate (EGCg); a proanthocyanidin trimer comprising catechin-(4?8)-catechin-(4?8)-catechin (cat3); and a hydrolysable tannin, 1,2,3,4,6-penta-O-galloyl-?-D-glucopyranose (PGG). These polyphenols were incorporated at different levels into 2H labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multi-lamellar vesicles (MLVs). 31P and 2H solid-state NMR experiments were performed to determine the dynamics of the headgroup region and the hydrophobic acyl chain region of the lipid bilayer upon addition of polyphenols. The chemical shift anisotropy (CSA) width of the 31P NMR spectra decreased upon addition of polyphenols. Addition of PGG induces a dramatic reduction on the CSA width compared with the control lipid bilayer sample, while addition of cat3 barely reduces the CSA width. The 2H quadupolar splitting of the lipids also decreased upon addition of polyphenols. At the same concentration, PGG substantially reduced the quadrupolar splitting while cat3 barely reduced it when compared with the control sample. By calculating the order parameters of the acyl chain region of the lipid bilayer, we concluded that the hydrophobic part of the lipid bilayer was perturbed by PGG while cat3 did not cause large perturbations. The data suggest that the polarity of the polyphenols affects the interaction between tannins and membranes. The interactions may relate to the biological activities of polyphenols. PMID:21574575

  5. Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR

    PubMed Central

    Williams, Jonathan K.; Hong, Mei

    2014-01-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane peptide of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502

  6. Probing membrane protein structure using water polarization transfer solid-state NMR

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan K.; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins.

  7. Probing membrane protein structure using water polarization transfer solid-state NMR.

    PubMed

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502

  8. Co Solid-State NMR as a New Probe for Elucidating Metal Binding in Polynucleotides

    E-print Network

    Frydman, Lucio

    catego- rized into nonspecific electrostatic attractions resulting from the anionic character quenches fast cationic exchanges between bound and free states, while exploiting the superior NMR compounds and by multinuclear 31 P-59 Co recoupling experiments. Introduction Cations have profound effects

  9. DEVELOPMENT OF MULTIPLE SAMPLE SOLID-STATE NMR PROBES FOR ANALYSIS OF PHARMACEUTICAL COMPOUNDS AND FORMULATIONS

    E-print Network

    Nelson, Benjamin Nels

    2011-12-31

    developed. This version is limited to being a two-module probe due to the large amounts of space required for the tuning elements, which are located next to the MAS modules. A new probe design incorporating coaxial transmission lines and smaller MAS modules...

  10. Solid-state NMR and membrane proteins

    NASA Astrophysics Data System (ADS)

    Opella, Stanley J.

    2015-04-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers.

  11. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    SciTech Connect

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni; Sharp, Janelle; Xu, Wei; Lipton, Andrew S.; Hoatson, Gina; Vold, Robert L.

    2015-11-03

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298–80 K temperature range. We utilized static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non- exponential at all temperatures with the extent of non-exponentiality increasing from higher to lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. 2013, 117, 6129–6137), suggests that the hydrophobic core undergoes concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in the onset of the concerted fluctuations of the core and highlights aromatic residues as markers of the protein dynamical transitions.

  12. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.

    2015-04-01

    Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H ? pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1's are comparable to the longer dephasing times (?'s) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 - e-??) where A and ? are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3?/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel ? sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-? helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the ? and ? fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell membrane extracts and use of lower temperatures and dynamic nuclear polarization to reduce data acquisition times.

  13. Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy**

    PubMed Central

    Ma, Peixiang; Haller, Jens D; Zajakala, Jérémy; Macek, Pavel; Sivertsen, Astrid C; Willbold, Dieter; Boisbouvier, Jérôme; Schanda, Paul

    2014-01-01

    The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally accessible conformations are connected, and understanding their structures and relative energies is crucial in rationalizing protein function. Many biomolecular reactions take place within microseconds to milliseconds, and this timescale is therefore of central functional importance. Here we show that R1? relaxation dispersion experiments in magic-angle-spinning solid-state NMR spectroscopy make it possible to investigate the thermodynamics and kinetics of such exchange process, and gain insight into structural features of short-lived states. PMID:24644028

  14. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  15. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-01

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry. PMID:23301555

  16. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  17. Probing physical and chemical changes in cortical bone due to osteoporosis and type 2 diabetes by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua; Taylor, Amanda; Rendina, Beth; Smith, Brenda; Department of Physics Collaboration; Department of Nutritional Sciences Collaboration

    2013-03-01

    Approximately 1.5 million fractures occur each year in the U.S. due to osteoporosis, which is characterized by decreased bone mineral density and deterioration of bone micro-architecture. On the other hand, type 2 diabetes also significantly increases fracture risks, despite having a normal or even higher bone mineral density. Solid-state NMR has been applied to bone tissues from normal and disease-inflicted mouse models to study structural and chemical dynamics as the disease progresses. Proton relaxation experiments were performed to measure water populations in the bone matrix and pores. Collagen-bound water has strong influence on bone resilience, while water content in the pores reveals amount and size of pores from micro- to millimeter range. Other biochemical and atomic-scale structural alterations in the mineral and organic phases and their interface were investigated by proton, phosphorus, and carbon NMR spectroscopy. Experiments were designed to individually detect different types of phosphorus environments: near the mineral surface, similar to hydroxyapatite, and deficient of hydrogens due to substitution of the hydroxyl group by other ions. A new method was also developed for accurate quantification of each phosphorus species. The authors appreciate financial support for this project from the College of Human Sciences and the College of Arts and Sciences, Oklahoma State University.

  18. Dynamic nuclear polarization in biomolecular solid state NMR : methods and applications in peptides and membrane proteins

    E-print Network

    Bajaj, Vikram Singh

    2007-01-01

    Solid state NMR can probe structure and dynamics on length scales from the atomic to the supramolecular. However, low sensitivity limits its application in macromolecules. NMR sensitivity can be improved by dynamic nuclear ...

  19. Mefenamic acid anti-inflammatory drug: probing its polymorphs by vibrational (IR and Raman) and solid-state NMR spectroscopies.

    PubMed

    Cunha, Vanessa R R; Izumi, Celly M S; Petersen, Philippe A D; Magalhães, Alviclér; Temperini, Marcia L A; Petrilli, Helena M; Constantino, Vera R L

    2014-04-24

    This work deals with the spectroscopic (supported by quantum chemistry calculations), structural, and morphological characterization of mefenamic acid (2-[(2,3-(dimethylphenyl)amino] benzoic acid) polymorphs, known as forms I and II. Polymorph I was obtained by recrystallization in ethanol, while form II was reached by heating form I up to 175 °C, to promote the solid phase transition. Experimental and theoretical vibrational band assignments were performed considering the presence of centrosymmetric dimers. Besides band shifts in the 3345-3310 cm(-1) range, important vibrational modes to distinguish the polymorphs are related to out-of-phase and in-phase N-H bending at 1582 (Raman)/1577 (IR) cm(-1) and 1575 (Raman)/1568 (IR) cm(-1) for forms I and II, respectively. In IR spectra, bands assigned to N-H bending out of plane are observed at 626 and 575 cm(-1) for polymorphs I and II, respectively. Solid-state (13)C NMR spectra pointed out distinct chemical shifts for the dimethylphenyl group: 135.8 to 127.6 ppm (carbon bonded to N) and 139.4 to 143.3 ppm (carbon bonded to methyl group) for forms I and II, respectively. PMID:24654805

  20. A strip-shield improves the efficiency of a solenoid coil in probes for high field solid-state NMR of lossy biological samples

    PubMed Central

    Wu, Chin H.; Grant, Christopher V.; Cook, Gabriel A.; Park, Sang Ho; Opella, Stanley J.

    2009-01-01

    A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800 MHz 1H/15N and 1H/13C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers. PMID:19559634

  1. New in situ solid-state NMR techniques for probing the evolution of crystallization processes: pre-nucleation, nucleation and growth.

    PubMed

    Hughes, Colan E; Williams, P Andrew; Keast, Victoria L; Charalampopoulos, Vasileios G; Edwards-Gau, Gregory R; Harris, Kenneth D M

    2015-01-01

    The application of in situ techniques for investigating crystallization processes promises to yield significant new insights into fundamental aspects of crystallization science. With this motivation, we recently developed a new in situ solid-state NMR technique that exploits the ability of NMR to selectively detect the solid phase in heterogeneous solid-liquid systems (of the type that exist during crystallization from solution), with the liquid phase "invisible" to the measurement. As a consequence, the technique allows the first solid particles produced during crystallization to be observed and identified, and allows the evolution of different solid phases (e.g., polymorphs) present during the crystallization process to be monitored as a function of time. This in situ solid-state NMR strategy has been demonstrated to be a powerful approach for establishing the sequence of solid phases produced during crystallization and for the discovery of new polymorphs. The most recent advance of the in situ NMR methodology has been the development of a strategy (named "CLASSIC NMR") that allows both solid-state NMR and liquid-state NMR spectra to be measured (essentially simultaneously) during the crystallization process, yielding information on the complementary changes that occur in both the solid and liquid phases as a function of time. In this article, we present new results that highlight the application of our in situ NMR techniques to successfully unravel different aspects of crystallization processes, focusing on: (i) the application of a CLASSIC NMR approach to monitor competitive inclusion processes in solid urea inclusion compounds, (ii) exploiting liquid-state NMR to gain insights into co-crystal formation between benzoic acid and pentafluorobenzoic acid, and (iii) applications of in situ solid-state NMR for the discovery of new solid forms of trimethylphosphine oxide and l-phenylalanine. Finally, the article discusses a number of important fundamental issues relating to practical aspects, the interpretation of results and the future scope of these techniques, including: (i) an assessment of the smallest size of solid particle that can be detected in in situ solid-state NMR studies of crystallization, (ii) an appraisal of whether the rapid sample spinning required by the NMR measurement technique may actually influence or perturb the crystallization behaviour, and (iii) a discussion of factors that influence the sensitivity and time-resolution of in situ solid-state NMR experiments. PMID:25859760

  2. Study of Paramagnetic Chromocenes by Solid-State NMR Spectroscopy

    E-print Network

    Bluemel, Janet

    Study of Paramagnetic Chromocenes by Solid-State NMR Spectroscopy Janet Blu¨mel,* Martin Herker-state NMR spectroscopy to polycrystalline paramagnetic sand- wich compounds was tested for chromocene (Cp2Cr to both topics prompted us to further explore solid-state NMR spectroscopy and to select chromocenes

  3. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for participation on a variety of other projects, including aero-gels and carbon graphite mat en als. The goals of the polymer electrolyte research are to improve the physical properties of the polymers. This includes improving conductivity, durability, and expanding the temperature range over which it is effective. Currently, good conductivity is only present at high temperatures. My goals are to experiment with different arrangements of rods and coils to achieve these desirable properties. Some of my experiments include changing the number of repeat units in the polymer, the size of the diamines, and the types of coil. Analysis of these new polymers indicates improvement in some properties, such as lower glass transition temperature; however, they are not as flexible as desired. With further research we hope to produce polymers that encompass all of these properties to a high degree.

  4. Dynamics of guest molecules in PHTP inclusion compounds as probed by solid-state NMR and fluorescence spectroscopy.

    PubMed

    Srinivasan, G; Villanueva-Garibay, J A; Müller, K; Oelkrug, D; Milian Medina, B; Beljonne, D; Cornil, J; Wykes, M; Viani, L; Gierschner, J; Martinez-Alvarez, R; Jazdzyk, M; Hanack, M; Egelhaaf, H-J

    2009-07-01

    Partially deuterated 1,4-distyrylbenzene () is included into the pseudohexagonal nanochannels of perhydrotriphenylene (PHTP). The overall and intramolecular mobility of is investigated over a wide temperature range by (13)C, (2)H NMR as well as fluorescence spectroscopy. Simulations of the (2)H NMR spectral shapes reveal an overall wobble motion of in the channels with an amplitude of about 4 degrees at T = 220 K and 10 degrees at T = 410 K. Above T = 320 K the wobble motion is superimposed by localized 180 degrees flips of the terminal phenyl rings with a frequency of 10(6) Hz at T = 340 K. The activation energies of both types of motions are around 40 kJ mol(-1) which imply a strong sterical hindrance by the surrounding PHTP channels. The experimental vibrational structure of the fluorescence excitation spectra of is analyzed in terms of small amplitude ring torsional motions, which provide information about the spatial constraints on by the surrounding PHTP host matrix. Combining the results from NMR and fluorescence spectroscopy as well as of time-dependent density functional calculations yields the complete potential surfaces of the phenyl ring torsions. These results, which suggest that intramolecular mobility of is only reduced but not completely suppressed by the matrix, are corroborated by MD simulations. Unrealistically high potential barriers for phenyl ring flips are obtained from MD simulations using rigid PHTP matrices which demonstrate the importance of large amplitude motions of the PHTP host lattice for the mobility of the guest molecules. PMID:19562129

  5. Ligand-Induced Conformational Changes of the Multidrug Resistance Transporter EmrE Probed by Oriented Solid-State NMR Spectroscopy

    PubMed Central

    Gayen, Anindita; Banigan, James R.

    2013-01-01

    We used oriented solid-state NMR spectroscopy and biochemical cross-linking experiments to demonstrate that the ligand-free membrane protein transporter EmrE forms anti-parallel dimers with different monomer tilt angles relative to the lipid bilayer. Our results also show the subtle conformational changes efflux pumps experience in response to drug binding and emphasize the importance of studying membrane proteins in a fluid bilayer environment. PMID:23939862

  6. Exploring large coherent spin systems with solid state NMR

    E-print Network

    Cho, HyungJoon, Ph. D. Massachusetts Institute of Technology

    2005-01-01

    Solid state Nuclear Magnetic Resonance (NMR) allows us to explore a large coherent spin system and provides an ideal test-bed for studying strongly interacting multiple-spin system in a large Hilbert space. In this thesis, ...

  7. Structural studies of amyloid fibrils using solid-state NMR

    E-print Network

    Caporini, Marc Anthony

    2008-01-01

    he development of solid-state NMR techniques and application to amyloid fibrils are presented. In addition, a new method of selective inversion based on chemical shift anisotropy is presented. An improved method for highly ...

  8. PROTEIN STRUCTURAL ANALYSIS FROM SOLID STATE NMR DERIVED ORIENTATIONAL CONSTRAINTS

    E-print Network

    PROTEIN STRUCTURAL ANALYSIS FROM SOLID STATE NMR DERIVED ORIENTATIONAL CONSTRAINTS J. R. QUINE is demonstrated over the previous analysis methods. #12; PROTEIN STRUCTURAL ANALYSIS FROM ORIENTATIONAL of x­ray diffraction and solution NMR as another independent method for determining protein structure

  9. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  10. Solid-state 15N NMR studies of tobacco leaves.

    PubMed

    Ma, Zhiru; Barich, Dewey H; Solum, Mark S; Pugmire, Ronald J

    2004-01-28

    Nitrogen-containing compounds are one important class of constituents in tobacco because of various pharmacological and biological properties. Three types of tobacco leaves (burley, bright, and oriental) were studied using solid-state (15)N NMR cross polarization with magic-angle spinning, dipolar dephasing and five pi replicated magic angle turning (FIREMAT) experiments. The results show that burley tobacco leaves contain significantly more pyridinic nitrogen than that of bright or oriental tobacco leaves. The principal values of (15)N chemical shift tensors of nitrogen functional groups were obtained from the FIREMAT data. Possible assignments of solid-state (15)N NMR resonances were made using nitrogen chemical shift tensors in some model compounds or isotropic chemical shift values from liquid NMR results. To the best of our knowledge, this is the first solid-state (15)N NMR study of tobacco plant material. PMID:14733498

  11. Probing the Transmembrane Structure and Topology of Microsomal Cytochrome-P450 by Solid-State NMR on Temperature-Resistant Bicelles

    PubMed Central

    Yamamoto, Kazutoshi; Gildenberg, Melissa; Ahuja, Shivani; Im, Sang-Choul; Pearcy, Paige; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-01-01

    Though the importance of high-resolution structure and dynamics of membrane proteins has been well recognized, optimizing sample conditions to retain the native-like folding and function of membrane proteins for Nuclear Magnetic Resonance (NMR) or X-ray measurements has been a major challenge. While bicelles have been shown to stabilize the function of membrane proteins and are increasingly utilized as model membranes, the loss of their magnetic-alignment at low temperatures makes them unsuitable to study heat-sensitive membrane proteins like cytochrome-P450 and protein-protein complexes. In this study, we report temperature resistant bicelles that can magnetically-align for a broad range of temperatures and demonstrate their advantages in the structural studies of full-length microsomal cytochrome-P450 and cytochrome-b5 by solid-state NMR spectroscopy. Our results reveal that the N-terminal region of rabbit cytochromeP4502B4, that is usually cleaved off to obtain crystal structures, is helical and has a transmembrane orientation with ~17° tilt from the lipid bilayer normal. PMID:23989972

  12. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  13. Broadband solid-state MAS NMR of paramagnetic systems.

    PubMed

    Pell, Andrew J; Pintacuda, Guido

    2015-02-01

    The combination of new magnet and probe technology with increasingly sophisticated pulse sequences has resulted in an increase in the number of applications of solid-state nuclear magnetic resonance (NMR) spectroscopy to paramagnetic materials and biomolecules. The interaction between the paramagnetic metal ions and the NMR-active nuclei often yields crucial structural or electronic information about the system. In particular the application of magic-angle spinning (MAS) has been shown to be crucial to obtaining resolution that is sufficiently high for studying complex systems. However such systems are generally extremely difficult to study as the shifts and shift anisotropies resulting from the same paramagnetic interaction broaden the spectrum beyond excitation and detection, and the paramagnetic relaxation enhancement (PRE) shortens the lifetimes of the excited signals considerably. One specific area that has therefore been receiving significant attention in recent years, and for which great improvements have been seen, is the development of broadband NMR sequences. The development of new excitation and inversion sequences for paramagnetic systems under MAS has often made the difference between the spectrum being unobtainable, and a complete NMR study being possible. However the development of the new sequences must explicitly take account of the modulation of the anisotropic shift interactions due to the sample rotation, with the resulting spin dynamics often being complicated considerably. The NMR sequences can either be helped or hindered by MAS, with the efficiency of some pulse schemes being destroyed, and others being greatly enhanced. This review describes the pulse sequences that have recently been proposed for broadband excitation, inversion, and refocussing of the signal components of paramagnetic systems. In doing so we define exactly what is meant by "broadband" under spinning conditions, and what the perfect pulse scheme should deliver. We also give a unified description of the spin dynamics under MAS which highlights the strengths and weaknesses of the various schemes, and which can be used as guidance for future research in this area. All the reviewed pulse schemes are evaluated both with simulations and experimental data obtained on the battery material LiFe(0.5)Mn(0.5)PO(4) which is typical of the complexity of the paramagnetic systems that are currently under study. PMID:25669740

  14. Solid-State NMR Characterization of Aluminum Oxide Nanofibers

    SciTech Connect

    Cross, Jennifer L.; Tuttle, Ricky W.; Ramsier, Rex D.; Espe, Mathew

    2006-07-24

    Aluminum oxide nanofibers have been generated by an electrospinning process, creating fibers with diameters on the nanometer scale and aspect ratios greater than a thousand. These nanofibers have the potential of providing enhanced catalytic properties, due to their large surface area and controllable compositions. Solid-state NMR is being used to investigate both the bulk and surface properties of these materials. 27Al NMR has shown that no chemistry occurs during the electrospinning process, even though potentials in excess of 20 kV are applied to the sample. Thermal treatment of the fibers to convert them to alumina results in the formation of different phases, with the phases identified by the relative populations of 4-, 5-, and 6-coordinate alumina sites. Heating to 525°C or 1200°C produces a species similar to the catalytically active gamma-phase or conversion of the nanofibers into the thermodynamically stable ?-alumina phase, respectively. 1H-27Al CP/MAS has shown that the ?-alumina phase has a low population of surface hydroxyls, whereas the “gamma-alumina” form has a much higher fraction of 5-coordinate sites, compared to materials synthesized by traditional techniques. Organophosphates are being used as molecular probes in the characterization of the nanofiber surfaces. 31P CP/MAS data has revealed the presence of mono-, bi- and tri-denate bound phosphate groups on the surface, with the onset of surface alumina dissolution with sample heating. The application of 1H-31P HETCOR shows that the three different types of bound organophosphates are intermixed, rather than there being separate domains for each type. 31P-27Al CP is also being used to distinguish the types of surface alumina sites bound to the phosphate species.

  15. A "special perspectives" issue: Recent achievements and new directions in biomolecular solid state NMR

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.

  16. Methods for Increasing Sensitivity and Throughput of Solid-State NMR Spectroscopy of Pharmaceutical Solids

    E-print Network

    Schieber, Loren

    2010-01-22

    for probe repair, soldering, and bad movies. Joe and I spent a great deal of time together in the lab troubleshooting NMR breakdowns, taking probes apart, and playing yahtze. I wil always appreciate the friendship that Joe and I forged in the basement... compound is most commonly determined by the lack of microscopic birefringence, and/or a broad (or no) powder patern by powder X-ray difraction. Additionaly, the peaks in a solid-state NMR spectrum of an amorphous solid can be 10 times broader than...

  17. RNA structure determination by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-05-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machines--independent of their ability to crystallize-- and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies.

  18. Solid state NMR studies of photoluminescent cadmium chalcogenide nanoparticles.

    PubMed

    Ratcliffe, Christopher I; Yu, Kui; Ripmeester, John A; Badruz Zaman, Md; Badarau, Cristina; Singh, Shanti

    2006-08-14

    Solid state (113)Cd, (77)Se, (13)C and (31)P NMR have been used to study a number of Cd chalcogenide nanoparticles synthesized in tri-n-octyl-phosphine (TOP) with different compositions and architectures. The pure CdSe and CdTe nanoparticles show a dramatic, size-sensitive broadening of the (113)Cd NMR line, which can be explained in terms of a chemical shift distribution arising from multiple Cd environments. From (13)C NMR, it has been discovered that TOP, or its derivatives such as TOPO (trioctylphosphine oxide), is rapidly moving about the surface of the nanoparticles, indicating that it is relatively weakly bound as compared to other materials used as surface ligands, such as hexadecylamine. (31)P NMR of the nanoparticles shows at least five species arising from coordination of the ligands to different surface sites. (113)Cd NMR of CdSeTe alloy and layered nanoparticles has provided crucial information which, in conjunction with results from other techniques (especially optical characterization), has made it possible to develop a detailed picture of the composition and structure of these materials: (i) a true CdSeTe homogeneous alloy nanoparticle, (ii) a nanoparticle segregated into an alloy core region rich in Te, with a CdSeTe (close to 1 : 1 Se : Te) alloy shell and (iii) a CdSe/CdTe/CdSe layered nanoparticle in which the CdTe layer contains a small amount of Se and which forms a Quantum Dot Quantum Well (QDQW) system. The results demonstrate that solid state NMR is a vital tool in the arsenal of characterisation techniques available for nanomaterials. PMID:16871340

  19. Solid-state NMR study of halogen-bonded adducts.

    PubMed

    Bryce, David L; Viger-Gravel, Jasmine

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy offers unique insights into halogen bonds. NMR parameters such as chemical shifts, quadrupolar coupling constants, J coupling constants, and dipolar coupling constants are in principle sensitive to the formation and local structure of a halogen bond. Carrying out NMR experiments on halogen-bonded adducts in the solid state may provide several advantages over solution studies including (1) the absence of solvent which can interact with halogen bond donor sites and complicate spectral interpretation, (2) the lack of a need for single crystals or even long-range crystalline order, and (3) the potential to measure complete NMR interaction tensors rather than simply their isotropic values. In this chapter, we provide an overview of the NMR interactions and experiments which are relevant to the study of nuclei which are often found in halogen bonds (RX···Y) including (13)C, (35/37)Cl, (79/81)Br, (127)I, (77)Se, and (14/15)N. Experimental examples based on iodoperfluorobenzene halides, bis(trimethylammonium)alkane diiodide, and selenocyanate complexes, as well as haloanilinium halides, are discussed. Of particular interest is the sensitivity of the isotropic chemical shifts, the chemical shift tensor spans, and the halide nuclear electric quadrupolar coupling tensors to the halogen bond geometry in such compounds. Technical limitations associated with the NMR spectroscopy of covalently-bonded halogens are underlined. PMID:24760615

  20. Solid-State NMR Characterization of Gas Vesicle Structure

    PubMed Central

    Sivertsen, Astrid C.; Bayro, Marvin J.; Belenky, Marina; Griffin, Robert G.; Herzfeld, Judith

    2010-01-01

    Gas vesicles are gas-filled buoyancy organelles with walls that consist almost exclusively of gas vesicle protein A (GvpA). Intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae were studied by solid-state NMR spectroscopy, and most of the GvpA sequence was assigned. Chemical shift analysis indicates a coil-?-?-?-?-coil peptide backbone, consistent with secondary-structure-prediction algorithms, and complementary information about mobility and solvent exposure yields a picture of the overall topology of the vesicle subunit that is consistent with its role in stabilizing an air-water interface. PMID:20858439

  1. Solid-state NMR characterization of gas vesicle structure.

    PubMed

    Sivertsen, Astrid C; Bayro, Marvin J; Belenky, Marina; Griffin, Robert G; Herzfeld, Judith

    2010-09-22

    Gas vesicles are gas-filled buoyancy organelles with walls that consist almost exclusively of gas vesicle protein A (GvpA). Intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae were studied by solid-state NMR spectroscopy, and most of the GvpA sequence was assigned. Chemical shift analysis indicates a coil-?-?-?-?-coil peptide backbone, consistent with secondary-structure-prediction algorithms, and complementary information about mobility and solvent exposure yields a picture of the overall topology of the vesicle subunit that is consistent with its role in stabilizing an air-water interface. PMID:20858439

  2. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state [sup 13]C and [sup 29]Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS [sup 13]C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of [sup 29]Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The [sup 29]Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  3. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state {sup 13}C and {sup 29}Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS {sup 13}C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of {sup 29}Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The {sup 29}Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  4. Recrystallized S-layer protein of a probiotic Propionibacterium: structural and nanomechanical changes upon temperature or pH shifts probed by solid-state NMR and AFM.

    PubMed

    de sa Peixoto, Paulo; Roiland, Claire; Thomas, Daniel; Briard-Bion, Valérie; Le Guellec, Rozenn; Parayre, Sandrine; Deutsch, Stéphanie-Marie; Jan, Gwénaël; Guyomarc'h, Fanny

    2015-01-13

    Surface protein layers (S layers) are common constituents of the bacterial cell wall and originate from the assembly of strain-dependent surface layer proteins (Slps). These proteins are thought to play important roles in the bacteria's biology and to have very promising technological applications as biomaterials or as part of cell-host cross-talk in probiotic mechanism. The SlpA from Propionibacterium freudenreichii PFCIRM 118 strain was isolated and recrystallized to investigate organization and assembly of the protein using atomic force microscopy and solid-state (1)H and (13)C-nuclear magnetic resonance. SlpA was found to form hexagonal p1 monolayer lattices where the protein exhibited high proportions of disordered regions and of bound water. The lattice structure was maintained, but softened, upon mild heating or acidification, probably in relation with the increasing mobilities of the disordered protein regions. These results gave structural insights on the mobile protein regions exposed by S layer films, upon physiologically relevant changes of their environmental conditions. PMID:25479375

  5. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  6. Protein Dynamics in the Solid State from 2H NMR Line Shape Analysis. II. MOMD Applied to C–D and C–CD3 Probes

    PubMed Central

    2015-01-01

    Deuterium line shape analysis from mobile C–D and C–CD3 groups has emerged as a particularly useful tool for studying dynamics in the solid state. The theoretical models devised so far consist typically of sets of independent dynamic modes. Each such mode is simple and usually case-specific. In this scenario, model improvement entails adding yet another mode (thereby changing the overall model), comparison of different cases is difficult, and ambiguity is unavoidable. We recently developed the microscopic order macroscopic disorder (MOMD) approach as a single-mode alternative. In MOMD, the local spatial restrictions are expressed by an anisotropic potential, the local motion by a diffusion tensor, and the local molecular geometry by relative (magnetic and model-related) tensor orientations, all of adjustable symmetry. This approach provides a consistent method of analysis, thus resolving the issues above. In this study, we apply MOMD to PS-adsorbed LK?14 peptide and dimethylammonium tetraphenylborate (C–CD3 and N–CD3 dynamics, respectively), as well as HhaI methyltransferase target DNA and phase III of benzene-6-hexanoate (C–D dynamics). The success with fitting these four disparate cases, as well as the two cases in the previous report, demonstrates the generality of this MOMD-based approach. In this study, C–D and C–CD3 are both found to execute axial diffusion (rates R? and R?) in the presence of a rhombic potential given by the L = 2 spherical harmonics (coefficients c02 and c22). R? (R?) is in the 102–103 (104–105) s–1 range, and c02 and c22 are on the order of 2–3 kBT. Specific parameter values are determined for each mobile site. The diffusion and quadrupolar tensors are tilted at either 120° (consistent with trans–gauche isomerization) or nearly 110.5° (consistent with methyl exchange). Future prospects include extension of the MOMD formalism to include MAS, and application to 15N and 13C nuclei. PMID:26402431

  7. A Solid-State NMR Investigation of MQ Silicone Copolymers.

    PubMed

    Vasil'ev, Sergey G; Volkov, Vitaly I; Tatarinova, Elena A; Muzafarov, Aziz M

    2013-01-01

    The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. (29)Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) (29)Si{(1)H} techniques in concert with MAS. It was shown that material consist of monofunctional M (?SiO Si (CH3)3) and two types of tetrafunctional Q units: Q(4) ((?SiO)4 Si) and Q(3) ((?SiO)3 SiOH). Spin-lattice relaxation times T 1 measurements of (29)Si nuclei and analysis of (29)Si{(1)H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell. PMID:23914072

  8. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers.

    PubMed

    Salnikov, Evgeniy S; Sarrouj, Hiba; Reiter, Christian; Aisenbrey, Christopher; Purea, Armin; Aussenac, Fabien; Ouari, Olivier; Tordo, Paul; Fedotenko, Illya; Engelke, Frank; Bechinger, Burkhard

    2015-11-19

    Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h. PMID:26487390

  9. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    NASA Astrophysics Data System (ADS)

    Golombeck, Rebecca A.

    The number and chemical identity of reactive sites on surfaces of glass affects the processing, reliability, and lifetime of a number of important commercial products. Surface site densities, distributions, and structural identities are closely tied to the formation and processing of the glass surface, and exert a direct influence on strength and coating performance. The surface of a glass sample may vary markedly from the composition and chemistry of the bulk glass. We are taking a physicochemical approach to understanding adsorption sites on pristine multicomponent glass fibers surfaces, directly addressing the effect of processing on surface reactivity. This project aimed to understand the energy distributions of surface adsorption sites, the chemical/structural identity of those sites, and the relationship of these glasses to glass composition, thermal history, and in future work, surface coatings. We have studied the bulk and surface structure as well as the surface reactivity of the glass fibers with solid-state nuclear magnetic resonance (NMR) spectroscopy, inverse gas chromatography (IGC), and computational chemistry methods. These methods, solid-state NMR and IGC, typically require high surface area materials; however, by using probe molecules for NMR experiments or packing a column at high density for IGC measurements, lower surface area materials, such as glass fibers, can be investigated. The glasses used within this study were chosen as representative specimens of fibers with potentially different reactive sites on their surfaces. The two glass compositions were centered around a nominal E-glass, which contains very little alkali cations and mainly alkaline earth cations, and wool glass, which contains an abundance of alkali cations. The concentration of boron was varied from 0 to 8 mole % in both fiber compositions. Fibers were drawn from each composition at a variety of temperatures and draw speeds to provide a range of glass samples with varying diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the surface properties of a material by examining the retention behavior of a probe molecule. The I

  10. Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes

    NASA Astrophysics Data System (ADS)

    Fricke, Pascal; Chevelkov, Veniamin; Shi, Chaowei; Lange, Adam

    2015-04-01

    Solid-state NMR is a versatile tool to study structure and dynamics of insoluble and non-crystalline biopolymers. Supramolecular protein assemblies are formed by self-association of multiple copies of single small-sized proteins. Because of their high degree of local order, solid-state NMR spectra of such systems exhibit an unusually high level of resolution, rendering them an ideal target for solid-state NMR investigations. Recently, our group has solved the structure of one particular supramolecular assembly, the type-iii-secretion-system needle. The needle subunit comprises around 80 residues. Many interesting supramolecular assemblies with unknown structure have subunits larger in size, which requires development of tailored solid-state NMR strategies to address their structures. In this "Perspective" article, we provide a view on different approaches to enhance sensitivity and resolution in biological solid-state NMR with a focus on the possible application to supramolecular assemblies with large subunit sizes.

  11. 342 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 1, JANUARY 2011 Palm NMR and 1-Chip NMR

    E-print Network

    Ham, Donhee

    342 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 1, JANUARY 2011 Palm NMR and 1-Chip NMR Nan in the palm of a hand, is the smallest NMR system ever built, and is 1200 lighter, 1200 smaller, yet 150 more, such as biomolecular sensing, medical imaging, and oil detection, to name a few. The benefits of NMR would be broadly

  12. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  13. Coherent and stochastic averaging in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Nevzorov, Alexander A.

    2014-12-01

    A new approach for calculating solid-state NMR lineshapes of uniaxially rotating membrane proteins under the magic-angle spinning conditions is presented. The use of stochastic Liouville equation (SLE) allows one to account for both coherent sample rotation and stochastic motional averaging of the spherical dipolar powder patterns by uniaxial diffusion of the spin-bearing molecules. The method is illustrated via simulations of the dipolar powder patterns of rigid samples under the MAS conditions, as well as the recent method of rotational alignment in the presence of both MAS and rotational diffusion under the conditions of dipolar recoupling. It has been found that it is computationally more advantageous to employ direct integration over a spherical grid rather than to use a full angular basis set for the SLE solution. Accuracy estimates for the bond angles measured from the recoupled amide 1H-15N dipolar powder patterns have been obtained at various rotational diffusion coefficients. It has been shown that the rotational alignment method is applicable to membrane proteins approximated as cylinders with radii of approximately 20 Å, for which uniaxial rotational diffusion within the bilayer is sufficiently fast and exceeds the rate 2 × 105 s-1.

  14. Solid-State 13C NMR of Liquid Crystalline Polyesters: Variations in Morphology, Alignment, and Dynamics within a Homologous Series

    E-print Network

    Frydman, Lucio

    Solid-State 13C NMR of Liquid Crystalline Polyesters: Variations in Morphology, Alignment, the structures of these polyesters were examined by high-resolution solid-state 13C NMR. It was found that while

  15. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials.

    PubMed

    Werner, Mayke; Heil, Andreas; Rothermel, Niels; Breitzke, Hergen; Groszewicz, Pedro Braga; Thankamony, Aany Sofia; Gutmann, Torsten; Buntkowsky, Gerd

    2015-11-01

    The successful synthesis and solid state NMR characterization of silica-based organic-inorganic hybrid materials is presented. For this, collagen-like peptides are immobilized on carboxylate functionalized mesoporous silica (COOH/SiOx) materials. A pre-activation of the silica material with TSTU (O-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) is performed to enable a covalent binding of the peptides to the linker. The success of the covalent immobilization is indicated by the decrease of the (13)C CP-MAS NMR signal of the TSTU moiety. A qualitative distinction between covalently bound and adsorbed peptide is feasible by (15)N CP-MAS Dynamic Nuclear Polarization (DNP). The low-field shift of the (15)N signal of the peptide's N-terminus clearly identifies it as the binding site. The DNP enhancement allows the probing of natural abundance (15)N nuclei, rendering expensive labeling of peptides unnecessary. PMID:26411982

  16. Preparation of RNA samples with narrow line widths for solid state NMR investigations

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Bardaro, Michael F.; Varani, Gabriele; Drobny, Gary P.

    2012-10-01

    Solid state NMR can provide detailed structural and dynamic information on biological systems that cannot be studied under solution conditions, and can investigate motions which occur with rates that cannot be fully studied by solution NMR. This approach has successfully been used to study proteins, but the application of multidimensional solid state NMR to RNA has been limited because reported line widths have been too broad to execute most multidimensional experiments successfully. A reliable method to generate spectra with narrow line widths is necessary to apply the full range of solid state NMR spectroscopic approaches to RNA. Using the HIV-1 transactivation response (TAR) RNA as a model, we present an approach based on precipitation with polyethylene glycol that improves the line width of 13C signals in TAR from >6 ppm to about 1 ppm, making solid state 2D NMR studies of selectively enriched RNAs feasible at ambient temperature.

  17. Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses

    SciTech Connect

    Murphy, Kelly A.; Washton, Nancy M.; Ryan, Joseph V.; Pantano, Carlo G.; Mueller, Karl T.

    2013-06-01

    Solid-state NMR is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particles sizes were corroded at 90 °C for periods of one and five months with a surface-area to solution-volume ratio of 100,000 m-1. 1H-29Si CP-CPMG MAS NMR, 1H-27Al CP-MAS NMR, 1H-11B CP-MAS NMR, and 1H-23Na CP-MAS NMR experiments provide isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. 1H-11B CP-MAS NMR observations indicated a retention of boron in hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these neophases are detected within the alteration layers. We identify precursor phases as crystalline sodium metasilicates. An important finding is that layer thickness depends on the length of the initial alteration stages and varies only with respect to silicon species during the residual rate regime.

  18. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR

    SciTech Connect

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarization transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  19. QUANTITATIVE SOLID-STATE 13C NMR SPECTROSCOPY OF ORGANIC MATTER FRACTIONS IN LOWLAND RICE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spin counting on solid-state **13C cross-polarization (CP) nuclear magnetic resonance (NMR) spectra of two humic fractions isolated from tropical lowland soils showed that only 32-81% of potential **13C NMR signal was detected. The observability of **13C NMR signal (Cobs) was higher in the mobile h...

  20. Methodology for solid state NMR off-resonance study of molecular dynamics in heteronuclear systems.

    PubMed

    Jurga, Kazimierz; Wo?niak-Braszak, Aneta; Baranowski, Miko?aj

    2015-10-01

    Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2MHz for protons. This spectrometer includes a specially designed probe which contains two independently tuned and electrically isolated coils installed in the coaxial position on the dewar. A unique probe design allows working at three slightly differing frequencies off and on resonance for protons and at the frequency of 28.411MHz for fluorine nuclei with complete absence of their electrical interference. The probe allows simultaneously creating rf magnetic fields at off-resonance frequencies within the range of 30.2-30.6MHz and at the frequency of 28.411MHz. Presented heteronuclear cross-relaxation off-resonance experiments in the rotating frame provide information about molecular dynamics. PMID:26272112

  1. The Predischarge Chromophore in Bacteriorhodopsin: A 15 N Solid-State NMR

    E-print Network

    Griffin, Robert G.

    The Predischarge Chromophore in Bacteriorhodopsin: A 15 N Solid-State NMR Study of the L with respect to the mechanism of light-driven proton transport because it selectively releases the Schiff base (SB) proton to the extracellular proton channel in the LfM transition. Here we extend our solid- state

  2. Solid State FT-IR and (31)P NMR Spectral Features of Phosphate Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state spectroscopic techniques, including Fourier transform infrared (FT-IR) and solid-state 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies, are powerful tools for evaluating metal speciation and transformation mechanisms of P compounds in the environment. Studie...

  3. Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy of GNNQQNY Nanocrystals and Amyloid Fibrils

    E-print Network

    Debelouchina, Galia Tzvetanova

    Dynamic nuclear polarization (DNP) utilizes the inherently larger polarization of electrons to enhance the sensitivity of conventional solid-state NMR experiments at low temperature. Recent advances in instrumentation ...

  4. Solid-State NMR Analysis of Excipients and Drug-Excipient Interactions in the Amorphous State

    E-print Network

    Sperger, Diana

    2010-08-27

    Solid-state NMR (SSNMR) experiments were used to investigate numerous aspects of pharmaceutically relevant amorphous materials, such as structure, molecular weight, water content, interactions with other molecules, and ...

  5. 31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin

    PubMed Central

    Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip

    2013-01-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274

  6. Analysis of trivalent cation complexation to functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Shusterman, Jennifer; Mason, Harris; Bruchet, Anthony; Zavarin, Mavrik; Kersting, Annie B; Nitsche, Heino

    2014-11-28

    Functionalized mesoporous silica has applications in separations science, catalysis, and sensors. In this work, we studied the fundamental interactions of trivalent cations with functionalized mesoporous silica. We contacted trivalent cations of varying ionic radii with N-[5-(trimethoxysilyl)-2-aza-1-oxopentyl]caprolactam functionalized mesoporous silica with the aim of probing the binding mechanism of the metal to the surface of the solid. We studied the functionalized silica using solid-state nuclear magnetic resonance (NMR) spectroscopy before and after contact with the metals of interest. We collected NMR spectra of the various metals, as well as of (29)Si and (13)C to probe the silica substrate and the ligand properties, respectively. The NMR spectra indicate that the metals bind to the functionalized silica via two mechanisms. Aluminum sorbed to both the silica and the ligand, but with different coordination for each. Scandium also sorbed to both the silica and the ligand, and unlike the aluminum, had the same coordination number. Additionally, the functionalized silica was susceptible to acid hydrolysis and two primary mechanisms of degradation were observed: detachment from the silica surface and opening of the seven-membered ring in the ligand. Opening of the seven-membered ring may be beneficial in that it decreases steric hindrance of the molecule for binding. PMID:25265419

  7. Insights into the structure and dynamics of measles virus nucleocapsids by 1H-detected solid-state NMR.

    PubMed

    Barbet-Massin, Emeline; Felletti, Michele; Schneider, Robert; Jehle, Stefan; Communie, Guillaume; Martinez, Nicolas; Jensen, Malene Ringkjøbing; Ruigrok, Rob W H; Emsley, Lyndon; Lesage, Anne; Blackledge, Martin; Pintacuda, Guido

    2014-08-19

    (1)H-detected solid-state nuclear magnetic resonance (NMR) experiments are recorded on both intact and trypsin-cleaved sedimented measles virus (MeV) nucleocapsids under ultra-fast magic-angle spinning. High-resolution (1)H,(15)N-fingerprints allow probing the degree of molecular order and flexibility of individual capsid proteins, providing an exciting atomic-scale complement to electro microscopy (EM) studies of the same systems. PMID:25140429

  8. Insights into the Structure and Dynamics of Measles Virus Nucleocapsids by 1H-detected Solid-state NMR

    PubMed Central

    Barbet-Massin, Emeline; Felletti, Michele; Schneider, Robert; Jehle, Stefan; Communie, Guillaume; Martinez, Nicolas; Jensen, Malene Ringkjøbing; Ruigrok, Rob W.H.; Emsley, Lyndon; Lesage, Anne; Blackledge, Martin; Pintacuda, Guido

    2014-01-01

    1H-detected solid-state nuclear magnetic resonance (NMR) experiments are recorded on both intact and trypsin-cleaved sedimented measles virus (MeV) nucleocapsids under ultra-fast magic-angle spinning. High-resolution 1H,15N-fingerprints allow probing the degree of molecular order and flexibility of individual capsid proteins, providing an exciting atomic-scale complement to electro microscopy (EM) studies of the same systems. PMID:25140429

  9. Solid state NMR: The essential technology for helical membrane protein structural characterization.

    PubMed

    Cross, Timothy A; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  10. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  11. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    NASA Astrophysics Data System (ADS)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX/Linux Operating system: UNIX/Linux Has the code been vectorised or parallelized?: Yes RAM: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 3.5M, SMP AMD opteron Classification: 2.3 External routines: OCTAVE ( http://www.gnu.org/software/octave/), GNU Scientific Library ( http://www.gnu.org/software/gsl/), OPENMP ( http://openmp.org/wp/) Nature of problem: The optimal simulation and modeling of multiple quantum magic angle spinning NMR spectra, for general systems, especially those with mild to significant disorder. The approach outlined and implemented in C and OCTAVE also produces model parameter error estimates. Solution method: A model for each distinct chemical site is first proposed, for the individual contribution of crystallite orientations to the spectrum. This model is averaged over all powder angles [1], as well as the (stochastic) parameters; isotropic chemical shift and quadrupole coupling constant. The latter is accomplished via sampling from a bi-variate Gaussian distribution, using the Box-Muller algorithm to transform Sobol (quasi) random numbers [2]. A simulated annealing optimization is performed, and finally the non-linear jackknife [3] is applied in developing model parameter error estimates. Additional comments: The distribution contains a script, mqmasOpt.m, which runs in the OCTAVE language workspace. Running time: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 58.35 seconds, SMP AMD opteron. References:S.K. Zaremba, Annali di Matematica Pura ed Applicata 73 (1966) 293. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992. T. Fox, D. Hinkley, K. Larntz, Technometrics 22 (1980) 29.

  12. Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy

    E-print Network

    Frydman, Lucio

    strength are often required in UW NMR spectroscopy. One technique for enhancing the S/N re- liesBroadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy Kristopher J. Harris a , Adonis Lupulescu b , Bryan E.G. Lucier a , Lucio Frydman b, , Robert W

  13. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  14. 1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020 MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  15. CHARACTERIZATION OF SOIL ORGANIC MATTER IN TROPICAL RICE SOILS BY ADVANCED SOLID-STATE NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical structures of soil organic matter in a continually submerged, triple-cropped lowland rice soil having large inputs of rice straw and an aerobic dryland rice soil were compared using advanced solid-state nuclear magnetic resonance (NMR) techniques. Quantitative 13C NMR shows that a humi...

  16. Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR.

    PubMed

    Ong, Yean Sin; Lakatos, Andrea; Becker-Baldus, Johanna; Pos, Klaas M; Glaubitz, Clemens

    2013-10-23

    Escherichia coli EmrE, a homodimeric multidrug antiporter, has been suggested to offer a convenient paradigm for secondary transporters due to its small size. It contains four transmembrane helices and forms a functional dimer. We have probed the specific binding of substrates TPP(+) and MTP(+) to EmrE reconstituted into 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes by (31)P MAS NMR. Our NMR data show that both substrates occupy the same binding pocket but also indicate some degree of heterogeneity of the bound ligand population, reflecting the promiscuous nature of ligand binding by multidrug efflux pumps. Direct interaction between (13)C-labeled TPP(+) and key residues within the EmrE dimer has been probed by through-space (13)C-(13)C correlation spectroscopy. This was made possible by the use of solid-state NMR enhanced by dynamic nuclear polarization (DNP) through which a 19-fold signal enhancement was achieved. Our data provide clear evidence for the long assumed direct interaction between substrates such as TPP(+) and the essential residue E14 in transmembrane helix 1. Our work also demonstrates the power of DNP-enhanced solid-state NMR at low temperatures for the study for secondary transporters, which are highly challenging for conventional NMR detection. PMID:24047229

  17. Heat management strategies for solid-state NMR of functional proteins

    NASA Astrophysics Data System (ADS)

    Fowler, Daniel J.; Harris, Michael J.; Thompson, Lynmarie K.

    2012-09-01

    Modern solid-state NMR methods can acquire high-resolution protein spectra for structure determination. However, these methods use rapid sample spinning and intense decoupling fields that can heat and denature the protein being studied. Here we present a strategy to avoid destroying valuable samples. We advocate first creating a sacrificial sample, which contains unlabeled protein (or no protein) in buffer conditions similar to the intended sample. This sample is then doped with the chemical shift thermometer Sm2Sn2O7. We introduce a pulse scheme called TCUP (for Temperature Calibration Under Pulseload) that can characterize the heating of this sacrificial sample rapidly, under a variety of experimental conditions, and with high temporal resolution. Sample heating is discussed with respect to different instrumental variables such as spinning speed, decoupling strength and duration, and cooling gas flow rate. The effects of different sample preparation variables are also discussed, including ionic strength, the inclusion of cryoprotectants, and the physical state of the sample (i.e. liquid, solid, or slurry). Lastly, we discuss probe detuning as a measure of sample thawing that does not require retuning the probe or using chemical shift thermometer compounds. Use of detuning tests and chemical shift thermometers with representative sample conditions makes it possible to maximize the efficiency of the NMR experiment while retaining a functional sample.

  18. Enhancement of solid-state proton NMR via SPINOE with laser-polarized xenon

    E-print Network

    Xin Zhou; Jun Luo; Xian-ping Sun; Xi-zhi Zeng; Shang-wu Ding; Mai-li Liu; Ming-sheng Zhan

    2004-01-07

    We have first successfully transferred the 129Xe polarization of natural isotopic composition to the proton of solid-state 1HCl via Spin Polarization-Induced Nuclear Overhauser Effect (SPINOE), by mixing the hyperpolarized 129Xe gas and the 1HCl gas and then cooling them to their condensated state in a flow system. The solid-state enhanced factor of the NMR signal of 6 for 1H was observed, and the equation of solid-state polarization enhancement via cross relaxation has also been theoretically deduced. Using this equation, the theoretically calculated enhancement is in agreement with the measured value within error. Also, this technique is maybe useful to establish a solid state NMR quantum computer.

  19. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified. PMID:24041242

  20. Solid-state 73Ge NMR spectroscopy of simple organogermanes.

    PubMed

    Hanson, Margaret A; Sutrisno, Andre; Terskikh, Victor V; Baines, Kim M; Huang, Yining

    2012-10-22

    Germanium-73 is an extremely challenging nucleus to examine by NMR spectroscopy due to its unfavorable NMR properties. Through the use of an ultrahigh (21.1 T) magnetic field, a systematic study of a series of simple organogermanes was carried out. In those cases for which X-ray structural data were available, correlations were drawn between the NMR parameters and structural metrics. These data were combined with DFT calculations to obtain insight into the structures of several compounds with unknown crystal structures. PMID:23023927

  1. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  2. Solid-state NMR studies of Ziegler-Natta and metallocene catalysts.

    PubMed

    Tijssen, Koen C H; Blaakmeer, E S Merijn; Kentgens, Arno P M

    2015-01-01

    Ziegler-Natta catalysts are the workhorses of polyolefin production. However, although they have been used and intensively studied for half a century, there is still no comprehensive picture of their mechanistic operation. New techniques are needed to gain more insight in these catalysts. Solid-state NMR has reached a high level of sophistication over the last few decades and holds great promise for providing a deeper insight in Ziegler-Natta catalysis. This review outlines the possibilities for solid-state NMR to characterize the different components and interactions in Ziegler-Natta and metallocene catalysts. An overview is given of some of the expected mechanisms and the resulting polymer microstructure and other characteristics. In the second part of this review we present studies that have used solid-state NMR to investigate the composition of Ziegler-Natta and metallocene catalysts or the interactions between their components. PMID:25957882

  3. In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes.

    PubMed

    Warnet, Xavier L; Arnold, Alexandre A; Marcotte, Isabelle; Warschawski, Dror E

    2015-12-15

    Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5 years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes. PMID:26682804

  4. Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study.

    PubMed

    Ciesielski, Filip; Griffin, David C; Rittig, Michael; Moriyón, Ignacio; Bonev, Boyan B

    2013-08-01

    Lipopolysaccharide (LPS) is a major component of the external leaflet of bacterial outer membranes, key pro-inflammatory factor and an important mediator of host-pathogen interactions. In host cells it activates the complement along with a pro-inflammatory response via a TLR4-mediated signalling cascade and shows preference for cholesterol-containing membranes. Here, we use solid state (13)C and (31)P MAS NMR to investigate the interactions of LPS from three bacterial species, Brucella melitensis, Klebsiella pneumoniae and Escherichia coli, with mixed lipid membranes, raft models. All endotoxin types are found to be pyrophosphorylated and Klebsiellar LPS is phosphonylated, as well. Carbon-13 MAS NMR indicates an increase in lipid order in the presence of LPS. Longitudinal (31)P relaxation, providing a direct probe of LPS molecular and segmental mobility, reveals a significant reduction in (31)P T1 times and lower molecular mobility in the presence of ternary lipid mixtures. Along with the ordering effect on membrane lipid, this suggests a preferential partitioning of LPS into ordered bilayer sphingomyelin/cholesterol-rich domains. We hypothesise that this is an important evolutionary drive for the selection of GPI-anchored raft-associated LPS-binding proteins as a first line of response to membrane-associated LPS. PMID:23567915

  5. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  6. What Can Solid State NMR Contribute To Our Understanding of Protein Folding?

    PubMed Central

    Hu, Kan-Nian; Tycko, Robert

    2010-01-01

    Complete understanding of the folding process that connects a structurally disordered state of a protein to an ordered, biochemically functional state requires detailed characterization of intermediate structural states with high resolution and site specificity. While the intrinsically inhomogeneous and dynamic nature of unfolded and partially folded states limits the efficacy of traditional x-ray diffraction and solution NMR in structural studies, solid state NMR methods applied to frozen solutions can circumvent the complications due to molecular motions and conformational exchange encountered in unfolded and partially folded states. Moreover, solid state NMR methods can provide both qualitative and quantitative structural information at the site-specific level, even in the presence of structural inhomogeneity. This article reviews relevant solid state NMR methods and their initial applications to protein folding studies. Using either chemical denaturation to prepare unfolded states at equilibrium or a rapid freezing apparatus to trap non-equilibrium, transient structural states on a sub-millisecond time scale, recent results demonstrate that solid state NMR can contribute essential information about folding processes that is not available from more familiar biophysical methods. PMID:20542371

  7. Solid State NMR Studies of Energy Conversion and Storage Materials

    NASA Astrophysics Data System (ADS)

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  8. Characterization of animal manure using advanced solid-state C-13 NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of chemical structure of animal manure is necessary for its effective utilization. However, characterization of animal manure is challenging since it is a complex mixture and partially soluble. Solid-state C-13 NMR (nuclear magnetic resonance) spectroscopy is regarded as the best tool to i...

  9. Z .Solid State Nuclear Magnetic Resonance 11 1998 139156 SQUID detected NMR and NQR

    E-print Network

    Augustine, Mathew P.

    Z .Solid State Nuclear Magnetic Resonance 11 1998 139­156 SQUID detected NMR and NQR Matthew P dc Superconducting QUantum Interference Device SQUID is a sensitive detector of magnetic flux to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned

  10. Adsorption of Ruthenium and Iron Metallocenes on Silica: A Solid-State NMR Study

    E-print Network

    Bluemel, Janet

    Adsorption of Ruthenium and Iron Metallocenes on Silica: A Solid- State NMR Study Kyle J. Cluff spectra of surface-adsorbed ferrocene-d2 prove that the motion of the metallocenes on the surfaces is fast Metallocenes and their derivatives constitute an important substance class, and they are indispensable

  11. Solid-state NMR and ESR studies of activated carbons produced from pecan shells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activated carbon from pecan shells has shown promise as an adsorbent in water treatment and sugar refining. However, the chemistry of the material is complex and not fully understood. We report here the application of solid state NMR and ESR to study the chemical structure, mobility, and pore volu...

  12. SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM

    E-print Network

    Bluemel, Janet

    @ Pergamon SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM performed on powdered and single crystal lithium niobate of defectivecongruent composition (48.4%LirO;51.6% NbrOr) using a magnetic field strength of 7.05 Tesla with the aim to distinguish between a lithium

  13. Solid-State 25Mg NMR of a Magnesium(II) Adensosine 5-Triphosphate Complex

    E-print Network

    Frydman, Lucio

    Solid-State 25Mg NMR of a Magnesium(II) Adensosine 5-Triphosphate Complex Christopher V. Grant interacting with RNA, such as magnesium- (II) binding sites within ribozymes, has become a topic of intense such as magnesium(II). X-ray crystallography has been most useful at providing structural information about

  14. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  15. 1H and 13C Solid-state NMR of G. barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated with 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiment...

  16. Enhancing resolution and sensitivity of 17 O solid-state NMR

    E-print Network

    Watts, Anthony

    , University of Warwick, Coventry CV4 7AL, UK b Biochemistry Department, University of Oxford, South Parks Road CV4 7AL, UK e National Institute for Chemical Physics and Biophysics, Akadeemia Tee 23, Tallinn rights reserved. 1. Introduction 17 O solid-state NMR offers a novel, practical approach to tackle one

  17. 1H and 13C Solid-state NMR of Gossypium barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated by 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiments pro...

  18. Investigation of Moisture Interaction with Cellulose Using Solid-State NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in Gossypium barbadense (Pima) cotton were investigated by 1H and 13C solid-state NMR techniques. 1H spin diffusion results indicate that water is present in multiple layers within the cotton fiber, each layer bei...

  19. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  20. A Multinuclear Solid-State NMR Analysis of Vitamin B12 in Its Different Polymorphic Forms

    E-print Network

    Frydman, Lucio

    A Multinuclear Solid-State NMR Analysis of Vitamin B12 in Its Different Polymorphic Forms Ales of cyanocobalamin (vitamin B12) polymorphs. These studies involved recrystallizing a series of samples under structures described by Hodgkin and co-workers in their seminal vitamin B12 crystallographic analyses. Most

  1. ANALYSIS OF POTENTIALLY MOBILE PHOSPHORUS IN ARABLE SOILS USING SOLID STATE NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many intensive agroecosystems continued inputs of phosphorus (P) over many years can significantly increase soil P concentrations and the risk of P losses to surface waters. This study used solid-state 31P nuclear magnetic resonance (NMR) spectroscopy (high power decoupled (HPDec)/ magic angle s...

  2. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations

    E-print Network

    lactoferrin [1] that retains broad spectrum antimicrobial activity, and is therefore an attractive candidateMembrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments-peptides Antimicrobial Lactoferricin Molecular dynamics Membrane interactions Solid-state NMR One approach to the growing

  3. Genetic algorithms and solid state NMR pulse sequences

    NASA Astrophysics Data System (ADS)

    Bechmann, Matthias; Clark, John; Sebald, Angelika

    2013-03-01

    The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C721 dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C721 pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning.

  4. Genetic algorithms and solid state NMR pulse sequences

    E-print Network

    Bechmann, Matthias; Sebald, Angelika

    2013-01-01

    The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C7 dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C7 pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning.

  5. Quantitative solid state {sup 13}C NMR measurements on kerogens

    SciTech Connect

    Maroto-Valer, M.M.; Love, G.D.; Snape, C.E.

    1996-12-31

    The use of the well-established techniques of high power decoupling, magic angle spinning (MAS) and cross-polarisation (CP) are used routinely to obtain high resolution {sup 13}C spectra of kerogens. However, due to unfortunate spin dynamics in CP, not all the carbons are observed. Results on a selection of type I sand II kerogens will be presented to demonstrate that the best strategy to obtain quantitative {sup 13}C NMR results is offered by a combination of a low magnetic field strength to minimize problems with spinning sidebands and the simple, albeit insensitive, Bloch decay or single pulse excitation (SPE) technique. Virtually all of the carbon in the type I and II kerogens and a wide range of coals has been observed using the SPE technique with the aromaticity and non-protonated aromatic carbon concentrations being invariably higher than those derived by the more rapid, but quantitatively unreliable CP method. Further, an extremely good correlation has been obtained between the carbon aromaticities and atomic H/C ratios for the samples investigated. The methodology has also been used to estimate the long methylene chain contents of kerogens and the extent of aromatisation that occurs in normal pyrolysis and pyrolysis under high hydrogen pressure (hydropyrolysis).

  6. Gas vesicles across kingdoms: a comparative solid state NMR study

    PubMed Central

    Daviso, Eugenio; Belenky, Marina; Griffin, Robert G.; Herzfeld, Judith

    2013-01-01

    The buoyancy organelles of aquatic microorganisms have to meet stringent specifications: allowing gases to equilibrate freely across the proteinaceous shell, preventing the condensation of water vapor inside the hollow cavity, and resisting collapse under hydrostatic pressures that vary with column depth. These properties are provided by the 7–8 kDa gas vesicle protein A (GvpA), repeats of which form all but small, specialized portions of the shell. Magic angle spinning NMR is uniquely capable of providing high resolution information on the fold and assembly of GvpA. Here we compare results for the gas vesicles of the haloarchae Halobacterium salinarum with those obtained previously for the cyanobacterium Anabaena flos-aquae. The data suggest that the two organisms follow similar strategies for avoiding water condensation. On the other hand, in its relatively shallow habitat, H. salinarum is able to avoid collapse with a less costly GvpA fold than is adopted by A. flos-aquae. PMID:23920491

  7. Can one and two-dimensional solid-state NMR fingerprint zeolite framework topology?

    PubMed

    Martineau, Charlotte; Vial, Sandrine; Barth, Dominique; Quessette, Franck; Taulelle, Francis

    2015-02-01

    In this contribution, we have explored the potential and strength of one-dimensional (1D) (29)Si and two-dimensional (2D) (29)S-(29)Si and (29)Si-(17)O NMR as invariants of non-oriented graph for fingerprinting zeolite frameworks. 1D and 2D (29)Si NMR can indeed provide indications on the graph vertices, edges and allow the construction of the adjacency matrix, i.e. the set of connections between the graph vertices. From the structural data, hypothetical 1D (29)Si and 2D (29)Si-(29)Si NMR signatures for 193 of the zeolite frameworks reported in the Atlas of Zeolite Structures have been generated. Comparison between all signatures shows that thanks to the 1D (29)Si NMR data only, almost 20% of the known zeolite frameworks could be distinguished. Further NMR signatures were generated by taking into account 2D (29)Si-(29)Si and (29)Si-(17)O correlations. By sorting and comparison of all the NMR data, up to 80% of the listed zeolites could be unambiguously discriminated. This work indicates that (i) solid-state NMR data indeed represent a rather strong graph invariant for zeolite framework, (ii) despite their difficulties and costs (isotopic labeling is often required, the NMR measurements can be long), (29)Si and (17)O NMR measurements are worth being investigated in the frame of zeolites structure resolution. This approach could also be generalized to other zeolite-related materials containing NMR-measurable nuclides. PMID:25454465

  8. Solid-State (63)Cu, (65)Cu, and (31)P NMR Spectroscopy of Photoluminescent Copper(I) Triazole Phosphine Complexes.

    PubMed

    Yu, Huaguang; Tan, Xiuzhen; Bernard, Guy M; Terskikh, Victor V; Chen, Jinglin; Wasylishen, Roderick E

    2015-07-30

    The results of a solid-state (63/65)Cu and (31)P NMR investigation of several copper(I) complexes with functionalized 3-(2'-pyridyl)-1,2,4-triazole and phosphine ligands that have shown potential in the preparation of photoluminescent devices are reported. For each complex studied, distinct NMR parameters, with moderate (63)Cu nuclear quadrupolar coupling constant (CQ) values ranging from -17.2 to -23.7 MHz, are attributed to subtle variations in the distorted four-coordinate environments about the copper nuclei. The spans of the copper chemical shift (CS) tensors, ?11-?33, for the mono- and bisphosphine complexes are also similar, ranging from 1000 to 1150 ppm, but that for a complex with a strained bidentate phosphine ligand is only 650 ppm. The effects of residual dipolar and indirect spin-spin coupling arising from the (63/65)Cu- (31)P spin pairs, observed in the solid-state (31)P NMR spectra of these complexes, yield information about the orientations of the copper electric field gradient (EFG) tensors relative to the Cu-P bond. Variable-temperature (31)P NMR measurements for [Cu(bptzH)(dppe)]ClO4 (bptzH = 5-tert-butyl-3-(2'-pyridyl)-1,2,4-triazole; dppe = 1,2-bis(diphenylphosphino)ethane), undertaken to investigate the cause of the broad unresolved spectra observed at room temperature, demonstrate that the broadening arises from partial self-decoupling of the (63/65)Cu nuclei, a consequence of rapid quadrupolar relaxation. Ab initio calculations of copper EFG and CS tensors were performed to probe relationships between NMR parameters and molecular structure. The analysis demonstrated that CQ((63/65)Cu) is negative for all complexes studied here and that the largest components of the EFG tensors are generally coincident with ?11. PMID:26101890

  9. Mechanism of dilute-spin-exchange in solid-state NMR

    SciTech Connect

    Lu, George J.; Opella, Stanley J.

    2014-03-28

    In the stationary, aligned samples used in oriented sample (OS) solid-state NMR, {sup 1}H-{sup 1}H homonuclear dipolar couplings are not attenuated as they are in magic angle spinning solid-state NMR; consequently, they are available for participation in dipolar coupling-based spin-exchange processes. Here we describe analytically the pathways of {sup 15}N-{sup 15}N spin-exchange mediated by {sup 1}H-{sup 1}H homonuclear dipolar couplings. The mixed-order proton-relay mechanism can be differentiated from the third spin assisted recoupling mechanism by setting the {sup 1}H to an off-resonance frequency so that it is at the “magic angle” during the spin-exchange interval in the experiment, since the “magic angle” irradiation nearly quenches the former but only slightly attenuates the latter. Experimental spectra from a single crystal of N-acetyl leucine confirm that this proton-relay mechanism plays the dominant role in {sup 15}N-{sup 15}N dilute-spin-exchange in OS solid-state NMR in crystalline samples. Remarkably, the “forbidden” spin-exchange condition under “magic angle” irradiation results in {sup 15}N-{sup 15}N cross-peaks intensities that are comparable to those observed with on-resonance irradiation in applications to proteins. The mechanism of the proton relay in dilute-spin-exchange is crucial for the design of polarization transfer experiments.

  10. (14)N overtone transition in double rotation solid-state NMR.

    PubMed

    Haies, Ibraheem M; Jarvis, James A; Brown, Lynda J; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-10-01

    Solid-state NMR transitions involving outer energy levels of the spin-1 (14)N nucleus are immune, to first order in perturbation theory, to the broadening caused by the nuclear quadrupole interaction. The corresponding overtone spectra, when acquired in conjunction with magic-angle sample spinning, result in lines, which are just a few kHz wide, permitting the direct detection of nitrogen compounds without the need for labeling. Despite the success of this technique, "overtone" resonances are still broadened due to indirect, second order effects arising from the large quadrupolar interaction. Here we demonstrate that another order of magnitude in spectral resolution may be gained by using double rotation. This brings the width of the (14)N solid-state NMR lines much closer to the region commonly associated with high-resolution solid-state NMR spectroscopy of (15)N and demonstrates the improvements in resolution that may be possible through the development of pulsed methodologies to suppress these second order effects. PMID:26299667

  11. LARGE SCALE PRODUCTION, PURIFICATION, AND 65CU SOLID STATE NMR OF AZURIN

    SciTech Connect

    Gao, A.; Heck, R.W.

    2008-01-01

    This paper details a way to produce azurin with an effi ciency over 10 times greater than previously described and demonstrates the fi rst solid state nuclear magnetic resonance spectrum of 65Cu(I) in a metalloprotein. A synthetic gene for azurin based upon the DNA sequence from Pseudomonas aeruginosa including the periplasmic targeting sequence was subcloned into a T7 overexpression vector to create the plasmid pGS-azurin, which was transformed into BL21 (DE3) competent cells. The leader sequence on the expressed protein causes it to be exported to the periplasmic space of Escherichia coli. Bacteria grown in a fermentation unit were induced to overexpress the azurin, which was subsequently purifi ed through an endosmotic shock procedure followed by high performance liquid chromatography (HPLC). 1,500 mg of azurin were purifi ed per liter of culture. 65Cu(II) was added to apo-azurin and then reduced. The 65Cu metal cofactor in azurin was observed with solid state nuclear magnetic resonance (NMR) to determine any structural variations that accompanied copper reduction. This is the fi rst solid state NMR spectra of a copper(I) metalloprotein. Analysis of the NMR spectra is being used to complement hypotheses set forth by x-ray diffraction and computational calculations of electron transfer mechanisms in azurin.

  12. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  13. Solid-State NMR 31P Paramagnetic Relaxation Enhancement Membrane Protein Immersion Depth Measurements

    PubMed Central

    2015-01-01

    Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that 31P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the 31P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein–lipid interactions and membrane protein structural topology. Solid-state 31P NMR data on the 23 amino acid ?-helical nicotinic acetylcholine receptor nAChR M2? transmembrane domain model peptide followed predicted behavior of 31P PRE rates of the phospholipid headgroup as the spin-label moves from the membrane surface toward the center of the membrane. Residue 11 showed the smallest changes in 31P PRE (center of the membrane), while residue 22 shows the largest 31P PRE change (near the membrane surface), when compared to the diamagnetic control M2? sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth. PMID:24689497

  14. Solid state NMR and pair distribution function studies of silicon electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Key, Baris

    The universally used negative electrode material in a LIB is carbon, because of its moderate capacity (372 mAhg-1 for graphite), cyclability and high rate capability. However, new, low cost, safe electrode materials with higher capacities are still urgently required for both portable and transportation applications. Silicon anodes are particularly attractive alternatives to carbon with extremely high gravimetric energy densities (3572 mAhg-1). Compared to graphite, silicon has a massive volumetric capacity of 8322 mAhcm-3 (calculated based on the original volume of silicon) which is approximately ten times that graphite. At room temperature, upon electrochemical lithiation, silicon undergoes a crystalline to amorphous phase transition forming a lithiated amorphous silicide phase. Unfortunately, due to the amorphous nature of the lithiated silicides, it is not possible to monitor all the structural changes that occur during lithium insertion/removal with conventional methods such as diffraction. The short range order of the amorphous materials remains unknown, preventing attempts to optimize performance based on electrochemical-structure correlations. In this work, a combination of local structure probes, ex-situ 7Li nuclear magnetic resonance (NMR) studies and pair distribution function (PDF) analysis of X-ray data was applied to investigate the changes in short range order that occur during the initial charge and discharge cycles. The distinct electrochemical profiles observed subsequent to the 1 st discharge have been shown to be associated with the formation of distinct amorphous lithiated silicide structures. A (de)lithiation model consisting of four different mechanisms, each being valid for regions of the charge or discharge process is proposed to explain the hysteresis and the steps in the electrochemical profile observed during lithiation and delithiation of Si. A spontaneous reaction of the fully lithiated lithium silicide with the electrolyte is directly observed in the in situ NMR experiments; this mechanism results in self-discharge, and potentially capacity loss. The rate of this self-discharge process is much slower when CMC (carboxymethylcellulose) is used as the binder. Previous work has shown that the electrochemical performance of nanoparticulate crystalline silicon is different from the bulk. The lithiation and delithiation mechanisms of nano-Si for lithium ion batteries are studied by using ex-situ solid state MAS NMR and PDF analysis. The main differences vs. bulk lithiation and delithiation are identified by characterizing the amorphous phases formed.

  15. Solid State Separated-Local-Field NMR Spectroscopy on Half-Integer Quadrupolar Nuclei: Principles and Applications

    E-print Network

    Frydman, Lucio

    Solid State Separated-Local-Field NMR Spectroscopy on Half-Integer Quadrupolar Nuclei: Principles-mail: lucio.frydman@weizmann.ac.il Abstract: New multidimensional NMR methods correlating the quadrupolar and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have

  16. Characterization of Non-Innocent Metal Complexes Using Solid-State NMR Spectroscopy: o-Dioxolene Vanadium Complexes

    PubMed Central

    Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.

    2012-01-01

    51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from ?200 ppm to 400 ppm in solution and from ?219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of ?300 ppm to ?700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because the 51V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox active complexes that exhibit similar coordination chemistry as the vanadium catechol complexes. PMID:21842875

  17. [superscript 2]H-DNP-enhanced [superscript 2]H-[superscript 13]C solid-state NMR correlation spectroscopy

    E-print Network

    Maly, Thorsten

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution [superscript 2]H–[superscript 13]C correlation spectra and the method is therefore of great interest ...

  18. Solid-state NMR characterization of 69Ga and 71Ga in crystalline solids.

    PubMed

    Ash, Jason T; Grandinetti, Philip J

    2006-09-01

    Gallium model systems containing four- and six-coordinate gallium sites have been investigated using solid-state NMR. Measurement of the isotropic chemical shift and electric field gradient (EFG) have been performed at 9.4 T on alpha-Ga2O3, beta-Ga2O3, LiGaO2, NaGaO2, KGaO2, Ga2(SO4)3, and LaGaO3 using a variety of techniques on both NMR active nuclei (69Ga and 71Ga) including static, high speed magic-angle spinning (MAS), satellite transition (ST) spectroscopy, and rotor-assisted population transfer (RAPT). The chemical shift is found to correlate well with the coordination number, with four-coordinate gallium having values of approximately 50 ppm and six-coordinate gallium having values near 225 ppm (referenced to 1 M gallium nitrate solution). The magnitude of the EFG is found to be correlated to the distortion of the gallium polyhedra, with the strained systems having EFGs of 3 x 10(21) Vm(-2) or more, while the less strained systems have values of 1.5 x 10(21) Vm(-2) or less. A plot of chemical shift versus EFG suggests that solid-state NMR of gallium oxyanions can be more discriminating than liquid state NMR chemical shifts alone. PMID:16755602

  19. Quantitative identification of metastable magnesium carbonate minerals by solid-state 13C NMR spectroscopy.

    PubMed

    Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Wang, Louis S; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

    2015-01-01

    In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR. PMID:25437754

  20. Correlation of solid-state NMR relaxation times to functional properties such as chemical stability and particle size

    E-print Network

    Dempah, Kassibla Elodie

    2013-05-31

    .................................................................................... 28 2.4 Fundamentals of Nuclear Magnetic Resonance Spectroscopy ..................................... 29 2.5 Solid-state NMR spectroscopy ......................................................................................... 31 2.5.1 High power... and related matters*. Journal of Pharmacy and Pharmacology 59(2):225-239. 27. Saindon PJ, Cauchon NS, Sutton PA, Chang Cj, Peck GE, Byrn SR 1993. Solid-State Nuclear Magnetic Resonance (NMR) Spectra of Pharmaceutical Dosage Forms. Pharmaceutical Research 10...

  1. Freezing point depression of water in phospholipid membranes: a solid-state NMR study.

    PubMed

    Lee, Dong-Kuk; Kwon, Byung Soo; Ramamoorthy, Ayyalusamy

    2008-12-01

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37. PMID:18991419

  2. An Efficient Labelling Approach to Harness Backbone and Side-Chain Protons in 1H-Detected Solid-State NMR Spectroscopy

    PubMed Central

    Mance, Deni; Sinnige, Tessa; Kaplan, Mohammed; Narasimhan, Siddarth; Daniëls, Mark; Houben, Klaartje; Baldus, Marc; Weingarth, Markus

    2015-01-01

    1H-detection can greatly improve spectral sensitivity in biological solid-state NMR (ssNMR), thus allowing the study of larger and more complex proteins. However, the general requirement to perdeuterate proteins critically curtails the potential of 1H-detection by the loss of aliphatic side-chain protons, which are important probes for protein structure and function. Introduced herein is a labelling scheme for 1H-detected ssNMR, and it gives high quality spectra for both side-chain and backbone protons, and allows quantitative assignments and aids in probing interresidual contacts. Excellent 1H resolution in membrane proteins is obtained, the topology and dynamics of an ion channel were studied. This labelling scheme will open new avenues for the study of challenging proteins by ssNMR. PMID:26555653

  3. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation.

    PubMed

    Ding, Yi; Fujimoto, L Miya; Yao, Yong; Marassi, Francesca M

    2015-04-01

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396-10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure-activity correlation experiments across a wide range of timescales. PMID:25578899

  4. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bart?omiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-01

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material. PMID:26602457

  5. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    PubMed Central

    Han, Yun; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; Yang, Jun; Polenova, Tatyana

    2010-01-01

    In mature HIV-1 virions, a 26.6 kDa CA protein is assembled into a characteristic cone shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this report, we present a solid-state NMR analysis of the wild type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly 13C,15N-labelled CA exhibit narrow lines, indicative of conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy. PMID:20092249

  6. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Opella, Stanley J.

    2013-08-01

    One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on nuclear spins are strongly influenced by these motions. For example, we previously showed that the MSHOT-Pi4 pulse sequence yields spectra with resonance line widths about half of those observed using the conventional pulse sequence when applied to membrane proteins undergoing rapid uniaxial rotational diffusion in phospholipid bilayers. In contrast, the line widths were not changed in microcrystalline samples where the molecules did not undergo global motions. Here, we demonstrate experimentally and describe analytically how some Hamiltonian terms are susceptible to sample motions, and it is their removal through the critical ?/2 Z-rotational symmetry that confers the "motion adapted" property to the MSHOT-Pi4 pulse sequence. This leads to the design of separated local field pulse sequence "Motion-adapted SAMPI4" and is generalized to an approach for the design of decoupling sequences whose performance is superior in the presence of molecular motions. It works by cancelling the spin interaction by explicitly averaging the reduced Wigner matrix to zero, rather than utilizing the 2? nutation to average spin interactions. This approach is applicable to both stationary and magic angle spinning solid-state NMR experiments.

  7. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    SciTech Connect

    Han, Yun; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; Yang, Jun; Polenova, Tatyana E.

    2010-02-17

    In mature HIV-1 virions, the 26.6 kDa CA protein is assembled into a characteristic cone-shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this paper, we present a solid-state NMR analysis of the wild-type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly 13C,15Nlabeled CA exhibit narrow lines, indicative of the conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy.

  8. Conformational studies of dendritic macromolecules by solid state NMR and AFM

    SciTech Connect

    Klug, C.; Schaefer, J.; Tasaki, K.

    1996-12-31

    The solid-state shape, size, and intermolecular packing of dendritic macromolecules were determined by a combination of site-specific stable-isotope labeling, rotational-echo double resonance (REDOR) solid-state NMR, atomic force microscopy (AFM), and distance-constrained molecular dynamics simulations. For benzyl ether dendrimers of generations one through five, based on 3,5-dihydroxybenzyl alcohol as the monomeric repeat unit, REDOR experiments measured dipolar couplings between {sup 13}C atoms located at the chain ends and an {sup 19}F label placed near the core of the structure. Intramolecular {sup 13}C-{sup 19}F coupling was distinguished from intermolecular coupling by dilution with unlabeled dendrimer. The NMR-determined intramolecular distances were compared to film thickness measurements by AFM for monolayer films of unlabeled dendrimers on graphite. The NMR-measured intra- and intermolecular distances for the fifth-generation dendrimer were used as constraints on energy-minimized molecular dynamics simulations, which resulted in visualizations of the dendrimer packing. The shape of the fifth-generation dendrimer was non-spherical with a completely encapsulated core and overall dimensions of 31{times}37{times}41 {Angstrom}.

  9. Identification of lipid and saccharide constituents of whole microalgal cells by ¹³C solid-state NMR.

    PubMed

    Arnold, Alexandre A; Genard, Bertrand; Zito, Francesca; Tremblay, Réjean; Warschawski, Dror E; Marcotte, Isabelle

    2015-01-01

    Microalgae are unicellular organisms in which plasma membrane is protected by a complex cell wall. The chemical nature of this barrier is important not only for taxonomic identification, but also for interactions with exogenous molecules such as contaminants. In this work, we have studied freshwater (Chlamydomonas reinhardtii) and marine (Pavlova lutheri and Nannochloropsis oculata) microalgae with different cell wall characteristics. C. reinhardtii is covered by a network of fibrils and glycoproteins, while P. lutheri is protected by small cellulose scales, and the picoplankton N. oculata by a rigid cellulose wall. The objective of this work was to determine to what extent the different components of these microorganisms (proteins, carbohydrates, lipids) can be distinguished by ¹³C solid-state NMR with an emphasis on isolating the signature of their cell walls and membrane lipid constituents. By using NMR experiments which select rigid or mobile zones, as well as ¹³C-enriched microalgal cells, we improved the spectral resolution and simplified the highly crowded spectra. Interspecies differences in cell wall constituents, storage sugars and membrane lipid compositions were thus evidenced. Carbohydrates from the cell walls could be distinguished from those incorporated into sugar reserves or glycolipids. Lipids from the plasmalemma and organelle membranes and from storage vacuoles could also be identified. This work establishes a basis for a complete characterization of phytoplankton cells by solid-state NMR. PMID:25065670

  10. Structure determination in "shiftless" solid state NMR of oriented protein samples

    NASA Astrophysics Data System (ADS)

    Yin, Yuanyuan; Nevzorov, Alexander A.

    2011-09-01

    An efficient formalism for calculating protein structures from oriented-sample NMR data in the torsion-angle space is presented. Angular anisotropies of the NMR observables are treated by utilizing an irreducible spherical basis of rotations. An intermediate rotational transformation is introduced that greatly speeds up structural fitting by rendering the dependence on the torsion angles ? and ? in a purely diagonal form. Back-calculation of the simulated solid-state NMR spectra of protein G involving 15N chemical shift anisotropy (CSA), and 1H- 15N and 1H ?- 13C ? dipolar couplings was performed by taking into account non-planarity of the peptide linkages and experimental uncertainty. Even a relatively small (to within 1 ppm) random variation in the CSA values arising from uncertainties in the tensor parameters yields the RMSD's of the back-calculated structures of more than 10 Å. Therefore, the 15N CSA has been substituted with heteronuclear dipolar couplings which are derived from the highly conserved bond lengths and bond angles associated with the amino-acid covalent geometry. Using the additional 13C ?- 15N and 13C'- 15N dipolar couplings makes it possible to calculate protein structures entirely from "shiftless" solid-state NMR data. With the simulated "experimental" uncertainty of 15 Hz for protein G and 120 Hz for a helical hairpin derived from bacteriorhodopsin, back-calculation of the synthetic dipolar NMR spectra yielded a converged set of solutions. The use of distance restraints dramatically improves structural convergence even if larger experimental uncertainties are assumed.

  11. Solid-state 51V NMR investigation of the intercalation of alkylamines into layered alpha-vanadyl phosphate.

    PubMed

    Zhu, Jianfeng; Huang, Yining

    2010-06-15

    The intercalation behavior of layered alpha-phase vanadyl phosphate, alpha-VOPO(4).2H(2)O (alpha-VP), with alkylamine was investigated by (51)V solid-state NMR in combination with powder XRD. The XRD results show that the amines form bimolecular layers upon intercalation. For the intercalation with short chain amines (propylamine, pentylamine, and hexylamine), the C-C chain of the amines is tilted with respect to the inorganic basal plane. The amines with a longer alkyl chain (dodecylamine and hexadecylamine) tend to adopt an orientation where the C-C chain direction is perpendicular to the VP layer. For the amine with eight carbon atoms (octylamine), the intercalation results in two coexisting phases with different chain orientations. (51)V solid-state NMR was used to directly probe the effect of intercalation on the metal center environments. Both (51)V magic-angle spinning and static spectra of alpha-VP intercalated with different amines were obtained at different magnetic fields, and they are sensitive to intercalation. The intercalation induces the (51)V isotropic chemical shift to move toward deshielded direction. (51)V chemical shielding parameters such as the span are sensitive to the orientation of the amine chain with respect to the VP basal plane. For the V centers interacting with the amines having a tilted orientation, the (51)V span gradually decreases with increasing alkyl chain length. However, the span of the (51)V atoms interacting with the amines perpendicular to the VP layer is larger and independent of the length of the alkyl chain. The (51)V NMR data indicate that for the alpha-VPs intercalated with long-chain amines, such as dodecylamine and hexadecylamine, the amines can assume both tilted and perpendicular orientations. PMID:20356027

  12. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling; Smith, Mark E.; Chan, Jerry C. C.

    2010-12-01

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer.

  13. Solid-state NMR sequential assignments of the amyloid core of Sup35pNM.

    PubMed

    Luckgei, Nina; Schütz, Anne K; Habenstein, Birgit; Bousset, Luc; Sourigues, Yannick; Melki, Ronald; Meier, Beat H; Böckmann, Anja

    2014-10-01

    Sup35pNM represents the N-terminal and middle (M) domains of the yeast Saccharomyces cerevisiae prion Sup35p. This fragment is commonly used for structural and functional studies of Sup35p. We here present a solid-state NMR study of fibrils formed by this fragment and show that sequential assignments can be obtained for the rigid and well-ordered parts of the protein using 3D spectroscopy. We describe in detail the sequential assignment of the 22 residues yielding strong, narrow signals with chemical shifts that correspond mostly to ?-sheet secondary-structured amino acids that form the fibril core. PMID:23934139

  14. Structural modeling of Vpu from HIV-1 based on solid-state NMR observables

    NASA Astrophysics Data System (ADS)

    Ahn, SeonJoo; Lim, GyuTae; Nam, Seungyoon; Lee, Jinhyuk

    2014-04-01

    Vpu is one of the accessory proteins of HIV-1, and is involved in viral particle release. Viral particle release is enhanced by two proposed functions of Vpu: (i) tetherin interaction and (ii) membrane polarization. Two Vpu functions in viral particle release are still controversial. Here, we investigated the proposed functions by extensive structural modeling of Vpu based on solid-state NMR (Nuclear Magnetic Resonance) observables. We found that Vpu can co-exist in two structural forms: left-handed and right-handed conformation. The co-existence of the two conformations provides a clue to reconcile the controversial issue of its two functions in virus particle release.

  15. Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Tuttle, Marcus D; Courtney, Joseph M; Barclay, Alexander M; Rienstra, Chad M

    2016-01-01

    Solid-state NMR spectroscopy (SSNMR) is an established and invaluable tool for the study of amyloid fibril structure with atomic-level detail. Optimization of the homogeneity and concentration of fibrils enhances the resolution and sensitivity of SSNMR spectra. Here, we present a fibrillization and fibril processing protocol, starting from purified monomeric ?-synuclein, that enables the collection of high-resolution SSNMR spectra suitable for site-specific structural analysis. This protocol does not rely on any special features of ?-synuclein and should be generalizable to any other amyloid protein. PMID:26453212

  16. A solid-state NMR study of selenium substitution into nanocrystalline hydroxyapatite.

    PubMed

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H?77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  17. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H?77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  18. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    PubMed Central

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-01-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110?kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H?1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone. PMID:26153138

  19. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-07-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110?kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H-1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone.

  20. Labeling strategies for 13C-detected aligned-sample solid-state NMR of proteins

    NASA Astrophysics Data System (ADS)

    Filipp, Fabian V.; Sinha, Neeraj; Jairam, Lena; Bradley, Joel; Opella, Stanley J.

    2009-12-01

    13C-detected solid-state NMR experiments have substantially higher sensitivity than the corresponding 15N-detected experiments on stationary, aligned samples of isotopically labeled proteins. Several methods for tailoring the isotopic labeling are described that result in spatially isolated 13C sites so that dipole-dipole couplings among the 13C are minimized, thus eliminating the need for homonuclear 13C- 13C decoupling in either indirect or direct dimensions of one- or multi-dimensional NMR experiments that employ 13C detection. The optimal percentage for random fractional 13C labeling is between 25% and 35%. Specifically labeled glycerol and glucose can be used at the carbon sources to tailor the isotopic labeling, and the choice depends on the resonances of interest for a particular study. For investigations of the protein backbone, growth of the bacteria on [2- 13C]-glucose-containing media was found to be most effective.

  1. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts

    SciTech Connect

    Rapp, Jennifer; Huang, Yulin; Natella, Michael; Cai, Yang; Lin, Victor S.-Y.; Pruski, Marek

    2009-01-04

    A detailed study of the chemical structure of mesoporous silica catalysts containing rhodium ligands and nanoparticles (RhP-MSN) was carried out by multi-dimensional solid-state NMR techniques. The degree of functionalization of the rhodium-phosphinosilyl complex to the surface of the RhP-MSN channels was determined by {sup 29}Si NMR experiments. The structural assignments of the rhodium-phosphinosilyl complex were unambiguously determined by employing the novel, indirectly detected heteronuclear correlation ({sup 13}C-{sup 1}H and {sup 31}P-{sup 1}H idHETCOR) techniques, which indicated that oxidation of the attached phosphinosilyl groups and detachment of Rh was enhanced upon syngas conversion.

  2. High resolution solid state 2D NMR analysis of biomass and biochar.

    PubMed

    Le Brech, Yann; Delmotte, Luc; Raya, Jesus; Brosse, Nicolas; Gadiou, Roger; Dufour, Anthony

    2015-01-20

    Solid state NMR methods are required to analyze biomass as a function of its chemical or biological treatment for biofuels, chemicals, or biochar production. The native polymers network in lignocellulosic biomass and other solid materials, such as coal, coke, or biochar, can hardly be analyzed by liquid state NMR due to their poor swelling ability without chemical modification. A (1)H-(13)C two-dimensional heteronuclear correlation (HETCOR) experiment with frequency-switched Lee-Goldburg (FSLG) irradiation is performed on a high field spectrometer (750 MHz). This method leads to previously unattained resolution for biomass and biochar and offers a unique ability to reveal their chemical composition. The formation of aromatic moieties from carbohydrates and lignin thermal conversion is clearly distinguished. This method can be applied to all other carbonaceous materials. PMID:25521946

  3. Applications of high-resolution 1H solid-state NMR.

    PubMed

    Brown, Steven P

    2012-02-01

    This article reviews the large increase in applications of high-resolution (1)H magic-angle spinning (MAS) solid-state NMR, in particular two-dimensional heteronuclear and homonuclear (double-quantum and spin-diffusion NOESY-like exchange) experiments, in the last five years. These applications benefit from faster MAS frequencies (up to 80 kHz), higher magnetic fields (up to 1 GHz) and pulse sequence developments (e.g., homonuclear decoupling sequences applicable under moderate and fast MAS). (1)H solid-state NMR techniques are shown to provide unique structural insight for a diverse range of systems including pharmaceuticals, self-assembled supramolecular structures and silica-based inorganic-organic materials, such as microporous and mesoporous materials and heterogeneous organometallic catalysts, for which single-crystal diffraction structures cannot be obtained. The power of NMR crystallography approaches that combine experiment with first-principles calculations of NMR parameters (notably using the GIPAW approach) are demonstrated, e.g., to yield quantitative insight into hydrogen-bonding and aromatic CH-? interactions, as well as to generate trial three-dimensional packing arrangements. It is shown how temperature-dependent changes in the (1)H chemical shift, linewidth and DQ-filtered signal intensity can be analysed to determine the thermodynamics and kinetics of molecular level processes, such as the making and breaking of hydrogen bonds, with particular application to proton-conducting materials. Other applications to polymers and biopolymers, inorganic compounds and bioinorganic systems, paramagnetic compounds and proteins are presented. The potential of new technological advances such as DNP methods and new microcoil designs is described. PMID:22177472

  4. Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using 31P Solid-State NMR Spectroscopy

    PubMed Central

    Yang, Yu; Yao, Hongwei

    2015-01-01

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology. PMID:25815701

  5. ?-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    PubMed Central

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly ?-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified ?-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of ?-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a ?-helical architecture, in which 18 ?-strand segments are arranged in six consecutive windings of a ?-helix. PMID:25550503

  6. ?-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR.

    PubMed

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-13

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly ?-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified ?-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of ?-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a ?-helical architecture, in which 18 ?-strand segments are arranged in six consecutive windings of a ?-helix. PMID:25550503

  7. Solid-state NMR investigation of effect of fluorination and methylation on prednisolone conformation.

    PubMed

    Carillo, Kathleen D; Arco, Susan; Wang, Cheng-Chung; Tzou, Der-Lii M

    2015-12-01

    Prednisolone (Prd) is a polymorphous synthetic corticosteroid that has three crystalline forms mediated by different solvents. In this study, we have demonstrated that solid-state {(1)H}(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy is able to resolve the effects of methylation and fluorination on the conformation of the steroidal rings in Prd. Two compounds were chosen for the study, 6-?-methylprednisolone (Prd-6M) and 6-?-fluoroprednisolone (Prd-6F). The (13)C signals of Prd-6F showed primarily doublet patterns, with splittings of 40-380Hz, indicating multiple ring conformations, whereas the (13)C signals of Prd and Prd-6M exhibited a singlet pattern, indicating a unique conformation. Using evidence from chemical shift deviation and anisotropy analysis, we have demonstrated by solid-state NMR that Prd-6F adopts two different steroidal ring conformations that are different from that of Prd-6M, and less similar to that of unsubstituted Prd. PMID:26476185

  8. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.

    PubMed

    Lewandowski, Józef Romuald

    2013-09-17

    Dynamics are intimately linked to protein stability and play a crucial role in important biological processes, such as ligand binding, allosteric regulation, protein folding, signaling, and enzymatic catalysis. Solid-state NMR relaxation measurements allow researchers to determine the amplitudes, time scales, and under favorable conditions, directionality of motions at atomic resolution over the entire range of dynamic processes from picoseconds to milliseconds. Because this method allows researchers to examine both the amplitudes and time scales of motions in this range, they can link different tiers of protein motions in protein energy landscapes. As a result, scientists can better understand the relationships between protein motions and functions. Such studies are possible both with the primary targets of solid-state NMR studies, such as amyloid fibrils, membrane proteins, or other heterogeneous systems, and others that researchers typically study by solution NMR and X-ray crystallography. In addition, solid-state NMR, with the absence of tumbling in solution, eliminates the intrinsic size limitation imposed by slow tumbling of large proteins. Thus, this technique allows researchers to characterize interdomain and intermolecular interactions in large complexes at the atomic scale. In this Account, we discuss recent advances in solid-state relaxation methodology for studying widespread site-specific protein dynamics. We focus on applications involving magic angle spinning, one of the primary methods used in high-resolution solid-state NMR. We give an overview of challenges and solutions for measuring (15)N and (13)C spin-lattice relaxation (R1) to characterize fast picosecond-nanosecond motions, spin-lattice in the rotating frame (R1?), and other related relaxation rates for characterization of picosecond-millisecond protein motions. In particular, we discuss the problem of separating incoherent effects caused by random motions from coherent effects arising from incomplete averaging of orientation-dependent NMR interactions. We mention a number of quantitative studies of protein dynamics based on solid-state relaxation measurements. Finally, we discuss the potential use of relaxation measurements for extracting the directionality of motions. Using the (15)N and (13)C R1 and R1? measurements, we illustrate the backbone and side-chain dynamics in the protein GB1 and comment on this emerging dynamic picture within the context of data from solution NMR measurements and simulations. PMID:23621579

  9. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Schmidt-Rohr, Klaus

    2014-02-01

    A simple new method is presented that yields quantitative solid-state magic-angle spinning (MAS) 13C NMR spectra of organic materials with good signal-to-noise ratios. It achieves long (>10 ms) cross polarization (CP) from 1H without significant magnetization losses due to relaxation and with a moderate duty cycle of the radio-frequency irradiation, by multiple 1-ms CP periods alternating with 1H spin-lattice relaxation periods that repolarize the protons. The new method incorporates previous techniques that yield less distorted CP/MAS spectra, such as a linear variation (“ramp”) of the radio-frequency field strength, and it overcomes their main limitation, which is T1? relaxation of the spin-locked 1H magnetization. The ramp of the radio-frequency field strength and the asymptotic limit of cross polarization makes the spectral intensity quite insensitive to the exact field strengths used. The new multiCP pulse sequence is a “drop-in” replacement for previous CP methods and produces no additional data-processing burden. Compared to the only reliable quantitative 13C NMR method for unlabeled solids previously available, namely direct-polarization NMR, the measuring time is reduced by more than a factor of 50, enabling higher-throughput quantitative NMR studies. The new multiCP technique is validated with 14-kHz MAS on amino-acid derivatives, plant matter, a highly aromatic humic acid, and carbon materials made by low-temperature pyrolysis.

  10. Solid state NMR study of SEI formation in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Dachun

    Recently, rechargeable lithium ion batteries, which offer high energy density and long cycle life, are in great demand as power sources for our mobile electronic society. The formation of a solid electrolyte interphase (SEI) on the surface of electrodes in lithium ion batteries plays an essential role in their performance. This thesis presents solid state NMR and MAS NMR results on the SEI, which contribute to our understanding of SEI formation on both cathodes and anodes. This thesis is organized as following: Chapter 1 surveys the history of batteries and the challenges to further development of the lithium ion battery. Fundamental aspects and SEI formation mechanisms are also included in Chapter l. Chapter 2 deals with the principles and experimental techniques of solid state NMR. Chapter 3 presents studies of SEI formation on anode and cathode in lithium ion batteries using electrochemical impedance spectroscopy (EIS) and NMR. The results provide EIS and NMR evidence that cells containing electrolytes with high EC content display less irreversible capacity after high temperature storage. The irreversible capacity is attributed to SEI growth on electrode surfaces. NMR results on cathodes, on the other hand, imply that the presence of Ni in the cathode may reduce cell performance due to the oxidation of Ni 3+ to Ni4+. Our simulations show that a lower EC/DMC ratio is associated with a smaller SEI intensity for the cathode and higher intensity for the anode. Chapter 4 discusses the effect of temperature on SEI formation on anodes and cathodes. NMR measurements show that MCMB graphite based anodes exhibit high stability no chemical shift is evident over a wide temperature range. On cathodes, however, NMR does reveal changes in SEI intensity as a function of temperature. These changes are believed to be the result of decomposition of the SEI. Evidently, then, changes in the performance of the cell as a factor of temperature are, at least in part, due to changes in the SEI with temperature. In Chapter 5 we report on the use of NMR to study the effect of electrolyte/solvent and electrode structure on SEI formation. The intensity of the SEI in a cell containing LiBOB electrolyte with EC and DEC is greater than that in a cell with LiPF6 electrolyte with EC and DMC. This implies that the cell containing LiBOB electrolyte with EC and DEC is more stable. From the analysis of NMR of the cathode, it was found that it is easier to form SEI in layered structure cathode than in a spinel structure, suggesting that spinel structure materials may be better choices as cathode in lithium ion batteries. Evidently, then, the choice of electrolyte/solvent materials and electrode materials are key factors in determining the performance of lithium ion batteries.

  11. Water scaffolding in collagen: Implications on protein dynamics as revealed by solid-state NMR.

    PubMed

    Aliev, Abil E; Courtier-Murias, Denis

    2014-03-01

    Solid-state NMR studies of collagen samples of various origins confirm that the amplitude of collagen backbone and sidechain motions increases significantly on increasing the water content. This conclusion is supported by the changes observed in three different NMR observables: (i) the linewidth dependence on the (1) H decoupling frequency; (ii) (13) C CSA changes for the peptide carbonyl groups, and (iii) dephasing rates of (1) H-(13) C dipolar couplings. In particular, a nearly threefold increase in motional amplitudes of the backbone librations about C-C(?) or N-C(?) bonds was found on increasing the added water content up to 47 wt%D2 O. On the basis of the frequencies of NMR observables involved, the timescale of the protein motions dependent on the added water content is estimated to be of the order of microseconds. This estimate agrees with that from wideline T2 (1) H NMR measurements. Also, our wideline (1) H NMR measurements revealed that the timescale of the microsecond motions in proteins reduces significantly on increasing the added water content, i.e., an ?15-fold increase in protein motional frequencies is observed on increasing the added water content to 45 wt% D2 O. The observed changes in collagen dynamics is attributed to the increase in water translational diffusion on increasing the amount of added water, which leads to more frequent "bound water/free water" exchange on the protein surface, accompanied by the breakage and formation of new hydrogen bonds with polar functionalities of protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 246-256, 2014. PMID:23784805

  12. Molecular ordering of mixed surfactants in mesoporous silicas: A solid-state NMR study

    SciTech Connect

    Kobayashi, Takeshi; Mao, Kanmi; Wang, Shy-Guey; Lin, Victor S.-Y.; Pruski, Marek

    2011-02-17

    The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by {sup 1}H-{sup 1}H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. {sup 1}H-{sup 29}Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.

  13. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR*

    PubMed Central

    Shi, Chaowei; Fricke, Pascal; Lin, Lin; Chevelkov, Veniamin; Wegstroth, Melanie; Giller, Karin; Becker, Stefan; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a recently discovered class of cytoskeletal proteins of which no atomic-resolution structure has been reported thus far. The bacterial cytoskeleton plays an essential role in a wide range of processes, including morphogenesis, cell division, and motility. Among the cytoskeletal proteins, the bactofilins are bacteria-specific and do not have a eukaryotic counterpart. The bactofilin BacA of the species Caulobacter crescentus is not amenable to study by x-ray crystallography or solution nuclear magnetic resonance (NMR) because of its inherent noncrystallinity and insolubility. We present the atomic structure of BacA calculated from solid-state NMR–derived distance restraints. We show that the core domain of BacA forms a right-handed ? helix with six windings and a triangular hydrophobic core. The BacA structure was determined to 1.0 Å precision (heavy-atom root mean square deviation) on the basis of unambiguous restraints derived from four-dimensional (4D) HN-HN and 2D C-C NMR spectra. PMID:26665178

  14. Solid-state NMR studies and DFT calculations of flavonoids: baicalein, baicalin and wogonoside.

    PubMed

    Wolniak, Micha?; Oszmia?ski, Jan; Wawer, Iwona

    2008-03-01

    Three flavonoids of pharmaceutical importance-baicalein, baicalin, and wogonoside-were isolated from a Chinese medicinal plant Scutellaria baicalensis Georgi and studied by 13C NMR in solution and solid state. Two-dimensional (2D) NMR spectroscopy in the liquid phase and dipolar dephasing (DD) experiments in magic-angle spinning (MAS) spectra enabled the assignment of 13C resonances. The cross-polarization (CP) time constants T(CH) and relaxation times T(H) (1rho) were obtained from the variable-contact time experiments. The principal elements of the 13C chemical shift tensor were determined in the spectra recorded under slow sample spinning (2 kHz) using phase-adjusted spinning sideband (PASS)-2D NMR technique, and were verified by density functional theory gauge-independent atomic orbital (DFT GIAO) calculations of shielding constants. Analysis of the 13C delta(ii) and comparison with shielding parameters calculated for different conformers of compounds 1-3 enabled the selection of the most reliable geometry in the solid phase. In all three compounds, an intramolecular hydrogen bond C5--OH...=C4 is formed; the existence of baicalein and baicalin with 'anticlockwise' orientation of OH groups is more probable. PMID:18098151

  15. Solid State NMR Investigations of Chain Dynamics and Network Order in Model Poly(dimethylsiloxane) Elastomers

    SciTech Connect

    Lewicki, J P; Mayer, B P; Wilson, T S; Chinn, S C; Maxwell, R S

    2010-12-09

    This work is at a relatively early stage, however it has been demonstrated that we can reliably probe basic network architectures using the MQ-NMR technique. The initial results are in good agreement with what is known from standard network theory and will serve as a basis for the study of progressively increasing structural complexity in Siloxane network systems.

  16. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of ?-sheets in Alzheimer's ?-amyloid fibrils

    PubMed Central

    Antzutkin, Oleg N.; Balbach, John J.; Leapman, Richard D.; Rizzo, Nancy W.; Reed, Jennifer; Tycko, Robert

    2000-01-01

    Senile plaques associated with Alzheimer's disease contain deposits of fibrils formed by 39- to 43-residue ?-amyloid peptides with possible neurotoxic effects. X-ray diffraction measurements on oriented fibril bundles have indicated an extended ?-sheet structure for Alzheimer's ?-amyloid fibrils and other amyloid fibrils, but the supramolecular organization of the ?-sheets and other structural details are not well established because of the intrinsically noncrystalline, insoluble nature of amyloid fibrils. Here we report solid-state NMR measurements, using a multiple quantum (MQ) 13C NMR technique, that probe the ?-sheet organization in fibrils formed by the full-length, 40-residue ?-amyloid peptide (A?1–40). Although an antiparallel ?-sheet organization often is assumed and is invoked in recent structural models for full-length ?-amyloid fibrils, the MQNMR data indicate an in-register, parallel organization. This work provides site-specific, atomic-level structural constraints on full-length ?-amyloid fibrils and applies MQNMR to a significant problem in structural biology. PMID:11069287

  17. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    SciTech Connect

    Shaw, Wendy J.

    2015-09-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area..

  18. A solid-state NMR method to determine domain sizes in multi-component polymer formulations

    NASA Astrophysics Data System (ADS)

    Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon

    2015-12-01

    Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).

  19. Design of a triple quantum coherence excitation scheme for protons in solid state NMR.

    PubMed

    Leskes, Michal; Vega, Shimon

    2009-03-28

    We present a rf scheme designed to excite triple quantum (TQ) coherences for proton solid state NMR. This recoupling scheme is based on the phase modulated Lee Goldburg sequence combined with echo pulses and applied nonsynchronous with the magic angle spinning period. Based on the effective bimodal Floquet Hamiltonian we optimize the conditions for TQ coherence excitation. Numerical simulations are used to further adjust the recoupling conditions as well as define the sequence limitations. Experimental TQ filtered one-dimensional spectra and two-dimensional correlations of TQ to single quantum coherences are presented for standard amino acids. These results are compared with the crystal structures showing that this scheme can aid in resonance assignments and in resolving local spin topologies. PMID:19334850

  20. An Amyloid Organelle, Solid-state NMR Evidence for Cross-? Assembly of Gas Vesicles*

    PubMed Central

    Bayro, Marvin J.; Daviso, Eugenio; Belenky, Marina; Griffin, Robert G.; Herzfeld, Judith

    2012-01-01

    Functional amyloids have been identified in a wide range of organisms, taking on a variety of biological roles and being controlled by remarkable mechanisms of directed assembly. Here, we report that amyloid fibrils constitute the ribs of the buoyancy organelles of Anabaena flos-aquae. The walls of these gas-filled vesicles are known to comprise a single protein, GvpA, arranged in a low pitch helix. However, the tertiary and quaternary structures have been elusive. Using solid-state NMR correlation spectroscopy we find detailed evidence for an extended cross-? structure. This amyloid assembly helps to account for the strength and amphiphilic properties of the vesicle wall. Buoyancy organelles thus dramatically extend the scope of known functional amyloids. PMID:22147705

  1. An amyloid organelle, solid-state NMR evidence for cross-? assembly of gas vesicles.

    PubMed

    Bayro, Marvin J; Daviso, Eugenio; Belenky, Marina; Griffin, Robert G; Herzfeld, Judith

    2012-01-27

    Functional amyloids have been identified in a wide range of organisms, taking on a variety of biological roles and being controlled by remarkable mechanisms of directed assembly. Here, we report that amyloid fibrils constitute the ribs of the buoyancy organelles of Anabaena flos-aquae. The walls of these gas-filled vesicles are known to comprise a single protein, GvpA, arranged in a low pitch helix. However, the tertiary and quaternary structures have been elusive. Using solid-state NMR correlation spectroscopy we find detailed evidence for an extended cross-? structure. This amyloid assembly helps to account for the strength and amphiphilic properties of the vesicle wall. Buoyancy organelles thus dramatically extend the scope of known functional amyloids. PMID:22147705

  2. Solid-state NMR evidence for inequivalent GvpA subunits in gas vesicles

    PubMed Central

    Sivertsen, Astrid C.; Bayro, Marvin J.; Belenky, Marina; Griffin, Robert G.

    2010-01-01

    SUMMARY Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue protein GvpA, arranged in an ordered array. Solid-state NMR spectra of intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain GvpA resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the ?–sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle. PMID:19232353

  3. Solid-state NMR evidence for inequivalent GvpA subunits in gas vesicles.

    PubMed

    Sivertsen, Astrid C; Bayro, Marvin J; Belenky, Marina; Griffin, Robert G; Herzfeld, Judith

    2009-04-10

    Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue gas vesicle protein A, arranged in an ordered array. Solid-state NMR spectra of intact collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain gas vesicle protein A resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary, and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the beta-sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle. PMID:19232353

  4. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  5. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  6. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Günne, Jörn

    2012-09-01

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out. PMID:22801707

  7. Conformational disorder of membrane peptides investigated from solid-state NMR line widths and line shapes.

    PubMed

    Su, Yongchao; Hong, Mei

    2011-09-15

    A challenge in the application of solid-state NMR spectroscopy to membrane peptides and proteins is the relatively broad line widths compared to those for solution NMR spectra. To understand the linewidth contributions to membrane protein NMR spectra, we have measured the inhomogeneous and homogeneous line widths of several well-studied membrane peptides under immobilized conditions. (13)C T(2) relaxation times of uniformly (13)C-labeled residues show that the homogeneous line widths of the peptides are comparable to those of crystalline model compounds under identical (1)H decoupling and magic angle spinning conditions, indicating that the homogeneous line widths are determined by conformation-independent factors, including residual dipolar coupling, J-coupling, and intrinsic T(2) relaxation. However, the membrane peptides exhibit larger apparent line widths than the crystalline compounds, indicating conformational disorder. A cationic cell-penetrating peptide, the human immunodeficiency virus TAT, exhibits the largest apparent line widths, which are about five-fold larger than the homogeneous line widths, while the transmembrane helix of the influenza M2 peptide and the ?-hairpin antimicrobial peptide PG-1 show moderately larger apparent line widths than the crystalline compounds. These results are consistent with the random coil nature of the TAT peptide, which contrasts with the intramolecularly hydrogen bonded M2 and PG-1. Cross peak line shapes of 2D double-quantum correlation spectra show that the conformational disorder can occur at the residue level and can result from three origins, lipid-peptide interaction, intrinsic conformational disorder encoded in the amino acid sequence, and side-chain rotameric averaging. A particularly important lipid-peptide interaction for cationic membrane peptides is guanidinium-phosphate ion pair interaction. Thus, NMR line widths and line shapes are useful for understanding the conformational disorder of membrane peptides and proteins. PMID:21806038

  8. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    SciTech Connect

    Hu, Yanyan

    2011-02-07

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm){sup 2}, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of {approx}3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites. Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving quadrupolar spins. Broadband high resolution NMR of spin-1/2 nuclei has been accomplished by the adaptation of the magic angle turning (MAT) method to fast magic angle spinning, termed fast MAT, by solving technical problems such as off resonance effects. Fast MAT separates chemical shift anisotropy and isotropic chemical shifts over a spectral range of {approx}1.8 {gamma}B{sub 1} without significant distortions. Fast MAT {sup 125}Te NMR has been applied to study technologically important telluride materials with spectra spreading up to 190 kHz. The signal-to-noise ratio of the spectra is significantly improved by using echo-matched Gaussian filtering in offline data processing. The accuracy of the measured distances between spin-1/2 and quadrupolar nuclei with methods such as SPIDER and REAPDOR has been improved by compensating for the fast longitudinal quadrupolar relaxation on the sub-millisecond with a modified S{sub 0} pulse sequence. Also, the T1Q effect on the spin coherence and its spinning speed dependency has been explored and documented with analytical and numerical simulations as well as experimental measurements.

  9. Structure and Transformation of Amorphous Calcium Carbonate: A Solid-State 43Ca NMR and Computational Molecular Dynamics Investigation

    SciTech Connect

    Singer, Jared W.; Yazaydin, A. O.; Kirkpatrick, Robert J.; Bowers, Geoffrey M.

    2012-05-22

    Amorphous calcium carbonate (ACC) is a metastable precursor to crystalline CaCO{sub 3} phases that precipitates by aggregation of ion pairs and prenucleation clusters. We use {sup 43}Ca solid-state NMR spectroscopy to probe the local structure and transformation of ACC synthesized from seawater-like solutions with and without Mg{sup 2+} and computational molecular dynamics (MD) simulations to provide more detailed molecular-scale understanding of the ACC structure. The {sup 43}Ca NMR spectra of ACC collected immediately after synthesis consist of broad, featureless resonances with Gaussian line shapes (FWHH = 27.6 {+-} 1 ppm) that do not depend on Mg{sup 2+} or H{sub 2}O content. A correlation between {sup 43}Ca isotropic chemical shifts and mean Ca-O bond distances for crystalline hydrous and anhydrous calcium carbonate phases indicates indistinguishable maximum mean Ca-O bond lengths of {approx}2.45 {angstrom} for all our samples. This value is near the upper end of the published Ca-O bond distance range for biogenic and synthetic ACCs obtained by Ca-X-ray absorption spectroscopy. It is slightly smaller than the values from the structural model of Mgfree ACC by Goodwin et al. obtained from reverse Monte Carlo (RMC) modeling of X-ray scattering data and our own computational molecular dynamics (MD) simulation based on this model. An MD simulation starting with the atomic positions of the Goodwin et al. RMC model using the force field of Raiteri and Gale shows significant structural reorganization during the simulation and that the interconnected carbonate/water-rich channels in the Goodwin et al. model shrink in size over the 2 ns simulation time. The distribution of polyhedrally averaged Ca-O bond distances from the MD simulation is in good agreement with the {sup 43}Ca NMR peak shape, suggesting that local structural disorder dominates the experimental line width of ACC.

  10. Optimizing Oriented Planar-Supported Lipid Samples for Solid-State Protein NMR

    PubMed Central

    Rainey, Jan K.; Sykes, Brian D.

    2005-01-01

    Sample orientation relative to the static magnetic field of an NMR spectrometer allows study of membrane proteins in the lipid bilayer setting. The straightforward preparation and handling of extremely thin mica substrates with consistent surface properties has prompted us to examine oriented phospholipid bilayer and hexagonal phases on mica. The spectral characteristics of oriented lipid samples formed on mica are as good as or better than those on glass. Nine solvents with varying dielectric constants were used to cast lipid films or for vesicle spreading; film characteristics were then compared, and static solid-state 31P-NMR was used to characterize the degree of orientation of the hydrated lipid species. Lipids with four headgroup chemistries were tested: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Solvent affected orientation of POPG, DOPA, and DOPE, but not POPC. Film characteristics varied with solvent, with ramifications for producing homogeneous oriented lipid samples. POPC was used to optimize the amount of lipid per substrate and compare hydration methods. POPG did not orient reproducibly, whereas POPG-POPC mixtures did. DOPA showed 1–2 oriented states depending upon hydration level and deposition method. DOPE formed an oriented hexagonal phase that underwent a reversible temperature-induced phase transition to the oriented bilayer phase. PMID:16085766

  11. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    SciTech Connect

    Takegoshi, K. Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-07

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  12. Structural Analysis of Nanoscale Self-Assembled Discoidal Lipid Bilayers by Solid-State NMR Spectroscopy

    PubMed Central

    Li, Ying; Kijac, Aleksandra Z.; Sligar, Stephen G.; Rienstra, Chad M.

    2006-01-01

    Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly 13C,15N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS 13C-13C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their 13C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and 13C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes. PMID:16905610

  13. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-01

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  14. Solid-State NMR Study of Li-Assisted Dehydrogenation of Ammonia Borane

    SciTech Connect

    Kobayashi, Takeshi; Hlova, Ihor; Singh, Niraj; Pecharsky, Vitalij; Pruski, Marek

    2012-03-21

    The mechanism of thermochemical dehydrogenation of the 1:3 mixture of Li3AlH6 and NH3BH3 (AB) has been studied by the extensive use of solid-state NMR spectroscopy and theoretical calculations. The activation energy for the dehydrogenation is estimated to be 110 kJ mol–1, which is lower than for pristine AB (184 kJ mol–1). The major hydrogen release from the mixture occurs at 60 and 72 °C, which compares favorably with pristine AB and related hydrogen storage materials, such as lithium amidoborane (LiNH2BH3, LiAB). The NMR studies suggest that Li3AlH6 improves the dehydrogenation kinetics of AB by forming an intermediate compound (LiAB)x(AB)1–x. A part of AB in the mixture transforms into LiAB to form this intermediate, which accelerates the subsequent formation of branched polyaminoborane species and further release of hydrogen. The detailed reaction mechanism, in particular the role of lithium, revealed in the present study highlights new opportunities for using ammonia borane and its derivatives as hydrogen storage materials.

  15. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR.

    PubMed

    Takegoshi, K; Miyazawa, Norihiro; Sharma, Kshama; Madhu, P K

    2015-04-01

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order. PMID:25854235

  16. Solid-State NMR and DFT Combined for the Surface Study of Functionalized Silicon Nanoparticles.

    PubMed

    Lee, Daniel; Kaushik, Monu; Coustel, Romain; Chenavier, Yves; Chanal, Myriam; Bardet, Michel; Dubois, Lionel; Okuno, Hanako; Rochat, Névine; Duclairoir, Florence; Mouesca, Jean-Marie; De Paëpe, Gaël

    2015-11-01

    Silicon nanoparticles (NPs) serve a wide range of optical, electronic, and biological applications. Chemical grafting of various molecules to Si NPs can help to passivate their reactive surfaces, "fine-tune" their properties, or even give them further interesting features. In this work, (1) H, (13) C, and (29) Si solid-state NMR spectroscopy has been combined with density functional theory calculations to study the surface chemistry of hydride-terminated and alkyl-functionalized Si NPs. This combination of techniques yields assignments for the observed chemical shifts, including the contributions resulting from different surface planes, and highlights the presence of physisorbed water. Resonances from near-surface (13) C nuclei were shown to be substantially broadened due to surface disorder and it is demonstrated that in an ambient environment hydride-terminated Si NPs undergo fast back-bond oxidation, whereas long-chain alkyl-functionalized Si NPs undergo slow oxidation. Furthermore, the combination of NMR spectroscopy and DFT calculations showed that the employed hydrosilylation reaction involves anti-Markovnikov addition of the 1-alkene to the surface of the Si NPs. PMID:26395201

  17. Trading sensitivity for information: Carr-Purcell-Meiboom-Gill acquisition in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Dey, Krishna K.; Ash, Jason T.; Trease, Nicole M.; Grandinetti, Philip J.

    2010-08-01

    The Carr-Purcell-Meiboom-Gill (CPMG) experiment has gained popularity in solid-state NMR as a method for enhancing sensitivity for anisotropically broadened spectra of both spin 1/2 and half integer quadrupolar nuclei. Most commonly, the train of CPMG echoes is Fourier transformed directly, which causes the NMR powder pattern to break up into a series of sidebands, sometimes called "spikelets." Larger sensitivity enhancements are observed as the delay between the ? pulses is shortened. As the duration between the ? pulses is shortened, however, the echoes become truncated and information about the nuclear spin interactions is lost. We explored the relationship between enhanced sensitivity and loss of information as a function of the product ? 2?, where ? is the span of the anisotropic lineshape and 2? is the ? pulse spacing. For a lineshape dominated by the nuclear shielding anisotropy, we found that the minimum uncertainty in the tensor values is obtained using ? 2? values in the range ? 2? ?12-1+6 and ? 2? ?9-3+3 for ?s=0 and ?s=1, respectively. For an anisotropic second-order quadrupolar central transition lineshape under magic-angle spinning (MAS), the optimum range of ? 2? ?9-2+3 was found. Additionally, we show how the Two-dimensional One Pulse (TOP) like processing approach can be used to eliminate the cumbersome sideband pattern lineshape and recover a more familiar lineshape that is easily analyzed with conventional lineshape simulation algorithms.

  18. Solid-state NMR evidence for ?-hairpin structure within MAX8 designer peptide nanofibers.

    PubMed

    Leonard, Sarah R; Cormier, Ashley R; Pang, Xiaodong; Zimmerman, Maxwell I; Zhou, Huan-Xiang; Paravastu, Anant K

    2013-07-01

    MAX8, a designer peptide known to undergo self-assembly following changes in temperature, pH, and ionic strength, has demonstrated usefulness for tissue engineering and drug delivery. It is hypothesized that the self-assembled MAX8 nanofiber structure consists of closed ?-hairpins aligned into antiparallel ?-sheets. Here, we report evidence from solid-state NMR spectroscopy that supports the presence of the hypothesized ?-hairpin conformation within the nanofiber structure. Specifically, our (13)C-(13)C two-dimensional exchange data indicate spatial proximity between V3 and K17, and (13)C-(13)C dipolar coupling measurements reveal proximity between the V3 and V18 backbone carbonyls. Moreover, isotopic dilution of labeled MAX8 nanofibers did not result in a loss of the (13)C-(13)C dipolar couplings, showing that these couplings are primarily intramolecular. NMR spectra also indicate the existence of a minor conformation, which is discussed in terms of previously hypothesized nanofiber physical cross-linking and possible nanofiber polymorphism. PMID:23823242

  19. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls

    SciTech Connect

    Wang, Tuo; Park, Yong Bum; Caporini, Marc A.; Rosay, Melanie; Zhong, Linghao; Cosgrove, Daniel J.; Hong, Mei

    2013-08-29

    Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins, which weaken the noncovalent network formed by cellulose, hemicellulose, and pectins, but the CW target of expansins has remained elusive because of the minute amount of the protein required for activity and the complex nature of the CW. Using solid-state NMR spectroscopy, combined with sensitivity-enhancing dynamic nuclear polarization (DNP) and differential isotopic labeling of expansin and polysaccharides, we have now determined the functional binding target of expansin in the Arabidopsis thaliana CW. By transferring the electron polarization of a biradical dopant to the nuclei, DNP allowed selective detection of 13C spin diffusion from trace concentrations of 13C, 15N-labeled expansin in the CW to nearby polysaccharides. From the spin diffusion data of wild-type and mutant expansins, we conclude that to loosen the CW, expansin binds highly specific cellulose domains enriched in xyloglucan, whereas more abundant binding to pectins is unrelated to activity. Molecular dynamics simulations indicate short 13C-13C distances of 4–6 Å between a hydrophobic surface of the cellulose microfibril and an aromatic motif on the expansin surface, consistent with the observed NMR signals. DNP-enhanced 2D 13C correlation spectra further reveal that the expansin-bound cellulose has altered conformation and is enriched in xyloglucan, thus providing unique insight into the mechanism of CW loosening. DNP-enhanced NMR provides a powerful, generalizable approach for investigating protein binding to complex macromolecular targets.

  20. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls

    SciTech Connect

    Wang, Tuo; Park, Yong Bum; Caporini, Marc A.; Rosay, Melanie; Zhong, Linghao; Cosgrove, Daniel J.; Hong, Mei

    2013-08-29

    Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins, which weaken the noncovalent network formed by cellulose, hemicellulose, and pectins, but the CW target of expansins has remained elusive because of the minute amount of the protein required for activity and the complex nature of the CW. Using solid-state NMR spectroscopy, combined with sensitivity-enhancing dynamic nuclear polarization (DNP) and differential isotopic labeling of expansin and polysaccharides, we have now determined the functional binding target of expansin in the Arabidopsis thaliana CW. By transferring the electron polarization of a biradical dopant to the nuclei, DNP allowed selective detection of 13C spin diffusion from trace concentrations of 13C, 15N-labeled expansin in the CW to nearby polysaccharides. From the spin diffusion data of wild-type and mutant expansins, we conclude that to loosen the CW, expansin binds highly specific cellulose domains enriched in xyloglucan, whereas more abundant binding to pectins is unrelated to activity. Molecular dynamics simulations indicate short 13C-13C distances of 4–6 Å between a hydrophobic surface of the cellulose microfibril and an aromatic motif on the expansin surface, consistent with the observed NMR signals. DNP-enhanced 2D 13C correlation spectra further reveal that the expansin-bound cellulose has altered conformation and is enriched in xyloglucan, thus providing unique insight into the mechanism of CW loosening. DNP-enhanced NMR provides a powerful, generalizable approach for investigating protein binding to complex macromolecular targets.

  1. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (?), such as protons, to the less abundant 13C nuclei with low ? values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched. The Hartmann-Hahn condition can be expressed as ?HB1H = ?CB1C, where ?H and ?C are the gyromagnetic ratios of protons and carbons, whereas B1H and B1C are the 1H and 13C radio-frequency (r.f.) fields applied to the nuclei. The Hartmann-Hahn condition is affected by the H-C dipolar interaction strength (Stejskal & Memory, 1994). All the factors affecting dipolar interactions may mismatch the Hartmann-Hahn condition and prevent a quantitative representation of the NOM chemical composition (Conte et al., 2004). It has been reported that under low speed MAS conditions, broad matching profiles are centered around the Hartmann-Hahn condition....... With increasing spinning speed the Hartmann-Hahn matching profiles break down in a series of narrow matching bands separated by the rotor frequency (Stejskal & Memory, 1994). In order to account for the instability of the Hartmann-Hahn condition at higher rotor spin rates (>10 kHz), variable amplitude cross-polarization techniques (RAMP-CP) have been developed (Metz et al., 1996). So far, to our knowledge, the prevailing way used to obtain quantitative 13C-CPMAS NMR results was to optimize the 1H and 13C spin lock r.f. fields on simple standard systems such as glycine and to use those r.f. field values to run experiments on unknown organic samples. The aim of the present study was to experimentally evidence that the stability of the Hartmann-Hahn condition was different for different samples with a known structure. Moreover, Hartmann-Hahn profiles of four different humic acids (HAs) were also provided in order to show that the 1H/13C r.f. spin lock field strength must also be tested on the HAs prior to a quantitative evaluation of their 13C-CPMAS NMR spectra. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A. & Clarke, P., 1997. Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy. Australian Journal of Soil Research, 35, 1061-1083. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & de Jager, P.A., 1997. Quantitative Aspects of So

  2. Investigation of Local Structures in Layered Niobates by Solid-state NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ting

    Research on ion-exchangeable layered niobates has attracted great attention due to their unique structures and corresponding variations in properties and applications, such as ion conductors, solid acids, and water splitting catalysts. Families of layered niobates include double-layered or triple-layered Dion-Jacobson type perovskites (ALaNb2O7, A = Cs, Rb, K, H; AM2Nb3O10, A = Rb, K, H; M = Sr, Ca), layered niobates with both edge and corner sharing of NbO6 octahedra (KNb3O8, HNb3O6, Nb 6O17 and H4Nb6O17) and many others. Lately, more developments in the layered niobates through a variety of topochemical manipulations have been achieved. The topochemical reactions include ion exchange, exfoliation, substitution, and etc. As a result, many new materials have been successfully prepared, for example, solid solutions (ALa2NbTi2O10, ACaLaNb2TiO 10 and ACa2Nb3-xTaxO10, etc.), nanosheets (HNb3O8, H4Nb6O17, HLaNb2O7, HCa2Nb3O10, etc., to intercalate with organic molecules such as tetrabutylammonium hydroxide or n-butylamines), and nanoscrolls (from H2K2Nb 6O17). While these structural modifications often induce improvements in properties, the fundamental mechanisms of improvements in properties upon the modifications, especially local structural arrangements are poorly understood, which is often limited by structural characterizations. Particularly, the characterizations of the exfoliated nanosheets can be difficult by conventional X-ray diffraction (XRD) method due to disordered structures. Alternatively, solid-state nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study local structures in solids. The structural information can be extracted by examining intrinsic interactions, such as quadrupolar, chemical shielding, and dipolar interactions, which are all associated with local environments surrounding a specific nucleus, 1H or 93Nb in layered niobates. The ultimate goal of this dissertation is to understand the relationships between local structures of layered niobates and their chemical or physical properties, and provide insights into further modifications and improvements. The primary objectives of this work are summarized below: I. Synthesis of series of layered niobates (ALaNb2O7 , A = Cs, Rb, K; KNb3O8; K4Nb 6O17; RbLa2NbTi2O10 and RbCaLaNb2TiO10) by microwave heating or cation exchange methods, their protonated forms by acid exchange (HLaNb2O 7, H3ONb3O8 and HNb3O 8, H4Nb8O17, HLa2NbTi 2O10 and HCaLaNb2TiO10), and three nanosheet niobates by exfoliation (HNb3O8, H4Nb 6O17 and HLaNb2O7 nanosheets). II. Structural characterizations of all niobates by powder XRD and solid-state NMR spectroscopy. Powder XRD is used to determine lattice constants and long-range structural ordering. Solid-state NMR is used to determine the electric field gradient parameters, chemical shift anisotropy parameters and dipolar coupling constants. Solid-state NMR techniques include 93Nb MQMAS, wide-line VOCS echo and WURST-echo; 1H{93Nb} CP, TRAPDOR, S-RESPDOR and iS-RESPDOR experiments. III. Understanding the trends of changes in NMR parameters with respect to cation exchange, exfoliation and compositional alteration, and correlation of the NMR parameters with local environments and possible structural rearrangements. IV. Identification of proton locations in the acid-exchanged niobates and surface acidity for the exfoliated nanosheets, based on 1H chemical shifts and dipolar coupling information from CP, S-RESPDOR and iS-RESPDOR experiments.

  3. Structure and dynamics of DNA and RNA oligonucleotides as studied using solution and solid state NMR. [NMR (nuclear magnetic resonance)

    SciTech Connect

    Wang, A.C.C.

    1992-01-01

    NMR experiments reveal that the base H8/H6 and H1[prime] protons of RNA have T[sub 1] relaxation times that are distinctly longer than those of DNA. NMR and circular dichroism experiments indicate that the segments of RNA maintain their A-form geometry even in the interior of DNA-RNA-DNA chimeric duplexes, suggesting that the relaxation times are correlated with the type of helix topology. Results from solid state [sup 2]H NMR experiments on the purine C-8 deuterium-labeled 12 base pair RNA duplex [r(CG*CG*A*A*UUGG*CG*)][sub 2] were compared with results obtained by other investigators on the 12 base pair DNA duplex [d(CG*CG*A*A*TTCG*CG*)][sub 2]. The motional amplitudes of DNA and RNA purines are similar at 0%-88% RH and their internal rates of motion are different at 0%-80% RH. The assumption that dodecameric oligonucleotides (12-mers) tumble isotropically in solution is often used when calculating proton-proton distances from NOE data. The authors have undertaken the task of testing the isotropic assumption using experimental NMR data. The authors have calculated the structure of [d(GCGTTTAAACGC)][sub 2] using both the isotropic assumption and the assumption that the duplex tumbles anisotropically in solution like a perfect cylinder. The resulting structures from both approaches are virtually indistinguishable. The isotropic assumption is valid for oligonucleotides 12 base pairs and shorter. The solution structure of the 12 base pair hybrid chimeric duplex [r(gcg)d(TATATACGC)][sub 2] has been solved using NMR techniques combined with distance geometry and NOE back-calculation methods. The structure is characterized by a dramatic bend of 52[degrees] in the helix axis. The location of the bend is not at the RNA-DNA step but occurs between the first and second residues of the DNA segment. The center of the DNA TATATA segment has a remarkably narrow minor groove that becomes very wide in the hybrid portions of the duplex.

  4. Elucidating Metabolic Pathways for Amino Acid Incorporation Into Dragline Spider Silk using 13C Enrichment and Solid State NMR

    PubMed Central

    Creager, Melinda S.; Izdebski, Thomas; Brooks, Amanda E.; Lewis, Randolph V.

    2013-01-01

    Spider silk has been evolutionarily optimized for contextual mechanical performance over the last 400 million years. Despite precisely balanced mechanical properties, which have yet to be reproduced, the underlying molecular architecture of major ampullate spider silk can be simplified being viewed as a versatile block copolymer. Four primary amino acid motifs: polyalanine, (GA)n, GPGXX, and GGX (X = G,A,S,Q,L,Y) will be considered in this study. Although synthetic mimetics of many of these amino acid motifs have been produced in several biological systems, the source of spider silk’s mechanical integrity remains elusive. Mechanical robustness may be a product not only of the amino acid structure but also of the tertiary structure of the silk. Historically, solid state Nuclear Magnetic Resonance (ssNMR) has been used to reveal the crystalline structure of the polyalanine motif; however, limitations in amino acid labeling techniques have obscured the structures of the GGX and GPGXX motifs thought to be responsible for the structural mobility of spider silk. We describe the use of metabolic pathways to label tyrosine for the first time as well as to improve the labeling efficiency of proline. These improved labeling techniques will allow the previously unknown tertiary structures of major ampullate silk to be probed. PMID:21334448

  5. Solid-state NMR study of trehalose/1,2-dipalmitoyl-sn-phosphatidylcholine interactions.

    PubMed

    Lee, C W; Waugh, J S; Griffin, R G

    1986-07-01

    31P and 2H solid-state NMR studies of dry trehalose (TRE) and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) mixtures are reported. 31P spectra are consistent with a rigid head group above and below the calorimetric phase transition for both dry DPPC and a dry 2:1 TRE/DPPC mixture. In addition, 2H spectra of DPPC labeled at the 7-position of the sn-2 chain (2[7,7-2H2]DPPC) show exchange-narrowed line shapes with a width of 120 kHz over the temperature range 25-75 degrees C. These line shapes can be simulated with a model involving two-site jumps of the deuteron. In contrast, the 2H NMR spectrum of a dry 2:1 TRE/2[7,7-2H2]DPPC mixture above the phase transition (Tc = 46 degrees C) is narrowed by a factor of approximately 4 to a width of 29 kHz. Simulation of this spectrum requires a model involving four-site jumps of the deuteron and is indicative of highly disordered lipid acyl chains similar to those found in the L alpha-phases of hydrated lipids. Thus, TRE/DPPC mixtures above their transition temperatures exist in a new type of liquid crystalline like phase, which we term a lambda-phase. The observation of the dynamic properties of this new phase indicates the mechanism by which anhydrobiotic organisms maintain the integrity of their membranes upon dehydration. PMID:3755614

  6. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    SciTech Connect

    Gann, Sheryl Lee

    1995-11-30

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized {pi}-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0{sup o} (parallel) with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCI?), is presented, along with experimental work on adamantane and polycarbonate.

  7. Trading sensitivity for information: Carr-Purcell-Meiboom-Gill acquisition in solid-state NMR.

    PubMed

    Dey, Krishna K; Ash, Jason T; Trease, Nicole M; Grandinetti, Philip J

    2010-08-01

    The Carr-Purcell-Meiboom-Gill (CPMG) experiment has gained popularity in solid-state NMR as a method for enhancing sensitivity for anisotropically broadened spectra of both spin 1/2 and half integer quadrupolar nuclei. Most commonly, the train of CPMG echoes is Fourier transformed directly, which causes the NMR powder pattern to break up into a series of sidebands, sometimes called "spikelets." Larger sensitivity enhancements are observed as the delay between the pi pulses is shortened. As the duration between the pi pulses is shortened, however, the echoes become truncated and information about the nuclear spin interactions is lost. We explored the relationship between enhanced sensitivity and loss of information as a function of the product Omega 2tau, where Omega is the span of the anisotropic lineshape and 2tau is the pi pulse spacing. For a lineshape dominated by the nuclear shielding anisotropy, we found that the minimum uncertainty in the tensor values is obtained using Omega 2tau values in the range Omega 2tau approximately 12(-1)(+6) and Omega 2tau approximately 9(-3)(+3) for eta(s)=0 and eta(s)=1, respectively. For an anisotropic second-order quadrupolar central transition lineshape under magic-angle spinning (MAS), the optimum range of Omega 2tau approximately 9(-2)(+3) was found. Additionally, we show how the Two-dimensional One Pulse (TOP) like processing approach can be used to eliminate the cumbersome sideband pattern lineshape and recover a more familiar lineshape that is easily analyzed with conventional lineshape simulation algorithms. PMID:20707536

  8. Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR

    SciTech Connect

    Malki, A.; Mekhalif, Z.; Detriche, S.; Fonder, G.; Boumaza, A.; Djelloul, A.

    2014-07-01

    The changes caused by heat treatment of gibbsite powder at 300–1473 K were studied using the X-ray diffraction (XRD), X-ray photoemission (XPS) spectra and {sup 27}Al magic angle spinning nuclear magnetic resonance spectroscopy ({sup 27}Al MAS NMR). XRD analysis indicates that the transformation sequence involves the formation of ?-Al{sub 2}O{sub 3} as an intermediate phase between ?- and ?-Al{sub 2}O{sub 3}. The crystallite size of ?-Al{sub 2}O{sub 3} is as small as 10 nm. XPS analysis indicates that the ratio of aluminium atoms to oxygen atoms in ?-Al{sub 2}O{sub 3} and ?-Al{sub 2}O{sub 3} increases, whereas the expected ratio is observed in ?-Al{sub 2}O{sub 3}. The percentage of AlO{sub 4} units in the transition aluminas follows the same behaviour as the ratio of Al/O. - Graphical abstract: The percentage of AlO{sub 4} units in transition aluminas follows the same behaviour as the ratio of Al/O. - Highlights: • Calcination products of gibbsite studied by XRD, XPS and solid-state NMR. • The crystallite size of ?-Al{sub 2}O{sub 3} is as small as 10 nm. • The Al/O atomic ratio determined by XPS is larger than 2/3 in ?-Al{sub 2}O{sub 3} and ?-Al{sub 2}O{sub 3}. • The percentage of AlO{sub 4} in the aluminas follows the same behaviour as the Al/O atomic ratio.

  9. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    PubMed Central

    Shaw, Wendy J.

    2015-01-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin (43 amino acids) and leucine rich amelogenin protein (LRAP; 59 amino acids), have been studied in depth and have different dynamic properties and 2D- and 3D-structural features. These differences make it difficult to extract design principles used in nature for building materials with properties such as high strength, unusual morphologies, or uncommon phases. Consequently, design principles needed for developing synthetic materials controlled by proteins are not clear. Many biomineralization proteins are much larger than statherin and LRAP, necessitating the study of larger biomineralization proteins. More recent studies of the significantly larger full-length amelogenin (180 residues) represent a significant step forward to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids, a silaffin derived peptide, and the model LK peptide with silica are also being studied, along with qualitative studies of the organic matrices interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet the need for isolated spin pairs makes this approach costly and time intensive. The use of multidimensional techniques to study biomineralization proteins is becoming more common, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area. PMID:25466354

  10. Solid-state NMR studies of proteins immobilized on inorganic surfaces.

    PubMed

    Shaw, Wendy J

    2015-09-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin (43 amino acids) and leucine rich amelogenin protein (LRAP; 59 amino acids), have been studied in depth and have different dynamic properties and 2D- and 3D-structural features. These differences make it difficult to extract design principles used in nature for building materials with properties such as high strength, unusual morphologies, or uncommon phases. Consequently, design principles needed for developing synthetic materials controlled by proteins are not clear. Many biomineralization proteins are much larger than statherin and LRAP, necessitating the study of larger biomineralization proteins. More recent studies of the significantly larger full-length amelogenin (180 residues) represent a significant step forward to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids, a silaffin derived peptide, and the model LK peptide with silica are also being studied, along with qualitative studies of the organic matrices interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques to study biomineralization proteins is becoming more common, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area. PMID:25466354

  11. Solid-state NMR structure determination of whole anchoring threads from the blue mussel Mytilus edulis.

    PubMed

    Arnold, Alexandre A; Byette, Frédéric; Séguin-Heine, Marc-Olivier; Leblanc, André; Sleno, Lekha; Tremblay, Réjean; Pellerin, Christian; Marcotte, Isabelle

    2013-01-14

    The molecular structure of the blue mussel Mytilus edulis whole anchoring threads was studied by two-dimensional (13)C solid-state NMR on fully labeled fibers. This unique material proves to be well ordered at a molecular level despite its heterogeneous composition as evidenced by the narrow measured linewidths below 1.5 ppm. The spectra are dominated by residues in collagen environments, as determined from chemical shift analysis, and a complete two-dimensional assignment (including minor amino acids) was possible. The best agreement between predicted and experimental backbone chemical shifts was obtained for collagen helices with torsion angles (-75°, +150°). The abundant glycine and alanine residues can be resolved in up to five different structural environments. Alanine peaks could be assigned to collagen triple-helices, ?-sheets (parallel and antiparallel), ?-turns, and unordered structures. The use of ATR-FTIR microscopy confirmed the presence of these structural environments and enabled their location in the core of the thread (collagen helices and antiparallel ?-sheets) or its cuticle (unordered structures). The approach should enable characterization at the molecular level of a wide range of byssus macroscopic properties. PMID:23163352

  12. High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein

    PubMed Central

    Tang, Ming; Comellas, Gemma; Mueller, Leonard J.

    2011-01-01

    High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C?, 13C? and 13C? sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13C? T2? times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions. PMID:20803233

  13. First solid-state NMR spectroscopy evaluation of complexes of benznidazole with cyclodextrin derivatives.

    PubMed

    Priotti, Josefina; Ferreira, M João G; Lamas, Maria C; Leonardi, Darío; Salomon, Claudio J; Nunes, Teresa G

    2015-10-20

    Complexation of benznidazole (BZL), a drug of choice for the treatment of Chagas'neglected disease, with cyclodextrin (CD) derivatives was analyzed by solid-state NMR. (13)C cross polarization/magic angle spinning spectra were recorded from BZL and from BZL:?-CD, BZL:methyl ?-CD and BZL:hydroxypropyl ?-CD complexes, which were obtained by the solvent evaporation technique. No significant evidence was obtained on BZL inclusion complexes involving either ?-CD or hydroxypropyl ?-CD. Conversely, BZL:methyl ?-CD displayed BZL resonances characteristic of an amorphous drug and data analysis confirmed the presence of stable BZL:methyl ?-CD inclusion complexes, with benzene encapsulated into the host cavity. Further evidences on complex structure and dynamics were obtained from proton and carbon spin-lattice relaxation times in the rotating frame. These data are consistent with a common guest-host spin reservoir. The BZL interaction with methyl ?-CD provided a route to stabilize amorphous BZL. Physical mixtures with identical BZL and CD compositions were also studied for comparison. PMID:26256164

  14. Solid state field-cycling NMR relaxometry: instrumental improvements and new applications.

    PubMed

    Fujara, Franz; Kruk, Danuta; Privalov, Alexei F

    2014-10-01

    The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development of two types of electronical FC relaxometers, a mechanical FC relaxometer and a combination of FC and one-dimensional microimaging. Progress has been achieved with respect to several parameters such as the accessible field and temperature range as well as the incorporation of sample spinning. Since an appropriate analysis of FC data requires a careful consideration of relaxation theory, we include a theory section discussing the most relevant aspects of relaxation in solids which are related to residual dipolar and quadrupolar interactions. The most important limitations of relaxation theory are also discussed. With improved instrumentation and with the help of relaxation theory we get access to interesting new applications such as ionic motion in solid electrolytes, structure determination in molecular crystals, ultraslow polymer dynamics and rotational resonance phenomena. PMID:25444698

  15. Solid-state NMR and EPR study of fluorinated carbon nanofibers

    SciTech Connect

    Zhang Wei Dubois, Marc Guerin, Katia Hamwi, Andre Giraudet, Jerome Masin, Francis

    2008-08-15

    Carbon nanofibers were fluorinated in two manners, in pure fluorine gas (direct fluorination) and with a fluorinating agent (TbF{sub 4} during the so-called controlled fluorination). The resulting fluorinated nanofibers have been investigated by solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). This underlines that the fluorination mechanisms differ since a (CF){sub n} structural type is obtained, whatever the temperature, with the controlled reaction, whereas, during the direct process, a (C{sub 2}F){sub n} type is formed over a wide temperature range. Through a careful characterization of the products, i.e. density of dangling bonds (as internal paramagnetic centers), structural type (acting on molecular motion) and specific surface area (related to the amount of physisorbed O{sub 2}), the effect of atmospheric oxygen molecules on the spin-lattice nuclear relaxation has been underlined. - Graphical abstract: Scheme of the fluorination process using F{sub 2} and TbF{sub 4} as fluorinating agent.

  16. Exploring Dynamics and Cage-Guest Interactions in Clathrate Hydrates Using Solid-State NMR.

    PubMed

    Sengupta, Suvrajit; Guo, Jin; Janda, Kenneth C; Martin, Rachel W

    2015-12-17

    Interactions between guest molecules and the water cages in clathrates are dominated by isotropic van der Waals forces at low temperatures because the cage structures satisfy the hydrogen bonding propensity of the water. However, above 200 K the water molecules become more labile and may interact strongly with the guests through hydrogen bonding. In this work we compare the dynamics of tetrahydrofuran (THF) and cyclopentane (CP) guests in the hydrate cages above 200 K. Since THF can form hydrogen bonds while CP cannot, the dynamics provide insight into host-guest hydrogen bonding. We use magic angle spinning (MAS) solid-state NMR to measure proton spin-lattice relaxation times (T1) of the guests as a function of temperature and find that the activation barrier to the motion of THF molecules is 4.7 kcal/mol (19.7 kJ/mol) at temperatures above 200 K. This is almost 5 times higher than the barrier at lower temperatures. In contrast, the barrier to guest motion in CP hydrate is found to be about 0.67 kcal/mol (2.8 kJ/mol), which agrees well with data at lower temperatures. These results demonstrate that hydrogen bonding interactions between the THF guest and the clathrate cage are significant above 200 K due to the host lattice mobility. PMID:26583257

  17. Ring-chain tautomerism in solid-phase erythromycin A: evidence by solid-state NMR.

    PubMed

    Iuliucci, Robbie J; Clawson, Jacalyn; Hu, Jain Zhi; Solum, Mark S; Barich, Dewy; Grant, David M; Taylor, Craig M V

    2003-08-01

    Chemical shift modeling, utilizing the DFT B3LYP/D95** method, provides the spectral assignment of the 35 visible 13C resonances from the solid-phase erythromycin A dihydrate. A new resonance at 110.8ppm is observed in the high-resolution 13C CP/MAS spectrum upon the application of heat or sample desiccation. With the use of the dipolar-dephasing spectral editing technique, this resonance is identified as a hemiketal carbon and the alternative hypothesis, a conformational change to the anomeric carbon of the desosamine sugar, is ruled out. Hence, the formation of a cyclic hemiketal in erythromycin A while in the solid phase is proven by solid-state NMR. The principal components of the 13C chemical-shift tensor corresponding to this hemiketal are reported. This is the first measurement of hemiketal 13C principal values. The delta11 and delta22 components are unique compared to anomeric carbon values reported in the literature. PMID:12850255

  18. New insights into the bonding arrangements of L- and D-glutamates from solid state 17O NMR

    NASA Astrophysics Data System (ADS)

    Lemaitre, V.; Pike, K. J.; Watts, A.; Anupold, T.; Samoson, A.; Smith, M. E.; Dupree, R.

    2003-03-01

    Magic angle spinning (MAS) from L- and D-glutamic acid-HCl at 14.1 T produces highly structured and very similar NMR spectra. Lines from all 4 oxygen sites are readily distinguished and assigned. These 17O NMR spectra are very different from the previously reported 17O spectrum of the D, L-form presumably because that was a racemic crystal. 17O NMR from L-monosodium glutamate-HCl is very different again requiring the application of double angle rotation and 3 quantum MAS NMR to provide resolution of 5 different sites. Hence high resolution 17O solid state NMR techniques offer possible new insight into biochemical bonding processes.

  19. Solid-state C-13 and H-1 NMR imaging stdies of the accelerated-sulfur cured high vinyl polybutadiene. [NMR (nuclear magnetic resonance)

    SciTech Connect

    Rana, M.A.

    1993-01-01

    Solid-state [sup 13]C NMR and [sup 1]H Imaging methods have been used to follow the progress of accelerated-sulfur vulcanization of unfilled high vinyl polybutadiene. Different NMR pulse sequences have been used to characterize the micro-network structures present in the bulk of the finally cured rubber samples. These studies were made as a function of formulation and processing variables. The time-resolved, integrated rubber network. Mono-sulfidic as well as the residual accelerator fragments were differentiated from the polysulfidic crosslinks in a finally cured material. Dynamic studies of these network structures were made using spin-spin relaxation (T[sub 2c]) measurements. The activation energies calculated based on T[sub 2] were used to verify different carbons, directly attached to the sulfur atoms. A swelling method based on Flory-Rehner's equation was also used to determine the crosslink densities and the number-average molecular weight between the nodal junctions in different formulations. Different spatially resolved structural features have been detected in the swollen samples using NMR imaging method. The voids, no-voids and other impurities were differentiated on the basis of magnetic susceptibility differences. Cyclohexane was used as a swelling solvent to probe the morphological defects in these materials. The T[sub 2]-weighted images were used to evaluate the crosslink densities in different samples. The quantitative estimations based on histogram was also employed to determine the average volume per crosslink region. The contrast based on H-1 spin-density or mobility was highlighted in T[sub 2]-weighted images. The variations were found to be closely related to variation in both concentration and mobility of the network.

  20. Thermal decomposition of t-butylamine borane studied by in situ solid state NMR

    SciTech Connect

    Feigerle, J.; Smyrl, N. R.; Morrell, J. S.; Stowe, A. C.

    2010-03-18

    Development of suitable materials to store hydrogen for automotive use has received pointed attention over the past decade. Significant progress has been made with the discovery of novel chemical hydrides, complex metal hydrides, and adsorption substrates which continue to optimize both thermodynamics and kinetics of hydrogen sorption. Chemical hydrides typically offer the largest theoretical gravimetric capacities. Autrey et al. have recently shown that mechanical milling of alkali metal hydrides with ammonia borane can further lower the decomposition temperature. In all cases, however, many challenges remain in order to meet the current US DOE performance targets. Amine boranes are being considered for hydrogen storage materials since they contain significant quantities of hydrogen which potentially can be released at low temperatures (80-150 C) via chemical reactions. Ammonia borane, NH{sub 3}BH{sub 3}, is one of the most promising in this class as it decomposes to release greater than two moles of pure hydrogen gas (14 wt%) below 160 C. Although isoelectronic to ethane, NH{sub 3}BH{sub 3} is a solid at room temperature due to the di-hydrogen bonding network formed between the amine protons and boron hydrides in the solid state lattice. Further, it has been shown that the hydrogen release mechanism involves transformation and isomerization to an ionic dimer where a hydride migrates from one boron to the adjacent boron in the dimer. The greatest challenge to the use of ammonia borane as a hydrogen fuel is the regeneration path from spent fuel to ammonia borane again. The proposed chemical synthesis involves complicated organometallic reactions to form boron hydrogen bonds from the thermodynamically stable polyimidoborane products (BNH){sub n}. Recent theoretical calculations suggested that incorporation of carbon atoms into the (BNH)n product would be less thermodynamically stable. These (CBNH)n compounds are potentially less energy intensive making regeneration of the amine borane fuel more feasible [22]. In the present study, tert-butylamine borane is investigated by heteronuclear in situ solid state NMR to understand hydrogen release from a hydrocarbon containing amine borane. tbutylamine borane has similar physical properties to amine borane with a melting point of 96 C. A single proton has been replaced with a t-butylamine group resulting in a weakening of the dihydrogen bonding framework. t-butylamine borane has a theoretical gravimetric hydrogen density of 15.1%; however, isobutane can also be evolved rather than hydrogen. If decomposition yields one mole isobutane and two moles hydrogen, 4.5 wt% H2 gas will be evolved. More importantly for the present work, the resulting spent fuel should be comprised of both (BNH)n and (CBNH)n polyimidoboranes.

  1. Structure and ionic interactions of organic-inorganic composite polymer electrolytes studied by solid-state NMR and Raman spectroscopy.

    PubMed

    Joo, Chan Gyu; Bronstein, Lyudmila M; Karlinsey, Robert L; Zwanziger, Josef W

    2002-01-01

    Solid-state NMR studies of composite polymer electrolytes are reported. The materials consist of polyethylene oxide and an organic inorganic composite, together with a lithium salt, and are candidates for electrolytes in solid-state lithium ion batteries. Silicon and aluminum MAS and multiple quantum MAS are used to characterize the network character of the organic-inorganic composite, and spin diffusion measurements are used to determine the nanostructure of the polymer/composite blending. Multiple quantum spin counting is used to measure the ion aggregation. The NMR results are supported by Raman spectra, calorimetry, and impedance spectroscopy. From these experiments it is concluded that the composite suppresses polymer crystallization without suppressing its local mobility, and also suppresses the tendency for the ions to aggregate. This polymer composite thus appears very promising for application in lithium ion batteries. PMID:12469813

  2. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  3. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.

    PubMed

    Tang, Joel A; Kogut, Elzbieta; Norton, Danielle; Lough, Alan J; McGarvey, Bruce R; Fekl, Ulrich; Schurko, Robert W

    2009-03-19

    Transition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations). Single-crystal X-ray structures for the neutral (z = 0) and the fully reduced forms (z = 2) were obtained. The two species have very similar structures but differ slightly in their intraligand bond lengths. (19)F-(195)Pt CP/CPMG and (195)Pt magic-angle spinning (MAS) NMR experiments are used to probe the diamagnetic (z = 0, 2) species, revealing large platinum chemical shielding anisotropies (CSA) with distinct CS tensor properties, despite the very similar structural features of these species. Density functional theory (DFT) calculations are used to rationalize the large platinum CSAs and CS tensor orientations of the diamagnetic species using molecular orbital (MO) analysis, and are used to explain their distinct molecular electronic structures in the context of the NMR data. The paramagnetic species (z = 1) is examined using both EPR spectroscopy and (13)C and (19)F MAS NMR spectroscopy. Platinum g-tensor components were determined by using solid-state EPR experiments. The unpaired electron spin densities at (13)C and (19)F nuclei were measured by employing variable-temperature (13)C and (19)F NMR experiments. DFT and ab initio calculations are able to qualitatively reproduce the experimentally measured g-tensor components and spin densities. The combination of experimental and theoretical data confirm localization of unpaired electron density in the pi-system of the dithiolene rings. PMID:19236015

  4. Investigating the Interaction of Saposin C with POPS and POPC Phospholipids: A Solid-State NMR Spectroscopic Study

    PubMed Central

    Abu-Baker, Shadi; Qi, Xiaoyang; Lorigan, Gary A.

    2007-01-01

    The interaction of Saposin C (Sap C) with negatively charged phospholipids such as phosphatidylserine (PS) is essential for its biological function. In this study, Sap C (initially protonated in a weak acid) was inserted into multilamellar vesicles (MLVs) consisting of either 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine] (negatively charged, POPS) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (neutrally charged, POPC). The MLVs were then investigated using solid-state NMR spectroscopy under neutral pH (7.0) conditions. The 2H and 31P solid-state NMR spectroscopic data of Sap C-POPS and Sap C-POPC MLVs (prepared under the same conditions) were compared using the 2H order parameter profiles of the POPC-d31 or POPS-d31 acyl chains as well as the 31P chemical shift anisotropy width and 31P T1 relaxation times of the phospholipids headgroups. All those solid-state NMR spectroscopic approaches indicate that protonated Sap C disturbs the POPS bilayers and not the POPC lipid bilayers. These observations suggest for the first time that protonated Sap C inserts into PS bilayers and forms a stable complex with the lipids even after resuspension under neutral buffer conditions. Additionally, 31P solid-state NMR spectroscopic studies of mechanically oriented phospholipids on glass plates were conducted and perturbation effect of Sap C on both POPS and POPC bilayers was compared. Unlike POPC bilayers, the data indicates that protonated Sap C (initially protonated in a weak acid) was unable to produce well-oriented POPS bilayers on glass plates at neutral pH. Conversely, unprotonated Sap C (initially dissolved in a neutral buffer) did not interact significantly with POPS phospholipids allowing them to produce well-oriented bilayers at neutral pH. PMID:17704143

  5. Multinuclear Solid-State NMR Studies of Polymers and Immobilized Sonogashira Catalysts for Cross-Coupling Reactions 

    E-print Network

    Pope, Jacqueline Christine

    2014-08-28

    ............................................................................................. 56 Experimental ......................................................................................... 57 III HIGH-TEMPERATURE STEAM-TREATMENT OF MELT- MOLDED PBI, PEEK, AND PEKK WITH H2O AND D2O: A SOLID-STATE NMR STUDY... ................................................................................................................. 284 xii LIST OF FIGURES FIGURE Page 2.1. 13C CP/MAS NMR spectra of PBI (a), PEEK (b), melt-blended PEEK- PBI (c), and a physical mixture of powdered PEEK and PBI (50:50 wt%) (d). The spinning speed is 10 kHz for all spectra...

  6. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  7. Stationary interphases with extended alkyl chains: a comparative study on chain order by solid-state NMR spectroscopy.

    PubMed

    Pursch, M; Brindle, R; Ellwanger, A; Sander, L C; Bell, C M; Händel, H; Albert, K

    1997-12-01

    Stationary interphases with long n-alkyl chains (n = 18, 22, 30, 34) have been examined by solid-state NMR spectroscopy. The determination of the silane functionality and the degree of cross-linking of silane ligands on the silica surface was performed by 29Si CP/MAS NMR spectroscopy. High-speed 1H MAS and 13C CP/MAS NMR spectroscopy were utilized to assess alkyl chain order and mobility of the different bonded phases. For this purpose, 1H NMR line widths and 13C chemical shifts have been evaluated. It is shown that stationary phase order and rigidity increase with alkyl chain length. In addition, the temperature-dependent trans/gauche conformational change occurs at higher temperatures for a polymeric C34 phase compared with a C30 sorbent. This behaviour is discussed in the context of previously reported chromatographic (HPLC) shape selectivity differences. PMID:9477449

  8. Solid-state NMR structure determination of melittin in a lipid environment.

    PubMed Central

    Lam, Y H; Wassall, S R; Morton, C J; Smith, R; Separovic, F

    2001-01-01

    Solid-state (13)C NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-(13)C]Gly3-[2-(13)C]Ala4, [1-(13)C]Gly3-[2-(13)C]Leu6, [1-(13)C]Leu13-[2-(13)C]Ala15, [2-(13)C]Leu13-[1-(13)C]Ala15, and [1-(13)C]Leu13-[2-(13)C]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-(13)C]Gly3-[2-(13)C]Ala4 and [1-(13)C]Gly3-[2-(13)C]Leu6 were consistent with alpha-helical structure in the N-terminus irrespective of environment. The internuclear distances measured in [1-(13)C]Leu13-[2-(13)C]Ala15, [2-(13)C]Leu13-[1-(13)C]Ala15, and [1-(13)C]Leu13-[2-(13)C]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees ) than in lyophilized powder (121 degrees -139 degrees ) or crystals (129 degrees ). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (approximately 160 degrees ). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes. PMID:11606288

  9. CHHC and [superscript 1]H–[superscript 1]H magnetization exchange: Analysis by experimental solid-state NMR and 11-spin density-matrix simulations

    E-print Network

    Aluas, Mihaela

    A protocol is presented for correcting the effect of non-specific cross-polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the [superscript 1]H–[superscript 1]H magnetization exchange ...

  10. Comprehensive solid-state NMR analysis reveals the effects of N-methylation on the molecular dynamics of glycine.

    PubMed

    Huang, Jing; Jiang, Limiao; Ren, Pingping; Zhang, Limin; Tang, Huiru

    2012-01-12

    Molecular dynamics of metabolites are important for their interactions and functions. To understand the structural dependence of molecular dynamics for N-methylated glycines, we comprehensively measured the (13)C and (1)H spin-lattice relaxation times for sarcosine, N,N-dimethylglycine, betaine, and betaine hydrochloride over a temperature range of 178-460 K. We found that the reorientations of methyl groups were observed for all these molecules, whereas reorientations of whole trimethylamine groups were detected in betaines. While similar rotational properties were observed for methyl groups in N,N-dimethylglycine and those in betaine, three methyl groups in betaine hydrochloride had different motional properties (E(a) ? 20.5 kJ/mol, ?(0) ? 1.85 × 10(-13) s; E(a) ? 13.9 kJ/mol, ?(0) ? 2.1 × 10(-12) s; E(a) ? 15.8 kJ/mol, ?(0) ? 1.1 × 10(-12) s). N,N-Dimethylglycine showed a phase transition at 348.5 K with changed relaxation behavior for methyl groups showing distinct E(a) and ?(0) values. The DIPSHIFT experiments showed that CH(3) and CH(2) moieties in these molecules had dipolar-dephasing curves similar to these moieties in alanine and glycine. The activation energies for CH(3) rotations positively correlated with the number of substituted methyl groups. These findings provided useful information for the structural dependence of molecular dynamics for N-methylated glycines and demonstrated solid-state NMR as a useful tool for probing the structure-dynamics relationships. PMID:22142308

  11. A high-resolution sup 13 C solid-state NMR study of meso-tetraphenylporphyrin and its zinc(II) complex

    SciTech Connect

    Rocha, J.; Kolodziejski, W.; Klinowski, J. ); Cavaleiro, J.A.S. )

    1992-01-01

    High-resolution {sup 13}C solid-state NMR spectra of meso-tetraphenylporphyrin (TPP) and its zinc(II) complex (ZnTPP) are assigned by reference to low-temperature solution NMR results and using {sup 1}H- {sup 13}C cross-polarization magic-angle-spinning (CP/MAS). The splittings of the signals from pyrrole carbons in TPP are attributed to kinetic solid-state states involved in the migration of the central hydrogen atom.

  12. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  13. Applications of DNP and solid-state NMR for protein structure determination

    E-print Network

    Mayrhofer, Rebecca Maria

    2010-01-01

    Magic Angle Spinning (MAS) solid state nuclear magnetic resonance (SSNMR) is a developing method for determining the structures and studying the dynamics and functions of biological molecules. This method is particularly ...

  14. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low 12 mA) at frequencies between 320–365 GHz, suggesting an efficient route for the generation of even higher frequency radiation. The low starting currents were attributed to an elevated cavity Q, which is confirmed by cavity thermal load measurements. We conclude with an appendix containing a detailed description of the control system that safely automates all aspects of the gyrotron operation. PMID:17942352

  15. Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement.

    PubMed

    Whittaker, Christopher A P; Patching, Simon G; Esmann, Mikael; Middleton, David A

    2015-03-01

    NMR relaxation enhancement by paramagnetic metals provides powerful restraints on the three-dimensional structures of proteins in solution, and this approach has recently been utilized in several NMR structural investigations of proteins in the solid-state. Here we utilize paramagnetic relaxation enhancement (PRE) by Mn(2+) with cross-polarization magic-angle spinning (CP-MAS) solid-state NMR to investigate the interaction of a membrane-embedded protein the Na,K-ATPase (NKA) with a cardiotonic steroid inhibitor. The inhibitor, a diacetonide derivate of the cardiac glycoside ouabain, with (13)C labelled acetonide groups in the rhamnose sugar and steroid moieties ([(13)C2]ODA), is 1000-fold less potent than the parent compound. It is shown that the (13)C CP-MAS solid-state NMR spectra of the NKA-[(13)C2]ODA complex exhibit distinct signals for the two (13)C labels of the inhibitor when bound to the ouabain site of membrane-embedded NKA. Recent crystal structures of NKA indicate that the catalytic ?-subunit binds a single Mn(2+) in a transmembrane site close to the high-affinity ouabain site. Here, complexation of NKA with Mn(2+) broadens the resonance line from the rhamnose group substantially more than the steroid peak, indicating that the rhamnose group is closer to the Mn(2+) site than is the steroid group. These observations agree with computational molecular docking simulations and are consistent with ODA adopting an inverted orientation compared to ouabain in the cardiac glycoside site, with the modified rhamnose group drawn toward the transmembrane centre of the protein. This work demonstrates that PRE can provide unique information on the positions and orientations of ligands within their binding pockets of transmembrane proteins. PMID:25582619

  16. Solid-state 23Na and 7Li NMR investigations of sodium- and lithium-reduced mesoporous titanium oxides.

    PubMed

    Lo, Andy Y H; Schurko, Robert W; Vettraino, Melissa; Skadtchenko, Boris O; Trudeau, Michel; Antonelli, David M

    2006-02-20

    Mesoporous titanium oxide synthesized using a dodecylamine template was treated with 0.2, 0.6, and 1.0 equiv of Li- or Na-naphthalene. The composite materials were characterized by nitrogen adsorption, powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, and solid-state 23Na and 7Li NMR spectroscopy. In all cases the wormhole mesoporosity was retained as evidenced by BET surface areas from 400 to 700 m(2)/g, Horvath-Kawazoe pore sizes in the 20 Angstroms range, and a lack of hysteresis in the nitrogen adsorption isotherms. Variable-temperature conductivity studies show that the Li-reduced materials are semiconductors, with conductivity values 3 orders of magnitude higher than those of the Na-reduced materials. Electrochemical measurements demonstrate reversible intercalation/deintercalation of Li+ ions into pristine mesoporous Ti oxides with good cycling capacity. Solid-state 23Na NMR reveals two distinct Na environments: one corresponding to sodium ions in the mesoporous channels and the other corresponding to sodium ions intercalated into the metal framework. 23Na NMR spectra also indicate that the relative population of the framework site increases with increased reduction levels. Solid-state 7Li NMR spectra display a single broad resonance, which increases in breadth with increased reduction levels, though individual resonances inferring the presence of channel and framework Li species are not resolved. Comparisons of the lithium chemical shifts with published values suggests an "anatase-like structure" with no long-range order in the least-reduced samples but a "lithium titanate-like structure" with no long-range order in the higher reduced materials. PMID:16472000

  17. Solid-State (17)O NMR of Oxygen-Nitrogen Singly Bonded Compounds: Hydroxylammonium Chloride and Sodium Trioxodinitrate (Angeli's Salt).

    PubMed

    Lu, Jiasheng; Kong, Xianqi; Terskikh, Victor; Wu, Gang

    2015-07-23

    We report a solid-state NMR study of (17)O-labeled hydroxylammonium chloride ([H(17)O-NH3]Cl) and sodium trioxodinitrate monohydrate (Na2[(17)ONNO2]·H2O, Angeli's salt). The common feature in these two compounds is that they both contain oxygen atoms that are singly bonded to nitrogen. For this class of oxygen-containing functional groups, there is very limited solid-state (17)O NMR data in the literature. In this work, we experimentally measured the (17)O chemical shift and quadrupolar coupling tensors. With the aid of plane-wave DFT computation, the (17)O NMR tensor orientations were determined in the molecular frame of reference. We found that the characteristic feature of an O-N single bond is that the (17)O nucleus exhibits a large quadrupolar coupling constant (13-15 MHz) but a rather small chemical shift anisotropy (100-250 ppm), in sharp contrast with the nitroso (O?N) functional group for which both quantities are very large (e.g., 16 MHz and 3000 ppm, respectively). PMID:26107984

  18. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition

    NASA Astrophysics Data System (ADS)

    Cegelski, Lynette

    2015-04-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.

  19. Detection of fulleroid sites in fullerene-60 by high-resolution solid-state [sup 1]H NMR

    SciTech Connect

    Kolodziejski, W.; Corma, A. ); Barras, J.; Klinowski, J. )

    1995-03-09

    [sup 1]H solid-state NMR with magic-angle spinning (MAS NMR) detects dilute H-containing species in chromatographically purified C[sub 60]. Because of the weakness of the [sup 1]H-[sup 1]H dipolar couplings, the spectral peaks are very sharp and the T[sub 1] values are not averaged by spin diffusion. On the basis of chemical shifts and peak connectivities as revealed by COSY, we have identified various fulleroids, as well as toluene and dioctyl phthalate (DOP) impurities. The fulleroids contain HC=CHCH[sub 2]CH[sub 3], HC=CHCH[sub 3], and HC=CH groups. DOP is probably complexed to C[sub 60] via the aromatic moiety. Laboratory and rotating-frame spin-diffusion experiments show that the H-containing species are so diluted by bulk C[sub 60] that they cannot communicate by intermolecular spin diffusion. The intramolecular spin-diffusion paths suggest that the alkyl chains of DOP are folded back toward the aromatic ring. We have found that two-dimensional [sup 1]H NMR techniques work well in the solid state without a multiple-pulse homonuclear decoupling, provided that the species under study are sufficiently dilute by a nondipolar medium. 46 refs., 8 figs., 2 tabs.

  20. EASY-GOING deconvolution: Combining accurate simulation and evolutionary algorithms for fast deconvolution of solid-state quadrupolar NMR spectra

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Polman, Ben J. W.; Kentgens, Arno P. M.; Leo Meerts, W.

    2011-08-01

    A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution ( EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.

  1. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.

    PubMed

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L

    2015-11-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, ?-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc?0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa?0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that ?-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations. PMID:26226457

  2. Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy.

    PubMed

    Zhang, Lei; Liu, Lishan; Maltsev, Sergey; Lorigan, Gary A; Dabney-Smith, Carole

    2014-01-01

    The chloroplast twin arginine translocation (cpTat) system transports highly folded precursor proteins into the thylakoid lumen using the protonmotive force as its only energy source. Hcf106, as one of the core components of the cpTat system, is part of the precursor receptor complex and functions in the initial precursor-binding step. Hcf106 is predicted to contain a single amino terminal transmembrane domain followed by a Pro-Gly hinge, a predicted amphipathic ?-helix (APH), and a loosely structured carboxy terminus. Hcf106 has been shown biochemically to insert spontaneously into thylakoid membranes. To better understand the membrane active capabilities of Hcf106, we used solid-state NMR spectroscopy to investigate those properties of the APH. In this study, synthesized peptides of the predicted Hcf106 APH (amino acids 28-65) were incorporated at increasing mol.% into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and POPC/MGDG (monogalactosyldiacylglycerol; mole ratio 85:15) multilamellar vesicles (MLVs) to probe the peptide-lipid interaction. Solid-state (31)P NMR and (2)H NMR spectroscopic experiments revealed that the peptide perturbs the headgroup and the acyl chain regions of phospholipids as indicated by changes in spectral lineshape, chemical shift anisotropy (CSA) line width, and (2)H order SCD parameters. In addition, the comparison between POPC MLVs and POPC/MGDG MLVs indicated that the lipid bilayer composition affected peptide perturbation of the lipids, and such perturbation appeared to be more intense in a system more closely mimicking a thylakoid membrane. PMID:24144541

  3. Dipolar Assisted Assignment Protocol (DAAP) for MAS solid-state NMR of rotationally aligned membrane proteins in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Zhang, Hua; Opella, Stanley J.

    2014-05-01

    A method for making resonance assignments in magic angle spinning solid-state NMR spectra of membrane proteins that utilizes the range of heteronuclear dipolar coupling frequencies in combination with conventional chemical shift based assignment methods is demonstrated. The Dipolar Assisted Assignment Protocol (DAAP) takes advantage of the rotational alignment of the membrane proteins in liquid crystalline phospholipid bilayers. Improved resolution is obtained by combining the magnetically inequivalent heteronuclear dipolar frequencies with isotropic chemical shift frequencies. Spectra with both dipolar and chemical shift frequency axes assist with resonance assignments. DAAP can be readily extended to three- and four-dimensional experiments and to include both backbone and side chain sites in proteins.

  4. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed Field Gradient NMR

    SciTech Connect

    Gobet, Mallory; Greenbaum, Steve; Sahu, Gayatri; Liang, Chengdu

    2014-01-01

    The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.

  5. Characterization by solid-state NMR and selective dissolution techniques of anhydrous and hydrated CEM V cement pastes

    SciTech Connect

    Brunet, F.; Charpentier, T.; Chao, C.N.; Peycelon, H.; Nonat, A.

    2010-02-15

    The long term behaviour of cement based materials is strongly dependent on the paste microstructure and also on the internal chemistry. A CEM V blended cement containing pulverised fly ash (PFA) and blastfurnace slag (BFS) has been studied in order to understand hydration processes which influence the paste microstructure. Solid-state NMR spectroscopy with complementary X-ray diffraction analysis and selective dissolution techniques have been used for the characterization of the various phases (C{sub 3}S, C{sub 2}S, C{sub 3}A and C{sub 4}AF) of the clinker and additives and then for estimation of the degree of hydration of these same phases. Their quantification after simulation of experimental {sup 29}Si and {sup 27}Al MAS NMR spectra has allowed us to follow the hydration of recent (28 days) and old (10 years) samples that constitutes a basis of experimental data for the prediction of hydration model.

  6. Design of a Heterogeneous Catalyst Based on Cellulose Nanocrystals for Cyclopropanation: Synthesis and Solid-State NMR Characterization.

    PubMed

    Liu, Jiquan; Plog, Andreas; Groszewicz, Pedro; Zhao, Li; Xu, Yeping; Breitzke, Hergen; Stark, Annegret; Hoffmann, Rudolf; Gutmann, Torsten; Zhang, Kai; Buntkowsky, Gerd

    2015-08-24

    Heterogeneous dirhodium(II) catalysts based on environmentally benign and biocompatible cellulose nanocrystals (CNC-Rh2) as support material were obtained by ligand exchange between carboxyl groups on the CNC surface and Rh2(OOCCF3)4, as was confirmed by solid-state (19)F and (13)C?NMR spectroscopy. On average, two CF3COO(-) groups are replaced during ligand exchange, which is consistent with quantitative analysis by a combination of (19)F?NMR spectroscopy and thermogravimetry. CNC-Rh2 catalysts performed well in a model cyclopropanation reaction, in spite of the low dirhodium(II) content on the CNC surface (0.23?mmol?g(-1)). The immobilization through covalent bonding combined with the separate locations of binding positions and active sites of CNC-Rh2 guarantees a high stability against leaching and allows the recovery and reuse of the catalyst during the cyclopropanation reaction. PMID:26179865

  7. EASY-GOING DUMBO on-spectrometer optimisation of phase modulated homonuclear decoupling sequences in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Vasa, Suresh K.; Meerts, W. Leo; Kentgens, Arno P. M.; Brinkmann, Andreas

    2011-06-01

    A one-step many-parameter optimisation scheme for phase modulated proton homonuclear decoupling sequences in solid-state NMR is presented. Phase modulations, parameterised by DUMBO Fourier coefficients, were optimised using a Covariance Matrix Adaptation Evolution Strategies algorithm. Our method, denoted EASY-GOING DUMBO, starts with featureless spectra and optimises proton-proton decoupling, during either proton or carbon signal detection. Optimisations at moderate sample magic angle spinning (MAS) frequencies and medium radio-frequency (rf) field strengths resulted in solutions closely resembling (e)DUMBO. Application of EASY-GOING DUMBO for optimisation at very high 680 kHz rf field strength, 12.5 kHz MAS on a 400 MHz NMR spectrometer resulted in a new solution, with competitively resolved proton spectra.

  8. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3?}?{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2?} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ?{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  9. Construction of a solid-state NMR imager (MRI) for environmental studies

    SciTech Connect

    Howell, C.B. Jr.; Lee, Y.; Garner, G.A.; Butler, L.G.

    1995-12-01

    Some hazardous waste are isolated from the environment by solidification in cement. The problem is that detailed studies have not yet been done on the waste mobility in the cement. It is possible that ground water may penentrate into the cement and leach waste out into the ground water. To address this problem, imaging experiments of test samples will be done using an NMR imager that is now under construction. The NMR imager is based on a surplus 2.4 Tesla superconducting magnet and a homemade NMR console. The NMR imaging experiment is based on a magnet field gradient aligned with the imaging direction.

  10. Solid-state NMR of a protein in a precipitated complex with a full-length antibody.

    PubMed

    Lamley, Jonathan M; Iuga, Dinu; Öster, Carl; Sass, Hans-Juergen; Rogowski, Marco; Oss, Andres; Past, Jaan; Reinhold, Andres; Grzesiek, Stephan; Samoson, Ago; Lewandowski, Józef R

    2014-12-01

    NMR spectroscopy is a prime technique for characterizing atomic-resolution structures and dynamics of biomolecular complexes but for such systems faces challenges of sensitivity and spectral resolution. We demonstrate that the application of (1)H-detected experiments at magic-angle spinning frequencies of >50 kHz enables the recording, in a matter of minutes to hours, of solid-state NMR spectra suitable for quantitative analysis of protein complexes present in quantities as small as a few nanomoles (tens of micrograms for the observed component). This approach enables direct structure determination and quantitative dynamics measurements in domains of protein complexes with masses of hundreds of kilodaltons. Protein-protein interaction interfaces can be mapped out by comparison of the chemical shifts of proteins within solid-state complexes with those of the same constituent proteins free in solution. We employed this methodology to characterize a >300 kDa complex of GB1 with full-length human immunoglobulin, where we found that sample preparation by simple precipitation yields spectra of exceptional quality, a feature that is likely to be shared with some other precipitating complexes. Finally, we investigated extensions of our methodology to spinning frequencies of up to 100 kHz. PMID:25381931

  11. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE PAGESBeta

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  12. Solid-state NMR analysis of coals and shales from the Mesaverde Group, Green River Basin, Wyoming

    SciTech Connect

    Miknis, F.P.; MacGowan, D.B.

    1993-08-01

    Samples of coals and shales from the Almond Formation of the Mesaverde Group, Greater Green River Basin, Wyoming were analyzed using solid-state {sup 13}C nuclear magnetic resonance (NMR) techniques of cross polarization with magic-angle spinning (CP/MAS). The samples were taken from a present-day depth of burial ranging from {approximately}3,000 to {approximately}15,000 ft. In addition, CP/MAS {sup 13}C NMR measurements were made on residues from the hydrous pyrolysis of Almond coal. The hydrous pyrolysis experiments were conducted isothermally for 72 hr in the temperature range of 290 to 360{degree}C (554 to 680{degree}F). In general, the maturation trends observed by NMR for the naturally and artificially matured samples were in agreement with results obtained from other geochemical analyses. The NMR spectra of the naturally matured shale samples showed only a small aliphatic component at depths greater than about 12,000 ft, indicating little capacity for hydrocarbon generation at depths greater than this. Vitrinite reflectance measurements placed the oil window at between 4,500 and 14,500 ft. NMR measurements of the hydrous pyrolysis residues showed a clear loss of aliphatic carbon, relative to the aromatic carbon, with temperature. For the residue obtained from the highest study temperature (360{degree}C/680{degree}F), there was a 60% depletion of the hydrocarbon-producing aliphatic components. The trends in loss of aliphatic carbon with temperature suggested a means of defining a geochemical transformation ratio in terms of the loss of the aliphatic carbon fraction. A good correlation was found between the NMR transformation ratio and the production index determined by Rock-Eval pyrolysis measurements.

  13. Determination of Anion Ordering in Mixed Apatites via Multinuclear Solid-State NMR & X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Vaughn, J. S.; Phillips, B. L.; Hughes, J. M.; Nekvasil, H.; Ustunisik, G. K.; Lindsley, D. H.; Coraor, A. E.; McCubbin, F. M.; Woerner, W. R.

    2013-12-01

    Subtle changes in crystallographic anion position in apatite sensu latu Ca5(PO4)3(F,OH,Cl) are known to affect greatly its macroscopic physical properties, such as acid resistivity and hardness. While the anion positions in endmember compositions are well described, there exist substantial gaps in our understanding of anion ordering in mixed binary and ternary compositions because of potential steric anion interactions and symmetry changes. X-ray diffraction analysis of these binary/ternary mixtures is well-suited to address the atomic positions and average occupancies of these anion sites for well-ordered systems. Multinuclear solid-state NMR methods complement XRD structure studies if there exist column ordering reversals or disorder in the atomic positions of the anions, as NMR is sensitive to the atomic arrangement within short distances of the nucleus (<4Å). Using these analytical techniques the anion ordering along the F-Cl solid-solution join is reported, and features an off-mirror fluorine site at (0,0,0.167). The migration of fluorine away from its end-member site within the {00l} mirror plane and subsequent migration of chlorine in the opposing direction results in acceptable F-Cl distances in the anion column. Exceptionally low H content in the anion channel was afforded via high-temperature (1200°C) solid-state reaction under vacuum. The speciation of H was determined by 1H{31P} REDOR experiments, from which the REDOR difference spectrum features a single resonance at ?H = 1.6 ppm which can be assigned to OH groups. The abundance of OH was confirmed by comparison of single-pulse (SP) 31P and cross-polarization 31P{1H} NMR (CP) spectral intensities to those of a crystalline synthetic hydroxylapatite, and showed that only 0.4 mol% of the 31P in the composition occurs in hydroxylapatite-like configurations.

  14. An alternative solution for computer controlled tuning and matching of existing NMR probes

    NASA Astrophysics Data System (ADS)

    Koczor, Bálint; Sedyó, Inez; Rohonczy, János

    2015-10-01

    Tuning and matching of NMR probes is necessary for many fields of NMR application including temperature dependent NMR, thermoporometry and cryoporometry, or when significantly different types of samples are measured in automation using sample changers. Mismatch of the probe is an especially critical issue in the case of high magnetic fields, polar or ionic solvents, or extreme thermal conditions. Careful tuning is particularly important for quantitative NMR measurements. Manual tuning and matching of the NMR probe is not possible in the case of automated or remotely controlled measurements. Spectrometer manufacturers offer modern probes equipped with automatic tuning/matching mechanics, like Bruker ATM™, suitable for these experiments. The disadvantages of probes with built-in ATM™ are the significantly higher price, and the non-detachable and non-portable construction. Computer controlled tuning and matching is highly desirrable in solid state NMR since no industrial solution has been developed yet for MAS NMR probes. We present an alternative solution for computer controlled tuning and matching of existing Bruker probes. Building costs are significantly lower, since only commercially available components and ICs are used.

  15. A comparative spectroscopic investigation of three pseudopolymorphs of testosterone using solid-state i.r. and high-resolution solid-state NMR

    NASA Astrophysics Data System (ADS)

    Fletton, Richard A.; Harris, Robin K.; Kenwright, Alan M.; Lancaster, Robert W.; Packer, Kenneth J.; Sheppard, Norman

    Three pseudopolymorphic forms of testosterone have been examined by i.r. and CP/MAS NMR spectroscopies. The transmittance i.r. data clearly distinguish the forms. The NMR work also provides clear distinctions and shows crystallographic splittings for the ? form only, in accordance with the X-ray data. The NMR spectra are fully assigned. The effect of crystallisation procedure on the NMR spectra was explored. NMR can be used to quantitatively assess mixtures of the ? and ? forms.

  16. High-resolution high-frequency dynamic nuclear polarization for biomolecular solid state NMR

    E-print Network

    Barnes, Alexander B. (Alexander Benjamin)

    2011-01-01

    Dynamic Nuclear Polarization (DNP) has exploded in popularity over the last few years, finally realizing its potential to overcome the detrimental lack of sensitivity that has plagued performing NMR experiments. Applied ...

  17. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR.

    PubMed

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J

    2015-12-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ?50nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. PMID:26439285

  18. Some studies on a solid-state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1978-01-01

    As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.

  19. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties. PMID:25494341

  20. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  1. Structure of Oxide Glasses under Compression and Confinement: Insights from High-resolution Solid-state NMR and Non-resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2013-12-01

    The atomic and nano-scale structure of non-crystalline oxides with varying degree of confinement and compression (pressure) are essential to understand the atomic origins of thermo-mechanical properties and kinetic stability of these materials in the earth's surfaces and interiors. Despite this importance, the effect of confinement and pressure on the nature of bonding in the non-crystalline oxides have remained one of the challenging problems in mineral physics and condensed matter physics due to lack of suitable experimental probes. Advances in element-specific experimental probes, such as non-resonant inelastic x-ray scattering (NRIXS) and high resolution solid-state NMR combined with the first principle calculations have revealed structural details of bonding transitions of amorphous oxides under compression and confinement (e.g. Lee, Rev. Min. Geochem. 2013 accepted; Phys. Rev. Letts, 2013 accepted; Proc. Nat. Aca. Sci. 2011, 108, 6847; Kim and Lee, Geochim. Cosmochim Acta. In press; Yi and Lee, Am Min 2012, 97, 897). Here, we present the key recent progress by NRIXS and NMR into the pressure and confinement-induced bonding transitions in non-crystalline oxides. Theoretical calculation of K-edge NRIXS spectrum took into consideration crystallographically-distinct sites and revealed that the edge features systematically shift to higher energy with increasing degree of densification in atomic arrangement in the polymorphs (from enstatite, perovskite, to post-perovskite). On the basis of these results, multi-nuclear (B, O, Li, Ca), multi-edge (K-, L-, and M-) XRS studies of diverse low z-oxide glasses indicated the pressure-induced increases in the fraction of triply coordinated oxygen above 20 GPa and showed evidence for the topologically driven densification in multi-component basaltic glasses. Finally, we report the first high-resolution solid-state NMR results for the amorphous oxides under confinement where the degree of structural disorder tends to decrease with increasing degree of confinement. These results allow us to microscopically confine the geochemical processes involving interactions between melts and fluids.

  2. (11)B Solid-State NMR Interaction Tensors of Linear Two-Coordinate Boron: The Dimesitylborinium Cation.

    PubMed

    Alain, Amanda E; Shoji, Yoshiaki; Fukushima, Takanori; Bryce, David L

    2015-12-21

    Borinium cations (R2B(+)) are of particular fundamental and applied interest in part due to their pronounced Lewis acidity which enables unique chemical transformations. Solid-state NMR spectroscopy of magic-angle spinning and stationary powdered samples of the dicoordinate boron cation in the recently reported dimesitylborinium tetrakis(pentafluorophenyl)borate compound (Shoji et al. Nature Chem. 2014, 6, 498) is applied to characterize the (11)B electric field gradient (EFG) and chemical shift (CS) tensors. The experimental data are consistent with linear C-B(+)-C geometry. The (11)B quadrupolar coupling constant, 5.44 ± 0.08 MHz, and the span of the CS tensor, 130 ± 1 ppm, are both particularly large relative to literature data for a variety of boron functional groups, and represent the first such data for the linear C-B(+)-C borinium moiety. The NMR data are similar to those for the neutral tricoordinate analogue, trimesitylborane, but contrast with those of the Cp*2B(+) cation. Quantum chemical calculations are applied to provide additional insights into the relationship between the NMR observables and the molecular and electronic structure of the dimesitylborinium cation. PMID:26624205

  3. On the problem of resonance assignments in solid state NMR of uniformly 15N, 13C-labeled proteins

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily ?-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily ?-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.

  4. Chemical structures of manure from conventional and phytase transgenic pigs investigated by advanced solid-state NMR spectroscopy.

    PubMed

    Mao, Jingdong; Ajakaiye, Ayodele; Lan, Yeqing; Olk, Dan C; Ceballos, Michael; Zhang, Tiequan; Fan, Ming Z; Forsberg, Cecil W

    2008-03-26

    Nonpoint phosphorus (P) pollution from animal manure is becoming a serious global problem. The current solution for the swine industry includes the enzyme phytase as a component in oil meal and cereal grain-based swine diets. A long-term approach is the production of transgenic phytase pigs that express phytase in the salivary glands and secrete it in the saliva. This study provides a detailed comparison of chemical structures of manure from conventional pigs and transgenic pigs that express phytase under growing and finishing phases using new solid-state NMR techniques. Spectral editing techniques and quantitative NMR techniques were used to identify and quantify specific functional groups. Two-dimensional (1)H- (13)C heteronuclear correlation NMR was used to detect their connectivity. Manure from conventional and transgenic pigs had similar peptide, carbohydrate, and fatty acid components, while those from transgenic pigs contained more carbohydrates and fewer nonpolar alkyls. There was no consistent effect from diets with or without supplemental phosphate or growth stages. PMID:17973446

  5. Molecular composition of recycled organic wastes, as determined by solid-state {sup 13}C NMR and elemental analyses

    SciTech Connect

    Eldridge, S.M.; Chen, C.R.; Xu, Z.H.; Nelson, P.N.; Boyd, S.E.; Meszaros, I.; Chan, K.Y.

    2013-11-15

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state {sup 13}C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.

  6. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR.

    PubMed

    Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. PMID:24887201

  7. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    NASA Astrophysics Data System (ADS)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  8. An experimental and theoretical NMR study of NH-benzimidazoles in solution and in the solid state: proton transfer and tautomerism

    PubMed Central

    Nieto, Carla I; Cabildo, Pilar; García, M Ángeles; Elguero, José

    2014-01-01

    Summary This paper reports the 1H, 13C and 15N NMR experimental study of five benzimidazoles in solution and in the solid state (13C and 15N CPMAS NMR) as well as the theoretically calculated (GIAO/DFT) chemical shifts. We have assigned unambiguously the "tautomeric positions" (C3a/C7a, C4/C7 and C5/C6) of NH-benzimidazoles that, in some solvents and in the solid state, appear different (blocked tautomerism). In the case of 1H-benzimidazole itself we have measured the prototropic rate in HMPA-d 18. PMID:25161719

  9. {sup 45}Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)

    SciTech Connect

    Harmening, Thomas; Eckert, Hellmut; Fehse, Constanze M.; Sebastian, C. Peter; Poettgen, Rainer

    2011-12-15

    The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the {sup 45}Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. {sup 45}Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients and the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO{sub 3}){sub 3} solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The {sup 45}Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code. Highlights: Black-Right-Pointing-Pointer Arc-melting synthesis of silicides ScTSi. Black-Right-Pointing-Pointer Single crystal X-ray data of ScCoSi, ScRuSi, ScPdSi, and ScIrSi. Black-Right-Pointing-Pointer {sup 45}Sc solid state NMR of silicides ScTSi.

  10. Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Madhu, P. K.; Vinogradov, Elena; Vega, Shimon

    2004-08-01

    We here report on a high-resolution pulse scheme for double-quantum (DQ) proton NMR spectroscopy in the solid-state. The pulse scheme employs a combination of multiple-pulses and magic-angle spinning (MAS) for both the excitation and conversion of DQ coherences and their evolution under homonuclear dipolar decoupling. This is made possible in this two-dimensional experiment by an effective combination of homonuclear dipolar decoupling method of phase modulated Lee-Goldburg and symmetry adapted sequence for homonuclear dipolar recoupling under MAS. DQ spectra of monoethyl fumaric acid, glycine, and histidine are presented to highlight the utility of the pulse scheme together with some of the existing drawbacks.

  11. Easy-Going On-Spectrometer Optimisation of Phase Modulated Homonuclear Decoupling Sequences in Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Vasa, Suresh K.; Meerts, W. Leo; Kentgens, P. M.

    2011-06-01

    A global optimisation scheme for phase modulated proton homonuclear decoupling sequences in solid-state NMR is presented. Phase modulations, parameterised by DUMBO Fourier coefficients, were optimized using a Covariance Matrix Adaptation Evolution Strategies algorithm. Our method, denoted EASY-GOING homonuclear decoupling, starts with featureless spectra and optimises proton-proton decoupling, during either proton or carbon signal detection. On the one hand, our solutions closely resemble (e)DUMBO for moderate sample spinning frequencies and medium radio-frequency (rf) field strengths. On the other hand, the EASY-GOING approach resulted in a superior solution, achieving significantly better resolved proton spectra at very high 680 kHz rf field strength. N. Hansen, and A. Ostermeier. Evol. Comput. 9 (2001) 159-195 B. Elena, G. de Paepe, L. Emsley. Chem. Phys. Lett. 398 (2004) 532-538

  12. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  13. Solid-state NMR investigation of the depth of insertion of protegrin-1 in lipid bilayers using paramagnetic Mn2+.

    PubMed

    Buffy, Jarrod J; Hong, Teresa; Yamaguchi, Satoru; Waring, Alan J; Lehrer, Robert I; Hong, Mei

    2003-10-01

    The depth of insertion of an antimicrobial peptide, protegrin-1 (PG-1), in lipid bilayers is investigated using solid-state NMR. Paramagnetic Mn(2+) ions bind to the surface of lipid bilayers and induce distance-dependent dipolar relaxation of nuclear spins. By comparing the signal dephasing of the peptide with that of the lipids, whose segmental depths of insertion are known, we determined the depths of several residues of PG-1 in 1,2 dilauryl-sn-glycero-3-phosphotidylcholine (DLPC) bilayers. We found that residues G2 at the N-terminus and F12 at the beta-turn of the peptide reside near the membrane surface, whereas L5 and V16 are embedded in the acyl chain region. The depths increase in the order of G2 < F12 < L5 < V16. These intensity-dephasing results are confirmed by direct measurement of the paramagnetically enhanced (13)C transverse relaxation rates. The relative depths indicate that PG-1 is tilted from the bilayer normal, which is consistent with independent solid-state NMR measurements of PG-1 orientation in the same lipids (Yamaguchi et al., 2001). They also indicate that PG-1 is fully immersed in the lipid bilayer. However, a quantitative mismatch between the bilayer thickness and PG-1 length suggests a local thinning of the DLPC bilayer by 8-10 A. The depth sensitivity of this Mn(2+) dephasing technique is tunable with the Mn(2+) concentration to focus on different regions of the lipid bilayer. PMID:14507700

  14. Immobilization and chelation of metal complexes with bifunctional phosphine ligands: a solid-state NMR study

    E-print Network

    Bluemel, Janet

    , suspension NMR spectroscopy3can be applied routinely. Since most transition metals form stable phosphine com to bonding via one, two, or three siloxane bridges and there is also the possibility of cross- linking.' Therefore, we used the monoethoxy phosphine PPh2(C6H4)SiMe20Et1 that forms just one siloxane bridge when

  15. Solid-state NMR analysis of soil organic matter fractions from integrated physical-chemical extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fractions of soil organic matter (SOM) are usually extracted from soil by either physical (size, density) or chemical (e.g., base, acid) procedures. In this study we used 13C nuclear magnetic resonance (NMR) spectroscopy to chemically characterize the fractions that were obtained by an integrated pr...

  16. De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy

    E-print Network

    Griffin, Robert G.

    and proteins have relied on site-specific incorporation of a pair of spin-1 /2 nuclei, such as 13 C­13 C and 13* , Michael T. McMahon* , Bruce Tidor*§ ** , Toma´s Lozano-Pe´rez§ , and Robert G. Griffin*, *Department (NMR) methods have been developed which permit determinations of globular protein structures

  17. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method.

    PubMed

    Mao, Jingdong; Kong, Xueqian; Schmidt-Rohr, Klaus; Pignatello, Joseph J; Perdue, E Michael

    2012-06-01

    Advanced (13)C solid-state techniques were employed to investigate the major structural characteristics of two surface-seawater dissolved organic matter (DOM) samples isolated using the novel coupled reverse osmosis/electrodialysis method. The NMR techniques included quantitative (13)C direct polarization/magic angle spinning (DP/MAS) and DP/MAS with recoupled dipolar dephasing, (13)C cross-polarization/total sideband suppression (CP/TOSS), (13)C chemical shift anisotropy filter, CH, CH(2), and CH(n) selection, two-dimensional (1)H-(13)C heteronuclear correlation NMR (2D HETCOR), 2D HETCOR combined with dipolar dephasing, and (15)N cross-polarization/magic angle spinning (CP/MAS). The two samples (Coastal and Marine DOM) were collected at the mouth of the Ogeechee River and in the Gulf Stream, respectively. The NMR results indicated that they were structurally distinct. Coastal DOM contained significantly more aromatic and carbonyl carbons whereas Marine DOM was markedly enriched in alkoxy carbon (e.g., carbohydrate-like moieties). Both samples contained significant amide N, but Coastal DOM had nitrogen bonded to aromatic carbons. Our dipolar-dephased spectra indicated that a large fraction of alkoxy carbons were not protonated. For Coastal DOM, our NMR results were consistent with the presence of the major structural units of (1) carbohydrate-like moieties, (2) lignin residues, (3) peptides or amino sugars, and (4) COO-bonded alkyls. For Marine DOM, they were (1) carbohydrate-like moieties, (2) peptides or amino sugars, and (3) COO-bonded alkyls. In addition, both samples contained significant amounts of nonpolar alkyl groups. The potential sources of the major structural units of DOM were discussed in detail. Nonprotonated O-alkyl carbon content was proposed as a possible index of humification. PMID:22553962

  18. Probing Solid-State Nanopores with Light for the Detection of Unlabeled Analytes

    PubMed Central

    2015-01-01

    Nanopore sensing has enabled label-free single-molecule measurements on a wide variety of analytes, including DNA, RNA, and protein complexes. Much progress has been made toward biotechnological applications; however, electrically probing the ion current introduces nonideal noise components. Here we further develop a method to couple an ionic current to a photon-by-photon counting of fluorescent signal from Ca2+-sensitive dyes and demonstrate label-free optical detection of biopolymer translocation through solid-state nanopores using TIRF and confocal microscopy. We show that by fine adjustment of the CaCl2 gradient, EGTA concentration, and voltage, the optical signals can be localized to the immediate vicinity of the pore. Consequently, the noise spectral density distribution in the optical signal exhibits a nearly flat distribution throughout the entire frequency range. With the use of high-speed photon counting devices in confocal microscopy and higher photon count rates using stronger light sources, we can improve the signal-to-noise ratio of signal acquisition, while the use of wide-field imaging in TIRF can allow for simultaneous quantitative imaging of large arrays of nanopores. PMID:25363680

  19. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  20. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy.

    PubMed

    Kimata, Naoki; Reeves, Philip J; Smith, Steven O

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy. PMID:25797010

  1. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kimata, Naoki; Reeves, Philip J.; Smith, Steven O.

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy.

  2. Proton to carbon-13 INEPT in solid-state NMR spectroscopy.

    PubMed

    Elena, Bénédicte; Lesage, Anne; Steuernagel, Stefan; Böckmann, Anja; Emsley, Lyndon

    2005-12-14

    A refocused INEPT through-bond coherence transfer technique is demonstrated for NMR of rigid organic solids and is shown to provide a valuable building block for the development of NMR correlation experiments in biological solids. The use of efficient proton homonuclear dipolar decoupling in combination with a direct spectral optimization procedure provides minimization of the transverse dephasing of coherences and leads to very efficient through-bond (1)H-(13)C INEPT transfer for crystalline organic compounds. Application of this technique to 2D heteronuclear correlation spectroscopy leads to up to a factor of 3 increase in sensitivity for a carbon-13 enriched sample in comparison to standard through-bond experiments and provides excellent selectivity for one-bond transfer. The method is demonstrated on a microcrystalline sample of the protein Crh (2 x 10.4 kDa). PMID:16332079

  3. Characterisation of platinum-based fuel cell catalyst materials using 195Pt wideline solid state NMR.

    PubMed

    Rees, Gregory J; Orr, Simon T; Barrett, Laurence O; Fisher, Janet M; Houghton, Jennifer; Spikes, Geoffrey H; Theobald, Brian R C; Thompsett, David; Smith, Mark E; Hanna, John V

    2013-10-28

    This study demonstrates the utility of the novel Field Sweep Fourier Transform (FSFT) method for acquiring wideline (195)Pt NMR data from various sized Pt nanoparticles, Pt-Sn intermetallics/bimetallics used to catalyse oxidative processes in fuel cell applications, and various other related Pt3X alloys (X = Al, Sc, Nb, Ti, Hf and Zr) which can facilitate oxygen reduction catalysis. The (195)Pt and (119)Sn NMR lineshapes measured from the PtSn intermetallic and Pt3Sn bimetallic systems suggest that these are more ordered than other closely related bimetallic alloys; this observation is supported by other characterisation techniques such as XRD. From these reconstructed spectra the mean number of atoms in a Pt nanoparticle can be accurately determined, along with detailed information regarding the number of atoms present effectively in each layer from the surface. This can be compared with theoretical predictions of the number of Pt atoms in these various layers for cubo-octahedral nanoparticles, thereby providing an estimate of the particle size. A comparison of the common NMR techniques used to acquire wideline data from the I = 1/2 (195)Pt nucleus illustrates the advantages of the automated FSFT technique over the Spin Echo Height Spectroscopy (SEHS) (or Spin Echo Integration Spectroscopy (SEIS)) approach that dominates the literature in this area of study. This work also presents the first (195)Pt NMR characterisation of novel small Pt13 nanoclusters which are diamagnetic and thus devoid of metallic character. This unique system provides a direct measure of an isotropic chemical shift for these Pt nanoparticles and affords a better basis for determining the actual Knight shift when compared to referencing against the primary IUPAC shift standard (1.2 M Na2PtCl6(aq)) which has a very different local chemical environment. PMID:24013445

  4. Solid-State (87)Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength.

    PubMed

    Faucher, Alexandra; Terskikh, Victor V; Ye, Eric; Bernard, Guy M; Wasylishen, Roderick E

    2015-12-10

    Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl2·6H2O, SrBr2·6H2O, and SrCO3, with ?aniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured. PMID:26565918

  5. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  6. Understanding the molecular dynamics associated with polymorphic transitions of DL-norvaline with solid-state NMR methods.

    PubMed

    Ren, Pingping; Reichert, Detlef; He, Qinghua; Zhang, Limin; Tang, Huiru

    2011-03-31

    DL-Norvaline (NVA) is an important pharmaceutical intermediate and undergoes two polymorphic transitions between 140 and 300 K. To understand molecular dynamics of NVA accompanied with these transitions, we conducted a comprehensive study on its molecular motions at multiple time scales (10(-9)-1 s) with various solid-state NMR methods. (13)C CPMAS NMR spectra revealed four sets of clearly resolved signals for NVA carbons corresponding to at least three crystal modifications with two polymorphic transitions. Proton and (13)C relaxation results showed that, apart from the reorientations of methyl and amino groups, NVA had another relaxation process following the second transition with the activation energy of 16-21 kJ/mol corresponding to the side-chain motions. This was further confirmed with the data from dipolar and chemical shift experiments. No motions were detected at CODEX time scale (ms-s). These results provide essential information for understanding the mechanistic aspects of the polymorphic transitions in aliphatic ?-amino acids with linear side-chains. PMID:21391536

  7. Solid-state dynamics in the closo-carboranes: a (11)B MAS NMR and molecular dynamics study.

    PubMed

    Ahumada, Hernán; Kurkiewicz, Teresa; Thrippleton, Michael J; Wimperis, Stephen

    2015-03-19

    This work explores the dynamic behavior of the three closo-carborane isomers (formula C2B10H12) using modern solid-state magic angle spinning (MAS) NMR techniques and relates the experimental measurements to theoretical results obtained using molecular dynamics simulations. At high temperatures and at B0 = 9.4 T, the (11)B MAS line widths are narrow (40-90 Hz) for the three isomers. The rotational correlation times (?c) calculated by molecular dynamics are on the picosecond time scale, showing a quasi-isotropic rotation at these temperatures, typical for liquid systems. For all three isomers, the values of the (11)B spin-lattice relaxation times (T1) show discontinuities as the temperature is decreased, confirming the phase changes reported in the literature. At low temperatures, the (11)B MAS spectra of all three isomers exhibit much broader lines. The simulations showed that the molecular reorientation was anisotropic around different symmetry axes for each isomer, and this was supported by the values of the reduced quadrupolar parameter PQ(eff) derived from "dynamic shift" measurements using (11)B MQMAS NMR spectroscopy. The behavior of PQ(eff) as a function of temperature for p-carborane suggests that molecular reorientation is about the C5 symmetry axis of the molecule at low temperatures, and this was supported by the molecular dynamics simulations. PMID:25710751

  8. Direct Observation of Cell Wall Structure in Living Plant Tissues by Solid-State 13C NMR Spectroscopy

    PubMed Central

    Jarvis, Michael C.; Apperley, David C.

    1990-01-01

    Solid-state 13C nuclear magnetic resonance (NMR) spectra of the following intact plant tissues were recorded by the crosspolarization magic-angle spinning technique: celery (Apium graveolens L.) collenchyma; carob bean (Ceratonia siliqua L.), fenugreek (Trigonella foenum-graecum L.), and nasturtium (Tropaeolum majus L.) endosperm; and lupin (Lupinus polyphyllus Lindl.) seed cotyledons. All these tissues had thickened cell walls which allowed them to withstand the centrifugal forces of magic angle spinning and which, except in the case of lupin seeds, dominated the NMR spectra. The celery collenchyma cell walls gave spectra typical of dicot primary cell walls. The carob bean and fenugreek seed spectra were dominated by resonances from galactomannans, which showed little sign of crystalline order. Resonances from ?(1,4?)-d galactan were visible in the lupin seed spectrum, but there was much interference from protein. The nasturtium seed spectrum was largely derived from a xyloglucan, in which the conformation of the glucan core chain appeared to be intermediate between the solution form and solid forms of cellulose. PMID:16667266

  9. Solid-State NMR Reveals the Hydrophobic-Core Location of Poly(amidoamine) Dendrimers in Biomembranes

    PubMed Central

    Smith, Pieter E. S.; Brender, Jeffrey R.; Dürr, Ulrich H. N.; Xu, Jiadi; Mullen, Douglas G.; Banaszak Holl, Mark M.; Ramamoorthy, Ayyalusamy

    2010-01-01

    Poly(amidoamine) (PAMAM) dendrimer nanobiotechnology shows great promise in targeted drug delivery and gene therapy. Because of the involvement of cell membrane lipids with the pharmacological activity of dendrimer nanomedicines, the interactions between dendrimers and lipids are of particular relevance to the pharmaceutical applications of dendrimers. In this study, solid-state NMR was used to obtain a molecular image of the complex of generation 5 PAMAM dendrimer with the lipid bilayer. Using 1H radio frequency driven dipolar recoupling (RFDR) and 1H magic angle spinning (MAS) nuclear Overhauser effect spectroscopy (NOESY) techniques, we show that dendrimers are thermodynamically stable when inserted into zwitterionic lipid bilayers. 14N and 31P NMR experiments on static samples and measurements of the mobility of C–H bonds using a 2D proton detected local field protocol under MAS corroborate these results. The localization of dendrimers in the hydrophobic core of lipid bilayers restricts the motion of bilayer lipid tails, with the smaller G5 dendrimer having more of an effect than the larger G7 dendrimer. Fragmentation of the membrane does not occur at low dendrimer concentrations in zwitterionic membranes. Because these results show that the amphipathic dendrimer molecule can be stably incorporated in the interior of the bilayer (as opposed to electrostatic binding at the surface), they are expected to be useful in the design of dendrimer-based nanobiotechnologies. PMID:20481633

  10. Phenyl ring dynamics of the insulin fragment Gly-Phe-Phe(B23 B25) by solid state deuterium NMR

    NASA Astrophysics Data System (ADS)

    Naito, A.; Iizuka, T.; Tuzi, S.; Price, W. S.; Hayamizu, K.; Saitô, H.

    1995-08-01

    The phenyl ring dynamics of the insulin fragment Gly-Phe-Phe(B23-B25) were investigated using solid state deuterium NMR spectroscopy. It was found that the phenyl rings of the two phenylalanine residues Phe 2 and Phe 3 were rigid even up to 100°C both for the Gly-[ring- d5]Phe-Phe and the Gly-The-[ring- d5]Phe in the hydrated crystals. When the temperature was raised to 120°C, the hydrated water evaporated from the crystal, resulting in the onset of the flipping motion of the phenyl rings. Spectral simulation of the deuterium NMR spectra was performed to better characterize the motion of the phenyl rings in the peptides. It was found that the phenyl ring motion of the fragments is consistent with a 180° flip about the C ??C ? bonds. The phenyl ring of Ph 2 of Gly-[ d5]Phe-Phe was more mobile than that of Phe 3 of Gly-Phe-[ d5]Phe when the tripeptide crystal was in the dehydrated state. The Phe-Phe residues in the tripeptide were quite rigid when the hydrophobic interaction around the Phe-Phe moiety was strong.

  11. Molecular composition of recycled organic wastes, as determined by solid-state 13C NMR and elemental analyses.

    PubMed

    Eldridge, S M; Chen, C R; Xu, Z H; Nelson, P N; Boyd, S E; Meszaros, I; Chan, K Y

    2013-11-01

    Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes. PMID:23896223

  12. Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p.

    PubMed

    Schütz, Anne K; Habenstein, Birgit; Luckgei, Nina; Bousset, Luc; Sourigues, Yannick; Nielsen, Anders B; Melki, Ronald; Böckmann, Anja; Meier, Beat H

    2014-10-01

    Sup35p is a yeast prion and is responsible for the [PSI(+)] trait in Saccharomyces cerevisiae. With 685 amino acids, full-length soluble and fibrillar Sup35p are challenging targets for structural biology as they cannot be investigated by X-ray crystallography or NMR in solution. We present solid-state NMR studies of fibrils formed by the full-length Sup35 protein. We detect an ordered and rigid core of the protein that gives rise to narrow and strong peaks, while large parts of the protein show either static disorder or dynamics on time scales which interfere with dipolar polarization transfer or shorten the coherence lifetime. Thus, only a small subset of resonances is observed in 3D spectra. Here we describe in detail the sequential assignments of the 22 residues for which resonances are observed in 3D spectra: their chemical shifts mostly corresponding to ?-sheet secondary structure. We suspect that these residues form the amyloid core of the fibril. PMID:23943018

  13. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    SciTech Connect

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr. E-mail: ncn@inano.au.dk; Madhu, P. K. E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  14. Catalytic roles of ?Lys87 in tryptophan synthase: (15)N solid state NMR studies.

    PubMed

    Caulkins, Bethany G; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F; Mueller, Leonard J

    2015-09-01

    The proposed mechanism for tryptophan synthase shows ?Lys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4' for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ?-¹?N-lysine TS was prepared to access the protonation state of ?Lys87 using ¹?N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ?-amino group switches between protonated and neutral states as the ?-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Guest Editors: Andrea Mozzarelli and Loredano Pollegioni. PMID:25688830

  15. Arginine Activity in the Proton-Motive Photocycle of Bacteriorhodopsin: Solid-State NMR Studies of the Wild-Type and D85N Proteins

    E-print Network

    Griffin, Robert G.

    Arginine Activity in the Proton-Motive Photocycle of Bacteriorhodopsin: Solid-State NMR Studies (SSNMR) spectra of guanidyl-15N-labeled bacteriorhodopsin (bR) show perturbation of an arginine residue shifts in a series of arginine model compounds. The `wing' peaks are tentatively assigned to Arg-82

  16. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics

    E-print Network

    Dervi?o?lu, R?za; Middlemiss, Derek S.; Blanc, Frédéric; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P.

    2015-05-22

    demonstrated by Jayaraman et al. ( Solid State Ionics 2004, 170, 25?32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR...

  17. High-Temperature Steam-Treatment of PBI, PEKK, and a PEKK-PBI Blend: A Solid-State NMR and IR Spectroscopic Study

    E-print Network

    Bluemel, Janet

    High-Temperature Steam-Treatment of PBI, PEKK, and a PEKK-PBI Blend: A Solid-State NMR and IR on the behavior and mechanism of polyetherketoneketone (PEKK)/PBI systems in contact with steam or condensed phase water. The goal is to understand the chemistry of the reaction, if any, upon exposure to steam as well

  18. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  19. Differences between Lignin in Unprocessed Wood, Milled Wood, Mutant Wood, and Extracted Lignin Detected by 13C Solid-State NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state 13C nuclear magnetic resonance (NMR) has been applied to an array of intact and isolated wood samples in order to identify potential structural changes induced by tree age, milling, lignin extraction, or naturally occurring mutations. Included in this study were mature loblolly pine mil...

  20. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR: Insights into molecular signatures in relation to point and nonpoint sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  1. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The (1)H and (13)C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of (1)H and (13)C chemical shifts for directly bonded (13)C-(1)H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  2. Cation substitution in ?-tricalcium phosphate investigated using multi-nuclear, solid-state NMR

    SciTech Connect

    Grigg, Andrew T.; Mee, Martin; Mallinson, Phillip M.; Fong, Shirley K.; Gan, Zhehong; Dupree, Ray; Holland, Diane

    2014-04-01

    The substitution of aluminium, gallium and sodium cations into ?-tricalcium phosphate (?-TCP; Ca{sub 3}(PO{sub 4}){sub 2}) has been investigated, and the Ca sites involved successfully determined, using a combination of 1D {sup 31}P, {sup 27}Al, {sup 71}Ga, {sup 23}Na and {sup 43}Ca (natural abundance) NMR and 2D {sup 27}Al({sup 31}P), {sup 71}Ga({sup 31}P) and {sup 23}Na({sup 31}P) rotary-resonance-recoupled heteronuclear multiple-quantum correlation (R{sup 3}-HMQC) NMR. Over the compositional range studied, substitution of Ca{sup 2+} by Al{sup 3+} or Ga{sup 3+} was observed only on the Ca(5) site, whilst substitution by Na{sup +} was confined to the Ca(4) site. Some AlPO{sub 4} or GaPO{sub 4} second phase was observed at the highest doping levels in the Al{sup 3+} and Ga{sup 3+} substituted samples. - Graphical abstract: 2D contour plots with skyline projections showing recoupling of {sup 27}Al, {sup 71}Ga and {sup 23}Na to different {sup 31}P sites. - Highlights: • ?-Ca{sub 3}(PO{sub 4}){sub 2} has been prepared pure and also with Al{sup 3+}, Ga{sup 3+} and Na{sup +} substituents. • Multi-nuclear 1D NMR and heteronuclear X({sup 31}P) recoupling have been used. • Models for substitution correctly predict site preference and occupancy. • Progressive changes in {sup 31}P spectra have been explained. • Al{sup 3+} and Ga{sup 3+} substitute onto the Ca(5) site, and Na{sup +} onto the Ca(4) site.

  3. Preparation of highly and generally enriched mammalian tissues for solid state NMR.

    PubMed

    Wong, Veronica Wai Ching; Reid, David G; Chow, Wing Ying; Rajan, Rakesh; Green, Maggie; Brooks, Roger A; Duer, Melinda J

    2015-10-01

    An appreciable level of isotope labelling is essential for future NMR structure elucidation of mammalian biomaterials, which are either poorly expressed, or unexpressable, using micro-organisms. We present a detailed protocol for high level (13)C enrichment even in slow turnover murine biomaterials (fur keratin), using a customized diet supplemented with commercial labelled algal hydrolysate and formulated as a gel to minimize wastage, which female mice consumed during pregnancy and lactation. This procedure produced approximately eightfold higher fur keratin labelling in pups, exposed in utero and throughout life to label, than in adults exposed for the same period, showing both the effectiveness, and necessity, of this approach. PMID:26407607

  4. Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR

    PubMed Central

    Franks, W. Trent; Wylie, Benjamin J.; Schmidt, Heather L. Frericks; Nieuwkoop, Andrew J.; Mayrhofer, Rebecca-Maria; Shah, Gautam J.; Graesser, Daniel T.; Rienstra, Chad M.

    2008-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes. Whereas SSNMR distance restraints typically have an uncertainty of ?1 ?, the tensor-based experiments report on relative vector (pseudobond) angles with precision of a few degrees. By using 3D techniques of this type, vector angle (VEAN) restraints were determined for the majority of the 56-residue B1 immunoglobulin binding domain of protein G [protein GB1 (a total of 47 HN-HN, 49 HN-HC, and 12 HA-HB restraints)]. By using distance restraints alone in the structure calculations, the overall backbone root-mean-square deviation (bbRMSD) was 1.01 ± 0.13 ? (1.52 ± 0.12 ? for all heavy atoms), which improved to 0.49 ± 0.05 ? (1.19 ± 0.07 ?) on the addition of empirical chemical shift [torsion angle likelihood obtained from shift and sequence similarity (TALOS)] restraints. VEAN restraints further improved the ensemble to 0.31 ± 0.06 ? bbRMSD (1.06 ± 0.07 ?); relative to the structure with distances alone, most of the improvement remained (bbRMSD 0.64 ± 0.09 ?; 1.29 ± 0.07 ?) when TALOS restraints were removed before refinement. These results represent significant progress toward atomic-resolution protein structure determination by SSNMR, capabilities that can be applied to a large range of membrane proteins and fibrils, which are often not amenable to solution NMR or x-ray crystallography. PMID:18344321

  5. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    PubMed Central

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  6. Correlating fast and slow chemical shift spinning sideband patterns in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Orr, Robin M.; Duer, Melinda J.; Ashbrook, Sharon E.

    2005-06-01

    An experiment is presented that enables the measurement of small chemical shift anisotropy tensors under fast magic-angle spinning (MAS). The two-dimensional spectra obtained give a fast MAS sideband pattern in the directly observed dimension with the spinning sideband intensities equivalent to the chemical shift anisotropy scaled by a factor of N, or equivalently the sample spinning frequency scaled by 1/ N, in the indirectly observed dimension. The scaling factor may be arbitrarily varied by changing the number and timings of the rotor synchronized ?-pulses used. Desirable features of the experiment include a fixed length pulse sequence and efficient sampling of the indirectly observed dimension. In addition, neither quadrature detection in the indirect dimension nor storage periods are required, consequently no signal intensity is discarded by the pulse sequence. The experiment is demonstrated using 31P NMR of sodium phosphate and 13C NMR of fumaric acid monoethyl ester for which a scaling factor of N = 10.2 was employed.

  7. Rotor-synchronized dipolar-filter sequence at fast MAS in solid-state NMR.

    PubMed

    Liu, Qing-Hua; Ma, Chao; Hu, Bing-Wen; Chen, Qun; Trebosc, Julien; Lafon, Olivier; Amoureux, Jean-Paul

    2011-10-01

    Dipolar filters are of considerable importance for eliminating the (1)H NMR signal of the rigid components of heterogeneous compounds while selecting the signal of their mobile parts. On the basis of such filters, structural and dynamical information of these compounds can often be acquired through further manipulations (e.g. spin diffusion) on the spin systems. To overcome the destructive interferences between the magic angle spinning (MAS) speed and the cycle-time of the widely-used Rotor-Asynchronized Dipolar Filter (RADF) sequence, we introduce a new method called Rotor-Synchronized Dipolar Filter (RSDF). This communication shows that this sequence does not present any interference with the spinning speed and is more compatible than RADF with high MAS frequencies (?(R)>12 kHz). This new pulse sequence will potentially contribute to future researches on heterogeneous materials, such as multiphase polymer and membrane systems. PMID:21889376

  8. Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance.

    PubMed

    Santoni, Ilaria; Callone, Emanuela; Sandak, Anna; Sandak, Jakub; Dirè, Sandra

    2015-03-01

    (13)C nuclear magnetic resonance and mid-infrared spectroscopies were used for characterizing changes in the chemical structure of wood polymers (cellulose, hemicellulose and lignin) in relation to the tree growth location. Samples of three provenances in Europe (Finland, Poland and Italy) were selected for studies. The requirement was to use untreated solid wood samples to minimize any manipulation to the nanostructure of native wood. The results confirm that the chemical and physical properties of samples belonging to the same wood species (Picea abies Karst.) differ due to the origin. Both FT-IR and dynamic NMR spectroscopies were able to correctly discriminate samples originating from three different provenances in Europe. Such methods might be very useful for both, research and understanding of wood microstructure and its variability due to the growth conditions. PMID:25498692

  9. Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy.

    PubMed

    Fang, XiaoWen; Mao, JingDong; Levin, E M; Schmidt-Rohr, Klaus

    2009-02-01

    The structure of synthetic nanodiamond has been characterized by (13)C nuclear magnetic resonance (NMR) spectral editing combined with measurements of long-range (1)H-(13)C dipolar couplings and (13)C relaxation times. The surface layer of these approximately 4.8-nm diameter carbon particles consists mostly of sp(3)-hybridized C that is protonated or bonded to OH groups, while sp(2)-hybridized carbon makes up less than 1% of the material. The surface protons surprisingly resonate at 3.8 ppm, but their direct bonding to carbon is proved by fast dipolar dephasing under homonuclear decoupling. Long-range (1)H-(13)C distance measurements, based on (13)C{(1)H} dipolar dephasing by surface protons, show that seven carbon layers, in a shell of 0.63 nm thickness that contains approximately 60% of all carbons, predominantly resonate more than +8 ppm from the 37-ppm peak of bulk diamond (i.e., within the 45-80 ppm range). Nitrogen detected in (15)N NMR spectra is mostly not protonated and can account for some of the high-frequency shift of carbon. The location of unpaired electrons (approximately 40 unpaired electrons per particle) was studied in detail, based on their strongly distance-dependent effects on T(1,C) relaxation. The slower relaxation of the surface carbons, selected by spectral editing, showed that the unpaired electrons are not dangling bonds at the surface. This was confirmed by detailed simulations, which indicated that the unpaired electrons are mostly located in the disordered shell, at distances between 0.4 and 1 nm from the surface. On the basis of these results, a nonaromatic core-shell structural model of nanodiamond particles has been proposed. PMID:19133766

  10. Solid-state (13)C NMR and synchrotron SAXS/WAXS studies of uniaxially-oriented polyethylene.

    PubMed

    Afeworki, Mobae; Brant, Pat; Lustiger, Arnold; Norman, Alexander

    2015-11-01

    We report solid-state (13)C NMR and synchrotron wide-and small-angle X-ray scattering experiments (WAXS, SAXS) on metallocene linear low density polyethylene films (e.g., Exceed™ 1018 mLLDPE; nominally 1MI, 0.918 density ethylene-hexene metallocene copolymer) as a function of uniaxial draw ratio, ?. Combined, these experiments provide an unambiguous, quantitative molecular view of the orientation of both the crystalline and amorphous phases in the samples as a function of draw. Together with previously reported differential scanning calorimetry (DSC), gas transport measurements, transmission electron microscopy (TEM), optical birefringence, small angle X-ray scattering (SAXS) as well as other characterization techniques, this study of the state of orientation in both phases provides insight concerning the development of unusually high barrier properties of the most oriented samples (?=10). In this work, static (non-spinning) solid-state NMR measurements indicate that in the drawn Exceed(TM) films both the crystalline and amorphous regions are highly oriented. In particular, chemical shift data show the amorphous phase is comprised increasingly of so-called "taut tie chains" (or tie chains under any state of tautness) in the mLLDPE with increasing draw ratio - the resonance lines associated with the amorphous phase shift to where the crystalline peaks are observed. In the sample with highest total draw (?=10), virtually all of the chains in the non-crystalline region have responded and aligned in the machine (draw) direction. Both monoclinic and orthorhombic crystalline peaks are observed in high-resolution, solid-state magic-angle spinning (MAS) NMR measurements of the oriented PE films. The orientation is comparable to that obtained for ultra-high molecular weight HDPE fibers described as "ultra-oriented" in the literature. Furthermore, the presence of a monoclinic peak in cold-drawn samples suggests that there is an appreciable internal stress associated with the LLDPE. The results are confirmed and independently quantified by Herman's Orientation Function values derived from the WAXS measurements. The degree of orientation approaches theoretically perfect alignment of chains along the draw direction. We deduce from this observation that a high fraction of the non-crystalline chains are either tie chains that directly connect adjacent lamellae or are interlocking loops from adjacent lamellae. In either case, the chains are load-bearing and are consistent with the idea of "taut tie chains". We note that transmission electron micrographs recorded for the ultra-oriented Exceed showed the lamellae are often appreciably thinner and shorter than they are for cast or blown Exceed 1018. Combined with higher crystallinity, the thinner lamellae statistically favor more tie chains. Finally, the remarkably large decrease in permeability of the ?=10 film is primarily attributed to the high degree of orientation (and loss of entropy) of the amorphous phase. PMID:26476811

  11. Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.

    PubMed

    Van Melckebeke, Hélène; Wasmer, Christian; Lange, Adam; Ab, Eiso; Loquet, Antoine; Böckmann, Anja; Meier, Beat H

    2010-10-01

    We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s in its amyloid form. On the basis of 134 unambiguous distance restraints, we recently showed that HET-s(218-289) in its fibrillar state forms a left-handed ?-solenoid, and an atomic-resolution NMR structure of the triangular core was determined from unambiguous restraints only. In this paper, we go considerably further and present a comprehensive protocol using six differently labeled samples, a collection of optimized solid-state NMR experiments, and adapted structure calculation protocols. The high-resolution structure obtained includes the less ordered but biologically important C-terminal part and improves the overall accuracy by including a large number of ambiguous distance restraints. PMID:20828131

  12. Quadrupolar Metal Nuclides in Bioinorganic Chemistry: Solid-State NMR Studies

    SciTech Connect

    Lipton, Andrew S.; Ellis, Paul D.; Polenova, Tatyana E.

    2009-09-16

    Metal ions play an important role in bioinorganic chemistry, however, following their respective chemistries is often complicated because several relevant metal ions (such as V5+, Cu1+, Zn2+, and Mg2+) are not always amenable to conventional UV/Vis or EPR spectroscopy. Rather, what we know of these metal sites has come from the characterization of the various compounds and proteins via x-ray crystallographic methods or from using surrogate metal probes for conventional spectroscopy

  13. Solid-state and solution /sup 13/C NMR in the conformational analysis of methadone-hydrochloride and related narcotic analgesics

    SciTech Connect

    Sumner, S.C.J.

    1986-01-01

    Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemic mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.

  14. Exploration of structure and function in biomolecules through solid-state NMR and computational methods

    NASA Astrophysics Data System (ADS)

    Heider, Elizabeth M.

    Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy and quantum mechanical calculations are powerful analysis tools. Leveraged independently, each method yields important nuclear and molecular information. Used in concert, SSNMR and computational techniques provide complementary data about the structure of solids. These methods are particularly useful in characterizing the structures of microcrystalline organic compounds and revealing mechanisms of biological activity. Such applications may possess special relevance in analysis of pharmaceutical products; 90% of all pharmaceuticals are marketed as solids and bioactivity is strongly linked with molecular conformation. Accordingly, this dissertation employs both SSNMR and quantum mechanical computation to study three bioactive molecules: citrinin, two forms of Atrasentan (Abt-627), and paclitaxel (Taxol RTM). First, a computational study is utilized to determine the mechanism for unusual antioxidant activity in citrinin. Here, molecular geometries and bond dissociation enthalpies (BDE) of the citrinin O--H groups are calculated from first principles (ab initio). The total molecular Hamiltonian is determined by approximating the individual contributors to energy including electronic energy and contributions from modes of molecular vibration. This study of citrinin clearly identifies specific reaction sites in the active form, establishing the central role of intramolecular hydrogen bonding in this activity. Notably, it is discovered that citrinin itself is not the active species. Instead, a pair of hydrated Michael addition products of citrinin act as radical scavengers via O--H bond dissociation. Next, two separate compounds of the anticancer drug Abt-627 (form I and form II) are examined via SSNMR. The three principal values of the 13C diagonalized chemical shift tensor are acquired through the high resolution 2D experiment, FIREMAT. Isotropic chemical shift assignments are made utilizing both dipolar dephasing experiments and 1H-- 13C heteronuclear correlation (HETCOR) experiments. A comparison of spectral data confirms the presence of two molecules in the asymmetric unit for form II (Z'=2) and regions of conformational variation between the two forms are posited. Structural rigidity is found throughout both forms and extends into the alkyl groups at the amine with similarties between form I and form II in this moiety. Likely regions of motion are found around the bond axes formed by C1--C5 in form I. This motion is also observed in one of the two molecules of form II. Tensor differences between the two forms at the tetrahydro-pyrrole center indicate that conformational variation between form I and form II exists in the dihedral angles formed by the atoms C14--C13--C3--C2, O--C12--C2--C1, C10--C5--C1--N1 and C21--C20--N1--C4. Finally, SSNMR is applied in conjunction with quantum mechanical calculations in the analysis of a novel polymorph of the anticancer drug paclitaxel. The three dimensional structure of paclitaxel is established through a combination of SSNMR tensor (13C & 15N) and 1H--13C HETCOR data. With two molecules in the asymmetric unit (Z'=2), this represents the first conformational characterization with Z'>1 established solely by SSNMR. Semi-empirical models are constructed and fitted to experimental data by adjusting the conformation of the paclitaxel models and selecting those conformers which minimize the difference between predicted and measured tensors. This computational grid search exhausively samples the conformation of paclitaxel, utilizing more than 600 independent models. HETCOR data at thirteen key positions provide shift assignment to the asymmetric unit for each comparison. The two distinct molecules of the asymmetric unit possess nearly identical baccatin III moieties with matching conformations of the C10 acetyl moiety. Additionally, both are found to exhibit an extended conformation of the phenylisoserine sidechain at the C13 position. Notable differences between the two forms are centered around the rotation axes of O--C13,

  15. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR

    PubMed Central

    Mak-Jurkauskas, Melody L.; Bajaj, Vikram S.; Hornstein, Melissa K.; Belenky, Marina; Griffin, Robert G.; Herzfeld, Judith

    2008-01-01

    By exploiting dynamic nuclear polarization (DNP) at 90 K, we observe the first NMR spectrum of the K intermediate in the ion-motive photocycle of bacteriorhodopsin. The intermediate is identified by its reversion to the resting state of the protein in red light and by its thermal decay to the L intermediate. The 15N chemical shift of the Schiff base in K indicates that contact has been lost with its counterion. Under these circumstances, the visible absorption of K is expected to be more red-shifted than is observed and this suggests torsion around single bonds of the retinylidene chromophore. This is in contrast to the development of a strong counterion interaction and double bond torsion in L. Thus, photon energy is stored in electrostatic modes in K and is transferred to torsional modes in L. This transfer is facilitated by the reduction in bond alternation that occurs with the initial loss of the counterion interaction, and is driven by the attraction of the Schiff base to a new counterion. Nevertheless, the process appears to be difficult, as judged by the multiple L substates, with weaker counterion interactions, that are trapped at lower temperatures. The double-bond torsion ultimately developed in the first half of the photocycle is probably responsible for enforcing vectoriality in the pump by causing a decisive switch in the connectivity of the active site once the Schiff base and its counterion are neutralized by proton transfer. PMID:18195364

  16. Structure of (KIAGKIA)3 aggregates in phospholipid bilayers by solid-state NMR.

    PubMed

    Toke, Orsolya; O'Connor, R D; Weldeghiorghis, Thomas K; Maloy, W Lee; Glaser, Ralf W; Ulrich, Anne S; Schaefer, Jacob

    2004-07-01

    The interchain (13)C-(19)F dipolar coupling measured in a rotational-echo double-resonance (REDOR) experiment performed on mixtures of differently labeled KIAGKIA-KIAGKIA-KIAGKIA (K3) peptides (one specifically (13)C labeled, and the other specifically (19)F labeled) in multilamellar vesicles of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol (1:1) shows that K3 forms close-packed clusters, primarily dimers, in bilayers at a lipid/peptide molar ratio (L/P) of 20. Dipolar coupling to additional peptides is weaker than that within the dimers, consistent with aggregates of monomers and dimers. Analysis of the sideband dephasing rates indicates a preferred orientation between the peptide chains of the dimers. The combination of the distance and orientation information from REDOR is consistent with a parallel (N-N) dimer structure in which two K3 helices intersect at a cross-angle of approximately 20 degrees. Static (19)F NMR experiments performed on K3 in oriented lipid bilayers show that between L/P = 200 and L/P = 20, K3 chains change their absolute orientation with respect to the membrane normal. This result suggests that the K3 dimers detected by REDOR at L/P = 20 are not on the surface of the bilayer but are in a membrane pore. PMID:15240501

  17. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR.

    PubMed

    Mak-Jurkauskas, Melody L; Bajaj, Vikram S; Hornstein, Melissa K; Belenky, Marina; Griffin, Robert G; Herzfeld, Judith

    2008-01-22

    By exploiting dynamic nuclear polarization (DNP) at 90 K, we observe the first NMR spectrum of the K intermediate in the ion-motive photocycle of bacteriorhodopsin. The intermediate is identified by its reversion to the resting state of the protein in red light and by its thermal decay to the L intermediate. The (15)N chemical shift of the Schiff base in K indicates that contact has been lost with its counterion. Under these circumstances, the visible absorption of K is expected to be more red-shifted than is observed and this suggests torsion around single bonds of the retinylidene chromophore. This is in contrast to the development of a strong counterion interaction and double bond torsion in L. Thus, photon energy is stored in electrostatic modes in K and is transferred to torsional modes in L. This transfer is facilitated by the reduction in bond alternation that occurs with the initial loss of the counterion interaction, and is driven by the attraction of the Schiff base to a new counterion. Nevertheless, the process appears to be difficult, as judged by the multiple L substates, with weaker counterion interactions, that are trapped at lower temperatures. The double-bond torsion ultimately developed in the first half of the photocycle is probably responsible for enforcing vectoriality in the pump by causing a decisive switch in the connectivity of the active site once the Schiff base and its counterion are neutralized by proton transfer. PMID:18195364

  18. Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR

    NASA Astrophysics Data System (ADS)

    Matsuki, Yoh; Nakamura, Shinji; Fukui, Shigeo; Suematsu, Hiroto; Fujiwara, Toshimichi

    2015-10-01

    Magic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR = 4-12 kHz) at cryogenic temperatures (T = 35-120 K) for over a week without consuming helium at a cost for electricity of 16 kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T = 40 K and B0 = 16.4 T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100 K.

  19. Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR.

    PubMed

    Matsuki, Yoh; Nakamura, Shinji; Fukui, Shigeo; Suematsu, Hiroto; Fujiwara, Toshimichi

    2015-10-01

    Magic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR=4-12kHz) at cryogenic temperatures (T=35-120K) for over a week without consuming helium at a cost for electricity of 16kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T=40K and B0=16.4T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100K. PMID:26302269

  20. Integrating Solid-State NMR and Computational Modeling to Investigate the Structure and Dynamics of Membrane-Associated Ghrelin

    PubMed Central

    Els-Heindl, Sylvia; Chollet, Constance; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Meiler, Jens; Huster, Daniel

    2015-01-01

    The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an ?-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane. PMID:25803439

  1. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: a solid-state NMR, EXAFS, and PXRD study.

    PubMed

    Dithmer, Line; Lipton, Andrew S; Reitzel, Kasper; Warner, Terence E; Lundberg, Daniel; Nielsen, Ulla Gro

    2015-04-01

    Phosphate (Pi) sequestration by a lanthanum (La) exchanged clay mineral (La-Bentonite), which is extensively used in chemical lake restoration, was investigated on the molecular level using a combination of (31)P and (139)La solid state NMR spectroscopy (SSNMR), extended X-ray absorption spectroscopy (EXAFS), powder X-ray diffraction (PXRD) and sorption studies. (31)P SSNMR show that all Pi was immobilized as rhabdophane (LaPO4·n H2O, n ? 3), which was further supported by (139)La SSNMR and EXAFS. However, PXRD results were ambiguous with respect to rhabdophane and monazite (LaPO4). Adsorption studies showed that at dissolved organic carbon (DOC) concentration above ca. 250 ?M the binding capacity was only 50% of the theoretical value or even less. No other La or Pi phases were detected by SSNMR and EXAFS indicating the effect of DOC is kinetic. Moreover, (31)P SSNMR showed that rhabdophane formed upon Pi sequestration is in close proximity to the clay matrix. PMID:25747941

  2. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method

    PubMed Central

    Verardi, Raffaello; Shi, Lei; Traaseth, Nathaniel J.; Walsh, Naomi; Veglia, Gianluigi

    2011-01-01

    Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix–helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA. PMID:21576492

  3. Spin dynamics with Solid State NMR and GPU calculations: Loschmidt Echoes, Intrinsic Decoherence and Quantum Dynamical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Pastawski, Horacio M.

    2015-03-01

    After overviewing argentine Condensed Matter Physics outside the Metropolitan area I will focus on the Loschmidt Echo [LE], a concept developed and pursed at Córdoba. It is the recovered fraction of a localized excitation after a spreading period followed by an imperfect time reversal procedure. In Solid State NMR, the LE has allowed us to quantify the decoherence and irreversibility induced by an uncontrolled environment. Notably complex many-body dynamics makes the system particularly sensitive to environmental disturbances presenting a decoherence rate that becomes perturbation independent beyond some small threshold. These experiments and the theoretical analysis based on the Feynman's path integral, summarized at a tutorial level, fueled the field of dynamical quantum chaos [4]. The quest for a perturbation independent decoherence as an emergent phenomenon in thermodynamic limit, lead us to discuss other dynamical observables that depend non-analytically on the environment strength, i.e. that undergo a quantum dynamical phase transition QDPT. GPU based high performance computing boosts the evaluation of the LE, allowing us to asses thermalization and how the Metal-Insulator transition (also a QDPT) emerges in interacting many-body systems. Financing institutions: CONICET, SeCyT-UNC, ANPCyT, MinCyT-Cor and Antorchas.

  4. Refocused continuous-wave decoupling: A new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vinther, Joachim M.; Nielsen, Anders B.; Bjerring, Morten; van Eck, Ernst R. H.; Kentgens, Arno P. M.; Khaneja, Navin; Nielsen, Niels Chr.

    2012-12-01

    A novel strategy for heteronuclear dipolar decoupling in magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy is presented, which eliminates residual static high-order terms in the effective Hamiltonian originating from interactions between oscillating dipolar and anisotropic shielding tensors. The method, called refocused continuous-wave (rCW) decoupling, is systematically established by interleaving continuous wave decoupling with appropriately inserted rotor-synchronized high-power ? refocusing pulses of alternating phases. The effect of the refocusing pulses in eliminating residual effects from dipolar coupling in heteronuclear spin systems is rationalized by effective Hamiltonian calculations to third order. In some variants the ? pulse refocusing is supplemented by insertion of rotor-synchronized ?/2 purging pulses to further reduce the residual dipolar coupling effects. Five different rCW decoupling sequences are presented and their performance is compared to state-of-the-art decoupling methods. The rCW decoupling sequences benefit from extreme broadbandedness, tolerance towards rf inhomogeneity, and improved potential for decoupling at relatively low average rf field strengths. In numerical simulations, the rCW schemes clearly reveal superior characteristics relative to the best decoupling schemes presented so far, which we to some extent also are capable of demonstrating experimentally. A major advantage of the rCW decoupling methods is that they are easy to set up and optimize experimentally.

  5. Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls

    SciTech Connect

    Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  6. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.

    PubMed

    Qiang, Wei

    2011-12-01

    We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the indirect dimension, i.e. the acquisition number decreases as a function of the evolution time (t1) in the indirect dimension. For a beta amyloid (A?) fibril sample, we observed overall 40-50% signal enhancement by measuring the cross peak volume, while the cross peak linewidths remained comparable to the linewidths obtained by regular sampling and processing strategies. Both the linear and Gaussian decay functions for the acquisition numbers result in similar percentage of increment in signal. In addition, we demonstrated that this sampling approach can be applied with different dipolar recoupling approaches such as radiofrequency assisted diffusion (RAD) and finite-pulse radio-frequency-driven recoupling (fpRFDR). This sampling scheme is especially suitable for the sensitivity-limited samples which require long signal averaging for each t1 point, for instance the biological membrane proteins where only a small fraction of the sample is isotopically labeled. PMID:21930405

  7. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    PubMed Central

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - ? and ? states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral ? and charged states from the mixture. PMID:25026459

  8. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy.

    PubMed

    Andronesi, Ovidiu C; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M; Tzika, A Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9(15)1 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis. PMID:18556227

  9. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    USGS Publications Warehouse

    Wershaw, R.L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  10. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy.

    PubMed

    He, Ting; Ren, Pengju; Liu, Xianchun; Xu, Shutao; Han, Xiuwen; Bao, Xinhe

    2015-12-01

    The dynamic evolution of acetyl intermediates in the two different channels of H-mordenite (H-MOR) zeolite during dimethyl ether (DME) carbonylation is tracked by using in situ solid-state NMR spectroscopy under continuous-flow conditions. Thus, the reaction path via methyl acetate produced over active sites in 8 member ring (MR) channels, followed by diffusion into 12 MR channels, is proposed. PMID:26451500

  11. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    SciTech Connect

    Petersen, Line B.; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-01

    Ordering of gallium(III) in a series of magnesium gallium layered double hydroxides (LDH’s), [Mg1-xGax(OH)2(NO3)x yH2O], was determined using solid-state 1H and 71Ga NMR spectroscopy. Depletion of Ga in these LDH’s is demonstrated to be the result of soluble [Ga(OH)4]-complexes formed during synthesis.

  12. High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid-state NMR study

    E-print Network

    Bluemel, Janet

    High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid 2014 Keywords: Steam-treatment of PBI, PEEK, PEKK Solid-state NMR Water and D2O uptake polymers a b with D2O steam at temperatures of 150 and 315 C. All samples are studied by TGA, IR, 13 C CP/MAS, 1 H

  13. Solid-state carbon-13 NMR and computational characterization of the N719 ruthenium sensitizer adsorbed on TiO? nanoparticles.

    PubMed

    Salvi, Nicola; Frey, Julien; Carnevale, Diego; Grätzel, Michael; Bodenhausen, Geoffrey

    2014-05-01

    The ruthenium-containing sensitizing dye N719 grafted on TiO2 nanoparticles was investigated by solid-state NMR. The carbon resonances are assigned by means of (13)C cross-polarized dipolar dephasing experiments. DFT calculations of the carbon magnetic shielding tensors accurately describe the changes in chemical shifts observed upon grafting onto a titania surface via one or two carboxylic functions in the plane defined by the two isothiocyanate groups. PMID:24604223

  14. Solid-state 207pb nmr studies of lead-group 16 and mixedtransition-metal-lead-group 16 element-containing materials

    SciTech Connect

    Van Bramer, S.E.; Glatfelter, A.; Bai, S.; Dybowksi, C.; GNeue,G.; Perry, D.L.

    2005-08-26

    207Pb solid-state NMR studies have been conducted on binarylead-group 16 and mixed transition-metal/lead group 16 materials,correlating the NMR chemical shifts of the materials with theirstructures. The experimental results show that the 207Pb chemical shiftsare strongly influenced by the local electronic structure. Data arereported for lead selenide, lead selenate, calcium plumbate, strontiumplumbite, barium plumbite, lead borate, lead zirconate, lead tungstate,lead meta-tantalate, lead niobate, lead molybdate, lead meta-vanadate,lead sulfite, and lead sulfate.

  15. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Czernek, Ji?í; Brus, Ji?í

    2014-07-01

    A robust method for the assignment of two-dimensional heteronuclear correlations in the solid-state NMR spectra is described. It statistically evaluates the differences between measured and theoretical (obtained from first-principles calculations of the NMR chemical shielding property of periodic materials) chemical shifts. The values of the covariance of these differences, and of the standard deviations of the respective linear correlations, are elucidative for the spectral assignment process. The efficacy of the method is demonstrated for three crystalline systems: L-tyrosine hydrochloride, L-tyrosine ansolvate, and the polymorphic form I of o-acetylsalicylic acid.

  16. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  17. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils. PMID:23676036

  18. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy

    PubMed Central

    Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.

    2008-01-01

    Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930

  19. Active-Site Structure of the Thermophilic Foc-Subunit Ring in Membranes Elucidated by Solid-State NMR

    PubMed Central

    Kang, Su-Jin; Todokoro, Yasuto; Yumen, Ikuko; Shen, Bo; Iwasaki, Iku; Suzuki, Toshiharu; Miyagi, Atsushi; Yoshida, Masasuke; Fujiwara, Toshimichi; Akutsu, Hideo

    2014-01-01

    FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the C?i+1-C?i correlation spectrum of specifically 13C,15N-labeled TFoc rings. The C? chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 C? of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings. PMID:24461014

  20. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall.

    PubMed

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E

    2015-05-29

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  1. Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31P NMR Investigation

    SciTech Connect

    Hunger, Stefan; Cho, Herman M.; Sims, James T.; Sparks, Donald L.

    2004-02-01

    Amending poultry litter (PL) with aluminum sulfate (alum) has proven to be effective in reducing water-soluble phosphorus (P) in the litter and in runoff from fields that have received PL applications; it has therefore been suggested as a best management practice. Although its effectiveness has been demonstrated on a macroscopic scale in the field, little is known about P speciation in either alumamended or unamended litter. This knowledge is important for the evaluation of the long-term stability and bioavailability of P, which is a necessary prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid state MAS and CP-MAS {sup 31}P NMR as well as {sup 31}P({sup 27}Al) TRAPDOR were used to investigate P speciation in alumamended and unamended PL. The results indicate the presence of a complex mixture of organic and inorganic orthophosphate phases. A calcium phosphate phase, probably a surface precipitate on calcium carbonate, could be identified in both unamended and alum-amended PL, as well as physically bound HPO{sub 4}{sup 2-}. Phosphate associated with Al was found in the alum-amended PL, most probably a mixture of a poorly ordered wavellite and phosphate surface complexes on aluminum hydroxide that had been formed by the hydrolysis of alum. However, a complex mixture of organic and inorganic phosphate species could not be resolved. Phosphate associated with Al comprised on average 40{+-}14% of the total P in alum-amended PL, whereas calcium phosphate phases comprised on average 7{+-}4% in the alum-amended PL and 14{+-}5% in the unamended PL.

  2. Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy

    PubMed Central

    Resende, Jarbas M.; Moraes, Cléria Mendonça; Munhoz, Victor H. O.; Aisenbrey, Christopher; Verly, Rodrigo M.; Bertani, Philippe; Cesar, Amary; Piló-Veloso, Dorila; Bechinger, Burkhard

    2009-01-01

    The heterodimeric antimicrobial peptide distinctin is composed of 2 linear peptide chains of 22- and 25-aa residues that are connected by a single intermolecular S-S bond. This heterodimer has been considered to be a unique example of a previously unrecorded class of bioactive peptides. Here the 2 distinctin chains were prepared by chemical peptide synthesis in quantitative amounts and labeled with 15N, as well as 15N and 2H, at selected residues, respectively, and the heterodimer was formed by oxidation. CD spectroscopy indicates a high content of helical secondary structures when associated with POPC/POPG 3:1 vesicles or in membrane-mimetic environments. The propensity for helix formation follows the order heterodimer >chain 2 >chain 1, suggesting that peptide-peptide and peptide-lipid interactions both help in stabilizing this secondary structure. In a subsequent step the peptides were reconstituted into oriented phospholipid bilayers and investigated by 2H and proton-decoupled 15N solid-state NMR spectroscopy. Whereas chain 2 stably inserts into the membrane at orientations close to perfectly parallel to the membrane surface in the presence or absence of chain 1, the latter adopts a more tilted alignment, which further increases in the heterodimer. The data suggest that membrane interactions result in considerable conformational rearrangements of the heterodimer. Therefore, chain 2 stably anchors the heterodimer in the membrane, whereas chain 1 interacts more loosely with the bilayer. These structural observations are consistent with the antimicrobial activities when the individual chains are compared to the dimer. PMID:19805350

  3. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-CO increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-CO, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. PMID:26624522

  4. A solid-state NMR and DFT study of compositional modulations in Al(x)Ga(1-x)As.

    PubMed

    Knijn, Paulus J; van Bentum, P Jan M; van Eck, Ernst R H; Fang, Changming; Grimminck, Dennis L A G; de Groot, Robert A; Havenith, Remco W A; Marsman, Martijn; Meerts, W Leo; de Wijs, Gilles A; Kentgens, Arno P M

    2010-10-01

    We have conducted (75)As and (69)Ga Nuclear Magnetic Resonance (NMR) experiments to investigate order/disorder in Al(x)Ga(1-x)As lift-off films with x? 0.297 and 0.489. We were able to identify all possible As(Al(n)Ga(4-n)) sites with n = 0-4 coordinations in (75)As NMR spectra using spin-echo experiments at 18.8 Tesla. This was achieved by employing high rf field strengths using a small solenoid coil and an NMR probe specifically designed for this purpose. Spectral deconvolution, using an evolutionary algorithm, complies with the absence of long-range order if a CuAu based order parameter is imposed. An unconstrained fit shows a deviation of the statistics imposed by this type of ordering. The occupational disorder in the Ga and Al positions is reflected in a distribution of the Electric Field Gradients (EFGs) experienced at the different arsenic sites. We established that this can be modelled by summing the effects of the first coordination sphere and a Czjzek type distribution resulting from the compositional variation in the Al/Ga sub-lattice in the higher coordination spheres. (69)Ga 3QMAS and nutation data exclude the presence of highly symmetric sites and also show a distribution in EFG. The experimentally obtained quadrupolar interactions are in good agreement with calculations based on Density Functional Theory (DFT). Using additivity of EFG tensors arising from distant charge perturbations, we could use DFT to model the EFG distributions of the n = 0-4 sites, reproducing the Czjzek and extended Czjzek distributions that were found experimentally. On the basis of these calculations we conclude that the (75)As quadrupolar interaction is sensitive to compositional modulations up to the 7th coordination shell in these systems. PMID:20676445

  5. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy.

    PubMed

    Wilkening, Martin; Amade, Roger; Iwaniak, Wojciech; Heitjans, Paul

    2007-03-14

    The cubic spinel oxides Li(1+x)Ti(2-x)O(4) (0 < or =x< or = 1/3) are promising anode materials for lithium-ion rechargeable batteries. The end member of the Li-Ti-O series, Li(4)Ti(5)O(12), can accommodate Li ions up to the composition Li(7)Ti(5)O(12). Whereas a number of studies focus on the electrochemical behaviour of Li insertion into and Li diffusion in the Li intercalated material, only few investigations about low-temperature Li dynamics in the non-intercalated host material Li(4)Ti(5)O(12) have been reported so far. In the present paper, Li diffusion in pure-phase microcrystalline Li(4)Ti(5)O(12) with an average particle size in the microm range was probed by (7)Li solid state NMR spectroscopy using spin-alignment echo (SAE) and spin-lattice relaxation (SLR) measurements. Between T = 295 K and 400 K extremely slow Li jump rates tau(-1) ranging from 1 s(-1) to about 2200 s(-1) were directly measured by recording the decay of spin-alignment echoes as a function of mixing time and constant evolution time. The results point out the slow Li diffusion in non-intercalated Li(4)Ti(5)O(12) x tau(-1) (1/T) follows Arrhenius behaviour with an activation energy E(ASAE) of about 0.86 eV. Interestingly, E(ASAE) is comparable to activation energies deduced from conductivity measurements (0.94(1) eV) and from SLR measurements in the rotating frame (0.74(2) eV) rather than from those performed in the laboratory frame, E(A)(low-T) = 0.26(1) eV at low T. PMID:17325770

  6. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  7. Identification of lithium-sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huff, Laura A.; Rapp, Jennifer L.; Baughman, Jessi A.; Rinaldi, Peter L.; Gewirth, Andrew A.

    2015-01-01

    6Li and 33S solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy was used to identify the discharge products in lithium-sulfur (Li-S) battery cathodes. Cathodes were stopped at different potentials throughout battery discharge and measured ex-situ to obtain chemical shifts and T2 relaxation rates of the products formed. The chemical shifts in the spectra of both 6Li and 33S NMR demonstrate that long-chain, soluble lithium polysulfide species formed at the beginning of discharge are indistinguishable from each other (similar chemical shifts), while short-chain, insoluble polysulfide species that form at the end of discharge (presumably Li2S2 and Li2S) have a different chemical shift, thus distinguishing them from the soluble long-chain products. T2 relaxation measurements of discharged cathodes were also performed which resulted in two groupings of T2 rates that follow a trend and support the previous conclusions that long-chain polysulfide species are converted to shorter chain species during discharge. Through the complementary techniques of 1-D 6Li and 33S solid-state MAS NMR spectroscopy, solution 7Li and 1H NMR spectroscopy, and T2 relaxation rate measurements, structural information about the discharge products of Li-S batteries is obtained.

  8. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1-31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples.

  9. Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard

    2009-01-01

    DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an ?-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046

  10. On the orientational dependence of resolution in 1H solid-state NMR, and its role in MAS, CRAMPS and delayed-acquisition experiments.

    PubMed

    Zorin, Vadim E; Elena, Benedicte; Lesage, Anne; Emsley, Lyndon; Hodgkinson, Paul

    2007-12-01

    Numerical simulations and experiments are used to show that the spin dynamics of the dipolar-coupled networks in solids is often strongly dependent on crystallite orientation. In particular, different rates of dephasing of the magnetisation mean that NMR signals obtained at longer dephasing times are dominated by orientations in which the local dipolar coupling strength is relatively weak. This often leads to a distinct improvement in spectral resolution as the dephasing time is increased. The effects are particularly noticeable under magic-angle spinning (MAS), but are also observed when homonuclear decoupling is used to reduce the rate of dipolar dephasing. Numerical simulation is seen to be a powerful and easily used tool for understanding the behaviour of solid-state NMR experiments involving dipolar-coupled networks. The implications for solid-state NMR spectra of abundant spins acquired under MAS and homonuclear decoupling are discussed, as well as insights provided into the performance of 'delayed-acquisition' and 'constant-time' experiments. PMID:18157810

  11. Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach

    PubMed Central

    Michalek, Matthias; Salnikov, Evgeniy S.; Bechinger, Burkhard

    2013-01-01

    The very amino-terminal domain of the huntingtin protein is directly located upstream of the protein’s polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development of Huntington’s disease. This huntingtin 1–17 domain is on the one hand known to markedly increase polyglutamine aggregation rates and on the other hand has been shown to be involved in cellular membrane interactions. Here, we determined the high-resolution structure of huntingtin 1–17 in dodecyl phosphocholine micelles and the topology of its helical domain in oriented phosphatidylcholine bilayers. Using two-dimensional solution NMR spectroscopy the low-energy conformations of the polypeptide were identified in the presence of dodecyl phosphocholine detergent micelles. In a next step a set of four solid-state NMR angular restraints was obtained from huntingtin 1–17 labeled with 15N and 2H at selected sites. Of the micellar ensemble of helical conformations only a limited set agrees in quantitative detail with the solid-state angular restraints of huntingtin 1–17 obtained in supported planar lipid bilayers. Thereby, the solid-state NMR data were used to further refine the domain structure in phospholipid bilayers. At the same time its membrane topology was determined and different motional regimes of this membrane-associated domain were explored. The pronounced structural transitions of huntingtin 1–17 upon membrane-association result in a ?-helical conformation from K6 to F17, i.e., up to the very start of the polyglutamine tract. This amphipathic helix is aligned nearly parallel to the membrane surface (tilt angle ?77°) and is characterized by a hydrophobic ridge on one side and an alternation of cationic and anionic residues that run along the hydrophilic face of the helix. This arrangement facilitates electrostatic interactions between huntingtin 1–17 domains and possibly with the proximal polyglutamine tract. PMID:23931318

  12. Site discrimination in the crystalline borophosphate Na5B2P3O13 using advanced solid-state NMR techniques.

    PubMed

    Strojek, Wenzel; Fehse, Constanze Miriam; Eckert, Hellmut; Ewald, Bastian; Kniep, Rüdiger

    2007-11-01

    A comprehensive solid-state NMR investigation on crystalline Na(5)B(2)P(3)O(13) is presented. Triple-quantum magic angle spinning (TQMAS) and rotational echo double resonance (REDOR) studies are used for accurate determinations of the (11)B, (23)Na and (31)P interaction parameters. Based on these results and complementary quantum mechanical calculations, plausible site assignments can be derived. Generally, the results show that detailed, quantitative information about structures in borophosphate compounds can be obtained by investigating both the local site environments characterized by chemical shift and quadrupolar interaction parameters and the correlated dipolar interactions to atoms in the second coordination sphere. PMID:17959362

  13. Crystal Structures and Vibrational and Solid-State (CPMAS) NMR Spectroscopy of Some Bis(triphenylphosphine)silver(I) Sulfate, Selenate and Phosphate Systems.

    SciTech Connect

    Bowmaker, Graham A.; Hanna, John V.; Rickard, Clifton E.; Lipton, Andrew S.

    2001-01-01

    The complexes [Ag2(PPh3)4EO4].2H2O(E=S, Se) (1,2), [Ag(PPh3)2HEO4].H2O (E=S, Se)(3,4) and [Ag9PPh3)2H2PO4].2EtOH (5) have been prepared and studied by X-ray crystallography and by infrared and solid-state 13C and 31 P cross-polarization, magic-angle-spinning (CPMAS) NMR spectroscopy.

  14. Structural refinement of the RT LaOF phases by coupling powder X-Ray diffraction, (19)F and (139)La solid state NMR and DFT calculations of the NMR parameters.

    PubMed

    Dabachi, Jamal; Body, Monique; Dittmer, Jens; Fayon, Franck; Legein, Christophe

    2015-12-21

    The structures of the ?- and t-LaOF phases have been refined from XRPD patterns. For both phases, (19)F and (139)La solid-state NMR spectra recorded at high magnetic fields show the presence of a single F and a single La local environment, indicating a full anionic ordering in these oxyfluoride compounds. DFT calculations of the (19)F and (139)La chemical shielding tensors and of the (139)La EFG tensor have been performed for the proposed structural models. The observed good agreement between experimental and calculated NMR parameters for both phases highlights the accuracy of the structural data. PMID:26565802

  15. The structural analysis of Cardo silicone polyimides by high resolution solid-state 13C, 15N and 29Si NMR

    NASA Astrophysics Data System (ADS)

    Shinohara, Masaaki; Saito, Koji; Hatakeyama, Moriaki; Yuasa, Masatoshi; Furukawa, Nobuyuki

    1998-01-01

    It is well-known that polymers containing a fluorene moiety (so-called 'Cardo-type polymers') have high thermal stability, good mechanical properties and excellent solubility in common organic solvents. For the benefit of the full use of these polyimides in industrial applications, cross-linked Cardo silicone polyimides, which have both high thermal stability and high resistivity to organic solvents, were designed. The cross-link density was determined by solid-state 13C and 29Si NMR because no other direct method for the determination of the cross-link density is available. Furthermore, natural abundance CPMAS 13C and 15N NMR measurements were made for three different forms of Cardo silicone polyimides which exhibit a high oxygen permselective property. An explanation for the gas separation mechanism is given.

  16. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.

  17. Comparative analysis of the orientation of transmembrane peptides using solid-state (2)H- and (15)N-NMR: mobility matters.

    PubMed

    Grage, Stephan L; Strandberg, Erik; Wadhwani, Parvesh; Esteban-Martín, Santiago; Salgado, Jesús; Ulrich, Anne S

    2012-05-01

    Many solid-state nuclear magnetic resonance (NMR) approaches for membrane proteins rely on orientation-dependent parameters, from which the alignment of peptide segments in the lipid bilayer can be calculated. Molecules embedded in liquid-crystalline membranes, such as monomeric helices, are highly mobile, leading to partial averaging of the measured NMR parameters. These dynamic effects need to be taken into account to avoid misinterpretation of NMR data. Here, we compare two common NMR approaches: (2)H-NMR quadrupolar waves, and separated local field (15)N-(1)H polarization inversion spin exchange at magic angle (PISEMA) spectra, in order to identify their strengths and drawbacks for correctly determining the orientation and mobility of ?-helical transmembrane peptides. We first analyzed the model peptide WLP23 in oriented dimyristoylphosphatidylcholine (DMPC) membranes and then contrasted it with published data on GWALP23 in dilauroylphosphatidylcholine (DLPC). We only obtained consistent tilt angles from the two methods when taking dynamics into account. Interestingly, the two related peptides differ fundamentally in their mobility. Although both helices adopt the same tilt in their respective bilayers (~20°), WLP23 undergoes extensive fluctuations in its azimuthal rotation angle, whereas GWALP23 is much less dynamic. Both alternative NMR methods are suitable for characterizing orientation and dynamics, yet they can be optimally used to address different aspects. PISEMA spectra immediately reveal the presence of large-amplitude rotational fluctuations, which are not directly seen by (2)H-NMR. On the other hand, PISEMA was unable to define the azimuthal rotation angle in the case of the highly dynamic WLP23, though the helix tilt could still be determined, irrespective of any dynamics parameters. PMID:22453992

  18. The application of solid-state NMR spectroscopy to study candesartan cilexetil (TCV-116) membrane interactions. Comparative study with the AT1R antagonist drug olmesartan

    PubMed Central

    Ntountaniotis, Dimitrios; Kellici, Tahsin; Tzakos, Andreas; Kolokotroni, Pinelopi; Tselios, Theodore; Becker-Baldus, Johanna; Glaubitz, Clemens; Lin, Sonyan; Makriyannis, Alexandros; Mavromoustakos, Thomas

    2015-01-01

    AT1 receptor (AT1R) antagonists exert their antihypertensive effects by preventing the vasoconstrictive hormone AngII to bind to the AT1 receptor. It has been proposed that these biological effects are mediated through a two-step mechanism reaction. In the first step, they are incorporated in the core of the lipid bilayers and in the second step they reach the active site of the receptor through lateral diffusion. In this model, drug/membrane interactions are key elements for the drugs achieving inhibition at the AT1 receptor. In this work, the interactions of the prodrug candesartan cilexetil (TCV-116) with lipid bilayers are studied at molecular detail. Solid-state 13C-CP/MAS, 2D 1H-1H NOESY NMR spectroscopy and in silico calculations are used. TCV-116 and olmesartan, another drug which acts as an AT1R antagonist are compared for their dynamic effects in lipid bilayers using solid-state 2H-NMR. We find a similar localization of TCV-116 compared to other AT1 antagonists in the intermediate polar region. In addition, we can identify specific local interactions. These interactions may be associated in part with the discrete pharmacological profiles observed for different antagonists. PMID:24946142

  19. Elucidating the guest-host interactions and complex formation of praziquantel and cyclodextrin derivatives by (13)C and (15)N solid-state NMR spectroscopy.

    PubMed

    Arrúa, Eva C; Ferreira, M João G; Salomon, Claudio J; Nunes, Teresa G

    2015-12-30

    Praziquantel is the drug of choice to treat several parasitic infections including the neglected tropical disease schistosomiasis. Due to its low aqueous solubility, cyclodextrins have been tested as potential host candidates to prepare praziquantel inclusion complexes with improved solubility. For the first time, the interactions of praziquantel with ?-cyclodextrin and ?-cyclodextrin derivatives (methyl-?-cyclodextrin and hydroxypropyl-?-cyclodextrin) were investigated using high resolution solid-state NMR spectroscopy. The results of this work confirmed that solid-state NMR experiments provided structural characterization, demonstrating the formation of inclusion complexes most probably with PZQ adopting an anti conformation, also the most likely in amorphous raw PZQ. Further information on the interaction of praziquantel with methyl-?-cyclodextrin was obtained from proton rotating-frame relaxation time measurements, sensitive to kilohertz-regime motions but modulated by spin-diffusion. Evidences were presented in all cases for praziquantel complexation through the aromatic ring. In addition, 1:2 drug:carrier molar ratio appears to be the most probable and therefore suitable stoichiometry to improve pharmaceutical formulations of this antischistosomal drug. PMID:26602291

  20. Nano ranged 1,3-dithia-2-stannacyclopentane(IV) alkyldithiocarbonates: solid-state NMR, powder X-ray diffraction and thermal decomposition studies

    NASA Astrophysics Data System (ADS)

    Chauhan, H. P. S.; Bakshi, Abhilasha; Joshi, Sapana; Carpenter, Jaswant

    2015-03-01

    The research work, performed during the course of present investigations is concerned with the synthesis, physico-chemical [elemental analysis and melting points determinations], spectral [IR, Far-IR, multinuclear (13C and 119Sn) solid-state NMR], powder XRD and thermal studies on 1,3-dithia-2-stannacyclopentane(IV) derivatives with alkyldithiocarbonates. The derivatives, [(CH2S)2Sn(S2COR)Cl] and [(CH2S)2Sn(S2COR)2] have been synthesized by the reaction of 1,3-dithia-2-stannacyclopentane(IV) dichloride with potassium alkyldithiocarbonates in 1:1 and 1:2 stoichiometry, respectively. Thermal decomposition study provides significant information about the formation of tin sulfide (SnS2) which has a number of commercial applications in various fields. Crystallite size of the derivatives has been found in nano range (?132 nm) with the help of powder XRD studies. Sideband patterns obtained in our respective derivatives indicate distorted geometry and increased shielding of tin in solid state as compared to solution state 119Sn NMR, could be an indication of high electron density at tin atom.

  1. Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Im; Sur, Jung Chul; Lee, Sung Keun

    2016-01-01

    Despite its geochemical importance and implications for the properties of natural magmatic melts, understanding the detailed structure of iron-bearing silicate glasses remains among the outstanding problems in geochemistry. This is mainly because solid-state NMR techniques, one of the most versatile experimental methods to probe the structure of oxide glasses, cannot be fully utilized for exploring the structural details of iron-bearing glasses as the unpaired electrons in Fe induce strong local magnetic fields that mask the original spectroscopic features (i.e., paramagnetic effect). Here, we report high-resolution 29Si and 17O solid-state NMR spectra of iron-bearing sodium silicate glasses (Na2O-Fe2O3-SiO2, Fe3+/?Fe = 0.89 ± 0.04, thus containing both ferric and ferrous iron) with varying XFe2O3 [=Fe2O3/(Na2O + Fe2O3)], containing up to 22.9 wt% Fe2O3. This compositional series involves Fe-Na substitution at constant SiO2 contents of 66.7 mol% in the glasses. For both nuclides, the NMR spectra exhibit a decrease in the signal intensities and an increase in the peak widths with increasing iron concentration partly because of the paramagnetic effect. Despite the intrinsic difficulties that result from the pronounced paramagnetic effect, the 29Si and 17O NMR results yield structural details regarding the effect of iron content on Q speciation, spatial distribution of iron, and the extent of polymerization in the iron-bearing silicate glasses. The 29Si NMR spectra show an apparent increase in highly polymerized Q species with increasing XFe2O3 , suggesting an increase in the degree of melt polymerization. The 17O 3QMAS NMR spectra exhibit well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) peaks with varying iron concentration. By replacing Na2O with Fe2O3 (and thus with increasing iron content), the fraction of Na-O-Si decreases. Quantitative consideration of this effect confirms that the degree of polymerization is likely to increase with iron content and that Fe3+ is predominantly a network-former. The 17O NMR spectra suggest a moderate degree of preferential partitioning of iron between NBO and BO clusters. The present results bear strong promise for studying iron-bearing silicate glasses using solid-state NMR techniques, constraining the effect of iron content on the degree of polymerization. The observed changes in atomic structures of iron-bearing sodium silicate glasses will be helpful for unraveling atomic origins of the properties of natural silicate melts.

  2. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid-state NMR experiments, most notably in the spectral region corresponding to glycogen H and C, respectively. Interestingly, whereas in both experiments the predominant site of incorporation was in the membrane lipids, the line width of the aliphatic-D resonance in the D2O enriched experiment is 67 % wider than that observed in the D-glucose enriched experiment. This difference could be due to greater residual 1H-2H dipolar coupling in membrane lipids synthesized with 10 % D2O due to D being incorporated during NADP(D) reduction of the fatty acid precursor during synthesis and the H-glucose being the source of carbon and hydrogen starting with acetyl-CoA. In the case of the D-glucose experiment, the narrower absorption line may be consistent with individual FA's being more homogeneously deuterated. Analysis of the membrane lipids is currently being performed via GCMS in order to gain potentially more insight to guide interpretation of the 2H solid state NMR spectra.

  3. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Petersen, Line Boisen; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-01

    Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg1-xGax(OH)2(NO3)x·yH2O] was investigated using solid-state 1H and 71Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg3sbnd OH, Mg2Gasbnd OH and intergallery water molecules were assigned and quantified using {1H,71Ga} HETCOR and 1H MAS NMR. A single 71Ga site originating from the unique Ga site in the MgGa LDH's was observed in 71Ga MAS and 3QMAS NMR spectra. Both 1H MAS NMR spectra recorded at 21.1 T (900 MHz) and elemental analysis show that the synthesized MgGa LDH's had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH)4]- complexes formed during synthesis, and not due to formation of insoluble gallium (oxy)hydroxides. No sign of Gasbnd Osbnd Ga connectivities or defects were detected for the MgGa LDH's.

  4. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.

    PubMed

    Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

    2013-01-21

    Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach. PMID:23202442

  5. High-resolution structure of a Shigella type III secretion needle by solid-state NMR and cryo-electron microscopy

    PubMed Central

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-01-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state NMR (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the Type-III Secretion System (T3SS) needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent dataset of 691 ssNMR constraints and STEM measurements. The hybrid model resolves the conformation of the non-conserved N-terminus, that occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation. PMID:25264107

  6. 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses.

    PubMed

    Bonhomme, Christian; Gervais, Christel; Folliet, Nicolas; Pourpoint, Frédérique; Diogo, Cristina Coelho; Lao, Jonathan; Jallot, Edouard; Lacroix, Joséphine; Nedelec, Jean-Marie; Iuga, Dinu; Hanna, John V; Smith, Mark E; Xiang, Ye; Du, Jincheng; Laurencin, Danielle

    2012-08-01

    Strontium is an element of fundamental importance in biomedical science. Indeed, it has been demonstrated that Sr(2+) ions can promote bone growth and inhibit bone resorption. Thus, the oral administration of Sr-containing medications has been used clinically to prevent osteoporosis, and Sr-containing biomaterials have been developed for implant and tissue engineering applications. The bioavailability of strontium metal cations in the body and their kinetics of release from materials will depend on their local environment. It is thus crucial to be able to characterize, in detail, strontium environments in disordered phases such as bioactive glasses, to understand their structure and rationalize their properties. In this paper, we demonstrate that (87)Sr NMR spectroscopy can serve as a valuable tool of investigation. First, the implementation of high-sensitivity (87)Sr solid-state NMR experiments is presented using (87)Sr-labeled strontium malonate (with DFS (double field sweep), QCPMG (quadrupolar Carr-Purcell-Meiboom-Gill), and WURST (wideband, uniform rate, and smooth truncation) excitation). Then, it is shown that GIPAW DFT (gauge including projector augmented wave density functional theory) calculations can accurately compute (87)Sr NMR parameters. Last and most importantly, (87)Sr NMR is used for the study of a (Ca,Sr)-silicate bioactive glass of limited Sr content (only ~9 wt %). The spectrum is interpreted using structural models of the glass, which are generated through molecular dynamics (MD) simulations and relaxed by DFT, before performing GIPAW calculations of (87)Sr NMR parameters. Finally, changes in the (87)Sr NMR spectrum after immersion of the glass in simulated body fluid (SBF) are reported and discussed. PMID:22738329

  7. Some studies on a solid state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

  8. A Technique for Increasing the Sensitivity of a Solid-State Fission Probe

    NASA Technical Reports Server (NTRS)

    Steinberg, Robert

    1961-01-01

    A small silicon p-n junction wafer, when coated with uranium 235, can be used as a compact fission probe for low power flux and power mapping. Because of the inverse relation between the magnitude of a neutron-induced fission pulse and the inherent capacitance of the detecting element (capacitance is proportional to area), the size, and hence the sensitivity, of the semiconductor detector has been limited. New developments in the field of semiconductor detectors have made it possible to fabricate large area detectors which are essentially free from the capacitance effect. However, preliminary results indicate that they are much more susceptible to radiation damage than the detectors described in this report and as such may not be suitable for flux mapping. increasing the sensitivity cannot be accomplished by simply fabricating a larger detector. It has been observed that by combining the silicon p-n junction wafers in a series configuration the capacitance effect can be bypassed, and a fission probe can be made with a resultant increase in sensitivity by a factor of ten while sustaining only a minor decrease in pulse height. Analysis further indicates that for n silicon wafers in series, if n(C(sub i)) + C(sub c)/C(sub b) less than 0.1 where C(sub i) and C(sub c) are the preamplifier input and cable capacitances, respectively, and C(sub b) is the junction capacitance of a single silicon wafer, there should be no substantial reduction in pulse height due to series circuitry.

  9. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.

    PubMed

    Widdifield, Cory M; Perras, Frédéric A; Bryce, David L

    2015-04-21

    Advances in solid-state nuclear magnetic resonance (SSNMR) methods, such as dynamic nuclear polarization (DNP), intricate pulse sequences, and increased applied magnetic fields, allow for the study of systems which even very recently would be impractical. However, SSNMR methods using certain quadrupolar probe nuclei (i.e., I > 1/2), such as (185/187)Re remain far from fully developed due to the exceedingly strong interaction between the quadrupole moment of these nuclei and local electric field gradients (EFGs). We present a detailed high-field (B0 = 21.1 T) experimental SSNMR study on several perrhenates (KReO4, AgReO4, Ca(ReO4)2·2H2O), as well as ReO3 and Re2(CO)10. We propose solid ReO3 as a new rhenium SSNMR chemical shift standard due to its reproducible and sharp (185/187)Re NMR resonances. We show that for KReO4, previously poorly understood high-order quadrupole-induced effects (HOQIE) on the satellite transitions can be used to measure the EFG tensor asymmetry (i.e., ?Q) to nearly an order-of-magnitude greater precision than competing SSNMR and nuclear quadrupole resonance (NQR) approaches. Samples of AgReO4 and Ca(ReO4)2·2H2O enable us to comment on the effects of counter-ions and hydration upon Re(vii) chemical shifts. Calcium-43 and (185/187)Re NMR tensor parameters allow us to conclude that two proposed crystal structures for Ca(ReO4)2·2H2O, which would be considered as distinct, are in fact the same structure. Study of Re2(CO)10 provides insights into the effects of Re-Re bonding on the rhenium NMR tensor parameters and rhenium oxidation state on the Re chemical shift value. As overtone NQR experiments allowed us to precisely measure the (185/187)Re EFG tensor of Re2(CO)10, we were able to measure rhenium chemical shift anisotropy (CSA) for the first time in a powdered sample. Experimental observations are supported by gauge-including projector augmented-wave (GIPAW) density functional theory (DFT) calculations, with NMR tensor calculations also provided for NH4ReO4, NaReO4 and RbReO4. These calculations are able to reproduce many of the experimental trends in rhenium ?iso values and EFG tensor magnitudes. Using KReO4 as a prototypical perrhenate-containing system, we establish a correlation between the tetrahedral shear strain parameter (|?|) and the nuclear electric quadrupolar coupling constant (CQ), which enables the refinement of the structure of ND4ReO4. Shortcomings in traditional DFT approaches, even when including relativistic effects via the zeroth-order regular approximation (ZORA), for calculating rhenium NMR tensor parameters are identified for Re2(CO)10. PMID:25790263

  10. Electron Spin Resonance Spectroscopy via Relaxation of Solid-State Spin Probes at the Nanoscale

    E-print Network

    L. T. Hall; P. Kehayias; D. A. Simpson; A. Jarmola; A. Stacey; D. Budker; L. C. L. Hollenberg

    2015-03-03

    Electron Spin Resonance (ESR) describes a suite of techniques for characterising electronic systems, with applications in physics, materials science, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring the ESR spectrum of nanoscale electronic environments by measuring the relaxation time ($T_1$) of an optically addressed single-spin probe as it is systematically tuned into resonance with the target electronic system. As a proof of concept we extract the spectral distribution for the P1 electronic spin bath in diamond using an ensemble of nitrogen-vacancy centres, and demonstrate excellent agreement with theoretical expectations. As the response of each NV spin in this experiment is dominated by a single P1 spin at a mean distance of 2.7\\,nm, the extension of this all-optical technique to the single NV case will enable nanoscale ESR spectroscopy of atomic and molecular spin systems.

  11. YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy

    SciTech Connect

    Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten; Schellenberg, Inga; Poettgen, Rainer

    2012-06-15

    The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination and additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.

  12. Solid state 13C NMR analysis of shales and coals from Laramide Basins. Final report, March 1, 1995--March 31, 1996

    SciTech Connect

    Miknis, F.P.; Jiao, Z.S.; Zhao, Hanqing; Surdam, R.C.

    1998-12-31

    This Western Research Institute (WRI) jointly sponsored research (JSR) project augmented and complemented research conducted by the University of Wyoming Institute For Energy Research for the Gas Research Institute. The project, {open_quotes}A New Innovative Exploitation Strategy for Gas Accumulations Within Pressure Compartments,{close_quotes} was a continuation of a project funded by the GRI Pressure Compartmentalization Program that began in 1990. That project, {open_quotes}Analysis of Pressure Chambers and Seals in the Powder River Basin, Wyoming and Montana,{close_quotes} characterized a new class of hydrocarbon traps, the discovery of which can provide an impetus to revitalize the domestic petroleum industry. In support of the UW Institute For Energy Research`s program on pressure compartmentalization, solid-state {sup 13}C NMR measurements were made on sets of shales and coals from different Laramide basins in North America. NMR measurements were made on samples taken from different formations and depths of burial in the Alberta, Bighorn, Denver, San Juan, Washakie, and Wind River basins. The carbon aromaticity determined by NMR was shown to increase with depth of burial and increased maturation. In general, the NMR data were in agreement with other maturational indicators, such as vitrinite reflectance, illite/smectite ratio, and production indices. NMR measurements were also obtained on residues from hydrous pyrolysis experiments on Almond and Lance Formation coals from the Washakie Basin. These data were used in conjunction with mass and elemental balance data to obtain information about the extent of carbon aromatization that occurs during artificial maturation. The data indicated that 41 and 50% of the original aliphatic carbon in the Almond and Lance coals, respectively, aromatized during hydrous pyrolysis.

  13. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Pandey, Manoj Kumar; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-07-01

    Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although 1H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution.

  14. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions

    PubMed Central

    Zhang, Rongchun; Pandey, Manoj Kumar; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-01-01

    Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although 1H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution. PMID:26138791

  15. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    NASA Astrophysics Data System (ADS)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4?Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  16. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  17. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  18. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander (Berkeley, CA); Samoson, Ago (Tallinn, SU)

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  19. Critical Effect of Segmental Dynamics in Polybutadiene / Clay Nanocomposites Characterized by Solid State 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Zhang, Rongchun; Sun, Pingchuan; Winter, H. Henning; Xue, Gi

    2014-03-01

    The segmental dynamics of rigid, intermediate, and mobile molecular components in end-functionalized polybutadiene (PB) / organo-clay systems was characterized by fully refocused 1H NMR FID. In addition, 1H DQ NMR experiments allowed to semi- quantitatively monitor changes in segmental dynamics near the interface. Both methods suggested a critical concentration of end-functionalized polybutadiene, indicating a saturation effect for the surface-adsorbed polymer. The critical concentration depended on molecular weight of PB and PB-clay interaction. Based on the 1H NMR results, a tentative model was proposed to illustrate the evolution of the structure and segmental dynamics in PB/organo-clay nanocomposites. This work was supported by National Natural Science Foundation of China (Grants: 21174062).

  20. Efficient CH-group selection and identification in 13C solid-state NMR by dipolar DEPT and 1H chemical-shift filtering.

    PubMed

    Schmidt-Rohr, K; Mao, J-D

    2002-11-20

    A new spectral-editing technique for solid-state nuclear magnetic resonance (NMR), based principally on the different dipolar-dephasing properties of CH and CH(2) multiple-quantum (MQ) coherence, yields pure C-H spectra with overall efficiencies of up to 14%. The selection is based on dephasing of methylene heteronuclear MQ coherence by the second proton and can be considered essentially as a solid-state, slow-magic-angle-spinning version of the distortionless enhancement by polarization transfer (DEPT) experiment. A short dipolar transfer and inverse gated decoupling suppress quaternary-carbon resonances, and T(1)-filtering reduces methyl signals. Applications to amorphous polymers with long, flexible sidegroups demonstrate excellent suppression of the signals of partially mobile methylene groups, consistent with simulations and superior to existing methods. CH selection in various model compounds and a humic acid confirms the robust nature and good sensitivity of the technique. Distinction of NCH and CCH groups, which have overlapping (13)C chemical-shift ranges, is achieved by combining dipolar DEPT with (1)H isotropic-chemical-shift filtering. In the humic acid, this permits unequivocal assignment of the methine resonance near 53 ppm to NCH groups. PMID:12431126

  1. Local structure analysis of solid state ionic conductors, perovskite-derived structures by NMR and computational studies

    E-print Network

    Dervisoglu, Riza

    2013-10-08

    occupancies. . . . . . . . . . . . . 8 1.6 A computer simulation of a powder sample with Pake doublet shape with KAX = 1 kHz and ?0 = 0 Hz. . . . . . . . . . . . . . . 17 1.7 A computer simulation of a quadrupolar NMR spectra of a powder sample with ?Q = 0... parameters given in Table 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.7 17O MAS NMR spectrum of 17O enriched Ba2In2O4(OH)2 at 9.4 T obtained using a 3 µs pulse length corresponding to ?2 pulse at a radio frequency field amplitude of 80 k...

  2. The investigation of membrane binding by amphibian peptide agonists of CCK2R using (31)P and (2)H solid-state NMR.

    PubMed

    Sherman, Patrick J; Separovic, Frances; Bowie, John H

    2014-05-01

    It has been proposed that some neuropeptides may be anchored to the cell membranes prior to attaching to the adjacent active sites of transmembrane receptors. The three amphibian skin neuropeptides signiferin 1 [RLCIPYIIPC(OH)] (smooth muscle active and immunomodulator), riparin 1.1 [[RLCIPVIFPC(OH)] (immunomodulator) and rothein 1 [SVSNIPESIGF(OH)] (immunomodulator) act via CCK2 transmembrane receptors. A combination of (31)P and (2)H solid state NMR studies of each of these three peptides in eukaryotic phospholipid models at 25°C shows that rothein 1 does not interact with the membrane at all. In contrast, both of the cyclic disulfides signiferin 1 and riparin 1.1 interact with phospholipid head groups and partially penetrate into the upper leaflet of the model bilayer, but to different extents. These interactions are not sufficiently effective to cause disruption of the lipid bilayer since the peptides are not antimicrobial, anticancer, antifungal nor active against enveloped viruses. PMID:24582625

  3. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ?0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  4. Solid-state {sup 17}O magic-angle and dynamic-angle spinning NMR study of the SiO{sub 2} polymorph coesite

    SciTech Connect

    Grandinetti, P.J.; Baltisberger, J.H.; Farnan, I.; Stebbins, J.F.; Werner, U.; Pines, A. |

    1995-08-10

    Five distinctly resolved {sup 17}O solid-state NMR resonances in room temperature coesite, an SiO{sub 2} polymorph, have been observed and assigned using dynamic angle spinning (DAS) at 11.7 T along with magic angle spinning (MAS) spectra at 9.4 and 11.7 T. The {sup 17}O quadrupolar parameters for each of the five oxygen environments in coesite are correlated with the Si-O-Si bridging bond angles determined by diffraction experiments. The sign of e{sup 2}-qQ/h along with the orientation of the electric field gradient for oxygen in the Si-O-Si linkage were determined from a Townes-Dailey analysis of the data. 41 refs., 7 figs., 5 tabs.

  5. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, ?-ketoisovalerate and ?-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  6. Solid-state NMR studies for the determination of 11B electric field-gradient tensor orientations in P/B Frustrated Lewis Pairs and related systems.

    PubMed

    Wiegand, Thomas; Siedow, Melanie; Ekkert, Olga; Möbus, Juri; Daniliuc, Constantin G; Kehr, Gerald; Erker, Gerhard; Eckert, Hellmut

    2014-01-01

    A solid state NMR method is described for measuring the angle ? specifying the orientation of the principal component of the (11)B electric field gradient tensor relative to the (11)B(…31)P internuclear vector of (11)B-(31)P spin pairs. It is based on the anisotropic dephasing of (11)B spins in the dipolar field of (31)P nuclei via (11)B{(31)P} Rotational Echo DOuble Resonance (REDOR) experiments. The method is applied to four solid borane-phosphane compounds related to Frustrated Lewis Pair (FLP) chemistry. Results determined by numerical line shape simulations are found in excellent agreement with theoretically calculated values using advanced DFT methods. The angle ?, which can be measured with an estimated precision of ±5°, offers a clear spectroscopic distinction between classical Lewis-acid/base adducts and active Frustrated Lewis pairs (FLPs). PMID:24721380

  7. Z .Solid State Nuclear Magnetic Resonance 12 1998 113118 Solid-state multipulse proton Nuclear Magnetic Resonance

    E-print Network

    Srinivasarao, Mohan

    solid-state proton Nuclear Magnetic Resonance NMR has been used to study the domain structure in Z .poly NMR . Proton multipulse NMR 7 is used since much less materiZ .Solid State Nuclear Magnetic Resonance 12 1998 113­118 Solid-state multipulse proton Nuclear

  8. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  9. Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Yamamoto, Kazutoshi; Im, Sangchoul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-05-01

    Solid-state NMR spectroscopy is increasingly used in the high-resolution structural studies of membrane-associated proteins and peptides. Most such studies necessitate isotopically labeled (13C, 15N and 2H) proteins/peptides, which is a limiting factor for some of the exciting membrane-bound proteins and aggregating peptides. In this study, we report the use of a proton-based slow magic angle spinning (MAS) solid-state NMR experiment that exploits the unaveraged 1H-1H dipolar couplings from a membrane-bound protein. We have shown that the difference in the buildup rates of cross-peak intensities against the mixing time - obtained from 2D 1H-1H radio frequency-driven recoupling (RFDR) and nuclear Overhauser effect spectroscopy (NOESY) experiments on a 16.7-kDa micelle-associated full-length rabbit cytochrome-b5 (cytb5) - can provide insights into protein dynamics and could be useful to measure 1H-1H dipolar couplings. The experimental buildup curves compare well with theoretical simulations and are used to extract relaxation parameters. Our results show that due to fast exchange of amide protons with water in the soluble heme-containing domain of cyb5, coherent 1H-1H dipolar interactions are averaged out for these protons while alpha and side chain protons show residual dipolar couplings that can be obtained from 1H-1H RFDR experiments. The appearance of resonances with distinct chemical shift values in 1H-1H RFDR spectra enabled the identification of residues (mostly from the transmembrane region) of cytb5 that interact with micelles.

  10. Solid-state 13C NMR studies of a large fossil gymnosperm from the Yallourn Open Cut, Latrobe Valley, Australia

    USGS Publications Warehouse

    Bates, A.L.; Hatcher, P.G.

    1989-01-01

    A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.

  11. {sup 29}Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite

    SciTech Connect

    Pomakhina, Elena; Deneele, Dimitri; Gaillot, Anne-Claire; Paris, Michael; Ouvrard, Guy

    2012-04-15

    Lime is widely used as additive to improve the mechanical properties of natural soil used in earthworks. However, the physico-chemical mechanisms involved are yet not well understood. In order to develop and optimize this treatment method, a better understanding of the interaction between lime and the minerals of the soils, in particular clay minerals, is required. In this study, Ca-bentonite was treated with 2, 5 and 10 wt.% of lime during 1 to 98 days. Modifications in the Si local environment were then monitored by solid state nuclear magnetic resonance to investigate the pozzolanic reaction. All the soil mineral phases contribute to the release of Si and to the pozzolanic reaction, with a rapid and total consumption of Si-polymorph and an exacerbated dissolution of montmorillonite. Mechanism of C-S-H formation, function of the Ca content in the system, was found to match the sorosilicate-tobermorite model described in cement systems.

  12. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics

    PubMed Central

    2015-01-01

    A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25?32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H–17O double resonance experiments. PMID:26321789

  13. Implanted-ion ?NMR: A new probe for nanoscience.

    PubMed

    MacFarlane, W A

    2015-01-01

    NMR detected by radioactive beta decay, ?-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2-200 nm. After a brief historical introduction, technical aspects of implanted-ion ?-NMR are presented, followed by a review of recent applications to a wide range of solids. PMID:25863576

  14. ?-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state (19)F-NMR peptide studies.

    PubMed

    Kubyshkin, Vladimir; Afonin, Sergii; Kara, Sezgin; Budisa, Nediljko; Mykhailiuk, Pavel K; Ulrich, Anne S

    2015-03-21

    ?-(4S)-Trifluoromethyl proline was synthesised according to a modified literature protocol with improved yield on a multigram scale. Conformational properties of the amide bond formed by the amino acid were characterised using N-acetyl methyl ester model. The amide populations (s-trans vs. s-cis) and thermodynamic parameters of the isomerization were found to be similar to the corresponding values for intact proline. Therefore, the ?-trifluoromethyl proline was suggested as a structurally low-disturbing proline substitution in peptides for their structural studies by (19)F-NMR. Indeed, the exchange of native proline for ?-trifluoromethyl proline in the peptide antibiotic gramicidin S was shown to preserve the overall amphipathic peptide structure. The utility of the amino acid as a selective (19)F-NMR label was demonstrated by observing the re-alignment of the labelled gramicidin S in oriented lipid bilayers. PMID:25703116

  15. Solid-state NMR studies of the effects of pharmaceutical processing on relaxation dynamics and implications to solidstate drug stability

    E-print Network

    Lubach, J. W.; Sperger, D. M.; Schieber, L. J.; Munson, E. J.

    2006-10-25

    and acetylsalicylic acid (aspirin) were subjected to various formulation and procesing conditions, and the efects upon CPMAS NMR spectra and relaxation dynamics were investigated. ?Relaxation dynamics can provide valuable insight into physicochemical properties...-year shelf life, so finding the most stable formulation of a drug is crucial to the pharmaceutical industry Aspirin hydrolyis degradation reaction Cryoground Aspirin ?Bulk (unprocesed) aspirin has a relaxation time of 57 s ?As was the case with lactose...

  16. Environmental Weathering of Aluminosilicate Clay Minerals: Solid-State NMR Studies of Transformations Leading to Radionuclide Sequestration

    SciTech Connect

    Mueller, Karl T.; Crosson, Garry; Chorover, Jon; Choi, Sunkyung

    2004-03-28

    Mobilities of radionuclides (such as 137Cs and 90Sr) are governed by their interactions with natural soil particles in the saturated and unsaturated zones at Department of Energy sites. High surface area aluminosilicate clay minerals are a component of the natural soils beneath the leaking waste tanks at these sites and serve as possible radionuclide sorbents. However, due to the characteristics of the contaminant medium (high pH, high Al and high ionic strength), clay minerals are susceptible to transformations during exposure to tank waste leachates. We are currently studying the transformation of clays under specific chemical conditions that mimic the composition of known contaminant solutions. In these studies, specimen clay samples are reacted for varying time periods (up to one year) with simulated tank waste leachate solutions. Mineral dissolution and transformation are followed with solution analysis, x-ray diffraction and a number of other analytical methods. We report here results from 27Al MAS NMR at variable magnetic field strengths (up to 18.8 T), 29Si MAS NMR and 1H/29Si CPMAS NMR and evaluate these results along with those of other parallel analytic studies.

  17. Characterization of a Mixture of CO2 Adsorption Products in Hyperbranched Aminosilica Adsorbents by (13)C Solid-State NMR.

    PubMed

    Moore, Jeremy K; Sakwa-Novak, Miles A; Chaikittisilp, Watcharop; Mehta, Anil K; Conradi, Mark S; Jones, Christopher W; Hayes, Sophia E

    2015-11-17

    Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ?163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates. PMID:26477882

  18. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR

    PubMed Central

    Bajaj, Vikram S.; Mak-Jurkauskas, Melody L.; Belenky, Marina; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of ?90. Multidimensional spectroscopy of U-13C,15N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of L's showed that 3 of these substates revert to bR568 and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP. PMID:19474298

  19. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR.

    PubMed

    Bajaj, Vikram S; Mak-Jurkauskas, Melody L; Belenky, Marina; Herzfeld, Judith; Griffin, Robert G

    2009-06-01

    Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of approximately 90. Multidimensional spectroscopy of U-(13)C,(15)N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of L's showed that 3 of these substates revert to bR(568) and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP. PMID:19474298

  20. Concentration, Interaction and Temperature Dependent Chain Dynamics in Polybutadiene / Clay Nanocomposites Characterized by Solid State 1H Double Quantum NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Sun, Pingchuan; Henning Winter, H.; Xue, Gi

    2012-02-01

    A concentration, interaction and temperature dependent multimode segmental chain dynamics of carboxyly terminated polybutadiene (CTPB) in CTPB/organo-clay (C18-clay) nanocomposite was investigated by solid state 1H double quantum (DQ) NMR spectroscopy. Here, the measurements were performed on a series of samples of CTPB physically attached to the surface of C18-clay. NMR results showed that the nanocomposite exhibit discrete dynamic component with stepwise increase in their motional freedom with decreasing clay content. A remarkable change of CTPB chain dynamics at organo-clay concentration of 40 wt% was found, indicating a saturation effect of the polymer adsorbed on the clay surface. The transverse magnetization relaxation experiment help us quantitatively analysis the rigid, intermediate, and mobile components. Removal of either the end-group of CTPB or of the modifier on the clay changed the polymer-clay interaction profoundly, and thus changed polymer chain dynamics, especially for chains in proximity to the clay surface. The measurement confirmed our earlier hypothesis that the strong polymer-clay interaction was the key to the synergy effect in polymer/clay nanocomposites.

  1. High-resolution solid-state NMR study of the occurrence and thermal transformations of silicon-containing species in biomass materials

    SciTech Connect

    Freitas, J.C.C.; Emmerich, F.G.; Bonagamba, T.J.

    2000-03-01

    The occurrence of silicon in two kinds of biomass (rice hulls and endocarp of babassu coconut) and the thermal transformations taking place in these materials under heat treatments are studied here. The authors report also the production, characterization, and study of carbonaceous materials with high SiC content through the carbothermal reduction of silica, using these natural precursors. X-ray diffraction, scanning electron microscopy, and {sup 13}C and {sup 29}Si room temperature high-resolution solid-state NMR measurements are used in the characterization and study of the materials as well as the process of SiC formation. Important conclusions about the nature of silicon in these types of biomass and the effects of heat treatments on the structure of silicon-containing species are derived from the results presented. It is shown that silicon in these materials occurs in two distinct forms: amorphous hydrated silica and organically bound silicon species. The influence of spin-lattice relaxation dynamics on the NMR spectra is discussed, evidencing the role played by the paramagnetic defects produced in the materials through pyrolysis.

  2. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30ms and nutation frequency 725Hz at 70kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments. PMID:26432398

  3. Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes from Solid-State NMR

    PubMed Central

    2015-01-01

    Viral fusion proteins catalyze the merger of the virus envelope and the target cell membrane through multiple steps of protein conformational changes. The fusion peptide domain of these proteins is important for membrane fusion, but how it causes membrane curvature and dehydration is still poorly understood. We now use solid-state NMR spectroscopy to investigate the conformation, topology, and lipid and water interactions of the fusion peptide of the PIV5 virus F protein in three lipid membranes, POPC/POPG, DOPC/DOPG, and DOPE. These membranes allow us to investigate the effects of lipid chain disorder, membrane surface charge, and intrinsic negative curvature on the fusion peptide structure. Chemical shifts and spin diffusion data indicate that the PIV5 fusion peptide is inserted into all three membranes but adopts distinct conformations: it is fully ?-helical in the POPC/POPG membrane, adopts a mixed strand/helix conformation in the DOPC/DOPG membrane, and is primarily a ?-strand in the DOPE membrane. 31P NMR spectra show that the peptide retains the lamellar structure and hydration of the two anionic membranes. However, it dehydrates the DOPE membrane, destabilizes its inverted hexagonal phase, and creates an isotropic phase that is most likely a cubic phase. The ability of the ?-strand conformation of the fusion peptide to generate negative Gaussian curvature and to dehydrate the membrane may be important for the formation of hemifusion intermediates in the membrane fusion pathway. PMID:24428385

  4. Concentration-Dependent Realignment of the Antimicrobial Peptide PGLa in Lipid Membranes Observed by Solid-State 19F-NMR

    PubMed Central

    Glaser, Ralf W.; Sachse, Carsten; Dürr, Ulrich H. N.; Wadhwani, Parvesh; Afonin, Sergii; Strandberg, Erik; Ulrich, Anne S.

    2005-01-01

    The membrane-disruptive antimicrobial peptide PGLa is found to change its orientation in a dimyristoyl-phosphatidylcholine bilayer when its concentration is increased to biologically active levels. The alignment of the ?-helix was determined by highly sensitive solid-state NMR measurements of 19F dipolar couplings on CF3-labeled side chains, and supported by a nonperturbing 15N label. At a low peptide/lipid ratio of 1:200 the amphiphilic peptide resides on the membrane surface in the so-called S-state, as expected. However, at high peptide concentration (?1:50 molar ratio) the helix axis changes its tilt angle from ?90° to ?120°, with the C-terminus pointing toward the bilayer interior. This tilted “T-state” represents a novel feature of antimicrobial peptides, which is distinct from a membrane-inserted I-state. At intermediate concentration, PGLa is in exchange between the S- and T-state in the timescale of the NMR experiment. In both states the peptide molecules undergo fast rotation around the membrane normal in liquid crystalline bilayers; hence, large peptide aggregates do not form. Very likely the obliquely tilted T-state represents an antiparallel dimer of PGLa that is formed in the membrane at increasing concentration. PMID:15695635

  5. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.

    PubMed

    Mote, Kaustubh R; Madhu, Perunthiruthy K

    2015-12-01

    (1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-? aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping. PMID:26580064

  6. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies

    NASA Astrophysics Data System (ADS)

    Mote, Kaustubh R.; Madhu, Perunthiruthy K.

    2015-12-01

    1H -detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong 1H -1H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40 kHz) are often employed. Here, we have explored the alternative of stroboscopic 1H -detection at moderate MAS frequencies of 5-30 kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the 1H dimension, comparable to that obtainable at high spinning frequencies of 40-60 kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid- ? aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current 13C -detection based methods in assignments and characterization through chemical-shift mapping.

  7. The use of a selective saturation pulse to suppress t1 noise in two-dimensional 1H fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Aiden J.; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P.

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+ kHz) suppresses t1 noise in the indirect dimension of two-dimensional 1H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl 1H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional 1H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear 1H-1H double quantum (DQ)/single quantum (SQ) MAS and 14N-1H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  8. Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environments

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    Dissolved organic matter (DOM) in pore waters from sediments of a number of different depositional environments was isolated by ultrafiltration using membranes with a nominal molecular weight cutoff of 500. This > 500 molecular weight DOM represents 70-98% of the total DOM in these pore waters. We determined the gross chemical structure of this material using both solid-state 13C nuclear magnetic resonance spectroscopy and elemental analysis. Our results show that the DOM in these pore waters appears to exist as two major types: one type dominated by carbohydrates and paraffinic structures and the second dominated by paraffinic and aromatic structures. We suggest that the dominance of one or the other structural type of DOM in the pore water depends on the relative oxidizing/reducing nature of the sediments as well as the source of the detrital organic matter. Under dominantly anaerobic conditions carbohydrates in the sediments are degraded by bacteria and accumulate in the pore water as DOM. However, little or no degradation of lignin occurs under these conditions. In contrast, sediments thought to be predominantly aerobic in character have DOM with diminished carbohydrate and enhanced aromatic character. The aromatic structures in the DOM from these sediments are thought to arise from the degradation of lignin. The large amounts of paraffinic structures in both types of DOM may be due to the degradation of unidentified paraffinic materials in algal or bacterial remains. ?? 1987.

  9. Solid-state NMR characterization of high-loading solid solutions of API and excipients formed by electrospinning.

    PubMed

    Brettmann, Blair; Bell, Erin; Myerson, Allan; Trout, Bernhardt

    2012-04-01

    A major focus area in improving pharmaceutical manufacturing is decreasing powder-handling steps such as milling, granulation, and blending. One approach to go directly from active pharmaceutical ingredients (API) and excipients in solution to a formulated drug product is to use electrospinning to make solid formulations of API in a polymer. Because of the rapid evaporation rate in electrospinning, the process usually results in a well-mixed solid dispersion of drugs in the polymer. In this study, solid-state nuclear magnetic resonance is used to examine phase separation in formulations of aliskiren (SPP) and indomethacin (IND) with polyvinylpyrrolidone (PVP) prepared by electrospinning and hot-melt extrusion. It was found that 1:1 SPP-PVP, 1:1 IND-PVP, and 4:1 SPP-PVP formulations prepared by electrospinning are homogeneous solid solutions down to a 2-11 nm length scale, whereas a 4:1 SPP-PVP formulation prepared by hot-melt extrusion exhibits phase separation with domain sizes of 20-100 nm or larger. PMID:22213488

  10. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    PubMed

    ?uczy?ska, Katarzyna; Dru?bicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-01

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined. PMID:25961154

  11. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  12. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spin–echo, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  13. Conformational stability and thermal pathways of relaxation in triclosan (antibacterial/excipient/contaminant) in solid-state: combined spectroscopic ((1)H NMR) and computational (periodic DFT) study.

    PubMed

    Latosi?ska, Jolanta Natalia; Latosi?ska, Magdalena; Tomczak, Marzena Agnieszka; Medycki, Wojciech

    2015-05-21

    The mechanism of molecular dynamics in the antibacterial/antifungal agent, triclosan (5-chloro-2-(2',4'-dichlorophenoxy)-phenol), in solid state was studied by (1)H NMR spectroscopy and periodic density functional theory (DFT) calculations. Temperature dependencies of the proton spin-lattice relaxation time (T1) in the ranges 86-293 and 90-250 K (at 15 and 24.667 MHz, respectively) and the second moment (M2) of the (1)H NMR resonant line in the range 103-300 K were measured. Two minima in the temperature dependence of T1 revealed a classical Arrhenius governed activation processes. The low temperature shallow minimum T1(T) of 71 s at 115 K, 15 MHz, which shifts with frequency, was assigned to classical hindered jumps of hydroxyl group around OC axis and with respect to a 5-chloro-2-phenol ring. The activation energy of this motion estimated on the basis of the fit of the theoretical model to the experimental points is 9.68 kJ/mol. The pointed high temperature minimum T1(T) of 59 s at 190 K, 15 MHz, which also shifts with frequency, was assigned to the small angle librations by ?lib= ± 9° between two positions of equilibrium differing in energy by 7.42 kJ/mol. The activation energy of this motion estimated on the basis of the fit of the theoretical model to the experimental points is 31.1 kJ/mol. Both motions result in a negligible reduction in the (1)H NMR line second moment, thus the second moment delivers an irrelevant description of the molecular motions in triclosan. PMID:25905444

  14. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI.

    PubMed

    He, Qin; Chen, Hong-Zhang

    2015-12-01

    The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF). A significant linear relationship was found between the total NMR peak areas and the total water contents with a correlation coefficient of 0.993. It was further proved to be successful in comparing the contents and distributions of different states of water in static SSF and gas double-dynamic SSF (GDD-SSF). The results showed that among the three states of water, capillary water was the main form of water present and lost in substrates during fermentation. Total water and capillary water contents did not significantly differ as a result of different sample treatments, but hygroscopic water and free water contents in static SSF were respectively 0.38 and 2.98 times that in GDD-SSF with a packing height of 3 cm after fermentation. A relatively uniform water distribution and deep-depth region for microbial growth were found in GDD-SSF, suggesting that GDD-SSF was more suitable for industrialization. This technology has great potential for achieving efficient on-line water supply through water loss detection in SSF. Graphical Abstract Water states and disturibution in SSF measured by low-field NMR and MRI spectroscopy. PMID:26507329

  15. Medium-range order in sodium phosphate glasses: a quantitative rotational echo double resonance solid state NMR study.

    PubMed

    Strojek, Wenzel; Eckert, Hellmut

    2006-05-21

    Sodium ultraphosphate glasses (Na(2)O)(x)(P(2)O(5))(1-x) show a strongly non-linear dependence of the glass transition temperatures T(g)(x) on composition. To explore the structural origins of this behaviour, local and medium range ordering processes have been investigated by state-of-the-art (23)Na high-resolution and dipolar NMR spectroscopies. In particular, (31)P(23)Na) and (23)Na((31)P) rotational echo double resonance (REDOR) experiments have been analyzed to yield quantitative constraints for the structural description of these glasses. The sodium ions are found to be randomly distributed and, for x < 0.25, spatially correlated with a single metaphosphate-type Q((2)) unit at a distance of 330 pm. In this region, unusual compositional trends observed for the (23)Na chemical shifts and nuclear electric quadrupolar coupling constants, measured by triple-quantum magic-angle spinning (TQMAS) NMR, suggest a systematic decrease of Na coordination number with x. At higher sodium contents (x > 0.25), the magnitude of the (31)P((23)Na) dipolar interaction increases markedly, indicating a significantly increased extent of Q((2))-Na-Q((2)) crosslinking. Based on these results, a comprehensive description of medium-range order in sodium ultraphosphate glasses is developed, suggesting that the T(g)(x) dependence is closely linked to changes in the relative phosphorus/sodium distance distributions. PMID:16688310

  16. Development of Solid State NMR Methods for the Structural Characterization of Membrane Proteins: Applications to Understand Multiple Sclerosis

    SciTech Connect

    Cosman, M; Tran, A T; Ulloa, J; Maxwell, R S

    2003-03-04

    Multiple sclerosis (MS) is a relapsing-remitting disorder of the central nervous system that results in the loss of the myelin sheaths insulating nerve fibers (axons). Strong evidence suggests that MS is an autoimmune disease mediated by T-cell and antibody responses against myelin antigens. Myelin oligodendrocyte glycoprotein (MOG) is a 26 kD to 28 kD an integral membrane protein of the central nervous system implicated as a target for autoaggressive antibodies in MS. To date, the conformation of MOG in association with the myelin membrane is unknown and the exact nature of the interactions between this protein and disease-inducing immune responses have not been determined. Since membrane associated proteins are typically characterized by decreased correlation times, solution state NMR methodologies are often impracticable. Membrane proteins are also often difficult to crystallize for X-ray diffraction studies, Consequently, there is an urgent need to develop new structure characterization tools for this important class of biomolecules. The research described here overviews the initial stages of our effort to develop an integrated, NMR based approach to structural studies of MOG over the many structural domains it is postulated to posses. The structural knowledge gained about this important MS antigen in its native environment will contribute significantly to our understanding of its function in vivo. This project will also aid in the development of therapeutics to inhibit the antigedantibody interaction and thus prevent demyelination in MS patients.

  17. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  18. 2H and 27Al Solid-State NMR Study of the Local Environments in Al-Doped 2-Line Ferrihydrite, Goethite, and Lepidocrocite

    PubMed Central

    2015-01-01

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in order to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. Predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases. PMID:26321790

  19. A high-pressure NMR probe for aqueous geochemistry.

    PubMed

    Pautler, Brent G; Colla, Christopher A; Johnson, Rene L; Klavins, Peter; Harley, Stephen J; Ohlin, C André; Sverjensky, Dimitri A; Walton, Jeffrey H; Casey, William H

    2014-09-01

    A non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20?kbar using in?situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10??L of sample in a microcoil. Initial (11)B?NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation. The inexpensive probe design doubles the current pressure range available for solution NMR spectroscopy and is particularly important to advance the field of aqueous geochemistry. PMID:24989120

  20. Characterization of dispersed heteropoly Acid on mesoporous zeolite using solid-state 31P NMR spin-lattice relaxation.

    PubMed

    Zhu, Kake; Hu, Jianzhi; She, Xiaoyan; Liu, Jun; Nie, Zimin; Wang, Yong; Peden, Charles H F; Kwak, Ja Hun

    2009-07-22

    Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H(3)PW(12)O(40) (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties. The HPA on mesoporous silicalite-1 shows enhanced catalytic activity for 1-butene isomerization, while HPA on conventional silicalite-1 exhibits low activity. To elucidate the structural difference, supported HPA catalysts are characterized using a variety of techniques, including (31)P magic angle spinning nuclear magnetic resonance, and are shown to contain a range of species on both mesoporous and conventional zeolites. However, contrary to studies reported in the literature, conventional NMR techniques and chemical shifts alone do not provide sufficient information to distinguish the dispersed and aggregated surface species. The dispersed phase and the nondispersed phase can only be unambiguously and quantitatively characterized using spin-lattice relaxation NMR techniques. The HPA supported on mesoporous zeolite contains a fast relaxation component related to the dispersed catalyst, giving a much higher activity, while the HPA supported on conventional zeolite has essentially only the slow relaxation component with very low activity. The results obtained from this work demonstrate that the combination of spinning sideband fitting and spin-lattice relaxation techniques can provide detailed structural information on not only the Keggin structure for HPA but also the degree of dispersion on the support. PMID:19601683

  1. Characterization of Dispersed Heteropoly Acid on Mesoporous Zeolite Using Solid-State P-31 NMR Spin-Lattice Relaxation

    SciTech Connect

    Zhu, Kake; Hu, Jian Z.; She, Xiaoyan; Liu, Jun; Nie, Zimin; Wang, Yong; Peden, Charles HF; Kwak, Ja Hun

    2009-09-01

    Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H3PW12O40 (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties. The HPA on mesoporous silicalite-1 shows enhanced catalytic activity for 1-butene isomerization, while HPA on conventional silicalite-1 exhibits low activity. To elucidate the structural difference, supported HPA catalysts are characterized using a variety of techniques, including 31P magic angle spinning nuclear magnetic resonance, and are shown to contain a range of species on both mesoporous and conventional zeolites. However, contrary to studies reported in the literature, conventional NMR techniques and chemical shifts alone do not provide sufficient information to distinguish the dispersed and aggregated surface species. The dispersed phase and the nondispersed phase can only be unambiguously and quantitatively characterized using spin-lattice relaxation NMR techniques. The HPA supported on mesoporous zeolite contains a fast relaxation component related to the dispersed catalyst, giving a much higher activity, while the HPA supported on conventional zeolite has essentially only the slow relaxation component with very low activity. The results obtained from this work demonstrate that the combination of spinning sideband fitting and spin-lattice relaxation techniques can provide detailed structural information on not only the Keggin structure for HPA but also the degree of dispersion on the support.

  2. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop

    SciTech Connect

    Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.; Sears, Jesse A.; Wang, Chong M.; Rosso, Kevin M.; Felmy, Andrew R.

    2010-03-11

    Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.

  3. Effect of particle size on phase transition among metastable alumina nanoparticles: A view from high resolution 2D solid-state 27Al NMR study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, S.

    2012-12-01

    The detailed knowledge of atomic structures of diverse metastable/stable polymorphs in alumina nanoparticles is essential to understand their macroscopic properties. Alumina undergoes successive phase transitions from metastable ?-, ?-, and ?-alumina to stable ?-alumina depending on types of precursors, annealing duration, and temperature. As large surface area of nanoparticles plays an important role in controlling their phase transitions, it is also necessary to explore the effect of particle size on nature of phase transition. Solid-state ^{27}Al NMR allows us to determine the atomic structure of Al sites in diverse amorphous/disordered silicates including alumina. However, generally, the crystallographically distinct Al sites among alumina polymorphs were not fully resolved in ^{27}Al magic angle spinning (MAS) NMR spectrum without performing a simulation of overlapped peaks for Al sites of metastable alumina in the spectra. Unfortunately, the simulation of 27Al MAS NMR spectra for alumina nanoparticles cannot be achieved well due to unconfirmed NMR parameters for Al sites of ?- and ?-alumina. The recent progress in triple-quantum (3Q) MAS can provide the much higher resolution for crystallographically distinct Al sites in amorphous alumina (Lee et al., 2009, Phys. Rev. Lett., 103, 095501; Lee et al., 2010, J. Phys. Chem. C, 114, 13890-13894) and aluminosilicate glasses (Lee, 2011, Proc. Natl. Acad. Sci., 108, 6847-6852) as well as crystalline layer silicates (Lee and Weiss, 2008, Am. Mineral. 93, 1066-1071). In this study, we report the ^{27}Al 2D 3QMAS and 1D MAS NMR spectra for alumina nanoparticles with varying particle size (e.g., 15, 19, and 27 nm) and temperature with an aim to explore the atomic structure of alumina polymorphs and nature of their phase transition sequence. The ^{27}Al 2D 3QMAS spectra show the resolved crystallographically distinct ^{[6]}Al and ^{[4]}Al sites in (?, ?)-, ?-, and ?-alumina in nanoparticles consisting of random mixtures of ?-, ?-, and ?-alumina phases. The fraction of ?-alumina gradually increases up to 1473 K at the expense of decrease in (?, ?)-alumina. Onset of formation of ?-alumina from metastable alumina is observed above 1493 K. The successive simulation of ^{27}Al MAS NMR spectra also can be achieved by using the NMR parameters for the Al sites of (?, ?)-alumina in following Czjzek model, which is applicable to a wide range of disordered materials including ?-alumina. The simulation result shows the phase transition of ?, ? ? ? phase is more gradual with that of ? ? ? phase transitions. This can be attributed to the different structural disorder between metastable (i.e., ?, ?, ?) phases and ?-alumina. The transition temperature for ? ? ? phases apparently increases with increasing size of nanoparticles, indicating a larger energy penalty for phase transition of alumina nanoparticles with a larger particle size. The structural information of alumina polymorphs and mechanistic details shown in the current study provide insights into nature of phase transition mechanisms for other nanoparticles ubiquitous in the earth.

  4. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant.

    PubMed Central

    Hatcher, Mary E; Hu, Jingui G; Belenky, Marina; Verdegem, Peter; Lugtenburg, Johan; Griffin, Robert G; Herzfeld, Judith

    2002-01-01

    By varying the pH, the D85N mutant of bacteriorhodopsin provides models for several photocycle intermediates of the wild-type protein in which D85 is protonated. At pH 10.8, NMR spectra of [zeta-(15)N]lys-, [12-(13)C]retinal-, and [14,15-(13)C]retinal-labeled D85N samples indicate a deprotonated, 13-cis,15-anti chromophore. On the other hand, at neutral pH, the NMR spectra of D85N show a mixture of protonated Schiff base species similar to that seen in the wild-type protein at low pH, and more complex than the two-state mixture of 13-cis,15-syn, and all-trans isomers found in the dark-adapted wild-type protein. These results lead to several conclusions. First, the reversible titration of order in the D85N chromophore indicates that electrostatic interactions have a major influence on events in the active site. More specifically, whereas a straight chromophore is preferred when the Schiff base and residue 85 are oppositely charged, a bent chromophore is found when both the Schiff base and residue 85 are electrically neutral, even in the dark. Thus a "bent" binding pocket is formed without photoisomerization of the chromophore. On the other hand, when photoisomerization from the straight all-trans,15-anti configuration to the bent 13-cis,15-anti does occur, reciprocal thermodynamic linkage dictates that neutralization of the SB and D85 (by proton transfer from the former to the latter) will result. Second, the similarity between the chromophore chemical shifts in D85N at alkaline pH and those found previously in the M(n) intermediate of the wild-type protein indicate that the latter has a thoroughly relaxed chromophore like the subsequent N intermediate. By comparison, indications of L-like distortion are found for the chromophore of the M(o) state. Thus, chromophore strain is released in the M(o)-->M(n) transition, probably coincident with, and perhaps instrumental to, the change in the connectivity of the Schiff base from the extracellular side of the membrane to the cytoplasmic side. Because the nitrogen chemical shifts of the Schiff base indicate interaction with a hydrogen-bond donor in both M states, it is possible that a water molecule travels with the Schiff base as it switches connectivity. If so, the protein is acting as an inward-driven hydroxyl pump (analogous to halorhodopsin) rather than an outward-driven proton pump. Third, the presence of a significant C [double bond] N syn component in D85N at neutral pH suggests that rapid deprotonation of D85 is necessary at the end of the wild-type photocycle to avoid the generation of nonfunctional C [double bond] N syn species. PMID:11806941

  5. Characterization of the L lambda phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction.

    PubMed

    Lee, C W; Das Gupta, S K; Mattai, J; Shipley, G G; Abdel-Mageed, O H; Makriyannis, A; Griffin, R G

    1989-06-13

    Solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray powder diffraction were used to investigate the mechanism of trehalose (TRE) stabilization of lipid bilayers. Calorimetric investigation of dry TRE-stabilized bilayers reveals a first-order phase transition (L kappa----L lambda) at temperatures similar to the L beta'----(P beta')----L alpha transition of hydrated lipid bilayers. X-ray diffraction studies show that dry mixtures of TRE and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) have a lamellar structure with excess crystalline TRE being present. The L kappa phase shows typical gel-phase X-ray diffraction patterns. In contrast, the L lambda-phase diffraction patterns indicate disordered hydrocarbon chains. 2H NMR of specifically 2H chain-labeled DPPC confirmed that the acyl chains are disordered in the L lambda phase over their entire lengths. 2H spectra of the choline headgroup show hindered molecular motions as compared to dry DPPC alone, and 13C spectra of the sn-2-carbonyl show rigid lattice powder patterns indicating very little motion at the headgroup and interfacial regions. Thus, the sugar interacts extensively with the hydrophilic regions of the lipid, from the choline and the phosphate moieties in the headgroup to the glycerol and carbonyls in the interfacial region. We postulate that the sugar and the lipid form an extensive hydrogen-bonded network with the sugar acting as a spacer to expand the distance between lipids in the bilayer. The fluidity of the hydrophobic region in the L lambda phase together with the bilayer stabilization at the headgroup contributes to membrane viability in anhydrobiotic organisms. PMID:2765521

  6. A Solid-State 11B NMR and Computational Study of Boron Electric Field Gradient and Chemical Shift Tensors in Boronic Acids and Boronic Esters

    PubMed Central

    2010-01-01

    The results of a solid-state 11B NMR study of a series of 10 boronic acids and boronic esters with aromatic substituents are reported. Boron-11 electric field gradient (EFG) and chemical shift (CS) tensors obtained from analyses of spectra acquired in magnetic fields of 9.4 and 21.1 T are demonstrated to be useful for gaining insight into the molecular and electronic structure about the boron nucleus. Data collected at 21.1 T clearly show the effects of chemical shift anisotropy (CSA), with tensor spans (?) on the order of 10?40 ppm. Signal enhancements of up to 2.95 were achieved with a DFS-modified QCPMG pulse sequence. To understand the relationship between the measured tensors and the local structure better, calculations of the 11B EFG and magnetic shielding tensors for these compounds were conducted. The best agreement was found between experimental results and those obtained from GGA revPBE DFT calculations. A positive correlation was found between ? and the dihedral angle (?CCBO), which describes the orientation of the boronic acid/ester functional group relative to an aromatic system bound to boron. The small boron CSA is discussed in terms of paramagnetic shielding contributions as well as diamagnetic shielding contributions. Although there is a region of overlap, both ? and the 11B quadrupolar coupling constants tend to be larger for boronic acids than for the esters. We conclude that the span is generally the most characteristic boron NMR parameter of the molecular and electronic environment for boronic acids and esters, and show that the values result from a delicate interplay of several competing factors, including hydrogen bonding, the value of ?CCBO, and the electron-donating or withdrawing substituents bound to the aromatic ring. PMID:20337440

  7. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Solid state {sup 1}H and {sup 13}C NMR structural investigation of a poly(ethylene oxide) hydrogel

    SciTech Connect

    Badiger, M.V.; Graham, N.B.; Law, R.V.; Snape, C.E.

    1993-12-31

    A cross-linked poly (ethylene oxide)/polyurethane hydrogel cross-linked with 1,2,6 hexane-triol and designated PEG4050/1HT [measured M{sup n} of 4050 for poly (ethylene oxide) glycol (PEG) and a mole ratio of 1:1 for the PEG to the 1,2,6 hexane-triol] has been characterized by high resolution {sup 1}H and {sup 13}C NMR. {sup 1}H thermal (T{sub 1}) and rotating frame (T{sub 1{rho}}) and {sup 13}CT{sub 1} relaxation times were determined for the powdered dry and swollen hydrogel with the standard variants of the cross-polarization pulse sequence which was used in conjunction with magic-angle spinning (MAS). The rotating frame relaxation measurements confirmed that crystalline and amorphous regions were present in the dry hydrogel but showed unabiguously that the crystalline regions are confined to the poly (ethylene oxide) chains, Upon hydration, there is a decrease in the cross polarization efficiency from the enhanced mobility by the poly (ethylene oxide) chains are affected to a much greater extent that the urethane and hexane segments, the characteristic time constant, T{sub CH} increasing by more than order of magnitude compared to no more than a factor of two for the latter. Clearly, the hydration involves hydrogen bonding between the water and principally the oxygens in the poly (ethylene oxide) chains. The {sup 1}H MAS spectra of the dry and hydrated samples confirmed that considerable averaging of the dipolar interactions occurs on hydration to give a well-resolved spectrum.

  9. Controlled Translocation of ds/ss hybrid DNA through Solid State Nanopores with Tuning Fork based Force sensing Probe tip (SSN-TFFSP)

    NASA Astrophysics Data System (ADS)

    Kaur, Harpreet; Hyun, Changbae; Huang, Tao; Walsh, Nathan; Nandivada, Santoshi; Rollings, Ryan; Xiao, Min; McNabb, David; Li, Jiali

    2014-03-01

    Using a newly constructed apparatus that integrates a Solid State Nanopore (SSN) and Tuning Fork based Force sensing Probe tip (SSN-TFFSP), we studied ds/ss hybrid single DNA molecules. The ds/ss hybrid DNA is a 48.6 kb double-stranded ? DNA ligated to a 1kb single-stranded DNA. The ? DNA end was ligated to a biotinlated Oligo for attaching the hybrid DNA to a probe tip. The SSN-TFFSP apparatus combines the measurement of ionic current through a solid-state nanopore with a DNA tethered probe tip that is position controlled and sensed by a tuning fork force sensor and a nanopositioning system. The SSN-TFFSP system monitors the process of DNA molecules being captured and trapped by a voltage-biased nanopore, and the process of pulling the trapped DNA out of the nanopore with a controlled speed of 100 ?s/base (1nm/ms) or slower. Here we report on the 3 signals measured simultaneously from this apparatus: ionic current through a nanopore, tip position, and tip vibrational amplitude during the process of a ds/ss hybrid DNA tethered to a Probe tip being captured and released by a nanopore This work is supported by a NHGRI (R21HG004776) Grant.

  10. A risk-based statistical investigation of the quantification of polymorphic purity of a pharmaceutical candidate by solid-state 19F NMR.

    PubMed

    Barry, Samantha J; Pham, Tran N; Borman, Phil J; Edwards, Andrew J; Watson, Simon A

    2012-01-27

    The DMAIC (Define, Measure, Analyse, Improve and Control) framework and associated statistical tools have been applied to both identify and reduce variability observed in a quantitative (19)F solid-state NMR (SSNMR) analytical method. The method had been developed to quantify levels of an additional polymorph (Form 3) in batches of an active pharmaceutical ingredient (API), where Form 1 is the predominant polymorph. In order to validate analyses of the polymorphic form, a single batch of API was used as a standard each time the method was used. The level of Form 3 in this standard was observed to gradually increase over time, the effect not being immediately apparent due to method variability. In order to determine the cause of this unexpected increase and to reduce method variability, a risk-based statistical investigation was performed to identify potential factors which could be responsible for these effects. Factors identified by the risk assessment were investigated using a series of designed experiments to gain a greater understanding of the method. The increase of the level of Form 3 in the standard was primarily found to correlate with the number of repeat analyses, an effect not previously reported in SSNMR literature. Differences in data processing (phasing and linewidth) were found to be responsible for the variability in the method. After implementing corrective actions the variability was reduced such that the level of Form 3 was within an acceptable range of ±1% ww(-1) in fresh samples of API. PMID:22177062

  11. Characterization of the L sub. lambda. phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction

    SciTech Connect

    Lee, C.W.B.; Das Gupta, S.K.; Mattai, J.; Shipley, G.G.; Abdel-Mageed, O.H.; Makriyannis, A.; Griffin, R.G. )

    1989-06-13

    Solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray powder diffraction were used to investigate the mechanism of trehalose (TRE) stabilization of lipid bilayers. Calorimetric investigation of dry TRE-stabilized bilayers reveals a first-order phase transition at temperatures similar to the transition of hydrated lipid bilayers. X-ray diffraction studies show that dry mixtures of TRE and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) have a lamellar structure with excess crystalline TRE being present. {sup 2}H spectra of the choline headgroup show hindered molecular motions as compared to dry DPPC alone, and {sup 13}C spectra of the sn-2-carbonyl show rigid lattice powder patterns indicting very little motion at the headgroup and interfacial regions. Thus, the sugar interacts extensively with the hydrophilic regions of the lipid, from the choline and the phosphate moieties in the headgroup to the glycerol and carbonyls in the interfacial region. The authors postulate that the sugar and the lipid form an extensive hydrogen-bonded network with the sugar acting as a spacer to expand the distance between lipids in the bilayer. The fluididty of the hydrophobic region in the L{sub {lambda}} phase together with the bilayer stabilization at the headgroup contributes to membrane viability in anhydrobiotic organisms.

  12. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    USGS Publications Warehouse

    Benner, R.; Hatcher, P.G.; Hedges, J.I.

    1990-01-01

    Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.

  13. Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy.

    PubMed

    De Angelis, Anna A; Howell, Stanley C; Nevzorov, Alexander A; Opella, Stanley J

    2006-09-20

    The structure of the membrane protein MerFt was determined in magnetically aligned phospholipid bicelles by solid-state NMR spectroscopy. With two trans-membrane helices and a 10-residue inter-helical loop, this truncated construct of the mercury transport membrane protein MerF has sufficient structural complexity to demonstrate the feasibility of determining the structures of polytopic membrane proteins in their native phospholipid bilayer environment under physiological conditions. PISEMA, SAMMY, and other double-resonance experiments were applied to uniformly and selectively (15)N-labeled samples to resolve and assign the backbone amide resonances and to measure the associated (15)N chemical shift and (1)H-(15)N heteronuclear dipolar coupling frequencies as orientation constraints for structure calculations. (1)H/(13)C/(15)N triple-resonance experiments were applied to selectively (13)C'- and (15)N-labeled samples to complete the resonance assignments, especially for residues in the nonhelical regions of the protein. A single resonance is observed for each labeled site in one- and two-dimensional spectra. Therefore, each residue has a unique conformation, and all protein molecules in the sample have the same three-dimensional structure and are oriented identically in planar phospholipid bilayers. Combined with the absence of significant intensity near the isotropic resonance frequency, this demonstrates that the entire protein, including the loop and terminal regions, has a well-defined, stable structure in phospholipid bilayers. PMID:16967977

  14. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    PubMed

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-01

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (?Tg ? 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1?), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD. PMID:26457879

  15. Equiatomic intermetallic compounds YTX (T = Ni, Ir; X = Si, Ge, Sn, Pb): a systematic study by ??Y solid state NMR and ¹¹?Sn Mössbauer spectroscopy.

    PubMed

    Höting, Christoph; Eckert, Hellmut; Haarmann, Frank; Winter, Florian; Pöttgen, Rainer

    2014-06-01

    The equiatomic TiNiSi type tetrelides YTX (space group Pnma) with T = Ni, Ir and X = Si, Ge, Sn, Pb were synthesized from the elements by arc-melting or via high-frequency-melting of the elements in sealed niobium ampoules. All samples were characterized by powder X-ray diffraction using the Guinier technique. The structures of YNiGe, YNiPb, YIrSi, YIrGe, and YIrSn were refined from single crystal X-ray diffractometer data. The YTX tetrelides are characterized by a three-dimensional [TX] network that consists of puckered T3X3 hexagons with T-X distances in the order of the sums of the covalent radii. YIrSi and YIrGe show a reverse occupancy of the T and X sites with respect to the remaining YTX compounds, which is most likely a size effect. Solid state NMR studies reveal the sensitivity of (89)Y Knight shifts to electronic structure details. A monotonic dependence on the tetrelide Pauling electronegativity is observed in addition. The stannides YTSn (T = Ni, Rh, Ir, Pt) were further characterized by (119)Sn Mössbauer spectroscopy. They show single signals that are subjected to quadrupole splitting. Comparison of the isomer shifts with the whole series of YTSn stannides gives no hint of obvious correlations as a consequence of the valence electron count but reveals a systematic decrease with atomic number within a given group. PMID:24718868

  16. Uptake of metal ions by a new chelating ion exchange resin. Part 3: Protonation constants via potentiometric titration and solid state [sup 31]P NMR spectroscopy

    SciTech Connect

    Nash, K.L.; Rickert, P.G.; Muntean, J.V.; Alexandratos, S.D.

    1994-01-01

    A new chelating ion exchange resin which incorporates methylenediphosphonate, carboxylate, and sulfonate functional groups in a polystyrene-divinylbenzene matrix has been prepared. This resin exhibits exceptionally high affinity for polyvalent cations even from moderately acidic aqueous media. Metal ion coordination occurs primarily at the diphosphonate group with the secondary binding sites contributing to charge neutralization when necessary and possible, and to increasing hydrophilicity of the resin pores. In the present investigation, the protonation equilibria of the phosphonate groups in the resin are investigated via potentiometric titration and solid-state [sup 31]P NMR spectroscopy of the resin. Intrinsic equilibrium constants for the first two diphosphonate protonation reactions are pK[sub 4] = 10.47 and pK[sub 3] = 7.24. The last two protons added to the diphosphonate group are acidic having pK[sub a] values less than 2.5. These protonation constants are consistent with those reported previously for monomer analog 1,1-diphosphonic acids. This result implies that thermodynamic data available in the literature can be used to predict the relative affinity of the resin for polyvalent cations. 17 refs., 2 figs., 3 tabs.

  17. Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR.

    PubMed

    Tremouilhac, Pierre; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2006-09-01

    The cationic antimicrobial peptide PGLa is electrostatically attracted to bacterial membranes, binds as an amphiphilic alpha-helix, and is thus able to permeabilize the lipid bilayer. Using solid state (2)H-NMR of non-perturbing Ala-d(3) labels on the peptide, we have characterized the helix alignment under a range of different conditions. Even at a very high peptide-to-lipid ratio (1:20) and in the presence of negatively charged lipids, there was no indication of a toroidal wormhole structure. Instead, PGLa re-aligns from a surface-bound S-state to an obliquely tilted T-state, which is presumably dimeric. An intermediate structure half-way between the S- and T-state was observed in fully hydrated multilamellar DMPC vesicles at 1:50, suggesting a fast exchange between the two states on the time scale of >50 kHz. We demonstrate that this equilibrium is shifted from the S- towards the T-state either upon (i) increasing the peptide concentration, (ii) adding negatively charged DMPG, or (iii) decreasing the level of hydration. The threshold concentration for re-alignment in DMPC is found to be between 1:200 and 1:100 in oriented samples at 96% humidity. In fully hydrated multilamellar DMPC vesicles, it shifts to an effective peptide-to-lipid ratio of 1:50 as some peptides are able to escape into the bulk water phase. PMID:16716250

  18. Using solid-state 31P{19F} REDOR NMR to measure distances between a trifluoromethyl group and a phosphodiester in nucleic acids.

    PubMed

    Louie, Elizabeth A; Chirakul, Panadda; Raghunathan, Vinodhkumar; Sigurdsson, Snorri Th; Drobny, Gary P

    2006-01-01

    REDOR is a solid-state NMR technique frequently applied to biological structure problems. Through incorporation of phosphorothioate groups in the nucleic acid backbone and mono-fluorinated nucleotides, 31P{19F} REDOR has been used to study the binding of DNA to drugs and RNA to proteins through the detection of internuclear distances as large as 13-14 A. In this work, 31P{19F} REDOR is further refined for use in nucleic acids by the combined use of selective placement of phosphorothioate groups and the introduction of nucleotides containing trifluoromethyl (-CF3) groups. To ascertain the REDOR-detectable distance limit between an unique phosphorous spin and a trifluoromethyl group and to assess interference from intermolecular couplings, a series of model compounds and DNA dodecamers were synthesized each containing a unique phosphorous label and trifluoromethyl group or a single 19F nucleus. The dipolar coupling constants of the various 31P and 19F or -CF3 containing compounds were compared using experimental and theoretical dephasing curves involving several models for intermolecular interactions. PMID:16213170

  19. Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles

    NASA Astrophysics Data System (ADS)

    Koroloff, Sophie N.; Nevzorov, Alexander A.

    2015-07-01

    Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing structural and dynamic information at nearly physiological conditions. However, NMR experiments performed on oriented membrane proteins generally suffer from low sensitivity. Moreover, utilization of high-power radiofrequency (RF) irradiations for magnetization transfer may give rise to sample heating, thereby decreasing the efficiency of conventional cross-polarization schemes. Here we have optimized the recently developed repetitive cross-polarization (REP-CP) sequence (Tang et al., 2011) to further increase the magnetization transfer efficiency for membrane proteins reconstituted in magnetically aligned bicelles and compared its performance to single-contact Hartmann-Hahn cross-polarization (CP), CP-MOIST and the adiabatic transfer. It has been found that employing the REP-CP sequence at RF amplitudes of 19 kHz instead of the commonly used higher RF fields (>45 kHz) enhances the efficiency of REP-CP. An additional 30% signal can be obtained as compared to the previously published REP-CP, and 20% when compared to the re-optimized REP-CP at 50 kHz RF fields. Moreover, the 15N signal gain of low-power REP-CP was found to be 40% over the adiabatic CP and up to 80% over CP-MOIST. Thus, the low-power REP-CP sequence surpasses all of the previous CP schemes in addition of having the tremendous advantage of reducing the RF powers by a factor of seven, thereby preserving the liquid-like bicelle sample. By contrast, in purely static (NAL crystal) and semi-rigid systems (Pf1 phage), the adiabatic CP was found to be more effective. Periodic oscillations of the intensity profile (distinct from the transient oscillations) as a function of the CP contact time and B1 RF field strengths were observed during the REP-CP optimization with the oscillations becoming more pronounced with lower RF fields. Many-spin simulations were performed to explain the oscillations and their periodicity.

  20. Intermolecular bonding of hemin in solution and in solid state probed by N K-edge X-ray spectroscopies.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Stevens, Joanna S; Gainar, Adrian; Schroeder, Sven L M; Aziz, Emad F

    2015-10-28

    X-ray absorption/emission spectroscopy (XAS/XES) at the N K-edge of iron protoporphyrin IX chloride (FePPIX-Cl, or hemin) has been carried out for dissolved monomers in DMSO, dimers in water and for the solid state. This sequence of samples permits identification of characteristic spectral features associated with the hemin intermolecular bonding. These characteristic features are further analyzed and understood at the molecular orbital (MO) level based on the DFT calculations. PMID:26455378

  1. Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

    1993-09-01

    Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

  2. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl acetate) Studied Using (13)C Solid-State NMR.

    PubMed

    Yuan, Xiaoda; Xiang, Tian-Xiang; Anderson, Bradley D; Munson, Eric J

    2015-12-01

    Hydrogen bonding interactions in amorphous indomethacin and amorphous solid dispersions of indomethacin with poly(vinylpyrrolidone), or PVP, and poly(vinylpyrrolidone-co-vinyl acetate), or PVP/VA, were investigated quantitatively using solid-state NMR spectroscopy. Indomethacin that was (13)C isotopically labeled at the carboxylic acid carbon was used to selectively analyze the carbonyl region of the spectrum. Deconvolution of the carboxylic acid carbon peak revealed that 59% of amorphous indomethacin molecules were hydrogen bonded through carboxylic acid cyclic dimers, 15% were in disordered carboxylic acid chains, 19% were hydrogen bonded through carboxylic acid and amide interactions, and the remaining 7% were free of hydrogen bonds. The standard dimerization enthalpy and entropy of amorphous indomethacin were estimated to be -38 kJ/mol and -91 J/(mol·K), respectively, using polystyrene as the "solvent". Polymers such as PVP and PVP/VA disrupted indomethacin self-interactions and formed hydrogen bonds with the drug. The carboxylic acid dimers were almost completely disrupted with 50% (wt) of PVP or PVP/VA. The fraction of disordered carboxylic acid chains also decreased as the polymer content increased. The solid-state NMR results were compared with molecular dynamics (MD) simulations from the literature. The present work highlights the potential of (13)C solid-state NMR to detect and quantify various hydrogen bonded species in amorphous solid dispersions as well as to serve as an experimental validation of MD simulations. PMID:26512737

  3. A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning.

    PubMed

    Ishii, Yoshitaka; Wickramasinghe, Nalinda P; Chimon, Sandra

    2003-03-26

    Novel 1D and multidimensional solid-state NMR (SSNMR) methods using very fast magic-angle spinning (VFMAS) (spinning speed > 20 kHz) for performing 13C high-resolution SSNMR of paramagnetic organometallic complexes are discussed. VFMAS removes a majority of 13C-1H and 1H-1H dipolar couplings, which are often difficult to remove by RF pulse techniques in paramagnetic complexes because of large paramagnetic shifts. In the first systematic approach using the unique feature of VFMAS for paramagnetic complexes, we demonstrate a means of obtaining well-resolved 1D and multidimensional 13C SSNMR spectra, sensitivity enhancements via cross polarization, and signal assignments, and applications of dipolar recoupling methods for nonlabeled paramagnetic organometallic complexes of moderate paramagnetic shifts ( approximately 800 ppm). Experimental results for powder samples of small nonlabeled coordination complexes at 1H frequencies of 400.2-400.3 MHz show that highly resolved 13C SSNMR spectra can be obtained under VFMAS, without requirements of 1H decoupling. Sensitivity enhancement in 13C SSNMR via cross polarization from 1H spins was demonstrated with an amplitude-sweep high-power CP sequence using strong RF fields ( approximately 100 kHz) available in the VFMAS probe. 13C CPMAS spectra of nonlabeled Cu(II)(dl-alanine)2.(H2O) and V(III)(acetylacetonate)3 (V(acac)3) show that it is possible to obtain high-resolution spectra for a small quantity ( approximately 15 mg) of nonlabeled paramagnetic organometal complexes within a few minutes under VFMAS. Experiments on Cu(II)(dl-alanine)2.(H2O) demonstrated that 1H-13C dipolar recoupling for paramagnetic organometal complexes can be performed under VFMAS by application of rotor-synchronous pi-pulses to 1H and 13C spins. The results also showed that signal assignments for 13CH, 13CH3, and 13CO groups in paramagnetic complexes are possible on the basis of the amount of 13C-1H dipolar dephasing induced by dipolar recoupling. Furthermore, the experimental 2D 13C/1H chemical-shift correlation NMR spectrum obtained for nonlabeled V(acac)3 exhibits well-resolved lines, which overlap in 1D 13C and 1H spectra. Signals for different chemical groups in the 2D spectrum are distinguished by the 13C-1H dipolar dephasing method combined with the 2D 13C/1H correlation NMR. The assignments offer information on the existence of nonequivalent ligands in the coordination complex in solids, without requiring a single-crystal sample. PMID:12643699

  4. Cryoprotection of Lipid Membranes for High-Resolution Solid-State NMR Studies of Membrane Peptides and Proteins at Low Temperature

    PubMed Central

    Lee, Myungwoon; Hong, Mei

    2014-01-01

    Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the spectral resolution of lipid membranes and membrane peptides at temperatures down to ~200 K. Trehalose, glycerol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and polyethylene glycol (PEG), were chosen. These compounds are commonly used in protein crystallography and cryobiology. 13C and 1H MAS spectra of several types of lipid membranes show that DMSO provides the best resolution enhancement over unprotected membranes and also best retards ice formation at low temperature. DMF and PEG-400 show slightly weaker cryoprotection, while glycerol and trehalose neither prevent membrane line broadening nor prevent ice formation under the conditions of our study. Neutral saturated-chain phospholipids are the most amenable to cryoprotection, whereas negatively charged and unsaturated lipids attenuate cryoprotection. 13C-1H dipolar couplings and 31P chemical shift anisotropies indicate that high spectral resolution at low temperature is correlated with stronger immobilization of the lipids at high temperature, indicating that line narrowing results from reduction of the conformational space sampled by the lipid molecules at high temperature. DMSO selectively narrowed the linewidths of the most disordered residues in the influenza M2 transmembrane peptide, while residues that exhibit narrow linewidths in the unprotected membrane are less impacted. A relatively rigid ?-hairpin antimicrobial peptide, PG-1, showed a linewidth increase of ~0.5 ppm over a ~70 K temperature drop both with and without cryoprotection. Finally, a short-chain saturated lipid, DLPE, exhibits excellent linewidths, suggesting that it may be a good medium for membrane protein structure determination. The three best cryoprotectants found in this work – DMSO, PEG, and DMF - should be useful for low-temperature membrane-protein structural studies by SSNMR without compromising spectral resolution. PMID:25015530

  5. Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition–Structure Correlations Unveiled by Solid-State NMR and MD Simulations

    PubMed Central

    2013-01-01

    The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (nP) of the glass and its silicate network connectivity (N?BOSi). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with 31P and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N?BOSi, nP, and the silicate and phosphate speciations in a series of Na2O–CaO–SiO2–P2O5 glasses spanning 2.1 ? N?BOSi ? 2.9 and variable P2O5 contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of nP at a fixed N?BOSi-value, but is reduced slightly as N?BOSi increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na2O–CaO–SiO2–P2O5 compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the nNa/nCa molar ratio. PMID:24364818

  6. Comparative study of the interaction of fullerenol nanoparticles with eukaryotic and bacterial model membranes using solid-state NMR and FTIR spectroscopy.

    PubMed

    Brisebois, Patrick P; Arnold, Alexandre A; Chabre, Yoann M; Roy, René; Marcotte, Isabelle

    2012-06-01

    Native fullerene is notoriously insoluble in water and forms aggregates toxic to cell membranes, thus limiting its use in nanomedicine. In contrast, water-soluble fullerenol is compatible with biological systems and shows low in vivo toxicity on human cell lines. The interaction mechanism between these hydrophilic nanoparticles and biological membranes is however not well understood. Therefore, in this work, the effect of fullerenol on model eukaryotic and bacterial membranes was investigated using (31)P- and (2)H solid-state NMR as well as FTIR spectroscopy. DPPC/cholesterol and DPPC/DPPG bilayers were used to mimic eukaryotic and bacterial cell membranes, respectively. Our results show low affinity of fullerenol for DPPC/cholesterol bilayers but a clear interaction with model bacterial membranes. A preferential affinity of fullerenol for the anionic phospholipids DPPG in DPPC/DPPG membranes is also observed. Our data suggest that fullerenol remains at the water/bilayer interface of eukaryote-like membranes. They also indicate that the presence of a polar group such as DPPG's hydroxyl moiety at the bilayer surface plays a key role in the interaction of fullerenol with membranes. Hydrogen bonding of fullerenol nanoparticles with DPPGs' OH groups is most likely responsible for inducing lipid segregation in the lipid bilayer. Moreover, the location of the nanoparticles in the polar region of DPPG-rich regions appears to disturb the acyl chain packing and increase the membrane fluidity. The preferential interaction of fullerenol with lipids mostly found in bacterial membranes is of great interest for the design of new antibiotics. PMID:22526464

  7. Recoupled long-range C-H dipolar dephasing in solid-state NMR, and its use for spectral selection of fused aromatic rings.

    PubMed

    Mao, J-D; Schmidt-Rohr, K

    2003-05-01

    This work introduces a simple new solid-state 13C NMR method for distinguishing various types of aromatic residues, e.g. those of lignin from fused rings of charcoal. It is based on long-range dipolar dephasing, which is achieved by recoupling of long-range C-H dipolar interactions, using two 1H 180 degrees pulses per rotation period. This speeds up dephasing of unprotonated carbon signals approximately threefold compared to standard dipolar dephasing without recoupling and thus provides much more efficient differential dephasing. It also reduces the effects of spinning-speed dependent effective proton-proton dipolar couplings on the heteronuclear dephasing. Signals of unprotonated carbons with two or more protons at a two-bond distance dephase to <3% within less than 0.9 ms, significantly faster than those of aromatic sites separated from the nearest proton by three or more bonds. Differential dephasing among different unprotonated carbons is demonstrated in a substituted anthraquinone and 3-methoxy benzamide. The data yield a calibration curve for converting the dephasing rates into estimated distances from the carbon to the nearest protons. This can be used for peak assignment in heavily substituted or fused aromatic molecules. Compared to lignin, slow dephasing is observed for the aromatic carbons in wood charcoal, and even slower for inorganic carbonate. Direct 13C polarization is used on these structurally complex samples to prevent loss of the signals of interest, which by design originate from carbons that are distant from protons and therefore crosspolarize poorly. In natural organic matter such as humic acids, this combination of recoupled dipolar dephasing and direct polarization at 7-kHz MAS enables selective observation of signals from fused rings that are characteristic of charcoal. PMID:12762998

  8. Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state

    PubMed Central

    Sackett, Kelly; Nethercott, Matthew J.; Zheng, Zhaoxiong; Weliky, David P.

    2013-01-01

    The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not well-characterized in large gp41 constructs that model the gp41 state at different times during fusion. This paper describes solid-state NMR (SSNMR) studies of FP structure in a membrane-associated construct (FP-Hairpin) which likely models the final fusion state thought to be thermostable trimers with six-helix bundle structure in the region C-terminal of the FP. The SSNMR data show that there are populations of FP-Hairpin with either ? helical or ? sheet FP conformation. For the ? sheet population, measurements of intermolecular 13C-13C proximities in the FP are consistent with a significant fraction of intermolecular antiparallel ? sheet FP structure with adjacent strand crossing near L7 and F8. There appears to be negligible in-register parallel structure. These findings support assembly of membrane-associated gp41 trimers through inter-leaving of N-terminal FPs from different trimers. Similar SSNMR data are obtained for FP-Hairpin and a construct containing the 70 N-terminal residues of gp41 (N70) which is a model for part of the putative pre-hairpin intermediate state of gp41. FP assembly may therefore occur at an early fusion stage. On a more fundamental level, similar SSNMR data are obtained for FP-Hairpin and a construct containing the 34 N-terminal gp41 residues (FP34) and support the hypothesis that the FP is an autonomous folding domain. PMID:24246500

  9. Characterization of the spherical intermediates and fibril formation of hCT in HEPES solution using solid-state 13C-NMR and transmission electron microscopy.

    PubMed

    Itoh-Watanabe, Hikari; Kamihira-Ishijima, Miya; Kawamura, Izuru; Kondoh, Masashi; Nakakoshi, Masamichi; Sato, Michio; Naito, Akira

    2013-10-21

    Human calcitonin (hCT) is a 32-amino acid peptide hormone that contains an intrachain disulfide bridge between Cys1 and Cys7 and a proline amide at the C-terminus. hCT tends to associate to form a fibril precipitate of the same type as amyloid fibrils, and hence has been studied as a model of amyloid fibril formation. The fibrillation process in N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) solution was examined using transmission electron microscopy. The rate of hCT fibrillation in HEPES solution was much lower than in phosphate buffer and acetic acid solution. Spherical intermediate aggregates (nuclei) were observed during the early stage of fibril formation. Short proto-fibrils appeared on the surface of the spherical intermediates. Subsequently, the spherical intermediates transformed directly into long proto-fibrils, which then elongated into mature hCT fibrils. The fibrillation process was also examined using solid-state (13)C-NMR spectroscopy, which indicated that the fibril structure was a ?-sheet in the central region and a mixture of random coils and ?-sheets at the C-terminus. The kinetics of fibril formation was examined in terms of a two-step autocatalytic reaction mechanism. The first-step nucleation rate (k1) was lower in HEPES solution than in phosphate buffer and acetic acid solution because the half-life of the intermediates is significantly longer in HEPES solution. In contrast, the second-step fibril elongation rate (k2) was similar in HEPES solution and acidic solutions. Specific interaction of HEPES molecules with hCT may stabilize the spherical intermediates and consequently inhibit the fibril elongation process of hCT. PMID:24002168

  10. Solid-state (79/81)Br NMR and gauge-including projector-augmented wave study of structure, symmetry, and hydration state in alkaline earth metal bromides.

    PubMed

    Widdifield, Cory M; Bryce, David L

    2010-02-11

    Bromine-79/81 solid-state NMR (SSNMR) spectroscopy is established as a tool to characterize the local structure and symmetry about bromide ions in inorganic systems. Benchmark experimental (79/81)Br SSNMR data are acquired for CaBr(2), SrBr(2), BaBr(2), MgBr(2).6H(2)O, SrBr(2).6H(2)O, BaBr(2).2H(2)O, and CaBr(2).xH(2)O using the Solomon echo and/or QCPMG pulse sequences in magnetic fields of 11.75 and 21.1 T. Analytical line-shape analysis provides (79/81)Br electric field gradient (EFG) tensor parameters (including (79)Br quadrupolar coupling constants, C(Q)((79)Br), of up to 75.1(5) MHz in CaBr(2)), chemical shift tensor parameters (including the largest reported anisotropy), and the relative orientation of the tensor principal axis systems. These data are interpreted in terms of structure and symmetry. Our results indicate that ionic bromide systems should be generally accessible to characterization by (79/81)Br SSNMR despite sizable quadrupolar interactions. The resolving capabilities of (79/81)Br SSNMR spectroscopy are illustrated, using samples which possess up to four magnetically inequivalent sites, and through a rare example of (79)Br magic-angle spinning NMR for a Br in a noncubic lattice. Bromine-79/81 SSNMR spectroscopy is demonstrated to be sensitive to the presence of hydrates (i.e., pseudopolymorphism), via drastic changes in C(Q) and delta(iso). The changes are diagnostic to an extent that the composition of the mixture CaBr(2).xH(2)O is determined for the first time. This technique should therefore be applicable to characterize other unknown mixtures or polymorphs. Important instances where (79)Br nuclear quadrupole resonance data were found to be deficient are noted and corrected. GIPAW DFT computations are shown to be generally in very good agreement with the experimental (79/81)Br SSNMR observations. Finally, it is demonstrated that the origin of the EFG at the Br nuclei cannot be described quantitatively using a point charge model, even after including Sternheimer antishielding effects. PMID:20085261

  11. Solid state NMR investigation of intact human bone quality: balancing issues and insight into the structure at the organic-mineral interface

    PubMed Central

    Nikel, Ondrej; Laurencin, Danielle; Bonhomme, Christian; Sroga, Gra?yna E.; Besdo, Silke; Lorenz, Anna; Vashishth, Deepak

    2012-01-01

    Age-related bone fragility fractures present a significant problem for public health. Measures of bone quality are increasingly recognized to complement the conventional bone mineral density (BMD) based assessment of fracture risk. The ability to probe and understand bone quality at the molecular level is desirable in order to unravel how the structure of organic matrix and its association with mineral contribute to the overall mechanical properties. The 13C{31P} REDOR MAS NMR (Rotational Echo Double Resonance Magic Angle Spinning Nuclear Magnetic Resonance) technique is uniquely suited for the study of the structure of the organic-mineral interface in bone. For the first time, we have applied it successfully to analyze the structure of intact (non-powdered) human cortical bone samples, from young healthy and old osteoporotic donors. Loading problems associated with the rapid rotation of intact bone were solved using a Finite Element Analysis (FEA) approach, and a method allowing osteoporotic samples to be balanced and spun reproducibly is described. REDOR NMR parameters were set to allow insight into the arrangement of the amino acids at the mineral interface to be accessed, and SVD (Singular Value Decomposition) was applied to enhance the signal to noise ratio and enable a better analysis of the data. From the REDOR data, it was found that carbon atoms belonging to citrate/glucosaminoglycans (GAGs) are closest to the mineral surface regardless of age or site. In contrast, the arrangement of the collagen backbone at the interface varied with site and age. The relative proximity of two of the main amino acids in bone matrix proteins, hydroxyproline and alanine, with respect to the mineral phase was analyzed in more detail, and discussed in view of glycation measurements which were carried out on the tissues. Overall, this work shows that the 13C{31P} REDOR NMR approach could be used as a complementary technique to assess a novel aspect of bone quality, the organic-mineral interface structure. PMID:22822414

  12. Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms

    NASA Astrophysics Data System (ADS)

    Key, Baris

    2012-02-01

    The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure with electrochemical performance. We apply a combination of local structure probes, in situ and ex situ 7Li nuclear magnetic resonance (NMR) studies, and pair distribution function (PDF) analysis of X-ray data to investigate the changes in short-range order that occur during the initial charge and discharge cycles. The distinct electrochemical profiles observed subsequent to the first discharge have been shown to be associated with the formation of distinct amorphous lithiated silicide structures. The first process seen on the second discharge is associated with the lithiation of the amorphous Si, forming small clusters. These clusters are broken in the second process to form isolated silicon anions. The (de)lithiation model helps explain the hysteresis and the steps in the electrochemical profile observed during the lithiation and delithiation of silicon. At deep discharge states a highly reactive lithium excess Li15Si4 phase is detected by in situ NMR which undergoes a self-discharge process in electrolyte.

  13. Determination of the tautomeric equilibria of pyridoyl benzoyl ?-diketones in the liquid and solid state through the use of deuterium isotope effects on (1)H and (13)C NMR chemical shifts and spin coupling constants.

    PubMed

    Hansen, Poul Erik; Borisov, Eugeny V; Lindon, John C

    2015-02-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on (1)H and (13)C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in the solution state the 2-bond and 3-bond J((1)H-(13)C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl derivatives are in the A-form. In the solid state all three compounds are on the B-form. The 4-pyridoyl derivative shows unusual deuterium isotope effects in the solid, which are ascribed to a change of the crystal structure of the deuteriated compound. PMID:24070650

  14. Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed 13C solid-state NMR spectroscopy.

    PubMed

    Naito, Akira; Kamihira, Miya; Inoue, Ryozo; Saitô, Hazime

    2004-02-01

    Fibril formation in human calcitonin (hCT) from aqueous solution at pH 4.1 was examined and compared with those at pH 3.3 and 7.5 corresponding to three different net charges by means of site-directed (13)C solid-state NMR spectroscopy. Notably, the observed (13)C chemical shifts and lineshapes of the (13)C CP/MAS spectra differed substantially among fibrils prepared at different pHs. It was found that antiparallel beta-sheet structures were formed at pH 7.5 and 4.1 in the central core regions. In the C-terminal region, random coils were formed at both pH 7.5 and 4.1, although the random coil region at pH 4.1 was larger than that at pH 7.5. Fibrillation kinetics analyzed by a two-step autocatalytic reaction mechanism showed that the rate constants k(1) and k(2) for nucleation and maturation reactions of the fibril formation, respectively, were separately determined and the values correlated well with the net positive charges of Lys(18) and His(20) rather than the existence of a negative charge of Asp(15). Further, an attempt was made to assess interatomic distances between amide nitrogen and carbonyl carbon of neighboring chains of (13)C, (15)N-labeled hCT and a model pentapeptide by (13)C REDOR measurements by taking into account its dipolar interaction analyzed by the 3 spin system proposed previously. A unique chain packing of the antiparallel beta-sheets was proposed as a dominant fibril structure, although the possibility of a contribution of chain packing consisting of sliding one or two residues perpendicular to the fibril direction cannot be ruled out. In addition, it appears that the phenyl rings of Phe(16) are aligned on the same side of the beta-sheet and make the beta-sheet stable by forming pi-pi interactions between the beta-strands. PMID:14745805

  15. Solid-state NMR study of the charge-transfer complex between ubiquinone-8 and disulfide bond generating membrane protein DsbB.

    PubMed

    Tang, Ming; Sperling, Lindsay J; Berthold, Deborah A; Nesbitt, Anna E; Gennis, Robert B; Rienstra, Chad M

    2011-03-30

    Ubiquinone (Coenzyme Q) plays an important role in the mitochondrial respiratory chain and also acts as an antioxidant in its reduced form, protecting cellular membranes from peroxidation. De novo disulfide bond generation in the E. coli periplasm involves a transient complex consisting of DsbA, DsbB, and ubiquinone (UQ). It is hypothesized that a charge-transfer complex intermediate is formed between the UQ ring and the DsbB-C44 thiolate during the reoxidation of DsbA, which gives a distinctive ~500 nm absorbance band. No enzymological precedent exists for an UQ-protein thiolate charge-transfer complex, and definitive evidence of this unique reaction pathway for DsbB has not been fully demonstrated. In order to study the UQ-8-DsbB complex in the presence of native lipids, we have prepared isotopically labeled samples of precipitated DsbB (WT and C41S) with endogenous UQ-8 and lipids, and we have applied advanced multidimensional solid-state NMR methods. Double-quantum filter and dipolar dephasing experiments facilitated assignments of UQ isoprenoid chain resonances not previously observed and headgroup sites important for the characterization of the UQ redox states: methyls (~20 ppm), methoxys (~60 ppm), olefin carbons (120-140 ppm), and carbonyls (150-160 ppm). Upon increasing the DsbB(C41S) pH from 5.5 to 8.0, we observed a 10.8 ppm upfield shift for the UQ C1 and C4 carbonyls indicating an increase of electron density on the carbonyls. This observation is consistent with the deprotonation of the DsbB-C44 thiolate at pH 8.0 and provides direct evidence of the charge-transfer complex formation. A similar trend was noted for the UQ chemical shifts of the DsbA(C33S)-DsbB(WT) heterodimer, confirming that the charge-transfer complex is unperturbed by the DsbB(C41S) mutant used to mimic the intermediate state of the disulfide bond generating reaction pathway. PMID:21375236

  16. On the Tuning of High-Resolution NMR Probes

    PubMed Central

    Pöschko, Maria Theresia; Schlagnitweit, Judith; Huber, Gaspard; Nausner, Martin; Horni?áková, Michaela; Desvaux, Hervé; Müller, Norbert

    2014-01-01

    Three optimum conditions for the tuning of NMR probes are compared: the conventional tuning optimum, which is based on radio-frequency pulse efficiency, the spin noise tuning optimum based on the line shape of the spin noise signal, and the newly introduced frequency shift tuning optimum, which minimizes the frequency pushing effect on strong signals. The latter results if the radiation damping feedback field is not in perfect quadrature to the precessing magnetization. According to the conventional RLC (resistor–inductor–capacitor) resonant circuit model, the optima should be identical, but significant deviations are found experimentally at low temperatures, in particular on cryogenically cooled probes. The existence of different optima with respect to frequency pushing and spin noise line shape has important consequences on the nonlinearity of spin dynamics at high polarization levels and the implementation of experiments on cold probes. PMID:25210000

  17. Probing organometallic reactions by time-resolved infrared spectroscopy in solution and in the solid state using quantum cascade lasers.

    PubMed

    Calladine, James A; Horvath, Raphael; Davies, Andrew J; Wriglesworth, Alisdair; Sun, Xue-Zhong; George, Michael W

    2015-05-01

    The photochemistry and photophysics of metal carbonyl compounds (W(CO)6, Cp*Rh(CO)2 (Cp* = ?(5)-C5Me5), and fac-[Re(CO)3(4,4'-bpy)2Br] [bpy = bipyridine]) have been examined on the nanosecond timescale using a time-resolved infrared spectrometer with an external cavity quantum cascade laser (QCL) as the infrared source. We show the photochemistry of W(CO)6 in alkane solution is easily monitored, and very sensitive measurements are possible with this approach, meaning it can monitor small transients with absorbance changes less than 10(-6) ?OD. The C-H activation of Cp*Rh(CO)(C6H12) to form Cp*Rh(CO)(C6H11)H occurs within the first few tens of nanoseconds following photolysis, and we demonstrate that kinetics obtained following deconvolution are in excellent agreement with those measured using an ultrafast laser-based spectrometer. We also show that the high flux and tunability of QCLs makes them suited for solid-state and time-resolved measurements. PMID:25811673

  18. Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazutoshi; Caporini, Marc A.; Im, Sangchoul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-12-01

    Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to study biomolecules like membrane proteins. Recent studies have successfully demonstrated the advantages of performing solid-state NMR experiments at very low and ultralow temperatures to enhance the sensitivity. However, the long spin-lattice relaxation time, T1, at very low temperatures is a major limitation. To overcome this difficulty, we demonstrate the use of a copper-chelated lipid for magic angle spinning solid-state NMR measurements on cytochrome-b5 reconstituted in multilamellar vesicles. Our results on multilamellar vesicles containing as small as 0.5 mol% of a copper-chelated lipid can significantly shorten T1 of protons, which can be used to considerably reduce the data collection time or to enhance the signal-to-noise ratio. We also monitored the effect of slow cooling on the resolution and sensitivity of 13C and 15N signals from the protein and 13C signals from lipids.

  19. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  20. Fusogenic Alzheimer's peptide fragment Abeta (29-42) in interaction with lipid bilayers: secondary structure, dynamics, and specific interaction with phosphatidyl ethanolamine polar heads as revealed by solid-state NMR.

    PubMed

    Ravault, Stéphanie; Soubias, Olivier; Saurel, Olivier; Thomas, Annick; Brasseur, Robert; Milon, Alain

    2005-05-01

    The interaction of the native Alzheimer's peptide C-terminal fragment Abeta (29-42), and two mutants (G33A and G37A) with neutral lipid bilayers made of POPC and POPE in a 9:1 molar ratio was investigated by solid-state NMR. This fragment and the lipid composition were selected because they represent the minimum requirement for the fusogenic activity of the Alzheimer's peptide. The chemical shifts of alanine methyl isotropic carbon were determined by MAS NMR, and they clearly demonstrated that the major form of the peptide equilibrated in membrane is not in a helical conformation. (2)H NMR, performed with acyl chain deuterated POPC, demonstrated that there is no perturbation of the acyl chain's dynamics and of the lipid phase transition temperature. (2)H NMR, performed with alanine methyl-deuterated peptide demonstrated that the peptide itself has a limited mobility below and above the lipid phase transition temperature (molecular order parameter equal to 0.94). MAS (31)P NMR revealed a specific interaction with POPE polar head as seen by the enhancement of POPE phosphorus nuclei T(2) relaxation. All these results are in favor of a beta-sheet oligomeric association of the peptide at the bilayer interface, preferentially recruiting phosphatidyl ethanolamine polar heads. PMID:15840826

  1. Probing Ground and Excited States of Phospholamban in Model and Native Lipid Membranes by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Gustavsson, Martin; Traaseth, Nathaniel J.; Veglia, Gianluigi

    2013-01-01

    In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments. Previously, we proposed that the conformational equilibria of PLN are central to SERCA regulation. Here, we show that these equilibria detected in micelles and bicelles are also present in native sarcoplasmic reticulum lipid membranes as probed by MAS solid-state NMR. Importantly, we found that the kinetics of conformational exchange and the extent of ground and excited states in detergent micelles and lipid bilayers are different, revealing a possible regulatory role of the membrane composition on the allosteric regulation of SERCA. Since the extent of excited states is directly correlated to SERCA inhibition, these findings open up the exciting possibility that calcium transport in the heart can be controlled by the lipid bilayer composition. PMID:21839724

  2. The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, December 1, 1992--February 28, 1993

    SciTech Connect

    Netzel, D.A.; Mitzel, J.

    1993-08-01

    One area for improvement in the economics of coal liquefaction is coal drying, particularly for the lower rank coals. however, there is considerable evidence to show that drying has a detrimental effect on the liquefaction behavior of coals. Regarding the liquefaction of coal, there does not appear to have been any systematic study of the methods of coal drying on coal structure and the role water plays in enhancing or lessening coal reactivity toward liquefaction. In part, this may have been the result of not having the techniques that are now available, such as solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of NMR examination of several coals dried by thermal, microwave, and chemical methods are given.

  3. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  4. Probing coiled-coil assembly by paramagnetic NMR spectroscopy.

    PubMed

    Zheng, TingTing; Boyle, Aimee; Robson Marsden, Hana; Valdink, Dayenne; Martelli, Giuliana; Raap, Jan; Kros, Alexander

    2015-01-28

    Here a new method to determine the oligomeric state and orientation of coiled-coil peptide motifs is described. Peptides K and E, which are designed to form a parallel heterodimeric complex in aqueous solution, were labeled with the aromatic amino acids tryptophan and tyrosine on the C-terminus respectively as 'fingerprint' residues. One of the peptides was also labeled with the paramagnetic probe MTSL. One dimensional proton NMR spectroscopy was used to study the peptide quaternary structure by monitoring the signal suppression of the aromatic labels due to proximity of the nitroxyl radical. 1D-NMR confirmed that the peptides K and E form a heterodimeric coiled coil with a parallel orientation. In addition, fluorescence emission quenching of the aromatic labels due to electron exchange with a nitroxyl radical confirmed the parallel coiled coil orientation. Thus, paramagnetic nitroxide and aromatic fluorophore labeling of peptides yields valuable information regarding the quaternary structure from 1D-NMR and steady-state fluorescence measurements. This convenient method is useful not only to investigate coiled coil assembly, but can also be applied to any defined supramolecular assembly. PMID:25428174

  5. Distinguishing tautomerism in the crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide using DFT-D calculations and {sup 13}C solid-state NMR

    SciTech Connect

    Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.; Van de Streek, Jacco

    2014-08-01

    The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ?). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an amine tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H?O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.

  6. Structural and dynamic aspects of hydrogen-bonded complexes and inclusion compounds containing alpha,omega-dicyanoalkanes and urea, investigated by solid-state 13C and 2H NMR techniques.

    PubMed

    Aliev, Abil E; Harris, Kenneth D M; Champkin, Philip H

    2005-12-15

    Solid-state 13C NMR and 2H NMR techniques have been used to investigate structural and dynamic properties of the 1,4-dicyanobutane/urea and 1,5-dicyanopentane/urea 1:1 hydrogen-bonded complexes and the 1,6-dicyanohexane/urea inclusion compound. The pure crystalline phase of urea has also been investigated. The 13C NMR studies have focused on 13C chemical shift anisotropy and second-order quadrupolar effects (arising from 13C-14N interaction) for the urea molecules and the cyano groups of the alpha,omega-dicyanoalkanes. Parameters describing these interactions are derived and are discussed in relation to the known structural properties of these materials. Comparison of 13C chemical shift anisotropies of the cyano carbons and rates of 13C dipolar dephasing suggest that 1,4-dicyanobutane and 1,5-dicyanopentane are effectively static, whereas 1,6-dicyanohexane has greater mobility. 2H NMR line shape analysis for the 1,4-dicyanobutane/urea-d4 and 1,5-dicyanopentane/urea-d4 complexes indicates that the only motion of the urea molecules that is effective on the 2H NMR time scale is a rapid libration about the C=O bond over an angular range of about 26 degrees . For the 1,6-dicyanohexane/urea-d4 inclusion compound, the 2H NMR line shape is consistent with a motion comprising 180 degrees jumps about the C=O bond at rates that are intermediate on the 2H NMR time scale. In addition, rapid libration about the C=O bond also occurs over an angular range of about 20 degrees . The dynamic properties of the urea molecules in these materials are compared with those of urea molecules in other crystalline environments. PMID:16375305

  7. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C?) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C?-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  8. Combined use of replica-exchange molecular dynamics and magic-angle-spinning solid-state NMR spectral simulations for determining the structure and orientation of membrane-bound peptide.

    PubMed

    Ikeda, Keisuke; Kameda, Tomoshi; Harada, Erisa; Akutsu, Hideo; Fujiwara, Toshimichi

    2011-07-28

    We report an approach to determining membrane peptides and membrane protein complex structures by magic-angle-spinning solid-state NMR and molecular dynamics simulation. First, an ensemble of low energy structures of mastoparan-X, a wasp venom peptide, in lipid bilayers was generated by replica exchange molecular dynamics (REMD) simulation with the implicit membrane/solvent model. Next, peptide structures compatible with experimental (13)C(?), C(?), and C' chemical shifts were selected from the ensemble. The (13)C(?) chemical shifts alone were sufficient for the selection with backbone rmsd's of ?0.8 Å from the experimentally determined structure. The dipolar couplings between the peptide protons and lipid (2)H/(31)P nuclei were obtained from the (13)C-observed (2)H/(31)P-selective (1)H-demagnetization experiments for selecting the backbone and side chain structures relative to the membrane. The simulated structure agreed with the experimental one in the depth and orientation. The REMD simulation can be used for supplementing the limited structural constraints obtainable from the solid-state NMR spectra. PMID:21668001

  9. 15N CSA tensors and 15N-1H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR

    NASA Astrophysics Data System (ADS)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static 15N NMR techniques for the determination of the 15N chemical shift anisotropy (CSA) tensor parameters and 15N-1H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone 15N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of ?-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the 15N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the 15N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the 15N-1H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.

  10. Tridentate Phosphine Linkers for Immobilized Catalysts: Development and Characterization of Immobilized Rhodium Complexes and Solid-State NMR Studies of Polymers 

    E-print Network

    Guenther, Johannes 1983-

    2012-08-16

    of performance polymers with solid2state NMR techniques. First a brief overview of solid2state NMR and its relevance to the various areas of chemistry covered in this thesis is given. Following the synthesis, immobilization, and characterization of tridentate...

  11. Reaction Mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 Systems for Reversible Hydrogen Storage. Part 2: Solid-State NMR Studies

    SciTech Connect

    Choi, Young Joon; Lu, Jun; Sohn, Hong Yong; Fang, Zhigang Zak; Kim, Chul; Bowman, Robert C.; Hwang, Son-Jong

    2011-09-01

    In Part 1, the promising hydrogen storage properties of the combined systems of Li3AlH6/LiBH4 and Al/LiBH4, exhibiting the favorable formation of AlB2 during dehydrogenation, were presented based on TGA and XRD analyses. The present Part 2 describes the characterization of the intermediate and final products of the dehydrogenation and rehydrogenation of the above systems by multinuclear solid state NMR characterization. This work has also verified that the presence of Al resulted in the re-formation of LiBH4 occurring at a much lower temperature and H2 pressure, under which conditions the dehydrogenation product from LiBH4 alone does not show any degree of rehydrogenation. NMR studies mainly identified various reaction intermediates for LiBH4 dehydrogenation/rehydrogenation reactions. Unlike the XRD studies, the AlB2 formation in particular could not be unambiguously confirmed by NMR. 27Al NMR showed that aluminum was mainly involved in various Li-Al alloy formations. The catalytic role of Al in the LiBH4 hydrogen storage reactivity could be achieved by a reversible cycle of Al + LiH ? LiAl + 1/2H2 reaction.

  12. Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: a combined solid-state NMR spectroscopy and DFT quantum chemical calculation study.

    PubMed

    Yang, Jun; Janik, Michael J; Ma, Ding; Zheng, Anmin; Zhang, Mingjin; Neurock, Matthew; Davis, Robert J; Ye, Chaohui; Deng, Feng

    2005-12-28

    Solid-state 13C NMR experiments and quantum chemical Density Functional Theory (DFT) calculations of acetone adsorption were used to study the location of protons in anhydrous 12-tungstophosphoric acid (HPW), the mobility of the isolated and hydrated acidic protons, and the acid strength heterogeneity of the anhydrous hydroxyl groups. This study presents the first direct NMR experimental evidence that there are two types of isolated protons with different acid strengths in the anhydrous Keggin HPW. Rotational Echo DOuble Resonance (REDOR) NMR experiments combined with quantum chemical DFT calculations demonstrated that acidic protons in anhydrous HPW are localized on both bridging (Oc) and terminal (Od) atoms of the Keggin unit. The CP/MAS NMR experiments revealed that the isolated acidic protons are immobile, but hydrated acidic protons are highly mobile at room temperature. The isotropic chemical shift of the adsorbed acetone suggested that the acid strength of the H(H2O)n+ species in partially hydrated HPW is comparable to that of a zeolite, while the acidity of an isolated proton is much stronger than that of a zeolite. Isolated protons on the bridging oxygen atoms of anhydrous HPW are nearly superacidic. PMID:16366582

  13. The influence of the stereochemistry of alanine residue on the solid state conformation and crystal packing of opioid peptides containing D-Ala or L-Ala in message domain--XRD and NMR study.

    PubMed

    Trzeciak-Karlikowska, Katarzyna; Bujacz, Anna; Ciesielski, W?odzimierz; Bujacz, Grzegorz D; Potrzebowski, Marek J

    2011-08-18

    In this work, an X-ray diffraction (XRD) and solid state NMR study of two tetrapeptides with different stereochemistry of alanine residue is presented using Tyr-(D-Ala)-Phe-Gly (1), an N-terminal sequence of opioid peptide dermorphin, and its biologically inactive analog Tyr-(L-Ala)-Phe-Gly (2). Single-crystal XRD proved that 1 crystallized under different conditions from exclusively one structure: a monoclinic crystal with P2(1) space group. In contrast, 2 very easily formed at least three crystallographic modifications, 2a (monoclinic P2(1)), 2b (orthorhombic P2(1)2(1)2) and 2c (tetragonal P4(1)2(1)2). Solid-state NMR spectroscopy was employed to investigate the structure and molecular dynamics of 1, 2a, and 2b. By employing different NMR experiments (dipolar dephasing and PILGRIM) and an analysis of the (13)C principal elements of the chemical shift tensor (CST), it was proven that the main skeleton of tetrapeptides is rigid, whereas significant differences in the molecular motion of the aromatic residues were observed. Comparing current data with those of previous studies (J. Phys. Chem. B2004, 108, 4535-4545 and Cryst. Growth Des. 2009, 9, 4050-4059), it can be assumed that an important preorganization mechanism anticipating the formation of peptide crystals containing D-Ala in sequence is the intramolecular CH-? interaction, which occurs for the amino acid with D stereochemistry. This effect may be responsible for the formation of only one crystallographic form of D-Ala peptides. PMID:21740057

  14. A general protocol for temperature calibration of MAS NMR probes at arbitrary spinning speeds.

    PubMed

    Guan, Xudong; Stark, Ruth E

    2010-01-01

    A protocol using (207)Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and FastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  15. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    PubMed Central

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  16. Nature of Hydration Water in (±)-Tris(ethylenediamine)cobalt(III) Chloride Hydrate, (±)-[Co(en)3]Cl3 · nH2O, as Studied by 1H, 2H, and 17O Solid State NMR

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Nakamura, Nobuo

    2000-02-01

    The static and dynamics properties of hydration water molecules in (±)-[Co(en)3]Cl3 were studied by means of 1H, 2H, and , 17O solid state NMR. By 'H pulsed field gradient (PFG) NMR the apparent diffusion coefficient of mobile water through a micropore along the crystalline unique c-axis was found to be 1.0 x 10-9 m2 s-1 . The 2H NMR spectrum at 141 K consists of two components, one being a Pake doublet corresponding to a quadrupole coupling constant (QCC) of (226 ± 2) kHz and an asymmetry parameter of the electric field gradient ? of 0.08 ± 0.01, and another being a Gaussian line with a linewidth of 3.5 kHz. The 17O NMR spectrum at 300 K also consists of a narrow Gaussian peak and a broad powder pattern with a second order quadrupole effect corresponding to QCC = (6.3 ± 0.5) MHz and ? = 0.55±0.02. The broad and narrow components are assigned to water molecules accommodated at general 12g positions and special 2a and 2b positions in the trigonal lattice with space group P1c1. From the ratio of the populations at these positions their potential energy difference was estimated to be between (2.7 ±0.1) and (3.5 ± 0.1) kJmol-1 . The 2H NMR spectrum at room temperature indicates a finite quadrupole interaction which is attributable to the rapid rotation of water molecule about the molecular C2-axis. When the water content exceeds 2.7, the QCC is reduced sharply to (5.0 ±0.1) kHz at 285 K, suggesting that there occurs rapid rotation of water and rapid exchange of 2H between nonequivalent positions.

  17. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  18. Solid-state {sup 27}Al and {sup 29}Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    SciTech Connect

    Pena, P.; Rivas Mercury, J.M.

    2008-08-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub y}(OH){sub 12-4y}-Al(OH){sub 3} mixtures, prepared by hydration of Ca{sub 3}Al{sub 2}O{sub 6} (C{sub 3}A), Ca{sub 12}Al{sub 14}O{sub 33} (C{sub 12}A{sub 7}) and CaAl{sub 2}O{sub 4} (CA) phases in the presence of silica fume, have been characterized by {sup 29}Si and {sup 27}Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca{sub 3}Al{sub 2}(OH){sub 12} and Al(OH){sub 3} phases were detected. From the quantitative analysis of {sup 27}Al NMR signals, the Al(OH){sub 3}/Ca{sub 3}Al{sub 2}(OH){sub 12} ratio was deduced. The incorporation of Si into the katoite structure, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x}, was followed by {sup 27}Al and {sup 29}Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of {sup 27}Al MAS-NMR components associated with Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The {sup 29}Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From {sup 29}Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl{sub 2}O{sub 4}-microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca{sub 3}Al{sub 2.0{+-}}{sub 0.2}(SiO{sub 4}){sub 0.9{+-}}{sub 0.2}(OH){sub 1.8} crystal surrounded by unreacted amorphous silica spheres.

  19. Probing the Molecular Architecture of Arabidopsis thaliana Secondary Cell Walls Using Two- and Three-Dimensional 13C Solid State Nuclear Magnetic Resonance Spectroscopy

    E-print Network

    Dupree, Ray; Simmons, Thomas J.; Mortimer, Jennifer C.; Patel, Dharmesh; Iuga, Dinu; Brown, Steven P.; Dupree, Paul

    2015-03-04

    from the model plant Arabidopsis thaliana were analyzed by a variety of 13C solid state magic angle spinning nuclear magnetic resonance methods, such as one-dimensional cross-polarization and direct polarization, two-dimensional refocused INADEQUATE...

  20. First-principles calculations of solid-state (17)O and (29)Si NMR spectra of Mg(2)SiO(4) polymorphs.

    PubMed

    Ashbrook, Sharon E; Le Pollès, Laurent; Pickard, Chris J; Berry, Andrew J; Wimperis, Stephen; Farnan, Ian

    2007-04-01

    The nuclear magnetic resonance (NMR) shielding and electric field gradient (EFG) tensors of three polymorphs of Mg(2)SiO(4), forsterite (alpha-Mg(2)SiO(4)), wadsleyite (beta-Mg(2)SiO(4)) and ringwoodite (gamma-Mg(2)SiO(4)), have been calculated using a density functional theory (DFT) approach with a planewave basis set and pseudopotential approximation. These Mg(2)SiO(4) polymorphs are the principal components of the Earth down to depths of 660 km and have been proposed as the hosts of water in the Earth's upper mantle and transition zone. A comparison of our calculations with single-crystal spectroscopic data in the literature for the alpha-polymorph, forsterite, shows that both the magnitude and orientation of the shielding and EFG tensors for O and Si can be obtained with sufficient accuracy to distinguish subtle differences in atomic positions between published structures. We compare calculated (17)O MAS NMR quadrupolar powder lineshapes directly with experimental lineshapes and show that we are able to reproduce them within the precision with which the NMR parameters may be determined from multi-parameter fitting. The relatively small amounts of sample available for the beta- and gamma-polymorphs, arising from the high pressures required for synthesis, has hindered the extraction of NMR parameters in previous work. The application of DFT calculations to these high-pressure polymorphs confirms previous spectral assignments, and provides deeper insight into the empirical correlations and observations reported in the literature. These first-principles methods are highly promising for the determination of local bonding in more complex materials, such as the hydrated forms of Mg(2)SiO(4), by aiding analysis of their multinuclear NMR spectra. PMID:17429552

  1. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  2. Nature of chemical and topological disorder in borogermanate glasses: insights from B-11 and O-17 solid-state NMR and quantum chemical calculations.

    PubMed

    Lee, Sung Keun; Kim, Hyun Na; Lee, Bum Han; Kim, Hyo-Im; Kim, Eun Jeong

    2010-01-14

    Knowledge of the extent of chemical and topological disorder in topological disordered oxide glasses and melts is essential for understanding the atomistic origins of their macroscopic properties. Here, we report the high-resolution B-11 and O-17 triple quantum magic angle spinning (3QMAS) NMR spectra for binary borogermanate glasses. The NMR results, together with quantum chemical calculations of cluster energy difference, allow us to estimate the extent of chemical disorder and topology variation with composition. The B-11 NMR result shows that the boroxol ring fraction decreases nonlinearly with increasing mole fraction of Ge and is smaller than that in binary borosilicate glasses, suggesting that the Ge/Si content influences the topological changes. Whereas oxygen clusters are not well resolved in O-17 NMR spectra, the Ge-O-Ge fraction apparently increases with increasing GeO(2) content. The estimated degree of framework disorder (Q) in borogermanate glasses is approximately 0.4, according to quantum chemical calculations based on density functional theory. This is halfway between chemical order (Q = 1) and a random distribution (Q = 0). In contrast, Q is approximately -0.6 for borosilicate glasses, indicating a moderate tendency toward complete phase separation (Q = -1). This result confirms that the degree of framework disorder shows a strong dependence on the type of framework cations (Si or Ge). The predicted configurational enthalpy of borogermanate glasses, explicitly considering both chemical and topological disorder, shows a negative deviation as predicted from the positive Q value. The results demonstrate that the macroscopic properties of topologically disordered noncrystalline solids can be established from the detailed quantification of topological and chemical disorder. PMID:19928789

  3. Solid-State 31P and 1H NMR Investigations of Amorphous and Crystalline Calcium Phosphates Grown Biomimetically From a Mesoporous Bioactive Glass

    PubMed Central

    2011-01-01

    By exploiting 1H and 31P magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy, we explore the proton and orthophosphate environments in biomimetic amorphous calcium phosphate (ACP) and hydroxy-apatite (HA), as grown in vitro at the surface of a 10CaO–85SiO2–5P2O5 mesoporous bioactive glass (MBG) in either a simulated body fluid or buffered water. Transmission electron microscopy confirmed the presence of a calcium phosphate layer comprising nanocrystalline HA. Two-dimensional 1H–31P heteronuclear correlation NMR established predominantly 1H2O?31PO43– and O1H?31PO43– contacts in the amorphous and crystalline component, respectively, of the MBG surface-layer; these two pairs exhibit distinctly different 1H?31P cross-polarization dynamics, revealing a twice as large squared effective 1H–31P dipolar coupling constant in ACP compared with HA. These respective observations are mirrored in synthetic (well-crystalline) HA, and the amorphous calcium orthophosphate (CaP) clusters that are present in the pristine MBG pore walls: besides highlighting very similar local 1H and 31P environments in synthetic and biomimetic HA, our findings evidence closely related NMR characteristics, and thereby similar local structures, of the CaP clusters in the pristine MBG relative to biomimetic ACP. PMID:22132242

  4. The mixed network former effect in glasses: solid state NMR and XPS structural studies of the glass system (Na2O)(x)(BPO4)(1-x).

    PubMed

    Rinke, Matthias T; Eckert, Hellmut

    2011-04-14

    The structural organization of sodium borophosphate glasses with composition (Na(2)O)(x)(BPO(4))(1-x) (0.25 ?x? 0.55) has been investigated by differential scanning calorimetry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), as well as single- and double resonance (11)B and (31)P magic-angle spinning (MAS) NMR. (11)B MAS-NMR data indicate the dominance of anionic four-coordinated boron units, and (31)P MAS NMR reveals the successive transformation of neutral P(3) into singly charged P(2) units and their further transformation into doubly charged P(1) units at high Na(2)O contents. The quantification of these units provides detailed insight into the competition of the network formers borate and phosphate for the network modifier oxide. At low modifier content (x < 0.35), the anionic species are almost exclusively borate (B(4)) units, whereas at higher sodium concentrations, large numbers of anionic phosphate (P(2) and P(1)) species are formed. O-1s XPS data provide a quantitative distinction between B-O-B, B-O-P, and P-O-P linkages as well as non-bridging oxygen atoms, and comparable numbers can be extracted from (11)B and (31)P MAS-NMR experiments. Both XPS as well as (31)P{(11)B} and (11)B{(31)P} rotational echo double resonance (REDOR) NMR results reveal strong interactions between the two network formers boron oxide and phosphorus oxide, resulting in a preferred formation of B-O-P linkages. For higher Na(2)O contents, however, the successive network modification diminishes this preference, resulting in close-to-statistical network connectivities. Compositional trends of T(g) in the Na(2)O-B(2)O(3)-P(2)O(5) glass forming system can be correlated with the overall network connectedness, expressed by the total number of bridging oxygen atoms per network former species. However, separate linear correlations are observed for different compositional lines, indicating also the relevance of the type of network former linkages present. PMID:21380468

  5. Metal speciation of phosphorus derived from solid state spectroscopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant improvements have been made in the last decade towards understanding metal species associated with manure P using XANES and solid-state 31P NMR techniques. Both solid-state techniques are particularly sensitive to inorganic forms of P associated with metals in manure samples. In unamen...

  6. A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme

    NASA Astrophysics Data System (ADS)

    Lv, Guohua; Faßhuber, Hannes Klaus; Loquet, Antoine; Demers, Jean-Philippe; Vijayan, Vinesh; Giller, Karin; Becker, Stefan; Lange, Adam

    2013-03-01

    The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-13C]Glucose ([2-13C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-13C]pyruvate produced mainly by glycolysis and [3-13C]/[1,3-13C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs 13C?-13C?2 and 13C?-13C?1 in Val, and 13C?-13C?2 and 13C?-13C?1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin.

  7. Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO(2-)(x)C(x)).

    PubMed

    Reyes-Garcia, Enrique A; Sun, Yanping; Reyes-Gil, Karla R; Raftery, Daniel

    2009-04-01

    Carbon-doped TiO(2) have received attention recently because of their potential for environmental photocatalysis and solar hydrogen conversion applications. Three different carbon-doped TiO(2) nanoparticle materials were synthesized via sol-gel and hydrothermal procedures, and analyzed by (13)C solid-state nuclear magnetic resonance (SSNMR) and other methods to characterize the environment of the doping species. UV/vis spectra and powder X-ray diffraction (XRD) patterns showed that the synthesized materials absorbed visible light and their crystal structures corresponded to anatase. (13)C SSNMR analyses of TiO(2-)(x)C(x) displayed signals corresponding to carbonate-type or sp(2)-type carbon species. Variable contact CP-MAS and dipolar dephasing analyses gave evidence for the presence and proximity of H atoms near these carbonate species. Electron paramagnetic resonance (EPR) spectroscopy showed that the thermally oxidized TiO(2-)(x)C(x) displayed a complex mixture of point defects, electron and hole trapping centers, all attributable to the incorporation of carbon, while the XPS data ruled out the presence of carbide species. PMID:19307109

  8. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  9. Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State NMR of Oriented Bicelles

    PubMed Central

    Wang, Tuo; Hong, Mei

    2015-01-01

    A wide variety of membrane proteins induce membrane curvature for function, thus it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state NMR methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static 31P NMR spectra of magnetically oriented DMPC/DHPC bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the peptide with the ability to generate a high-curvature phase. 2D 31P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. 31P- and 13C-detected 1H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the 31P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. Based on this resolution, 2D 1H-31P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not the DHPC 31P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the M2 amphipathic helix induces high membrane curvature and localizes the protein to this phase, in excellent agreement with the membrane-scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are generally applicable to curvature-inducing membrane proteins such as those involved in membrane trafficking, membrane fusion, and cell division. PMID:25774685

  10. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state NMR.

    PubMed

    Zhang, Rongchun; Yu, Shen; Chen, Shengli; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Li, Baohui; Ding, Datong

    2014-01-30

    Polyurethane material is widely utilized in industry and daily life due to its versatile chemistry and relatively easy handling. Here, we focused on a novel thermally reversible cross-linked polyurethane with comprehensive remarkable mechanical properties as reported in our recent work (Adv. Mater. 2013, 25, 4912). The microphase-separated structure and heterogeneous segmental dynamics were well revealed by T2 relaxometry experiments, which was also first utilized to in situ monitor the reversible cross-linking associated with Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions. On the basis of T2 relaxometry results, we determined the actual temperature of the (R)DA reaction as well as the corresponding activation energies of the motion of soft segments. Besides, the roles of the temperature and cross-linker contents on the microdomain structure and dynamics are discussed in detail. It is found that the microphase separation is enhanced by the increase of temperature as well as the incorporation of cross-linkers. Also, the polyurethane samples are still thermal-stable even at a high temperature beyond the disassociation of the cross-linkages. Furthermore, Baum-Pines and three-pulse multiple-quantum NMR experiments are utilized to investigate the heterogeneous structures and dynamics of the mobile and rigid segments, respectively. Both the results obtained from the T2 relaxometry and multiple-quantum NMR experiments are in good agreement with the macroscopic mechanical properties of the polyurethane. Finally, it is also well demonstrated that proton T2 relaxometry combined with multiple-quantum NMR is a powerful method to study the heterogeneous structures and dynamics of a multiphase polymer system. PMID:24400980

  11. Spectral editing in 13C solid-state NMR at high magnetic field using fast MAS and spin-echo dephasing.

    PubMed

    Mao, Kanmi; Kennedy, Gordon J; Althaus, Stacey M; Pruski, Marek

    2012-01-01

    A simple method is proposed for separating NMR resonances from protonated and non-protonated aromatic carbons in solids under fast magic angle spinning (MAS). The approach uses a MAS-synchronized spin-echo to exploit the differences in rotational recoupling of the dipolar interactions while fully refocusing the isotropic chemical shifts. This strategy extends the relevant time scale of spin evolution to milliseconds and circumvents the limitation of the traditional dipolar dephasing method, which in fast rotating solids is disrupted by rotational refocusing. The proposed approach can be used for quantitative measurement of carbon aromaticities in complex solids with poorly resolved spectra, as demonstrated for model compounds. PMID:22951436

  12. Solid state 31P MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials

    NASA Astrophysics Data System (ADS)

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-01

    A systematic study of composite powders of niobium oxide phosphate (NbOPO4) and phosphoric acid (H3PO4) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H3PO4 contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, 31P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H3PO4 takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO4 and H3PO4 has reacted to form niobium pyrophosphate (Nb2P4O15). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10-3 S/cm for a sample containing 74.2 M% of H3PO4. Lastly, it was shown that NbOPO4 has no significant conductivity of its own.

  13. A 13C solid-state NMR study of the structure and auto-oxidation process of natural and synthetic melanins.

    PubMed

    Hervé, M; Hirschinger, J; Granger, P; Gilard, P; Deflandre, A; Goetz, N

    1994-01-11

    This paper presents a 13C CP/MAS NMR study of the melanin pigments obtained through natural and synthetic origins: sepia-melanin from squid ink and three synthetic 5,6-dihydroxyindole-melanins prepared using different non-enzymatic oxidation pathways. The synthetic pigments can be distinguished from natural melanin by the absence of aliphatic carbons, thereby confirming the unreacted 3,4-dihydroxyphenylalanine and the proteinaceous origins of the aliphatic resonances in natural eumelanin. The spectra of selected non-protonated carbon resonances and those with only protonated carbon signals led to a quantitative analysis. An auto-oxidative experiment using a synthetic melanin, over a period of 130 h, has shown an unusually slow disappearance of hydrogen peroxide formed in situ. The 13C-NMR spectrum of the insoluble oxidized synthetic melanin compared to that before auto-oxidation clearly demonstrates that the oxidation process is associated with chemical changes within the pigment; i.e., carbonyl functional group formation and an increase of the non-protonated carbons fraction. PMID:8305471

  14. Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy

    SciTech Connect

    Guo, Zhiyong; Kobayashi, Takeshi; Wang, Lin-Lin; Goh, Tian Wei; Xiao, Chaoxian; Caporini, Marc A; Rosay, Melanie; Johnson, Duane D; Pruski, Marek; Huang, Wenyu

    2014-10-08

    The host–guest interaction between metal ions (Pt2+ and Cu2+) and a zirconium metal–organic framework (UiO-66-NH2) was explored using dynamic nuclear polarization-enhanced 15N{1H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt2+ coordinates with two NH2 groups from the MOF and two Cl? from the metal precursor, whereas Cu2+ do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt2+ prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.

  15. Protonation States of the Tryptophan Synthase Internal Aldimine Active Site from Solid-State NMR Spectroscopy: Direct Observation of the Protonated Schiff Base Linkage to Pyridoxal-5?-Phosphate

    PubMed Central

    2015-01-01

    The acid–base chemistry that drives catalysis in pyridoxal-5?-phosphate (PLP)-dependent enzymes has been the subject of intense interest and investigation since the initial identification of PLP’s role as a coenzyme in this extensive class of enzymes. It was first proposed over 50 years ago that the initial step in the catalytic cycle is facilitated by a protonated Schiff base form of the holoenzyme in which the linking lysine ?-imine nitrogen, which covalently binds the coenzyme, is protonated. Here we provide the first 15N NMR chemical shift measurements of such a Schiff base linkage in the resting holoenzyme form, the internal aldimine state of tryptophan synthase. Double-resonance experiments confirm the assignment of the Schiff base nitrogen, and additional 13C, 15N, and 31P chemical shift measurements of sites on the PLP coenzyme allow a detailed model of coenzyme protonation states to be established. PMID:25148001

  16. High-resolution solid-state NMR of anisotropically mobile molecules under very low-power (1)H decoupling and moderate magic-angle spinning.

    PubMed

    Doherty, Tim; Hong, Mei

    2009-08-01

    We show that for observing high-resolution heteronuclear NMR spectra of anisotropically mobile systems with order parameters less than 0.25, moderate magic-angle spinning (MAS) rates of approximately 11kHz combined with (1)H decoupling at 1-2kHz are sufficient. Broadband decoupling at this low (1)H nutation frequency is achieved by composite pulse sequences such as WALTZ-16. We demonstrate this moderate MAS low-power decoupling technique on hydrated POPC lipid membranes, and show that 1kHz (1)H decoupling yields spectra with the same resolution and sensitivity as spectra measured under 50kHz (1)H decoupling when the same acquisition times (approximately 50ms) are used, but the low-power decoupled spectra give higher resolution and sensitivity when longer acquisition times (>150ms) are used, which are not possible with high-power decoupling. The limits of validity of this approach are explored for a range of spinning rates and molecular mobilities using more rigid membrane systems such as POPC/cholesterol mixed bilayers. Finally, we show (15)N and (13)C spectra of a uniaxially diffusing membrane peptide assembly, the influenza A M2 transmembrane domain, under 11kHz MAS and 2kHz (1)H decoupling. The peptide (15)N and (13)C intensities at low-power decoupling are 70-80% of the high-power decoupled intensities. Therefore, it is possible to study anisotropically mobile lipids and membrane peptides using liquid-state NMR equipment, relatively large rotors, and moderate MAS frequencies. PMID:19501003

  17. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry.

    PubMed

    Papaioannou, A; Louis, M; Dhital, B; Ho, H P; Chang, E J; Boutis, G S

    2015-05-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning (13)C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the (13)C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported. PMID:25592991

  18. Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling.

    PubMed

    Pajchel, Lukasz; Kolodziejski, Waclaw

    2013-01-01

    A series of nanocrystalline calcium hydroxyapatites was prepared by dry milling and characterized using proton and (31)P MAS NMR, TEM, and TGA methods. The samples contained stubby rod-shaped crystals, which length and width varied in the 130-30 and 95-20 nm ranges, respectively. It was confirmed that concentration of structural hydroxyl groups in nanocrystalline apatites decreases with the decreasing crystal size. In the series of the studied apatites, the decrease was from 86 to ca. 50 % in reference to stoichiometric apatite. Water was found in the surface hydrated layer and in the c-axis channels, in which compartments existed as adsorbed and structural, respectively. Molecules of the adsorbed water were capable of moving from the crystal surface into the lattice c-axis channels of apatite. This process introduced considerable structural disorder within and around those channels and reduced the content of the structural hydroxyl groups, particularly in the region underneath the apatite crystal surface. PMID:23990754

  19. Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies.

    PubMed Central

    Tsvetkova, N M; Phillips, B L; Crowe, L M; Crowe, J H; Risbud, S H

    1998-01-01

    The effect of the carbohydrates trehalose, glucose, and hydroxyethyl starch (HES) on the motional properties of the phosphate headgroup of freeze-dried dipalmitoylphosphatidylcholine (DPPC) liposomes was studied by means of 31P NMR, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The results show that trehalose, which is a strong glass former (Tg = 115 degreesC), elevates the onset of the lipid headgroup rotations and preserves some rotational mobility of the phosphate headgroups after cooling from the liquid-crystalline state. Glucose (Tg = 30 degreesC), a very effective depressant of the phase transition temperature of freeze-dried DPPC, markedly elevates the initiation of the temperature of headgroup rotations. On the other hand, the monosaccharide does not preserve the headgroup disordering when cooled from the liquid-crystalline state. These effects are consistent with formation of hydrogen bonds between the OH groups of the sugar and the polar headgroups of DPPC. They show, however, that hydrogen bonding is not sufficient for preservation of the dynamic properties of freeze-dried DPPC. HES, although a very good glass former (Tg > 110 degreesC), does not depress the phase transition temperature and affects only slightly the rotational properties of freeze-dried DPPC. This lack of effect of HES is associated with the absence of direct interactions with the lipid phosphates, as evidenced by the FTIR results. These data show that vitrification of the additive is not sufficient to affect the dynamic properties of dried DPPC. PMID:9826615

  20. Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination.

    PubMed

    Schmidt-Rohr, K; Fritzsching, K J; Liao, S Y; Hong, Mei

    2012-12-01

    Several techniques for spectral editing of 2D (13)C-(13)C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N-CO peaks through (13)C-(15)N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH(2)) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other ?-pulse is shifted from the center of a rotor period t(r) by about 0.15 t(r). This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled (13)C-(1)H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via (13)C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin. PMID:23053913

  1. Synthesis, solid-state NMR, and X-ray powder diffraction characterization of group 12 coordination polymers, including the first example of a C-mercuriated pyrazole.

    PubMed

    Masciocchi, Norberto; Galli, Simona; Alberti, Enrica; Sironi, Angelo; Di Nicola, Corrado; Pettinari, Claudio; Pandolfo, Luciano

    2006-10-30

    Cadmium and mercury acetates have been reacted with pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz), affording distinct mixed-ligand species, selectively prepared upon slightly modifying the reaction conditions. Two polymorphs of [{Cd(mu-ac)2(Hpz)2}n], as well as the [{Cd(mu-ac)2(Hdmpz)2}n] species (Hac = acetic acid), were obtained by solution chemistry, while the two-dimensional [{Cd3(mu3-ac)4(mu-pz)2(Hpz)2}n] and [{Cd(mu-ac)(mu-pz)}n] polymers were prepared upon controlled thermal treatment of one of the [{Cd(mu-ac)2(Hpz)2}n] forms. Two mercury derivatives, [{Hg3(mu-ac)3(mu-pz)3}n] and [{Hg(ac)(mu-dmpz)}n], were also prepared, the latter containing one-dimensional chains of Hg(II) ions bridged by C-mercuriated Hdmpz ligands. All their crystal structures (but one) were determined by powder diffraction methods using conventional X-ray laboratory equipment, supported by 13C CPMAS NMR measurements. The latter method helped in assigning a C-metalated nature to an amorphous material of [Hg(ac)(pz)] formula, obtained by employing EtOH as a solvent. A few other Hdmpz-containing cadmium acetates were also prepared, but their polyphasic nature, evidenced by diffraction methods, hampered their complete structural characterization. PMID:17054367

  2. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  3. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton (1H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong 1H/1H dipolar interaction makes it difficult to determine small size 1H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for 1H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate ?-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple 1H CSA in the indirect dimension of a 2D 1H/1H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D 1H/1H correlation spectrum without decoupling 1H/1H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable 1H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions.

  4. Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Mysen, Bjorn O.; Cody, George D.

    2015-12-01

    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the fragmentation process that occurs during explosive eruptions.

  5. Composite-180° Pulse-Based Symmetry Sequences to Recouple Proton Chemical Shift Anisotropy Tensors under Ultrafast MAS Solid-State NMR Spectroscopy

    PubMed Central

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton (1H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong 1H/1H dipolar interaction makes it difficult to determine small size 1H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for 1H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate ?-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple 1H CSA in the indirect dimension of a 2D 1H/1H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D 1H/1H correlation spectrum without decoupling 1H/1H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (< 200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable 1H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846

  6. Combination of 15 N Reverse Labeling and Afterglow Spectroscopy for Assigning Membrane Protein Spectra by Magic-Angle-Spinning Solid-State NMR: Application to the Multidrug Resistance Protein EmrE

    PubMed Central

    Banigan, James R.; Gayen, Anindita; Traaseth, Nathaniel J.

    2013-01-01

    Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of 15N reverse labeling and afterglow spectroscopic techniques that dramatically improved the ability to resolve peaks in a crowded spectrum. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the 15N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments. PMID:23539118

  7. Solid State Lighting

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  8. Solid-State Devices.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  9. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S?cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation of samples that are free of any amorphous regions that block fast ion transport. PMID:26192263

  10. Model-free estimation of the effective correlation time for C-H bond reorientation in amphiphilic bilayers: 1H-13C solid-state NMR and MD simulations

    NASA Astrophysics Data System (ADS)

    Ferreira, Tiago Mendes; Ollila, O. H. Samuli; Pigliapochi, Roberta; Dabkowska, Aleksandra P.; Topgaard, Daniel

    2015-01-01

    Molecular dynamics (MD) simulations give atomically detailed information on structure and dynamics in amphiphilic bilayer systems on timescales up to about 1 ?s. The reorientational dynamics of the C-H bonds is conventionally verified by measurements of 13C or 2H nuclear magnetic resonance (NMR) longitudinal relaxation rates R1, which are more sensitive to motional processes with correlation times close to the inverse Larmor frequency, typically around 1-10 ns on standard NMR instrumentation, and are thus less sensitive to the 10-1000 ns timescale motion that can be observed in the MD simulations. We propose an experimental procedure for atomically resolved model-free estimation of the C-H bond effective reorientational correlation time ?e, which includes contributions from the entire range of all-atom MD timescales and that can be calculated directly from the MD trajectories. The approach is based on measurements of 13C R1 and R1? relaxation rates, as well as 1H-13C dipolar couplings, and is applicable to anisotropic liquid crystalline lipid or surfactant systems using a conventional solid-state NMR spectrometer and samples with natural isotopic composition. The procedure is demonstrated on a fully hydrated lamellar phase of 1-palmitoyl-2-oleoyl-phosphatidylcholine, yielding values of ?e from 0.1 ns for the methyl groups in the choline moiety and at the end of the acyl chains to 3 ns for the g1 methylene group of the glycerol backbone. MD simulations performed with a widely used united-atom force-field reproduce the ?e-profile of the major part of the acyl chains but underestimate the dynamics of the glycerol backbone and adjacent molecular segments. The measurement of experimental ?e-profiles can be used to study subtle effects on C-H bond reorientational motions in anisotropic liquid crystals, as well as to validate the C-H bond reorientation dynamics predicted in MD simulations of amphiphilic bilayers such as lipid membranes.

  11. Neutron diffraction and multinuclear solid state NMR investigation into the structures of oxide ion conducting La9.6Si6O26.4 and La8Sr2Si6O26, and their hydrated phases.

    PubMed

    Corrie, Ben J; Shin, J Felix; Hull, Steve; Knight, Kevin S; Vlachou, Maria C; Hanna, John V; Slater, Peter R

    2015-12-14

    Apatite silicates are attracting significant interest as potential SOFC electrolyte materials. They are non-conventional oxide ion conductors in the sense that oxide ion interstitials, rather than vacancies, are the key defects. In this work we compare the structures of La9.6Si6O26.4 and La8Sr2Si6O26, both before and after hydration in order to gather information about the location of the interstitial oxide ion site. Neutron diffraction structural studies suggest that in the as-prepared La8Sr2Si6O26 and hydrated La8Sr2Si6O26, the interstitial oxide ion sites are close to the apatite channel centre. For La9.6Si6O26.4, a similar site close to the channel centre is observed, but on hydration of this particular sample, the interstitial site is shown to be significantly displaced away from the channel centre towards the SiO4 units. This can be explained by the need for additional displacement from the channel centre to accommodate the large amount of interstitial anions in this hydrated phase. The solid state (29)Si MAS NMR spectra are shown to be very sensitive to the different speciation exhibited by the La8Sr2Si6O26 and La9.6Si6O26.4 systems, with the former being dominated by regular SiO4 framework species and the latter being dominated by interruptions to this network caused by cation vacancies and interstitials. The corresponding (17)O MAS NMR study identifies a strong signal from the O atoms of the SiO4 groups, thus demonstrating that all of the O species in these systems are exchangeable O under heterogeneous gas phase conditions. In addition, interstitial O species attributed to pendant OH linkages on the Si positions are clearly identified and resolved, and these are removed on dehydration. This observation and assignment is corroborated by corresponding (1)H MAS NMR measurements. Overall the neutron diffraction work indicates that the interstitial site location in these apatite silicates depends on the anion content with progressive displacement towards the SiO4 tetrahedra on increasing anion content, while the observation of exchangeable O on the SiO4 groups is consistent with prior modelling predictions as to the importance on the silicate units in the conduction process. PMID:26575496

  12. NMR probe of metallic states in nanoscale topological insulators.

    PubMed

    Koumoulis, Dimitrios; Chasapis, Thomas C; Taylor, Robert E; Lake, Michael P; King, Danny; Jarenwattananon, Nanette N; Fiete, Gregory A; Kanatzidis, Mercouri G; Bouchard, Louis-S

    2013-01-11

    A 125Te NMR study of bismuth telluride nanoparticles as a function of particle size revealed that the spin-lattice relaxation is enhanced below 33 nm, accompanied by a transition of NMR spectra from the single to the bimodal regime. The satellite peak features a negative Knight shift and higher relaxivity, consistent with core polarization from p-band carriers. Whereas nanocrystals follow a Korringa law in the range 140-420 K, micrometer particles do so only below 200 K. The results reveal increased metallicity of these nanoscale topological insulators in the limit of higher surface-to-volume ratios. PMID:23383927

  13. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  14. New Solenoidal Microcoil NMR Probe Using Zero-Susceptibility Wire

    PubMed Central

    Kc, Ravi; Henry, Ian D; Park, Gregory H.J.; Aghdasi, Al; Raftery, Daniel

    2010-01-01

    We present the construction and performance of a 20-?L active volume probe that utilizes zero-susceptibility wire for the detection transceiver coil and a 3.5 mm outer diameter thin-wall bubble flow cell to contain the sample. The probe shows good rf homogeneity, resolution, line shape and sensitivity. The sensitivity and resolution of the 20-?L probe was compared to those for several other coil configurations, including smaller detection volumes, a thin wire copper coil immersed in susceptibility matching perfluorocarbon FC-43 (fluorinert) fluid, and a standard 5 mm probe. In particular, the 1H mass sensitivity, Sm (SNR per micromole), was 3–4 fold higher than that for the standard 5 mm probe. Finally, the use of the zero-susceptibility wire in smaller volume probes is discussed along with potential future improvements and applications. PMID:20182555

  15. Solid State Lighting Program (Falcon)

    SciTech Connect

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.

  16. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    P