Science.gov

Sample records for solid-state nmr probe

  1. Probes for High Field Solid-state NMR of Lossy Biological Samples

    PubMed Central

    Grant, Christopher V.; Wu, Chin H.; Opella, Stanley J.

    2010-01-01

    In solid-state NMR exphydrated samples biopolymers are susceptible to radio-frequency heating and have a significant impact on probe tuning frequency and performance parameters such as sensitivity. These considerations are increasingly important as magnetic field strengths increase with improved magnet technology. Recent developments in the design, construction, and performance of probes for solid-state NMR experiments on stationary lossy biological samples at high magnetic fields are reviewed. PMID:20435493

  2. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gorkov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as Low-E, was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  3. A 1H/ 19F minicoil NMR probe for solid-state NMR: Application to 5-fluoroindoles

    NASA Astrophysics Data System (ADS)

    Graether, Steffen P.; DeVries, Jeffrey S.; McDonald, Robert; Rakovszky, Melissa L.; Sykes, Brian D.

    2006-01-01

    We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/ 19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/ 19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F.

  4. A 1H/19F minicoil NMR probe for solid-state NMR: application to 5-fluoroindoles.

    PubMed

    Graether, Steffen P; DeVries, Jeffrey S; McDonald, Robert; Rakovszky, Melissa L; Sykes, Brian D

    2006-01-01

    We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F. PMID:16198131

  5. 15N Solid-State NMR as a Probe of Flavin H-bonding

    PubMed Central

    Cui, Dongtao; Koder, Ronald L.; Dutton, P. Leslie; Miller, Anne-Frances

    2011-01-01

    Flavins mediate a wide variety of different chemical reactions in biology. To learn how one cofactor can be made to execute different reactions in different enzymes, we are developing solid-state NMR (SSNMR) to probe the flavin electronic structure, via the 15N chemical shift tensor principal values (?ii). We find that SSNMR has superior responsiveness to H-bonds, compared to solution NMR. H-bonding to a model of the flavodoxin active site produced an increase of 10 ppm in the ?11 of N5 although none of the H-bonds directly engage N5, and solution NMR detected only a 4 ppm increase in the isotropic chemical shift (?iso). Moreover SSNMR responded differently to different H-bonding environments as H-bonding with water caused ?11 to decrease by 6 ppm whereas ?iso increased by less than 1 ppm. Our density functional theoretical (DFT) calculations reproduce the observations, validating the use of computed electronic structures to understand how H-bonds modulate the flavins reactivity. PMID:21619002

  6. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities.

    PubMed

    Kaur, Hundeep; Lakatos, Andrea; Spadaccini, Roberta; Vogel, Ramona; Hoffmann, Christian; Becker-Baldus, Johanna; Ouari, Olivier; Tordo, Paul; Mchaourab, Hassane; Glaubitz, Clemens

    2015-09-01

    ATP binding cassette (ABC) transporters form a superfamily of integral membrane proteins involved in translocation of substrates across the membrane driven by ATP hydrolysis. Despite available crystal structures and extensive biochemical data, many open questions regarding their transport mechanisms remain. Therefore, there is a need to explore spectroscopic techniques such as solid state NMR in order to bridge the gap between structural and mechanistic data. In this study, we investigate the feasibility of using Escherichia coli MsbA as a model ABC transporter for solid state NMR studies. We show that optimised solubilisation and reconstitution procedures enable preparing stable and homogenous protein samples. Depending on the duration of solubilisation, MsbA can be obtained in either an apo- or in a native lipid A bound form. Building onto these optimisations, the first promising MAS-NMR spectra with narrow lines have been recorded. However, further sensitivity improvements are required so that complex NMR experiments can be recorded within a reasonable amount of time. We therefore demonstrate the usability of paramagnetic doping for rapid data acquisition and explore dynamic nuclear polarisation as a method for general signal enhancement. Our results demonstrate that solid state NMR provides an opportunity to address important biological questions related to complex mechanisms of ABC transporters. PMID:25849794

  7. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa (Naperville, IL); Dieckman, Stephen L. (Elmhurst, IL); Ellingson, William A. (Naperville, IL)

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  8. Solid-state NMR imaging system

    SciTech Connect

    Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

    1990-01-01

    An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  9. Solid-state STRAFI NMR probe for material imaging of quadrupolar nuclei.

    PubMed

    Tang, Joel A; Zhong, Guiming; Dugar, Sneha; Kitchen, Jason A; Yang, Yong; Fu, Riqiang

    2012-12-01

    Stray field imaging (STRAFI) has provided an alternative imaging method to study solid materials that are typically difficult to obtain using conventional MRI methods. For small volume samples, image resolution is a challenge since extremely strong gradients are required to examine narrow slices. Here we present a STRAFI probe for imaging materials with quadrupolar nuclei. Experiments were performed on a 19.6 T magnet which has a fringe field gradient strength of 72 T/m, nearly 50 times stronger than commercial microimagers. We demonstrate the ability to acquire (7)Li 1D profiles of liquid and solid state lithium phantoms with clearly resolved features in the micrometer scale and as a practical example a Li ion battery electrode material is also examined. PMID:23151490

  10. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.

    PubMed

    Zheng, Anmin; Huang, Shing-Jong; Liu, Shang-Bin; Deng, Feng

    2011-09-01

    A brief review is presented on acidity characterization of solid acid catalysts by means of solid-state phosphor-31 magic-angle-spinning nuclear magnetic resonance ((31)P MAS NMR) spectroscopy using phosphor-containing molecules as probes. It is emphasized that such a simple approach using (31)P MAS NMR of adsorbed phosphorous probe molecules, namely trimethylphosphine (TMP) and trialkylphosphine oxides (R(3)PO), represents a unique technique in providing detailed qualitative and quantitative features, viz. type, strength, distribution, and concentration of acid sites in solid acid catalysts. In particular, it will be shown that when applied with a proper choice of probe molecules with varied sizes and results obtained from elemental analysis, the amounts and locations (intracrystalline vs. extracrystalline) of different types (Brnsted vs. Lewis) of acid sites may be determined. In addition, by incorporating the NMR results with that obtained from theoretical density functional theory (DFT) calculations, correlations between the (31)P chemical shifts (?(31)P) and acidic strengths of Brnsted and Lewis acid sites may also be derived, facilitating a suitable acidity scale for solid acid catalysts. PMID:21785784

  11. Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR

    PubMed Central

    Williams, Jonathan K.; Hong, Mei

    2014-01-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane peptide of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502

  12. Probing membrane protein structure using water polarization transfer solid-state NMR

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan K.; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins.

  13. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    SciTech Connect

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni; Sharp, Janelle; Xu, Wei; Lipton, Andrew S.; Hoatson, Gina; Vold, Robert L.

    2015-11-03

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 29880 K temperature range. We utilized static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non- exponential at all temperatures with the extent of non-exponentiality increasing from higher to lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. 2013, 117, 61296137), suggests that the hydrophobic core undergoes concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in the onset of the concerted fluctuations of the core and highlights aromatic residues as markers of the protein dynamical transitions.

  14. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.

    2015-04-01

    Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H π pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 - e-γτ) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell membrane extracts and use of lower temperatures and dynamic nuclear polarization to reduce data acquisition times.

  15. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-01

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry. PMID:23301555

  16. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  17. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  18. Probing physical and chemical changes in cortical bone due to osteoporosis and type 2 diabetes by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua; Taylor, Amanda; Rendina, Beth; Smith, Brenda; Department of Physics Collaboration; Department of Nutritional Sciences Collaboration

    2013-03-01

    Approximately 1.5 million fractures occur each year in the U.S. due to osteoporosis, which is characterized by decreased bone mineral density and deterioration of bone micro-architecture. On the other hand, type 2 diabetes also significantly increases fracture risks, despite having a normal or even higher bone mineral density. Solid-state NMR has been applied to bone tissues from normal and disease-inflicted mouse models to study structural and chemical dynamics as the disease progresses. Proton relaxation experiments were performed to measure water populations in the bone matrix and pores. Collagen-bound water has strong influence on bone resilience, while water content in the pores reveals amount and size of pores from micro- to millimeter range. Other biochemical and atomic-scale structural alterations in the mineral and organic phases and their interface were investigated by proton, phosphorus, and carbon NMR spectroscopy. Experiments were designed to individually detect different types of phosphorus environments: near the mineral surface, similar to hydroxyapatite, and deficient of hydrogens due to substitution of the hydroxyl group by other ions. A new method was also developed for accurate quantification of each phosphorus species. The authors appreciate financial support for this project from the College of Human Sciences and the College of Arts and Sciences, Oklahoma State University.

  19. Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state NMR spectroscopy.

    PubMed

    Huster, Daniel; Yao, Xiaolan; Hong, Mei

    2002-02-01

    We describe a two-dimensional solid-state NMR technique to investigate membrane protein topology under magic-angle spinning conditions. The experiment detects the rate of (1)H spin diffusion from the mobile lipids to the rigid protein. While spin diffusion within the rigid protein is fast, magnetization transfer in the mobile lipids is an inefficient and slow process. Qualitative analysis of (1)H spin-diffusion build-up curves from the lipid chain-end methyl groups to the protein allows the identification of membrane-embedded domains in the protein. Numerical simulations of spin-diffusion build-up curves yield the approximate insertion depth of protein segments in the membrane. The experiment is demonstrated on the selectively (13)C labeled colicin Ia channel domain, known to have a membrane-embedded domain, and on DNA/cationic lipid complexes where the DNA rods are bound to the membrane surface. The experiment is designed for X-nucleus detection, which could be (13)C or (15)N in the protein and (31)P for the DNA. Finally, we show that a qualitative distinction between membrane proteins with and without a membrane-embedded domain can be made even by using an unlabeled protein, by detection of lipid signals. This spin-diffusion experiment is simple to perform and requires no oriented bilayer preparations and only standard NMR hardware. PMID:11817963

  20. Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR.

    PubMed

    Good, Daryl B; Wang, Shenlin; Ward, Meaghan E; Struppe, Jochem; Brown, Leonid S; Lewandowski, Józef R; Ladizhansky, Vladimir

    2014-02-19

    The ability to detect and characterize molecular motions represents one of the unique strengths of nuclear magnetic resonance (NMR) spectroscopy. In this study, we report solid-state NMR site-specific measurements of the dipolar order parameters and (15)N rotating frame spin-lattice (R1ρ) relaxation rates in a seven transmembrane helical protein Anabaena Sensory Rhodopsin reconstituted in lipids. The magnitudes of the observed order parameters indicate that both the well-defined transmembrane regions and the less structured intramembrane loops undergo restricted submicrosecond time scale motions. In contrast, the R1ρ rates, which were measured under fast magic angle spinning conditions, vary by an order of magnitude between the TM and exposed regions and suggest the presence of intermediate time scale motions. Using a simple model, which assumes a single exponential autocorrelation function, we estimated the time scales of dominant stochastic motions to be on the order of low tens of nanoseconds for most residues within the TM helices and tens to hundreds of nanoseconds for the extracellular B-C and F-G loops. These relatively slow time scales could be attributed to collective anisotropic motions. We used the 3D Gaussian axial fluctuations model to estimate amplitudes, directions, and time scales of overall motions for helices and the extracellular B-C and F-G loops. Within this model, the TM helices A,B,C,D,E,F undergo rigid body motions on a time scale of tens of nanoseconds, while the time scale for the seventh helix G approaches 100 ns. Similar time scales of roughly 100-200 ns are estimated for the B-C and F-G loops. PMID:24467417

  1. Solid-State NMR for Bacterial Biofilms

    PubMed Central

    Reichhardt, Courtney; Cegelski, Lynette

    2014-01-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state NMR is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an E. coli biofilm and transform our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area. PMID:24976646

  2. Solid-State NMR of PEGylated Proteins.

    PubMed

    Ravera, Enrico; Ciambellotti, Silvia; Cerofolini, Linda; Martelli, Tommaso; Kozyreva, Tatiana; Bernacchioni, Caterina; Giuntini, Stefano; Fragai, Marco; Turano, Paola; Luchinat, Claudio

    2016-02-01

    PEGylated proteins are widely used in biomedicine but, in spite of their importance, no atomic-level information is available since they are generally resistant to structural characterization approaches. PEGylated proteins are shown here to yield highly resolved solid-state NMR spectra, which allows assessment of the structural integrity of proteins when PEGylated for therapeutic or diagnostic use. PMID:26756539

  3. Probing the Transmembrane Structure and Dynamics of Microsomal NADPH-cytochrome P450 oxidoreductase by Solid-State NMR

    PubMed Central

    Huang, Rui; Yamamoto, Kazutoshi; Zhang, Meng; Popovych, Nataliya; Hung, Ivan; Im, Sang-Choul; Gan, Zhehong; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-01-01

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is an essential redox partner of the cytochrome P450 (cyt P450) superfamily of metabolic enzymes. In the endoplasmic reticulum of liver cells, such enzymes metabolize ∼75% of the pharmaceuticals in use today. It is known that the transmembrane domain of CYPOR plays a crucial role in aiding the formation of a complex between CYPOR and cyt P450. Here we present the transmembrane structure, topology, and dynamics of the FMN binding domain of CYPOR in a native membrane-like environment. Our solid-state NMR results reveal that the N-terminal transmembrane domain of CYPOR adopts an α-helical conformation in the lipid membrane environment. Most notably, we also show that the transmembrane helix is tilted ∼13° from the lipid bilayer normal, and exhibits motions on a submillisecond timescale including rotational diffusion of the whole helix and fluctuation of the helical director axis. The approaches and the information reported in this study would enable further investigations on the structure and dynamics of the full-length NADPH-cytochrome P450 oxidoreductase and its interaction with other membrane proteins in a membrane environment. PMID:24853741

  4. Mefenamic acid anti-inflammatory drug: probing its polymorphs by vibrational (IR and Raman) and solid-state NMR spectroscopies.

    PubMed

    Cunha, Vanessa R R; Izumi, Celly M S; Petersen, Philippe A D; Magalhes, Alviclr; Temperini, Marcia L A; Petrilli, Helena M; Constantino, Vera R L

    2014-04-24

    This work deals with the spectroscopic (supported by quantum chemistry calculations), structural, and morphological characterization of mefenamic acid (2-[(2,3-(dimethylphenyl)amino] benzoic acid) polymorphs, known as forms I and II. Polymorph I was obtained by recrystallization in ethanol, while form II was reached by heating form I up to 175 C, to promote the solid phase transition. Experimental and theoretical vibrational band assignments were performed considering the presence of centrosymmetric dimers. Besides band shifts in the 3345-3310 cm(-1) range, important vibrational modes to distinguish the polymorphs are related to out-of-phase and in-phase N-H bending at 1582 (Raman)/1577 (IR) cm(-1) and 1575 (Raman)/1568 (IR) cm(-1) for forms I and II, respectively. In IR spectra, bands assigned to N-H bending out of plane are observed at 626 and 575 cm(-1) for polymorphs I and II, respectively. Solid-state (13)C NMR spectra pointed out distinct chemical shifts for the dimethylphenyl group: 135.8 to 127.6 ppm (carbon bonded to N) and 139.4 to 143.3 ppm (carbon bonded to methyl group) for forms I and II, respectively. PMID:24654805

  5. A strip-shield improves the efficiency of a solenoid coil in probes for high field solid-state NMR of lossy biological samples

    PubMed Central

    Wu, Chin H.; Grant, Christopher V.; Cook, Gabriel A.; Park, Sang Ho; Opella, Stanley J.

    2009-01-01

    A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800 MHz 1H/15N and 1H/13C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers. PMID:19559634

  6. Effect of Ancillary Ligand on Electronic Structure as Probed by (51)V Solid-State NMR Spectroscopy for Vanadium-o-Dioxolene Complexes.

    PubMed

    Goncharova-Zapata, Olga; Chatterjee, Pabitra B; Hou, Guangjin; Quinn, Laurence L; Li, Mingyue; Yehl, Jenna; Crans, Debbie C; Polenova, Tatyana

    2013-11-21

    A series of vanadium(V) complexes with o-dioxolene (catecholato) ligands and an ancillary ligand, (N-(salicylideneaminato)ethylenediamine) (hensal), were investigated using (51)V solid-state magic angle spinning NMR spectroscopy ((51)V MAS NMR) to assess the local environment of the vanadium(V). The solid-state (51)V NMR parameters of vanadium(V) complexes with a related potentially tetradentate ancillary ligand (N-salicylidene-N'-(2-hydroxyethyl)ethylenediamine) (h2shed) were previously shown to be associated with the size of the HOMO-LUMO gap in the complex, and as such provide insights on the interaction between metal ion and ligand (P. B. Chatterjee, et al., Inorg. Chem 50 (2011) 9794). Our results show that the modification of the ancillary ligand does not impact the observed trend between complexes ranging from catechols with electron rich to electron poor substituents. However, the ancillary ligand does impact the size of the HOMO-LUMO separation in the parent complex and thus the solid-state vanadium NMR chemical shift of the unsubstituted vanadium complex. For these complexes significant changes observed in the isotropic shifts and more modest changes detected in the CQ reflect the electronic changes in the complex as the catechol is varied. However, no obvious trend was observed in the chemical shift anisotropies (?? and ??) with the variation in the catechol. The electronic changes in the coordination environment of the vanadium can be described using solid-state (51)V NMR spectroscopy. PMID:24353476

  7. Dynamics of guest molecules in PHTP inclusion compounds as probed by solid-state NMR and fluorescence spectroscopy.

    PubMed

    Srinivasan, G; Villanueva-Garibay, J A; Mller, K; Oelkrug, D; Milian Medina, B; Beljonne, D; Cornil, J; Wykes, M; Viani, L; Gierschner, J; Martinez-Alvarez, R; Jazdzyk, M; Hanack, M; Egelhaaf, H-J

    2009-07-01

    Partially deuterated 1,4-distyrylbenzene () is included into the pseudohexagonal nanochannels of perhydrotriphenylene (PHTP). The overall and intramolecular mobility of is investigated over a wide temperature range by (13)C, (2)H NMR as well as fluorescence spectroscopy. Simulations of the (2)H NMR spectral shapes reveal an overall wobble motion of in the channels with an amplitude of about 4 degrees at T = 220 K and 10 degrees at T = 410 K. Above T = 320 K the wobble motion is superimposed by localized 180 degrees flips of the terminal phenyl rings with a frequency of 10(6) Hz at T = 340 K. The activation energies of both types of motions are around 40 kJ mol(-1) which imply a strong sterical hindrance by the surrounding PHTP channels. The experimental vibrational structure of the fluorescence excitation spectra of is analyzed in terms of small amplitude ring torsional motions, which provide information about the spatial constraints on by the surrounding PHTP host matrix. Combining the results from NMR and fluorescence spectroscopy as well as of time-dependent density functional calculations yields the complete potential surfaces of the phenyl ring torsions. These results, which suggest that intramolecular mobility of is only reduced but not completely suppressed by the matrix, are corroborated by MD simulations. Unrealistically high potential barriers for phenyl ring flips are obtained from MD simulations using rigid PHTP matrices which demonstrate the importance of large amplitude motions of the PHTP host lattice for the mobility of the guest molecules. PMID:19562129

  8. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for participation on a variety of other projects, including aero-gels and carbon graphite mat en als. The goals of the polymer electrolyte research are to improve the physical properties of the polymers. This includes improving conductivity, durability, and expanding the temperature range over which it is effective. Currently, good conductivity is only present at high temperatures. My goals are to experiment with different arrangements of rods and coils to achieve these desirable properties. Some of my experiments include changing the number of repeat units in the polymer, the size of the diamines, and the types of coil. Analysis of these new polymers indicates improvement in some properties, such as lower glass transition temperature; however, they are not as flexible as desired. With further research we hope to produce polymers that encompass all of these properties to a high degree.

  9. Quasi equilibria in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Sakellariou, Dimitris; Hodgkinson, Paul; Emsley, Lyndon

    1998-08-01

    We develop the connection between theoretical studies of so-called quasi-equilibrium states in solid-state NMR for isolated spin-systems with the experimental observability of such states. The observability of these states is expected to be dependent on the relative broadenings due to coherent effects (such as dipolar couplings with the lattice) and incoherent effects, i.e. relaxation. Hence, we expect to see evidence of quasi-equilibria in cross polarization experiments, where the relevant relaxation time constant is relatively long. For classic spectral spin-diffusion experiments, however, quasi equilibria are unlikely to be observed. We also generalise the discussion to rotating solids, which is appropriate to magic angle spinning experiments.

  10. Broadband population inversion in solid state NMR

    SciTech Connect

    Tycko, R.; Schneider, E.; Pines, A.

    1984-07-15

    We present theory, simulations and experimental demonstrations of composite ..pi.. pulses for population inversion in coupled spin systems such as occur in solid state NMR. The composite ..pi.. pulses are phase-shifted RF pulse sequences designed to invert spins over a larger range of dipole or quadrupole couplings than a conventional ..pi.. pulse, for a given RF power. We discuss a previously proposed theory for constructing composite pulses, in the specific context of solids. Two particular sequences 45/sub 0/180/sub 90/90/sub 180/180/sub 90/45/sub 0/ and 180/sub 0/180/sub 120/180/sub 0/ are examined in detail. Their performance in coupled spin systems of various sizes is evaluated in simulations. Experiments are performed on two solid compounds, Ba(ClO/sub 3/)/sub 2/xH/sub 2/O and C/sub 4/O/sub 4/H/sub 2/. The results reveal markedly less spectral distortion after composite pulse inversion than after conventional ..pi.. pulse inversion at low RF powers.

  11. Probing hydrogen bond networks in half-sandwich Ru(II) building blocks by a combined 1H DQ CRAMPS solid-state NMR, XRPD, and DFT approach.

    PubMed

    Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo

    2014-01-01

    The hydrogen bond network of three polymorphs (1?, 1?, and 1?) and one solvate form (1H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(?N-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1? has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements. PMID:24341446

  12. Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO3 polymorph by 43Ca solid-state NMR spectroscopy.

    PubMed

    Bryce, David L; Bultz, Elijah B; Aebi, Dominic

    2008-07-23

    Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods. PMID:18576634

  13. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.

    PubMed

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered. PMID:26920834

  14. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  15. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  16. Probing the Transmembrane Structure and Topology of Microsomal Cytochrome-P450 by Solid-State NMR on Temperature-Resistant Bicelles

    PubMed Central

    Yamamoto, Kazutoshi; Gildenberg, Melissa; Ahuja, Shivani; Im, Sang-Choul; Pearcy, Paige; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-01-01

    Though the importance of high-resolution structure and dynamics of membrane proteins has been well recognized, optimizing sample conditions to retain the native-like folding and function of membrane proteins for Nuclear Magnetic Resonance (NMR) or X-ray measurements has been a major challenge. While bicelles have been shown to stabilize the function of membrane proteins and are increasingly utilized as model membranes, the loss of their magnetic-alignment at low temperatures makes them unsuitable to study heat-sensitive membrane proteins like cytochrome-P450 and protein-protein complexes. In this study, we report temperature resistant bicelles that can magnetically-align for a broad range of temperatures and demonstrate their advantages in the structural studies of full-length microsomal cytochrome-P450 and cytochrome-b5 by solid-state NMR spectroscopy. Our results reveal that the N-terminal region of rabbit cytochromeP4502B4, that is usually cleaved off to obtain crystal structures, is helical and has a transmembrane orientation with ~17° tilt from the lipid bilayer normal. PMID:23989972

  17. The development of solid-state NMR of membrane proteins

    PubMed Central

    Opella, Stanley J.

    2014-01-01

    Most biological functions are carried out in supramolecular assemblies. As a result of their slow reorientation in solution, these assemblies have been resistant to the widely employed solution NMR approaches. The development of solid-state NMR to first of all overcome the correlation time problem and then obtain informative high-resolution spectra of proteins in supramolecular assemblies, such as virus particles and membranes, is described here. High resolution solid-state NMR is deeply intertwined with the history of NMR, and the seminal paper was published in 1948. Although the general principles were understood by the end of the 1950s, it has taken more than fifty years for instrumentation and experimental methods to become equal to the technical problems presented by the biological assemblies of greatest interest. It is now possible to obtain atomic resolution structures of viral coat proteins in virus particles and membrane proteins in phospholipid bilayers by oriented sample solid-state NMR methods. The development of this aspect of the field of solid-state NMR is summarized in this review article. PMID:26069880

  18. Solid State NMR and Protein-Protein Interactions in Membranes

    PubMed Central

    Miao, Yimin; Cross, Timothy A.

    2013-01-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water soluble proteins and other membrane proteins. PMID:24034903

  19. Solid state NMR and protein-protein interactions in membranes.

    PubMed

    Miao, Yimin; Cross, Timothy A

    2013-12-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high-resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water-soluble proteins and other membrane proteins. PMID:24034903

  20. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  1. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and

  2. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms. PMID:19367899

  3. Broadband solid-state MAS NMR of paramagnetic systems.

    PubMed

    Pell, Andrew J; Pintacuda, Guido

    2015-02-01

    The combination of new magnet and probe technology with increasingly sophisticated pulse sequences has resulted in an increase in the number of applications of solid-state nuclear magnetic resonance (NMR) spectroscopy to paramagnetic materials and biomolecules. The interaction between the paramagnetic metal ions and the NMR-active nuclei often yields crucial structural or electronic information about the system. In particular the application of magic-angle spinning (MAS) has been shown to be crucial to obtaining resolution that is sufficiently high for studying complex systems. However such systems are generally extremely difficult to study as the shifts and shift anisotropies resulting from the same paramagnetic interaction broaden the spectrum beyond excitation and detection, and the paramagnetic relaxation enhancement (PRE) shortens the lifetimes of the excited signals considerably. One specific area that has therefore been receiving significant attention in recent years, and for which great improvements have been seen, is the development of broadband NMR sequences. The development of new excitation and inversion sequences for paramagnetic systems under MAS has often made the difference between the spectrum being unobtainable, and a complete NMR study being possible. However the development of the new sequences must explicitly take account of the modulation of the anisotropic shift interactions due to the sample rotation, with the resulting spin dynamics often being complicated considerably. The NMR sequences can either be helped or hindered by MAS, with the efficiency of some pulse schemes being destroyed, and others being greatly enhanced. This review describes the pulse sequences that have recently been proposed for broadband excitation, inversion, and refocussing of the signal components of paramagnetic systems. In doing so we define exactly what is meant by "broadband" under spinning conditions, and what the perfect pulse scheme should deliver. We also give a unified description of the spin dynamics under MAS which highlights the strengths and weaknesses of the various schemes, and which can be used as guidance for future research in this area. All the reviewed pulse schemes are evaluated both with simulations and experimental data obtained on the battery material LiFe(0.5)Mn(0.5)PO(4) which is typical of the complexity of the paramagnetic systems that are currently under study. PMID:25669740

  4. Advances in solid-state NMR of cellulose.

    PubMed

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. PMID:24590189

  5. Solid-State NMR Characterization of Aluminum Oxide Nanofibers

    SciTech Connect

    Cross, Jennifer L.; Tuttle, Ricky W.; Ramsier, Rex D.; Espe, Mathew

    2006-07-24

    Aluminum oxide nanofibers have been generated by an electrospinning process, creating fibers with diameters on the nanometer scale and aspect ratios greater than a thousand. These nanofibers have the potential of providing enhanced catalytic properties, due to their large surface area and controllable compositions. Solid-state NMR is being used to investigate both the bulk and surface properties of these materials. 27Al NMR has shown that no chemistry occurs during the electrospinning process, even though potentials in excess of 20 kV are applied to the sample. Thermal treatment of the fibers to convert them to alumina results in the formation of different phases, with the phases identified by the relative populations of 4-, 5-, and 6-coordinate alumina sites. Heating to 525C or 1200C produces a species similar to the catalytically active gamma-phase or conversion of the nanofibers into the thermodynamically stable ?-alumina phase, respectively. 1H-27Al CP/MAS has shown that the ?-alumina phase has a low population of surface hydroxyls, whereas the gamma-alumina form has a much higher fraction of 5-coordinate sites, compared to materials synthesized by traditional techniques. Organophosphates are being used as molecular probes in the characterization of the nanofiber surfaces. 31P CP/MAS data has revealed the presence of mono-, bi- and tri-denate bound phosphate groups on the surface, with the onset of surface alumina dissolution with sample heating. The application of 1H-31P HETCOR shows that the three different types of bound organophosphates are intermixed, rather than there being separate domains for each type. 31P-27Al CP is also being used to distinguish the types of surface alumina sites bound to the phosphate species.

  6. On the solid-state NMR spectra of naproxen

    NASA Astrophysics Data System (ADS)

    Czernek, Ji?

    2015-01-01

    Two previous measurements of the 13C and 1H NMR isotropic chemical shifts in crystalline naproxen, which is an important pharmaceutical compound, are confronted with the results obtained from several theoretical approaches capable of the proper treatment of solid-phase effects. In the underlying geometrical optimizations, two crystal structures are considered. The agreement between the data sets is quantified, including an evaluation of the similarity between the experimental solid-state NMR spectra. The 13C-1H heteronuclear correlations are analyzed, and their various assignments are discussed employing the statistical treatment of the differences between the measured and theoretical isotropic chemical shifts.

  7. Solid state 33S NMR of inorganic sulfides.

    PubMed

    Wagler, Todd A; Daunch, William A; Rinaldi, Peter L; Palmer, Allen R

    2003-04-01

    Solid state 33S NMR spectra of a variety of inorganic sulfides have been obtained at magnetic field strengths of 4.7 and 17.6T. Spectra acquired with magic angle spinning show considerable improvements in sensitivity and resolution when compared with static spectra. Multiple factors are considered when analyzing the spectral line widths, including; magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion (CSD), T(2) relaxation, and quadrupolar coupling. Quadrupolar coupling was expected to be the dominant line broadening mechanism. However, for most of the samples CSD was the prevailing line broadening mechanism. Thus, for many of the metal sulfides studied at a high magnetic field strength, the line widths were actually larger than those observed in the spectra at low field. This is atypical in solid state 33S NMR. Solid state 33S spin-lattice (T(1)) and spin-spin (T(2)) relaxation rates were measured for the first time and are discussed. This information will be useful in future efforts to use 33S NMR in the compositional and structural analysis of sulfur containing materials. PMID:12713969

  8. A "special perspectives" issue: Recent achievements and new directions in biomolecular solid state NMR

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.

  9. RNA structure determination by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-05-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machines--independent of their ability to crystallize-- and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies.

  10. RNA structure determination by solid-state NMR spectroscopy

    PubMed Central

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-01-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machinesindependent of their ability to crystallize and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies. PMID:25960310

  11. Solid-state NMR study of halogen-bonded adducts.

    PubMed

    Bryce, David L; Viger-Gravel, Jasmine

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy offers unique insights into halogen bonds. NMR parameters such as chemical shifts, quadrupolar coupling constants, J coupling constants, and dipolar coupling constants are in principle sensitive to the formation and local structure of a halogen bond. Carrying out NMR experiments on halogen-bonded adducts in the solid state may provide several advantages over solution studies including (1) the absence of solvent which can interact with halogen bond donor sites and complicate spectral interpretation, (2) the lack of a need for single crystals or even long-range crystalline order, and (3) the potential to measure complete NMR interaction tensors rather than simply their isotropic values. In this chapter, we provide an overview of the NMR interactions and experiments which are relevant to the study of nuclei which are often found in halogen bonds (RXY) including (13)C, (35/37)Cl, (79/81)Br, (127)I, (77)Se, and (14/15)N. Experimental examples based on iodoperfluorobenzene halides, bis(trimethylammonium)alkane diiodide, and selenocyanate complexes, as well as haloanilinium halides, are discussed. Of particular interest is the sensitivity of the isotropic chemical shifts, the chemical shift tensor spans, and the halide nuclear electric quadrupolar coupling tensors to the halogen bond geometry in such compounds. Technical limitations associated with the NMR spectroscopy of covalently-bonded halogens are underlined. PMID:24760615

  12. Solid-state 33S MAS NMR of inorganic sulfates.

    PubMed

    Wagler, Todd A; Daunch, William A; Panzner, Matthew; Youngs, Wiley J; Rinaldi, Peter L

    2004-10-01

    Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials. PMID:15388098

  13. Magic-angle spinning solid-state multinuclear NMR on low-field instrumentation.

    PubMed

    Srensen, Morten K; Bakharev, Oleg; Jensen, Ole; Jakobsen, Hans J; Skibsted, Jrgen; Nielsen, Niels Chr

    2014-01-01

    Mobile and cost-effective NMR spectroscopy exploiting low-field permanent magnets is a field of tremendous development with obvious applications for arrayed large scale analysis, field work, and industrial screening. So far such demonstrations have concentrated on relaxation measurements and lately high-resolution liquid-state NMR applications. With high-resolution solid-state NMR spectroscopy being increasingly important in a broad variety of applications, we here introduce low-field magic-angle spinning (MAS) solid-state multinuclear NMR based on a commercial ACT 0.45 T 62 mm bore Halbach magnet along with a homebuilt FPGA digital NMR console, amplifiers, and a modified standard 45 mm wide MAS probe for 7 mm rotors. To illustrate the performance of the instrument and address cases where the low magnetic field may offer complementarity to high-field NMR experiments, we demonstrate applications for (23)Na MAS NMR with enhanced second-order quadrupolar coupling effects and (31)P MAS NMR where reduced influence from chemical shift anisotropy at low field may facilitate determination of heteronuclear dipole-dipole couplings. PMID:24291330

  14. Magic-angle spinning solid-state multinuclear NMR on low-field instrumentation

    NASA Astrophysics Data System (ADS)

    Srensen, Morten K.; Bakharev, Oleg; Jensen, Ole; Jakobsen, Hans J.; Skibsted, Jrgen; Nielsen, Niels Chr.

    2014-01-01

    Mobile and cost-effective NMR spectroscopy exploiting low-field permanent magnets is a field of tremendous development with obvious applications for arrayed large scale analysis, field work, and industrial screening. So far such demonstrations have concentrated on relaxation measurements and lately high-resolution liquid-state NMR applications. With high-resolution solid-state NMR spectroscopy being increasingly important in a broad variety of applications, we here introduce low-field magic-angle spinning (MAS) solid-state multinuclear NMR based on a commercial ACT 0.45 T 62 mm bore Halbach magnet along with a homebuilt FPGA digital NMR console, amplifiers, and a modified standard 45 mm wide MAS probe for 7 mm rotors. To illustrate the performance of the instrument and address cases where the low magnetic field may offer complementarity to high-field NMR experiments, we demonstrate applications for 23Na MAS NMR with enhanced second-order quadrupolar coupling effects and 31P MAS NMR where reduced influence from chemical shift anisotropy at low field may facilitate determination of heteronuclear dipole-dipole couplings.

  15. Solid-State NMR Studies of Chemically Lithiated CFx

    PubMed Central

    Leifer, N. D.; Johnson, V. S.; Ben-Ari, R.; Gan, H.; Lehnes, J. M.; Guo, R.; Lu, W.; Muffoletto, B. C.; Reddy, T.; Stallworth, P. E.; Greenbaum, S. G.

    2010-01-01

    Three types of fluorinated carbon, all in their original form and upon sequential chemical lithiations via n-butyllithium, were investigated by 13C and 19F solid-state NMR methods. The three starting CFx materials [where x = 1 (nominally)] were fiber based, graphite based, and petroleum coke based. The aim of the current study was to identify, at the atomic/molecular structural level, factors that might account for differences in electrochemical performance among the different kinds of CFx. Differences were noted in the covalent F character among the starting compounds and in the details of LiF production among the lithiated samples. PMID:20676233

  16. Recrystallized S-layer protein of a probiotic Propionibacterium: structural and nanomechanical changes upon temperature or pH shifts probed by solid-state NMR and AFM.

    PubMed

    de sa Peixoto, Paulo; Roiland, Claire; Thomas, Daniel; Briard-Bion, Valrie; Le Guellec, Rozenn; Parayre, Sandrine; Deutsch, Stphanie-Marie; Jan, Gwnal; Guyomarc'h, Fanny

    2015-01-13

    Surface protein layers (S layers) are common constituents of the bacterial cell wall and originate from the assembly of strain-dependent surface layer proteins (Slps). These proteins are thought to play important roles in the bacteria's biology and to have very promising technological applications as biomaterials or as part of cell-host cross-talk in probiotic mechanism. The SlpA from Propionibacterium freudenreichii PFCIRM 118 strain was isolated and recrystallized to investigate organization and assembly of the protein using atomic force microscopy and solid-state (1)H and (13)C-nuclear magnetic resonance. SlpA was found to form hexagonal p1 monolayer lattices where the protein exhibited high proportions of disordered regions and of bound water. The lattice structure was maintained, but softened, upon mild heating or acidification, probably in relation with the increasing mobilities of the disordered protein regions. These results gave structural insights on the mobile protein regions exposed by S layer films, upon physiologically relevant changes of their environmental conditions. PMID:25479375

  17. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state [sup 13]C and [sup 29]Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS [sup 13]C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of [sup 29]Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The [sup 29]Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  18. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state {sup 13}C and {sup 29}Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS {sup 13}C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of {sup 29}Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The {sup 29}Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  19. High-resolution solid-state NMR of quadrupolar nuclei

    PubMed Central

    Meadows, Michael D.; Smith, Karen A.; Kinsey, Robert A.; Rothgeb, T. Michael; Skarjune, Robert P.; Oldfield, Eric

    1982-01-01

    We report the observation of high-resolution solid-state NMR spectra of 23Na (I = [unk]), 27Al (I = [unk]) and 51V (I = [unk]) in various inorganic systems. We show that, contrary to popular belief, relatively high-resolution (?10 ppm linewidth) spectra may be obtained from quadrupolar systems, in which electric quadrupole coupling constants (e2qQ/h) are in the range ?1-5 MHz, by means of observation of the (, -) spin transition. The (, -) transition for all nonintegral spin quadrupolar nuclei (I = [unk], [unk], [unk], or [unk]) is only normally broadened by dipolar, chemical shift (or Knight shift) anisotropy or second-order quadrupolar effects, all of which are to a greater or lesser extent averaged under fast magic-angle sample rotation. In the case of 23Na and 27Al, high-resolution spectra of 23NaNO3 (e2qQ/h ?300 kHz) and ?-27Al2O3 (e2qQ/h ?2-3 MHz) are presented; in the case of 51V2O5 (e2qQ/h ?800 kHz), rotational echo decays are observed due to the presence of a ?103-ppm chemical shift anisotropy. The observation of high-resolution solid-state spectra of systems having spins I = [unk], [unk], and [unk] in asymmetric environments opens up the possibility of examining about two out of three nuclei by solid-state NMR that were previously thought of as inaccessible due to the presence of large (a few megahertz) quadrupole coupling constants. Preliminary results for an I = [unk] system, 93Nb, having e2qQ/h ?19.5 MHz, are also reported. PMID:16593165

  20. Probing intermolecular hydrogen bonding in sibenadet hydrochloride polymorphs by high-resolution (1) H double-quantum solid-state NMR spectroscopy.

    PubMed

    Bradley, Jonathan P; Pickard, Chris J; Burley, Jonathan C; Martin, Dave R; Hughes, Leslie P; Cosgrove, Stephen D; Brown, Steven P

    2012-05-01

    Molecular packing in two polymorphs of sibenadet hydrochloride (AR-C68397AA, Viozan™) is investigated using a combined experimental (1) H double-quantum (DQ) solid-state magic-angle spinning nuclear magnetic resonance and computational (gauge including projected augmented wave calculation of chemical shifts) approach. For Form I, NH-NH and NH-OH (1) H DQ peaks are observed corresponding to nearest distances of 2.62 and 2.87 Å, respectively, for the intermolecular hydrogen-bonding arrangement in the single-crystal X-ray diffraction structure. The same (1) H DQ peaks at the same (1) H chemical shifts are observed for Form II, for which there is no single-crystal diffraction structure, indicating the same intermolecular hydrogen-bonding arrangement of the benzothiazolone moieties as in Form I. (1) H DQ build-up (as a function of the DQ recoupling time) curves are presented for the resolved NH-NH and NH-OH DQ peaks for the two polymorphs. For Form I, the ratio of the maximum intensity for the NH-OH and NH-NH DQ peaks is in excellent agreement with the ratio of the summed squares of the H-H dipolar couplings, as determined using H-H distances from the crystal structure up to 4 Å. Small differences in the (1) H DQ build-up behaviour for the two polymorphs are attributed to differences in the longer-range NH-OH distances associated with different inter-layer arrangements. PMID:22359321

  1. Probing the Role of Ceramide Headgroup Polarity in Short-Chain Model Skin Barrier Lipid Mixtures by (2)H Solid-State NMR Spectroscopy.

    PubMed

    Stahlberg, Sren; Lange, Stefan; Dobner, Bodo; Huster, Daniel

    2016-03-01

    The thermoptropic phase behaviors of two stratum corneum model lipid mixtures composed of equimolar contributions of either Cer[NS18] or Cer[NP18] with stearic acid and cholesterol were compared. Each component of the mixture was specifically deuterated such that the temperature-dependent (2)H NMR spectra allowed disentanglement of the complicated phase polymorphism of these lipid mixtures. While Cer[NS] is based on the sphingosine backbone, Cer[NP] features a phytosphingosine, which introduces an additional hydroxyl group into the headgroup of the ceramide and abolishes the double bond. From the NMR spectra, the individual contributions of all lipids to the respective phases could be determined. The comparison of the two lipid mixtures reveals that Cer[NP] containing mixtures have a tendency to form more fluid phases. It is concluded that the additional hydroxyl group of the phytosphingosine-containing ceramide Cer[NP18] in mixture with chain-matched stearic acid and cholesterol creates a packing defect that destabilizes the orthorhombic phase state of canonical SC mixtures. This steric clash favors the gel phase and promotes formation of fluid phases of Cer[NP] containing lipid mixtures at lower temperature compared to those containing Cer[NS18]. PMID:26828109

  2. A technique for in situ monitoring of crystallization from solution by solid-state 13C CPMAS NMR spectroscopy.

    PubMed

    Hughes, Colan E; Harris, Kenneth D M

    2008-07-31

    We report a technique for carrying out in situ solid-state NMR studies of crystallization from solution, allowing the evolution of different solid state structures (polymorphs) produced during the crystallization process to be identified. The technique exploits selectivity in NMR properties (specifically, the efficiency of cross-polarization from (1)H to (13)C) between molecules in the solid and solution states, such that the first solid particles produced during the crystallization process are observed selectively, without detecting any signal from dissolved solute (or solvent) molecules. The application of the technique is demonstrated to reveal new insights concerning an isotope effect on the polymorphic outcome of crystallization of glycine from water. As revealed by this example, the in situ solid-state NMR approach reported here creates significant new opportunities for probing and understanding details of the evolution of solid state structures produced during crystallization from solution. PMID:18610953

  3. Protein Dynamics in the Solid State from (2)H NMR Line Shape Analysis. II. MOMD Applied to C-D and C-CD3 Probes.

    PubMed

    Meirovitch, Eva; Liang, Zhichun; Freed, Jack H

    2015-11-01

    Deuterium line shape analysis from mobile C-D and C-CD3 groups has emerged as a particularly useful tool for studying dynamics in the solid state. The theoretical models devised so far consist typically of sets of independent dynamic modes. Each such mode is simple and usually case-specific. In this scenario, model improvement entails adding yet another mode (thereby changing the overall model), comparison of different cases is difficult, and ambiguity is unavoidable. We recently developed the microscopic order macroscopic disorder (MOMD) approach as a single-mode alternative. In MOMD, the local spatial restrictions are expressed by an anisotropic potential, the local motion by a diffusion tensor, and the local molecular geometry by relative (magnetic and model-related) tensor orientations, all of adjustable symmetry. This approach provides a consistent method of analysis, thus resolving the issues above. In this study, we apply MOMD to PS-adsorbed LK?14 peptide and dimethylammonium tetraphenylborate (C-CD3 and N-CD3 dynamics, respectively), as well as HhaI methyltransferase target DNA and phase III of benzene-6-hexanoate (C-D dynamics). The success with fitting these four disparate cases, as well as the two cases in the previous report, demonstrates the generality of this MOMD-based approach. In this study, C-D and C-CD3 are both found to execute axial diffusion (rates R? and R?) in the presence of a rhombic potential given by the L = 2 spherical harmonics (coefficients c02 and c22). R? (R?) is in the 102-103 (104-105) s-1 range, and c02 and c22 are on the order of 2-3 kBT. Specific parameter values are determined for each mobile site. The diffusion and quadrupolar tensors are tilted at either 120 (consistent with trans-gauche isomerization) or nearly 110.5 (consistent with methyl exchange). Future prospects include extension of the MOMD formalism to include MAS, and application to 15N and 13C nuclei. PMID:26402431

  4. Protein Dynamics in the Solid State from 2H NMR Line Shape Analysis. II. MOMD Applied to C–D and C–CD3 Probes

    PubMed Central

    2015-01-01

    Deuterium line shape analysis from mobile C–D and C–CD3 groups has emerged as a particularly useful tool for studying dynamics in the solid state. The theoretical models devised so far consist typically of sets of independent dynamic modes. Each such mode is simple and usually case-specific. In this scenario, model improvement entails adding yet another mode (thereby changing the overall model), comparison of different cases is difficult, and ambiguity is unavoidable. We recently developed the microscopic order macroscopic disorder (MOMD) approach as a single-mode alternative. In MOMD, the local spatial restrictions are expressed by an anisotropic potential, the local motion by a diffusion tensor, and the local molecular geometry by relative (magnetic and model-related) tensor orientations, all of adjustable symmetry. This approach provides a consistent method of analysis, thus resolving the issues above. In this study, we apply MOMD to PS-adsorbed LKα14 peptide and dimethylammonium tetraphenylborate (C–CD3 and N–CD3 dynamics, respectively), as well as HhaI methyltransferase target DNA and phase III of benzene-6-hexanoate (C–D dynamics). The success with fitting these four disparate cases, as well as the two cases in the previous report, demonstrates the generality of this MOMD-based approach. In this study, C–D and C–CD3 are both found to execute axial diffusion (rates R⊥ and R∥) in the presence of a rhombic potential given by the L = 2 spherical harmonics (coefficients c02 and c22). R⊥ (R∥) is in the 102–103 (104–105) s–1 range, and c02 and c22 are on the order of 2–3 kBT. Specific parameter values are determined for each mobile site. The diffusion and quadrupolar tensors are tilted at either 120° (consistent with trans–gauche isomerization) or nearly 110.5° (consistent with methyl exchange). Future prospects include extension of the MOMD formalism to include MAS, and application to 15N and 13C nuclei. PMID:26402431

  5. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  6. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach.

    PubMed

    Zhang, Weiping; Xu, Shutao; Han, Xiuwen; Bao, Xinhe

    2012-01-01

    In situ solid-state NMR is a well-established tool for investigations of the structures of the adsorbed reactants, intermediates and products on the surface of solid catalysts. The techniques allow identifications of both the active sites such as acidic sites and reaction processes after introduction of adsorbates and reactants inside an NMR rotor under magic angle spinning (MAS). The in situ solid-state NMR studies of the reactions can be achieved in two ways, i.e. under batch-like or continuous-flow conditions. The former technique is low cost and accessible to the commercial instrument while the latter one is close to the real catalytic reactions on the solids. This critical review describes the research progress on the in situ solid-state NMR techniques and the applications in heterogeneous catalysis under batch-like and continuous-flow conditions in recent years. Some typical probe molecules are summarized here to detect the Brønsted and Lewis acidic sites by MAS NMR. The catalytic reactions discussed in this review include methane aromatization, olefin selective oxidation and olefin metathesis on the metal oxide-containing zeolites. With combining the in situ MAS NMR spectroscopy and the density functional theoretical (DFT) calculations, the intermediates on the catalyst can be identified, and the reaction mechanism is revealed. Reaction kinetic analysis in the nanospace instead of in the bulk state can also be performed by employing laser-enhanced MAS NMR techniques in the in situ flow mode (163 references). PMID:21743940

  7. Probing hydrogen in ZnO nanorods using solid-state 1H nuclear magnetic resonance

    SciTech Connect

    Wang, Li Q.; Exarhos, Gregory J.; Windisch, Charles F.; Yao, Chunhua; Pederson, Larry R.; Zhou, Xiao Dong

    2007-04-23

    We have developed a low-temperature reflux method to synthesize large quantities of well-dispersed free-standing ZnO nanorods using a simple and mild aqueous solution route. In this approach, different surfactants were used to control nanostructure morphologies. Bound proton states in these ZnO nanorods were characterized for the first time by high resolution solid-state 1H magic angle spinning (MAS) NMR. In contrast to commercially available ZnO nano- or micro-particles, our uniform ZnO nanorods show a surprisingly sharp 1H NMR resonance. The feature is maintained upon heating to 500 oC, which suggests that an unusually stable proton species exists, most likely associated with lattice defects within the ZnO framework. Work here has demonstrated a new approach for probing a small amount of proton species associated with defects in nano-crystalline solids using high resolution solid-state 1H MAS NMR.

  8. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers.

    PubMed

    Salnikov, Evgeniy S; Sarrouj, Hiba; Reiter, Christian; Aisenbrey, Christopher; Purea, Armin; Aussenac, Fabien; Ouari, Olivier; Tordo, Paul; Fedotenko, Illya; Engelke, Frank; Bechinger, Burkhard

    2015-11-19

    Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h. PMID:26487390

  9. 33S solid state NMR of sulphur speciation in silicate glasses.

    PubMed

    Couch, S; Howes, A P; Kohn, S C; Smith, M E

    2004-01-01

    33S solid-state NMR is reported from some model crystalline sulphides, sulphates, sulphites and thiosulphates. This is the first report of (33)S NMR signals of the latter two species from a solid. Good quality spectra, which have distinct, well separated shift ranges can be identified for all these groupings, except for sulphites and hydrogen sulphites whose resonances are very broad. Nonetheless the presence of sulphites and hydrogen sulphites can be confirmed from their characteristic sharp, intense time domain echoes. (33)S MAS NMR is also applied to a range of dry and hydrous silicate glasses with approximately 1wt% 99at% (33)S-enriched sulphur. It is clear that in all these glasses sulphate is present, and in mixed cation systems there is some evidence of preferential association of sulphate with a specific cation. In a dry potassium silicate glass sample two resolved (33)S resonances are observed, a sulphate, and the second from thiosulphate. Hence solid state (33)S NMR is shown to be a feasible probe that can be applied to this problem that can readily distinguish different sulphur species. PMID:15388185

  10. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    NASA Astrophysics Data System (ADS)

    Golombeck, Rebecca A.

    The number and chemical identity of reactive sites on surfaces of glass affects the processing, reliability, and lifetime of a number of important commercial products. Surface site densities, distributions, and structural identities are closely tied to the formation and processing of the glass surface, and exert a direct influence on strength and coating performance. The surface of a glass sample may vary markedly from the composition and chemistry of the bulk glass. We are taking a physicochemical approach to understanding adsorption sites on pristine multicomponent glass fibers surfaces, directly addressing the effect of processing on surface reactivity. This project aimed to understand the energy distributions of surface adsorption sites, the chemical/structural identity of those sites, and the relationship of these glasses to glass composition, thermal history, and in future work, surface coatings. We have studied the bulk and surface structure as well as the surface reactivity of the glass fibers with solid-state nuclear magnetic resonance (NMR) spectroscopy, inverse gas chromatography (IGC), and computational chemistry methods. These methods, solid-state NMR and IGC, typically require high surface area materials; however, by using probe molecules for NMR experiments or packing a column at high density for IGC measurements, lower surface area materials, such as glass fibers, can be investigated. The glasses used within this study were chosen as representative specimens of fibers with potentially different reactive sites on their surfaces. The two glass compositions were centered around a nominal E-glass, which contains very little alkali cations and mainly alkaline earth cations, and wool glass, which contains an abundance of alkali cations. The concentration of boron was varied from 0 to 8 mole % in both fiber compositions. Fibers were drawn from each composition at a variety of temperatures and draw speeds to provide a range of glass samples with varying diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the surface properties of a material by examining the retention behavior of a probe molecule. The I

  11. Structure determination of helical filaments by solid-state NMR spectroscopy.

    PubMed

    He, Lichun; Bardiaux, Benjamin; Ahmed, Mumdooh; Spehr, Johannes; Knig, Renate; Lnsdorf, Heinrich; Rand, Ulfert; Lhrs, Thorsten; Ritter, Christiane

    2016-01-19

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  12. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  13. Multiple-quantum dynamics in solid state NMR

    SciTech Connect

    Baum, J.; Munowitz, M.; Garroway, A.N.; Pines, A.

    1985-09-01

    Recently developed solid state multiple-quantum NMR methods are applied to extended coupling networks, where direct dipole--dipole interactions can be used to create coherences of very high order (approx. 100). The progressive development of multiple-quantum coherence over time depends upon the formation of multiple-spin correlations, a phenomenon which also accompanies the normal decay to equilibrium of the free induction signal in a solid. Both the time development and the observed distributions of coherence can be approached statistically, with the spin system described by a time-dependent density operator whose elements are completely uncorrelated at sufficiently long times. With this point of view, we treat the distribution of coherence in a multiple-quantum spectrum as Gaussian, and characterize a spectrum obtained for a given preparation time by its variance. The variance of the distribution is associated roughly with the number of coupled spins effectively interacting, and its steady growth with time reflects the continual expansion of the system under the action of the dipolar interactions. The increase in effective system ''size'' is accounted for by a random walk model for the time development of the density operator. Experimental results are presented for hexamethylbenzene, adamantane, and squaric acid. The formation of coherence in systems containing physically isolated clusters is also investigated, and a simple method for estimating the number of spins involved is demonstrated.

  14. Coherent and stochastic averaging in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Nevzorov, Alexander A.

    2014-12-01

    A new approach for calculating solid-state NMR lineshapes of uniaxially rotating membrane proteins under the magic-angle spinning conditions is presented. The use of stochastic Liouville equation (SLE) allows one to account for both coherent sample rotation and stochastic motional averaging of the spherical dipolar powder patterns by uniaxial diffusion of the spin-bearing molecules. The method is illustrated via simulations of the dipolar powder patterns of rigid samples under the MAS conditions, as well as the recent method of rotational alignment in the presence of both MAS and rotational diffusion under the conditions of dipolar recoupling. It has been found that it is computationally more advantageous to employ direct integration over a spherical grid rather than to use a full angular basis set for the SLE solution. Accuracy estimates for the bond angles measured from the recoupled amide 1H-15N dipolar powder patterns have been obtained at various rotational diffusion coefficients. It has been shown that the rotational alignment method is applicable to membrane proteins approximated as cylinders with radii of approximately 20 , for which uniaxial rotational diffusion within the bilayer is sufficiently fast and exceeds the rate 2 105 s-1.

  15. Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes

    NASA Astrophysics Data System (ADS)

    Fricke, Pascal; Chevelkov, Veniamin; Shi, Chaowei; Lange, Adam

    2015-04-01

    Solid-state NMR is a versatile tool to study structure and dynamics of insoluble and non-crystalline biopolymers. Supramolecular protein assemblies are formed by self-association of multiple copies of single small-sized proteins. Because of their high degree of local order, solid-state NMR spectra of such systems exhibit an unusually high level of resolution, rendering them an ideal target for solid-state NMR investigations. Recently, our group has solved the structure of one particular supramolecular assembly, the type-iii-secretion-system needle. The needle subunit comprises around 80 residues. Many interesting supramolecular assemblies with unknown structure have subunits larger in size, which requires development of tailored solid-state NMR strategies to address their structures. In this "Perspective" article, we provide a view on different approaches to enhance sensitivity and resolution in biological solid-state NMR with a focus on the possible application to supramolecular assemblies with large subunit sizes.

  16. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR

    SciTech Connect

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarization transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  17. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials.

    PubMed

    Werner, Mayke; Heil, Andreas; Rothermel, Niels; Breitzke, Hergen; Groszewicz, Pedro Braga; Thankamony, Aany Sofia; Gutmann, Torsten; Buntkowsky, Gerd

    2015-11-01

    The successful synthesis and solid state NMR characterization of silica-based organic-inorganic hybrid materials is presented. For this, collagen-like peptides are immobilized on carboxylate functionalized mesoporous silica (COOH/SiOx) materials. A pre-activation of the silica material with TSTU (O-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) is performed to enable a covalent binding of the peptides to the linker. The success of the covalent immobilization is indicated by the decrease of the (13)C CP-MAS NMR signal of the TSTU moiety. A qualitative distinction between covalently bound and adsorbed peptide is feasible by (15)N CP-MAS Dynamic Nuclear Polarization (DNP). The low-field shift of the (15)N signal of the peptide's N-terminus clearly identifies it as the binding site. The DNP enhancement allows the probing of natural abundance (15)N nuclei, rendering expensive labeling of peptides unnecessary. PMID:26411982

  18. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.

    2015-04-01

    Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ?20 length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.

  19. Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses

    SciTech Connect

    Murphy, Kelly A.; Washton, Nancy M.; Ryan, Joseph V.; Pantano, Carlo G.; Mueller, Karl T.

    2013-06-01

    Solid-state NMR is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particles sizes were corroded at 90 °C for periods of one and five months with a surface-area to solution-volume ratio of 100,000 m-1. 1H-29Si CP-CPMG MAS NMR, 1H-27Al CP-MAS NMR, 1H-11B CP-MAS NMR, and 1H-23Na CP-MAS NMR experiments provide isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. 1H-11B CP-MAS NMR observations indicated a retention of boron in hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these neophases are detected within the alteration layers. We identify precursor phases as crystalline sodium metasilicates. An important finding is that layer thickness depends on the length of the initial alteration stages and varies only with respect to silicon species during the residual rate regime.

  20. Sampling Scheme and Compressed Sensing Applied to Solid-State NMR Spectroscopy

    PubMed Central

    Lin, Eugene C.; Opella, Stanley J.

    2013-01-01

    We describe the incorporation of non-uniform sampling (NUS) compressed sensing (CS) into Oriented Sample (OS) Solid-state NMR for stationary aligned samples and Magic Angle Spinning (MAS) Solid-state NMR for unoriented powder samples Both simulated and experimental results indicate that 25% to 33% of a full linearly sampled data set is required to reconstruct two-and three-dimensional solid-state NMR spectra with high fidelity. A modest increase in signal-to-noise ratio is accompanies the reconstruction. PMID:24140622

  1. Methodology for solid state NMR off-resonance study of molecular dynamics in heteronuclear systems.

    PubMed

    Jurga, Kazimierz; Wo?niak-Braszak, Aneta; Baranowski, Miko?aj

    2015-10-01

    Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2MHz for protons. This spectrometer includes a specially designed probe which contains two independently tuned and electrically isolated coils installed in the coaxial position on the dewar. A unique probe design allows working at three slightly differing frequencies off and on resonance for protons and at the frequency of 28.411MHz for fluorine nuclei with complete absence of their electrical interference. The probe allows simultaneously creating rf magnetic fields at off-resonance frequencies within the range of 30.2-30.6MHz and at the frequency of 28.411MHz. Presented heteronuclear cross-relaxation off-resonance experiments in the rotating frame provide information about molecular dynamics. PMID:26272112

  2. Solid-state NMR studies of biomineralization peptides and proteins.

    PubMed

    Roehrich, Adrienne; Drobny, Gary

    2013-09-17

    Nature has evolved sophisticated strategies for engineering hard tissues through the interaction of proteins, and ultimately cells, with inorganic mineral phases. This process, called biomineralization, is how living organisms transform inorganic materials such as hydroxyapatite, calcite, and silica into highly intricate and organized structures. The remarkable material properties of shell, bone, and teeth come from the activities of proteins that function at the organic-inorganic interface. A better understanding of the biomolecular mechanisms used to promote or retard the formation of mineral-based structures could provide important design principles for the development of calcification inhibitors and promoters in orthopedics, cardiology, urology, and dentistry. With the knowledge of the structural basis for control of hard tissue growth by proteins, scientists could potentially develop materials using biomimetic principles with applications in catalysis, biosensors, electronic devices, and chromatographic separations, to name a few. Additionally, biomineralization also has potential applications in electronics, catalysis, magnetism, sensory devices, and mechanical design. Where man-made hard materials require the use of extreme temperatures, high pressure, and pH, biological organisms can accomplish these feats at ambient temperature and at physiological pH. Despite the fact that many researchers want to identify and control the structure of proteins at material and biomineral interfaces, there is a decided lack of molecular-level structure information available for proteins at biomaterial interfaces in general. In particular, this holds for mammalian proteins that directly control calcification processes in hard tissue. The most fundamental questions regarding the secondary and tertiary structures of proteins adsorbed to material surfaces, how proteins catalyze the formation of biomineral composites, or how proteins interact at biomaterial interfaces remain unanswered. This is largely due to a lack of methods capable of providing high-resolution structural information for proteins adsorbed to material surfaces under physiologically relevant conditions. In this Account, we highlight recent work that is providing insight into the structure and crystal recognition mechanisms of a salivary protein model system, as well as the structure and interactions of a peptide that catalyzes the formation of biosilica composites. To develop a better understanding of the structure and interactions of proteins in biomaterials, we have used solid-state NMR techniques to determine the molecular structure and dynamics of proteins and peptides adsorbed onto inorganic crystal surfaces and embedded within biomineral composites. This work adds to the understanding of the structure and crystal recognition mechanisms of an acidic human salivary phosphoprotein, statherin. PMID:23932180

  3. QUANTITATIVE SOLID-STATE 13C NMR SPECTROSCOPY OF ORGANIC MATTER FRACTIONS IN LOWLAND RICE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spin counting on solid-state **13C cross-polarization (CP) nuclear magnetic resonance (NMR) spectra of two humic fractions isolated from tropical lowland soils showed that only 32-81% of potential **13C NMR signal was detected. The observability of **13C NMR signal (Cobs) was higher in the mobile h...

  4. Solid State FT-IR and (31)P NMR Spectral Features of Phosphate Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state spectroscopic techniques, including Fourier transform infrared (FT-IR) and solid-state 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies, are powerful tools for evaluating metal speciation and transformation mechanisms of P compounds in the environment. Studie...

  5. Analysis of trivalent cation complexation to functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Shusterman, Jennifer; Mason, Harris; Bruchet, Anthony; Zavarin, Mavrik; Kersting, Annie B; Nitsche, Heino

    2014-11-28

    Functionalized mesoporous silica has applications in separations science, catalysis, and sensors. In this work, we studied the fundamental interactions of trivalent cations with functionalized mesoporous silica. We contacted trivalent cations of varying ionic radii with N-[5-(trimethoxysilyl)-2-aza-1-oxopentyl]caprolactam functionalized mesoporous silica with the aim of probing the binding mechanism of the metal to the surface of the solid. We studied the functionalized silica using solid-state nuclear magnetic resonance (NMR) spectroscopy before and after contact with the metals of interest. We collected NMR spectra of the various metals, as well as of (29)Si and (13)C to probe the silica substrate and the ligand properties, respectively. The NMR spectra indicate that the metals bind to the functionalized silica via two mechanisms. Aluminum sorbed to both the silica and the ligand, but with different coordination for each. Scandium also sorbed to both the silica and the ligand, and unlike the aluminum, had the same coordination number. Additionally, the functionalized silica was susceptible to acid hydrolysis and two primary mechanisms of degradation were observed: detachment from the silica surface and opening of the seven-membered ring in the ligand. Opening of the seven-membered ring may be beneficial in that it decreases steric hindrance of the molecule for binding. PMID:25265419

  6. 31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin

    PubMed Central

    Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip

    2013-01-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (060, 61120 and 121180 m) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 m within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274

  7. Insights into the Structure and Dynamics of Measles Virus Nucleocapsids by 1H-detected Solid-state NMR

    PubMed Central

    Barbet-Massin, Emeline; Felletti, Michele; Schneider, Robert; Jehle, Stefan; Communie, Guillaume; Martinez, Nicolas; Jensen, MaleneRingkjbing; Ruigrok, RobW.H.; Emsley, Lyndon; Lesage, Anne; Blackledge, Martin; Pintacuda, Guido

    2014-01-01

    1H-detected solid-state nuclear magnetic resonance (NMR) experiments are recorded on both intact and trypsin-cleaved sedimented measles virus (MeV) nucleocapsids under ultra-fast magic-angle spinning. High-resolution 1H,15N-fingerprints allow probing the degree of molecular order and flexibility of individual capsid proteins, providing an exciting atomic-scale complement to electro microscopy (EM) studies of the same systems. PMID:25140429

  8. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  9. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  10. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    SciTech Connect

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W. . E-mail: spiess@mpip-mainz.mpg.de; Hergeth, W.D.

    2005-12-15

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.

  11. Acid-induced amino side-chain interactions and secondary structure of solid poly-L-lysine probed by 15N and 13C solid state NMR and ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Huot, Monique Chan; Limbach, Hans-Heinrich

    2009-06-10

    The acid-base and base-base interactions of the (15)N-labeled side-chain amino groups of dry solid poly-L-lysine (PLL) and the consequences for the secondary structure have been studied using high-resolution solid state (15)N and (13)C CPMAS NMR spectroscopy. In a previous study we had shown that at acid/base ratios of 1 per amino group the halogen acids HI, HCl and HBr form PLL salts in the beta-pleated sheet but not in the alpha-helical structure, whereas HF and various oxygen acids form 1:1 acid-base hydrogen-bonded complexes in both secondary structures. In the present study we performed NMR experiments at reduced acid/base ratios in order to elucidate whether also 1:2 and 1:3 acid-base complexes are formed under these conditions. Generally, the PLL samples containing HF, HBr, HCl, HI, CH(3)COOH, H(3)PO(4), H(2)SO(4), or HNO(3) were obtained by lyophilization at different pH. For comparison, samples were also obtained by letting dry acid-free PLL interact with gaseous HCl. In a theoretical section we first study the probability of the different acid-base complexes as a function of the acid/base ratio and the equilibrium constants of the complex formation. Using this information, the (15)N NMR spectra of acid doped PLL obtained were analyzed and assigned. Indeed, evidence for the formation of 1:2 and 1:3 acid-base complexes at lower acid/base ratios could be obtained. Moreover, the salt structures of the halides of PLL are already destroyed at acid/base ratios of about 0.8. By contrast, when acid-free poly-L-lysine is exposed to HCl gas, a biexponential conversion of amino groups into ammonium groups is observed without formation of 1:2 and 1:3 complexes. (13)C NMR reveals that the beta-pleated sheet environments of acid-free PLL react rapidly with HCl, whereas the alpha-helices first have to be converted in a slow reaction to beta-pleated sheets before they can react. Interestingly, after partial doping with HCl, exposure to gaseous H(2)O catalyzes the interconversion of the ammonium and amino groups into a mixture of 1:1, 1:2 and 1:3 complexes. Finally, the (15)N NMR assignments were assisted by DFT calculations on methylamine-acid model complexes. PMID:19489643

  12. 1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020 MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  13. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated. PMID:26524647

  14. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,

  15. CHARACTERIZATION OF SOIL ORGANIC MATTER IN TROPICAL RICE SOILS BY ADVANCED SOLID-STATE NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical structures of soil organic matter in a continually submerged, triple-cropped lowland rice soil having large inputs of rice straw and an aerobic dryland rice soil were compared using advanced solid-state nuclear magnetic resonance (NMR) techniques. Quantitative 13C NMR shows that a humi...

  16. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  17. [sup 13]C solid-state NMR study of ethylene oxidation over supported silver catalysts

    SciTech Connect

    Hosseini, S.

    1992-01-01

    Solid-state NMR has been used to study the interaction of ethylene with oxygen in the absence of promoters and moderators over silica-supported silver catalysts. Experiments using nitrous oxide and oxygen as the oxidants have been carried out over Ag/SiO[sub 2] catalyst at temperature ranging from 298 to 613 K. Standard cross-polarization with magic angle spinning (CP/MAS), CP/MAS with dipolar dephasing, and single-pulse experiments have been applied to identify carbon-containing species that are formed on the surface of catalyst at various temperatures. Ethylene, acetic acid, carbon dioxide, ethane and an alkoxy species have been identified. Under the above experimental conditions, no ethylene oxide is detected by NMR. In pursuit of a better understanding of the chemistry taking place on the catalyst, silica-supported silver catalysts as well as pure silica were dosed with labeled ethylene, carbon dioxide and ethylene oxide. It was found that under conditions employed in this study, ethylene oxide reacts with both metal and silica support and thus cannot be observed as the reaction product. Ethylene oxide, however, has been observed after the saturation of silica surface with unlabeled ethylene oxide prior to ethylene oxidation. In conjunction with this project, the author has designed and constructed a multiport high vacuum glass apparatus which was used for sample preparation prior to the NMR experiments as well as chemisorption measurements and a single-coil double resonance probe.

  18. Solid-state 73Ge NMR spectroscopy of simple organogermanes.

    PubMed

    Hanson, Margaret A; Sutrisno, Andre; Terskikh, Victor V; Baines, Kim M; Huang, Yining

    2012-10-22

    Germanium-73 is an extremely challenging nucleus to examine by NMR spectroscopy due to its unfavorable NMR properties. Through the use of an ultrahigh (21.1 T) magnetic field, a systematic study of a series of simple organogermanes was carried out. In those cases for which X-ray structural data were available, correlations were drawn between the NMR parameters and structural metrics. These data were combined with DFT calculations to obtain insight into the structures of several compounds with unknown crystal structures. PMID:23023927

  19. Heat management strategies for solid-state NMR of functional proteins.

    PubMed

    Fowler, Daniel J; Harris, Michael J; Thompson, Lynmarie K

    2012-09-01

    Modern solid-state NMR methods can acquire high-resolution protein spectra for structure determination. However, these methods use rapid sample spinning and intense decoupling fields that can heat and denature the protein being studied. Here we present a strategy to avoid destroying valuable samples. We advocate first creating a sacrificial sample, which contains unlabeled protein (or no protein) in buffer conditions similar to the intended sample. This sample is then doped with the chemical shift thermometer Sm2Sn2O7. We introduce a pulse scheme called TCUP (for Temperature Calibration Under Pulseload) that can characterize the heating of this sacrificial sample rapidly, under a variety of experimental conditions, and with high temporal resolution. Sample heating is discussed with respect to different instrumental variables such as spinning speed, decoupling strength and duration, and cooling gas flow rate. The effects of different sample preparation variables are also discussed, including ionic strength, the inclusion of cryoprotectants, and the physical state of the sample (i.e. liquid, solid, or slurry). Lastly, we discuss probe detuning as a measure of sample thawing that does not require retuning the probe or using chemical shift thermometer compounds. Use of detuning tests and chemical shift thermometers with representative sample conditions makes it possible to maximize the efficiency of the NMR experiment while retaining a functional sample. PMID:22868258

  20. Heat Management Strategies for Solid-state NMR of Functional Proteins

    PubMed Central

    Fowler, Daniel J.; Harris, Michael J.; Thompson, Lynmarie K.

    2012-01-01

    Modern solid-state NMR methods can acquire high-resolution protein spectra for structure determination. However, these methods use rapid sample spinning and intense decoupling fields that can heat and denature the protein being studied. Here we present a strategy to avoid destroying valuable samples. We advocate first creating a sacrificial sample, which contains unlabeled protein (or no protein) in buffer conditions similar to the intended sample. This sample is then doped with the chemical shift thermometer Sm2Sn2O7. We introduce a pulse scheme called TCUP (for Temperature Calibration Under Pulseload) that can characterize the heating of this sacrificial sample rapidly, under a variety of experimental conditions, and with high temporal resolution. Sample heating is discussed with respect to different instrumental variables such as spinning speed, decoupling strength and duration, and cooling gas flow rate. The effects of different sample preparation variables are also discussed, including ionic strength, the inclusion of cryoprotectants, and the physical state of the sample (i.e. liquid, solid, or slurry). Lastly, we discuss probe detuning as a measure of sample thawing that does not require retuning the probe or using chemical shift thermometer compounds. Use of detuning tests and chemical shift thermometers with representative sample conditions makes it possible to maximize the efficiency of the NMR experiment while retaining a functional sample. PMID:22868258

  1. Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR.

    PubMed

    Ong, Yean Sin; Lakatos, Andrea; Becker-Baldus, Johanna; Pos, Klaas M; Glaubitz, Clemens

    2013-10-23

    Escherichia coli EmrE, a homodimeric multidrug antiporter, has been suggested to offer a convenient paradigm for secondary transporters due to its small size. It contains four transmembrane helices and forms a functional dimer. We have probed the specific binding of substrates TPP(+) and MTP(+) to EmrE reconstituted into 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes by (31)P MAS NMR. Our NMR data show that both substrates occupy the same binding pocket but also indicate some degree of heterogeneity of the bound ligand population, reflecting the promiscuous nature of ligand binding by multidrug efflux pumps. Direct interaction between (13)C-labeled TPP(+) and key residues within the EmrE dimer has been probed by through-space (13)C-(13)C correlation spectroscopy. This was made possible by the use of solid-state NMR enhanced by dynamic nuclear polarization (DNP) through which a 19-fold signal enhancement was achieved. Our data provide clear evidence for the long assumed direct interaction between substrates such as TPP(+) and the essential residue E14 in transmembrane helix 1. Our work also demonstrates the power of DNP-enhanced solid-state NMR at low temperatures for the study for secondary transporters, which are highly challenging for conventional NMR detection. PMID:24047229

  2. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frdric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified. PMID:24041242

  3. Solid-State NMR on Polymers under Mechanical Stress

    NASA Astrophysics Data System (ADS)

    Bhme, Ute; Gelfert, Karsten; Scheler, Ulrich

    2011-03-01

    Low-field NMR in a Halbach magnet has been used for the in-situ investigation of polymers under mechanical stress. Low-field NMR at a Larmor frequency of 32 MHz is particularly suited for the investigation of magnetic resonance relaxation and residual dipolar couplings. The method has been demonstrated on an elastomer and has subsequently been applied to a semicrystalline polymer. Under uniaxial load the transverse relaxation T2 becomes faster and residual dipolar couplings are getting stronger. The effect on the elastomer is completely reversible, while in the semicrystalline polymer an irreversible rearrangement is observed.

  4. Solid state (47,49)Ti, (87)Sr and (137)Ba NMR characterisation of mixed barium/strontium titanate perovskites.

    PubMed

    Gervais, Christel; Veautier, Delphine; Smith, Mark E; Babonneau, Florence; Belleville, Philippe; Sanchez, Clment

    2004-01-01

    Solid state (47,49)Ti, (137)Ba, (87)Sr NMR spectra have been recorded on BaxSrl-xTiO3 (0 solid state NMR shows great potential for characterising such systems since the quadrupolar parameters are very sensitive to any geometric deformation around the studied nucleus. (47,49)Ti NMR powder lineshapes appear strongly influenced by the presence of even a small amount of barium (or strontium) in the coordination second sphere of the probed titanium site: substitution of strontium by barium induces the broadening of the peaks, due to quadrupolar effects, while the isotropic chemical shift increases. (137)Ba NMR spectra exhibit a distribution of the quadrupolar interaction, that could be tentatively quantified, CQ increasing with the amount of strontium. Preliminary results were also obtained on (87)Sr NMR showing behaviour comparable to (137)Ba NMR, i.e. a broadening of the peaks due to an increasing quadrupolar interaction with the amount of barium distorting the environment of the strontium sites. PMID:15388178

  5. Solid-state NMR studies of Ziegler-Natta and metallocene catalysts.

    PubMed

    Tijssen, Koen C H; Blaakmeer, E S Merijn; Kentgens, Arno P M

    2015-01-01

    Ziegler-Natta catalysts are the workhorses of polyolefin production. However, although they have been used and intensively studied for half a century, there is still no comprehensive picture of their mechanistic operation. New techniques are needed to gain more insight in these catalysts. Solid-state NMR has reached a high level of sophistication over the last few decades and holds great promise for providing a deeper insight in Ziegler-Natta catalysis. This review outlines the possibilities for solid-state NMR to characterize the different components and interactions in Ziegler-Natta and metallocene catalysts. An overview is given of some of the expected mechanisms and the resulting polymer microstructure and other characteristics. In the second part of this review we present studies that have used solid-state NMR to investigate the composition of Ziegler-Natta and metallocene catalysts or the interactions between their components. PMID:25957882

  6. Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments

    SciTech Connect

    Mack, J.W.; Torchia, D.A.; Steinert, P.M.

    1988-07-26

    The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either (1-/sup 13/C)glycine or (2-/sup 13/C)glycine, as more than 90% of the glycines of the keratins are located in the end domains. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-(1-/sup 13/C)leucine, L-(/sup 2/H/sub 10/)leucine, or L-(2,3,3-/sup 2/H/sub 3/)leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF. Deuterium NMR experiments performed on IF labeled with deuteriated leucines indeed reveal a marked degree of peptide backbone rigidity within the coiled coils, confirming the initial conclusions of the carbon-13 data. These data, demonstrating relative peptide backbone rigidity yet side-chain flexibility, are interpreted to mean that the coiled coils of these keratin IF are not tightly packed together but rather form a somewhat looser structure which permits a significant degree of side-chain mobility.

  7. In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes.

    PubMed

    Warnet, Xavier L; Arnold, Alexandre A; Marcotte, Isabelle; Warschawski, Dror E

    2015-12-15

    Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes. PMID:26682804

  8. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  9. {sup 13}C solid-state NMR study of ethylene oxidation over supported silver catalysts

    SciTech Connect

    Hosseini, S.

    1992-07-21

    Solid-state NMR has been used to study the interaction of ethylene with oxygen in the absence of promoters and moderators over silica-supported silver catalysts. Experiments using nitrous oxide and oxygen as the oxidants have been carried out over Ag/SiO{sub 2} catalysts at temperature ranging from 298 to 613 K. Standard cross-polarization with magic angle spinning (CP/MAS), CP/MAS with dipolar dephasing, and single-pulse experiments have been applied to identify carbon containing species that are formed on the surface of catalyst at various temperatures. Ethylene, acetic acid, carbon dioxide, ethane and an alkoxy species have been identified. Under the above experimental conditions, no ethylene oxide is detected by NMR. In pursuit of a better understanding of the chemistry taking place on the catalyst, silica-supported silver catalysts as well as pure silica were dosed with labeled ethylene, carbon dioxide and ethylene oxide. It was found that under conditions employed in this study, ethylene oxide reacts with both metal and silica support and thus can not be observed as the reaction product. Ethylene oxide, however, has been observed after saturation of silica surface with unlabeled ethylene oxide prior to ethylene oxidation. A multiport high vacuum glass apparatus was developed along with a single-coil double resonance probe.

  10. sup 13 C solid-state NMR study of ethylene oxidation over supported silver catalysts

    SciTech Connect

    Hosseini, S.

    1992-07-21

    Solid-state NMR has been used to study the interaction of ethylene with oxygen in the absence of promoters and moderators over silica-supported silver catalysts. Experiments using nitrous oxide and oxygen as the oxidants have been carried out over Ag/SiO{sub 2} catalysts at temperature ranging from 298 to 613 K. Standard cross-polarization with magic angle spinning (CP/MAS), CP/MAS with dipolar dephasing, and single-pulse experiments have been applied to identify carbon containing species that are formed on the surface of catalyst at various temperatures. Ethylene, acetic acid, carbon dioxide, ethane and an alkoxy species have been identified. Under the above experimental conditions, no ethylene oxide is detected by NMR. In pursuit of a better understanding of the chemistry taking place on the catalyst, silica-supported silver catalysts as well as pure silica were dosed with labeled ethylene, carbon dioxide and ethylene oxide. It was found that under conditions employed in this study, ethylene oxide reacts with both metal and silica support and thus can not be observed as the reaction product. Ethylene oxide, however, has been observed after saturation of silica surface with unlabeled ethylene oxide prior to ethylene oxidation. A multiport high vacuum glass apparatus was developed along with a single-coil double resonance probe.

  11. Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study.

    PubMed

    Ciesielski, Filip; Griffin, David C; Rittig, Michael; Moriyn, Ignacio; Bonev, Boyan B

    2013-08-01

    Lipopolysaccharide (LPS) is a major component of the external leaflet of bacterial outer membranes, key pro-inflammatory factor and an important mediator of host-pathogen interactions. In host cells it activates the complement along with a pro-inflammatory response via a TLR4-mediated signalling cascade and shows preference for cholesterol-containing membranes. Here, we use solid state (13)C and (31)P MAS NMR to investigate the interactions of LPS from three bacterial species, Brucella melitensis, Klebsiella pneumoniae and Escherichia coli, with mixed lipid membranes, raft models. All endotoxin types are found to be pyrophosphorylated and Klebsiellar LPS is phosphonylated, as well. Carbon-13 MAS NMR indicates an increase in lipid order in the presence of LPS. Longitudinal (31)P relaxation, providing a direct probe of LPS molecular and segmental mobility, reveals a significant reduction in (31)P T1 times and lower molecular mobility in the presence of ternary lipid mixtures. Along with the ordering effect on membrane lipid, this suggests a preferential partitioning of LPS into ordered bilayer sphingomyelin/cholesterol-rich domains. We hypothesise that this is an important evolutionary drive for the selection of GPI-anchored raft-associated LPS-binding proteins as a first line of response to membrane-associated LPS. PMID:23567915

  12. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M Joo G; Garca, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-01

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:?-cyclodextrin, ABZ:methyl-?-cyclodextrin, ABZ:hydroxypropyl-?-cyclodextrin and ABZ:citrate-?-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. PMID:25843843

  13. What Can Solid State NMR Contribute To Our Understanding of Protein Folding?

    PubMed Central

    Hu, Kan-Nian; Tycko, Robert

    2010-01-01

    Complete understanding of the folding process that connects a structurally disordered state of a protein to an ordered, biochemically functional state requires detailed characterization of intermediate structural states with high resolution and site specificity. While the intrinsically inhomogeneous and dynamic nature of unfolded and partially folded states limits the efficacy of traditional x-ray diffraction and solution NMR in structural studies, solid state NMR methods applied to frozen solutions can circumvent the complications due to molecular motions and conformational exchange encountered in unfolded and partially folded states. Moreover, solid state NMR methods can provide both qualitative and quantitative structural information at the site-specific level, even in the presence of structural inhomogeneity. This article reviews relevant solid state NMR methods and their initial applications to protein folding studies. Using either chemical denaturation to prepare unfolded states at equilibrium or a rapid freezing apparatus to trap non-equilibrium, transient structural states on a sub-millisecond time scale, recent results demonstrate that solid state NMR can contribute essential information about folding processes that is not available from more familiar biophysical methods. PMID:20542371

  14. Natural abundance solid-state 67Zn NMR characterization of microporous zinc phosphites and zinc phosphates at ultrahigh magnetic field.

    PubMed

    Sutrisno, Andre; Liu, Li; Xu, Jun; Huang, Yining

    2011-10-01

    Zinc-phosphite and -phosphate based microporous materials are crystalline open framework materials with potential industrial applications. Although (31)P MAS NMR has been used for characterization of these materials, the local environments around zinc centres have never been directly probed by solid-state NMR due to the many unfavourable NMR characteristics of (67)Zn. In this work, we have characterized the local structure around the Zn centres in several representative microporous zinc phosphites and zinc phosphates by acquiring natural abundance (67)Zn solid-state NMR spectra at ultrahigh magnetic field of 21.1 T. The observed line-shapes are mainly determined by the second order quadrupolar interaction. The NMR tensor parameters were extracted from the spectra and are related to the local geometry around the Zn centre. Computational study of the electric field gradient (EFG) tensor at Zn was performed using hybrid density functional theory (DFT) calculations at B3LYP level of theory on model clusters. The calculations using Projector Augmented-Wave (PAW) method were also carried out with the CASTEP code wherever it was possible. The work has shown that it is possible to study Zn environments in porous materials which often have very low Zn concentration by natural abundance (67)Zn SSNMR at very high magnetic fields. PMID:21850324

  15. Coal liquefaction process streams characterization and evaluation. Solid-state NMR characterization of coal liquefaction products

    SciTech Connect

    Miknis, F.P.

    1991-11-01

    This study clearly demonstrated the usefulness of liquid- and solid-state {sup 13}C- and {sup 1}H-NMR for the examination of process-derived materials from direct coal liquefaction. The techniques can provide data not directly obtainable by other methods to examine the saturation of aromatic rings and to determine the modes of hydrogen utilization during coal liquefaction. In addition, these methods can be used to infer the extent of condensation and retrograde reactions occurring in the direct coal liquefaction process. Five NMR techniques were employed. Solid-state {sup 13}C-NMR measurements were made using the Cross Polarization Magic Angle Spinning (CP/MAS) and Single Pulse (SP) techniques. Solid-state {sup 1}H-NMR measurements were made using the technique of Combined Rotation and Multiple-Pulse spectroscopy (CRAMPS). Conventional liquid-state {sup 12}C- and {sup 1}H-NMR techniques were employed as appropriate. Interpretation of the NMR data, once obtained, is relatively straightforward. Combined with other information, such as elemental analyses and process conversion data, the NMR data prove to be a powerful tool for the examination of direct coal liquefaction process-derived material. Further development and more wide-spread application of this analytical method as a process development tool is justified on the basis of these results.

  16. Solid State Multinuclear NMR Studies of Relaxor Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Hoatson, Gina; Zhou, Donghua; Fayon, Franck; Massiot, Dominique; Gan, Zhehong; Vold, Robert

    2002-03-01

    Multinuclear (207Pb, 45Sc, 93Nb) NMR has been used to investigate the local structure and cation disorder in solid solutions of (1-x) Pb(Mg1/3Nb2/3)O3: x Pb(Sc1/2Nb1/2)O3, as a function of concentration. The relaxor ferroelectrics have been well characterized by X-ray and dielectric response measurements(1). MAS, and 3QMAS spectra are presented for 93Nb at 14.0 and 19.6 Tesla. The 93Nb MAS lineshapes have been assigned to species with different arrangements of the nearest B-cation neighbors. It is necessary to include distributions of the electric field gradient parameters and dispersions in isotropic chemical shifts; these have been estimated from the data. The relative intensities of each spectral component are analyzed and the data strongly supports the modified Random Site model. To explain NMR intensities and to validate the model, Monte Carlo simulations will be presented. (1) P. K., Davies, L. Farber, M. Valant, and M. A. Akabas, AIP Conf. Proc. 535 (2000) 38-46.

  17. Solid State OXYGEN-17 NMR Studies of Hydrate in Biomolecules and Deuterium NMR Studies of Chain Dynamics in Crystalline bis

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming

    1993-01-01

    There are two parts in this dissertation. In part one (chapter II-V), solid state ^{17 }O (I = 5/2) NMR is established as a useful and complementary approach to ^2H NMR for studying dynamic disorder of water of hydration in biomolecules. A highly efficient probe is designed and constructed from available small components for conducting these experiments. This reliable probe generates intense RF fields with modest RF power and has a good signal to noise ratio (chapter II). Since ^{17 }O has a large quadrupolar coupling constant (Qcc ~ 7 MHz), a density operator formalism including the 2^{rm nd}-order quadrupolar Hamiltonian is developed for analysing excitation of ^{17} O solid state NMR signals for the +1/2 to -1/2 transition. A simple phase cycling echo sequence is developed for reducing the distortion caused by non-uniform excitation and the resultant patterns are compared with experimental spectra (chapter III). To analyze the lineshape of the central transition determined by the motionally averaged 2^{rm nd}-order quadrupolar perturbation, a 4 ^{rm th}-rank order parameter formalism for the fast motion limit (tau _{rm c} < 10^{-5} s) is developed. It is based on angular momentum coupling theory and requires a maximum of 31 order parameters. By a principal axis transformation, this number can be reduced to 8. To study slower motion, we established an adiabatic intermediate exchange theory for tau_ {rm c} ~ 10^{-5} s. The powder patterns calculated from these theories show good agreement when compared to the experimental spectra of several hydrates which undergo simple dynamics (chapter VI-V). In part two (chapter VI), solid state ^2H NMR is applied to explore phase transition related to chain dynamics in (Cd(CH_3CH _2CH_2CH _2NH_3)_2) Cl_4. This layered structure is a crystalline model of a lipid bilayer and was studied from 120K to 350K. Full order tensors for all sites labeled except for C^{(3)} were systematically measured. We find that changes in the chain dynamics are associated with the occurrence of phase transitions. For T < 120K, we find that the chain has an approximately all trans configuration with small "vibration" increasing in amplitude from the polar "head" of the chain to its hydrophilic "tail". For T > 200K, rapid, large amplitude dynamics of the chain vector caused by gauche-trans isomerization leads to significant tilting of the average chain direction. The order tensors are nonaxial showing the absence of axial rotation which is seen in the rotator phase of paraffins and the liquid crystal phase of lipids. In the range of 120K-200K, the symmetry of the dynamics decreases but substantial population of gauche isomers persists. However, the isomerization rate is slow on the ^2H NMR time scale of 10^{-5} s and spectral narrowing is due largely to small amplitude vibrations. The order tensors calculated from x-ray data or the usual "fixed" lattice rotational-isomeric model differ distinctly from the experimental tensors. We propose a flexible lattice model which successfully relates measured order tensors to the chain dynamics.

  18. CARBON-13 NMR OR SOLID STATE HYDROCARBONS AND RELATED SUBSTANCES-FINAL REPORT

    SciTech Connect

    Grant, David M.

    2007-08-16

    CARBON-13 NMR OR SOLID STATE HYDROCARBONS AND RELATED SUBSTANCES-FINAL REPORT Abstract: During recent years we have been engaged in SSNMR (Solid State NMR) structural studies of unusual tetracyanoethylene compounds with unusually long bonds between four carbons centered on two electrons. The chemical shift tensors reflect these unusual atomic arrangements. Quantum chemistry predicts the strange tensor shifts. The three dimensional molecular structure may be determined in this manner. Despite significant advances in structural determination from powder diffraction data, NMR shift tensors argument the structural accuracy and also suggest initial trial structures. Mixtures of polymorphs are difficult to analyze with diffraction methods whereas the SSNMR methods are able to characterize such mixtures in one anothers presence. Spectroscopic developments in our laboratory include SSNMR INADEQUATE and FIREMAT methods. We have used these methods to study the 13C and 15N NMR explosive CL-20.

  19. Genetic algorithms and solid state NMR pulse sequences.

    PubMed

    Bechmann, Matthias; Clark, John; Sebald, Angelika

    2013-03-01

    The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C7(2)(1) dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C7(2)(1) pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning. PMID:23357428

  20. Genetic algorithms and solid state NMR pulse sequences

    NASA Astrophysics Data System (ADS)

    Bechmann, Matthias; Clark, John; Sebald, Angelika

    2013-03-01

    The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C721 dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C721 pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning.

  1. Investigation of Moisture Interaction with Cellulose Using Solid-State NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in Gossypium barbadense (Pima) cotton were investigated by 1H and 13C solid-state NMR techniques. 1H spin diffusion results indicate that water is present in multiple layers within the cotton fiber, each layer bei...

  2. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution

  3. Solid-state NMR and ESR studies of activated carbons produced from pecan shells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activated carbon from pecan shells has shown promise as an adsorbent in water treatment and sugar refining. However, the chemistry of the material is complex and not fully understood. We report here the application of solid state NMR and ESR to study the chemical structure, mobility, and pore volu...

  4. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  5. 1H and 13C Solid-state NMR of G. barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated with 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiment...

  6. 1H and 13C Solid-state NMR of Gossypium barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated by 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiments pro...

  7. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  8. Characterization of animal manure using advanced solid-state C-13 NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of chemical structure of animal manure is necessary for its effective utilization. However, characterization of animal manure is challenging since it is a complex mixture and partially soluble. Solid-state C-13 NMR (nuclear magnetic resonance) spectroscopy is regarded as the best tool to i...

  9. Gas vesicles across kingdoms: a comparative solid state NMR study

    PubMed Central

    Daviso, Eugenio; Belenky, Marina; Griffin, Robert G.; Herzfeld, Judith

    2013-01-01

    The buoyancy organelles of aquatic microorganisms have to meet stringent specifications: allowing gases to equilibrate freely across the proteinaceous shell, preventing the condensation of water vapor inside the hollow cavity, and resisting collapse under hydrostatic pressures that vary with column depth. These properties are provided by the 78 kDa gas vesicle protein A (GvpA), repeats of which form all but small, specialized portions of the shell. Magic angle spinning NMR is uniquely capable of providing high resolution information on the fold and assembly of GvpA. Here we compare results for the gas vesicles of the haloarchae Halobacterium salinarum with those obtained previously for the cyanobacterium Anabaena flos-aquae. The data suggest that the two organisms follow similar strategies for avoiding water condensation. On the other hand, in its relatively shallow habitat, H. salinarum is able to avoid collapse with a less costly GvpA fold than is adopted by A. flos-aquae. PMID:23920491

  10. Quantitative solid state {sup 13}C NMR measurements on kerogens

    SciTech Connect

    Maroto-Valer, M.M.; Love, G.D.; Snape, C.E.

    1996-12-31

    The use of the well-established techniques of high power decoupling, magic angle spinning (MAS) and cross-polarisation (CP) are used routinely to obtain high resolution {sup 13}C spectra of kerogens. However, due to unfortunate spin dynamics in CP, not all the carbons are observed. Results on a selection of type I sand II kerogens will be presented to demonstrate that the best strategy to obtain quantitative {sup 13}C NMR results is offered by a combination of a low magnetic field strength to minimize problems with spinning sidebands and the simple, albeit insensitive, Bloch decay or single pulse excitation (SPE) technique. Virtually all of the carbon in the type I and II kerogens and a wide range of coals has been observed using the SPE technique with the aromaticity and non-protonated aromatic carbon concentrations being invariably higher than those derived by the more rapid, but quantitatively unreliable CP method. Further, an extremely good correlation has been obtained between the carbon aromaticities and atomic H/C ratios for the samples investigated. The methodology has also been used to estimate the long methylene chain contents of kerogens and the extent of aromatisation that occurs in normal pyrolysis and pyrolysis under high hydrogen pressure (hydropyrolysis).

  11. Solid State Multinuclear NMR Studies of Relaxor Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua; Hoatson, Gina; Fayon, Franck; Massiot, Dominique; Vold, Robert; Gan, Zhehong

    2001-11-01

    Multinuclear NMR has been used to investigate the local structure and cation disorder in solid solutions of (1-x) Pb(Mg1/3Nb2/3)O3: x Pb(Sc1/2Nb1/2)O3, as a function of concentration. Static, MAS, and 3QMAS spectra are presented for 93Nb and 45Sc at 7.0, 9.4, 14.0 and 19.6 Tesla. The 14 and 19.6 T 93Nb MAS lineshapes have been assigned to species with different numbers of Sc next nearest neighbours. It is necessary to include distributions of the electric field gradient parameters and dispersions in isotropic chemical shifts; these have been estimated from the data. The relative intensities of each spectral component are interpreted in terms of distributions of next nearest neighbor cations and the data strongly supports the Random Layer model. 7 T 207Pb 2D-PASS experiments show residual isotropic chemical shift dispersion reflecting the cation disorder. The anisotropic chemical shielding tensor elements are correlated with the isotropic chemical shifts: this is ascribed to more disordered PbO12 sites with increased covalency character of the PbO bond.

  12. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  13. Solid-state NMR determination of sugar ring pucker in (13)C-labeled 2'-deoxynucleosides.

    PubMed Central

    van Dam, Lorens; Ouwerkerk, Niels; Brinkmann, Andreas; Raap, Jan; Levitt, Malcolm H

    2002-01-01

    The H3'-C3'-C4'-H4' torsional angles of two microcrystalline 2'-deoxynucleosides, thymidine and 2'-deoxycytidine.HCl, doubly (13)C-labeled at the C3' and C4' positions of the sugar ring, have been measured by solid-state magic-angle-spinning nuclear magnetic resonance (NMR). A double-quantum heteronuclear local field experiment with frequency-switched Lee-Goldberg homonuclear decoupling was used. The H3'-C3'-C4'-H4' torsional angles were obtained by comparing the experimental curves with numerical simulations, including the two (13)C nuclei, the directly bonded (1)H nuclei, and five remote protons. The H3'-C3'-C4'-H4' angles were converted into sugar pucker angles and compared with crystallographic data. The delta torsional angles determined by solid-state NMR and x-ray crystallography agree within experimental error. Evidence is also obtained that the proton positions may be unreliable in the x-ray structures. This work confirms that double-quantum solid-state NMR is a feasible tool for studying sugar pucker conformations in macromolecular complexes that are unsuitable for solution NMR or crystallography. PMID:12414715

  14. "Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.

    PubMed

    d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef

    2005-09-01

    Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR. PMID:16221542

  15. Can one and two-dimensional solid-state NMR fingerprint zeolite framework topology?

    PubMed

    Martineau, Charlotte; Vial, Sandrine; Barth, Dominique; Quessette, Franck; Taulelle, Francis

    2015-02-01

    In this contribution, we have explored the potential and strength of one-dimensional (1D) (29)Si and two-dimensional (2D) (29)S-(29)Si and (29)Si-(17)O NMR as invariants of non-oriented graph for fingerprinting zeolite frameworks. 1D and 2D (29)Si NMR can indeed provide indications on the graph vertices, edges and allow the construction of the adjacency matrix, i.e. the set of connections between the graph vertices. From the structural data, hypothetical 1D (29)Si and 2D (29)Si-(29)Si NMR signatures for 193 of the zeolite frameworks reported in the Atlas of Zeolite Structures have been generated. Comparison between all signatures shows that thanks to the 1D (29)Si NMR data only, almost 20% of the known zeolite frameworks could be distinguished. Further NMR signatures were generated by taking into account 2D (29)Si-(29)Si and (29)Si-(17)O correlations. By sorting and comparison of all the NMR data, up to 80% of the listed zeolites could be unambiguously discriminated. This work indicates that (i) solid-state NMR data indeed represent a rather strong graph invariant for zeolite framework, (ii) despite their difficulties and costs (isotopic labeling is often required, the NMR measurements can be long), (29)Si and (17)O NMR measurements are worth being investigated in the frame of zeolites structure resolution. This approach could also be generalized to other zeolite-related materials containing NMR-measurable nuclides. PMID:25454465

  16. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

    PubMed

    Cuny, Jérôme; Xie, Yu; Pickard, Chris J; Hassanali, Ali A

    2016-02-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials. PMID:26730889

  17. Direct observation of zeolite a synthesis by in situ solid-state NMR

    SciTech Connect

    Shi, J.; Anderson, M.W.; Carr, S.W.

    1996-02-01

    This paper describes the use of in situ solid-state NMR and X-ray powder diffraction to study the real-time synthesis of zeolite. In particular {sup 27}Al and {sup 29}Si are used to monitor the growth in situ X-ray diffraction study was used to investigate the development of long range order of the material. Conclusions concerning the mechanism of the formation of zeolite A are proposed. 28 refs., 12 figs., 2 tabs.

  18. Detergent Optimized Membrane Protein Reconstitution in Liposomes for Solid State NMR

    PubMed Central

    2015-01-01

    For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane proteins has not been presented in the literature. A set of experiments are presented aimed at determining the conditions most amenable to dialysis mediated reconstitution sample preparation. A membrane protein from M. tuberculosis is used to illustrate the method. The results show that a detergent that stabilizes the most protein is not always ideal and sometimes cannot be removed by dialysis. By focusing on the lipid and protein binding properties of the detergent, proteoliposome preparations can be readily produced, which provide double the signal-to-noise ratios for both the oriented sample and magic angle spinning solid state NMR. The method will allow more membrane protein drug targets to be structurally characterized in lipid bilayer environments. PMID:24665863

  19. LARGE SCALE PRODUCTION, PURIFICATION, AND 65CU SOLID STATE NMR OF AZURIN

    SciTech Connect

    Gao, A.; Heck, R.W.

    2008-01-01

    This paper details a way to produce azurin with an effi ciency over 10 times greater than previously described and demonstrates the fi rst solid state nuclear magnetic resonance spectrum of 65Cu(I) in a metalloprotein. A synthetic gene for azurin based upon the DNA sequence from Pseudomonas aeruginosa including the periplasmic targeting sequence was subcloned into a T7 overexpression vector to create the plasmid pGS-azurin, which was transformed into BL21 (DE3) competent cells. The leader sequence on the expressed protein causes it to be exported to the periplasmic space of Escherichia coli. Bacteria grown in a fermentation unit were induced to overexpress the azurin, which was subsequently purifi ed through an endosmotic shock procedure followed by high performance liquid chromatography (HPLC). 1,500 mg of azurin were purifi ed per liter of culture. 65Cu(II) was added to apo-azurin and then reduced. The 65Cu metal cofactor in azurin was observed with solid state nuclear magnetic resonance (NMR) to determine any structural variations that accompanied copper reduction. This is the fi rst solid state NMR spectra of a copper(I) metalloprotein. Analysis of the NMR spectra is being used to complement hypotheses set forth by x-ray diffraction and computational calculations of electron transfer mechanisms in azurin.

  20. (14)N overtone transition in double rotation solid-state NMR.

    PubMed

    Haies, Ibraheem M; Jarvis, James A; Brown, Lynda J; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-10-01

    Solid-state NMR transitions involving outer energy levels of the spin-1 (14)N nucleus are immune, to first order in perturbation theory, to the broadening caused by the nuclear quadrupole interaction. The corresponding overtone spectra, when acquired in conjunction with magic-angle sample spinning, result in lines, which are just a few kHz wide, permitting the direct detection of nitrogen compounds without the need for labeling. Despite the success of this technique, "overtone" resonances are still broadened due to indirect, second order effects arising from the large quadrupolar interaction. Here we demonstrate that another order of magnitude in spectral resolution may be gained by using double rotation. This brings the width of the (14)N solid-state NMR lines much closer to the region commonly associated with high-resolution solid-state NMR spectroscopy of (15)N and demonstrates the improvements in resolution that may be possible through the development of pulsed methodologies to suppress these second order effects. PMID:26299667

  1. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  2. Solid-state NMR: An emerging technique in structural biology of self-assemblies.

    PubMed

    Habenstein, Birgit; Loquet, Antoine

    2016-03-01

    Protein self-assemblies are ubiquitous biological systems involved in many cellular processes, ranging from bacterial and viral infection to the propagation of neurodegenerative disorders. Studying the atomic three-dimensional structures of protein self-assemblies is a particularly demanding task, as these systems are usually insoluble, non-crystalline and of large size. Solid-state NMR (ssNMR) is an emerging method that can provide atomic-level structural data on intact macromolecular assemblies. We here present recent progress in magic-angle spinning ssNMR to study protein assemblies and give an overview on its combination with complementary techniques such as cryo-EM, mass-per-length measurements, SAXS and X-ray diffraction. Applications of ssNMR on its own and in hybrid approaches have revealed precious atomic details and first high-resolution structures of complex biological assemblies, including amyloid fibrils, bacterial filaments, phages or virus capsids. PMID:26234527

  3. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    PubMed

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60?kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60?kHz. Copyright 2015 John Wiley & Sons, Ltd. PMID:26352739

  4. Solid-State (63)Cu, (65)Cu, and (31)P NMR Spectroscopy of Photoluminescent Copper(I) Triazole Phosphine Complexes.

    PubMed

    Yu, Huaguang; Tan, Xiuzhen; Bernard, Guy M; Terskikh, Victor V; Chen, Jinglin; Wasylishen, Roderick E

    2015-07-30

    The results of a solid-state (63/65)Cu and (31)P NMR investigation of several copper(I) complexes with functionalized 3-(2'-pyridyl)-1,2,4-triazole and phosphine ligands that have shown potential in the preparation of photoluminescent devices are reported. For each complex studied, distinct NMR parameters, with moderate (63)Cu nuclear quadrupolar coupling constant (CQ) values ranging from -17.2 to -23.7 MHz, are attributed to subtle variations in the distorted four-coordinate environments about the copper nuclei. The spans of the copper chemical shift (CS) tensors, δ11-δ33, for the mono- and bisphosphine complexes are also similar, ranging from 1000 to 1150 ppm, but that for a complex with a strained bidentate phosphine ligand is only 650 ppm. The effects of residual dipolar and indirect spin-spin coupling arising from the (63/65)Cu- (31)P spin pairs, observed in the solid-state (31)P NMR spectra of these complexes, yield information about the orientations of the copper electric field gradient (EFG) tensors relative to the Cu-P bond. Variable-temperature (31)P NMR measurements for [Cu(bptzH)(dppe)]ClO4 (bptzH = 5-tert-butyl-3-(2'-pyridyl)-1,2,4-triazole; dppe = 1,2-bis(diphenylphosphino)ethane), undertaken to investigate the cause of the broad unresolved spectra observed at room temperature, demonstrate that the broadening arises from partial self-decoupling of the (63/65)Cu nuclei, a consequence of rapid quadrupolar relaxation. Ab initio calculations of copper EFG and CS tensors were performed to probe relationships between NMR parameters and molecular structure. The analysis demonstrated that CQ((63/65)Cu) is negative for all complexes studied here and that the largest components of the EFG tensors are generally coincident with δ11. PMID:26101890

  5. Structure and dynamics of retinal in rhodopsin elucidated by deuterium solid state NMR

    NASA Astrophysics Data System (ADS)

    Salgado, Gilmar Fernandes De Jesus

    Rhodopsin is a seven transmembrane helix GPCR found which mediates dim light vision, in which the binding pocket is occupied by the ligand 11- cis-retinal. A site-directed 2H-labeling approach utilizing solid-state 2H NMR spectroscopy was used to investigate the structure and dynamics of retinal within its binding pocket in the dark state of rhodopsin, and as well the MetaI and MetaII. 11-cis-[5-C 2H3]-, 11-cis-[9-C 2H3]-, and 11-cis-[13-C2H 3]-retinal were used to regenerate bleached rhodopsin. Recombinant membranes comprising purified rhodopsin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared (1:50 molar ratio). Solid-state 2H NMR spectra were obtained for the aligned rhodopsin/POPC recombinant membranes at temperatures below the order-disorder phase transition temperature of POPC. The solid-state NMR studies of aligned samples, give the orientations of the 2H nuclear coupling tensor relative to the membrane frame, which involve both the conformation and orientation of the bound retinal chromophore. Theoretical simulations of the experimental 2H NMR spectra employed a new lineshape treatment for a semi-random distribution due to static uniaxial disorder. The analysis gives the orientation of the 2H-labeled C-C2H3 methyl bond axes relative to the membrane plane as well as the extent of three-dimensional alignment disorder (mosaic spread). These results clearly demonstrate the applicability of site-directed 2H NMR methods for investigating conformational changes and dynamics of ligands bound to rhodopsin and other GPCRs in relation to their characteristic mechanisms of action.

  6. Solid-state H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation.

    PubMed

    Mallikarjunaiah, K J; Leftin, Avigdor; Kinnun, Jacob J; Justice, Matthew J; Rogozea, Adriana L; Petrache, Horia I; Brown, Michael F

    2011-01-01

    Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (S(CD)) of DMPC approach very large values of ? 0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10-100 atm or lower. This research demonstrates the applicability of solid-state H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins. PMID:21190661

  7. Ceramide Lipid Interactions studied by MD Simulations and Solid-State NMR

    PubMed Central

    Dutagaci, Bercem; Becker-Baldus, Johanna; Faraldo-Gmez, Jos D.; Glaubitz, Clemens

    2014-01-01

    Ceramides play a key modulatory role in many cellular processes, which results from their effect on the structure and dynamics of biological membranes. In this study, we investigate the influence of C16-ceramide (C16) on the biophysical properties of DMPC lipid bilayers using solid-state NMR and atomistic molecular dynamics (MD) simulations. MD simulations and NMR measurements were carried out for a pure DMPC bilayer and for a 20% DMPC-C16 mixture. Calculated key structural properties, namely area per lipid, chain order parameters, and mass density profiles, indicate that C16 has an ordering effect on the DMPC bilayer. Furthermore, the simulations predict that specific hydrogen-bonds form between DMPC and C16 molecules. Multi-nuclear solid-state NMR was used to verify these theoretical predictions. Chain order parameters extracted from 13C-1H dipole couplings were measured for both lipid and ceramide and follow the trend suggested by the MD simulations. Furthermore, 1H-MAS NMR experiments showed a direct contact between ceramide and lipids. PMID:24882733

  8. Quantitative identification of metastable magnesium carbonate minerals by solid-state 13C NMR spectroscopy.

    PubMed

    Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Wang, Louis S; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

    2015-01-01

    In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR. PMID:25437754

  9. Structural characterization of nylon 7 by solid-state NMR, DSC, and ATR-FTIR

    NASA Astrophysics Data System (ADS)

    Johnson, C. G.; Mathias, L. J.

    1993-06-01

    Samples of commercial nylon 7 were given different thermal or precipitation histories. Structure and crystallinity were followed by DSC, solid-state NMR, and attenuated total reflectance FTIR (ATR-FTIR). Delta H and T(sub m) values ranged from 52 to 93 J/g and 228 to 242 C, respectively. Surprisingly, annealing did not give material with the greatest delta H although it possessed the highest melting point. Solid-state C-13 and N-15 NMR methods were used to observe the amorphous and crystalline fractions. For example, the amide nitrogens show resonances near 86.5 ppm in amorphous domains, near 84 ppm in alpha-crystals, and near 89 ppm in gamma-crystals. N-15 CP/MAS spectra of solution cast samples contained peaks consistent with all three domains in various intensity ratios but with the gamma-peak being the most intense for most samples. Solid-state C-13 spectra contained peaks which supported the presence of these phases but with the alpha-phase peaks predominating.

  10. Characterization of membrane protein function by solid-state NMR spectroscopy.

    PubMed

    Baker, Lindsay A; Baldus, Marc

    2014-08-01

    Membrane proteins are an important class of biological molecules whose association with lipid bilayers and intrinsic molecular mobility can complicate their structural study by high-resolution methods. As different experimental techniques require different membrane mimetics, it can be challenging to relate membrane protein structure to function. This review presents examples of the use of solid-state nuclear magnetic resonance spectroscopy (ssNMR) to correlate structure and function in membrane proteins with diverse biological roles, including signaling, transport, and enzymatic reactions. The types of ssNMR experiments, as well as sources of complementary information and implications for biology, will be discussed. An outlook towards extending ssNMR studies to cellular preparations will be given. PMID:24865155

  11. Freezing Point Depression of Water in Phospholipid Membranes — A Solid-State NMR Study

    PubMed Central

    Lee, Dong-Kuk; Kwon, ByungSoo; Ramamoorthy, Ayyalusamy

    2009-01-01

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to +10°C were obtained from fully 2H2O-hydrated POPC (1-palmitoyl-2-oleoyl-phosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0°C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37. PMID:18991419

  12. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-01

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material. PMID:26602457

  13. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    PubMed Central

    Han, Yun; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; Yang, Jun; Polenova, Tatyana

    2010-01-01

    In mature HIV-1 virions, a 26.6 kDa CA protein is assembled into a characteristic cone shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this report, we present a solid-state NMR analysis of the wild type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly 13C,15N-labelled CA exhibit narrow lines, indicative of conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy. PMID:20092249

  14. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Lange, Adam; Giller, Karin; Hornig, Sönke; Martin-Eauclaire, Marie-France; Pongs, Olaf; Becker, Stefan; Baldus, Marc

    2006-04-01

    The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane-similar to the catalytic function of the active site of an enzyme-and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.

  15. Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

    PubMed

    Toner, Zden?k; Andersen, Rasmus; Stevensson, Baltzar; Edn, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. PMID:25093693

  16. Conformational studies of dendritic macromolecules by solid state NMR and AFM

    SciTech Connect

    Klug, C.; Schaefer, J.; Tasaki, K.

    1996-12-31

    The solid-state shape, size, and intermolecular packing of dendritic macromolecules were determined by a combination of site-specific stable-isotope labeling, rotational-echo double resonance (REDOR) solid-state NMR, atomic force microscopy (AFM), and distance-constrained molecular dynamics simulations. For benzyl ether dendrimers of generations one through five, based on 3,5-dihydroxybenzyl alcohol as the monomeric repeat unit, REDOR experiments measured dipolar couplings between {sup 13}C atoms located at the chain ends and an {sup 19}F label placed near the core of the structure. Intramolecular {sup 13}C-{sup 19}F coupling was distinguished from intermolecular coupling by dilution with unlabeled dendrimer. The NMR-determined intramolecular distances were compared to film thickness measurements by AFM for monolayer films of unlabeled dendrimers on graphite. The NMR-measured intra- and intermolecular distances for the fifth-generation dendrimer were used as constraints on energy-minimized molecular dynamics simulations, which resulted in visualizations of the dendrimer packing. The shape of the fifth-generation dendrimer was non-spherical with a completely encapsulated core and overall dimensions of 31{times}37{times}41 {Angstrom}.

  17. Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy

    PubMed Central

    Becker-Baldus, Johanna; Bamann, Christian; Saxena, Krishna; Gustmann, Henrik; Brown, Lynda J.; Brown, Richard C. D.; Reiter, Christian; Bamberg, Ernst; Wachtveitl, Josef; Schwalbe, Harald; Glaubitz, Clemens

    2015-01-01

    Channelrhodopsin-2 from Chlamydomonas reinhardtii is a light-gated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to 15N-labeled channelrhodopsin-2 carrying 14,15-13C2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early P1500 K-like state, the slowly decaying late intermediate P4480, and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray–based structure analysis, which is required for resolving molecular mechanisms. PMID:26216996

  18. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling; Smith, Mark E.; Chan, Jerry C. C.

    2010-12-01

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer.

  19. Exploring connections between phase-modulated heteronuclear dipolar decoupling schemes in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Mithu, Venus Singh; Madhu, Perunthiruthy K.

    2013-01-01

    We here show a commonality in the approach to the design of prominent phase-modulated schemes used for heteronuclear dipolar decoupling in solid-state NMR. This concerns mainly two pulse phase modulation (TPPM), small phase incremental alternation (SPINAL), and swept-frequency TPPM (SWf-TPPM) schemes. SPINAL turns out to be a supercycled version of TPPM without any need for phase increments and yielding the same performance. This version of TPPM, called TPPM64, is hence easier to implement than SPINAL. We further compare TPPM64 with SWf-TPPM, another derivative of TPPM which has been shown to perform better than other contemporary heteronuclear dipolar decoupling schemes.

  20. Structural investigation of Lisinopril by powder X-ray diffraction and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Filip, Xenia; Tripon, Carmen; Borodi, Gheorghe; Oprean, Lumini?a; Filip, Claudiu

    2009-08-01

    Structural studies on polycrystalline Lisinopril (N-N-[(s)-1-carboxy-3-phenylpropyl]-L-lysil-L-proline) are performed by combined powder X-Ray diffraction and 13C solid-state nuclear magnetic resonance (NMR). The crystal structure of this drug, used primarily for the treatment of hypertension, has not yet been determined due to the impossibility of synthesizing single crystals of sufficient quality. It is shown here that valuable insights into the crystal and molecular structure of Lisinopril can be obtained on polycrystalline powder based on the complementary character of the information provided by the two techniques.

  1. Solid-state NMR sequential assignments of the amyloid core of Sup35pNM.

    PubMed

    Luckgei, Nina; Schtz, Anne K; Habenstein, Birgit; Bousset, Luc; Sourigues, Yannick; Melki, Ronald; Meier, Beat H; Bckmann, Anja

    2014-10-01

    Sup35pNM represents the N-terminal and middle (M) domains of the yeast Saccharomyces cerevisiae prion Sup35p. This fragment is commonly used for structural and functional studies of Sup35p. We here present a solid-state NMR study of fibrils formed by this fragment and show that sequential assignments can be obtained for the rigid and well-ordered parts of the protein using 3D spectroscopy. We describe in detail the sequential assignment of the 22 residues yielding strong, narrow signals with chemical shifts that correspond mostly to ?-sheet secondary-structured amino acids that form the fibril core. PMID:23934139

  2. An Efficient Labelling Approach to Harness Backbone and Side-Chain Protons in 1H-Detected Solid-State NMR Spectroscopy

    PubMed Central

    Mance, Deni; Sinnige, Tessa; Kaplan, Mohammed; Narasimhan, Siddarth; Danils, Mark; Houben, Klaartje; Baldus, Marc; Weingarth, Markus

    2015-01-01

    1H-detection can greatly improve spectral sensitivity in biological solid-state NMR (ssNMR), thus allowing the study of larger and more complex proteins. However, the general requirement to perdeuterate proteins critically curtails the potential of 1H-detection by the loss of aliphatic side-chain protons, which are important probes for protein structure and function. Introduced herein is a labelling scheme for 1H-detected ssNMR, and it gives high quality spectra for both side-chain and backbone protons, and allows quantitative assignments and aids in probing interresidual contacts. Excellent 1H resolution in membrane proteins is obtained, the topology and dynamics of an ion channel were studied. This labelling scheme will open new avenues for the study of challenging proteins by ssNMR. PMID:26555653

  3. A solid-state NMR study of selenium substitution into nanocrystalline hydroxyapatite.

    PubMed

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H?77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  4. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H?77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  5. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning.

    PubMed

    Mroue, Kamal H; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2015-01-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, (1)H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional (1)H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional (1)H/(1)H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct (1)H-(1)H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone. PMID:26153138

  6. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-07-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H-1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone.

  7. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    PubMed Central

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-01-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H−1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone. PMID:26153138

  8. Restoring Resolution in Biological Solid-State NMR under Conditions of Off-Magic-Angle Spinning.

    PubMed

    Sarkar, Riddhiman; Rodriguez Camargo, Diana C; Pintacuda, Guido; Reif, Bernd

    2015-12-17

    Spin-state-selective excitation (S3E) experiments allow the selection of individual transitions in a coupled two spin system. We show that in the solid state, the dipole-dipole interaction (DD) between (15)N and (1)H in a (1)H-(15)N bond and the chemical shift anisotropy (CSA) of (15)N in an amide moiety mutually cancel each other for a particular multiplet component at high field, when the sample is spun off the magic angle (Arctan [√2] = 54.74°). The accuracy of the adjustment of the spinning angle is crucial in conventional experiments. We demonstrate that for S3E experiments, the requirement to spin the sample exactly at the magic angle is not mandatory. Applications of solid state NMR in narrow bore magnets will be facilitated where the adjustment of the magic angle is often difficult. The method opens new perspectives for the development of schemes to determine distances and to quantify dynamics in the solid state. PMID:26641130

  9. Solid-state 51V NMR investigation of the intercalation of alkylamines into layered alpha-vanadyl phosphate.

    PubMed

    Zhu, Jianfeng; Huang, Yining

    2010-06-15

    The intercalation behavior of layered alpha-phase vanadyl phosphate, alpha-VOPO(4).2H(2)O (alpha-VP), with alkylamine was investigated by (51)V solid-state NMR in combination with powder XRD. The XRD results show that the amines form bimolecular layers upon intercalation. For the intercalation with short chain amines (propylamine, pentylamine, and hexylamine), the C-C chain of the amines is tilted with respect to the inorganic basal plane. The amines with a longer alkyl chain (dodecylamine and hexadecylamine) tend to adopt an orientation where the C-C chain direction is perpendicular to the VP layer. For the amine with eight carbon atoms (octylamine), the intercalation results in two coexisting phases with different chain orientations. (51)V solid-state NMR was used to directly probe the effect of intercalation on the metal center environments. Both (51)V magic-angle spinning and static spectra of alpha-VP intercalated with different amines were obtained at different magnetic fields, and they are sensitive to intercalation. The intercalation induces the (51)V isotropic chemical shift to move toward deshielded direction. (51)V chemical shielding parameters such as the span are sensitive to the orientation of the amine chain with respect to the VP basal plane. For the V centers interacting with the amines having a tilted orientation, the (51)V span gradually decreases with increasing alkyl chain length. However, the span of the (51)V atoms interacting with the amines perpendicular to the VP layer is larger and independent of the length of the alkyl chain. The (51)V NMR data indicate that for the alpha-VPs intercalated with long-chain amines, such as dodecylamine and hexadecylamine, the amines can assume both tilted and perpendicular orientations. PMID:20356027

  10. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.

    PubMed

    Lewandowski, Jzef Romuald

    2013-09-17

    Dynamics are intimately linked to protein stability and play a crucial role in important biological processes, such as ligand binding, allosteric regulation, protein folding, signaling, and enzymatic catalysis. Solid-state NMR relaxation measurements allow researchers to determine the amplitudes, time scales, and under favorable conditions, directionality of motions at atomic resolution over the entire range of dynamic processes from picoseconds to milliseconds. Because this method allows researchers to examine both the amplitudes and time scales of motions in this range, they can link different tiers of protein motions in protein energy landscapes. As a result, scientists can better understand the relationships between protein motions and functions. Such studies are possible both with the primary targets of solid-state NMR studies, such as amyloid fibrils, membrane proteins, or other heterogeneous systems, and others that researchers typically study by solution NMR and X-ray crystallography. In addition, solid-state NMR, with the absence of tumbling in solution, eliminates the intrinsic size limitation imposed by slow tumbling of large proteins. Thus, this technique allows researchers to characterize interdomain and intermolecular interactions in large complexes at the atomic scale. In this Account, we discuss recent advances in solid-state relaxation methodology for studying widespread site-specific protein dynamics. We focus on applications involving magic angle spinning, one of the primary methods used in high-resolution solid-state NMR. We give an overview of challenges and solutions for measuring (15)N and (13)C spin-lattice relaxation (R1) to characterize fast picosecond-nanosecond motions, spin-lattice in the rotating frame (R1?), and other related relaxation rates for characterization of picosecond-millisecond protein motions. In particular, we discuss the problem of separating incoherent effects caused by random motions from coherent effects arising from incomplete averaging of orientation-dependent NMR interactions. We mention a number of quantitative studies of protein dynamics based on solid-state relaxation measurements. Finally, we discuss the potential use of relaxation measurements for extracting the directionality of motions. Using the (15)N and (13)C R1 and R1? measurements, we illustrate the backbone and side-chain dynamics in the protein GB1 and comment on this emerging dynamic picture within the context of data from solution NMR measurements and simulations. PMID:23621579

  11. Solid state 13C NMR characterisation study on fourth generation Ziegler-Natta catalysts.

    PubMed

    Heikkinen, Harri; Liitiä, Tiina; Virkkunen, Ville; Leinonen, Timo; Helaja, Tuulamari; Denifl, Peter

    2012-01-01

    In this study, solid state (13)C NMR spectroscopy was utilised to characterize and identify the metal-ester coordination in active fourth generation (phthalate) Ziegler-Natta catalysts. It is known that different donors affect the active species in ZN catalysts. However, there is still limited data available of detailed molecular information how the donors and the active species are interplaying. One of the main goals of this work was to get better insight into the interactions of donor and active species. Based on the anisotropy tensor values (δ(11), δ(22), δ(33)) from low magic-angle spinning (MAS) (13)C NMR spectra in combination with chemical shift anisotropy (CSA) calculations (δ(aniso) and η), both the coordinative metal (Mg/Ti) and the symmetry of this interaction between metal and the internal donor in the active catalyst (MgCl(2)/TiCl(4)/electron donor) system could be identified. PMID:22425229

  12. High resolution solid state 2D NMR analysis of biomass and biochar.

    PubMed

    Le Brech, Yann; Delmotte, Luc; Raya, Jesus; Brosse, Nicolas; Gadiou, Roger; Dufour, Anthony

    2015-01-20

    Solid state NMR methods are required to analyze biomass as a function of its chemical or biological treatment for biofuels, chemicals, or biochar production. The native polymers network in lignocellulosic biomass and other solid materials, such as coal, coke, or biochar, can hardly be analyzed by liquid state NMR due to their poor swelling ability without chemical modification. A (1)H-(13)C two-dimensional heteronuclear correlation (HETCOR) experiment with frequency-switched Lee-Goldburg (FSLG) irradiation is performed on a high field spectrometer (750 MHz). This method leads to previously unattained resolution for biomass and biochar and offers a unique ability to reveal their chemical composition. The formation of aromatic moieties from carbohydrates and lignin thermal conversion is clearly distinguished. This method can be applied to all other carbonaceous materials. PMID:25521946

  13. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts

    SciTech Connect

    Rapp, Jennifer; Huang, Yulin; Natella, Michael; Cai, Yang; Lin, Victor S.-Y.; Pruski, Marek

    2009-01-04

    A detailed study of the chemical structure of mesoporous silica catalysts containing rhodium ligands and nanoparticles (RhP-MSN) was carried out by multi-dimensional solid-state NMR techniques. The degree of functionalization of the rhodium-phosphinosilyl complex to the surface of the RhP-MSN channels was determined by {sup 29}Si NMR experiments. The structural assignments of the rhodium-phosphinosilyl complex were unambiguously determined by employing the novel, indirectly detected heteronuclear correlation ({sup 13}C-{sup 1}H and {sup 31}P-{sup 1}H idHETCOR) techniques, which indicated that oxidation of the attached phosphinosilyl groups and detachment of Rh was enhanced upon syngas conversion.

  14. Solid-state NMR investigation of effect of fluorination and methylation on prednisolone conformation.

    PubMed

    Carillo, Kathleen D; Arco, Susan; Wang, Cheng-Chung; Tzou, Der-Lii M

    2015-12-01

    Prednisolone (Prd) is a polymorphous synthetic corticosteroid that has three crystalline forms mediated by different solvents. In this study, we have demonstrated that solid-state {(1)H}(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy is able to resolve the effects of methylation and fluorination on the conformation of the steroidal rings in Prd. Two compounds were chosen for the study, 6-?-methylprednisolone (Prd-6M) and 6-?-fluoroprednisolone (Prd-6F). The (13)C signals of Prd-6F showed primarily doublet patterns, with splittings of 40-380Hz, indicating multiple ring conformations, whereas the (13)C signals of Prd and Prd-6M exhibited a singlet pattern, indicating a unique conformation. Using evidence from chemical shift deviation and anisotropy analysis, we have demonstrated by solid-state NMR that Prd-6F adopts two different steroidal ring conformations that are different from that of Prd-6M, and less similar to that of unsubstituted Prd. PMID:26476185

  15. Peptidoglycan Architecture of Gram-positive Bacteria by Solid-State NMR

    PubMed Central

    Kim, Sung Joon; Chang, James; Singh, Manmilan

    2014-01-01

    Peptidoglycan is an essential component of cell wall in Gram-positive bacteria with unknown architecture. In this review, we summarize solid-state NMR approaches to address some of the unknowns in the Gram-positive bacteria peptidoglycan architecture: 1) peptidoglycan backbone conformation, 2) PG-lattice structure, 3) variations in the peptidoglycan architecture and composition, 4) the effects of peptidoglycan bridge-length on the peptidoglycan architecture in Fem mutants, 5) the orientation of glycan strands respect to the membrane, and 6) the relationship between the peptidoglycan structure and the glycopeptide antibiotic mode of action. Solid-state NMR analyses of S. aureus cell wall show that peptidoglycan chains are surprisingly ordered and densely packed. The peptidoglycan disaccharide backbone adopts 4-fold screw helical symmetry with the disaccharide unit periodicity of 40 . Peptidoglycan lattice in S. aureus cell wall is formed by cross-linked PG stems that have parallel orientations. The structural characterization of Fem-mutants of S. aureus with varying lengths of bridge structures suggests that the PG-bridge length is an important determining factor for the PG architecture. PMID:24915020

  16. ?-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    PubMed Central

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Khn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly ?-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified ?-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of ?-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a ?-helical architecture, in which 18 ?-strand segments are arranged in six consecutive windings of a ?-helix. PMID:25550503

  17. Broadband Heteronuclear Solid-State NMR Experiments by Exponentially Modulated Dipolar Recoupling without Decoupling

    PubMed Central

    Nielsen, Anders B.; Straasø, Lasse A.; Nieuwkoop, Andrew J.; Rienstra, Chad M.; Bjerring, Morten; Nielsen, Niels Chr.

    2010-01-01

    We present a novel solid-state NMR method for heteronuclear dipolar recoupling without decoupling. The method, which introduces the concept of exponentially modulated rf fields, provides efficient broadband recoupling with large flexibility with respect to hetero- or homonuclear applications, sample spinning frequency, and operation without the need for high-power 1H decoupling. For previous methods, the latter has been a severe source of sample heating which may cause detoriation of costly samples. The so-called EXPonentially mOdulated Recoupling Technique (EXPORT) is described analytically and numerically, and demonstrated experimentally by 1D 13C spectra and 2D 13C-15N correlation spectra of 13C,15N-labeled samples of GB1, ubiquitin, and fibrils of the SNNFGAILSS fragment of amylin. Through its flexible operation, robustness, and strong performance, it is anticipated that EXPORT will find immediate application for both hetero- and homonuclear dipolar recoupling in solid-state NMR of 13C,15N-labeled proteins and compounds of relevance in chemistry. PMID:20689682

  18. Experimental aspects in acquisition of wide bandwidth solid-state MAS NMR spectra of low-? nuclei with different opportunities on two commercial NMR spectrometers.

    PubMed

    Jakobsen, Hans J; Bildse, Henrik; Gan, Zhehong; Brey, William W

    2011-08-01

    The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-? nuclei, using (14)N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1T and Bruker, 19.6T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50? cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-? nuclei on the two spectrometers by careful evaluation of the length for the 50? probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth (Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1T) in several exploratory wide bandwidth (14)N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed (14)N MAS spectra correspondingly acquired at 19.6T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers. PMID:21704544

  19. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts. PMID:21805064

  20. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Schmidt-Rohr, Klaus

    2014-02-01

    A simple new method is presented that yields quantitative solid-state magic-angle spinning (MAS) 13C NMR spectra of organic materials with good signal-to-noise ratios. It achieves long (>10 ms) cross polarization (CP) from 1H without significant magnetization losses due to relaxation and with a moderate duty cycle of the radio-frequency irradiation, by multiple 1-ms CP periods alternating with 1H spin-lattice relaxation periods that repolarize the protons. The new method incorporates previous techniques that yield less distorted CP/MAS spectra, such as a linear variation (ramp) of the radio-frequency field strength, and it overcomes their main limitation, which is T1? relaxation of the spin-locked 1H magnetization. The ramp of the radio-frequency field strength and the asymptotic limit of cross polarization makes the spectral intensity quite insensitive to the exact field strengths used. The new multiCP pulse sequence is a drop-in replacement for previous CP methods and produces no additional data-processing burden. Compared to the only reliable quantitative 13C NMR method for unlabeled solids previously available, namely direct-polarization NMR, the measuring time is reduced by more than a factor of 50, enabling higher-throughput quantitative NMR studies. The new multiCP technique is validated with 14-kHz MAS on amino-acid derivatives, plant matter, a highly aromatic humic acid, and carbon materials made by low-temperature pyrolysis.

  1. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization.

    PubMed

    Johnson, Robert L; Schmidt-Rohr, Klaus

    2014-02-01

    A simple new method is presented that yields quantitative solid-state magic-angle spinning (MAS) (13)C NMR spectra of organic materials with good signal-to-noise ratios. It achieves long (>10ms) cross polarization (CP) from (1)H without significant magnetization losses due to relaxation and with a moderate duty cycle of the radio-frequency irradiation, by multiple 1-ms CP periods alternating with (1)H spin-lattice relaxation periods that repolarize the protons. The new method incorporates previous techniques that yield less distorted CP/MAS spectra, such as a linear variation ("ramp") of the radio-frequency field strength, and it overcomes their main limitation, which is T1? relaxation of the spin-locked (1)H magnetization. The ramp of the radio-frequency field strength and the asymptotic limit of cross polarization makes the spectral intensity quite insensitive to the exact field strengths used. The new multiCP pulse sequence is a "drop-in" replacement for previous CP methods and produces no additional data-processing burden. Compared to the only reliable quantitative (13)C NMR method for unlabeled solids previously available, namely direct-polarization NMR, the measuring time is reduced by more than a factor of 50, enabling higher-throughput quantitative NMR studies. The new multiCP technique is validated with 14-kHz MAS on amino-acid derivatives, plant matter, a highly aromatic humic acid, and carbon materials made by low-temperature pyrolysis. PMID:24374751

  2. Solid state 19F NMR parameters of fluorine-labeled amino acids. Part II: Aliphatic substituents

    NASA Astrophysics Data System (ADS)

    Grage, Stephan L.; Drr, Ulrich H. N.; Afonin, Sergii; Mikhailiuk, Pavel K.; Komarov, Igor V.; Ulrich, Anne S.

    2008-03-01

    A representative set of amino acids with aliphatic 19F-labels has been characterized here, following up our previous compilation of NMR parameters for single 19F-substituents on aromatic side chains. Their isotropic chemical shifts, chemical shift tensor parameters, intra-molecular 19F dipole-dipole couplings and temperature-dependent T1 and T2 relaxation times were determined by solid state NMR on twelve polycrystalline amino acid samples, and the corresponding isotropic 19F chemical shifts and scalar couplings were obtained in solution. Of particular interest are amino acids carrying a trifluoromethyl-group, because not only the 19F chemical shift but also the intra-CF 3 homonuclear dipolar coupling can be used for structural studies of 19F-labeled peptides and proteins. The CF 3-groups are further compared with CH 2F-, CD 2F-, and CD 3-groups, using both 19F and 2H NMR to describe their motional behavior and to examine the respective linebroadening effects of the protonated and deuterated neighbors. We have also characterized two unnatural amino acids in which a CF 3-label is rigidly connected to the backbone by a phenyl or bicyclopentyl moiety, and which are particularly well suited for structure analysis of membrane-bound polypeptides. The 19F NMR parameters of the polycrystalline amino acids are compared with data from the correspondingly labeled side chains in synthetic peptides.

  3. Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using 31P Solid-State NMR Spectroscopy

    PubMed Central

    Yang, Yu; Yao, Hongwei

    2015-01-01

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology. PMID:25815701

  4. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    PubMed Central

    Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution. PMID:22986689

  5. Applications of Solid State NMR to the Study of Molecular Structure

    NASA Astrophysics Data System (ADS)

    Curtis, Ronald Dean

    This thesis illustrates several applications of dilute spin I = 1over2 solid state nmr spectroscopy to the study of molecular structure in systems of chemical interest. Specifically, the compounds studied include benzylideneaniline and several related imines, the first stable iminophosphenium cation containing a N,P triple bond and several tetracyclines. The first two applications describe the use of dipolar-chemical shift nmr of "isolated" spin-pairs to fully characterize chemical shift tensors. For example, the carbon and nitrogen shift tensors of the C=N linkage of the Schiff base benzylideneaniline have been completely specified. The most shielded principal component of both carbon and nitrogen shift tensors is approximately perpendicular to the imine fragment. For the imine carbon, the intermediate component of the shift tensor is directed approximately along the C=N bond whereas the corresponding component of the nitrogen shift tensor is oriented along the direction of the nitrogen lone pair. Examination of the nitrogen chemical shift parameters for several related imines suggests that variations in the least shielded principal component are mainly responsible for changes in the nitrogen shieldings in the imine system. For the N,P moiety of the iminophosphenium cation, the most shielded principal component of both nitrogen and phosphorus tensors is oriented along the N,P bond axis. Comparison of both shift tensors with those of related compounds suggests that the electronic environment surrounding the N,P moiety is similar to other systems containing a formal triple bond. The final application section demonstrates the utility of high-resolution ^{13} C and ^{15}N cp/mas nmr for studying the molecular structure of solid tetracycline antibiotics. Comparison of ^{15} C chemical shifts in the solid state to those determined in (CD_3)_2SO solutions indicates for the first time that the structural integrity of the A ring of the tetracyclines is maintained in solution.

  6. Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy.

    PubMed

    Zhang, Junying; Higashi, Kenjirou; Limwikrant, Waree; Moribe, Kunikazu; Yamamoto, Keiji

    2012-02-28

    The molecular state of colloidal probucol nanoparticles with additives was evaluated by (13)C in situ solid-state NMR spectroscopy. The nanoparticles were obtained by dispersing a ternary co-ground mixture of probucol/polyvinylpyrrolidon (PVP)/sodium dodecyl sulfate (SDS) in water. Their mean particle size was found to be approximately 150 nm by dynamic light scattering and cryogenic-scanning electron microscopy measurements. The results of the (13)C in situ solid-state NMR spectroscopy showed that probucol existed in the crystalline state (form I) in water. (13)C liquid-state NMR results indicated that PVP and SDS interacted with probucol in water. Their broad signals suggested that the surface interaction of the probucol nanocrystal with PVP and SDS stabilized the suspension. In addition, a freeze-dried sample of the suspension was studied by (13)C solid-state NMR and powder X-ray diffraction experiments, which confirmed the presence of the probucol nanocrystals. The combination of the in situ solid-state, solid-state, and liquid-state NMR measurement results provided molecular-level insights about the role of intermolecular interactions in the design of nanoformulations. PMID:22138607

  7. Solid state NMR study of SEI formation in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Dachun

    Recently, rechargeable lithium ion batteries, which offer high energy density and long cycle life, are in great demand as power sources for our mobile electronic society. The formation of a solid electrolyte interphase (SEI) on the surface of electrodes in lithium ion batteries plays an essential role in their performance. This thesis presents solid state NMR and MAS NMR results on the SEI, which contribute to our understanding of SEI formation on both cathodes and anodes. This thesis is organized as following: Chapter 1 surveys the history of batteries and the challenges to further development of the lithium ion battery. Fundamental aspects and SEI formation mechanisms are also included in Chapter l. Chapter 2 deals with the principles and experimental techniques of solid state NMR. Chapter 3 presents studies of SEI formation on anode and cathode in lithium ion batteries using electrochemical impedance spectroscopy (EIS) and NMR. The results provide EIS and NMR evidence that cells containing electrolytes with high EC content display less irreversible capacity after high temperature storage. The irreversible capacity is attributed to SEI growth on electrode surfaces. NMR results on cathodes, on the other hand, imply that the presence of Ni in the cathode may reduce cell performance due to the oxidation of Ni 3+ to Ni4+. Our simulations show that a lower EC/DMC ratio is associated with a smaller SEI intensity for the cathode and higher intensity for the anode. Chapter 4 discusses the effect of temperature on SEI formation on anodes and cathodes. NMR measurements show that MCMB graphite based anodes exhibit high stability no chemical shift is evident over a wide temperature range. On cathodes, however, NMR does reveal changes in SEI intensity as a function of temperature. These changes are believed to be the result of decomposition of the SEI. Evidently, then, changes in the performance of the cell as a factor of temperature are, at least in part, due to changes in the SEI with temperature. In Chapter 5 we report on the use of NMR to study the effect of electrolyte/solvent and electrode structure on SEI formation. The intensity of the SEI in a cell containing LiBOB electrolyte with EC and DEC is greater than that in a cell with LiPF6 electrolyte with EC and DMC. This implies that the cell containing LiBOB electrolyte with EC and DEC is more stable. From the analysis of NMR of the cathode, it was found that it is easier to form SEI in layered structure cathode than in a spinel structure, suggesting that spinel structure materials may be better choices as cathode in lithium ion batteries. Evidently, then, the choice of electrolyte/solvent materials and electrode materials are key factors in determining the performance of lithium ion batteries.

  8. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR.

    PubMed

    Misiewicz, Julia; Afonin, Sergii; Grage, Stephan L; van den Berg, Jonas; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2015-04-01

    Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. (19)F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively (19)F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. (31)P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, (2)H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization. PMID:25616492

  9. Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2016-03-01

    The formation mechanism of drug nanoparticles was investigated using solid-state nuclear magnetic resonance (NMR) techniques for the efficient discovery of an optimized nanoparticle formulation. The cogrinding of nifedipine (NIF) with polymers, including hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), and sodium dodecyl sulfate (SDS) was performed to prepare the NIF nanoparticle formulations. Then, solid-state NMR relaxometry was used for the nanometer-order characterization of NIF in the polymer matrix. Solid-state NMR measurements revealed that the crystal size of NIF was reduced to several tens of nanometers with amorphization of NIF by cogrinding with HPMC and SDS for 100 min. Similarly, the size of the NIF crystal was reduced to less than 90 nm in the 40 min ground mixture of NIF/PVP/SDS. Furthermore, 100 min grinding of NIF/PVP/SDS induced amorphization of almost all the NIF crystals followed by nanosizing. The hydrogen bond between NIF and PVP led to the efficient amorphization of NIF in the NIF/PVP/SDS system compared with NIF/HPMC/SDS system. The efficient nanosizing of the NIF crystal in the solid state, revealed by the solid-state NMR relaxation time measurements, enabled the formation of large amounts of NIF nanoparticles in water followed by the polymer dissolution. In contrast, excess amorphization of the NIF crystals failed to efficiently prepare the NIF nanoparticles. The solid-state characterization of the crystalline NIF revealed good correlation with the NIF nanoparticles formation during aqueous dispersion. Furthermore, the solid-state NMR measurements including relaxometry successfully elucidated the nanometer-order dispersion state of NIF in polymer matrix, leading to the discovery of optimized conditions for the preparation of suitable drug nanoparticles. PMID:26855230

  10. Molecular ordering of mixed surfactants in mesoporous silicas: A solid-state NMR study

    SciTech Connect

    Kobayashi, Takeshi; Mao, Kanmi; Wang, Shy-Guey; Lin, Victor S.-Y.; Pruski, Marek

    2011-02-17

    The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by {sup 1}H-{sup 1}H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. {sup 1}H-{sup 29}Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.

  11. Three Structural Roles for Water in Bone Observed by Solid-State NMR

    PubMed Central

    Wilson, Erin E.; Awonusi, Ayorinde; Morris, Michael D.; Kohn, David H.; Tecklenburg, Mary M. J.; Beck, Larry W.

    2006-01-01

    Hydrogen-bearing species in the bone mineral environment were investigated using solid-state NMR spectroscopy of powdered bone, deproteinated bone, and B-type carbonated apatite. Using magic-angle spinning and cross-polarization techniques three types of structurally-bound water were observed in these materials. Two of these water types occupy vacancies within the apatitic mineral crystal in synthetic carbonated apatite and deproteinated bone and serve to stabilize these defect-containing crystals. The third water was observed at the mineral surface in unmodified bone but not in deproteinated bone, suggesting a role for this water in mediating mineral-organic matrix interactions. Direct evidence of monohydrogen phosphate in a 1H NMR spectrum of unmodified bone is presented for the first time. We obtained clear evidence for the presence of hydroxide ion in deproteinated bone by 1H MAS NMR. A 1H-31P heteronuclear correlation experiment provided unambiguous evidence for hydroxide ion in unmodified bone as well. Hydroxide ion in both unmodified and deproteinated bone mineral was found to participate in hydrogen bonding with neighboring water molecules and ions. In unmodified bone mineral hydroxide ion was found, through a 1H-31P heteronuclear correlation experiment, to be confined to a small portion of the mineral crystal, probably the internal portion. PMID:16500963

  12. Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR

    PubMed Central

    2015-01-01

    We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368

  13. Paramagnetic shifts in solid-state NMR of proteins to elicit structural information

    PubMed Central

    Balayssac, Stphane; Bertini, Ivano; Bhaumik, Anusarka; Lelli, Moreno; Luchinat, Claudio

    2008-01-01

    The recent observation of pseudocontact shifts (pcs) in 13C high-resolution solid-state NMR of paramagnetic proteins opens the way to their application as structural restraints. Here, by investigating a microcrystalline sample of cobalt(II)-substituted matrix metalloproteinase 12 [CoMMP-12 (159 AA, 17.5 kDa)], it is shown that a combined strategy of protein labeling and dilution of the paramagnetic species (i.e., 13C-,15N-labeled CoMMP-12 diluted in unlabeled ZnMMP-12, and 13C-,15N-labeled ZnMMP-12 diluted in unlabeled CoMMP-12) allows one to easily separate the pcs contributions originated from the protein internal metal (intramolecular pcs) from those due to the metals in neighboring proteins in the crystal lattice (intermolecular pcs) and that both can be used for structural purposes. It is demonstrated that intramolecular pcs are significant structural restraints helpful in increasing both precision and accuracy of the structure, which is a need in solid-state structural biology nowadays. Furthermore, intermolecular pcs provide unique information on positions and orientations of neighboring protein molecules in the solid phase. PMID:18988744

  14. Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR.

    PubMed

    Pinon, Arthur C; Rossini, Aaron J; Widdifield, Cory M; Gajan, David; Emsley, Lyndon

    2015-11-01

    We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as (1)H-(13)C and (1)H-(15)N HETCOR or (13)C-(13)C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368

  15. Structural studies of methyl brevifolincarboxylate in solid state by means of NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Wolniak, Micha?; Tomczyk, Micha?; Gudej, Jan; Wawer, Iwona

    2006-12-01

    Methyl brevifolincarboxylate isolated from the herb of Potentilla argentea L. (Rosaceae) is a representative of the naturally occurring polyphenols. The compound is of pharmaceutical interest mainly because of its antiviral and antioxidant properties. 13C NMR spectra were recorded for solution and solid phase. 13C CPMAS spectra were assigned by comparison with solution data, dipolar dephasing and short contact time experiments. The correctness of assignments was verified by GIAO DFT calculations of shielding constants. The differences between the solution and solid state chemical shift values were explained in terms of orientation of OH groups and intramolecular hydrogen bonds. The splitting of the C1 dbnd O resonance shows that there exists a polymorphism in the solid phase, which might be due to the formation of intramolecular hydrogen bond involving carbonyl or methoxy oxygen (i.e. C10 sbnd OH⋯O dbnd C or C10 sbnd OH⋯OCH 3).

  16. Solid-state NMR comparison of various spiders' dragline silk fiber.

    PubMed

    Creager, Melinda S; Jenkins, Janelle E; Thagard-Yeaman, Leigh A; Brooks, Amanda E; Jones, Justin A; Lewis, Randolph V; Holland, Gregory P; Yarger, Jeffery L

    2010-08-01

    Major ampullate (dragline) spider silk is a coveted biopolymer due to its combination of strength and extensibility. The dragline silk of different spiders have distinct mechanical properties that can be qualitatively correlated to the protein sequence. This study uses amino acid analysis and carbon-13 solid-state NMR to compare the molecular composition, structure, and dynamics of major ampullate dragline silk of four orb-web spider species ( Nephila clavipes , Araneus gemmoides , Argiope aurantia , and Argiope argentata ) and one cobweb species ( Latrodectus hesperus ). The mobility of the protein backbone and amino acid side chains in water exposed silk fibers is shown to correlate to the proline content. This implies that regions of major ampullate spidroin 2 protein, which is the only dragline silk protein with any significant proline content, become significantly hydrated in dragline spider silk. PMID:20593757

  17. Intensity and mosaic spread analysis from PISEMA tensors in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Quine, J. R.; Achuthan, S.; Asbury, T.; Bertram, R.; Chapman, M. S.; Hu, J.; Cross, T. A.

    2006-04-01

    The solid-state NMR experiment PISEMA, is a technique for determining structures of proteins, especially membrane proteins, from oriented samples. One method for determining the structure is to find orientations of local molecular frames (peptide planes) with respect to the unit magnetic field direction, B0. This is done using equations that compute the coordinates of this vector in the frames. This requires an analysis of the PISEMA function and its degeneracies. As a measure of the sensitivity of peptide plane orientations to the data, we use these equations to derive a formula for the intensity function in the powder pattern. With this function and other measures, we investigate the effect of small changes in peptide plane orientations depending on the location of the resonances in the powder pattern spectrum. This gives us an indication of the change in lineshape due to mosaic spread and a way to interpret these in terms of an orientational error bar.

  18. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    SciTech Connect

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling; Smith, Mark E.; Chan, Jerry C.C.

    2010-12-15

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer. -- Graphical abstract: Geopolymer prepared by the sol-gel route has the same spectroscopic properties as the sample prepared from the natural kaolinite. Display Omitted

  19. Efficient solid state NMR powder simulations using SMP and MPP parallel computation.

    PubMed

    Kristensen, Jrgen Holm; Farnan, Ian

    2003-04-01

    Methods for parallel simulation of solid state NMR powder spectra are presented for both shared and distributed memory parallel supercomputers. For shared memory architectures the performance of simulation programs implementing the OpenMP application programming interface is evaluated. It is demonstrated that the design of correct and efficient shared memory parallel programs is difficult as the performance depends on data locality and cache memory effects. The distributed memory parallel programming model is examined for simulation programs using the MPI message passing interface. The results reveal that both shared and distributed memory parallel computation are very efficient with an almost perfect application speedup and may be applied to the most advanced powder simulations. PMID:12713968

  20. A solid-state NMR method to determine domain sizes in multi-component polymer formulations

    NASA Astrophysics Data System (ADS)

    Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon

    2015-12-01

    Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).

  1. A Comparison of NCO and NCA Transfer Methods for Biological Solid-State NMR Spectroscopy

    PubMed Central

    Loening, Nikolaus M.; Bjerring, Morten; Nielsen, Niels Chr.; Oschkinat, Hartmut

    2011-01-01

    Three different techniques (adiabatic passage Hartman-Hahn cross-polarization, optimal control designed pulses, and EXPORT) are compared for transferring 15N magnetization to 13C in solid-state NMR experiments under magic-angle-spinning conditions. We demonstrate that, in comparison to adiabatic passage Hartman-Hahn cross-polarization, optimal control transfer pulses achieve similar or better transfer efficiencies for uniformly-13C,15N labelled samples and are generally superior for samples with non-uniform labeling schemes (such as 1,3- and 2-13C glycerol labeling). In addition, the optimal control pulses typically use substantially lower average RF field strengths and are more robust with respect to experimental variation and RF inhomogeneity. Consequently, they are better suited for demanding samples. PMID:22116035

  2. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    SciTech Connect

    Shaw, Wendy J.

    2015-09-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area..

  3. Specific inclusion mode of guest compounds in the amylose complex analyzed by solid state NMR spectroscopy.

    PubMed

    Tozuka, Yuichi; Takeshita, Aya; Nagae, Ayako; Wongmekiat, Arpansiree; Moribe, Kunikazu; Oguchi, Toshio; Yamamoto, Keiji

    2006-08-01

    The inclusion compound formation between linear amylose of molecular weight 102500 (AS100) and p-aminobenzoic acid (PA) during the sealed-heating process was investigated by powder X-ray diffractometry, infrared spectroscopy and solid state NMR spectroscopy. Sealed-heating of AS100 and PA at 100 degrees C for 6 h provided an inclusion compound with 6(1)-helix structure, while a 7(1)-helix structure was found when sealed-heating was carried out at 150 degrees C for 1 h. The formation of an inclusion compound was not observed when sealed-heating was performed at 50 degrees C for 6 h. The 7(1)-helix inclusion compound maintained its structure even during storage at high temperature while the 6(1)-helix inclusion compound decomposed and returned to the original V(a)-amylose upon heating to 180 degrees C. Quantitative determination revealed that one PA molecule could be included per one helical turn of AS100 for both 6(1)-helix and 7(1)-helix inclusion compounds. Solid state NMR spectroscopy suggested that PA molecules were included in the amylose helix core in the 7(1)-helix inclusion compound, while in the case of 6(1)-helix inclusion compound, PA molecules were accommodated in the interstices between amylose helices. Moreover, the inclusion compound formation by sealed-heating of AS100 was also observed when using PA analogues as guest compounds. The binding ratio of AS100 and PA analogues varied depending on the size of guest molecules. PMID:16880651

  4. Characterization of the Vibrio cholerae Extracellular Matrix: A Top-Down Solid-State NMR Approach

    PubMed Central

    Reichhardt, Courtney; Fong, Jiunn C.N.; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analysis. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using 13C CPMAS and 13C{15N}, 15N{31P}, and 13C{31P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, 15N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. PMID:24911407

  5. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of ?-sheets in Alzheimer's ?-amyloid fibrils

    PubMed Central

    Antzutkin, Oleg N.; Balbach, John J.; Leapman, Richard D.; Rizzo, Nancy W.; Reed, Jennifer; Tycko, Robert

    2000-01-01

    Senile plaques associated with Alzheimer's disease contain deposits of fibrils formed by 39- to 43-residue ?-amyloid peptides with possible neurotoxic effects. X-ray diffraction measurements on oriented fibril bundles have indicated an extended ?-sheet structure for Alzheimer's ?-amyloid fibrils and other amyloid fibrils, but the supramolecular organization of the ?-sheets and other structural details are not well established because of the intrinsically noncrystalline, insoluble nature of amyloid fibrils. Here we report solid-state NMR measurements, using a multiple quantum (MQ) 13C NMR technique, that probe the ?-sheet organization in fibrils formed by the full-length, 40-residue ?-amyloid peptide (A?140). Although an antiparallel ?-sheet organization often is assumed and is invoked in recent structural models for full-length ?-amyloid fibrils, the MQNMR data indicate an in-register, parallel organization. This work provides site-specific, atomic-level structural constraints on full-length ?-amyloid fibrils and applies MQNMR to a significant problem in structural biology. PMID:11069287

  6. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Gnne, Jrn

    2012-09-01

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out. PMID:22801707

  7. Conformational disorder of membrane peptides investigated from solid-state NMR line widths and line shapes.

    PubMed

    Su, Yongchao; Hong, Mei

    2011-09-15

    A challenge in the application of solid-state NMR spectroscopy to membrane peptides and proteins is the relatively broad line widths compared to those for solution NMR spectra. To understand the linewidth contributions to membrane protein NMR spectra, we have measured the inhomogeneous and homogeneous line widths of several well-studied membrane peptides under immobilized conditions. (13)C T(2) relaxation times of uniformly (13)C-labeled residues show that the homogeneous line widths of the peptides are comparable to those of crystalline model compounds under identical (1)H decoupling and magic angle spinning conditions, indicating that the homogeneous line widths are determined by conformation-independent factors, including residual dipolar coupling, J-coupling, and intrinsic T(2) relaxation. However, the membrane peptides exhibit larger apparent line widths than the crystalline compounds, indicating conformational disorder. A cationic cell-penetrating peptide, the human immunodeficiency virus TAT, exhibits the largest apparent line widths, which are about five-fold larger than the homogeneous line widths, while the transmembrane helix of the influenza M2 peptide and the ?-hairpin antimicrobial peptide PG-1 show moderately larger apparent line widths than the crystalline compounds. These results are consistent with the random coil nature of the TAT peptide, which contrasts with the intramolecularly hydrogen bonded M2 and PG-1. Cross peak line shapes of 2D double-quantum correlation spectra show that the conformational disorder can occur at the residue level and can result from three origins, lipid-peptide interaction, intrinsic conformational disorder encoded in the amino acid sequence, and side-chain rotameric averaging. A particularly important lipid-peptide interaction for cationic membrane peptides is guanidinium-phosphate ion pair interaction. Thus, NMR line widths and line shapes are useful for understanding the conformational disorder of membrane peptides and proteins. PMID:21806038

  8. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  9. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  10. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    SciTech Connect

    Hu, Yanyan

    2011-02-07

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm){sup 2}, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of {approx}3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites. Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving quadrupolar spins. Broadband high resolution NMR of spin-1/2 nuclei has been accomplished by the adaptation of the magic angle turning (MAT) method to fast magic angle spinning, termed fast MAT, by solving technical problems such as off resonance effects. Fast MAT separates chemical shift anisotropy and isotropic chemical shifts over a spectral range of {approx}1.8 {gamma}B{sub 1} without significant distortions. Fast MAT {sup 125}Te NMR has been applied to study technologically important telluride materials with spectra spreading up to 190 kHz. The signal-to-noise ratio of the spectra is significantly improved by using echo-matched Gaussian filtering in offline data processing. The accuracy of the measured distances between spin-1/2 and quadrupolar nuclei with methods such as SPIDER and REAPDOR has been improved by compensating for the fast longitudinal quadrupolar relaxation on the sub-millisecond with a modified S{sub 0} pulse sequence. Also, the T1Q effect on the spin coherence and its spinning speed dependency has been explored and documented with analytical and numerical simulations as well as experimental measurements.

  11. Structural Analysis of Nanoscale Self-Assembled Discoidal Lipid Bilayers by Solid-State NMR Spectroscopy

    PubMed Central

    Li, Ying; Kijac, Aleksandra Z.; Sligar, Stephen G.; Rienstra, Chad M.

    2006-01-01

    Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly 13C,15N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS 13C-13C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their 13C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and 13C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes. PMID:16905610

  12. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-01

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  13. Frequency-swept pulse sequences for 19F heteronuclear spin decoupling in solid-state NMR.

    PubMed

    Chandran, C Vinod; Madhu, P K; Wormald, Philip; Bräuniger, Thomas

    2010-10-01

    Heteronuclear spin decoupling pulse sequences in solid-state NMR have mostly been designed and applied for irradiating 1H as the abundant nucleus. Here, a systematic comparison of different methods for decoupling 19F in rigid organic solids is presented, with a special emphasis on the recently introduced frequency-swept sequences. An extensive series of NMR experiments at different MAS frequencies was conducted on fluorinated model compounds, in combination with large sets of numerical simulations. From both experiments and simulations it can be concluded that the frequency-swept sequences SWf-TPPM and SWf-SPINAL deliver better and more robust spin decoupling than the original sequences SPINAL and TPPM. Whereas the existence of a large chemical shift anisotropy and isotropic shift dispersion for 19F does compromise the decoupling efficiency, the relative performance hierarchy of the sequences remains unaffected. Therefore, in the context of rigid organic solids under moderate MAS frequencies, the performance trends observed for 19F decoupling are very similar to those observed for 1H decoupling. PMID:20729111

  14. Recoupling in solid state NMR using ? prepared states and phase matching.

    PubMed

    Lin, James; Griffin, R G; Khaneja, Navin

    2011-10-01

    The paper describes two-dimensional solid state NMR experiments that use powdered dephased antiphase coherence (? preparation) to encode chemical shifts in the indirect dimension. Both components of this chemical shift encoded gamma-prepared states can be refocused into inphase coherence by a recoupling element. This helps to achieve sensitivity enhancement in 2D NMR experiments by quadrature detection. The powder dependence of the gamma-prepared states allows for manipulating them by suitable insertion of delays in the recoupling periods. This helps to design experiments that suppress diagonal peaks in 2D spectra, leading to improved resolution. We describe some new phase modulated heteronuclear and homonuclear recoupling pulse sequences that simplify the implementation of the described experiments based on ? prepared states. Recoupling in the heteronuclear spin system is achieved by matching the difference in the amplitude of the sine/cosine modulated phase on the two rf-channels to the spinning frequency while maintaining the same power on the two rf-channels. PMID:21889380

  15. Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides.

    PubMed

    Zinkevich, T; Venderbosch, B; Jaspers, M; Kouwer, P H J; Rowan, A E; van Eck, E R H; Kentgens, A P M

    2016-04-01

    In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol-to-gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non-damaging wound dressing. To utilize PICP in biomedical applications, understanding of the origin of the gelation process is needed, but this is experimentally difficult because of the notoriously low gelator concentration in combination with the slow polymer dynamics in the sample. This paper describes a detailed characterization of the dried state of PICPs by solid-state NMR measurements. Both the (13) C and the (1) H NMR resonances were assigned using a combination of 1D cross-polarization magic angle spinning, 2D (13) C-(1) H heteronuclear correlation spectra and (1) H-(1) H single quantum-double quantum experiments. In addition, the chemical groups involved in dipolar interaction with each other were used to discuss the dynamics and spatial conformation of the polymer. In contrast to other PICP polymers, two resonances for the backbone carbon are observed, which are present in equal amounts. The possible origin of these resonances is discussed in the last section of this work. The data obtained during the current studies will be further used in elucidating mechanisms of the bundling and gelation. A comprehensive picture will make it possible to tailor polymer properties to meet specific needs in different applications. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26559660

  16. Optimizing Oriented Planar-Supported Lipid Samples for Solid-State Protein NMR

    PubMed Central

    Rainey, Jan K.; Sykes, Brian D.

    2005-01-01

    Sample orientation relative to the static magnetic field of an NMR spectrometer allows study of membrane proteins in the lipid bilayer setting. The straightforward preparation and handling of extremely thin mica substrates with consistent surface properties has prompted us to examine oriented phospholipid bilayer and hexagonal phases on mica. The spectral characteristics of oriented lipid samples formed on mica are as good as or better than those on glass. Nine solvents with varying dielectric constants were used to cast lipid films or for vesicle spreading; film characteristics were then compared, and static solid-state 31P-NMR was used to characterize the degree of orientation of the hydrated lipid species. Lipids with four headgroup chemistries were tested: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Solvent affected orientation of POPG, DOPA, and DOPE, but not POPC. Film characteristics varied with solvent, with ramifications for producing homogeneous oriented lipid samples. POPC was used to optimize the amount of lipid per substrate and compare hydration methods. POPG did not orient reproducibly, whereas POPG-POPC mixtures did. DOPA showed 12 oriented states depending upon hydration level and deposition method. DOPE formed an oriented hexagonal phase that underwent a reversible temperature-induced phase transition to the oriented bilayer phase. PMID:16085766

  17. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR*

    PubMed Central

    Shi, Chaowei; Fricke, Pascal; Lin, Lin; Chevelkov, Veniamin; Wegstroth, Melanie; Giller, Karin; Becker, Stefan; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a recently discovered class of cytoskeletal proteins of which no atomic-resolution structure has been reported thus far. The bacterial cytoskeleton plays an essential role in a wide range of processes, including morphogenesis, cell division, and motility. Among the cytoskeletal proteins, the bactofilins are bacteria-specific and do not have a eukaryotic counterpart. The bactofilin BacA of the species Caulobacter crescentus is not amenable to study by x-ray crystallography or solution nuclear magnetic resonance (NMR) because of its inherent noncrystallinity and insolubility. We present the atomic structure of BacA calculated from solid-state NMR–derived distance restraints. We show that the core domain of BacA forms a right-handed β helix with six windings and a triangular hydrophobic core. The BacA structure was determined to 1.0 Å precision (heavy-atom root mean square deviation) on the basis of unambiguous restraints derived from four-dimensional (4D) HN-HN and 2D C-C NMR spectra. PMID:26665178

  18. Oriented bilayers of a proteolipid complex, Annexin V phospholipids, for solid state NMR analyses

    NASA Astrophysics Data System (ADS)

    Saurel, O.; Demange, P.; Milon, A.

    1998-02-01

    We were able to obtain oriented bilayers in the presence of annexin V (35 kDa) and to measure structural and dynamic parameters. NMR results obtained so far show that annexin does not affect the structure of the membrane but modifies the dynamics of the phospholipids (T2e decrease). Our new method to prepare oriented biological samples, based on the preparation of small unilamellar proteolipid vesicles in biological buffers, should be suitable for any membrane protein phospholipid complex and for solid state NMR or neutron diffraction experiments. La prparation de petites vsicules proto-lipidiques dans un tampon physiologique, nous a permis d'obtenir des bicouches orientes en prsence d'annexine V (35 kDa) et de mesurer les paramtres structuraux et dynamiques de ce complexe protolipidique. Les rsultats obtenus par RMN du solide montrent que l'annexine n'affecte pas la structure en bicouche de la membrane mais modifie la dynamique des phospholipides (diminution du temps de relaxation T2e). Cette nouvelle mthode de prparation d'chantillons orients peut tre applicable tout complexe protine-phospholipides pour des tudes par RMN l'tat solide ou par diffraction des neutrons.

  19. 13C and 15N solid state NMR of piezoelectric nylons

    NASA Astrophysics Data System (ADS)

    Mathias, Lon J.; Johnson, C. G.; Steadman, Scott J.

    1993-07-01

    Solid state nuclear magnetic resonance (NMR) has been shown to be a unique spectroscopic tool for determining molecular composition, crystallinity, packing, orientation and motion in as-obtained and end-use materials. We have developed several methods for evaluating the molecular-level properties and behavior of polymeric materials, especially piezoelectric nylons. Analysis of nylon 7 homopolymer under various sample treatment histories related to poling and generation of piezoelectric properties allows qualitative evaluation of the two main types of crystal forms present, the (alpha) -form which appears to be the one responsible for piezoelectric behavior in this polymer, and the (gamma) -form which can co-exist with the (alpha) -form in some samples. Based on the possibility that molecular composition could be used to control crystallinity and microscopic packing, and thereby affect macroscopic properties such as piezoelectricity, we have synthesized and characterized two families of nylon co-polymers consisting of even-odd A-B monomer combinations. We have determined degrees and types of crystallinity for these materials using a combination of thermal, FTIR and NMR, measurements. The molecular-level behavior of these materials is related to observed properties. Evaluation of piezoelectric properties is underway, and initial results are summarized.

  20. Recoupling in solid state NMR using ? prepared states and phase matching

    PubMed Central

    Lin, James; Griffin, R.G.; Khaneja, Navin

    2014-01-01

    The paper describes two-dimensional solid state NMR experiments that use powdered dephased anti-phase coherence (? preparation) to encode chemical shifts in the indirect dimension. Both components of this chemical shift encoded gamma-prepared states can be refocused into inphase coherence by a recoupling element. This helps to achieve sensitivity enhancement in 2D NMR experiments by quadrature detection. The powder dependence of the gamma-prepared states allows for manipulating them by suitable insertion of delays in the recoupling periods. This helps to design experiments that suppress diagonal peaks in 2D spectra, leading to improved resolution. We describe some new phase modulated heteronuclear and homonuclear recoupling pulse sequences that simplify the implementation of the described experiments based on ? prepared states. Recoupling in the heteronuclear spin system is achieved by matching the difference in the amplitude of the sine/cosine modulated phase on the two rf-channels to the spinning frequency while maintaining the same power on the two rf-channels. PMID:21889380

  1. Solid-State NMR Evidence for β-Hairpin Structure within MAX8 Designer Peptide Nanofibers

    PubMed Central

    Leonard, Sarah R.; Cormier, Ashley R.; Pang, Xiaodong; Zimmerman, Maxwell I.; Zhou, Huan-Xiang; Paravastu, Anant K.

    2013-01-01

    MAX8, a designer peptide known to undergo self-assembly following changes in temperature, pH, and ionic strength, has demonstrated usefulness for tissue engineering and drug delivery. It is hypothesized that the self-assembled MAX8 nanofiber structure consists of closed β-hairpins aligned into antiparallel β-sheets. Here, we report evidence from solid-state NMR spectroscopy that supports the presence of the hypothesized β-hairpin conformation within the nanofiber structure. Specifically, our 13C-13C two-dimensional exchange data indicate spatial proximity between V3 and K17, and 13C-13C dipolar coupling measurements reveal proximity between the V3 and V18 backbone carbonyls. Moreover, isotopic dilution of labeled MAX8 nanofibers did not result in a loss of the 13C-13C dipolar couplings, showing that these couplings are primarily intramolecular. NMR spectra also indicate the existence of a minor conformation, which is discussed in terms of previously hypothesized nanofiber physical cross-linking and possible nanofiber polymorphism. PMID:23823242

  2. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    SciTech Connect

    Takegoshi, K. Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-07

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  3. Hexameric Capsules Studied by Magic Angle Spinning Solid-State NMR Spectroscopy: Identifying Solvent Molecules in Pyrogallol[4]arene Capsules.

    PubMed

    Avram, Liat; Goldbourt, Amir; Cohen, Yoram

    2016-01-01

    Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1) H/(13) C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state. PMID:26634640

  4. Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization.

    PubMed

    Chevelkov, Veniamin; Xiang, ShengQi; Giller, Karin; Becker, Stefan; Lange, Adam; Reif, Bernd

    2015-02-01

    In this work, we show how the water flip-back approach that is widely employed in solution-state NMR can be adapted to proton-detected MAS solid-state NMR of highly deuterated proteins. The scheme allows to enhance the sensitivity of the experiment by decreasing the recovery time of the proton longitudinal magnetization. The method relies on polarization transfer from non-saturated water to the protein during the inter-scan delay. PMID:25634300

  5. Solid state 13C and 2H NMR investigations of paramagnetic [Ni(II)(acac)2L2] complexes.

    PubMed

    Lennartson, Anders; Christensen, Lene Ulrikke; McKenzie, Christine J; Nielsen, Ulla Gro

    2014-01-01

    Nine structurally related paramagnetic acetylacetonato nickel(II) complexes: [Ni(acac)2] and trans-[Ni(acac)2(X)2]nH/D2O, X = H2O, D2O, NH3, MeOH, PMePh2, PMe2Ph, or [dppe]1/2, n = 0 or 1, dppe = 1,2-bis(diphenylphosphino)ethane, as well as cis-[Ni(F6-acac)2(D2O)2], F6-acac = hexafluoroacetylonato, have been characterized by solid state (13)C MAS NMR spectroscopy. (2)H MAS NMR was used to probe the local hydrogen bonding network in [Ni(acac)2(D2O)2]D2O and cis-[Ni(F6-acac)2(D2O)2]. The complexes serve to benchmark the paramagnetic shift, which can be associated with the resonances of atoms of the coordinated ligands. The methine (CH) and methyl (CH3) have characteristic combinations of the isotropic shift (?) and anisotropy parameters (d, ?). The size of the anisotropy (d), which is the sum of the chemical shift anisotropy (CSA) and the paramagnetic electron-nuclei dipolar coupling, is much more descriptive than the isotropic shift. Moreover, the CSA is found to constitute up to one-third of the total anisotropy and should be taken into consideration when (13)C anisotropies are used for structure determination of paramagnetic materials. The (13)C MAS NMR spectra of trans-[Ni(acac)2(PMe2Ph)2], trans-[Ni(acac)2(PMePh2)2], and the noncrystallographically characterized trans-[Ni(acac)2(dppe)]n were assigned using these correlations. The complexes with L = H2O, D2O, NH3, and MeOH can be prepared by a series of solid state desorption and sorption reactions. Crystal structures for trans-[Ni(acac)2(NH3)2] and trans-[Ni(acac)2(PMePh2)2] are reported. PMID:24325293

  6. Structure and Transformation of Amorphous Calcium Carbonate: A Solid-State 43Ca NMR and Computational Molecular Dynamics Investigation

    SciTech Connect

    Singer, Jared W.; Yazaydin, A. O.; Kirkpatrick, Robert J.; Bowers, Geoffrey M.

    2012-05-22

    Amorphous calcium carbonate (ACC) is a metastable precursor to crystalline CaCO{sub 3} phases that precipitates by aggregation of ion pairs and prenucleation clusters. We use {sup 43}Ca solid-state NMR spectroscopy to probe the local structure and transformation of ACC synthesized from seawater-like solutions with and without Mg{sup 2+} and computational molecular dynamics (MD) simulations to provide more detailed molecular-scale understanding of the ACC structure. The {sup 43}Ca NMR spectra of ACC collected immediately after synthesis consist of broad, featureless resonances with Gaussian line shapes (FWHH = 27.6 {+-} 1 ppm) that do not depend on Mg{sup 2+} or H{sub 2}O content. A correlation between {sup 43}Ca isotropic chemical shifts and mean Ca-O bond distances for crystalline hydrous and anhydrous calcium carbonate phases indicates indistinguishable maximum mean Ca-O bond lengths of {approx}2.45 {angstrom} for all our samples. This value is near the upper end of the published Ca-O bond distance range for biogenic and synthetic ACCs obtained by Ca-X-ray absorption spectroscopy. It is slightly smaller than the values from the structural model of Mgfree ACC by Goodwin et al. obtained from reverse Monte Carlo (RMC) modeling of X-ray scattering data and our own computational molecular dynamics (MD) simulation based on this model. An MD simulation starting with the atomic positions of the Goodwin et al. RMC model using the force field of Raiteri and Gale shows significant structural reorganization during the simulation and that the interconnected carbonate/water-rich channels in the Goodwin et al. model shrink in size over the 2 ns simulation time. The distribution of polyhedrally averaged Ca-O bond distances from the MD simulation is in good agreement with the {sup 43}Ca NMR peak shape, suggesting that local structural disorder dominates the experimental line width of ACC.

  7. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls

    SciTech Connect

    Wang, Tuo; Park, Yong Bum; Caporini, Marc A.; Rosay, Melanie; Zhong, Linghao; Cosgrove, Daniel J.; Hong, Mei

    2013-08-29

    Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins, which weaken the noncovalent network formed by cellulose, hemicellulose, and pectins, but the CW target of expansins has remained elusive because of the minute amount of the protein required for activity and the complex nature of the CW. Using solid-state NMR spectroscopy, combined with sensitivity-enhancing dynamic nuclear polarization (DNP) and differential isotopic labeling of expansin and polysaccharides, we have now determined the functional binding target of expansin in the Arabidopsis thaliana CW. By transferring the electron polarization of a biradical dopant to the nuclei, DNP allowed selective detection of 13C spin diffusion from trace concentrations of 13C, 15N-labeled expansin in the CW to nearby polysaccharides. From the spin diffusion data of wild-type and mutant expansins, we conclude that to loosen the CW, expansin binds highly specific cellulose domains enriched in xyloglucan, whereas more abundant binding to pectins is unrelated to activity. Molecular dynamics simulations indicate short 13C-13C distances of 46 between a hydrophobic surface of the cellulose microfibril and an aromatic motif on the expansin surface, consistent with the observed NMR signals. DNP-enhanced 2D 13C correlation spectra further reveal that the expansin-bound cellulose has altered conformation and is enriched in xyloglucan, thus providing unique insight into the mechanism of CW loosening. DNP-enhanced NMR provides a powerful, generalizable approach for investigating protein binding to complex macromolecular targets.

  8. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls

    SciTech Connect

    Wang, Tuo; Park, Yong Bum; Caporini, Marc A.; Rosay, Melanie; Zhong, Linghao; Cosgrove, Daniel J.; Hong, Mei

    2013-08-29

    Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins, which weaken the noncovalent network formed by cellulose, hemicellulose, and pectins, but the CW target of expansins has remained elusive because of the minute amount of the protein required for activity and the complex nature of the CW. Using solid-state NMR spectroscopy, combined with sensitivity-enhancing dynamic nuclear polarization (DNP) and differential isotopic labeling of expansin and polysaccharides, we have now determined the functional binding target of expansin in the Arabidopsis thaliana CW. By transferring the electron polarization of a biradical dopant to the nuclei, DNP allowed selective detection of 13C spin diffusion from trace concentrations of 13C, 15N-labeled expansin in the CW to nearby polysaccharides. From the spin diffusion data of wild-type and mutant expansins, we conclude that to loosen the CW, expansin binds highly specific cellulose domains enriched in xyloglucan, whereas more abundant binding to pectins is unrelated to activity. Molecular dynamics simulations indicate short 13C-13C distances of 46 between a hydrophobic surface of the cellulose microfibril and an aromatic motif on the expansin surface, consistent with the observed NMR signals. DNP-enhanced 2D 13C correlation spectra further reveal that the expansin-bound cellulose has altered conformation and is enriched in xyloglucan, thus providing unique insight into the mechanism of CW loosening. DNP-enhanced NMR provides a powerful, generalizable approach for investigating protein binding to complex macromolecular targets.

  9. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (?), such as protons, to the less abundant 13C nuclei with low ? values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kgel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90 x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched. The Hartmann-Hahn condition can be expressed as ?HB1H = ?CB1C, where ?H and ?C are the gyromagnetic ratios of protons and carbons, whereas B1H and B1C are the 1H and 13C radio-frequency (r.f.) fields applied to the nuclei. The Hartmann-Hahn condition is affected by the H-C dipolar interaction strength (Stejskal & Memory, 1994). All the factors affecting dipolar interactions may mismatch the Hartmann-Hahn condition and prevent a quantitative representation of the NOM chemical composition (Conte et al., 2004). It has been reported that under low speed MAS conditions, broad matching profiles are centered around the Hartmann-Hahn condition....... With increasing spinning speed the Hartmann-Hahn matching profiles break down in a series of narrow matching bands separated by the rotor frequency (Stejskal & Memory, 1994). In order to account for the instability of the Hartmann-Hahn condition at higher rotor spin rates (>10 kHz), variable amplitude cross-polarization techniques (RAMP-CP) have been developed (Metz et al., 1996). So far, to our knowledge, the prevailing way used to obtain quantitative 13C-CPMAS NMR results was to optimize the 1H and 13C spin lock r.f. fields on simple standard systems such as glycine and to use those r.f. field values to run experiments on unknown organic samples. The aim of the present study was to experimentally evidence that the stability of the Hartmann-Hahn condition was different for different samples with a known structure. Moreover, Hartmann-Hahn profiles of four different humic acids (HAs) were also provided in order to show that the 1H/13C r.f. spin lock field strength must also be tested on the HAs prior to a quantitative evaluation of their 13C-CPMAS NMR spectra. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A. & Clarke, P., 1997. Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy. Australian Journal of Soil Research, 35, 1061-1083. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & de Jager, P.A., 1997. Quantitative Aspects of So

  10. Investigation of Local Structures in Layered Niobates by Solid-state NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ting

    Research on ion-exchangeable layered niobates has attracted great attention due to their unique structures and corresponding variations in properties and applications, such as ion conductors, solid acids, and water splitting catalysts. Families of layered niobates include double-layered or triple-layered Dion-Jacobson type perovskites (ALaNb2O7, A = Cs, Rb, K, H; AM2Nb3O10, A = Rb, K, H; M = Sr, Ca), layered niobates with both edge and corner sharing of NbO6 octahedra (KNb3O8, HNb3O6, Nb 6O17 and H4Nb6O17) and many others. Lately, more developments in the layered niobates through a variety of topochemical manipulations have been achieved. The topochemical reactions include ion exchange, exfoliation, substitution, and etc. As a result, many new materials have been successfully prepared, for example, solid solutions (ALa2NbTi2O10, ACaLaNb2TiO 10 and ACa2Nb3-xTaxO10, etc.), nanosheets (HNb3O8, H4Nb6O17, HLaNb2O7, HCa2Nb3O10, etc., to intercalate with organic molecules such as tetrabutylammonium hydroxide or n-butylamines), and nanoscrolls (from H2K2Nb 6O17). While these structural modifications often induce improvements in properties, the fundamental mechanisms of improvements in properties upon the modifications, especially local structural arrangements are poorly understood, which is often limited by structural characterizations. Particularly, the characterizations of the exfoliated nanosheets can be difficult by conventional X-ray diffraction (XRD) method due to disordered structures. Alternatively, solid-state nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study local structures in solids. The structural information can be extracted by examining intrinsic interactions, such as quadrupolar, chemical shielding, and dipolar interactions, which are all associated with local environments surrounding a specific nucleus, 1H or 93Nb in layered niobates. The ultimate goal of this dissertation is to understand the relationships between local structures of layered niobates and their chemical or physical properties, and provide insights into further modifications and improvements. The primary objectives of this work are summarized below: I. Synthesis of series of layered niobates (ALaNb2O7 , A = Cs, Rb, K; KNb3O8; K4Nb 6O17; RbLa2NbTi2O10 and RbCaLaNb2TiO10) by microwave heating or cation exchange methods, their protonated forms by acid exchange (HLaNb2O 7, H3ONb3O8 and HNb3O 8, H4Nb8O17, HLa2NbTi 2O10 and HCaLaNb2TiO10), and three nanosheet niobates by exfoliation (HNb3O8, H4Nb 6O17 and HLaNb2O7 nanosheets). II. Structural characterizations of all niobates by powder XRD and solid-state NMR spectroscopy. Powder XRD is used to determine lattice constants and long-range structural ordering. Solid-state NMR is used to determine the electric field gradient parameters, chemical shift anisotropy parameters and dipolar coupling constants. Solid-state NMR techniques include 93Nb MQMAS, wide-line VOCS echo and WURST-echo; 1H{93Nb} CP, TRAPDOR, S-RESPDOR and iS-RESPDOR experiments. III. Understanding the trends of changes in NMR parameters with respect to cation exchange, exfoliation and compositional alteration, and correlation of the NMR parameters with local environments and possible structural rearrangements. IV. Identification of proton locations in the acid-exchanged niobates and surface acidity for the exfoliated nanosheets, based on 1H chemical shifts and dipolar coupling information from CP, S-RESPDOR and iS-RESPDOR experiments.

  11. Application of solid state NMR for the study of surface bound species and fossil fuels

    NASA Astrophysics Data System (ADS)

    Althaus, Stacey

    Recent advances in solid state NMR have been utilized to study a variety of systems. These advancements have allowed for the acquisition of sequences previously only available for solution state detection. The protocol for the measurement of coals and other carbonaceous materials was updated to incorporate the recent advancements in fast magic angle spinning (MAS) and high magnetic fields. Argonne Premium Coals were used to test the sensitivity and resolution of the experiments preformed at high field and fast MAS. The higher field spectra were shown to be slightly less sensitive than the traditional lower field spectra, however, the new high field fast MAS spectra had better resolution. This increased resolution allowed for the separation of a variety of different functional groups, thereby allowing the composition of the coal to be determined. The use of 1 H detection allowed for 2D spectra of coals for the first time. These spectra could be filtered to examine either through-space or through-bond correlations. Indirect detection via 1 H was also pivotal in the detection of natural abundance 15 N spectra. Through-space and through-bond 2D spectra of natural abundance bulk species are shown with a sensitivity increase of 15 fold over traditional detection. This sensitivity enhancement allowed for the detection of natural abundance 15 N surface bound species in 2D, something that could not be acquired via traditional methods. The increased efficiency of the through-space magnetization transfer, Cross polarization, at fast MAS compared to the slower MAS rates is shown. The through-bond magnetization transfer via INEPT was examined and the effect of J-coupling is confirmed. Solid State NMR can be utilized to help improve catalytic interactions. Solid state NMR was used to examine the aldol condensation between p-nitrobenzaldehyde and acetone. The formation of a stable intermediate with p-nitrobenzaldehyde was found on the primary functionalized amine mesoporous nanoparticle when the reaction was done in hexane. When secondary amines were used to catalyze the reaction, the reactivity was increased and no intermediate was observed. When the solvent was changed from hexane to water, a dramatic increase in the reactivity of the primary amine was observed. The secondary amine was shown to have a large decrease in activity with the solvent change. The role of surface silanols in the catalysis with the mesoporous silica nanoparticles is also examined. Implementation of pulsed field gradient fields allowed for an examination of the diffusion of two different solvents , hexane and water, within the primary functionalized amine heterogeneous mesoporous catalyst system. The diffusion of the 2.7 nm pore sizes were compared to the diffusion in the 3.7 nm pores. In hexane the intra-pore diffusion in the smaller pores was slower than the larger pores, agreeing well with the low catalytic yield seen in the aldol reaction.

  12. Solid-state NMR and IRMS characterization of smouldered peat from ombrotrophic cores

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Rein, Guillermo; Gioacchini, Paola; Knicker, Heike; Ciavatta, Claudio; Miano, Teodoro M.

    2013-04-01

    Smouldering fires are slow, low temperature, flameless and the most persistent form of combustion of organic matter (OM) in porous form. Although smouldering fires of peatlands represent a large perturbation of the atmospheric chemistry, to date, most studies on smouldering focused on ignition, carbon (C) losses or emissions, whereas the literature still lacks understanding of the OM evolution following these events. The potential to track OM changes able to serve as new proxies for the identification of past fire events along peat cores is extremely important, especially considering that bogs are often used as natural archives of paleoenvironmental changes. In the present work we show preliminary results about solid-state Nuclear Magnetic Resonance (NMR) and Isotope-Ratio Mass Spectroscopy (IRMS) characterization of peat OM along three Sphagnum peat columns (26 cm deep) having different initial moisture contents (MC): 50% MC, 100% MC, and 200% MC. The 15N spectrum of fresh peat (FP) used as control shows, as expected, only an amide signal, which is in agreement with the 13C NMR spectrum where mainly signals of carbohydrates and alkyl C can be observed. Further signals can be observed in the aromatic region, most probably due to lignin derivatives. Following the smouldering event, selected peat samples from both the 50% and 100% MC series show, as expected, signals supporting the occurrence of fire. In detail, the 15N-signals between -200 and -250 ppm are typical for pyrrole or indole type N. This is in accordance with the 13C NMR spectra showing considerable intensity in the aromatic region, most likely from char residues. Isotopic signatures (i.e., δ13C and δ15N) show a very interesting behaviour. In detail, δ13C seems to be slightly affected by smouldering, although the information about vegetational changes are preserved, whereas the δ15N shows a trend positively correlated with the relative N enrichment observed in smouldered peat samples, as also supported by 15N NMR. While further research is in progress to find reliable proxies allowing reconstruction of ancient smouldering events along peat profiles, our data provide an additional important insight towards assessing palaeoenvironmental conditions and highlighting that smouldering fires may have been overlooked as the cause of molecular and chemical variations observed in peat cores. The present research was financed by the Italian PRIN program 2009 (2009NBHPWR - Project title: "Chemical and biomolecular indicators for reconstructing environmental changes in natural archives")

  13. Biomolecular solid state NMR with magic-angle spinning at 25 K

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 liters/hour of liquid helium, while the 4 mm diameter rotor spins at 6.7 kHz with good stability (5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide A?1423 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed. PMID:18922715

  14. Solid-state {sup 109}Ag NMR characterization of silver dispersed on oxide supports

    SciTech Connect

    Plischke, J.K.; Benesi, A.J.; Vannice, M.A.

    1992-04-30

    Magic angle spinning {sup 109}Ag solid-state NMR spectroscopy, transmission electron microscopy, X-ray diffraction, and gas adsorption measurements were used to characterize Ag particles supported on SiO{sub 2}, {eta}-Al{sub 2}O{sub 3}, and zeolite A. The samples were prepared either by a standard incipient wetness technique or by ion exchange followed by drying and reduction in H{sub 2}. {sup 109}Ag NMR spectroscopy was used to follow the state of the silver throughout the preparation process. {sup 109}Ag spectra were obtained for metallic Ag and for pure powder samples of AgNO{sub 3} and AgCl as well as for Ag{sup +} in solution; however, no resonances were observed for powder samples of Ag{sub 2}O and Ag{sub 2}O{sub 2}. Prior to drying, chemical shifts were found to be close to those of aqueous AgNO{sub 3} solutions ({approximately}O ppm), and after drying at 373 K, the chemical shift moved upfield to approach that of bulk AgNO{sub 3}. After reduction, single Knight-shifted metallic resonance at +5252{plus_minus} 10 ppm was observed for all samples which contained Ag particles larger than 50 nm in diameter. Low-loading, well-dispersed samples with smaller Ag particles yielded no observable {sup 109}Ag resonance. It is proposed that the absence of an observable {sup 109}Ag signal in the latter samples is due to a surface boundary effect on conduction electrons, common to other metal conductors, which broadens the signal. The adsorption of O{sub 2}, Cl{sub 2}, and HCl on the surface of the large Ag crystallites had no effect on the {sup 109}Ag spectrum. 33 refs., 10 figs., 2 tabs.

  15. Trading sensitivity for information: Carr-Purcell-Meiboom-Gill acquisition in solid-state NMR.

    PubMed

    Dey, Krishna K; Ash, Jason T; Trease, Nicole M; Grandinetti, Philip J

    2010-08-01

    The Carr-Purcell-Meiboom-Gill (CPMG) experiment has gained popularity in solid-state NMR as a method for enhancing sensitivity for anisotropically broadened spectra of both spin 1/2 and half integer quadrupolar nuclei. Most commonly, the train of CPMG echoes is Fourier transformed directly, which causes the NMR powder pattern to break up into a series of sidebands, sometimes called "spikelets." Larger sensitivity enhancements are observed as the delay between the pi pulses is shortened. As the duration between the pi pulses is shortened, however, the echoes become truncated and information about the nuclear spin interactions is lost. We explored the relationship between enhanced sensitivity and loss of information as a function of the product Omega 2tau, where Omega is the span of the anisotropic lineshape and 2tau is the pi pulse spacing. For a lineshape dominated by the nuclear shielding anisotropy, we found that the minimum uncertainty in the tensor values is obtained using Omega 2tau values in the range Omega 2tau approximately 12(-1)(+6) and Omega 2tau approximately 9(-3)(+3) for eta(s)=0 and eta(s)=1, respectively. For an anisotropic second-order quadrupolar central transition lineshape under magic-angle spinning (MAS), the optimum range of Omega 2tau approximately 9(-2)(+3) was found. Additionally, we show how the Two-dimensional One Pulse (TOP) like processing approach can be used to eliminate the cumbersome sideband pattern lineshape and recover a more familiar lineshape that is easily analyzed with conventional lineshape simulation algorithms. PMID:20707536

  16. Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR

    SciTech Connect

    Malki, A.; Mekhalif, Z.; Detriche, S.; Fonder, G.; Boumaza, A.; Djelloul, A.

    2014-07-01

    The changes caused by heat treatment of gibbsite powder at 300–1473 K were studied using the X-ray diffraction (XRD), X-ray photoemission (XPS) spectra and {sup 27}Al magic angle spinning nuclear magnetic resonance spectroscopy ({sup 27}Al MAS NMR). XRD analysis indicates that the transformation sequence involves the formation of κ-Al{sub 2}O{sub 3} as an intermediate phase between χ- and α-Al{sub 2}O{sub 3}. The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. XPS analysis indicates that the ratio of aluminium atoms to oxygen atoms in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3} increases, whereas the expected ratio is observed in α-Al{sub 2}O{sub 3}. The percentage of AlO{sub 4} units in the transition aluminas follows the same behaviour as the ratio of Al/O. - Graphical abstract: The percentage of AlO{sub 4} units in transition aluminas follows the same behaviour as the ratio of Al/O. - Highlights: • Calcination products of gibbsite studied by XRD, XPS and solid-state NMR. • The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. • The Al/O atomic ratio determined by XPS is larger than 2/3 in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3}. • The percentage of AlO{sub 4} in the aluminas follows the same behaviour as the Al/O atomic ratio.

  17. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    SciTech Connect

    Gann, Sheryl Lee

    1995-11-30

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized {pi}-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0{sup o} (parallel) with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCI?), is presented, along with experimental work on adamantane and polycarbonate.

  18. Identification and analysis of drugs in the solid state by 13C CPMAS NMR: suxamethonium chloride and hydrocortisonum (Corhydron).

    PubMed

    Paradowska, Katarzyna; Wolniak, Micha?; Fija?ek, Zbigniew; Wawer, Iwona

    2008-01-01

    Cross-polarization (CP) magic angle spinning (MAS) 13C NMR spectroscopy has become a routine tool in pharmacy, employed to identify and characterize drugs in the solid phase. 13C CPMAS NMR spectra were recorded for solid hydrocortisone 21-hemisuccinate and suxamethonium chloride. White crystalline substances, such as these two drugs, can be easily distinguished; and solid-state 13NMR spectra of remarkably good quality are obtained in less than half an hour. 13C CPMAS chemical shifts for solid suxamethonium chloride and hydrocortisone sodium hemisuccinate are given, as well as cross-polarization kinetic parameters for suxamethonium chloride. PMID:18646548

  19. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-01

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins. PMID:26274812

  20. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR

    PubMed Central

    Knight, Michael J.; Pell, Andrew J.; Bertini, Ivano; Felli, Isabella C.; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-01-01

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu+ (diamagnetic) or Cu2+ (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to 1H-1H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. PMID:22723345

  1. High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein

    PubMed Central

    Tang, Ming; Comellas, Gemma; Mueller, Leonard J.

    2011-01-01

    High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13Cα T2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions. PMID:20803233

  2. 7Li and 13C solid-state NMR spectra of lithium cuprates.

    PubMed

    Jost, Steffen; Khnen, Martin; Gnther, Harald

    2006-10-01

    7Li and 13C solid-state MAS NMR spectra of three lithium cuprates with known X-ray structures--lithium([12]crown-4)2 dimethyl and diphenyl cuprate (1,2) and lithium(thf)4-[tris(trimethylsilyl) methyl]2 cuprate (3)--have been measured and analysed with respect to the quadrupolar coupling constants of lithium-7, chi(7Li), and the asymmetry parameters of the quadrupolar interactions, eta(7Li), as well as the 6, 7Li and 13C chemical shifts. The chi(7Li) values of 23, 30, and 18 kHz for 1, 2 and 3, respectively, are in line with the high symmetry around the lithium nucleus in the solvent-separated structures and may be used as reference data for this structural motif. Calculations based on charges derived from ab initio 6-31 G* HF computations using the point charge model (PCM) and the program GAMESS support the experimental findings. PMID:16835893

  3. Solid-state NMR studies of proteins immobilized on inorganic surfaces.

    PubMed

    Shaw, Wendy J

    2015-09-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin (43 amino acids) and leucine rich amelogenin protein (LRAP; 59 amino acids), have been studied in depth and have different dynamic properties and 2D- and 3D-structural features. These differences make it difficult to extract design principles used in nature for building materials with properties such as high strength, unusual morphologies, or uncommon phases. Consequently, design principles needed for developing synthetic materials controlled by proteins are not clear. Many biomineralization proteins are much larger than statherin and LRAP, necessitating the study of larger biomineralization proteins. More recent studies of the significantly larger full-length amelogenin (180 residues) represent a significant step forward to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids, a silaffin derived peptide, and the model LK peptide with silica are also being studied, along with qualitative studies of the organic matrices interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques to study biomineralization proteins is becoming more common, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area. PMID:25466354

  4. Self-Assembly of X-Shaped Bolapolyphiles in Lipid Membranes: Solid-State NMR Investigations.

    PubMed

    Achilles, Anja; Brenwald, Ruth; Lechner, Bob-Dan; Werner, Stefan; Ebert, Helgard; Tschierske, Carsten; Blume, Alfred; Bacia, Kirsten; Saalwchter, Kay

    2016-01-26

    A novel class of rigid-rod bolapolyphilic molecules with three philicities (rigid aromatic core, mobile aliphatic side chains, polar end groups) has recently been demonstrated to incorporate into and span lipid membranes, and to exhibit a rich variety of self-organization modes, including macroscopically ordered snowflake structures with 6-fold symmetry. In order to support a structural model and to better understand the self-organization on a molecular scale, we here report on proton and carbon-13 high-resolution magic-angle spinning solid-state NMR investigations of two different bolapolyphiles (BPs) in model membranes of two different phospholipids (DPPC, DOPC). We elucidate the changes in molecular dynamics associated with three new phase transitions detected by calorimetry in composite membranes of different composition, namely, a change in ?-?-packing, the melting of lipid tails associated with the superstructure, and the dissolution and onset of free rotation of the BPs. We derive dynamic order parameters associated with different H-H and C-H bond directions of the BPs, demonstrating that the aromatic cores are well packed below the final phase transition, showing only 180 flips of the phenyl ring, and that they perform free rotations with additional oscillations of the long axis when dissolved in the fluid membrane. Our data suggests that BPs not only form ordered superstructures, but also rather homogeneously dispersed ?-packed filaments within the lipid gel phase, thus reducing the corrugation of large vesicles. PMID:26735449

  5. Phosphate defects and apatite inclusions in coral skeletal aragonite revealed by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mason, Harris E.; Montagna, Paolo; Kubista, Laura; Taviani, Marco; McCulloch, Malcolm; Phillips, Brian L.

    2011-12-01

    Recent development of paleo-nutrient proxies based on the phosphorus/calcium (P/Ca) ratio in tropical- and deep-water corals (also known as cold-water corals) require an understanding of the processes by which P is incorporated into the coral skeletal aragonite. Here, we apply single- and double-resonance solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the speciation of P in coral aragonite. The results show that the majority of P occurs as phosphate defects in the aragonite structure, but in many samples a significant fraction of the P occurs also in crystalline hydroxylapatite inclusions. Quantification of the amount of hydroxylapatite indicates that its presence is not related simply to external environmental factors and that it can occur at varying abundances in different parts of the same corallite. Since there is currently no model available to describe the relationship between dissolved inorganic phosphate and its incorporation as apatite inclusions into carbonates, careful screening of samples which contain only phosphate in the aragonite structure or selective microsampling could improve proxy development.

  6. Characterization of Stratum Corneum Molecular Dynamics by Natural-Abundance 13C Solid-State NMR

    PubMed Central

    Bouwstra, Joke A.; Sparr, Emma; Topgaard, Daniel

    2013-01-01

    Despite the enormous potential for pharmaceutical applications, there is still a lack of understanding of the molecular details that can contribute to increased permeability of the stratum corneum (SC). To investigate the influence of hydration and heating on the SC, we record the natural-abundance 13C signal of SC using polarization transfer solid-state NMR methods. Resonance lines from all major SC components are assigned. Comparison of the signal intensities obtained with the INEPT and CP pulse sequences gives information on the molecular dynamics of SC components. The majority of the lipids are rigid at 32C, and those lipids co-exist with a small pool of mobile lipids. The ratio between mobile and rigid lipids increases with hydration. An abrupt change of keratin filament dynamics occurs at RH?=?8085%, from completely rigid to a structure with rigid backbone and mobile protruding terminals. Heating has a strong effect on the lipid mobility, but only a weak influence on the keratin filaments. The results provide novel molecular insight into how the SC constituents are affected by hydration and heating, and improve the understanding of enhanced SC permeability, which is associated with elevated temperatures and SC hydration. PMID:23626744

  7. Molecular dynamics of neutral polymer bonding agent (NPBA) as revealed by solid-state NMR spectroscopy.

    PubMed

    Hu, Wei; Su, Yongchao; Zhou, Lei; Pang, Aimin; Cai, Rulin; Ma, Xingang; Li, Shenhui

    2013-01-01

    Neutral polymer bonding agent (NPBA) is one of the most promising polymeric materials, widely used in nitrate ester plasticized polyether (NEPE) propellant as bonding agent. The structure and dynamics of NPBA under different conditions of temperatures and sample processing are comprehensively investigated by solid state NMR (SSNMR). The results indicate that both the main chain and side chain of NPBA are quite rigid below its glass transition temperature (Tg). In contrast, above the Tg, the main chain remains relatively immobilized, while the side chains become highly flexible, which presumably weakens the interaction between bonding agent and the binder or oxidant fillers and in turn destabilizes the high modulus layer formed around the oxidant fillers. In addition, no obvious variation is found for the microstructure of NPBA upon aging treatment or soaking with acetone. These experimental results provide useful insights for understanding the structural properties of NPBA and its interaction with other constituents of solid composite propellants under different processing and working conditions. PMID:24451254

  8. An Agile Direct Digital Synthesized Radio Frequency Control System for Solid State NMR.

    NASA Astrophysics Data System (ADS)

    Lee, E.; Torgeson, D. R.

    1996-03-01

    A digital RF signal generator and pulse programmer were created for use in wide line, solid state NMR experiments. The system permits programming of the amplitude and phase of the RF pulses used to stimulate the spin system. The pulse programmer has a basic clock frequency of 40 MHz, giving it a timing resolution of 25 nsec. Memory depth is 32k states, allowing complex pulse programs to be executed. The RF generator uses commercially available Direct Digital Synthesis (DDS) devices to generate pulses with phase resolution of 0.088^circ and amplitude resolution of 0.2%. The output of the DDS device (at 10 MHz) is mixed with the output of a RF synthesizer (e.g., PTS 160) to form a multi-nuclear system operating from ~4 to 158 MHz and 162 to 320 MHz with a RF pulse rise time of ~160 nsec and a 180^circ phase change time of ~300 nsec. The basic system has one RF channel and 32 separate digital outputs, but it's modular design allows additional RF channels and digital outputs. The system is controlled through LabVIEW graphical interface software which runs on a PC. *Operated for the USDOE by Iowa State University under contract No. W-7405-Eng-82.

  9. Solid-state NMR and EPR study of fluorinated carbon nanofibers

    SciTech Connect

    Zhang Wei Dubois, Marc Guerin, Katia Hamwi, Andre Giraudet, Jerome Masin, Francis

    2008-08-15

    Carbon nanofibers were fluorinated in two manners, in pure fluorine gas (direct fluorination) and with a fluorinating agent (TbF{sub 4} during the so-called controlled fluorination). The resulting fluorinated nanofibers have been investigated by solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). This underlines that the fluorination mechanisms differ since a (CF){sub n} structural type is obtained, whatever the temperature, with the controlled reaction, whereas, during the direct process, a (C{sub 2}F){sub n} type is formed over a wide temperature range. Through a careful characterization of the products, i.e. density of dangling bonds (as internal paramagnetic centers), structural type (acting on molecular motion) and specific surface area (related to the amount of physisorbed O{sub 2}), the effect of atmospheric oxygen molecules on the spin-lattice nuclear relaxation has been underlined. - Graphical abstract: Scheme of the fluorination process using F{sub 2} and TbF{sub 4} as fluorinating agent.

  10. Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy.

    PubMed

    Resende, Jarbas M; Verly, Rodrigo M; Aisenbrey, Christopher; Cesar, Amary; Bertani, Philippe; Pil-Veloso, Dorila; Bechinger, Burkhard

    2014-08-19

    Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8 probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues. PMID:25140425

  11. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    PubMed Central

    Shaw, Wendy J.

    2015-01-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin (43 amino acids) and leucine rich amelogenin protein (LRAP; 59 amino acids), have been studied in depth and have different dynamic properties and 2D- and 3D-structural features. These differences make it difficult to extract design principles used in nature for building materials with properties such as high strength, unusual morphologies, or uncommon phases. Consequently, design principles needed for developing synthetic materials controlled by proteins are not clear. Many biomineralization proteins are much larger than statherin and LRAP, necessitating the study of larger biomineralization proteins. More recent studies of the significantly larger full-length amelogenin (180 residues) represent a significant step forward to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids, a silaffin derived peptide, and the model LK peptide with silica are also being studied, along with qualitative studies of the organic matrices interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet the need for isolated spin pairs makes this approach costly and time intensive. The use of multidimensional techniques to study biomineralization proteins is becoming more common, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area. PMID:25466354

  12. Elucidating Metabolic Pathways for Amino Acid Incorporation Into Dragline Spider Silk using 13C Enrichment and Solid State NMR

    PubMed Central

    Creager, Melinda S.; Izdebski, Thomas; Brooks, Amanda E.; Lewis, Randolph V.

    2013-01-01

    Spider silk has been evolutionarily optimized for contextual mechanical performance over the last 400 million years. Despite precisely balanced mechanical properties, which have yet to be reproduced, the underlying molecular architecture of major ampullate spider silk can be simplified being viewed as a versatile block copolymer. Four primary amino acid motifs: polyalanine, (GA)n, GPGXX, and GGX (X = G,A,S,Q,L,Y) will be considered in this study. Although synthetic mimetics of many of these amino acid motifs have been produced in several biological systems, the source of spider silk’s mechanical integrity remains elusive. Mechanical robustness may be a product not only of the amino acid structure but also of the tertiary structure of the silk. Historically, solid state Nuclear Magnetic Resonance (ssNMR) has been used to reveal the crystalline structure of the polyalanine motif; however, limitations in amino acid labeling techniques have obscured the structures of the GGX and GPGXX motifs thought to be responsible for the structural mobility of spider silk. We describe the use of metabolic pathways to label tyrosine for the first time as well as to improve the labeling efficiency of proline. These improved labeling techniques will allow the previously unknown tertiary structures of major ampullate silk to be probed. PMID:21334448

  13. (13) C-TmDOTA as versatile thermometer compound for solid-state NMR of hydrated lipid bilayer membranes.

    PubMed

    Umegawa, Yuichi; Tanaka, Yuya; Nobuaki, Matsumori; Murata, Michio

    2016-03-01

    Recent advances in solid-state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high-power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTA) was synthesized and labeled with (13) C (i.e., (13) C-TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid-state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of (13) C-TmDOTA, and the (13) C chemical shift of the complex exhibited a large-temperature dependence. The results demonstrated that (13) C-TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by (1) H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, (13) C-TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26460094

  14. Thermal decomposition of t-butylamine borane studied by in situ solid state NMR

    SciTech Connect

    Feigerle, J.; Smyrl, N. R.; Morrell, J. S.; Stowe, A. C.

    2010-03-18

    Development of suitable materials to store hydrogen for automotive use has received pointed attention over the past decade. Significant progress has been made with the discovery of novel chemical hydrides, complex metal hydrides, and adsorption substrates which continue to optimize both thermodynamics and kinetics of hydrogen sorption. Chemical hydrides typically offer the largest theoretical gravimetric capacities. Autrey et al. have recently shown that mechanical milling of alkali metal hydrides with ammonia borane can further lower the decomposition temperature. In all cases, however, many challenges remain in order to meet the current US DOE performance targets. Amine boranes are being considered for hydrogen storage materials since they contain significant quantities of hydrogen which potentially can be released at low temperatures (80-150 C) via chemical reactions. Ammonia borane, NH{sub 3}BH{sub 3}, is one of the most promising in this class as it decomposes to release greater than two moles of pure hydrogen gas (14 wt%) below 160 C. Although isoelectronic to ethane, NH{sub 3}BH{sub 3} is a solid at room temperature due to the di-hydrogen bonding network formed between the amine protons and boron hydrides in the solid state lattice. Further, it has been shown that the hydrogen release mechanism involves transformation and isomerization to an ionic dimer where a hydride migrates from one boron to the adjacent boron in the dimer. The greatest challenge to the use of ammonia borane as a hydrogen fuel is the regeneration path from spent fuel to ammonia borane again. The proposed chemical synthesis involves complicated organometallic reactions to form boron hydrogen bonds from the thermodynamically stable polyimidoborane products (BNH){sub n}. Recent theoretical calculations suggested that incorporation of carbon atoms into the (BNH)n product would be less thermodynamically stable. These (CBNH)n compounds are potentially less energy intensive making regeneration of the amine borane fuel more feasible [22]. In the present study, tert-butylamine borane is investigated by heteronuclear in situ solid state NMR to understand hydrogen release from a hydrocarbon containing amine borane. tbutylamine borane has similar physical properties to amine borane with a melting point of 96 C. A single proton has been replaced with a t-butylamine group resulting in a weakening of the dihydrogen bonding framework. t-butylamine borane has a theoretical gravimetric hydrogen density of 15.1%; however, isobutane can also be evolved rather than hydrogen. If decomposition yields one mole isobutane and two moles hydrogen, 4.5 wt% H2 gas will be evolved. More importantly for the present work, the resulting spent fuel should be comprised of both (BNH)n and (CBNH)n polyimidoboranes.

  15. New insights into the bonding arrangements of L- and D-glutamates from solid state 17O NMR

    NASA Astrophysics Data System (ADS)

    Lemaitre, V.; Pike, K. J.; Watts, A.; Anupold, T.; Samoson, A.; Smith, M. E.; Dupree, R.

    2003-03-01

    Magic angle spinning (MAS) from L- and D-glutamic acid-HCl at 14.1 T produces highly structured and very similar NMR spectra. Lines from all 4 oxygen sites are readily distinguished and assigned. These 17O NMR spectra are very different from the previously reported 17O spectrum of the D, L-form presumably because that was a racemic crystal. 17O NMR from L-monosodium glutamate-HCl is very different again requiring the application of double angle rotation and 3 quantum MAS NMR to provide resolution of 5 different sites. Hence high resolution 17O solid state NMR techniques offer possible new insight into biochemical bonding processes.

  16. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. PMID:24581866

  17. Solid-state C-13 and H-1 NMR imaging stdies of the accelerated-sulfur cured high vinyl polybutadiene. [NMR (nuclear magnetic resonance)

    SciTech Connect

    Rana, M.A.

    1993-01-01

    Solid-state [sup 13]C NMR and [sup 1]H Imaging methods have been used to follow the progress of accelerated-sulfur vulcanization of unfilled high vinyl polybutadiene. Different NMR pulse sequences have been used to characterize the micro-network structures present in the bulk of the finally cured rubber samples. These studies were made as a function of formulation and processing variables. The time-resolved, integrated rubber network. Mono-sulfidic as well as the residual accelerator fragments were differentiated from the polysulfidic crosslinks in a finally cured material. Dynamic studies of these network structures were made using spin-spin relaxation (T[sub 2c]) measurements. The activation energies calculated based on T[sub 2] were used to verify different carbons, directly attached to the sulfur atoms. A swelling method based on Flory-Rehner's equation was also used to determine the crosslink densities and the number-average molecular weight between the nodal junctions in different formulations. Different spatially resolved structural features have been detected in the swollen samples using NMR imaging method. The voids, no-voids and other impurities were differentiated on the basis of magnetic susceptibility differences. Cyclohexane was used as a swelling solvent to probe the morphological defects in these materials. The T[sub 2]-weighted images were used to evaluate the crosslink densities in different samples. The quantitative estimations based on histogram was also employed to determine the average volume per crosslink region. The contrast based on H-1 spin-density or mobility was highlighted in T[sub 2]-weighted images. The variations were found to be closely related to variation in both concentration and mobility of the network.

  18. Solid-state NMR studies of aminocarboxylic salt bridges in L-lysine modified cellulose.

    PubMed

    Manrquez, Ricardo; Lpez-Dellamary, Fernando A; Frydel, Jaroslaw; Emmler, Thomas; Breitzke, Hergen; Buntkowsky, Gerd; Limbach, Hans-Heinrich; Shenderovich, Ilja G

    2009-01-29

    LysCel is a cellulose-based material in which l-lysine molecules are grafted with their amino side chains to the cellulose hydroxyl groups. This modification increases considerably the mechanical strength and resistance of cellulosic structures toward water. It has been attributed to the formation of double salt bridges between lysine aminocarboxyl groups in the zwitterionic state. In order to characterize this unusual structure, we have performed high-resolution solid-state (15)N and (13)C CPMAS NMR experiments on LysCel samples labeled with (15)N in the alpha-position or epsilon-position. Furthermore, (13)C-(15)N REDOR experiments were performed on LysCel where half of the aminocarboxyl groups were labeled in 1-position with 13C and the other half in alpha-position with (15)N. The comparison with the 13C and 15N chemical shifts of l-leucine lyophilized at different pH shows that the aminocarboxyl groups of LysCel are indeed zwitterionic. The REDOR experiments indicate distances of about 3.5 A between the carboxyl carbon and the nitrogen atoms of different aminocarboxyl groups, indicating that the latter are in close contact with each other. However, the data are not compatible with isolated aminocarboxyl dimers but indicate the assembly of zwitterionic aminocarboxyl dimers either in a flat ribbon or as tetramers, exhibiting similar intra- and interdimer (13)C...(15)N distances. This interaction of several aminocarboxyl groups is responsible for the zwitterionic state, in contrast to the gas phase, where amino acid dimers exhibiting two OHN hydrogen bonds are neutral. PMID:19117475

  19. Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state (2)H NMR.

    PubMed

    Yoder, Claude H; Pasteris, Jill D; Worcester, Kimberly N; Schermerhorn, Demetra V

    2012-01-01

    Water is well recognized as an important component in bone, typically regarded as a constituent of collagen, a pore-filling fluid in bone, and an adsorbed species on the surface of bone crystallites. The possible siting and role of water within the structure of the apatite crystallites have not been fully explored. In our experiments, carbonated hydroxyl- and fluorapatites were prepared in D(2)O and characterized by elemental analysis, thermal gravimetric analysis, powder X-ray diffraction, and infrared and Raman spectroscopy. Two hydroxylapatites and two fluorapatites, with widely different amounts of carbonate were analyzed by solid state (2)H NMR spectroscopy using the quadrupole echo pulse sequence, and each spectrum showed one single line as well as a low-intensity powder pattern. The relaxation time of 7.1ms for 5.9 wt% carbonated hydroxylapatite indicates that the single line is likely due to rapid, high-symmetry jumps in translationally rigid D(2)O molecules, indicative of structural incorporation within the lattice. Discrimination between structurally incorporated and adsorbed water is enhanced by the rapid exchange of surface D(2)O with atmospheric H(2)O. Moreover, a (2)H resonance was observed for samples dried under a variety of conditions, including in vacuo heating to 150C. In contrast, a sample heated to 500C produced no deuterium resonance, indicating that structural water had been released by that temperature. We propose that water is located in the c-axis channels. Because structural water is observed even for apatites with very low carbonate content, some of the water molecules must lie between the monovalent ions. PMID:22057814

  20. Rheological and solid-state NMR assessments of copovidone/clotrimazole model solid dispersions.

    PubMed

    Yang, Fengyuan; Su, Yongchao; Zhu, Lei; Brown, Chad D; Rosen, Lawrence A; Rosenberg, Kenneth J

    2016-03-16

    This study aims to assess several model solid dispersions by using dynamic oscillatory rheology, solid-state NMR and other solid phase characterization techniques, and correlate their viscoelastic responses with processing methods and microstructures. A model active pharmaceutical ingredient (API), clotrimazole, was compounded with copovidone to form solid dispersions via various techniques with different mixing capabilities. Physicochemical characterizations of the resulting solid dispersions demonstrated that simple physical mixing led to a poorly mixed blend manifested by existence of large API crystalline content and heterogeneous distribution. Cryogenic milling significantly improved mixing of two components as a result of reduced particle size and increased contact surface area, but produced limited amorphous content. In contrast, hot melt extrusion (HME) processing resulted in a homogenous amorphous solid dispersion because of its inherent mixing efficiency. Storage modulus and viscosities versus frequency of different solid dispersions indicated that the incorporation of API into the polymer matrix resulted in a plasticizing effect which reduced the viscosity. The crystalline/aggregated forms of API also exhibited more elastic response than its amorphous/dispersed counterpart. Temperature ramps of the physical mixture with high API concentration captured a critical temperature, at which a bump was observed in damping factor. This bump was attributed to the dissolution of crystalline API into the polymer. In addition, heating-cooling cycles of various solid dispersions suggested that cryomilling and HME processing could form a homogeneous solid dispersion at low API content, whereas high drug concentration led to a relatively unstable dispersion due to supersaturation of API in the polymer. PMID:26780122

  1. Characterization of the glass-to-vitroceramic transition in yttrium aluminum borate laser glasses using solid state NMR.

    PubMed

    Deters, Heinz; Eckert, Hellmut

    2012-02-01

    The crystallization of laser glasses in the system (Y(2)O(3))(0.2){((Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 ≤ x ≤ 0.40) doped with 0.5 mol% of ytterbium oxide has been investigated by x-ray powder diffraction, and various solid state NMR techniques. The crystallization process has been analyzed in a quantitative fashion by high-resolution solid state (11)B, (27)Al, and (89)Y NMR spectroscopy as well as (11)B{(27)Al} and (27)Al{(11)B} rotational echo double resonance (REDOR) experiments. The homogeneous glasses undergo major phase segregation processes resulting in crystalline Al(5)BO(9) (historically denoted as Al(18)B(4)O(33)), YBO(3), crystalline YAl(3)(BO(3))(4), residual glassy B(2)O(3), and an additional yet not identified crystalline phase ("X-phase"). PMID:22244244

  2. Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data.

    PubMed

    Allen, Toby W; Andersen, Olaf S; Roux, Benoit

    2003-08-13

    Two different high-resolution structures recently have been proposed for the membrane-spanning gramicidin A channel: one based on solid-state NMR experiments in oriented phospholipid bilayers (Ketchem, R. R.; Roux, B.; Cross, T. A. Structure 1997, 5, 1655-1669; Protein Data Bank, PDB:1MAG); and one based on two-dimensional NMR in detergent micelles (Townsley, L. E.; Tucker, W. A.; Sham, S.; Hinton, J. F. Biochemistry 2001, 40, 11676-11686; PDB:1JNO). Despite overall agreement, the two structures differ in peptide backbone pitch and the orientation of several side chains; in particular that of the Trp at position 9. Given the importance of the peptide backbone and Trp side chains for ion permeation, we undertook an investigation of the two structures using molecular dynamics simulation with an explicit lipid bilayer membrane, similar to the system used for the solid-state NMR experiments. Based on 0.1 micros of simulation, both backbone structures converge to a structure with 6.25 residues per turn, in agreement with X-ray scattering, and broad agreement with SS backbone NMR observables. The side chain of Trp 9 is mobile, more so than Trp 11, 13, and 15, and undergoes spontaneous transitions between the orientations in 1JNO and 1MAG. Based on empirical fitting to the NMR results, and umbrella sampling calculations, we conclude that Trp 9 spends 80% of the time in the 1JNO orientation and 20% in the 1MAG orientation. These results underscore the utility of molecular dynamics simulations in the analysis and interpretation of structural information from solid-state NMR. PMID:12904055

  3. A combined solid-state NMR and X-ray crystallography study of the bromide ion environments in triphenylphosphonium bromides.

    PubMed

    Burgess, Kevin M N; Korobkov, Ilia; Bryce, David L

    2012-04-27

    Multinuclear ((31)P and (79/81)Br), multifield (9.4, 11.75, and 21.1 T) solid-state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single-crystal X-ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh(4), because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non-standard nuclei can correct or improve X-ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, (79/81)Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. (35/37)Cl solid-state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge-including projector-augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, ?(11), on the shortest Br-P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey's theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as (79/81)Br, can afford insights into structure and bonding environments in the solid state. PMID:22434717

  4. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to ?-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil ? helix-like ? ?-sheet-like ? ?-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of ?-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  5. Quantitative determination of lead in mixtures of lead(II) halidesusing solid-state 207pb nmr spectroscopy

    SciTech Connect

    Glatfelter, Alicia; Stephenson, Nicole; Bai, Shi; Dybowski,Cecil; Perry, Dale L.

    2006-11-01

    A multi-spectrum technique for facile, quantitativedetermination of lead in solid materials using solid-state 207Pb NMR thatavoids the major problem of uniform excitation across a wide spectralrange has been demonstrated. The method can be employed without chemicalseparation or other chemical manipulations and without any prior samplepreparation, resulting in a non-destructive analysis, and producingresults that are in agreement with gravimetric analyses of mixed samplesof the lead halides.

  6. A natural abundance 33S solid-state NMR study of layered transition metal disulfides at ultrahigh magnetic field.

    PubMed

    Sutrisno, Andre; Terskikh, Victor V; Huang, Yining

    2009-01-01

    Using a series of layered transition metal disulfides we demonstrate that the wide-line natural abundance solid-state NMR spectra of 33S in a less symmetric environment can readily be obtained at ultrahigh magnetic field of 21.1 T and that surprisingly these closely related materials display a wide range of 33S quadrupole coupling constant and chemical shift anisotropy values. PMID:19099063

  7. Solid state NMR spectroscopy investigation of the molecular structure of epoxy based materials cured in different conditions

    NASA Astrophysics Data System (ADS)

    Alessi, S.; Spinella, A.; Caponetti, E.; Sabatino, Maria Antonietta; Spadaro, G.

    2012-07-01

    In this work two epoxy resin model systems, whose monomers are typically used in structural composites, were thermally cured in different cure conditions in order to obtain different cross-linking densities. Their molecular structures were investigated through solid state NMR spectroscopy in order to correlate them to the cure process conditions used and the results were discussed in the light of the dynamical mechanical thermal analysis (DMTA) performed.

  8. Morphology and molecular dynamics of hard ?-keratin under pressure by 1H and 13C solid-state NMR

    NASA Astrophysics Data System (ADS)

    Demco, Dan E.; Utiu, Lavinia; Tillmann, Walter; Blmich, Bernhard; Popescu, Crisan

    2011-06-01

    The effect of uniaxial pressure on phase composition, aminoacid side-chain and backbone dynamics, as well as rigid domain sizes of hard ?-keratin from human fingernail clippings was investigated by 1H solid-state and 13C cross-polarization MAS NMR spectroscopy. Proton spin-diffusion NMR experiments revealed that the rigid-domain sizes increased upon compression. The 13C carbonyl resonance components were shown to be very sensitive to the transition of ?-helices to ?-sheets induced by uniaxial compression. Carbon-13 longitudinal relaxation in the rotating frame showed dynamic heterogeneity of aminoacid residues especially during the ?-helix to ?-sheet transition.

  9. Chemical structures of pyridine extracts and residues of coals as indicated by solid state 13C NMR.

    NASA Astrophysics Data System (ADS)

    Erbatur, G.; Erbatur, O.; Davis, M. F.; Maciel, G. E.

    1984-03-01

    The pyridine extracts and the residues of four Turkish coals were investigated in the solid state by CP/MAS C-13 NMR. No systematic correlation was observed between the ranks of the coals and the aromaticities of the pyridine extracts. There were pronounced structural differences between the pyridine extracts and the corresponding parent fuels and these differences were most prominent in the lower rank coals. In general, the C-13 NMR spectra of the residues were quite similar to those of the corresponding parent fuels.

  10. Identification of different tin species in SnO2 nanosheets with 119Sn solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Junchao; Wu, Xin-Ping; Shen, Li; Li, Yuhong; Wu, Di; Ding, Weiping; Gong, Xue-Qing; Lin, Ming; Peng, Luming

    2016-01-01

    119Sn solid-state nuclear magnetic resonance (NMR) spectroscopy was employed to investigate the structure of hydroxylated SnO2 nanosheets. Three 119Sn resonances can be observed and assigned to Sn ions in the first layer, the bulk and the second layer from high to low frequencies with the help of density functional theory (DFT) calculations. The results suggest that 119Sn NMR spectroscopy can be a sensitive method to monitor the structure of SnO2 based nanomaterials and extension of this approach to other diamagnetic metal oxides.

  11. Solid-state NMR sequential assignments of the N-terminal domain of HpDnaB helicase.

    PubMed

    Wiegand, Thomas; Gardiennet, Carole; Ravotti, Francesco; Bazin, Alexandre; Kunert, Britta; Lacabanne, Denis; Cadalbert, Riccardo; Güntert, Peter; Terradot, Laurent; Böckmann, Anja; Meier, Beat H

    2016-04-01

    We present solid-state NMR assignments of the N-terminal domain of the DnaB helicase from Helicobacter pylori (153 residues) in its microcrystalline form. We use a sequential resonance assignment strategy based on three-dimensional NMR experiments. The resonance assignments obtained are compared with automated resonance assignments computed with the ssFLYA algorithm. An analysis of the (13)C secondary chemical shifts determines the position of the secondary structure elements in this α-helical protein. PMID:26280528

  12. Dynamics of benzimidazole ethylphosphonate: a solid-state NMR study of anhydrous composite proton-conducting electrolytes.

    PubMed

    Yan, Z Blossom; De Almeida, Nicole E; Traer, Jason W; Goward, Gillian R

    2013-11-01

    Imidazole phosphate and phosphonate solid acids model the hydrogen-bonding networks and dynamics of the anhydrous electrolyte candidate for proton exchange membrane fuel cells. Solid-state NMR reveals that phosphate and phosphonate anion dynamics dominate the rate of long-range proton transport, and that the presence of a membrane host facilitates proton mobility, as evidenced by a decreased correlation time of the composites (80 15 ms) relative to the pristine salt (101 5 ms). Benzimidazole ethylphosphonate (Bi-ePA) is chosen as a model salt to investigate the membrane system. The hydrogen-bonding structure of Bi-ePA is established using X-ray diffraction coupled with solid-state (1)H-(1)H DQC NMR. The anion dynamics has been determined using solid-state (31)P CODEX NMR. By comparing the dynamics of ethylphosphonate groups in pristine salt and membrane-salt composites, it is clear that the rotation process involves three-site exchange. Through data interpretation, a stretched exponential function is introduced with the stretching exponent, ?, ranging 0 < ? ? 1. The (31)P CODEX data for pristine salt are fitted with single exponential decay where ? = 1; however, the data for the membrane-salt composites are fitted with stretched exponential functions, where ? has a constant value of 0.5. This ? value suggests a non-Gaussian distribution of the dynamic systems in the composite sample, which is introduced by the membrane host. PMID:24056920

  13. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  14. Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples

    PubMed Central

    Das, Nabanita; Murray, Dylan T; Cross, Timothy A

    2014-01-01

    Solid-state NMR spectroscopy has been used successfully for characterizing the structure and dynamics of membrane proteins as well as their interactions with other proteins in lipid bilayers. such an environment is often necessary for achieving native-like structures. sample preparation is the key to this success. Here we present a detailed description of a robust protocol that results in high-quality membrane protein samples for both magic-angle spinning and oriented-sample solid-state NMR. the procedure is demonstrated using two proteins: CrgA (two transmembrane helices) and rv1861 (three transmembrane helices), both from Mycobacterium tuberculosis. the success of this procedure relies on two points. First, for samples for both types of NMR experiment, the reconstitution of the protein from a detergent environment to an environment in which it is incorporated into liposomes results in ‘complete’ removal of detergent. second, for the oriented samples, proper dehydration followed by rehydration of the proteoliposomes is essential. By using this protocol, proteoliposome samples for magic-angle spinning NMR and uniformly aligned samples (orientational mosaicity of <1°) for oriented-sample NMR can be obtained within 10 d. PMID:24157546

  15. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.

    PubMed

    Tang, Joel A; Kogut, Elzbieta; Norton, Danielle; Lough, Alan J; McGarvey, Bruce R; Fekl, Ulrich; Schurko, Robert W

    2009-03-19

    Transition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations). Single-crystal X-ray structures for the neutral (z = 0) and the fully reduced forms (z = 2) were obtained. The two species have very similar structures but differ slightly in their intraligand bond lengths. (19)F-(195)Pt CP/CPMG and (195)Pt magic-angle spinning (MAS) NMR experiments are used to probe the diamagnetic (z = 0, 2) species, revealing large platinum chemical shielding anisotropies (CSA) with distinct CS tensor properties, despite the very similar structural features of these species. Density functional theory (DFT) calculations are used to rationalize the large platinum CSAs and CS tensor orientations of the diamagnetic species using molecular orbital (MO) analysis, and are used to explain their distinct molecular electronic structures in the context of the NMR data. The paramagnetic species (z = 1) is examined using both EPR spectroscopy and (13)C and (19)F MAS NMR spectroscopy. Platinum g-tensor components were determined by using solid-state EPR experiments. The unpaired electron spin densities at (13)C and (19)F nuclei were measured by employing variable-temperature (13)C and (19)F NMR experiments. DFT and ab initio calculations are able to qualitatively reproduce the experimentally measured g-tensor components and spin densities. The combination of experimental and theoretical data confirm localization of unpaired electron density in the pi-system of the dithiolene rings. PMID:19236015

  16. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations.

    PubMed

    Gopinath, T; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes. PMID:25797011

  17. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  18. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. PMID:21316931

  19. Synthesis and Solid State Structure of Fluorous Probe Molecules for Fluorous Separation Applications

    PubMed Central

    Lehmler, H.-J.; Telu, S.; Vyas, S.M.; Shaikh, N.S.; Rankin, S.E.; Knutson, B.L.; Parkin, S.

    2010-01-01

    A series of colored hydrocarbon and fluorocarbon tagged 1-fluoro-4-alkylamino-anthraquinones and 1,4-bis-alkylamino-anthraquinone probe molecules were synthesized from a (fluorinated) alkyl amine and 1,4-difluoroanthraquinone to aid in the development of fluorous separation applications. The anthraquinones displayed stacking of the anthraquinone tricycle and interdigitation of the (fluorinated) alkyl chains in the solid state. Furthermore, intramolecular N-HO hydrogen bonds forced the hydrocarbon and fluorocarbon tags into a conformation pointing away from the anthraquinone tricycle, with the angle of the tricycle plane normal and the main (fluorinated) alkyl vector ranging from 1 to 39. Separation of the probe molecules on fluorous silica gel showed that the degree of fluorination of the probe molecules plays only a minor role with most eluents (e.g., hexane-ethyl acetate and methyl nonafluorobutyl ethers-ethyl acetate). However, toluene as eluent caused a pronounced separation by degree of fluorination for fluorocarbon, but not hydrocarbon tagged probe molecules on both silica gel and fluorous silica gel. These studies suggest that hydrocarbon and fluorocarbon tagged anthraquinones are useful probe molecules for the development of laboratory scale fluorous separation applications. PMID:20305832

  20. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low 12 mA) at frequencies between 320365 GHz, suggesting an efficient route for the generation of even higher frequency radiation. The low starting currents were attributed to an elevated cavity Q, which is confirmed by cavity thermal load measurements. We conclude with an appendix containing a detailed description of the control system that safely automates all aspects of the gyrotron operation. PMID:17942352

  1. 250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR.

    PubMed

    Bajaj, Vikram S; Hornstein, Melissa K; Kreischer, Kenneth E; Sirigiri, Jagadishwar R; Woskov, Paul P; Mak-Jurkauskas, Melody L; Herzfeld, Judith; Temkin, Richard J; Griffin, Robert G

    2007-12-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz (1)H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U-(13)C, (15)N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low 12 mA) at frequencies between 320 and 365 GHz, suggesting an efficient route for the generation of even higher frequency radiation. The low starting currents were attributed to an elevated cavity Q, which is confirmed by cavity thermal load measurements. We conclude with an appendix containing a detailed description of the control system that safely automates all aspects of the gyrotron operation. PMID:17942352

  2. High-Resolution Solid-State NMR Structure of a 17.6 kDa Protein

    PubMed Central

    Bhaumik, Anusarka; De Pape, Gal; Griffin, Robert G.; Lelli, Moreno; Lewandowski, Jzef R.; Luchinat, Claudio

    2015-01-01

    The use of pseudocontact shifts arising from paramagnetic metal ions in a microcrystalline protein sample is proposed as a strategy to obtain unambiguous signal assignments in solid-state NMR spectra enabling distance extraction for protein structure calculation. With this strategy, 777 unambiguous (281 sequential, 217 medium-range, and 279 long-range) distance restraints could be obtained from PDSD, DARR, CHHC, and the recently introduced PAR and PAIN-CP solid-state experiments for the cobalt(II)-substituted catalytic domain of matrix metalloproteinase 12 (159 amino acids, 17.6 kDa). The obtained structure is a high resolution one, with backbone rmsd of 1.0 0.2 , and is in good agreement with the X-ray structure (rmsd to X-ray 1.3 ). The proposed strategy, which may be generalized for nonmetallo-proteins with the use of paramagnetic tags, represents a significant step ahead in protein structure determination using solid-state NMR. PMID:20041641

  3. Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement.

    PubMed

    Whittaker, Christopher A P; Patching, Simon G; Esmann, Mikael; Middleton, David A

    2015-03-01

    NMR relaxation enhancement by paramagnetic metals provides powerful restraints on the three-dimensional structures of proteins in solution, and this approach has recently been utilized in several NMR structural investigations of proteins in the solid-state. Here we utilize paramagnetic relaxation enhancement (PRE) by Mn(2+) with cross-polarization magic-angle spinning (CP-MAS) solid-state NMR to investigate the interaction of a membrane-embedded protein the Na,K-ATPase (NKA) with a cardiotonic steroid inhibitor. The inhibitor, a diacetonide derivate of the cardiac glycoside ouabain, with (13)C labelled acetonide groups in the rhamnose sugar and steroid moieties ([(13)C2]ODA), is 1000-fold less potent than the parent compound. It is shown that the (13)C CP-MAS solid-state NMR spectra of the NKA-[(13)C2]ODA complex exhibit distinct signals for the two (13)C labels of the inhibitor when bound to the ouabain site of membrane-embedded NKA. Recent crystal structures of NKA indicate that the catalytic ?-subunit binds a single Mn(2+) in a transmembrane site close to the high-affinity ouabain site. Here, complexation of NKA with Mn(2+) broadens the resonance line from the rhamnose group substantially more than the steroid peak, indicating that the rhamnose group is closer to the Mn(2+) site than is the steroid group. These observations agree with computational molecular docking simulations and are consistent with ODA adopting an inverted orientation compared to ouabain in the cardiac glycoside site, with the modified rhamnose group drawn toward the transmembrane centre of the protein. This work demonstrates that PRE can provide unique information on the positions and orientations of ligands within their binding pockets of transmembrane proteins. PMID:25582619

  4. Solid-state 23Na and 7Li NMR investigations of sodium- and lithium-reduced mesoporous titanium oxides.

    PubMed

    Lo, Andy Y H; Schurko, Robert W; Vettraino, Melissa; Skadtchenko, Boris O; Trudeau, Michel; Antonelli, David M

    2006-02-20

    Mesoporous titanium oxide synthesized using a dodecylamine template was treated with 0.2, 0.6, and 1.0 equiv of Li- or Na-naphthalene. The composite materials were characterized by nitrogen adsorption, powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, and solid-state 23Na and 7Li NMR spectroscopy. In all cases the wormhole mesoporosity was retained as evidenced by BET surface areas from 400 to 700 m(2)/g, Horvath-Kawazoe pore sizes in the 20 Angstroms range, and a lack of hysteresis in the nitrogen adsorption isotherms. Variable-temperature conductivity studies show that the Li-reduced materials are semiconductors, with conductivity values 3 orders of magnitude higher than those of the Na-reduced materials. Electrochemical measurements demonstrate reversible intercalation/deintercalation of Li+ ions into pristine mesoporous Ti oxides with good cycling capacity. Solid-state 23Na NMR reveals two distinct Na environments: one corresponding to sodium ions in the mesoporous channels and the other corresponding to sodium ions intercalated into the metal framework. 23Na NMR spectra also indicate that the relative population of the framework site increases with increased reduction levels. Solid-state 7Li NMR spectra display a single broad resonance, which increases in breadth with increased reduction levels, though individual resonances inferring the presence of channel and framework Li species are not resolved. Comparisons of the lithium chemical shifts with published values suggests an "anatase-like structure" with no long-range order in the least-reduced samples but a "lithium titanate-like structure" with no long-range order in the higher reduced materials. PMID:16472000

  5. Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses.

    PubMed

    Shen, Ming; Trbosc, Julien; Lafon, Olivier; Gan, Zhehong; Pourpoint, Frdrique; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul

    2015-11-01

    Under Magic-Angle Spinning (MAS), a long radio-frequency (rf) pulse applied on resonance achieves the selective excitation of the center-band of a wide NMR spectrum. We show herein that these rf pulses can be applied on the indirect channel of Hetero-nuclear Multiple-Quantum Correlation (HMQC) sequences, which facilitate the indirect detection via spin-1/2 isotopes of nuclei exhibiting wide spectra. Numerical simulations show that this indirect excitation method is applicable to spin-1/2 nuclei experiencing a large chemical shift anisotropy, as well as to spin-1 isotopes subject to a large quadrupole interaction, such as (14)N. The performances of the long pulses are analyzed by the numerical simulations of scalar-mediated HMQC (J-HMQC) experiments indirectly detecting spin-1/2 or spin-1 nuclei, as well as by dipolar-mediated HMQC (D-HMQC) experiments achieving indirect detection of (14)N nuclei via (1)H in crystalline ?-glycine and N-acetyl-valine samples at a MAS frequency of 60kHz. We show on these solids that for the acquisition of D-HMQC spectra between (1)H and (14)N nuclei, the efficiency of selective moderate excitation with long-pulses at the (14)N Larmor frequency, ?0((14)N), is comparable to those with strong excitation pulses at ?0((14)N) or 2?0((14)N) frequencies, given the rf field delivered by common solid-state NMR probes. Furthermore, the D-HMQC experiments also demonstrate that the use of long pulses does not produce significant spectral distortions along the (14)N dimension. In summary, the use of center-band selective weak pulses is advantageous for HMQC experiments achieving the indirect detection of wide spectra since it (i) requires a moderate rf field, (ii) can be easily optimized, (iii) displays a high robustness to CSAs, offsets, rf-field inhomogeneities, and fluctuations in MAS frequency, and (iv) is little dependent on the quadrupolar coupling constant. PMID:26411981

  6. A high-resolution sup 13 C solid-state NMR study of meso-tetraphenylporphyrin and its zinc(II) complex

    SciTech Connect

    Rocha, J.; Kolodziejski, W.; Klinowski, J. ); Cavaleiro, J.A.S. )

    1992-01-01

    High-resolution {sup 13}C solid-state NMR spectra of meso-tetraphenylporphyrin (TPP) and its zinc(II) complex (ZnTPP) are assigned by reference to low-temperature solution NMR results and using {sup 1}H- {sup 13}C cross-polarization magic-angle-spinning (CP/MAS). The splittings of the signals from pyrrole carbons in TPP are attributed to kinetic solid-state states involved in the migration of the central hydrogen atom.

  7. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  8. Solid-state NMR studies for DC 745: April--May 2000

    SciTech Connect

    Stephens, T.; Labouriau, A.

    2000-12-01

    Powles et al. reported in 1961 that pdydimethyl siloxane melts exhibit a transverse decay of nuclear spin magnetization (T{sub 2}) that is nonexponential. This observation was interpreted in terms of the proton NMR signal from the melt having characteristics of a broad line. Since then, similar findings were obtained for other polymer melts too. Accordingly to Powles et al. this peculiar proton line shape was the result of an intramolecular direct dipole-dipole interaction between a pair of protons. They also suggested that this dipolar interaction was weak because the dipolar interaction was motionally averaged since the orientation-dependent local dipolar field is modulated by molecular dynamics. In sum, the consequences and the origins of nuclear spin correlations in viscous polymer melts were recognized almost 4 decades ago. In the 1970s, Cohen-Addad suggested that these weak proton dipolar interactions could be used to characterize polymer melts and networks. In this work, we have used some of these ideas to probe the effects of thermal treatments on the proton spin-spin relaxation times for DC745.

  9. Bottom-Up and Top-Down Solid-State NMR Approaches for Bacterial Biofilm Matrix Composition

    PubMed Central

    Cegelski, Lynette

    2015-01-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial “parts lists” for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this Perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The “sum-of-theparts” bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by E. coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in V. cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture. PMID:25797008

  10. Solid state {sup 31}P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels

    SciTech Connect

    Sasaki, D.Y.; Alam, T.D.

    2000-01-03

    Phosphonate binding sites in guanidine and ammonium surface-functionalized silica xerogels were prepared via the molecular imprinting technique and characterized using solid state {sup 31}P MAS NMR. One-point, two-point, and non-specific host-guest interactions between phenylphosphonic acid (PPA) and the functionalized gels were distinguished by characteristic chemical shifts of the observed absorption peaks. Using solid state as well as solution phase NMR analyses, absorptions observed at 15.5 ppm and 6.5 ppm were identified as resulting from the 1:1 (one-point) and 2:1 (two-point) guanidine to phosphonate interactions, respectively. Similar absorptions were observed with the ammonium functionalized gels. By examining the host-guest interactions within the gels, the efficiency of the molecular imprinting procedure with regard to the functional monomer-to-template interaction could be readily assessed. Template removal followed by substrate adsorption studies conducted on the guanidine functionalized gels provided a method to evaluate the binding characteristics of the receptor sites to a phosphonate substrate. During these experiments, {sup 29}Si and {sup 31}P MAS NMR acted as diagnostic monitors to identify structural changes occurring in the gel matrix and at the receptor site from solvent mediated processes.

  11. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.

    PubMed

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L

    2015-11-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, ?-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc?0.98. The size of the nanocrystallites was determined to be on average 2.5nm3.3nm3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa?0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that ?-sheet nanocrystallites constitutes 40.01.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 181% of alanine, 602% glycine and 542% serine are incorporated into helical conformations. PMID:26226457

  12. Detection of fulleroid sites in fullerene-60 by high-resolution solid-state [sup 1]H NMR

    SciTech Connect

    Kolodziejski, W.; Corma, A. ); Barras, J.; Klinowski, J. )

    1995-03-09

    [sup 1]H solid-state NMR with magic-angle spinning (MAS NMR) detects dilute H-containing species in chromatographically purified C[sub 60]. Because of the weakness of the [sup 1]H-[sup 1]H dipolar couplings, the spectral peaks are very sharp and the T[sub 1] values are not averaged by spin diffusion. On the basis of chemical shifts and peak connectivities as revealed by COSY, we have identified various fulleroids, as well as toluene and dioctyl phthalate (DOP) impurities. The fulleroids contain HC=CHCH[sub 2]CH[sub 3], HC=CHCH[sub 3], and HC=CH groups. DOP is probably complexed to C[sub 60] via the aromatic moiety. Laboratory and rotating-frame spin-diffusion experiments show that the H-containing species are so diluted by bulk C[sub 60] that they cannot communicate by intermolecular spin diffusion. The intramolecular spin-diffusion paths suggest that the alkyl chains of DOP are folded back toward the aromatic ring. We have found that two-dimensional [sup 1]H NMR techniques work well in the solid state without a multiple-pulse homonuclear decoupling, provided that the species under study are sufficiently dilute by a nondipolar medium. 46 refs., 8 figs., 2 tabs.

  13. Insight into magnesium coordination environments in benzoate and salicylate complexes through 25Mg solid-state NMR spectroscopy.

    PubMed

    Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L

    2013-08-01

    We report on the (25)Mg solid-state nuclear magnetic resonance (NMR) characterization of a series of magnesium complexes featuring Mg(2+) ions in organic coordination environments. Six compounds have been synthesized with benzoate and salicylate ligands, which are typically used as linkers in metal organic frameworks (MOFs). The use of ultrahigh-field solid-state NMR has revealed a relatively large range of values for the (25)Mg quadrupolar coupling constant, CQ((25)Mg), in these compounds. In contrast to some previously studied inorganic Mg(2+) complexes, the values of CQ((25)Mg) in organic Mg(2+) complexes are well rationalized by the degree of octahedral strain of the "MgO6" coordination polyhedra. (13)C and (25)Mg isotropic chemical shifts were also found to be sensitive to the binding mode of the carboxylate ligands. The experimental findings are corroborated by gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) computations, and these have allowed for an interpretation of the experimentally observed trend in the CQ((25)Mg) values and for the visualization of the EFG tensor principal components with respect to the molecular structure. These new insights may prove to be valuable for the understanding and interpretation of (25)Mg NMR data for Mg(2+) ions in organic binding environments such as those found in MOFs and protein-divalent metal binding sites. PMID:23834478

  14. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition

    NASA Astrophysics Data System (ADS)

    Cegelski, Lynette

    2015-04-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.

  15. Structural analysis of a banana-liquid crystal in the B4 phase by solid-state NMR.

    PubMed

    Yamada, Kazuhiko; Kang, Sungmin; Takimoto, Koji; Hattori, Masaya; Shirata, Kei; Kawauchi, Susumu; Deguchi, Kenzo; Shimizu, Tadashi; Watanabe, Junji

    2013-06-01

    In this paper, we present a structural investigation of 1,3-phenylene bis[4-((4-10-decyloxyphenyl)iminomethyl)-benzoate], known as a banana-liquid crystal, in the B4 phase, which was performed by solid-state nuclear magnetic resonance (NMR) methodology combined with quantum chemical calculations. The present solid-state NMR measurements including (13)C CPMAS, 2D TOSS-deTOSS, dipole-dephase, 1D and 2D EXSY, and MAS-j-HMQC provided accurate spectral assignments and unambiguous NMR parameters such as (13)C chemical shift tensors, which were used for construction of the three-dimensional structure with the aid of density functional theory calculations. In the obtained molecular structure, two arms of the bent-core molecule are asymmetrically expanded such that the direction of the dipole moment is off alignment with respect to the middle line of the center benzene ring. It is this antisymmetric structure that is the origin of the twisted helical system in the B4 phase. PMID:23654351

  16. Solid-state 13C NMR analysis of Lower Cretaceous Baganuur (Mongolia) lignite

    NASA Astrophysics Data System (ADS)

    Erdenetsogt, B.; Lee, I.; Lee, S.; Ko, Y.

    2009-12-01

    The transformation of plant matter into peat and coal has two steps, called the biochemical and geochemical stages of coalification. Biochemical coalification begins with the accumulation of dead vegetable matter and ends at the rank of subbituminous coal. The rank of Baganuur lignite ranges from lignite to subbituminous coal. It is transition between biochemical and physico-chemical coalification stages. The changes of chemical structure of coal during the transition between above mentioned two stages were studied by solid state CP/MAS 13C NMR. The most predominant alteration is the disappearance of the resonances from oxygenated aliphatic carbons (63 ppm), protonated aromatic carbons (114 ppm), oxygen-substituted aromatic carbons (144 ppm) and carbonyl carbons (195 ppm). In addition, the intensity of resonances from methoxyl carbons (56 ppm) and oxygenated aliphatic carbons (72 ppm) decreased. While the intensities of resonance from aliphatic (30 ppm), protonated aromatic (125 ppm) and carboxyl carbon (174 ppm) increased or remained almost constant. The relative percent of O-substituted aromatic carbons decreased by ~25% mainly due to the intensity loss of the peak at 144 ppm, indicating removal of O-containing functional groups substituted to aromatic carbons. It is consistent with the decreased relative percent (~75%) of the peak at 114 ppm from protonated aromatic carbons nearby oxygen-substituted aromatic carbons. In addition, the resonance from 125 ppm was shifted to 128 ppm and its relative area increased by ~20%, indicating replacement of O-substituent of aromatic rings by hydrogen or carbon. Protonated aromatic carbons at least two bond away from an oxygen-substituted aromatic carbons give a resonance at 125 ppm and carbon-substituted aromatic carbons give a resonance at 130-132 ppm. With the increase relative percent of C-substituted aromatic carbons, their resonance were overlapped with protonated aromatic carbons and shifted to higher ppm. A decreasing area of oxygenated aliphatic carbons (~15 %) could be explained by β-O-4 ether cleavage and loss of hydroxyl groups from side-chains as well as complete removal of cellulosic material. In addition, those deoxygenating reactions are more likely responsible for the increased relative intensity of aliphatic carbons. In detail, the relative percent of methyl groups at 14 ppm remained almost constant (decreased only by ~4%), while that of methylene increased by 20%. During the β-O-4 ether cleavage and loss of hydroxyl groups from side-chains, relative amount of CH2 should increase in respect to O-containing original structures. Finally, the relative percentage of carboxyl/carboxyl carbons were decreased by ~25%, mainly due to diminished intensity of carbonyl carbons at 195 ppm. The intensity loss of carbonyl carbons increased from biochemical stage (~10%) to the beginning of physico-chemical stage (~70%).

  17. Theoretical and experimental insights into applicability of solid-state 93Nb NMR in catalysis.

    PubMed

    Papulovskiy, Evgeniy; Shubin, Alexandre A; Terskikh, Victor V; Pickard, Chris J; Lapina, Olga B

    2013-04-14

    Ab initio DFT calculations of (93)Nb NMR parameters using the NMR-CASTEP code were performed for a series of over fifty individual niobates, and a good agreement has been found with experimental NMR parameters. New experimental and calculated (93)Nb NMR data were obtained for several compounds, AlNbO4, VNb9O25, K8Nb6O19 and Cs3NbO8, which are of particular interest for catalysis. Several interesting trends have been identified between (93)Nb NMR parameters and the specifics of niobium site environments in niobates. These trends may serve as useful guidelines in interpreting (93)Nb NMR spectra of complex niobium oxide systems, including amorphous samples and niobium-based multicomponent heterogeneous catalysts. Potential applications of (93)Nb NMR to study solid polyoxoniobates are discussed. PMID:23450163

  18. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations.

    PubMed

    Folliet, Nicolas; Roiland, Claire; Bégu, Sylvie; Aubert, Anne; Mineva, Tzonka; Goursot, Annick; Selvaraj, Kaliaperumal; Duma, Luminita; Tielens, Frederik; Mauri, Francesco; Laurent, Guillaume; Bonhomme, Christian; Gervais, Christel; Babonneau, Florence; Azaïs, Thierry

    2011-10-26

    In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {(1)H-(29)Si}(1)H and {(1)H-(31)P}(1)H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the (31)P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic-inorganic hybrid interfaces. PMID:21899369

  19. Multiple Acquisition/Multiple Observation Separated Local Field/Chemical Shift Correlation Solid-state Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Das, Bibhuti B.; Opella, Stanley J.

    2014-01-01

    Multiple acquisition spectroscopy (MACSY) experiments that enable multiple free induction decays to be recorded during individual experiments are demonstrated. In particular, the experiments incorporate separated local field spectroscopy into homonuclear and heteronuclear correlation spectroscopy. The measured heteronuclear dipolar couplings are valuable in structure determination as well as in enhancing resolution by providing an additional frequency axis. In one example four different three-dimensional spectra are obtained in a single experiment, demonstrating that substantial potential saving in experimental time is available when multiple multi-dimensional spectra are required as part of solid-state NMR studies. PMID:25023566

  20. Untangling a Repetitive Amyloid Sequence: Correlating Biofilm-Derived and Segmentally Labeled Curli Fimbriae by Solid-State NMR Spectroscopy.

    PubMed

    Schubeis, Tobias; Yuan, Puwei; Ahmed, Mumdooh; Nagaraj, Madhu; van Rossum, Barth-Jan; Ritter, Christiane

    2015-12-01

    Curli are functional bacterial amyloids produced by an intricate biogenesis machinery. Insights into their folding and regulation can advance our understanding of amyloidogenesis. However, gaining detailed structural information of amyloids, and their tendency for structural polymorphisms, remains challenging. Herein we compare high-quality solid-state NMR spectra from biofilm-derived and recombinantly produced curli and provide evidence that they adopt a similar, well-defined ?-solenoid arrangement. Curli subunits consist of five sequence repeats, resulting in severe spectral overlap. Using segmental isotope labeling, we obtained the unambiguous sequence-specific resonance assignments and secondary structure of one repeat, and demonstrate that all repeats are most likely structurally equivalent. PMID:26474178

  1. Construction of a solid-state NMR imager (MRI) for environmental studies

    SciTech Connect

    Howell, C.B. Jr.; Lee, Y.; Garner, G.A.; Butler, L.G.

    1995-12-01

    Some hazardous waste are isolated from the environment by solidification in cement. The problem is that detailed studies have not yet been done on the waste mobility in the cement. It is possible that ground water may penentrate into the cement and leach waste out into the ground water. To address this problem, imaging experiments of test samples will be done using an NMR imager that is now under construction. The NMR imager is based on a surplus 2.4 Tesla superconducting magnet and a homemade NMR console. The NMR imaging experiment is based on a magnet field gradient aligned with the imaging direction.

  2. Toward a structure determination method for biomineral-associated protein using combined solid-state NMR and computational structure prediction

    PubMed Central

    Masica, David L.; Ash, Jason T.; Ndao, Moise; Drobny, Gary P.; Gray, Jeffrey J

    2010-01-01

    Summary Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution NMR. Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this new method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized. PMID:21134646

  3. Some studies on a solid-state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1978-01-01

    As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.

  4. Monitoring of bentonite pore water with a probe based on solid-state microsensors.

    PubMed

    Orozco, Jahir; Baldi, Antoni; Martín, Pedro L; Bratov, Andrei; Jiménez, Cecilia

    2006-10-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises the natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented. PMID:17723733

  5. 11B solid-state NMR investigation of the rhamnogalacturonan II-borate complex in plant cell walls.

    PubMed

    Kameda, Tsunenori; Ishii, Tadashi; Matsunaga, Toshiro; Ashida, Jun

    2006-02-01

    The boron in plant cell walls, which is water-insoluble and in the solid state, is solubilized by pectinase digestion to give a dimeric rhamnogalacturonan II-borate (dRG-II-B) complex. To clarify the nondestructive structure of boron present in plant cell walls (as represented by sugar beet fiber), we performed 192- and 96-MHz 11B solid state NMR measurements. The use of a high field magnet frequency of 192-MHz enabled us to observe 11B isotropic chemical shifts at -9.7 and -9.6 ppm for dRG-II-B and sugar beet fiber in the solid state, respectively, demonstrating that the boron in isolated dRG-II-B and in plant cell walls is present as a borate-diol ester (1:2). The observation of the magnetic field dependence of the chemical shift and lineshape for the borate-diol ester (1:2) by quadrupolar interaction suggested that the borate complex had a distorted tetrahedral boron structure. PMID:16512431

  6. Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy.

    PubMed

    Zhang, Lei; Liu, Lishan; Maltsev, Sergey; Lorigan, Gary A; Dabney-Smith, Carole

    2014-01-01

    The chloroplast twin arginine translocation (cpTat) system transports highly folded precursor proteins into the thylakoid lumen using the protonmotive force as its only energy source. Hcf106, as one of the core components of the cpTat system, is part of the precursor receptor complex and functions in the initial precursor-binding step. Hcf106 is predicted to contain a single amino terminal transmembrane domain followed by a Pro-Gly hinge, a predicted amphipathic α-helix (APH), and a loosely structured carboxy terminus. Hcf106 has been shown biochemically to insert spontaneously into thylakoid membranes. To better understand the membrane active capabilities of Hcf106, we used solid-state NMR spectroscopy to investigate those properties of the APH. In this study, synthesized peptides of the predicted Hcf106 APH (amino acids 28-65) were incorporated at increasing mol.% into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and POPC/MGDG (monogalactosyldiacylglycerol; mole ratio 85:15) multilamellar vesicles (MLVs) to probe the peptide-lipid interaction. Solid-state (31)P NMR and (2)H NMR spectroscopic experiments revealed that the peptide perturbs the headgroup and the acyl chain regions of phospholipids as indicated by changes in spectral lineshape, chemical shift anisotropy (CSA) line width, and (2)H order SCD parameters. In addition, the comparison between POPC MLVs and POPC/MGDG MLVs indicated that the lipid bilayer composition affected peptide perturbation of the lipids, and such perturbation appeared to be more intense in a system more closely mimicking a thylakoid membrane. PMID:24144541

  7. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE PAGESBeta

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  8. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    SciTech Connect

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  9. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.

    PubMed

    Baias, Maria; Widdifield, Cory M; Dumez, Jean-Nicolas; Thompson, Hugh P G; Cooper, Timothy G; Salager, Elodie; Bassil, Sirena; Stein, Robin S; Lesage, Anne; Day, Graeme M; Emsley, Lyndon

    2013-06-01

    A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For cocaine, flutamide and flufenamic acid, we find that the assigned (1)H isotropic chemical shifts provide sufficient discrimination to determine the correct structures from a set of predicted structures using the root-mean-square deviation (rmsd) between experimentally determined and calculated chemical shifts. In most cases unassigned shifts could not be used to determine the structures. This method requires no prior knowledge of the crystal structure, and was used to determine the correct crystal structure to within an atomic rmsd of less than 0.12 with respect to the known reference structure. For theophylline, the NMR spectra are too simple to allow for unambiguous structure selection. PMID:23503809

  10. Design of a Heterogeneous Catalyst Based on Cellulose Nanocrystals for Cyclopropanation: Synthesis and Solid-State NMR Characterization.

    PubMed

    Liu, Jiquan; Plog, Andreas; Groszewicz, Pedro; Zhao, Li; Xu, Yeping; Breitzke, Hergen; Stark, Annegret; Hoffmann, Rudolf; Gutmann, Torsten; Zhang, Kai; Buntkowsky, Gerd

    2015-08-24

    Heterogeneous dirhodium(II) catalysts based on environmentally benign and biocompatible cellulose nanocrystals (CNC-Rh2) as support material were obtained by ligand exchange between carboxyl groups on the CNC surface and Rh2(OOCCF3)4, as was confirmed by solid-state (19)F and (13)C NMR spectroscopy. On average, two CF3COO(-) groups are replaced during ligand exchange, which is consistent with quantitative analysis by a combination of (19)F NMR spectroscopy and thermogravimetry. CNC-Rh2 catalysts performed well in a model cyclopropanation reaction, in spite of the low dirhodium(II) content on the CNC surface (0.23 mmol g(-1)). The immobilization through covalent bonding combined with the separate locations of binding positions and active sites of CNC-Rh2 guarantees a high stability against leaching and allows the recovery and reuse of the catalyst during the cyclopropanation reaction. PMID:26179865

  11. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed Field Gradient NMR

    SciTech Connect

    Gobet, Mallory; Greenbaum, Steve; Sahu, Gayatri; Liang, Chengdu

    2014-01-01

    The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.

  12. ?B-Crystallin: A Hybrid Solid-State/Solution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer

    SciTech Connect

    Jehle, Stefan; van Rossum, Barth; Stout, Joseph R.; Noguchi, Satoshi M.; Falber, Katja; Rehbein, Kristina; Oschkinat, Hartmut; Klevit, Rachel E.; Rajagopal, Ponni

    2009-02-06

    Atomic-level structural information on ?B-Crystallin (?B), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an ?580-kDa human ?B assembled from 175-residue 20-kDa subunits. An ?100-residue ?-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different ?- crystallin domain constructs isolated from ?B. In vitro, the chaperone-like activities of full-length ?B and the isolated ?-crystallin domain are identical. Chemical shifts of the backbone and C? resonances have been obtained for residues 64162 (?-crystallin domain plus part of the C-terminus) in ?B and the isolated ?-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six ?-strands in the ?-crystallin domain. A majority of residues in the ?-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the ?-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within ?B. Evidence for a novel dimerization motif in the human ?-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) 1H15N heteronuclear single quantum coherence spectra as a function of pH. The isolated ?-crystallin domain undergoes a dimermonomer transition over the pH range 7.56.8. This steep pHdependent switch may be important for ?B to function optimally (e.g., to preserve the filament integrity of cardiac muscle proteins such as actin and desmin during cardiac ischemia, which is accompanied by acidosis).

  13. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  14. Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments.

    PubMed

    Takahashi, Hiroki; Fernndez-de-Alba, Carlos; Lee, Daniel; Maurel, Vincent; Gambarelli, Serge; Bardet, Michel; Hediger, Sabine; Barra, Anne-Laure; De Pape, Gal

    2014-02-01

    Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ?100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed. PMID:24480716

  15. Solid-state NMR of a protein in a precipitated complex with a full-length antibody.

    PubMed

    Lamley, Jonathan M; Iuga, Dinu; ster, Carl; Sass, Hans-Juergen; Rogowski, Marco; Oss, Andres; Past, Jaan; Reinhold, Andres; Grzesiek, Stephan; Samoson, Ago; Lewandowski, Jzef R

    2014-12-01

    NMR spectroscopy is a prime technique for characterizing atomic-resolution structures and dynamics of biomolecular complexes but for such systems faces challenges of sensitivity and spectral resolution. We demonstrate that the application of (1)H-detected experiments at magic-angle spinning frequencies of >50 kHz enables the recording, in a matter of minutes to hours, of solid-state NMR spectra suitable for quantitative analysis of protein complexes present in quantities as small as a few nanomoles (tens of micrograms for the observed component). This approach enables direct structure determination and quantitative dynamics measurements in domains of protein complexes with masses of hundreds of kilodaltons. Protein-protein interaction interfaces can be mapped out by comparison of the chemical shifts of proteins within solid-state complexes with those of the same constituent proteins free in solution. We employed this methodology to characterize a >300 kDa complex of GB1 with full-length human immunoglobulin, where we found that sample preparation by simple precipitation yields spectra of exceptional quality, a feature that is likely to be shared with some other precipitating complexes. Finally, we investigated extensions of our methodology to spinning frequencies of up to 100 kHz. PMID:25381931

  16. A view on phosphate ester photochemistry by time-resolved solid state NMR. Intramolecular redox reaction of caged ATP.

    PubMed

    Cherepanov, Alexey V; Doroshenko, Elena V; Matysik, Jrg; de Vries, Simon; De Groot, Huub J M

    2008-12-01

    The light-driven intramolecular redox reaction of adenosine-5'-triphosphate-[P3-(1-(2-nitrophenyl)-ethyl)]ester (caged ATP) has been studied in frozen aqueous solution using time-resolved solid state NMR spectroscopy under continuous illumination conditions. Cleavage of the phosphate ester bond leads to 0.3, 1.36, and 6.06 ppm downfield shifts of the alpha-, beta-, and gamma-phosphorus resonances of caged ATP, respectively. The observed rate of ATP formation is 2.4 +/- 0.2 h(-1) at 245 K. The proton released in the reaction binds to the triphosphate moiety of the nascent ATP, causing the upfield shifts of the 31P resonances. Analyses of the reaction kinetics indicate that bond cleavage and proton release are two sequential processes in the solid state, suggesting that the 1-hydroxy,1-(2-nitrosophenyl)-ethyl carbocation intermediate is involved in the reaction. The beta-phosphate oxygen atom of ATP is protonated first, indicating its proximity to the reaction center, possibly within hydrogen bonding distance. The residual linewidth kinetics are interpreted in terms of chemical exchange processes, hydrogen bonding of the beta-phosphate oxygen atom and evolution of the hydrolytic equilibrium at the triphosphate moiety of the nascent ATP. Photoreaction of caged ATP in situ gives an opportunity to study structural kinetics and catalysis of ATP-dependent enzymes by NMR spectroscopy in rotating solids. PMID:19015786

  17. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    PubMed

    Legrand, A P; Sfihi, H; Lequeux, N; Lematre, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined. PMID:19365821

  18. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  19. A comparative spectroscopic investigation of three pseudopolymorphs of testosterone using solid-state i.r. and high-resolution solid-state NMR

    NASA Astrophysics Data System (ADS)

    Fletton, Richard A.; Harris, Robin K.; Kenwright, Alan M.; Lancaster, Robert W.; Packer, Kenneth J.; Sheppard, Norman

    Three pseudopolymorphic forms of testosterone have been examined by i.r. and CP/MAS NMR spectroscopies. The transmittance i.r. data clearly distinguish the forms. The NMR work also provides clear distinctions and shows crystallographic splittings for the α form only, in accordance with the X-ray data. The NMR spectra are fully assigned. The effect of crystallisation procedure on the NMR spectra was explored. NMR can be used to quantitatively assess mixtures of the β and δ forms.

  20. Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.

    PubMed

    Grasnick, Dorit; Sternberg, Ulrich; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2011-04-01

    To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state (19)F nuclear magnetic resonance (NMR) approach was used to collect local orientational constraints from a series of CF(3)-phenylglycine-labeled peptide analogues in macroscopically aligned membranes. Fusion assays showed that these (19)F-labels did not significantly affect peptide function. The NMR spectra were characteristic of well-behaved samples, without any signs of heterogeneity or peptide aggregation at 1:300 in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We can conclude from these NMR data that FP23 has a well-defined (time-averaged) conformation and undergoes lateral diffusion in the bilayer plane, presumably as a monomer or small oligomer. Attempts to evaluate its conformation in terms of various secondary structures, however, showed that FP23 does not form any type of regular helix or β-strand. Therefore, all-atom molecular dynamics (MD) simulations were carried out using the orientational NMR constraints as pseudo-forces to drive the peptide into a stable alignment and structure. The resulting picture suggests that FP23 can adopt multiple β-turns and insert obliquely into the membrane. Such irregular conformation explains why the structure of the fusion peptide could not be reliably determined by any biophysical method so far. PMID:21274707

  1. Synthesis and solid-state NMR characterization of cubic mesoporous silica SBA-1 functionalized with sulfonic acid groups.

    PubMed

    Tsai, Hui-Hsu Gavin; Chiu, Po-Jui; Jheng, Guang-Liang; Ting, Chun-Chiang; Pan, Yu-Chi; Kao, Hsien-Ming

    2011-07-01

    Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond. PMID:21507414

  2. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR

    NASA Astrophysics Data System (ADS)

    Deschamps, Michal; Gilbert, Edouard; Azais, Philippe; Raymundo-Piero, Encarnacin; Ammar, Mohammed Ramzi; Simon, Patrick; Massiot, Dominique; Bguin, Franois

    2013-04-01

    Supercapacitors are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions. Insight into the molecular mechanisms at work inside supercapacitor carbon electrodes is obtained with 13C and 11B ex situ magic-angle spinning nuclear magnetic resonance (MAS-NMR). In activated carbons soaked with an electrolyte solution, two distinct adsorption sites are detected by NMR, both undergoing chemical exchange with the free electrolyte molecules. On charging, anions are substituted by cations in the negative carbon electrode and cations by anions in the positive electrode, and their proportions in each electrode are quantified by NMR. Moreover, acetonitrile molecules are expelled from the adsorption sites at the negative electrode alone. Two nanoporous carbon materials were tested, with different nanotexture orders (using Raman and 13C MAS-NMR spectroscopies), and the more disordered carbon shows a better capacitance and a better tolerance to high voltages.

  3. Solid-state NMR analysis of coals and shales from the Mesaverde Group, Green River Basin, Wyoming

    SciTech Connect

    Miknis, F.P.; MacGowan, D.B.

    1993-08-01

    Samples of coals and shales from the Almond Formation of the Mesaverde Group, Greater Green River Basin, Wyoming were analyzed using solid-state {sup 13}C nuclear magnetic resonance (NMR) techniques of cross polarization with magic-angle spinning (CP/MAS). The samples were taken from a present-day depth of burial ranging from {approximately}3,000 to {approximately}15,000 ft. In addition, CP/MAS {sup 13}C NMR measurements were made on residues from the hydrous pyrolysis of Almond coal. The hydrous pyrolysis experiments were conducted isothermally for 72 hr in the temperature range of 290 to 360{degree}C (554 to 680{degree}F). In general, the maturation trends observed by NMR for the naturally and artificially matured samples were in agreement with results obtained from other geochemical analyses. The NMR spectra of the naturally matured shale samples showed only a small aliphatic component at depths greater than about 12,000 ft, indicating little capacity for hydrocarbon generation at depths greater than this. Vitrinite reflectance measurements placed the oil window at between 4,500 and 14,500 ft. NMR measurements of the hydrous pyrolysis residues showed a clear loss of aliphatic carbon, relative to the aromatic carbon, with temperature. For the residue obtained from the highest study temperature (360{degree}C/680{degree}F), there was a 60% depletion of the hydrocarbon-producing aliphatic components. The trends in loss of aliphatic carbon with temperature suggested a means of defining a geochemical transformation ratio in terms of the loss of the aliphatic carbon fraction. A good correlation was found between the NMR transformation ratio and the production index determined by Rock-Eval pyrolysis measurements.

  4. Probing Solid-State Nanopores with Light for the Detection of Unlabeled Analytes

    PubMed Central

    2015-01-01

    Nanopore sensing has enabled label-free single-molecule measurements on a wide variety of analytes, including DNA, RNA, and protein complexes. Much progress has been made toward biotechnological applications; however, electrically probing the ion current introduces nonideal noise components. Here we further develop a method to couple an ionic current to a photon-by-photon counting of fluorescent signal from Ca2+-sensitive dyes and demonstrate label-free optical detection of biopolymer translocation through solid-state nanopores using TIRF and confocal microscopy. We show that by fine adjustment of the CaCl2 gradient, EGTA concentration, and voltage, the optical signals can be localized to the immediate vicinity of the pore. Consequently, the noise spectral density distribution in the optical signal exhibits a nearly flat distribution throughout the entire frequency range. With the use of high-speed photon counting devices in confocal microscopy and higher photon count rates using stronger light sources, we can improve the signal-to-noise ratio of signal acquisition, while the use of wide-field imaging in TIRF can allow for simultaneous quantitative imaging of large arrays of nanopores. PMID:25363680

  5. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission

    NASA Astrophysics Data System (ADS)

    Pike, Kevin J.; Kemp, Thomas F.; Takahashi, Hiroki; Day, Robert; Howes, Andrew P.; Kryukov, Eugeny V.; MacDonald, James F.; Collis, Alana E. C.; Bolton, David R.; Wylde, Richard J.; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J.; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M.; Newton, Mark E.; Dupree, Ray; Smith, Mark E.

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE13 fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz 1H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE16 second-harmonic mode of the gyrotron) for DNP at 14.1 T (600 MHz 1H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ˜1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz 1H and double channel HX mode for 284 MHz 1H, with MAS sample temperatures ⩾85 K. Initial data at 6.7 T and ˜1 W pulsed microwave power are presented with 13C enhancements of 60 for a frozen urea solution (1H-13C CP), 16 for bacteriorhodopsin in purple membrane (1H-13C CP) and 22 for 15N in a frozen glycine solution (1H-15N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.

  6. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission.

    PubMed

    Pike, Kevin J; Kemp, Thomas F; Takahashi, Hiroki; Day, Robert; Howes, Andrew P; Kryukov, Eugeny V; MacDonald, James F; Collis, Alana E C; Bolton, David R; Wylde, Richard J; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M; Newton, Mark E; Dupree, Ray; Smith, Mark E

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design. PMID:22218011

  7. Determination of Anion Ordering in Mixed Apatites via Multinuclear Solid-State NMR & X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Vaughn, J. S.; Phillips, B. L.; Hughes, J. M.; Nekvasil, H.; Ustunisik, G. K.; Lindsley, D. H.; Coraor, A. E.; McCubbin, F. M.; Woerner, W. R.

    2013-12-01

    Subtle changes in crystallographic anion position in apatite sensu latu Ca5(PO4)3(F,OH,Cl) are known to affect greatly its macroscopic physical properties, such as acid resistivity and hardness. While the anion positions in endmember compositions are well described, there exist substantial gaps in our understanding of anion ordering in mixed binary and ternary compositions because of potential steric anion interactions and symmetry changes. X-ray diffraction analysis of these binary/ternary mixtures is well-suited to address the atomic positions and average occupancies of these anion sites for well-ordered systems. Multinuclear solid-state NMR methods complement XRD structure studies if there exist column ordering reversals or disorder in the atomic positions of the anions, as NMR is sensitive to the atomic arrangement within short distances of the nucleus (<4). Using these analytical techniques the anion ordering along the F-Cl solid-solution join is reported, and features an off-mirror fluorine site at (0,0,0.167). The migration of fluorine away from its end-member site within the {00l} mirror plane and subsequent migration of chlorine in the opposing direction results in acceptable F-Cl distances in the anion column. Exceptionally low H content in the anion channel was afforded via high-temperature (1200C) solid-state reaction under vacuum. The speciation of H was determined by 1H{31P} REDOR experiments, from which the REDOR difference spectrum features a single resonance at ?H = 1.6 ppm which can be assigned to OH groups. The abundance of OH was confirmed by comparison of single-pulse (SP) 31P and cross-polarization 31P{1H} NMR (CP) spectral intensities to those of a crystalline synthetic hydroxylapatite, and showed that only 0.4 mol% of the 31P in the composition occurs in hydroxylapatite-like configurations.

  8. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of formation of surface silica species and follow the formation of phosphate species, respectively, while cross-polarization magic-angle spinning (CP/MAS) 29Si and 31P NMR have provided information about low intensity NMR peaks due to various silicon- and phosphorus-species present in the vicinity of associated protons on the surface of in vitro reacted BioglassRTM materials. The solid-state NMR investigations of the "interfacial" surface reactions of BioglassRTM materials are discussed in the context of the structure of these materials and the influence of this structure on the kinetics and the mechanism of their "interfacial" surface chemistry. (Abstract shortened by UMI.) BioglassRTM, trademark, University of Florida, Gainesville, FL, 32611.

  9. Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals.

    PubMed

    Widdifield, Cory M; Cavallo, Gabriella; Facey, Glenn A; Pilati, Tullio; Lin, Jingxiang; Metrangolo, Pierangelo; Resnati, Giuseppe; Bryce, David L

    2013-09-01

    Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear ((13)C, (14/15)N, (19)F, and (127)I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N(+)(CH2)10N(+)(CH3)3][2 I(-)]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. (13)C and (15)N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using (14)N NMR spectroscopy, with a systematic decrease in the (14)N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at (127)I solid-state NMR spectroscopy experiments are presented and variable-temperature (19)F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond. PMID:23893705

  10. A simple method for analyzing 51V solid-state NMR spectra of complex systems.

    PubMed

    Fenn, Annika; Wchtler, Maria; Breitzke, Hergen; Buchholz, Axel; Lippold, Ines; Plass, Winfried; Buntkowsky, Gerd

    2011-09-01

    Five vanadium complexes as models for biological systems were investigated using (51)V-MAS-NMR spectroscopy. All spectra show an uncommon line shape, which can be attributed to a shorter relaxation time of the satellite transition in contrast to the central one. A method for the reliable analysis of such kind of spectra is presented for the first time and the most important NMR parameters of the investigated complexes (quadrupolar coupling constant C(Q), asymmetry of the EFG tensor ?(Q), isotropic chemical shift ?(iso), chemical shift anisotropy ?(?) and asymmetry of the CSA tensor ?(?)) are presented. These results are of particular importance with respect to the analysis of the (51)V-MAS-NMR spectra of vanadium moieties in biological matrices such as vanadium chloroperoxidase, which show hitherto unexplained low intensity of the satellite sideband pattern. PMID:21601435

  11. Solid-state variable-temperature NMR study of the phase separation of polybutadiene polyurethane zwitterionomers

    NASA Astrophysics Data System (ADS)

    Yang, G.; Chen, Q.; Wang, Y.; Yang, C.; Wu, X.

    1994-07-01

    Polybutadiene polyurethane (PBDPU) zwitterionomers based on 4,4'-diphenylmethane diisocyanate (MDI), methyl-diethanolamine (MDEA), and hydroxy terminated polybutadiene are studied with variable-temperature (VT) wide-line 1H NMR. Spin—spin relaxation times ( T2) and spin—lattice relaxation times ( T1) are measured. It is found that phase separation of PBDPU does not change significantly upon ionization. The initial incorporation of ionization groups destroys the crystallinity of the hard segment while further ionization enhances physical crosslinks in the hard phase. The results are compared with a previous VT NMR study on polyether polyurethane zwitterionomers based on MDI, MDEA and 1000 Da molecular weight polytetramethylene oxide.

  12. Catalytic Roles of ?Lys87 in Tryptophan Synthase: 15N Solid State NMR Studies

    PubMed Central

    Caulkins, Bethany G.; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F.; Mueller, Leonard J.

    2015-01-01

    The proposed mechanism for tryptophan synthase shows ?Lys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4? for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ?-15N-lysine TS was prepared to access the protonation state of ?Lys87 using 15N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ?-amino group switches between protonated and neutral states as the ?-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. PMID:25688830

  13. Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR

    PubMed Central

    Fu, Li; McCallum, Scott A.; Miao, Jianjun; Hart, Courtney; Tudryn, Gregory J.; Zhang, Fuming; Linhardt, Robert J.

    2014-01-01

    Biofuels and biomaterials, produced from lignocellulosic feedstock, require facile access to cellulose and hemicellulose to be competitive with petroleum processing and sugar-based fermentation. Physical-chemical barriers resulting from lignin complicates the hydrolysis biomass into fermentable sugars. Thus, the amount of lignin within a substrate is critical in determining biomass processing. The application of 13C cross-polarization, magic-angle spinning, and solid-state nuclear magnetic resonance for the direct quantification of lignin content in biomass is examined. Using a standard curve constructed from pristine lignin and cellulose, the lignin content of a biomass sample is accurately determined through direct measurement without chemical or enzymatic pre-treatment. PMID:25404762

  14. Humic acids as proxies for assessing different Mediterranean forest soils signatures using solid-state CPMAS 13C NMR spectroscopy.

    PubMed

    Duarte, Regina M B O; Fernndez-Getino, Ana P; Duarte, Armando C

    2013-06-01

    Humic acids (HAs) of four representative forest soils profiles from Central Spain (two with different vegetation - pine and oak - but same parent material - granitie, and two with same vegetation - holm oak - but different parent material - granite and limestone) were investigated by solid-state cross polarization with magic angle spinning (13)C nuclear magnetic resonance (NMR) spectroscopy. The objectives included the investigation of the impact of different forest properties on HA composition, assessing how the structural characteristics of the HA vary with soil depth, and evaluating the role of HA as surrogates for mapping the different forest soils signatures using structural data derived from (13)C NMR spectroscopy. On average, alkyl C is the dominant C constituent (38-48% of the total NMR peak area) in all HA samples, followed by aromatic (12-22%) and O-alkyl C (12-19%), and finally carboxyl C (7.0-10%). The NMR data also indicated that HA composition is likely to be differently affected by the soil physico-chemical properties and type of forest vegetation. The structural characteristics of the HA from soil under oak did not differ broadly downward in the profile, whereas soil HA under pine forest exhibits a somewhat higher recalcitrant nature as a consequence of a higher degree of decomposition. The soil HA from holm oak forests differed from the other two forest soils, exhibiting a progressive decomposition of the alkyl C structures with increasing depth, while the carbohydrate-like indicator (O-alkyl C) is apparently being protected from mineralization in the horizons below the ground level. Overall, these differences in soil HA NMR signatures are an important diagnostic tool for understanding the role of different soil environmental factors on the structural composition of HA from Mediterranean forest soils. PMID:23332874

  15. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties. PMID:25494341

  16. Solid-state NMR analysis of soil organic matter fractions from integrated physical-chemical extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fractions of soil organic matter (SOM) are usually extracted from soil by either physical (size, density) or chemical (e.g., base, acid) procedures. In this study we used 13C nuclear magnetic resonance (NMR) spectroscopy to chemically characterize the fractions that were obtained by an integrated pr...

  17. Compensating Pulse Imperfections in Solid-State NMR Spectroscopy: A Key to Better Reproducibility and Performance.

    PubMed

    Wittmann, Johannes J; Takeda, Kazuyuki; Meier, Beat H; Ernst, Matthias

    2015-10-19

    The power and versatility of NMR spectroscopy is strongly related to the ability to manipulate NMR interactions by the application of radio-frequency (rf) pulse sequences. Unfortunately, the rf fields seen by the spins differ from the ones programmed by the experimentalist. Pulse transients, i.e., deviations of the amplitude and phase of the rf fields from the desired values, can have a severe impact on the performance of pulse sequences and can lead to inconsistent results. Here, we demonstrate how transient-compensated pulses can greatly improve the efficiency and reproducibility of NMR experiments. The implementation is based on a measurement of the characteristics of the resonance circuit and does not rely on an experimental optimization of the NMR signal. We show how the pulse sequence has to be modified to use it with transient-compensated pulses. The efficiency and reproducibility of the transient-compensated sequence is greatly superior to the original POST-C7 sequence. PMID:26465653

  18. (11)B Solid-State NMR Interaction Tensors of Linear Two-Coordinate Boron: The Dimesitylborinium Cation.

    PubMed

    Alain, Amanda E; Shoji, Yoshiaki; Fukushima, Takanori; Bryce, David L

    2015-12-21

    Borinium cations (R2B(+)) are of particular fundamental and applied interest in part due to their pronounced Lewis acidity which enables unique chemical transformations. Solid-state NMR spectroscopy of magic-angle spinning and stationary powdered samples of the dicoordinate boron cation in the recently reported dimesitylborinium tetrakis(pentafluorophenyl)borate compound (Shoji et al. Nature Chem. 2014, 6, 498) is applied to characterize the (11)B electric field gradient (EFG) and chemical shift (CS) tensors. The experimental data are consistent with linear C-B(+)-C geometry. The (11)B quadrupolar coupling constant, 5.44 0.08 MHz, and the span of the CS tensor, 130 1 ppm, are both particularly large relative to literature data for a variety of boron functional groups, and represent the first such data for the linear C-B(+)-C borinium moiety. The NMR data are similar to those for the neutral tricoordinate analogue, trimesitylborane, but contrast with those of the Cp*2B(+) cation. Quantum chemical calculations are applied to provide additional insights into the relationship between the NMR observables and the molecular and electronic structure of the dimesitylborinium cation. PMID:26624205

  19. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 2530 K range, a 9.4 T magnetic field, MAS frequencies of 6.26.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.63.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 24 times lower than with the best triradicals. PMID:24887201

  20. Visualising substrate-fingermark interactions: Solid-state NMR spectroscopy of amino acid reagent development on cellulose substrates.

    PubMed

    Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris

    2015-05-01

    Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. PMID:25766739

  1. Molecular composition of recycled organic wastes, as determined by solid-state {sup 13}C NMR and elemental analyses

    SciTech Connect

    Eldridge, S.M.; Chen, C.R.; Xu, Z.H.; Nelson, P.N.; Boyd, S.E.; Meszaros, I.; Chan, K.Y.

    2013-11-15

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state {sup 13}C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.

  2. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR

    PubMed Central

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Bckmann, Anja; Meier, Beat H.; Blocker, Ariel J.

    2015-01-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ?50nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. PMID:26439285

  3. Solid state NMR, MRI and Sir Peter Mansfield: (1) from broad lines to narrow and back again; and (2) a highly tenuous link to landmine detection.

    PubMed

    Garroway, A N

    1999-12-01

    The contributions of Sir Peter Mansfield to MRI are rooted in solid state NMR. I summarize some of the important contributions of Sir Peter to that field, provide a glimpse of the state of the art in multiple-pulse line-narrowing in the early 1970s, and indicate how the earliest MRI efforts at Nottingham flowed from solid state NMR. These line-narrowing methods, providing control over the Hamiltonian governing the dynamics of nuclear spins, continue to evolve and to find new uses. I indicate how some methods and ideas from solid state NMR of the 1970s are at present applied to the detection of explosives in landmines by nuclear quadrupole resonance (NQR). PMID:10628681

  4. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR.

    PubMed

    Larsen, Flemming H; Kasprzak, Mirosław M; Lærke, Helle N; Knudsen, Knud Erik B; Pedersen, Sven; Jørgensen, Anne S; Blennow, Andreas

    2013-09-12

    Hydration of granular, gelatinized and molecularly modified states of potato starch in terms of molecular mobility were analyzed by (13)C and (31)P solid-state MAS NMR. Gelatinization (GEL) tremendously reduced the immobile fraction compared to native (NA) starch granules. This effect was enhanced by enzyme-assisted catalytic branching with branching enzyme (BE) or combined BE and β-amylase (BB) catalyzed exo-hydrolysis. Carbons of the glycosidic α-1,6 linkages required high hydration rates before adopting uniform chemical shifts indicating solid-state disorder and poor water accessibility. Comparative analysis of wheat and waxy maize starches demonstrated that starches were similar upon gelatinization independent of botanical origin and that the torsion angles of the glycosidic linkages were averages of the crystalline A and B type structures. In starch suspension phosphorous in immobile regions was only observed in NA starch. Moreover phosphorous was observed in a minor pH-insensitive form and as major phosphate in hydrated GEL and BE starches. PMID:23911477

  5. Solid-state NMR analysis of the {beta}-strand orientation of the protofibrils of amyloid {beta}-protein

    SciTech Connect

    Doi, Takashi; Masuda, Yuichi; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 ; Irie, Kazuhiro; Akagi, Ken-ichi; Monobe, Youko; Imazawa, Takayoshi; Takegoshi, K.

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The supramolecular structure of A{beta}42 protofibrils was analyzed by solid-state NMR. Black-Right-Pointing-Pointer The Ala-21 residue in the A{beta}42 protofibrils is included in a slightly disordered {beta}-strand. Black-Right-Pointing-Pointer The A{beta}42 protofibrils do not form intermolecular in-register parallel {beta}-sheets. -- Abstract: Alzheimer's disease (AD) is caused by abnormal deposition (fibrillation) of a 42-residue amyloid {beta}-protein (A{beta}42) in the brain. During the process of fibrillation, the A{beta}42 takes the form of protofibrils with strong neurotoxicity, and is thus believed to play a crucial role in the pathogenesis of AD. To elucidate the supramolecular structure of the A{beta}42 protofibrils, the intermolecular proximity of the Ala-21 residues in the A{beta}42 protofibrils was analyzed by {sup 13}C-{sup 13}C rotational resonance experiments in the solid state. Unlike the A{beta}42 fibrils, an intermolecular {sup 13}C-{sup 13}C correlation was not found in the A{beta}42 protofibrils. This result suggests that the {beta}-strands of the A{beta}42 protofibrils are not in an in-register parallel orientation. A{beta}42 monomers would assemble to form protofibrils with the {beta}-strand conformation, then transform into fibrils by forming intermolecular parallel {beta}-sheets.

  6. Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Madhu, P. K.; Vinogradov, Elena; Vega, Shimon

    2004-08-01

    We here report on a high-resolution pulse scheme for double-quantum (DQ) proton NMR spectroscopy in the solid-state. The pulse scheme employs a combination of multiple-pulses and magic-angle spinning (MAS) for both the excitation and conversion of DQ coherences and their evolution under homonuclear dipolar decoupling. This is made possible in this two-dimensional experiment by an effective combination of homonuclear dipolar decoupling method of phase modulated Lee-Goldburg and symmetry adapted sequence for homonuclear dipolar recoupling under MAS. DQ spectra of monoethyl fumaric acid, glycine, and histidine are presented to highlight the utility of the pulse scheme together with some of the existing drawbacks.

  7. Dipolar Assisted Assignment Protocol (DAAP) for MAS solid-state NMR of Rotationally Aligned Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Das, Bibhuti B.; Zhang, Hua; Opella, Stanley J.

    2014-01-01

    A method for making resonance assignments in magic angle spinning solid-state NMR spectra of membrane proteins that utilizes the range of hetero-nuclear dipolar coupling frequencies in combination with conventional chemical shift based assignment methods is demonstrated. The dipolar assisted assignment protocol (DAAP) takes advantage of the rotational alignment of the membrane proteins in liquid crystalline phospholipid bilayers. Improved resolution is obtained by combining the magnetically inequivalent heteronuclear dipolar frequencies with isotropic chemical shift frequencies. Spectra with both dipolar and chemical shift frequency axes assist with resonance assignments. DAAP can be readily extended to three- and four- dimensional experiments and to include both backbone and side chain sites in proteins. PMID:24698983

  8. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors

    NASA Astrophysics Data System (ADS)

    Hisao, Grant S.; Harland, Michael A.; Brown, Robert A.; Berthold, Deborah A.; Wilson, Thomas E.; Rienstra, Chad M.

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  9. Tripeptides on Gold Nanoparticles: Structural Differences between Two Reverse Sequences as Determined by Solid-State NMR and DFT Calculations.

    PubMed

    Karki, Ichhuk; Wang, Hong; Geise, Natalie R; Wilson, Brendan W; Lewis, James P; Gullion, Terry

    2015-09-10

    The reverse-sequence peptides CysAlaAla and AlaAlaCys may attach to gold nanoparticles through the thiol group, and they differ primarily by whether the charged amino or the carboxylate group is proximal to the sulfur. Alanine residues in these peptides are not expected to interact significantly with the gold surface and serve to place a large separation between the amino and carboxylate groups. Solid-state NMR experiments and DFT calculations were performed to explore the structural differences between CysAlaAla on gold nanoparticles and AlaAlaCys on gold nanoparticles. It is found that the relative positions between the thiol, amino, and carboxylate groups strongly influences the structures of the peptide-gold systems. CysAlaAla orients parallel to the gold surface in a monolayer fashion, whereas AlaAlaCys forms an interdigitating bilayer-like structure that is oriented upright relative to the gold surface. PMID:26308986

  10. Unambiguous assignment of short- and long-range structural restraints by solid-state NMR spectroscopy with segmental isotope labeling.

    PubMed

    Schubeis, Tobias; Lhrs, Thorsten; Ritter, Christiane

    2015-01-01

    We present an efficient method for the reduction of spectral complexity in the solid-state NMR spectra of insoluble protein assemblies, without loss of signal intensity. The approach is based on segmental isotope labeling by using the split intein DnaE from Nostoc punctiforme. We show that the segmentally (13)C, (15)N-labeled prion domain of HET-s exhibits significantly reduced spectral overlap while retaining the wild-type structure and spectral quality. A large number of unambiguous distance restraints were thus collected from a single two-dimensional (13)C, (13)C cross-correlation spectrum. The observed resonances could be unambiguously identified as intramolecular without the need for preparing a dilute, less sensitive sample. PMID:25394265

  11. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  12. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy.

    PubMed

    Bechinger, B

    1999-12-15

    Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are < or = 40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy and other biophysical techniques indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic alpha-helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A. Models that have been proposed to explain the antibiotic and pore-forming activities of membrane-associated peptides, as well as other experimental results, include transmembrane helical bundles, wormholes, carpets, detergent-like effects or the in-plane diffusion of peptide-induced bilayer instabilities. PMID:10590307

  13. Solid-State NMR Studies of Fossil Fuels using One- and Two-Dimensional Methods at High Magnetic Field

    SciTech Connect

    Althaus, Stacey M.; Mao, Kanmi; Kennedy, Gordon J.; Pruski, Marek

    2012-06-24

    We examine the opportunities offered by advancements in solid-state NMR (SSNMR) methods, which increasingly rely on the use of high magnetic fields and fast magic angle spinning (MAS), in the studies of coals and other carbonaceous materials. The sensitivity of one- and two-dimensional experiments tested on several Argonne Premium coal samples is only slightly lower than that of traditional experiments performed at low magnetic fields in large MAS rotors, since higher receptivity per spin and the use of 1H detection of low-gamma nuclei can make up for most of the signal loss due to the small rotor size. The advantages of modern SSNMR methodology in these studies include improved resolution, simplicity of pulse sequences, and the possibility of using J-coupling during mixing.

  14. Synthesis, solid-state NMR characterization, and application for hydrogenation reactions of a novel Wilkinson's-type immobilized catalyst.

    PubMed

    Abdulhussain, Safaa; Breitzke, Hergen; Ratajczyk, Tomasz; Grnberg, Anna; Srour, Mohamad; Arnaut, Danjela; Weidler, Heiko; Kunz, Ulrike; Kleebe, Hans Joachim; Bommerich, Ute; Bernarding, Johannes; Gutmann, Torsten; Buntkowsky, Gerd

    2014-01-20

    Silica nanoparticles (SiNPs) were chosen as a solid support material for the immobilization of a new Wilkinson's-type catalyst. In a first step, polymer molecules (poly(triphenylphosphine)ethylene (PTPPE); 4-diphenylphosphine styrene as monomer) were grafted onto the silica nanoparticles by surface-initiated photoinferter-mediated polymerization (SI-PIMP). The catalyst was then created by binding rhodium (Rh) to the polymer side chains, with RhCl3?x?H2O as a precursor. The triphenylphosphine units and rhodium as Rh(I) provide an environment to form Wilkinson's catalyst-like structures. Employing multinuclear ((31)P, (29)Si, and (13)C) solid-state NMR spectroscopy (SSNMR), the structure of the catalyst bound to the polymer and the intermediates of the grafting reaction have been characterized. Finally, first applications of this catalyst in hydrogenation reactions employing para-enriched hydrogen gas (PHIP experiments) and an assessment of its leaching properties are presented. PMID:24338904

  15. Structure of Oxide Glasses under Compression and Confinement: Insights from High-resolution Solid-state NMR and Non-resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2013-12-01

    The atomic and nano-scale structure of non-crystalline oxides with varying degree of confinement and compression (pressure) are essential to understand the atomic origins of thermo-mechanical properties and kinetic stability of these materials in the earth's surfaces and interiors. Despite this importance, the effect of confinement and pressure on the nature of bonding in the non-crystalline oxides have remained one of the challenging problems in mineral physics and condensed matter physics due to lack of suitable experimental probes. Advances in element-specific experimental probes, such as non-resonant inelastic x-ray scattering (NRIXS) and high resolution solid-state NMR combined with the first principle calculations have revealed structural details of bonding transitions of amorphous oxides under compression and confinement (e.g. Lee, Rev. Min. Geochem. 2013 accepted; Phys. Rev. Letts, 2013 accepted; Proc. Nat. Aca. Sci. 2011, 108, 6847; Kim and Lee, Geochim. Cosmochim Acta. In press; Yi and Lee, Am Min 2012, 97, 897). Here, we present the key recent progress by NRIXS and NMR into the pressure and confinement-induced bonding transitions in non-crystalline oxides. Theoretical calculation of K-edge NRIXS spectrum took into consideration crystallographically-distinct sites and revealed that the edge features systematically shift to higher energy with increasing degree of densification in atomic arrangement in the polymorphs (from enstatite, perovskite, to post-perovskite). On the basis of these results, multi-nuclear (B, O, Li, Ca), multi-edge (K-, L-, and M-) XRS studies of diverse low z-oxide glasses indicated the pressure-induced increases in the fraction of triply coordinated oxygen above 20 GPa and showed evidence for the topologically driven densification in multi-component basaltic glasses. Finally, we report the first high-resolution solid-state NMR results for the amorphous oxides under confinement where the degree of structural disorder tends to decrease with increasing degree of confinement. These results allow us to microscopically confine the geochemical processes involving interactions between melts and fluids.

  16. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction.

    PubMed

    Jenkins, Janelle E; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W; Holland, Gregory P; Yarger, Jeffery L

    2013-10-14

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked ?-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) (13)C-(13)C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about the amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and, hence, to the amino acids that make up the motifs. Specifically, alanine is incorporated in ?-sheet (poly(Alan) and poly(Gly-Ala)), 3(1)-helix (poly(Gly-Gly-Xaa), and ?-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in ?-sheet (poly(Gly-Ala)) and 3(1)-helical (poly(Gly-Gly-X(aa))) regions, while serine is present in ?-sheet (poly(Gly-Ala-Ser)), 3(1)-helix (poly(Gly-Gly-Ser)), and ?-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  17. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  18. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kimata, Naoki; Reeves, Philip J.; Smith, Steven O.

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy.

  19. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy.

    PubMed

    Kimata, Naoki; Reeves, Philip J; Smith, Steven O

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy. PMID:25797010

  20. Cation substitution in ?-tricalcium phosphate investigated using multi-nuclear, solid-state NMR

    NASA Astrophysics Data System (ADS)

    Grigg, Andrew T.; Mee, Martin; Mallinson, Phillip M.; Fong, Shirley K.; Gan, Zhehong; Dupree, Ray; Holland, Diane

    2014-04-01

    The substitution of aluminium, gallium and sodium cations into ?-tricalcium phosphate (?-TCP; Ca3(PO4)2) has been investigated, and the Ca sites involved successfully determined, using a combination of 1D 31P, 27Al, 71Ga, 23Na and 43Ca (natural abundance) NMR and 2D 27Al{31P}, 71Ga{31P} and 23Na{31P} rotary-resonance-recoupled heteronuclear multiple-quantum correlation (R3-HMQC) NMR. Over the compositional range studied, substitution of Ca2+ by Al3+ or Ga3+ was observed only on the Ca(5) site, whilst substitution by Na+ was confined to the Ca(4) site. Some AlPO4 or GaPO4 second phase was observed at the highest doping levels in the Al3+ and Ga3+ substituted samples.

  1. Characterisation of platinum-based fuel cell catalyst materials using 195Pt wideline solid state NMR.

    PubMed

    Rees, Gregory J; Orr, Simon T; Barrett, Laurence O; Fisher, Janet M; Houghton, Jennifer; Spikes, Geoffrey H; Theobald, Brian R C; Thompsett, David; Smith, Mark E; Hanna, John V

    2013-10-28

    This study demonstrates the utility of the novel Field Sweep Fourier Transform (FSFT) method for acquiring wideline (195)Pt NMR data from various sized Pt nanoparticles, Pt-Sn intermetallics/bimetallics used to catalyse oxidative processes in fuel cell applications, and various other related Pt3X alloys (X = Al, Sc, Nb, Ti, Hf and Zr) which can facilitate oxygen reduction catalysis. The (195)Pt and (119)Sn NMR lineshapes measured from the PtSn intermetallic and Pt3Sn bimetallic systems suggest that these are more ordered than other closely related bimetallic alloys; this observation is supported by other characterisation techniques such as XRD. From these reconstructed spectra the mean number of atoms in a Pt nanoparticle can be accurately determined, along with detailed information regarding the number of atoms present effectively in each layer from the surface. This can be compared with theoretical predictions of the number of Pt atoms in these various layers for cubo-octahedral nanoparticles, thereby providing an estimate of the particle size. A comparison of the common NMR techniques used to acquire wideline data from the I = 1/2 (195)Pt nucleus illustrates the advantages of the automated FSFT technique over the Spin Echo Height Spectroscopy (SEHS) (or Spin Echo Integration Spectroscopy (SEIS)) approach that dominates the literature in this area of study. This work also presents the first (195)Pt NMR characterisation of novel small Pt13 nanoclusters which are diamagnetic and thus devoid of metallic character. This unique system provides a direct measure of an isotropic chemical shift for these Pt nanoparticles and affords a better basis for determining the actual Knight shift when compared to referencing against the primary IUPAC shift standard (1.2 M Na2PtCl6(aq)) which has a very different local chemical environment. PMID:24013445

  2. Solid-State (87)Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength.

    PubMed

    Faucher, Alexandra; Terskikh, Victor V; Ye, Eric; Bernard, Guy M; Wasylishen, Roderick E

    2015-12-10

    Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl26H2O, SrBr26H2O, and SrCO3, with ?aniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured. PMID:26565918

  3. Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by (31)P Solid-State NMR: A Zinc Oxide Case Study.

    PubMed

    Peng, Yung-Kang; Ye, Lin; Qu, Jin; Zhang, Li; Fu, Yingyi; Teixeira, Ivo F; McPherson, Ian James; He, Heyong; Tsang, Shik Chi Edman

    2016-02-24

    Nano metal oxides are becoming widely used in industrial, commercial and personal products (semiconductors, optics, solar cells, catalysts, paints, cosmetics, sun-cream lotions, etc.). However, the relationship of surface features (exposed planes, defects and chemical functionalities) with physiochemical properties is not well studied primarily due to lack of a simple technique for their characterization. In this study, solid state (31)P MAS NMR is used to map surfaces on various ZnO samples with the assistance of trimethylphosphine (TMP) as a chemical probe. As similar to XRD giving structural information on a crystal, it is demonstrated that this new surface-fingerprint technique not only provides qualitative (chemical shift) but also quantitative (peak intensity) information on the concentration and distribution of cations and anions, oxygen vacancies and hydroxyl groups on various facets from a single deconvoluted (31)P NMR spectrum. On the basis of this technique, a new mechanism for photocatalytic •OH radical generation from direct surface-OH oxidation is revealed, which has important implications regarding the safety of using nano oxides in personal care products. PMID:26812527

  4. Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy

    PubMed Central

    Norris, Charlotte E.; Quideau, Sylvie A.; Landhusser, Simon M.; Bernard, Guy M.; Wasylishen, Roderick E.

    2012-01-01

    Enriching plant tissues with 13C and 15N isotopes has provided long-lasting, non-reactive tracers to quantify rates of terrestrial elemental fluxes (e.g., soil organic matter decomposition). However, the molecular location and level of isotope enrichment may differ among plant tissues. This factor is central to the integrity and interpretation of tracer data, but is seldom considered in experiments. We propose a rapid, non-destructive method to quantify molecular isotope allocation using solid-state 13C and 15N nuclear magnetic resonance spectroscopy. With this method, we tracked and quantified the fate of multiple pulses of 13CO2(g) and K 15NO3(l) in boreal tree seedling roots and leaves as a function of time. Results show that initial preferential 13C carbohydrate enrichment in the leaves was followed by redistribution to more complex compounds after seven days. While 13C allocation within the roots was uniform across molecules, 15N results indicate an initial enrichment of amine molecules after two hours. PMID:23056911

  5. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    SciTech Connect

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr. E-mail: ncn@inano.au.dk; Madhu, P. K. E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  6. Cation substitution in ?-tricalcium phosphate investigated using multi-nuclear, solid-state NMR

    SciTech Connect

    Grigg, Andrew T.; Mee, Martin; Mallinson, Phillip M.; Fong, Shirley K.; Gan, Zhehong; Dupree, Ray; Holland, Diane

    2014-04-01

    The substitution of aluminium, gallium and sodium cations into ?-tricalcium phosphate (?-TCP; Ca{sub 3}(PO{sub 4}){sub 2}) has been investigated, and the Ca sites involved successfully determined, using a combination of 1D {sup 31}P, {sup 27}Al, {sup 71}Ga, {sup 23}Na and {sup 43}Ca (natural abundance) NMR and 2D {sup 27}Al({sup 31}P), {sup 71}Ga({sup 31}P) and {sup 23}Na({sup 31}P) rotary-resonance-recoupled heteronuclear multiple-quantum correlation (R{sup 3}-HMQC) NMR. Over the compositional range studied, substitution of Ca{sup 2+} by Al{sup 3+} or Ga{sup 3+} was observed only on the Ca(5) site, whilst substitution by Na{sup +} was confined to the Ca(4) site. Some AlPO{sub 4} or GaPO{sub 4} second phase was observed at the highest doping levels in the Al{sup 3+} and Ga{sup 3+} substituted samples. - Graphical abstract: 2D contour plots with skyline projections showing recoupling of {sup 27}Al, {sup 71}Ga and {sup 23}Na to different {sup 31}P sites. - Highlights: ?-Ca{sub 3}(PO{sub 4}){sub 2} has been prepared pure and also with Al{sup 3+}, Ga{sup 3+} and Na{sup +} substituents. Multi-nuclear 1D NMR and heteronuclear X({sup 31}P) recoupling have been used. Models for substitution correctly predict site preference and occupancy. Progressive changes in {sup 31}P spectra have been explained. Al{sup 3+} and Ga{sup 3+} substitute onto the Ca(5) site, and Na{sup +} onto the Ca(4) site.

  7. Preparation of highly and generally enriched mammalian tissues for solid state NMR.

    PubMed

    Wong, Veronica Wai Ching; Reid, David G; Chow, Wing Ying; Rajan, Rakesh; Green, Maggie; Brooks, Roger A; Duer, Melinda J

    2015-10-01

    An appreciable level of isotope labelling is essential for future NMR structure elucidation of mammalian biomaterials, which are either poorly expressed, or unexpressable, using micro-organisms. We present a detailed protocol for high level (13)C enrichment even in slow turnover murine biomaterials (fur keratin), using a customized diet supplemented with commercial labelled algal hydrolysate and formulated as a gel to minimize wastage, which female mice consumed during pregnancy and lactation. This procedure produced approximately eightfold higher fur keratin labelling in pups, exposed in utero and throughout life to label, than in adults exposed for the same period, showing both the effectiveness, and necessity, of this approach. PMID:26407607

  8. Solid-state NMR analysis of a complex crystalline phase of ronacaleret hydrochloride.

    PubMed

    Vogt, Frederick G; Williams, Glenn R; Strohmeier, Mark; Johnson, Matthew N; Copley, Royston C B

    2014-08-28

    A crystalline phase of the pharmaceutical compound ronacaleret hydrochloride is studied by solid-state nuclear magnetic resonance (SSNMR) spectroscopy and single-crystal X-ray diffraction. The crystal structure is determined to contain two independent cationic molecules and chloride anions in the asymmetric unit, which combine with the covalent structure of the molecule to yield complex SSNMR spectra. Experimental approaches based on dipolar correlation, chemical shift tensor analysis, and quadrupolar interaction analysis are employed to obtain detailed information about this phase. Density functional theory (DFT) calculations are used to predict chemical shielding and electric field gradient (EFG) parameters for comparison with experiment. (1)H SSNMR experiments performed at 16.4 T using magic-angle spinning (MAS) and homonuclear dipolar decoupling provide information about hydrogen bonding and molecular connectivity that can be related to the crystal structure. (19)F and (13)C assignments for the Z' = 2 structure are obtained using DFT calculations, (19)F homonuclear dipolar correlation, and (13)C-(19)F heteronuclear dipolar correlation experiments. (35)Cl MAS experiments at 16.4 T observe two chlorine sites that are assigned using calculated chemical shielding and EFG parameters. SSNMR dipolar correlation experiments are used to extract (1)H-(13)C, (1)H-(15)N, (1)H-(19)F, (13)C-(19)F, and (1)H-(35)Cl through-space connectivity information for many positions of interest. The results allow for the evaluation of the performance of a suite of SSNMR experiments and computational approaches as applied to a complex but typical pharmaceutical solid phase. PMID:25133518

  9. An alternative solution for computer controlled tuning and matching of existing NMR probes

    NASA Astrophysics Data System (ADS)

    Koczor, Bálint; Sedyó, Inez; Rohonczy, János

    2015-10-01

    Tuning and matching of NMR probes is necessary for many fields of NMR application including temperature dependent NMR, thermoporometry and cryoporometry, or when significantly different types of samples are measured in automation using sample changers. Mismatch of the probe is an especially critical issue in the case of high magnetic fields, polar or ionic solvents, or extreme thermal conditions. Careful tuning is particularly important for quantitative NMR measurements. Manual tuning and matching of the NMR probe is not possible in the case of automated or remotely controlled measurements. Spectrometer manufacturers offer modern probes equipped with automatic tuning/matching mechanics, like Bruker ATM™, suitable for these experiments. The disadvantages of probes with built-in ATM™ are the significantly higher price, and the non-detachable and non-portable construction. Computer controlled tuning and matching is highly desirrable in solid state NMR since no industrial solution has been developed yet for MAS NMR probes. We present an alternative solution for computer controlled tuning and matching of existing Bruker probes. Building costs are significantly lower, since only commercially available components and ICs are used.

  10. An alternative solution for computer controlled tuning and matching of existing NMR probes.

    PubMed

    Koczor, Blint; Sedy, Inez; Rohonczy, Jnos

    2015-10-01

    Tuning and matching of NMR probes is necessary for many fields of NMR application including temperature dependent NMR, thermoporometry and cryoporometry, or when significantly different types of samples are measured in automation using sample changers. Mismatch of the probe is an especially critical issue in the case of high magnetic fields, polar or ionic solvents, or extreme thermal conditions. Careful tuning is particularly important for quantitative NMR measurements. Manual tuning and matching of the NMR probe is not possible in the case of automated or remotely controlled measurements. Spectrometer manufacturers offer modern probes equipped with automatic tuning/matching mechanics, like Bruker ATM, suitable for these experiments. The disadvantages of probes with built-in ATM are the significantly higher price, and the non-detachable and non-portable construction. Computer controlled tuning and matching is highly desirrable in solid state NMR since no industrial solution has been developed yet for MAS NMR probes. We present an alternative solution for computer controlled tuning and matching of existing Bruker probes. Building costs are significantly lower, since only commercially available components and ICs are used. PMID:26363581

  11. Correlating fast and slow chemical shift spinning sideband patterns in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Orr, Robin M.; Duer, Melinda J.; Ashbrook, Sharon E.

    2005-06-01

    An experiment is presented that enables the measurement of small chemical shift anisotropy tensors under fast magic-angle spinning (MAS). The two-dimensional spectra obtained give a fast MAS sideband pattern in the directly observed dimension with the spinning sideband intensities equivalent to the chemical shift anisotropy scaled by a factor of N, or equivalently the sample spinning frequency scaled by 1/ N, in the indirectly observed dimension. The scaling factor may be arbitrarily varied by changing the number and timings of the rotor synchronized ?-pulses used. Desirable features of the experiment include a fixed length pulse sequence and efficient sampling of the indirectly observed dimension. In addition, neither quadrature detection in the indirect dimension nor storage periods are required, consequently no signal intensity is discarded by the pulse sequence. The experiment is demonstrated using 31P NMR of sodium phosphate and 13C NMR of fumaric acid monoethyl ester for which a scaling factor of N = 10.2 was employed.

  12. Identification of different oxygen species in oxide nanostructures with (17)O solid-state NMR spectroscopy.

    PubMed

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P; Peng, Luming

    2015-02-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the (17)O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency (17)O chemical shifts being observed for the lower coordinated surface sites. H2 (17)O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. (17)O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  13. Solid-state NMR studies of some tin(II) compounds.

    PubMed

    Amornsakchai, Pornsawan; Apperley, David C; Harris, Robin K; Hodgkinson, Paul; Waterfield, Philip C

    2004-01-01

    High-resolution NMR spectra of [Formula: see text] nuclei, particularly (119)Sn and (31)P, in solid tin(II) phosphite, SnHPO(3), and tin(II) phosphate, SnHPO(4), are presented. The results are discussed in relation to the crystal structures. Spinning sideband analysis has been carried out for both nuclei, giving information on the shielding tensors. Satellite peaks allow the indirect Sn,Sn coupling constants to be determined. Surprisingly large values of 2600+/-200Hz and 4150+/-200Hz are reported for SnHPO(3) and SnHPO(4) respectively. The satellite peaks were investigated by using a single Hahn echo for each refocusing time, which showed that the observed splittings result from (119)Sn, (117)Sn coupling. For SnHPO(3), the calculated relative intensities of the satellites for six intra-layer coupling interactions are in agreement with the experiment values, but for SnHPO(4) the coupling appears to be inter-layer in nature. Tin-119 (and in one case phosphorus-31) shielding tensor data derived from MAS NMR are also reported for four other crystalline tin(II) compounds, namely tin diphosphate, tin oxalate, tin sulphate and calcium tin ethylenediamine tetraacetate. PMID:15388180

  14. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    PubMed Central

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  15. Quantitative analysis of Bordeaux red wine precipitates by solid-state NMR: Role of tartrates and polyphenols.

    PubMed

    Prakash, Shipra; Iturmendi, Nerea; Grelard, Axelle; Moine, Virginie; Dufourc, Erick

    2016-05-15

    Stability of wines is of great importance in oenology matters. Quantitative estimation of dark red precipitates formed in Merlot and Cabernet Sauvignon wine from Bordeaux region for vintages 2012 and 2013 was performed during the oak barrel ageing process. Precipitates were obtained by placing wine at -4°C or 4°C for 2-6days and monitored by periodic sampling during a one-year period. Spectroscopic identification of the main families of components present in the precipitate powder was performed with (13)C solid-state CPMAS NMR and 1D and 2D solution NMR of partially water re-solubilized precipitates. The study revealed that the amount of precipitate obtained is dependent on vintage, temperature and grape variety. Major components identified include potassium bitartrate, polyphenols, polysaccharides, organic acids and free amino acids. No evidence was found for the presence of proteins. The influence of main compounds found in the precipitates is discussed in relation to wine stability. PMID:26775965

  16. Conformations of silica-bound (pentafluorophenyl)propyl groups determined by solid-state NMR spectroscopy and theoretical calculations.

    PubMed

    Mao, Kanmi; Kobayashi, Takeshi; Wiench, Jerzy W; Chen, Hung-Ting; Tsai, Chih-Hsiang; Lin, Victor S-Y; Pruski, Marek

    2010-09-01

    The conformations of (pentafluorophenyl)propyl groups (-CH(2)-CH(2)-CH(2)-C(6)F(5), abbreviated as PFP), covalently bound to the surface of mesoporous silica nanoparticles (MSNs), were determined by solid-state NMR spectroscopy and further refined by theoretical modeling. Two types of PFP groups were described, including molecules in the prone position with the perfluorinated aromatic rings located above the siloxane bridges (PFP-p) and the PFP groups denoted as upright (PFP-u), whose aromatic rings do not interact with the silica surface. Two-dimensional (2D) (13)C-(1)H, (13)C-(19)F and (19)F-(29)Si heteronuclear correlation (HETCOR) spectra were obtained with high sensitivity on natural abundance samples using fast magic angle spinning (MAS), indirect detection of low-gamma nuclei and signal enhancement by Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence. 2D double-quantum (DQ) (19)F MAS NMR spectra and spin-echo measurements provided additional information about the structure and mobility of the pentafluorophenyl rings. Optimization of the PFP geometry, as well as calculations of the interaction energies and (19)F chemical shifts, proved very useful in refining the structural features of PFP-p and PFP-u functional groups on the silica surface. The prospects of using the PFP-functionalized surface to modify its properties (e.g., the interaction with solvents, especially water) and design new types of the heterogeneous catalytic system are discussed. PMID:20707348

  17. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.

    PubMed

    Wang, Tuo; Hong, Mei

    2016-01-01

    Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to determine the spatial arrangements of macromolecules in near-native plant cell walls. Here we review key evidence from 2D and 3D correlation NMR spectra that show relatively few cellulose-hemicellulose cross peaks but many cellulose-pectin cross peaks, indicating that cellulose microfibrils are not extensively coated by hemicellulose and all three major polysaccharides exist in a single network rather than two separate networks as previously proposed. The number of glucan chains in the primary-wall cellulose microfibrils has been under active debate recently. We show detailed analysis of quantitative (13)C SSNMR spectra of cellulose in various wild-type (WT) and mutant Arabidopsis and Brachypodium primary cell walls, which consistently indicate that primary-wall cellulose microfibrils contain at least 24 glucan chains. PMID:26355148

  18. Molecular dynamics of a polyaniline/β-cyclodextrin complex investigated by 13C solid-state NMR.

    PubMed

    Hasegawa, Yuichi; Inoue, Yoshio; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Yazawa, Koji

    2012-02-16

    The molecular dynamics of a polyaniline/β-cyclodextrin inclusion complex (PANI/β-CD IC) and its relation with optical properties were investigated using high-resolution solid-state (13)C nuclear magnetic resonance (NMR) and optical absorption spectroscopies. UV-vis measurements revealed a π-π* absorption peak of a PANI film that had a 10 nm blue-shift by inclusion of β-CD, indicating that π-conjugation of PANI was shortened in the IC. Temperature dependent analysis of (13)C NMR spectra and spin-lattice relaxation times (T(1C)) revealed that the inclusion induced acceleration of the twisting motion of the PANI chain. Moreover, two twisting motions attributed to different torsional angle modes were observed following Arrhenius plots of T(1C) measurements, and the twisting frequency and angle increased above -25 °C. These results suggest that the β-CD inclusion weakens the intermolecular π-π interaction and enhances the accompanying twisting motion, consequently leading to a blue-shift of UV-vis absorption. PMID:22233191

  19. Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p.

    PubMed

    Schtz, Anne K; Habenstein, Birgit; Luckgei, Nina; Bousset, Luc; Sourigues, Yannick; Nielsen, Anders B; Melki, Ronald; Bckmann, Anja; Meier, Beat H

    2014-10-01

    Sup35p is a yeast prion and is responsible for the [PSI(+)] trait in Saccharomyces cerevisiae. With 685 amino acids, full-length soluble and fibrillar Sup35p are challenging targets for structural biology as they cannot be investigated by X-ray crystallography or NMR in solution. We present solid-state NMR studies of fibrils formed by the full-length Sup35 protein. We detect an ordered and rigid core of the protein that gives rise to narrow and strong peaks, while large parts of the protein show either static disorder or dynamics on time scales which interfere with dipolar polarization transfer or shorten the coherence lifetime. Thus, only a small subset of resonances is observed in 3D spectra. Here we describe in detail the sequential assignments of the 22 residues for which resonances are observed in 3D spectra: their chemical shifts mostly corresponding to ?-sheet secondary structure. We suspect that these residues form the amyloid core of the fibril. PMID:23943018

  20. Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment.

    PubMed

    Ivanir, Hadar; Goldbourt, Amir

    2014-07-01

    Magic-angle spinning solid-state NMR has been applied to study CBM3b-Cbh9A (CBM3b), a cellulose binding module protein belonging to family 3b. It is a 146-residue protein having a unique nine-stranded ?-sandwich fold, in which 35% of the structure is in a ?-sheet conformation and the remainder of the protein is composed of loops and unstructured regions. Yet, the protein can be crystalized and it forms elongated needles. Close to complete chemical shift assignment of the protein was obtained by combining two- and three-dimensional experiments using a fully labeled sample and a glycerol-labeled sample. The use of an optimized protocol for glycerol-based sparse labeling reduces sample preparation costs and facilitates the assignment of the large number of aromatic signals in this protein. Conformational analysis shows good correlation between the NMR-predicted secondary structure and the reported X-ray crystal structure, in particular in the structured regions. Residues which show high B-factor values are situated mainly in unstructured regions, and are missing in our spectra indicating conformational flexibility rather than heterogeneity. Interestingly, long-range contacts, which could be clearly detected for tyrosine residues, could not be observed for aromatic phenylalanine residues pointing into the hydrophobic core, suggesting possible high ring mobility. These studies will allow us to further investigate the cellulose-bound form of CBM proteins. PMID:24824437

  1. Solid-state dynamics in the closo-carboranes: a (11)B MAS NMR and molecular dynamics study.

    PubMed

    Ahumada, Hernn; Kurkiewicz, Teresa; Thrippleton, Michael J; Wimperis, Stephen

    2015-03-19

    This work explores the dynamic behavior of the three closo-carborane isomers (formula C2B10H12) using modern solid-state magic angle spinning (MAS) NMR techniques and relates the experimental measurements to theoretical results obtained using molecular dynamics simulations. At high temperatures and at B0 = 9.4 T, the (11)B MAS line widths are narrow (40-90 Hz) for the three isomers. The rotational correlation times (?c) calculated by molecular dynamics are on the picosecond time scale, showing a quasi-isotropic rotation at these temperatures, typical for liquid systems. For all three isomers, the values of the (11)B spin-lattice relaxation times (T1) show discontinuities as the temperature is decreased, confirming the phase changes reported in the literature. At low temperatures, the (11)B MAS spectra of all three isomers exhibit much broader lines. The simulations showed that the molecular reorientation was anisotropic around different symmetry axes for each isomer, and this was supported by the values of the reduced quadrupolar parameter PQ(eff) derived from "dynamic shift" measurements using (11)B MQMAS NMR spectroscopy. The behavior of PQ(eff) as a function of temperature for p-carborane suggests that molecular reorientation is about the C5 symmetry axis of the molecule at low temperatures, and this was supported by the molecular dynamics simulations. PMID:25710751

  2. Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies

    PubMed Central

    Kunert, Britta; Gardiennet, Carole; Lacabanne, Denis; Calles-Garcia, Daniel; Falson, Pierre; Jault, Jean-Michel; Meier, Beat H.; Penin, François; Böckmann, Anja

    2014-01-01

    We present solid-state NMR sample preparation and first 2D spectra of the Bacillus subtilis ATP-binding cassette (ABC) transporter BmrA, a membrane protein involved in multidrug resistance. The homodimeric 130-kDa protein is a challenge for structural characterization due to its membrane-bound nature, size, inherent flexibility and insolubility. We show that reconstitution of this protein in lipids from Bacillus subtilis at a lipid-protein ratio of 0.5 w/w allows for optimal protein insertion in lipid membranes with respect to two central NMR requirements, high signal-to-noise in the spectra and sample stability over a time period of months. The obtained spectra point to a well-folded protein and a highly homogenous preparation, as witnessed by the narrow resonance lines and the signal dispersion typical for the expected secondary structure distribution of BmrA. This opens the way for studies of the different conformational states of the transporter in the export cycle, as well as on interactions with substrates, via chemical-shift fingerprints and sequential resonance assignments. PMID:25988146

  3. Phenyl ring dynamics of the insulin fragment Gly-Phe-Phe(B23 B25) by solid state deuterium NMR

    NASA Astrophysics Data System (ADS)

    Naito, A.; Iizuka, T.; Tuzi, S.; Price, W. S.; Hayamizu, K.; Sait, H.

    1995-08-01

    The phenyl ring dynamics of the insulin fragment Gly-Phe-Phe(B23-B25) were investigated using solid state deuterium NMR spectroscopy. It was found that the phenyl rings of the two phenylalanine residues Phe 2 and Phe 3 were rigid even up to 100C both for the Gly-[ring- d5]Phe-Phe and the Gly-The-[ring- d5]Phe in the hydrated crystals. When the temperature was raised to 120C, the hydrated water evaporated from the crystal, resulting in the onset of the flipping motion of the phenyl rings. Spectral simulation of the deuterium NMR spectra was performed to better characterize the motion of the phenyl rings in the peptides. It was found that the phenyl ring motion of the fragments is consistent with a 180 flip about the C ??C ? bonds. The phenyl ring of Ph 2 of Gly-[ d5]Phe-Phe was more mobile than that of Phe 3 of Gly-Phe-[ d5]Phe when the tripeptide crystal was in the dehydrated state. The Phe-Phe residues in the tripeptide were quite rigid when the hydrophobic interaction around the Phe-Phe moiety was strong.

  4. Solid-State NMR Reveals the Hydrophobic-Core Location of Poly(amidoamine) Dendrimers in Biomembranes

    PubMed Central

    Smith, Pieter E. S.; Brender, Jeffrey R.; Drr, Ulrich H. N.; Xu, Jiadi; Mullen, Douglas G.; Banaszak Holl, Mark M.; Ramamoorthy, Ayyalusamy

    2010-01-01

    Poly(amidoamine) (PAMAM) dendrimer nanobiotechnology shows great promise in targeted drug delivery and gene therapy. Because of the involvement of cell membrane lipids with the pharmacological activity of dendrimer nanomedicines, the interactions between dendrimers and lipids are of particular relevance to the pharmaceutical applications of dendrimers. In this study, solid-state NMR was used to obtain a molecular image of the complex of generation 5 PAMAM dendrimer with the lipid bilayer. Using 1H radio frequency driven dipolar recoupling (RFDR) and 1H magic angle spinning (MAS) nuclear Overhauser effect spectroscopy (NOESY) techniques, we show that dendrimers are thermodynamically stable when inserted into zwitterionic lipid bilayers. 14N and 31P NMR experiments on static samples and measurements of the mobility of CH bonds using a 2D proton detected local field protocol under MAS corroborate these results. The localization of dendrimers in the hydrophobic core of lipid bilayers restricts the motion of bilayer lipid tails, with the smaller G5 dendrimer having more of an effect than the larger G7 dendrimer. Fragmentation of the membrane does not occur at low dendrimer concentrations in zwitterionic membranes. Because these results show that the amphipathic dendrimer molecule can be stably incorporated in the interior of the bilayer (as opposed to electrostatic binding at the surface), they are expected to be useful in the design of dendrimer-based nanobiotechnologies. PMID:20481633

  5. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  6. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of ABinsights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the head-to-tail manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  7. Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance.

    PubMed

    Santoni, Ilaria; Callone, Emanuela; Sandak, Anna; Sandak, Jakub; Dir, Sandra

    2015-03-01

    (13)C nuclear magnetic resonance and mid-infrared spectroscopies were used for characterizing changes in the chemical structure of wood polymers (cellulose, hemicellulose and lignin) in relation to the tree growth location. Samples of three provenances in Europe (Finland, Poland and Italy) were selected for studies. The requirement was to use untreated solid wood samples to minimize any manipulation to the nanostructure of native wood. The results confirm that the chemical and physical properties of samples belonging to the same wood species (Picea abies Karst.) differ due to the origin. Both FT-IR and dynamic NMR spectroscopies were able to correctly discriminate samples originating from three different provenances in Europe. Such methods might be very useful for both, research and understanding of wood microstructure and its variability due to the growth conditions. PMID:25498692

  8. Quadrupolar Metal Nuclides in Bioinorganic Chemistry: Solid-State NMR Studies

    SciTech Connect

    Lipton, Andrew S.; Ellis, Paul D.; Polenova, Tatyana E.

    2009-09-16

    Metal ions play an important role in bioinorganic chemistry, however, following their respective chemistries is often complicated because several relevant metal ions (such as V5+, Cu1+, Zn2+, and Mg2+) are not always amenable to conventional UV/Vis or EPR spectroscopy. Rather, what we know of these metal sites has come from the characterization of the various compounds and proteins via x-ray crystallographic methods or from using surrogate metal probes for conventional spectroscopy

  9. Changes in average chemical composition of cokes with pyrolysis: Studies by high resolution solid state NMR of sup 13 C and sup 1 H

    SciTech Connect

    Pruski, M.; Gerstein, B.C. ); Schmidt, K.; Whitehurst, D. )

    1989-04-01

    The changes in average chemical composition produced in petroleum cokes resulting from pyrolysis of petroleum residues have been studied by high resolution solid state NMR of carbon and hydrogen. Relaxation time enhancement of resolution has been used for the NMR of {sup 13}C to separate contributions associated with protonated and non-protonated carbons. The significance of information inferred separately from the carbon and the hydrogen spectra are discussed.

  10. Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR

    PubMed Central

    Franks, W. Trent; Wylie, Benjamin J.; Schmidt, Heather L. Frericks; Nieuwkoop, Andrew J.; Mayrhofer, Rebecca-Maria; Shah, Gautam J.; Graesser, Daniel T.; Rienstra, Chad M.

    2008-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes. Whereas SSNMR distance restraints typically have an uncertainty of ≈1 Å, the tensor-based experiments report on relative vector (pseudobond) angles with precision of a few degrees. By using 3D techniques of this type, vector angle (VEAN) restraints were determined for the majority of the 56-residue B1 immunoglobulin binding domain of protein G [protein GB1 (a total of 47 HN-HN, 49 HN-HC, and 12 HA-HB restraints)]. By using distance restraints alone in the structure calculations, the overall backbone root-mean-square deviation (bbRMSD) was 1.01 ± 0.13 Å (1.52 ± 0.12 Å for all heavy atoms), which improved to 0.49 ± 0.05 Å (1.19 ± 0.07 Å) on the addition of empirical chemical shift [torsion angle likelihood obtained from shift and sequence similarity (TALOS)] restraints. VEAN restraints further improved the ensemble to 0.31 ± 0.06 Å bbRMSD (1.06 ± 0.07 Å); relative to the structure with distances alone, most of the improvement remained (bbRMSD 0.64 ± 0.09 Å; 1.29 ± 0.07 Å) when TALOS restraints were removed before refinement. These results represent significant progress toward atomic-resolution protein structure determination by SSNMR, capabilities that can be applied to a large range of membrane proteins and fibrils, which are often not amenable to solution NMR or x-ray crystallography. PMID:18344321

  11. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  12. Differences between Lignin in Unprocessed Wood, Milled Wood, Mutant Wood, and Extracted Lignin Detected by 13C Solid-State NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state 13C nuclear magnetic resonance (NMR) has been applied to an array of intact and isolated wood samples in order to identify potential structural changes induced by tree age, milling, lignin extraction, or naturally occurring mutations. Included in this study were mature loblolly pine mil...

  13. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR: Insights into molecular signatures in relation to point and nonpoint sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  14. Exploration of structure and function in biomolecules through solid-state NMR and computational methods

    NASA Astrophysics Data System (ADS)

    Heider, Elizabeth M.

    Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy and quantum mechanical calculations are powerful analysis tools. Leveraged independently, each method yields important nuclear and molecular information. Used in concert, SSNMR and computational techniques provide complementary data about the structure of solids. These methods are particularly useful in characterizing the structures of microcrystalline organic compounds and revealing mechanisms of biological activity. Such applications may possess special relevance in analysis of pharmaceutical products; 90% of all pharmaceuticals are marketed as solids and bioactivity is strongly linked with molecular conformation. Accordingly, this dissertation employs both SSNMR and quantum mechanical computation to study three bioactive molecules: citrinin, two forms of Atrasentan (Abt-627), and paclitaxel (Taxol RTM). First, a computational study is utilized to determine the mechanism for unusual antioxidant activity in citrinin. Here, molecular geometries and bond dissociation enthalpies (BDE) of the citrinin O--H groups are calculated from first principles (ab initio). The total molecular Hamiltonian is determined by approximating the individual contributors to energy including electronic energy and contributions from modes of molecular vibration. This study of citrinin clearly identifies specific reaction sites in the active form, establishing the central role of intramolecular hydrogen bonding in this activity. Notably, it is discovered that citrinin itself is not the active species. Instead, a pair of hydrated Michael addition products of citrinin act as radical scavengers via O--H bond dissociation. Next, two separate compounds of the anticancer drug Abt-627 (form I and form II) are examined via SSNMR. The three principal values of the 13C diagonalized chemical shift tensor are acquired through the high resolution 2D experiment, FIREMAT. Isotropic chemical shift assignments are made utilizing both dipolar dephasing experiments and 1H-- 13C heteronuclear correlation (HETCOR) experiments. A comparison of spectral data confirms the presence of two molecules in the asymmetric unit for form II (Z'=2) and regions of conformational variation between the two forms are posited. Structural rigidity is found throughout both forms and extends into the alkyl groups at the amine with similarties between form I and form II in this moiety. Likely regions of motion are found around the bond axes formed by C1--C5 in form I. This motion is also observed in one of the two molecules of form II. Tensor differences between the two forms at the tetrahydro-pyrrole center indicate that conformational variation between form I and form II exists in the dihedral angles formed by the atoms C14--C13--C3--C2, O--C12--C2--C1, C10--C5--C1--N1 and C21--C20--N1--C4. Finally, SSNMR is applied in conjunction with quantum mechanical calculations in the analysis of a novel polymorph of the anticancer drug paclitaxel. The three dimensional structure of paclitaxel is established through a combination of SSNMR tensor (13C & 15N) and 1H--13C HETCOR data. With two molecules in the asymmetric unit (Z'=2), this represents the first conformational characterization with Z'>1 established solely by SSNMR. Semi-empirical models are constructed and fitted to experimental data by adjusting the conformation of the paclitaxel models and selecting those conformers which minimize the difference between predicted and measured tensors. This computational grid search exhausively samples the conformation of paclitaxel, utilizing more than 600 independent models. HETCOR data at thirteen key positions provide shift assignment to the asymmetric unit for each comparison. The two distinct molecules of the asymmetric unit possess nearly identical baccatin III moieties with matching conformations of the C10 acetyl moiety. Additionally, both are found to exhibit an extended conformation of the phenylisoserine sidechain at the C13 position. Notable differences between the two forms are centered around the rotation axes of O--C13, C2'--C1 ', and C3'--C2'.

  15. Solid state 1H NMR studies of cell wall materials of potatoes

    NASA Astrophysics Data System (ADS)

    Tang, Huiru; Belton, Peter S.; Ng, Annie; Waldron, Keith W.; Ryden, Peter

    1999-04-01

    Cell wall materials from potatoes ( Solanum tuberosum) prepared by two different methods have been studied using NMR proton relaxation times. Spin lattice relaxation in both the rotating and laboratory frames as well as transverse relaxation have been measured over a range of temperatures and hydration levels. It was observed that the sample prepared using a DMSO extraction showed anomalous behaviour of spin lattice relaxation in the laboratory frame probably due to residual solvent in the sample. Spin lattice relaxation in the laboratory frame is the result of hydroxymethyl rotation and another unidentified high frequency motion. In the rotating frame relaxation is adequately explained by hydroxymethyl rotation alone. In neither experiment is methyl group rotation observed, calculation suggests that this is due to the low density of methyl groups in the sample. Non-freezing water in potato cell walls, α-cellulose and pectin was found about 0.2, 0.04 and 0.18 g per gram dry matter, indicating preferable hydration of pectin compared to cellulose. The effects of hydration are most noticeable in the measurements that reflect low frequency motions, particularly transverse relaxation, where both second moments and the relative intensity of signals arising from immobile material are reduced by hydration.

  16. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR

    PubMed Central

    Mak-Jurkauskas, Melody L.; Bajaj, Vikram S.; Hornstein, Melissa K.; Belenky, Marina; Griffin, Robert G.; Herzfeld, Judith

    2008-01-01

    By exploiting dynamic nuclear polarization (DNP) at 90 K, we observe the first NMR spectrum of the K intermediate in the ion-motive photocycle of bacteriorhodopsin. The intermediate is identified by its reversion to the resting state of the protein in red light and by its thermal decay to the L intermediate. The 15N chemical shift of the Schiff base in K indicates that contact has been lost with its counterion. Under these circumstances, the visible absorption of K is expected to be more red-shifted than is observed and this suggests torsion around single bonds of the retinylidene chromophore. This is in contrast to the development of a strong counterion interaction and double bond torsion in L. Thus, photon energy is stored in electrostatic modes in K and is transferred to torsional modes in L. This transfer is facilitated by the reduction in bond alternation that occurs with the initial loss of the counterion interaction, and is driven by the attraction of the Schiff base to a new counterion. Nevertheless, the process appears to be difficult, as judged by the multiple L substates, with weaker counterion interactions, that are trapped at lower temperatures. The double-bond torsion ultimately developed in the first half of the photocycle is probably responsible for enforcing vectoriality in the pump by causing a decisive switch in the connectivity of the active site once the Schiff base and its counterion are neutralized by proton transfer. PMID:18195364

  17. Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis.

    PubMed Central

    Marsan, M P; Muller, I; Ramos, C; Rodriguez, F; Dufourc, E J; Czaplicki, J; Milon, A

    1999-01-01

    Proton decoupled deuterium NMR spectra of oriented bilayers made of DMPC and 30 mol % deuterated cholesterol acquired at 76.8 MHz (30 degreesC) have provided a set of very accurate quadrupolar splitting for eight C-D bonds of cholesterol. Due to the new precision of the experimental data, the original analysis by. Biochemistry. 23:6062-6071) had to be reconsidered. We performed a systematic study of the influence on the precision and uniqueness of the data-fitting procedure of: (i) the coordinates derived from x-ray, neutron scattering, or force field-minimized structures, (ii) internal mobility, (iii) the axial symmetry hypothesis, and (iv) the knowledge of some quadrupolar splitting assignments. Good agreement between experiment and theory could be obtained only with the neutron scattering structure, for which both axial symmetry hypothesis and full order parameter matrix analysis gave satisfactory results. Finally, this work revealed an average orientation of cholesterol slightly different from those previously published and, most importantly, a molecular order parameter equal to 0.95 +/- 0.01, instead of 0.79 +/- 0.03 previously found for the same system at 30 degreesC. Temperature dependence in the 20-50 degreesC range shows a constant average orientation and a monotonous decrease of cholesterol Smol, with a slope of -0.0016 K-1. A molecular order parameter of 0.89 +/- 0.01 at 30 degreesC was determined for a DMPC/16 mol % of cholesterol. PMID:9876147

  18. Enhancing sensitivity of quadrupolar nuclei in solid-state NMR with multiple rotor assisted population transfers.

    PubMed

    Kwak, Hyung-Tae; Prasad, Subramanian; Clark, Ted; Grandinetti, Philip J

    2003-01-01

    Rotor-assisted population transfer (RAPT) was developed as a method for enhancing MAS NMR sensitivity of quadrupolar nuclei by transferring polarization associated with satellite transitions to the central m=12-->-12 transition. After a single RAPT transfer, there still remains polarization in the satellite transitions that can be transferred to the central transition. This polarization is available without having to wait for the spin system to return to thermal equilibrium. We describe a new RAPT scheme that uses the remaining polarization of the satellites to obtain a further enhancement of the central transition by performing RAPT-enhanced experiments multiple times before waiting for re-equilibration of the spin system. For 27Al (I=5/2) in albite we obtain a multiple RAPT enhancement of 3.02, a 48% increase over single RAPT. For 93Nb (I=9/2) in NaNbO(3) we obtain a multiple RAPT enhancement of 5.76, an 89% increase over single RAPT. We also describe a data processing procedure for obtaining the maximum possible signal-to-noise ratio. PMID:12943905

  19. Solid-state (13)C NMR and synchrotron SAXS/WAXS studies of uniaxially-oriented polyethylene.

    PubMed

    Afeworki, Mobae; Brant, Pat; Lustiger, Arnold; Norman, Alexander

    2015-11-01

    We report solid-state (13)C NMR and synchrotron wide-and small-angle X-ray scattering experiments (WAXS, SAXS) on metallocene linear low density polyethylene films (e.g., Exceed 1018 mLLDPE; nominally 1MI, 0.918 density ethylene-hexene metallocene copolymer) as a function of uniaxial draw ratio, ?. Combined, these experiments provide an unambiguous, quantitative molecular view of the orientation of both the crystalline and amorphous phases in the samples as a function of draw. Together with previously reported differential scanning calorimetry (DSC), gas transport measurements, transmission electron microscopy (TEM), optical birefringence, small angle X-ray scattering (SAXS) as well as other characterization techniques, this study of the state of orientation in both phases provides insight concerning the development of unusually high barrier properties of the most oriented samples (?=10). In this work, static (non-spinning) solid-state NMR measurements indicate that in the drawn Exceed(TM) films both the crystalline and amorphous regions are highly oriented. In particular, chemical shift data show the amorphous phase is comprised increasingly of so-called "taut tie chains" (or tie chains under any state of tautness) in the mLLDPE with increasing draw ratio - the resonance lines associated with the amorphous phase shift to where the crystalline peaks are observed. In the sample with highest total draw (?=10), virtually all of the chains in the non-crystalline region have responded and aligned in the machine (draw) direction. Both monoclinic and orthorhombic crystalline peaks are observed in high-resolution, solid-state magic-angle spinning (MAS) NMR measurements of the oriented PE films. The orientation is comparable to that obtained for ultra-high molecular weight HDPE fibers described as "ultra-oriented" in the literature. Furthermore, the presence of a monoclinic peak in cold-drawn samples suggests that there is an appreciable internal stress associated with the LLDPE. The results are confirmed and independently quantified by Herman's Orientation Function values derived from the WAXS measurements. The degree of orientation approaches theoretically perfect alignment of chains along the draw direction. We deduce from this observation that a high fraction of the non-crystalline chains are either tie chains that directly connect adjacent lamellae or are interlocking loops from adjacent lamellae. In either case, the chains are load-bearing and are consistent with the idea of "taut tie chains". We note that transmission electron micrographs recorded for the ultra-oriented Exceed showed the lamellae are often appreciably thinner and shorter than they are for cast or blown Exceed 1018. Combined with higher crystallinity, the thinner lamellae statistically favor more tie chains. Finally, the remarkably large decrease in permeability of the ?=10 film is primarily attributed to the high degree of orientation (and loss of entropy) of the amorphous phase. PMID:26476811

  20. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  1. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed. PMID:23681530

  2. Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.

    PubMed

    Van Melckebeke, Hlne; Wasmer, Christian; Lange, Adam; Ab, Eiso; Loquet, Antoine; Bckmann, Anja; Meier, Beat H

    2010-10-01

    We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s in its amyloid form. On the basis of 134 unambiguous distance restraints, we recently showed that HET-s(218-289) in its fibrillar state forms a left-handed ?-solenoid, and an atomic-resolution NMR structure of the triangular core was determined from unambiguous restraints only. In this paper, we go considerably further and present a comprehensive protocol using six differently labeled samples, a collection of optimized solid-state NMR experiments, and adapted structure calculation protocols. The high-resolution structure obtained includes the less ordered but biologically important C-terminal part and improves the overall accuracy by including a large number of ambiguous distance restraints. PMID:20828131

  3. Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR

    NASA Astrophysics Data System (ADS)

    Matsuki, Yoh; Nakamura, Shinji; Fukui, Shigeo; Suematsu, Hiroto; Fujiwara, Toshimichi

    2015-10-01

    Magic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR = 4-12 kHz) at cryogenic temperatures (T = 35-120 K) for over a week without consuming helium at a cost for electricity of 16 kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T = 40 K and B0 = 16.4 T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100 K.

  4. Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls

    SciTech Connect

    Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  5. Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid-state (13)C NMR.

    PubMed

    Zujovic, Zoran; Chen, Da; Melton, Laurence D

    2016-02-01

    Collenchyma cells with their thickened walls are one of specific mechanical support tissues for plants, while parenchyma cells are thin walled and serve multiple functions. The parenchyma tissue is what you enjoy eating, while collenchyma, because of its fibrous nature, is not so attractive. Celery is a useful model for comparing the cell walls (CWs) of the two cell types such as collenchyma and parenchyma. However, to date, the structural characteristics of collenchyma and parenchyma cell walls from the same plant have not been compared. Monosaccharide composition suggested the collenchyma cell walls contained less pectin but more hemicellulose in comparison to parenchyma. High-resolution solid-state NMR spectra of highly mobile pectins revealed that the arabinan signals were more evident in the collenchyma spectrum, while galactan showed a much stronger resonance in the parenchyma spectrum. In addition, methyl esterified and non-esterified galacturonic acid signals were observed in parenchyma CWs, but only the latter one appeared in the collenchyma. The ratio of cellulose surface/interior obtained from CP/MAS spectra for collenchyma suggested the cellulose microfibrils were ~2.4?nm, while in the parenchyma, these were somewhat larger. X-ray diffraction indicated the size of the cellulose microfibrils were the same for both types of CWs. PMID:26717549

  6. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method

    PubMed Central

    Verardi, Raffaello; Shi, Lei; Traaseth, Nathaniel J.; Walsh, Naomi; Veglia, Gianluigi

    2011-01-01

    Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix–helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA. PMID:21576492

  7. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic ?-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  8. Integrating Solid-State NMR and Computational Modeling to Investigate the Structure and Dynamics of Membrane-Associated Ghrelin

    PubMed Central

    Els-Heindl, Sylvia; Chollet, Constance; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Meiler, Jens; Huster, Daniel

    2015-01-01

    The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane. PMID:25803439

  9. Refocused continuous-wave decoupling: A new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vinther, Joachim M.; Nielsen, Anders B.; Bjerring, Morten; van Eck, Ernst R. H.; Kentgens, Arno P. M.; Khaneja, Navin; Nielsen, Niels Chr.

    2012-12-01

    A novel strategy for heteronuclear dipolar decoupling in magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy is presented, which eliminates residual static high-order terms in the effective Hamiltonian originating from interactions between oscillating dipolar and anisotropic shielding tensors. The method, called refocused continuous-wave (rCW) decoupling, is systematically established by interleaving continuous wave decoupling with appropriately inserted rotor-synchronized high-power ? refocusing pulses of alternating phases. The effect of the refocusing pulses in eliminating residual effects from dipolar coupling in heteronuclear spin systems is rationalized by effective Hamiltonian calculations to third order. In some variants the ? pulse refocusing is supplemented by insertion of rotor-synchronized ?/2 purging pulses to further reduce the residual dipolar coupling effects. Five different rCW decoupling sequences are presented and their performance is compared to state-of-the-art decoupling methods. The rCW decoupling sequences benefit from extreme broadbandedness, tolerance towards rf inhomogeneity, and improved potential for decoupling at relatively low average rf field strengths. In numerical simulations, the rCW schemes clearly reveal superior characteristics relative to the best decoupling schemes presented so far, which we to some extent also are capable of demonstrating experimentally. A major advantage of the rCW decoupling methods is that they are easy to set up and optimize experimentally.

  10. Structure and Dynamics Characterization of HMDI- and MDI-based Poly(urethane urea) Elastomers via Solid- State NMR

    NASA Astrophysics Data System (ADS)

    Hu, Weiguo; Hsieh, Alex; Rinderspacher, B. Christopher; Chantawansri, Tanya

    2013-03-01

    High performance elastomers have recently gained considerable interest throughout DoD, particularly for their potential in ballistic impact protection and blast mitigation capabilities. Recent simulation results based on coarse-grained modeling have revealed the role of the intermolecular interaction and the flexibility of interface between hard and soft segments on the morphology and mechanical deformation behavior of poly(urethane urea), PUU, elastomers. In this work, we exploit solid-state nuclear magnetic resonance (NMR) techniques to investigate the influence of hard domain size on molecular dynamics by comparing the diisocyanate chemistry (aliphatic 4,4'-dicyclohexylmethane diisocyanate (HMDI) vs. aromatic 4,4'-diphenylmethane diisocyanate (MDI)) in PUU elastomers. Despite identical stoichiometry and soft segment chemical structure, large difference in the molecular dynamics, indicated by the 1H dipolar dephasing time (Td) , is observed. The Td of HMDI-PUU is shorter and it exhibits higher activation energy, suggesting finer phase mixing. Results from 1H spin echo measurements are also included for comparison.

  11. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: a solid-state NMR, EXAFS, and PXRD study.

    PubMed

    Dithmer, Line; Lipton, Andrew S; Reitzel, Kasper; Warner, Terence E; Lundberg, Daniel; Nielsen, Ulla Gro

    2015-04-01

    Phosphate (Pi) sequestration by a lanthanum (La) exchanged clay mineral (La-Bentonite), which is extensively used in chemical lake restoration, was investigated on the molecular level using a combination of (31)P and (139)La solid state NMR spectroscopy (SSNMR), extended X-ray absorption spectroscopy (EXAFS), powder X-ray diffraction (PXRD) and sorption studies. (31)P SSNMR show that all Pi was immobilized as rhabdophane (LaPO4n H2O, n ? 3), which was further supported by (139)La SSNMR and EXAFS. However, PXRD results were ambiguous with respect to rhabdophane and monazite (LaPO4). Adsorption studies showed that at dissolved organic carbon (DOC) concentration above ca. 250 ?M the binding capacity was only 50% of the theoretical value or even less. No other La or Pi phases were detected by SSNMR and EXAFS indicating the effect of DOC is kinetic. Moreover, (31)P SSNMR showed that rhabdophane formed upon Pi sequestration is in close proximity to the clay matrix. PMID:25747941

  12. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    PubMed

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture. PMID:26652188

  13. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: A solid- state NMR, EXAFS and PXRD study

    SciTech Connect

    Dithmer, Line; Lipton, Andrew S.; Reitzel, Kasper; Warner, Terence E.; Lundberg, Daniel; Nielsen, Ulla Gro

    2015-04-07

    Phosphate (P) sequestration by a lanthanum (La) exchanged bentonite (a clay mineral), which is extensively used in chemical lake restoration, was investigated on the molecular level using a combination of 31P and 139La solid state NMR spectroscopy (SSNMR), extended X-ray absorption spectroscopy (EX-AFS) and powder X-ray diffraction (PXRD) in combination with sorption studies. 31P SSNMR show that all phosphate is immobilized as rhabdophane, LaPO4·xH2O, which is further supported by 139La SSNMR and EXAFS; whereas PXRD results are ambiguous with respect to rhabdophane and monazite (LaPO4). Adsorption studies show that, at humic acids (HA) concentrations above ca. 250 μM the binding capacity is only 50 % of the theoretical value or even less. No other lanthanum or phosphate phases are detected by SSNMR and EXAFS indicating the effect of HA is kinetic. Moreover, 31P SSNMR shows that rhabdophane formed upon P sequestration is in close proximity to the clay matrix.

  14. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.

    PubMed

    Qiang, Wei

    2011-12-01

    We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the indirect dimension, i.e. the acquisition number decreases as a function of the evolution time (t1) in the indirect dimension. For a beta amyloid (A?) fibril sample, we observed overall 40-50% signal enhancement by measuring the cross peak volume, while the cross peak linewidths remained comparable to the linewidths obtained by regular sampling and processing strategies. Both the linear and Gaussian decay functions for the acquisition numbers result in similar percentage of increment in signal. In addition, we demonstrated that this sampling approach can be applied with different dipolar recoupling approaches such as radiofrequency assisted diffusion (RAD) and finite-pulse radio-frequency-driven recoupling (fpRFDR). This sampling scheme is especially suitable for the sensitivity-limited samples which require long signal averaging for each t1 point, for instance the biological membrane proteins where only a small fraction of the sample is isotopically labeled. PMID:21930405

  15. Solid-state NMR resonance assignments of the filament-forming CARD domain of the innate immunity signaling protein MAVS.

    PubMed

    He, Lichun; Lhrs, Thorsten; Ritter, Christiane

    2015-10-01

    The mitochondrial antiviral signalling protein (MAVS) is a central signal transduction hub in the innate immune response against viral infections. Viral RNA present in the cytoplasm is detected by retinoic acid inducible gene I like receptors, which then activate MAVS via heterotypic interactions between their respective caspase activation and recruitment domains (CARD). This leads to the formation of active, high molecular weight MAVS complexes formed by homotypic interactions between the single N-terminal CARDs of MAVS. Filaments formed by the N-terminal MAVS(CARD) alone are sufficient to induce the autocatalytic conversion from a monomeric to an aggregated state in a prion-like manner. Here, we present the nearly complete spectroscopic (13)C and (15)N resonance assignments of human MAVS(CARD) filaments obtained from a single sample by magic angle spinning solid-state NMR spectroscopy. The corresponding secondary chemical shifts suggest that the filamentous form of MAVS(CARD) retains an exclusively alpha-helical fold that is very similar to the X-ray structure determined previously from monomeric MAVS(CARD)-maltose binding protein fusion constructs. PMID:25301530

  16. Crystal Polymorphism of Protein GB1 Examined by Solid-State NMR Spectroscopy and X-ray Diffraction

    PubMed Central

    Frericks Schmidt, Heather L.; Sperling, Lindsay J.; Gao, Yi Gui; Wylie, Benjamin J.; Boettcher, John M.; Wilson, Scott R.; Rienstra, Chad M.

    2009-01-01

    The study of micro- or nanocrystalline proteins by magic-angle spinning (MAS) solid-state NMR (SSNMR) gives atomic-resolution insight into structure in cases when single crystals cannot be obtained for diffraction studies. Subtle differences in the local chemical environment around the protein, including the characteristics of the co-solvent and the buffer, determine whether a protein will form single crystals. The impact of these small changes in formulation is also evident in the SSNMR spectra, but leads only to correspondingly subtle changes in the spectra. Here we demonstrate that several formulations of GB1 microcrystals yield very high-quality SSNMR spectra, although only a subset of conditions enable growth of single crystals. We have characterized these polymorphs by X-ray powder diffraction and assigned the SSNMR spectra. Assignments of the 13C and 15N SSNMR chemical shifts confirm that the backbone structure is conserved, indicative of a common protein fold, but sidechain chemical shifts are changed on the surface of the protein, in a manner dependent upon crystal packing and electrostatic interactions with salt in the mother liquor. Our results demonstrate the ability of SSNMR to reveal minor structural differences among crystal polymorphs. This ability has potential practical utility for studying formulation chemistry of industrial and therapeutic proteins, as well as for deriving fundamental insights into the phenomenon of single crystal growth. PMID:18052145

  17. Molecular Dynamics of Poly(L-Lactic Acid) at around Glass Transition Temperature Elucidated by Solid-state NMR

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Miyoshi, Toshikazu

    2014-03-01

    Chain dynamics in so-called ?c mobile crystals obey Arrhenius type behaviors at temperatures well above the glass transition temperature (Tg) and below the melting temperatures (Tm) , while segmental motions of amorphous components above Tg follows WLF behaviors. If polymer chains in the crystalline regions perform overall chain dynamics at temperature around Tg, how does dynamic correlation time change as a function of temperature? PLLA possessing a relatively high Tg ~ 60 C will provide an opportunity to challenge such a general question in polymer dynamics. Here molecular dynamics of PLLA chain in homo- (?? ', and glassy states) and stereocomplex (SC) systems are investigated by Solid-State NMR. Results verify that the chains within crystalline region in ? and SC begin molecular dynamics at temperatures well above Tg and temperature dependence of in both systems follows Arrhenius behavior. In the disordered ?' phase, the molecular dynamics of the backbone continues even at temperatures below ~ Tg + 10 C. The temperature dependence of shows a non-Arrhenius behavior. The unique temperature dependence of molecular dynamics of PLLA in glassy state, disordered crystals, and stable crystals will be elucidated. NSF (DMR-1105829) and a UA start-up fund.

  18. Study of the Beckmann rearrangement of acetophenone oxime over porous solids by means of solid state NMR spectroscopy.

    PubMed

    Fernandez, Ana Belen; Lezcano-Gonzalez, Ines; Boronat, Mercedes; Blasco, Teresa; Corma, Avelino

    2009-07-01

    The Beckmann rearrangement of acetophenone oxime using zeolite H-beta and silicalite-N as catalysts has been investigated by means of (15)N and (13)C solid state NMR spectroscopy in combination with theoretical calculations. The results obtained show that the oxime is N-protonated at room temperature on the acid sites of zeolite H-beta. At reaction temperatures of 423 K or above, the two isomeric amides, acetanilide and N-methyl benzamide (NMB) are formed, and interact with the Brønsted acid sites of zeolite H-beta through hydrogen bonds. The presence of residual water hydrolyzes the two amides, while larger amounts inhibit the formation of NMB and cause the total hydrolysis of the acetanilide. Over siliceous zeolite silicalite-N, containing silanol nests as active sites, the oxime is adsorbed through hydrogen bonds and only acetanilide is formed at reaction temperatures of 423 K or above. In the presence of water, the reaction starts at 473 K, still being very selective up to 573 K, and the amide is partially hydrolyzed only above this temperature . PMID:19562146

  19. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    PubMed Central

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - ? and ? states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180 pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral ? and charged states from the mixture. PMID:25026459

  20. Differentiation of histidine tautomeric states using (15)N selectively filtered (13)C solid-state NMR spectroscopy.

    PubMed

    Miao, Yimin; Cross, Timothy A; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - ? and ? states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional (15)N selectively filtered (13)C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all (13)C resonances of the individual imidazole rings in a mixture of tautomeric states. When (15)N selective 180 pulses are applied to the protonated or non-protonated nitrogen region, the (13)C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of (13)C, (15)N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral ? and charged states from the mixture. PMID:25026459

  1. Spin dynamics with Solid State NMR and GPU calculations: Loschmidt Echoes, Intrinsic Decoherence and Quantum Dynamical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Pastawski, Horacio M.

    2015-03-01

    After overviewing argentine Condensed Matter Physics outside the Metropolitan area I will focus on the Loschmidt Echo [LE], a concept developed and pursed at Crdoba. It is the recovered fraction of a localized excitation after a spreading period followed by an imperfect time reversal procedure. In Solid State NMR, the LE has allowed us to quantify the decoherence and irreversibility induced by an uncontrolled environment. Notably complex many-body dynamics makes the system particularly sensitive to environmental disturbances presenting a decoherence rate that becomes perturbation independent beyond some small threshold. These experiments and the theoretical analysis based on the Feynman's path integral, summarized at a tutorial level, fueled the field of dynamical quantum chaos [4]. The quest for a perturbation independent decoherence as an emergent phenomenon in thermodynamic limit, lead us to discuss other dynamical observables that depend non-analytically on the environment strength, i.e. that undergo a quantum dynamical phase transition QDPT. GPU based high performance computing boosts the evaluation of the LE, allowing us to asses thermalization and how the Metal-Insulator transition (also a QDPT) emerges in interacting many-body systems. Financing institutions: CONICET, SeCyT-UNC, ANPCyT, MinCyT-Cor and Antorchas.

  2. Integrating solid-state NMR and computational modeling to investigate the structure and dynamics of membrane-associated ghrelin.

    PubMed

    Vortmeier, Gerrit; DeLuca, Stephanie H; Els-Heindl, Sylvia; Chollet, Constance; Scheidt, Holger A; Beck-Sickinger, Annette G; Meiler, Jens; Huster, Daniel

    2015-01-01

    The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide's secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide's positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8-17 form an α-helix, while residues 21-23 and 26-27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane. PMID:25803439

  3. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - ? and ? states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180 pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral ? and charged states from the mixture.

  4. Crystal Polymorphism of Protein GB1 Examined by Solid-State NMR Spectroscopy and X-ray Diffraction

    SciTech Connect

    Schmidt,H.; Sperling, L.; Gao, Y.; Wylie, B.; Boettcher, J.; Wilson, S.; Rienstra, C.

    2007-01-01

    The study of micro- or nanocrystalline proteins by magic-angle spinning (MAS) solid-state NMR (SSNMR) gives atomic-resolution insight into structure in cases when single crystals cannot be obtained for diffraction studies. Subtle differences in the local chemical environment around the protein, including the characteristics of the cosolvent and the buffer, determine whether a protein will form single crystals. The impact of these small changes in formulation is also evident in the SSNMR spectra; however, the changes lead only to correspondingly subtle changes in the spectra. Here, we demonstrate that several formulations of GB1 microcrystals yield very high quality SSNMR spectra, although only a subset of conditions enable growth of single crystals. We have characterized these polymorphs by X-ray powder diffraction and assigned the SSNMR spectra. Assignments of the 13C and 15N SSNMR chemical shifts confirm that the backbone structure is conserved, indicative of a common protein fold, but side chain chemical shifts are changed on the surface of the protein, in a manner dependent upon crystal packing and electrostatic interactions with salt in the mother liquor. Our results demonstrate the ability of SSNMR to reveal minor structural differences among crystal polymorphs. This ability has potential practical utility for studying the formulation chemistry of industrial and therapeutic proteins, as well as for deriving fundamental insights into the phenomenon of single-crystal growth.

  5. Solid-state and solution /sup 13/C NMR in the conformational analysis of methadone-hydrochloride and related narcotic analgesics

    SciTech Connect

    Sumner, S.C.J.

    1986-01-01

    Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemic mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.

  6. New opportunities for high-resolution solid-state NMR spectroscopy of oxide materials at 21.1- and 18.8-T fields.

    PubMed

    Stebbins, J; Du, Lin-Shu; Kroeker, S; Neuhoff, P; Rice, D; Frye, J; Jakobsen, H J

    2002-01-01

    We present here high-resolution solid state NMR spectra of several oxide and silicate materials that illustrate the improvements obtainable with very high external fields (18.8 and 21.1 T), with probes capable of tuning to a wide frequency range that allow observations of nuclides from high to low magnetogyric ratio. We discuss 27Al MAS spectra for the zeolite scolecite (CaAl2Si3O10 x 3H2O), 17O MAS data for analcime (NaAlSi2O6 x H2O), calcium monoaluminate (CaAI2O4), and titanite (CaTiSiO5), 39K spin-echo spectra for leucite (KAlSi2O6), microline (KAlSiO8), muscovite (KAl2(AlSi3O10)(OH2) and a potassium aluminosolicate glass, and preliminary 73Ge spin-echo MAS spectra for crystalline and glassy germanium dioxide (GeO2). PMID:11949814

  7. 33S NMR cryogenic probe for taurine detection

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 ?M taurine solutions, which is the level of sensitivity necessary for biological samples.

  8. Glassy carbons from poly(furfuryl alcohol) copolymers: structural studies by high-resolution solid-state NMR techniques

    SciTech Connect

    Eckert, H.; Levendis, Y.A.; Flagan, R.C.

    1988-08-25

    The chemical structure of glass carbon particles produced from poly(furfuryl alcohol) copolymers is studied by /sup 13/C cross-polarization/magic-angle spinning (CP-MAS) NMR and high-speed /sup 1/H MAS NMR. In agreement with earlier proposals, /sup 13/C NMR spectra confirm the buildup of a highly unsaturated system at the expense of furan rings and aliphatic carbon atoms, and upon heating to 800 K this conversion is essentially complete. Successive carbonization by air oxidation or pyrolysis at temperatures up to 1600 K is reflected in a gradual decrease of the /sup 13/C chemical shift from ca. 130 to 115 ppm versus tetramethylsilane. /sup 1/H MAS NMR is used to detect and quantitate the amount of residual C-bonded hydrogen species at various stages of the carbonization process. In addition, these spectra show intense, narrow resonances due to sorbed H/sub 2/O molecules, which resonate over a wide range of chemical shifts (between 2.5 and /minus/8 ppm versus tetramethylsilane). In analogy with effects observed by Tabony and co-workers for molecules adsorbed above the basal plane of graphite, the upfield shifts observed for water sorbed in the glassy carbons of the present study are attributed to the large susceptibility anisotropy of submicroscopically ordered, turbostratic, or partially graphitized regions of the samples. The extent of this ordering is inversely correlated with the absolute content of residual C-bonded hydrogen species and depends mainly on the temperature of pyrolysis, whereas the oxygen content of the heating atmosphere and the composition of the initial polymeric material appear to be of secondary importance. The results suggest that sorbed H/sub 2/O molecules can function as sensitive NMR chemical shift probes for the initial stages of crystallization processes in glassy carbons.

  9. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4 ][M(HCOO)3 ] by solid-state NMR spectroscopy.

    PubMed

    Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining

    2015-10-01

    The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60?min at a low magnetic field of 9.4?T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. PMID:26397187

  10. Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning.

    PubMed

    Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (?ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ?40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ?10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of A? amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the prospects for studying bimolecules using (13)C SSNMR under ultrafast MAS at the spinning speed of ?100 kHz. PMID:23889329

  11. Using solution state NMR spectroscopy to probe NMR invisible gelators.

    PubMed

    Wallace, Matthew; Iggo, Jonathan A; Adams, Dave J

    2015-10-21

    Supramolecular hydrogels are formed via the self-assembly of gelator molecules upon application of a suitable trigger. The exact nature of this self-assembly process has been widely investigated as a practical understanding is vital for the informed design of these materials. Solution-state NMR spectroscopy is an excellent non-invasive tool to follow the self-assembly of supramolecular hydrogels. However, in most cases the self-assembled aggregates are silent by conventional (1)H NMR spectroscopy due to the low mobility of the constituent molecules, limiting NMR spectroscopy to following only the initial assembly step(s). Here, we present a new solution-state NMR spectroscopic method which allows the entire self-assembly process of a dipeptide gelator to be followed. This gelator forms transparent hydrogels by a multi-stage assembly process when the pH of an initially alkaline solution is lowered via the hydrolysis of glucono-?-lactone (GdL). Changes in the charge, hydrophobicity and relative arrangement of the supramolecular aggregates can be followed throughout the assembly process by measuring the residual quadrupolar couplings (RQCs) of various molecular probes (here, (14)NH4(+) and isopropanol-d8), along with the NMR relaxation rates of (23)Na(+). The initially-formed aggregates comprise negatively charged fibrils which gradually lose their charge and become increasingly hydrophobic as the pH falls, eventually resulting in a macroscopic contraction of the hydrogel. We also demonstrate that the in situ measurement of pH by NMR spectroscopy is both convenient and accurate, representing a useful tool for the characterisation of self-assembly processes by NMR. PMID:26313637

  12. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy.

    PubMed

    Andronesi, Ovidiu C; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M; Tzika, A Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9(15)1 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis. PMID:18556227

  13. (51)V solid-state NMR and density functional theory studies of eight-coordinate non-oxo vanadium complexes: oxidized amavadin.

    PubMed

    Ooms, Kristopher J; Bolte, Stephanie E; Baruah, Bharat; Choudhary, Muhammad Aziz; Crans, Debbie C; Polenova, Tatyana

    2009-05-01

    Using (51)V magic angle spinning solid-state NMR spectroscopy and density functional theory calculations we have characterized the chemical shift and quadrupolar coupling parameters for two eight-coordinate vanadium complexes, [PPh(4)][V(v)(HIDPA)(2)] and [PPh(4)][V(v)(HIDA)(2)]; HIDPA = 2,2'-(hydroxyimino)dipropionate and HIDA = 2,2'-(hydroxyimino)diacetate. The coordination geometry under examination is the less common non-oxo eight coordinate distorted dodecahedral geometry that has not been previously investigated by solid-state NMR spectroscopy. Both complexes were isolated by oxidizing their reduced forms: [V(iv)(HIDPA)(2)](2-) and [V(iv)(HIDA)(2)](2-). V(iv)(HIDPA)(2)(2-) is also known as amavadin, a vanadium-containing natural product present in the Amanita muscaria mushroom and is responsible for vanadium accumulation in nature. The quadrupolar coupling constants, C(Q), are found to be moderate, 5.0-6.4 MHz while the chemical shift anisotropies are relatively small for vanadium complexes, -420 and -360 ppm. The isotropic chemical shifts in the solid state are -220 and -228 ppm for the two compounds, and near the chemical shifts observed in solution. Presumably this is a consequence of the combined effects of the increased coordination number and the absence of oxo groups. Density functional theory calculations of the electric field gradient parameters are in good agreement with the NMR results while the chemical shift parameters show some deviation from the experimental values. Future work on this unusual coordination geometry and a combined analysis by solid-state NMR and density functional theory should provide a better understanding of the correlations between experimental NMR parameters and the local structure of the vanadium centers. PMID:19421628

  14. Ca(2+) ATPase Conformational Transitions in Lipid Bilayers Mapped by Site-directed Ethylation and Solid-State NMR.

    PubMed

    Vostrikov, Vitaly V; Gustavsson, Martin; Gopinath, Tata; Mullen, Dan; Dicke, Alysha A; Truong, Vincent; Veglia, Gianluigi

    2016-02-19

    To transmit signals across cellular compartments, many membrane-embedded enzymes undergo extensive conformational rearrangements. Monitoring these events in lipid bilayers by NMR at atomic resolution has been challenging due to the large size of these systems. It is further exacerbated for large mammalian proteins that are difficult to express and label with NMR-active isotopes. Here, we synthesized and engineered (13)C ethyl groups on native cysteines to map the structural transitions of the sarcoplasmic reticulum Ca(2+)-ATPase, a 110 kDa transmembrane enzyme that transports Ca(2+) into the sarcoplasmic reticulum. Using magic angle spinning NMR, we monitored the chemical shifts of the methylene and methyl groups of the derivatized cysteine residues along the major steps of the enzymatic cycle. The methylene chemical shifts are sensitive to the ATPase conformational changes induced upon nucleotide and Ca(2+) ion binding and are ideal probes for active and inactive states of the enzyme. This new approach is extendable to large mammalian enzymes and signaling proteins with native or engineered cysteine residues in their amino acid sequence. PMID:26650884

  15. (13)C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  16. Solid-State and Solution NMR Studies of the CAP-Gly Domain of Mammalian Dynactin and Its Interaction with Microtubules

    SciTech Connect

    Sun, Shangjin; Siglin, Amanda; Williams, John C.; Polenova, Tatyana E.

    2009-07-29

    Microtubules (MTs) and microtubule binding proteins (MTBPs) play fundamental physiological roles including vesicle and organelle transport, cell motility, and cell division. Despite the importance of the MT/MTBP assemblies, there remains virtually no structural or dynamic information about their interaction at the atomic level due to the inherent insolubility and lack of long-range order of MTs. In this study, we present a combined magic angle spinning solid-state and solution NMR study of the MTBP CAP-Gly domain of mammalian dynactin and its interaction with paclitaxel-stabilized microtubules. We report resonance assignments and secondary structure analysis of the free CAP-Gly in solution and in the solid state by a combination of two- and three-dimensional homo- and heteronuclear correlation spectra. In solution, binding of CAP-Gly to microtubules is accompanied by the broadening of the majority of the peaks in HSQC spectra except for the residues at the termini, precluding further structural analysis of the CAP-Gly/microtubule complexes. In the solid state, DARR spectra of free CAP-Gly and its complex with microtubules display well-resolved lines, permitting residue-specific resonance assignments. Interestingly, a number of chemical shifts in the solid-state DARR spectra of the CAP-Gly/microtubule complex are perturbed compared to those of the free CAP-Gly, suggesting that conformational changes occur in the protein upon binding to the microtubules. These results indicate that CAP-Gly/microtubule assemblies are amenable to detailed structural characterization by magic angle spinning NMR spectroscopy and that solid-state NMR is a viable technique to study MT/protein interactions in general.

  17. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  18. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy

    PubMed Central

    Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.

    2008-01-01

    Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930

  19. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    PubMed

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins. PMID:24984197

  20. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall.

    PubMed

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E

    2015-05-29

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  1. Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31P NMR Investigation

    SciTech Connect

    Hunger, Stefan; Cho, Herman M.; Sims, James T.; Sparks, Donald L.

    2004-02-01

    Amending poultry litter (PL) with aluminum sulfate (alum) has proven to be effective in reducing water-soluble phosphorus (P) in the litter and in runoff from fields that have received PL applications; it has therefore been suggested as a best management practice. Although its effectiveness has been demonstrated on a macroscopic scale in the field, little is known about P speciation in either alumamended or unamended litter. This knowledge is important for the evaluation of the long-term stability and bioavailability of P, which is a necessary prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid state MAS and CP-MAS {sup 31}P NMR as well as {sup 31}P({sup 27}Al) TRAPDOR were used to investigate P speciation in alumamended and unamended PL. The results indicate the presence of a complex mixture of organic and inorganic orthophosphate phases. A calcium phosphate phase, probably a surface precipitate on calcium carbonate, could be identified in both unamended and alum-amended PL, as well as physically bound HPO{sub 4}{sup 2-}. Phosphate associated with Al was found in the alum-amended PL, most probably a mixture of a poorly ordered wavellite and phosphate surface complexes on aluminum hydroxide that had been formed by the hydrolysis of alum. However, a complex mixture of organic and inorganic phosphate species could not be resolved. Phosphate associated with Al comprised on average 40{+-}14% of the total P in alum-amended PL, whereas calcium phosphate phases comprised on average 7{+-}4% in the alum-amended PL and 14{+-}5% in the unamended PL.

  2. Active-site structure of the thermophilic Foc-subunit ring in membranes elucidated by solid-state NMR.

    PubMed

    Kang, Su-Jin; Todokoro, Yasuto; Yumen, Ikuko; Shen, Bo; Iwasaki, Iku; Suzuki, Toshiharu; Miyagi, Atsushi; Yoshida, Masasuke; Fujiwara, Toshimichi; Akutsu, Hideo

    2014-01-21

    FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E.coli on the basis of the H(+)-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D (13)C-(13)C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the C(?)i+1-C(?)i correlation spectrum of specifically (13)C,(15)N-labeled TFoc rings. The C(?) chemical shift of Glu-56, which is essential for H(+) translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H(+)-locked conformation with Asn-23. The chemical shift of Asp-61 C(?) of the E.coli c ring indicated an involvement of a water molecule in the H(+) locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings. PMID:24461014

  3. Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy

    PubMed Central

    Resende, Jarbas M.; Moraes, Clria Mendona; Munhoz, Victor H. O.; Aisenbrey, Christopher; Verly, Rodrigo M.; Bertani, Philippe; Cesar, Amary; Pil-Veloso, Dorila; Bechinger, Burkhard

    2009-01-01

    The heterodimeric antimicrobial peptide distinctin is composed of 2 linear peptide chains of 22- and 25-aa residues that are connected by a single intermolecular S-S bond. This heterodimer has been considered to be a unique example of a previously unrecorded class of bioactive peptides. Here the 2 distinctin chains were prepared by chemical peptide synthesis in quantitative amounts and labeled with 15N, as well as 15N and 2H, at selected residues, respectively, and the heterodimer was formed by oxidation. CD spectroscopy indicates a high content of helical secondary structures when associated with POPC/POPG 3:1 vesicles or in membrane-mimetic environments. The propensity for helix formation follows the order heterodimer >chain 2 >chain 1, suggesting that peptide-peptide and peptide-lipid interactions both help in stabilizing this secondary structure. In a subsequent step the peptides were reconstituted into oriented phospholipid bilayers and investigated by 2H and proton-decoupled 15N solid-state NMR spectroscopy. Whereas chain 2 stably inserts into the membrane at orientations close to perfectly parallel to the membrane surface in the presence or absence of chain 1, the latter adopts a more tilted alignment, which further increases in the heterodimer. The data suggest that membrane interactions result in considerable conformational rearrangements of the heterodimer. Therefore, chain 2 stably anchors the heterodimer in the membrane, whereas chain 1 interacts more loosely with the bilayer. These structural observations are consistent with the antimicrobial activities when the individual chains are compared to the dimer. PMID:19805350

  4. Active-Site Structure of the Thermophilic Foc-Subunit Ring in Membranes Elucidated by Solid-State NMR

    PubMed Central

    Kang, Su-Jin; Todokoro, Yasuto; Yumen, Ikuko; Shen, Bo; Iwasaki, Iku; Suzuki, Toshiharu; Miyagi, Atsushi; Yoshida, Masasuke; Fujiwara, Toshimichi; Akutsu, Hideo

    2014-01-01

    FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings. PMID:24461014

  5. Structures of ?-hairpin Antimicrobial Protegrin Peptides in Lipopolysaccharide Membranes: Mechanism of Gram Selectivity Obtained From Solid-State NMR

    PubMed Central

    Su, Yongchao; Waring, Alan J.; Ruchala, Piotr; Hong, Mei

    2011-01-01

    The structural basis for the Gram selectivity of two disulfide-bonded ?-hairpin antimicrobial peptides (AMPs) is investigated using solid-state NMR spectroscopy. The hexa-arginine PG-1 exhibits potent activities against both Gram-positive and Gram-negative bacteria, while a mutant of PG-1 with only three cationic residues maintains Gram-positive activity but is 30-fold less active against Gram-negative bacteria. We determined the topological structure and lipid interactions of these two peptides in a lipopolysaccharide (LPS)-rich membrane that mimics the outer membrane of Gram-negative bacteria and in the POPE/POPG membrane, which mimics the membrane of Gram-positive bacteria. 31P NMR lineshapes indicate that both peptides cause less orientational disorder to the LPS-rich membrane than to the POPE/POPG membrane. 13C chemical shifts and 13C-1H dipolar couplings show that both peptides maintain their ?-hairpin conformation in these membranes and are largely immobilized, but the mutant exhibited noticeable intermediate-timescale motion in the LPS membrane at physiological temperature, suggesting shallow insertion. Indeed, 1H spin diffusion from lipid chains to the peptides showed that PG-1 fully inserted into the LPS-rich membrane whereas the mutant did not. The 13C-31P distances between the most hydrophobically embedded Arg of PG-1 and the lipid 31P are significantly longer in the LPS membrane than in the POPE/POPG membrane, indicating that PG-1 does not cause toroidal pore defects in the LPS membrane, in contrast to its behavior in the POPE/POPG membrane. Taken together, these data indicate that PG-1 causes transmembrane pores of the barrel-stave type in the LPS membrane, thus allowing further translocation of the peptide into the inner membrane of Gram-negative bacteria to kill the cells. In comparison, the less cationic mutant cannot fully cross the LPS membrane due to weaker electrostatic attractions, thus causing weaker antimicrobial activities. Therefore, strong electrostatic attraction between the peptide and the membrane surface, ensured by having a sufficient number of Arg residues, is essential for potent antimicrobial activities against Gram-negative bacteria. The data provide a rational basis for controlling Gram selectivity of AMPs by adjusting the charge densities. PMID:21302955

  6. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  7. High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.

    PubMed

    Ward, Meaghan E; Wang, Shenlin; Krishnamurthy, Sridevi; Hutchins, Howard; Fey, Michael; Brown, Leonid S; Ladizhansky, Vladimir

    2014-01-01

    Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane environments. These experiments often suffer from low sensitivity, due in part to the long recycle delays required for magnetization and probe recovery, as well as detection of low gamma nuclei. In ultrafast MAS experiments sensitivity can be enhanced through the use of low power sequences combined with paramagnetically enhanced relaxation times to reduce recycle delays, as well as proton detected experiments. In this work we investigate the sensitivity of (13)C and (1)H detected experiments applied to 27 kDa membrane proteins reconstituted in lipids and packed in small 1.3 mm MAS NMR rotors. We demonstrate that spin diffusion is sufficient to uniformly distribute paramagnetic relaxation enhancement provided by either covalently bound or dissolved CuEDTA over 7TM alpha helical membrane proteins. Using paramagnetic enhancement and low power decoupling in carbon detected experiments we can recycle experiments ~13 times faster than under traditional conditions. However, due to the small sample volume the overall sensitivity per unit time is still lower than that seen in the 3.2 mm probe. Proton detected experiments, however, showed increased efficiency and it was found that the 1.3 mm probe could achieve sensitivity comparable to that of the 3.2 mm in a given amount of time. This is an attractive prospect for samples of limited quantity, as this allows for a reduction in the amount of protein that needs to be produced without the necessity for increased experimental time. PMID:24338448

  8. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy.

    PubMed

    He, Ting; Ren, Pengju; Liu, Xianchun; Xu, Shutao; Han, Xiuwen; Bao, Xinhe

    2015-12-01

    The dynamic evolution of acetyl intermediates in the two different channels of H-mordenite (H-MOR) zeolite during dimethyl ether (DME) carbonylation is tracked by using in situ solid-state NMR spectroscopy under continuous-flow conditions. Thus, the reaction path via methyl acetate produced over active sites in 8 member ring (MR) channels, followed by diffusion into 12 MR channels, is proposed. PMID:26451500

  9. Non-destructive detection of methionine sulfoxide in the resilium of a surf clam by solid-state 13C-NMR spectroscopy.

    PubMed

    Kikuchi, Y; Tamiya, N; Nozawa, T; Hatano, M

    1982-07-01

    Methionine sulfoxide was detected in the resilium (internal hinge ligament) of a surf clam by high-resolution solid-state 13C-NMR spectroscopy involving cross-polarization and magic angle spinning, using no chemical procedure. The results support the previous report [Kikuchi, Y. and Tamiya, N. (1981) J. Biochem. (Tokyo) 89, 1975-1976] on a high content of methionine sulfoxide observed by chemical methods in the resilium protein of surf clam species. PMID:7117255

  10. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    SciTech Connect

    Petersen, Line B.; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-01

    Ordering of gallium(III) in a series of magnesium gallium layered double hydroxides (LDH’s), [Mg1-xGax(OH)2(NO3)x yH2O], was determined using solid-state 1H and 71Ga NMR spectroscopy. Depletion of Ga in these LDH’s is demonstrated to be the result of soluble [Ga(OH)4]-complexes formed during synthesis.

  11. Solid-state (207)Pb NMR studies of lead-group 16 and mixed transition-metal/lead-group 16 element-containing materials.

    PubMed

    Van Bramer, S E; Glatfelter, A; Bai, S; Dybowski, C; Neue, G; Perry, D L

    2006-03-01

    (207)Pb solid-state NMR studies have been conducted on binary lead-group 16 and mixed transition-metal/lead group 16 materials, correlating the NMR chemical shifts of the materials with their structures. The experimental results show that the (207)Pb chemical shifts are strongly influenced by the local electronic structure. Data are reported for lead selenide, lead selenate, calcium plumbate, strontium plumbite, barium plumbite, lead borate, lead zirconate, lead tungstate, lead meta-tantalate, lead niobate, lead molybdate, lead meta-vanadate, lead sulfite, and lead sulfate. PMID:16477690

  12. Solid-state 207pb nmr studies of lead-group 16 and mixedtransition-metal-lead-group 16 element-containing materials

    SciTech Connect

    Van Bramer, S.E.; Glatfelter, A.; Bai, S.; Dybowksi, C.; GNeue,G.; Perry, D.L.

    2005-08-26

    207Pb solid-state NMR studies have been conducted on binarylead-group 16 and mixed transition-metal/lead group 16 materials,correlating the NMR chemical shifts of the materials with theirstructures. The experimental results show that the 207Pb chemical shiftsare strongly influenced by the local electronic structure. Data arereported for lead selenide, lead selenate, calcium plumbate, strontiumplumbite, barium plumbite, lead borate, lead zirconate, lead tungstate,lead meta-tantalate, lead niobate, lead molybdate, lead meta-vanadate,lead sulfite, and lead sulfate.

  13. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Czernek, Ji?; Brus, Ji?

    2014-07-01

    A robust method for the assignment of two-dimensional heteronuclear correlations in the solid-state NMR spectra is described. It statistically evaluates the differences between measured and theoretical (obtained from first-principles calculations of the NMR chemical shielding property of periodic materials) chemical shifts. The values of the covariance of these differences, and of the standard deviations of the respective linear correlations, are elucidative for the spectral assignment process. The efficacy of the method is demonstrated for three crystalline systems: L-tyrosine hydrochloride, L-tyrosine ansolvate, and the polymorphic form I of o-acetylsalicylic acid.

  14. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils. PMID:23676036

  15. Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement.

    PubMed

    Tamaki, Hajime; Egawa, Ayako; Kido, Kouki; Kameda, Tomoshi; Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu; Fujiwara, Toshimichi; Demura, Makoto

    2016-01-01

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn(2+) mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library. PMID:26728076

  16. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  17. NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations

    PubMed Central

    2010-01-01

    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D 13C double-quantum/single-quantum correlation SSNMR spectrum of 13C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf−Klinowski model (Lerf, A. et al. Phys. Chem. B1998, 102, 4477); this model is composed of interconnected sp2, 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater.2006, 18, 2740). 13C chemical shift anisotropy (CSA) patterns measured by a 2D 13C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems. PMID:20359218

  18. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-CO increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-CO, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. PMID:26624522

  19. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy.

    PubMed

    Wilkening, Martin; Amade, Roger; Iwaniak, Wojciech; Heitjans, Paul

    2007-03-14

    The cubic spinel oxides Li(1+x)Ti(2-x)O(4) (0 < or =x< or = 1/3) are promising anode materials for lithium-ion rechargeable batteries. The end member of the Li-Ti-O series, Li(4)Ti(5)O(12), can accommodate Li ions up to the composition Li(7)Ti(5)O(12). Whereas a number of studies focus on the electrochemical behaviour of Li insertion into and Li diffusion in the Li intercalated material, only few investigations about low-temperature Li dynamics in the non-intercalated host material Li(4)Ti(5)O(12) have been reported so far. In the present paper, Li diffusion in pure-phase microcrystalline Li(4)Ti(5)O(12) with an average particle size in the microm range was probed by (7)Li solid state NMR spectroscopy using spin-alignment echo (SAE) and spin-lattice relaxation (SLR) measurements. Between T = 295 K and 400 K extremely slow Li jump rates tau(-1) ranging from 1 s(-1) to about 2200 s(-1) were directly measured by recording the decay of spin-alignment echoes as a function of mixing time and constant evolution time. The results point out the slow Li diffusion in non-intercalated Li(4)Ti(5)O(12) x tau(-1) (1/T) follows Arrhenius behaviour with an activation energy E(ASAE) of about 0.86 eV. Interestingly, E(ASAE) is comparable to activation energies deduced from conductivity measurements (0.94(1) eV) and from SLR measurements in the rotating frame (0.74(2) eV) rather than from those performed in the laboratory frame, E(A)(low-T) = 0.26(1) eV at low T. PMID:17325770

  20. Recovery of bulk proton magnetization and sensitivity enhancement in ultrafast magic-angle spinning solid-state NMR.

    PubMed

    Demers, Jean-Philippe; Vijayan, Vinesh; Lange, Adam

    2015-02-19

    The sensitivity of solid-state NMR experiments is limited by the proton magnetization recovery delay and by the duty cycle of the instrument. Ultrafast magic-angle spinning (MAS) can improve the duty cycle by employing experiments with low-power radio frequency (RF) irradiation which reduce RF heating. On the other hand, schemes to reduce the magnetization recovery delay have been proposed for low MAS rates, but the enhancements rely on selective transfers where the bulk of the (1)H magnetization pool does not contribute to the transfer. We demonstrate here that significant sensitivity enhancements for selective and broadband experiments are obtained at ultrafast MAS by preservation and recovery of bulk (1)H magnetization. We used [(13)C, (15)N]-labeled glutamine as a model compound, spinning in a 1.3 mm rotor at a MAS frequency of 65 kHz. Using low-power (1)H RF (13.4 kHz), we obtain efficient (1)H spin locking and (1)H-(13)C decoupling at ultrafast MAS. As a result, large amounts of (1)H magnetization, from 35% to 42% of the initial polarization, are preserved after cross-polarization and decoupling. Restoring this magnetization to the longitudinal axis using a flip-back pulse leads to an enhancement of the sensitivity, an increase ranging from 14% to 21% in the maximal achievable sensitivity regime and from 24% to 50% in the fast pulsing regime, and to a shortening of the optimal recycling delay to 68% of its original duration. The analysis of the recovery and sensitivity curves reveals that the sensitivity gains do not rely on a selective transfer where few protons contribute but rather on careful conservation of bulk (1)H magnetization. This makes our method compatible with broadband experiments and uniformly labeled materials, in contrast to the enhancement schemes proposed for low MAS. We tested seven different cross-polarization schemes and determined that recovery of bulk (1)H magnetization is a general method for sensitivity enhancement. The physical insight gained about the behavior of proton magnetization sharing under spin lock will be helpful to break further sensitivity boundaries, when even higher external magnetic fields and faster spinning rates are employed. PMID:25588120

  1. Spin dynamics in the modulation frame: application to homonuclear recoupling in magic angle spinning solid-state NMR.

    PubMed

    De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G

    2008-03-28

    We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5

  2. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  3. Identification of lithium-sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huff, Laura A.; Rapp, Jennifer L.; Baughman, Jessi A.; Rinaldi, Peter L.; Gewirth, Andrew A.

    2015-01-01

    6Li and 33S solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy was used to identify the discharge products in lithium-sulfur (Li-S) battery cathodes. Cathodes were stopped at different potentials throughout battery discharge and measured ex-situ to obtain chemical shifts and T2 relaxation rates of the products formed. The chemical shifts in the spectra of both 6Li and 33S NMR demonstrate that long-chain, soluble lithium polysulfide species formed at the beginning of discharge are indistinguishable from each other (similar chemical shifts), while short-chain, insoluble polysulfide species that form at the end of discharge (presumably Li2S2 and Li2S) have a different chemical shift, thus distinguishing them from the soluble long-chain products. T2 relaxation measurements of discharged cathodes were also performed which resulted in two groupings of T2 rates that follow a trend and support the previous conclusions that long-chain polysulfide species are converted to shorter chain species during discharge. Through the complementary techniques of 1-D 6Li and 33S solid-state MAS NMR spectroscopy, solution 7Li and 1H NMR spectroscopy, and T2 relaxation rate measurements, structural information about the discharge products of Li-S batteries is obtained.

  4. In situ solid state B-11 MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material

    SciTech Connect

    Stowe, Ashley C.; Shaw, Wendy J.; Linehan, John C.; Schmid, Benjamin; Autrey, Thomas

    2007-02-20

    The mechanism of hydrogen release from solid state ammonia borane (AB) has been investigated via in situ solid state 11B{1H} MAS-NMR techniques in external fields of 7.06 T and 18.8 T at a decomposition temperature of 88 oC, well below the reported melting point. The decomposition of AB is well described by an induction, nucleation and growth mechanistic pathway. During the induction period, little hydrogen is released from AB; however, a new species identified as a mobile phase of AB is observed in the 11B NMR spectra. Subsequent to induction, at reaction times when hydrogen is initially being released, three additional species are observed: the diammoniate of diborane (DADB), [(NH3)2BH2]+[BH4]-, and two BH2N2 species believed to be the linear (NH3BH2NH2BH3) and cyclic dimer (NH2BH2)2 of aminoborane. At longer reaction times the sharper features are replaced by broad, structureless peaks of a complex polymeric aminoborane (PAB) containing both BH2N2 and BHN3 species. We propose the following mechanistic model for the induction, nucleation and growth for AB decomposition leading to formation of hydrogen: (1) an induction period that yields a mobile phase of AB caused by disruption of the dihydrogen bonds, (2) nucleation that yields reactive DADB from the mobile AB and (3) growth that includes a bimolecular reaction between DADB and AB to release the stored hydrogen. Support for this work by the U.S. Department of Energy, Office of Science, Basic Energy Sciences is gratefully acknowledged. A portion of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  5. Alkaline-earth metal carboxylates characterized by 43Ca and 87Sr solid-state NMR: impact of metal-amine bonding.

    PubMed

    Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L

    2014-01-01

    A series of calcium and strontium complexes featuring aryl carboxylate ligands has been prepared and characterized by alkaline-earth ((43)Ca and (87)Sr) solid-state NMR experiments in a magnetic field of 21.1 T. In the 11 compounds studied as part of this work, a range of coordination motifs are observed including nitrogen atom binding to Ca(2+) and Sr(2+), a binding mode which has not been investigated previously by (43)Ca or (87)Sr solid-state NMR. (43)Ca isotopic enrichment has enabled the full characterization of the (43)Ca electric field gradient (EFG) and chemical shift tensors of the two calcium sites in calcium p-aminosalicylate (Ca(pams)), where both NMR interactions are affected by the presence of a nitrogen atom in the first coordination sphere of one of the metal sites. The (43)Ca isotropic chemical shift is sensitive to the Ca-N distance as exemplified by the NMR parameters of a second form of Ca(pams) and density functional theory (DFT) calculations. Studies of the strontium analogue, Sr(pams), confirm a similar sensitivity of the (87)Sr EFG tensor to the presence or absence of nitrogen in the first coordination sphere. To our knowledge, this is the first systematic (87)Sr NMR study of strontium complexes featuring organic ligands. The |CQ((87)Sr)| values are found to be sensitive to the coordination number about Sr(2+). In general, this work has also established a larger data set of reliable experimental |CQ((43)Ca)| values which correlate well with those obtained using gauge-including projector-augmented-wave (GIPAW) DFT calculations. It is found that the use of a recently recommended quadrupole moment for (43)Ca, -44.4 mbarn, improves the agreement with experimental values. This contribution lays the groundwork for the interpretation of (43)Ca and (87)Sr NMR spectra of more challenging systems, particularly where nitrogen-alkaline earth metal bonding is occurring. PMID:24359541

  6. 33S NMR cryogenic probe for taurine detection.

    PubMed

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a (33)S nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the (33)S NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 microM taurine solutions, which is the level of sensitivity necessary for biological samples. PMID:19334961

  7. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.

    PubMed Central

    Kim, Y.; Valentine, K.; Opella, S. J.; Schendel, S. L.; Cramer, W. A.

    1998-01-01

    The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190 residue C-terminal colicin E1 channel domain is the largest polypeptide to have been characterized by 15N solid-state NMR spectroscopy in oriented membrane bilayers. The 15N-NMR spectra of the colicin E1 show that: (1) the structure and dynamics are independent of anionic lipid content in both oriented and unoriented samples; (2) assuming the secondary structure of the polypeptide is helical, there are both trans-membrane and in-plane helical segments; (3) trans-membrane helices account for approximately 20-25% of the channel polypeptide, which is equivalent to 38-48 residues of the 190-residue polypeptide. The results of the two-dimensional PISEMA spectrum are interpreted in terms of a single trans-membrane helical hairpin inserted into the bilayer from each channel molecule. These data are also consistent with this helical hairpin being derived from the 38-residue hydrophobic segment near the C-terminus of the colicin E1 channel polypeptide. PMID:9521110

  8. A Monte Carlo/Simulated Annealing Algorithm for Sequential Resonance Assignment in Solid State NMR of Uniformly Labeled Proteins with Magic-Angle Spinning

    PubMed Central

    Tycko, Robert; Hu, Kan-Nian

    2010-01-01

    We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly 15N,13C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of 15N/13C? crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomolec. NMR, vol. 34, pp. 75-87, 2006) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal. PMID:20547467

  9. Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.

    PubMed

    Williams, Jonathan K; Schmidt-Rohr, Klaus; Hong, Mei

    2015-11-01

    The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet aromatic residues play important roles in biology through ?-? and cation-? interactions. To better resolve and assign aromatic residues' (13)C signals in magic-angle-spinning (MAS) solid-state NMR spectra, we introduce two spectral editing techniques. The first method uses gated (1)H decoupling in a proton-driven spin-diffusion (PDSD) experiment to remove all protonated (13)C signals and retain only non-protonated carbon signals in the aromatic region of the (13)C spectra. The second technique uses chemical shift filters and (1)H-(13)C dipolar dephasing to selectively detect the C?, C? and CO cross peaks of aromatic residues while suppressing the signals of all aliphatic residues. We demonstrate these two techniques on amino acids, a model peptide, and the microcrystalline protein GB1, and show that they significantly simplify the 2D NMR spectra and both reveal and permit the ready assignment of the aromatic residues' signals. PMID:26440131

  10. Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Verly, Rodrigo M.; Moraes, Clria Mendona de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Pil-Veloso, Dorila; Valente, Ana Paula; Almeida, Fbio C.L.; Bechinger, Burkhard

    2009-01-01

    DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an ?-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046

  11. Some studies on a solid state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

  12. A Technique for Increasing the Sensitivity of a Solid-State Fission Probe

    NASA Technical Reports Server (NTRS)

    Steinberg, Robert

    1961-01-01

    A small silicon p-n junction wafer, when coated with uranium 235, can be used as a compact fission probe for low power flux and power mapping. Because of the inverse relation between the magnitude of a neutron-induced fission pulse and the inherent capacitance of the detecting element (capacitance is proportional to area), the size, and hence the sensitivity, of the semiconductor detector has been limited. New developments in the field of semiconductor detectors have made it possible to fabricate large area detectors which are essentially free from the capacitance effect. However, preliminary results indicate that they are much more susceptible to radiation damage than the detectors described in this report and as such may not be suitable for flux mapping. increasing the sensitivity cannot be accomplished by simply fabricating a larger detector. It has been observed that by combining the silicon p-n junction wafers in a series configuration the capacitance effect can be bypassed, and a fission probe can be made with a resultant increase in sensitivity by a factor of ten while sustaining only a minor decrease in pulse height. Analysis further indicates that for n silicon wafers in series, if n(C(sub i)) + C(sub c)/C(sub b) less than 0.1 where C(sub i) and C(sub c) are the preamplifier input and cable capacitances, respectively, and C(sub b) is the junction capacitance of a single silicon wafer, there should be no substantial reduction in pulse height due to series circuitry.

  13. Structure and Topology of the Huntingtin 117 Membrane Anchor byaCombined Solution and Solid-State NMR Approach

    PubMed Central

    Michalek, Matthias; Salnikov, EvgeniyS.; Bechinger, Burkhard

    2013-01-01

    The very amino-terminal domain of the huntingtin protein is directly located upstream of the proteins polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development of Huntingtons disease. This huntingtin 117 domain is on the one hand known to markedly increase polyglutamine aggregation rates and on the other hand has been shown to be involved in cellular membrane interactions. Here, we determined the high-resolution structure of huntingtin 117 in dodecyl phosphocholine micelles and the topology of its helical domain in oriented phosphatidylcholine bilayers. Using two-dimensional solution NMR spectroscopy the low-energy conformations of the polypeptide were identified in the presence of dodecyl phosphocholine detergent micelles. In a next step a set of four solid-state NMR angular restraints was obtained from huntingtin 117 labeled with 15N and 2H at selected sites. Of the micellar ensemble of helical conformations only a limited set agrees in quantitative detail with the solid-state angular restraints of huntingtin 117 obtained in supported planar lipid bilayers. Thereby, the solid-state NMR data were used to further refine the domain structure in phospholipid bilayers. At the same time its membrane topology was determined and different motional regimes of this membrane-associated domain were explored. The pronounced structural transitions of huntingtin 117 upon membrane-association result in a ?-helical conformation from K6 to F17, i.e., up to the very start of the polyglutamine tract. This amphipathic helix is aligned nearly parallel to the membrane surface (tilt angle ?77) and is characterized by a hydrophobic ridge on one side and an alternation of cationic and anionic residues that run along the hydrophilic face of the helix. This arrangement facilitates electrostatic interactions between huntingtin 117 domains and possibly with the proximal polyglutamine tract. PMID:23931318

  14. Crystal Structures and Vibrational and Solid-State (CPMAS) NMR Spectroscopy of Some Bis(triphenylphosphine)silver(I) Sulfate, Selenate and Phosphate Systems.

    SciTech Connect

    Bowmaker, Graham A.; Hanna, John V.; Rickard, Clifton E.; Lipton, Andrew S.

    2001-01-01

    The complexes [Ag2(PPh3)4EO4].2H2O(E=S, Se) (1,2), [Ag(PPh3)2HEO4].H2O (E=S, Se)(3,4) and [Ag9PPh3)2H2PO4].2EtOH (5) have been prepared and studied by X-ray crystallography and by infrared and solid-state 13C and 31 P cross-polarization, magic-angle-spinning (CPMAS) NMR spectroscopy.

  15. Solid state NMR as a new approach for the structural characterization of rare-earth doped lead lanthanum zirconate titanate laser ceramics

    NASA Astrophysics Data System (ADS)

    Mohr, Daniel; de Camargo, Andrea S. S.; Schneider, Jos F.; Queiroz, Thiago B.; Eckert, Hellmut; Botero, riton R.; Garcia, Ducinei; Eiras, Jos A.

    2008-10-01

    To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using 45Sc NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using 207Pb NMR lineshape analysis. 45Sc MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static 207Pb spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the 207Pb NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm 3+, while at higher levels the solubility limit is reached.

  16. Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR

    PubMed Central

    Marek, Antonin; Tang, Wenxing; Milikisiyants, Sergey; Nevzorov, AlexanderA.; Smirnov, AlexI.

    2015-01-01

    Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced conformational changes of uniformly 15N-labeled Pf1 coat protein in native-like bilayers. The Pf1 helix tilt angles in bilayers composed of two different lipids are notentirely governed by the membrane thickness but could be rationalized by hydrophobic interactions of lysines at the bilayer interface. The anodic aluminum oxide alignment method is applicable to a broader repertoire of lipids versus bicelle bilayer mimetics currently employed in solid-state nuclear magnetic resonance of oriented samples, thus allowing for elucidation of the role played by lipids in shaping membrane proteins. PMID:25564843

  17. Specific molecular structure changes and radical evolution during biomass-polyethylene terephthalate co-pyrolysis detected by (13)C and (1)H solid-state NMR.

    PubMed

    Ko, Kwang-Hyun; Sahajwalla, Veena; Rawal, Aditya

    2014-10-01

    Co-pyrolysis of biomass with polyethylene terephthalate (PET) was studied as a function of blend ratio and co-pyrolysis temperature by (13)C and (1)H solid-state nuclear magnetic resonance (NMR). The (13)C NMR spectra showed that upon heating to 400C in presence of the biomass, the formation of crystallites in PET was completely suppressed and that at higher temperatures there was increased formation and growth of the polycyclic aromatic hydrocarbons (PAHs). This change in the PET degradation behaviour was attributed to the presence of radicals formed in char from biomass. The measurement of the (1)H-T1 relaxation enabled monitoring the changes in the concentrations of radicals formed, as a function of the blend ratios and the co-pyrolysis temperatures. It indicated that the increase in the radical concentrations correlated well with the increased degradation of the PET and growth of PAHs. PMID:25146317

  18. Solid-state 13C NMR study of banana liquid crystals - 1: Two different alkyl tail-group packing environments in the B7 phase

    NASA Astrophysics Data System (ADS)

    Kurosu, Hiromichi; Nakanishi, Saki; Kimura, Saori; Kang, Sungmin; Li, Xiaodong; Sone, Masato; Watanabe, Junji

    2012-01-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed for the B7 phase of the banana-shaped molecule P-8-O-PIMB(NO 2). In this phase, NMR chemical shifts assigned to five methylene carbons on the alkyl tail appear as at least seven peaks, indicating that the two alkyl tails within a single molecule have different packing structures. Combined CP/MAS and PST/MAS measurements show that one of the alkyl tails has dense packing with low molecular mobility and the other has loose packing with high molecular mobility. Thus, it can be concluded that both the polar bent and molecular axes are tilted toward the layer in the B7 phase of P-8-O-PIMB(NO 2), exhibiting molecular leaning.

  19. Solid-state 13C NMR study of banana liquid crystals - 2: Alkyl tail-group packing environments in the hexagonal columnar phase

    NASA Astrophysics Data System (ADS)

    Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin

    2013-05-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed in order to obtain the packing structure of alkyl tail in the hexagonal columnar phase of the banana-shaped N(1,7)-S16 molecule. In this phase, NMR chemical shifts assigned to the internal methylene carbons at an amorphous state appear as two peaks, indicating that the two alkyl tails are placed under two different chemical environments. From combined cross-polarization/magic-angle spinning and pulse saturation transfer/magical-angle spinning measurements, two alkyl tails were found to have the different mobility. Such two different environments are not unusual in conventional mesophases, but in the hexagonal columnar phase formed by cylindrical columns composed of enclosed smectic layers; one of the alkyl tails is located inside and the other is located outside the columnar structure.

  20. Solid-state [sup 13]C NMR studies of ionic surfactants adsorbed on C-18 and C-8 silicas: Implications for micellar liquid chromatography

    SciTech Connect

    Lavine, B.K.; Hendayana, S.; Han, J.H.; Tetreault, J. . Dept. of Chemistry); Cooper, W.T. III; He, Y. . Dept. of Chemistry)

    1994-07-01

    Solid-state [sup 13]C NMR spectroscopy techniques, including cross polarization (CP), magic angle spinning (MAS), and high-power proton decoupling, have been used to study the interactions of two ionic surfactants with octadecylsilica (C-18) and octylsilica (C-8) HPLC stationary phases. The two surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), are commonly used in micellar reversed-phase liquid chromatography (RPLC). Variable contact time CP/MAS [sup 13] C NMR data suggest that differences in selectivity between SDS and CTAB micellar RPLC are due to the differing nature of the SDS and CTAB-bonded phase association. For CTAB the association leads to a more hydrophobic bulk stationary phase, whereas SDS adsorption results in the formation of an anionic, hydrophilic surface layer. These results suggest that proper matching of surfactant monomer and bonded stationary phase is critical to ensure selective separations in micellar RPLC.

  1. The structural analysis of Cardo silicone polyimides by high resolution solid-state 13C, 15N and 29Si NMR

    NASA Astrophysics Data System (ADS)

    Shinohara, Masaaki; Saito, Koji; Hatakeyama, Moriaki; Yuasa, Masatoshi; Furukawa, Nobuyuki

    1998-01-01

    It is well-known that polymers containing a fluorene moiety (so-called 'Cardo-type polymers') have high thermal stability, good mechanical properties and excellent solubility in common organic solvents. For the benefit of the full use of these polyimides in industrial applications, cross-linked Cardo silicone polyimides, which have both high thermal stability and high resistivity to organic solvents, were designed. The cross-link density was determined by solid-state 13C and 29Si NMR because no other direct method for the determination of the cross-link density is available. Furthermore, natural abundance CPMAS 13C and 15N NMR measurements were made for three different forms of Cardo silicone polyimides which exhibit a high oxygen permselective property. An explanation for the gas separation mechanism is given.

  2. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.

  3. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state {sup 1}H and {sup 71}Ga NMR spectroscopy

    SciTech Connect

    Petersen, Line Boisen; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-15

    Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg{sub 1−x}Ga{sub x}(OH){sub 2}(NO{sub 3}){sub x}·yH{sub 2}O] was investigated using solid-state {sup 1}H and {sup 71}Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg{sub 3}-OH, Mg{sub 2}Ga-OH and intergallery water molecules were assigned and quantified using ({sup 1}H,{sup 71}Ga) HETCOR and {sup 1}H MAS NMR. A single {sup 71}Ga site originating from the unique Ga site in the MgGa LDH's was observed in {sup 71}Ga MAS and 3QMAS NMR spectra. Both {sup 1}H MAS NMR spectra recorded at 21.1 T (900 MHz) and elemental analysis show that the synthesized MgGa LDH's had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH){sub 4}]{sup −} complexes formed during synthesis