Science.gov

Sample records for solide-liquide application aux

  1. PHASES model for binary-constituent solid-liquid phase transition. Part 2: Applications

    SciTech Connect

    Naterer, G.F.; Schneider, G.E.

    1995-09-01

    A new solution procedure for binary-constituent solid-liquid phase-transition problems has been applied to several one- and two-dimensional problems. Three one-dimensional applications (a pure material melting problem, a unidirectional Ag-Sn solidification problems, and a Bridgman furnace simulation) illustrate different interface solute redistribution and Ste number sensitivity results. In addition, two-dimensional applications examine Pb-Sn and NH{sub 4}Cl-H{sub 2}O solidification problems within moderate- and low-aspect-ratio enclosures. In these problems, buoyancy-driven and shear-driven recirculation cells in the liquid regions of the cavity, penetration of bulk fluid across the liquidus interface, and energy and species advection are observed. The model`s results agree closely with previous analytical and experimental results, and its performance indicates a cost-effective and physically based approach to solid-liquid phase-transition discrete analysis.

  2. Application of the LCPT model to solid-liquid equilibria for binary compound-forming alloys

    SciTech Connect

    Howell, W.J. ); Alger, M.M. ); Eckert, C.A. )

    1993-09-01

    The linear chemical-physical theory (LCPT) model for liquid metal solution thermodynamics has been extended to the determination of the liquidus curves for binary intermetallic compound-forming systems. The equations developed include corrections to the observed melting point temperature and heat of fusion for compounds that dissociate partially on melting. The primary advantages of the LCPT model for solid-liquid equilibria are the small number of physically realistic parameters required, ease of implementation, and wide applicability. In addition, the model also permits the incorporation of compounds in modeling the liquidus curves that are not necessary for representing the liquid-phase thermodynamic properties. For the seven systems studied, the agreement between calculated and experimentally measured liquidus curves is quite good.

  3. Engineering evaluation of solids/liquids separation processes applicable to sludge treatment project

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study looks at the solids/liquids separation unit operations after the acid dissolution of the K Basin sludge treatment. Unit operations considered were centrifugation, filtration (cartridge, cross flow, and high shear filtration) and gravity settling. The recommended unit operations for the solids/liquids separations are based upon the efficiency, complexity, and off-the-shelf availability and adaptability. The unit operations recommended were a Robatel DPC 900 centrifuge followed by a nuclearized 31WM cartridge filter. The Robatel DPC 900 has been successfully employed in the nuclear industry on a world wide scale. The 31WM cartridge filter has been employed for filtration campaigns in both the government and civilian nuclear arenas.

  4. Three-body interactions and solid-liquid phase equilibria: application of a molecular dynamics algorithm.

    PubMed

    Wang, Liping; Sadus, Richard J

    2006-09-01

    The effect of three-body interactions on the solid-liquid phase boundaries of argon, krypton, and xenon is investigated via a novel technique that combines both nonequilibrium and equilibrium molecular dynamics. The simulations involve the evaluation of two- and three-body forces using accurate two-body and three-body intermolecular potentials. The effect of three-body interactions is to substantially increase the coexistence pressure and to lower the densities of liquid and solid phases. Comparison with experiment indicates that three-body interactions are required to accurately determine the total pressure. In contrast to vapor-liquid phase equilibria, the relative contribution of three-body interactions to the freezing pressure exceeds the contribution of two-body interactions at all temperatures. PMID:17025614

  5. I Situ Spectro-Ellipsometry on Solid/liquid Interfaces and Applications to Electrochemistry.

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Taik

    1990-01-01

    A fast scanning spectroscopic ellipsometer with an optical multichannel analyzer detection system has been developed and applied to study static as well as kinetic phenomena at the solid-liquid interface, such as electrochemical processes, molecular adsorption and the growth of polymers on metal surface. Electrochemical behavior of polycrystalline gold was monitored as the anodic potential was increased up to 1.5 V vs saturated calomel electrode (SCE). In the range of 1 to 1.5 V in highly acidic media (0.5 M H _2SO_4), gold oxides form in two different oxidation states, namely, AuOH at 1.1 V and a higher oxidation state of gold oxide at 1.3 V. The fast scanning spectroscopic ellipsometry enabled us to determine the optical properties (dielectric functions) and the thickness of the gold hydroxide and oxide species. As a result, the monolayer thickness of AuOH was determined to be 3.0 +/- 0.5 A, and that of gold oxide was 4.0 +/- 0.3 A. As far as the optical properties are concerned, the higher oxidation state of gold oxide shows more absorbance than that of AuOH corresponding to the higher order of the charge transfer for gold oxide. Deposition of a conducting polymer (polypyrrole) at an anodic potential was monitored as a function of time, every 7.5 seconds in aqeuous 0.1 M KNO_3 . The optical properties of oxidized polypyrrole in 0.1 M KNO_3 electrolyte was determined in situ using spectroscopic ellipsometry with optical multichannel analyzer detection. The determined dielectric function revealed the interband transitions at 3.8 eV and a transition at 1.7 eV suggesting high doping concentrations under our preparation condition of the oxidized polypyrrole. Also, the dielectric function of the oxidized polypyrrole and LRA allowed us to characterize the nucleation and growth of the polypyrrole. As a result, (i) monomer adsorption, (ii) two-dimensional nucleation and (iii) three-dimensional growth could be determined during the electrochemical deposition of polypyrrole. Finally, the orientational phase transition of the pyridine molecules on silver surface was studied by the measurement of surface plasmon polariton using spectorscopic ellipsometry. We could observe this phase transition at approximately 1 times 10 ^{-4} M of pyridine concentration in water at room temperature. Below 1 times 10^{-4} M, the ring of the pyridine is parallel to the silver surface; above 1 times 10^ {-4} M, the ring is aligned perpendicular to the surface.

  6. A sessile drop setup for the time-resolved synchrotron study of solid-liquid interactions: Application to intermetallic formation in 55%Al-Zn alloys

    SciTech Connect

    Bernier, N. De Bruyn, D.; De Craene, M.; Scheers, J.; Claessens, S.; Vaughan, G. B. M.; Vitoux, H.; Gleyzolle, H.; Gorges, B.

    2014-04-28

    We introduce a dedicated setup for measuring by synchrotron diffraction in-situ crystallographic and chemical information at the solid–liquid interface. This setup mostly consists of a double-heating furnace composed of a resistive heating for the solid surface and an inductive heating to produce a liquid droplet. The available high energy and high flux beams allow the rapid reaction kinetics to be investigated with very good time resolution down to 1 ms. An application of this setup is illustrated for the growth mechanisms of intermetallic phases during the hot-dipping of steel in a 55%Al-Zn bath. Results show that the three ?-Al{sub 5}Fe{sub 2}, ?-Al{sub 13}Fe{sub 4}, and ?-Al{sub 8}Fe{sub 2}Si phases grow at different times and rates during the dipping process, whereas the face-centered cubic AlFe{sub 3} phase is not formed.

  7. A sessile drop setup for the time-resolved synchrotron study of solid-liquid interactions: Application to intermetallic formation in 55%Al-Zn alloys

    NASA Astrophysics Data System (ADS)

    Bernier, N.; Vaughan, G. B. M.; De Bruyn, D.; Vitoux, H.; De Craene, M.; Gleyzolle, H.; Gorges, B.; Scheers, J.; Claessens, S.

    2014-04-01

    We introduce a dedicated setup for measuring by synchrotron diffraction in-situ crystallographic and chemical information at the solid-liquid interface. This setup mostly consists of a double-heating furnace composed of a resistive heating for the solid surface and an inductive heating to produce a liquid droplet. The available high energy and high flux beams allow the rapid reaction kinetics to be investigated with very good time resolution down to 1 ms. An application of this setup is illustrated for the growth mechanisms of intermetallic phases during the hot-dipping of steel in a 55%Al-Zn bath. Results show that the three ?-Al5Fe2, ?-Al13Fe4, and ?-Al8Fe2Si phases grow at different times and rates during the dipping process, whereas the face-centered cubic AlFe3 phase is not formed.

  8. Application de la combustion catalytique aux turbines à gaz

    NASA Astrophysics Data System (ADS)

    Lebas, E.; Martin, G. H.

    2002-04-01

    La réduction des émissions d'oxydes d'azote sur turbines à gaz est obtenue par diminution de la température au sein de la chambre de combustion. Les techniques possibles comprennent l'injection d'eau ou de vapeur, la combustion pauvre et l'oxydation catalytique. Parmi celles-ci, la dernière est la plus prometteuse en terme de coûts et de performances, avec des émissions de NOx ramenées à un seul chiffre (typiquement inférieures à 3 ppm). L'IFP travaille depuis maintenant 10 ans sur l'adaptation de la combustion catalytique aux turbines à gaz. Les études ont été conduites au travers de projets européen tels que AGATA (Advance Gas Turbine for Automotive Application) et ULECAT (Ultra Low CATalytic combustor for dual fuel gas turbine). Le premier projet était destiné au développement de véhicules hybrides et le second à la combustion stationnaire de biogaz et de combustible Diesel. Les études en cours dans ce domaine portent sur le développement d'une unité de cogénération intégrant une microturbine à combustion catalytique. Les travaux menés à l'IFP concernent la mise au point de catalyseurs répondant aux exigences de la combustion catalytique en turbine à gaz et le développement de chambres de combustion permettant la mise en oeuvre de ces catalyseurs.

  9. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  10. Calculation of multicomponent chemical equilibria in gas-solid- liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens

    USGS Publications Warehouse

    Symonds, R.B.; Reed, M.H.

    1993-01-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. Examples of gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mount St. Helens are shown. -from Authors

  11. Ultrasonic Spectroscopy of Solid-Liquid Suspensions.

    NASA Astrophysics Data System (ADS)

    Sharma, Arvind

    There is a great deal of interest in techniques which characterize solid-liquid suspensions through measurements of ultrasonic properties such as phase velocity and attenuation. In this study, a reliable ultrasonic spectroscopy methodology has been developed that is capable of handling commonly encountered solid-liquid suspensions at high particle concentrations, over a wide frequency range. Performance of the system has been validated using laboratory measurements of attenuation spectra of a reference liquid (Dow Corning 710 silicone fluid). Ultrasonic spectroscopy measurements of colloidal dispersions are obtained over a wide frequency range of 1-100 MHz using linear regression, with loss data for many pathlengths, and solids concentration varying from 3 to 43 volume percent. The current sensor provides reliable values of attenuation coefficients ranging from 0.1 to 2500 dB/cm. Quantitative comparison of experimental data on attenuation coefficients with corresponding predictions based on theoretical modeling that accounts for attenuation dependence on particle size distribution and particle volume fraction, over the wide range of operating frequencies is presented. The theoretical model is able to predict the experimentally observed complex functionality of frequency and concentration dependence of attenuation coefficients fairly well. Some new features of the data were observed when both, the sound speed and the attenuation coefficient spectra, were presented together on a complex plane through the complex wave number. An equivalent acoustophoretic diameter has been proposed which provides a convenient way of representing particle size distribution by means of a single parameter, which is associated with the two parameters (mass geometric mean and geometric standard deviation) of the log-normal distribution. Also, interpretation of sound speed has been made in terms of solids concentration estimation. During field tests at a manufacturing plant, the on-line sensor prototype has provided attenuation spectra, and corresponding particle size distribution estimates under processing conditions showing excellent reproducibility and robust operation. The tests of predictive model and on-line sensor prototype operation show that ultrasonic spectroscopy of concentrated colloids is a promising tool for on-line characterization of industrial slurries, and offers the possibility of its use in quality control and process control applications.

  12. Perturbation theory of solid-liquid interfacial free energies of bcc metals

    SciTech Connect

    Warshavsky, Vadim B.; Song, Xueyu

    2012-09-18

    A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell, hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may have broader applications for other crystal lattices.

  13. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  14. Systems and methods for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  15. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Technical Reports Server (NTRS)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  16. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Astrophysics Data System (ADS)

    Zeng, X. C.; Stroud, D.

    1989-05-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  17. Etude sur les tendons en materiaux composites et leur application aux ancrages postcontraints

    NASA Astrophysics Data System (ADS)

    Chennouf, Adil

    L'objectif general de la presente these est d'evaluer le comportement a l'arrachement et au fluage d'ancrages injectes constitues de tendons en materiaux composites afin d'etablir des recommandations plus appropriees et realistes pour le dimensionnement et la conception. Quatre types de tendons en materiaux composites, deux a base de fibres d'aramide et deux a base de fibres de carbone, ont ete utilises dans l'etude. Les travaux de recherche de cette these ont porte notamment sur: (I) Une caracterisation physique et mecanique des tendons en materiaux composites utilises dans l'etude. (II) Une etude en laboratoire sur les coulis de scellement. La premiere etape de cette etude a concerne le developpement d'un coulis de scellement performant adapte aux tendons en materiaux composites et a differentes situations d'injection. La seconde etape a traite des essais de caracterisations physique et mecanique du coulis de scellement developpe comparativement a trois coulis de scellement usuels d'un meme rapport E/L de 0,4. (III) Une etude sur des modeles reduits d'ancrages injectes. (IV) Une etude sur des modeles d'ancrages a grande echelle. La synthese de ces etudes a permis d'enoncer les principales conclusions suivantes: (1) Les valeurs moyennes des charges de rupture des tendons en materiaux composites ont ete de 1% a 29% superieures a celles specifiees par les manufacturiers. (2) L'etude sur les coulis de scellement a permis le developpement de coulis de ciment repondant aux criteres fixes, soient une grande stabilite, une bonne fluidite, une legere expansion et de bonnes caracteristiques mecaniques. (3) Les tendons en materiaux composites ont montre des contraintes d'adherence maximum superieures a celles des tendons en acier. (4) Le type de fibre, la configuration et le fini de surface des tendons en materiaux composites gouvernent leur resistance a l'adherence. (5) L'introduction de sable et d'autres ajouts comme les fines de silice et la poudre d'aluminium au coulis de ciment a permis d'ameliorer la resistance a l'adherence. (6) Il existe une relation lineaire entre la charge maximum et la longueur ancree des tendons. Des equations sont proposees. (7) La capacite a l'arrachement des ancrages injectes augmente avec l'augmentation du module d'elasticite du milieu encaissant. (8) Les mono-tendons et multi-tendons en materiaux composites injectes sur 1000 mm ont montre des comportements a l'arrachement acceptables conformement aux codes. (9) Les rigidites apparentes des tendons a base de fibres d'aramide sont de trois a cinq fois inferieures a celles des tendons a base de fibres de carbone. (10) L'amorce de la decohesion en haut de la zone ancree ne semble se produire qu'au-dela d'une charge de 0,35 fpu pour les tendons a base de fibres de carbone alors qu'elle prend naissance des l'application de la charge pour les tendons a base de fibres d'aramide. (11) Le taux de fluage depend du niveau de chargement ainsi que des caracteristiques geometriques et mecaniques de l'ancrage (type de fibres, fini de surface, nombre de tendons, etc.). (12) Des equations regissant le comportement au fluage des tendons en materiaux composites ont ete etablies pour une periode d'essai de 60 mn. (Abstract shortened by UMI.)

  18. Ultrasonic characterization of solid liquid suspensions

    DOEpatents

    Panetta, Paul D.

    2010-06-22

    Using an ultrasonic field, properties of a solid liquid suspension such as through-transmission attenuation, backscattering, and diffuse field are measured. These properties are converted to quantities indicating the strength of different loss mechanisms (such as absorption, single scattering and multiple scattering) among particles in the suspension. Such separation of the loss mechanisms can allow for direct comparison of the attenuating effects of the mechanisms. These comparisons can also indicate a model most likely to accurately characterize the suspension and can aid in determination of properties such as particle size, concentration, and density of the suspension.

  19. Precise AuxPt1-x Alloy Nanoparticle Array of Tunable Composition for Catalytic Applications.

    PubMed

    Jahn, Sarah; Lechner, Sebastian J; Freichels, Helene; Möller, Martin; Spatz, Joachim P

    2016-01-01

    A 3-dimensional Block Copolymer Micellar nanoLithography (BCML) process was used to prepare AuxPt1-x alloy nanoparticles (NPs) monodisperse in size and composition, strongly anchored onto SiO2-particles (0.2?wt.% AuxPt1-x/SiO2). The particles possess a face-centered cubic (fcc) crystal structure and their size could be varied from 3-12?nm. We demonstrate the uniformity of the Au/Pt composition by analyzing individual NPs by energy-dispersive X-ray spectroscopy. The strongly bound AuxPt1-x NPs catalyzed the oxidation of CO with high activity. Thermal ageing experiments in pure CO2 as well as in ambient atmosphere demonstrated stability of the size distribution for times as long as 22?h. PMID:26856888

  20. Coarsening in binary solid-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Voorhees, P. W.

    1990-01-01

    A theory of Ostwald ripening has been developed for a solid-liquid mixture cosisting of a low volume fraction array of spherical solid particles in a liquid wherein the coarsening process proceeds via the transport of both heat and mass. It is found that the simultaneous transport of heat and mass during ripening does not alter the exponents of the temporal power laws governing the ripening process from their classical values but does alter the amplitudes of these power laws. The growth rate of the cube of the average particle radius, the rate constant, is found to depend both on the alloy solute concentration and the ratio of the thermal to solutal diffusivities. In most metallic systems, a large decrease in the rate constant can be expected with small additions of solute to a pure metal. Possible extensions of this theory to the analogous problem of ripening in isothermal ternary alloys are also discussed.

  1. Diffusion de neutrons aux petits angles : application à l'étude des macromolécules biologiques en solution

    NASA Astrophysics Data System (ADS)

    Lairez, D.; Pelta, J.

    2005-11-01

    La diffusion de neutrons aux petits angles (DNPA) permet de sonder les propriétés statiques de la matière sur une échelle spatiale allant de quelques dixièmes à quelques dizaines de nanomètres. Cette technique est ainsi particulièrement bien adaptée à l'étude des macromolécules en solution. Il est possible d'accéder à des grandeurs moyennes qui caractérisent la conformation qu'adoptent les macromolécules ou leurs interactions thermodynamiques. Le cours expose à des non spécialistes les différentes grandeurs mesurables et les méthodes à utiliser pour y accéder. En particulier sont abordées: 1) les mesures effectuées dans la limite du vecteur de diffusion nul qui sont liées aux fluctuations de concentration; 2) les notions de facteur de forme, de facteur de structure dots 3) les différentes façon de jouer avec le contraste. Les notions introduites sont illustrées par des exemples didactiques empruntés à la littérature et concernant des macromolécules biologiques en solution.

  2. Computational Investigations of Solid-Liquid Interfaces

    SciTech Connect

    Mark Asta

    2011-08-31

    In a variety of materials synthesis and processing contexts, atomistic processes at heterophase interfaces play a critical role governing defect formation, growth morphologies, and microstructure evolution. Accurate knowledge of interfacial structure, free energies, mobilities and segregation coefficients are critical for predictive modeling of microstructure evolution, yet direct experimental measurement of these fundamental interfacial properties remains elusive in many cases. In this project first-principles calculations were combined with molecular-dynamics (MD) and Monte-Carlo (MC) simulations, to investigate the atomic-scale structural and dynamical properties of heterophase interfaces, and the relationship between these properties and the calculated thermodynamic and kinetic parameters that influence the evolution of phase transformation structures at nanometer to micron length scales. The topics investigated in this project were motivated primarily by phenomena associated with solidification processing of metals and alloys, and the main focus of the work was thus on solid-liquid interfaces and high-temperature grain boundaries. Additional efforts involved first-principles calculations of coherent solid-solid heterophase interfaces, where a close collaboration with researchers at the National Center for Electron Microscopy was undertaken to understand the evolution of novel core-shell precipitate microstructures in aluminum alloys.

  3. Reflection of structural waves at a solid/liquid interface.

    PubMed

    Chiffoleau, Gwenael J A; Steinberg, Theodore A; Veidt, Martin

    2003-07-01

    This paper investigates the reflection characteristics of structural or guided waves in rods at a solid/liquid interface. Structural waves, whose wavelengths are much larger than the diameter of the rod, are described in a first approximation by classical one-dimensional wave theory. The reflection characteristics of such waves at a solid/liquid (melting) interface has been reported by two different ultrasonic measurement techniques: first, measuring the fast regression rate of a melting interface during the burning of metal rod samples in an oxygen-enriched environment, and second, monitoring the propagation of the solid/liquid interface during the slow melting and solidification of a rod sample in a furnace. The second work clearly shows that the major reflection occurs from the solid/liquid interface and not the liquid/gas interface as predicted by plane longitudinal wave reflectivity theory. The present work confirms this observation by reporting on the results of some specially designed experiments to identify the main interface of reflection for structural waves in rods. Hence, it helps in explaining the fundamental discrepancy between the reflection characteristics at a solid/liquid interface between low frequency structural waves and high frequency bulk waves, and confirms that the detected echo within a burning metallic rod clearly represents a reflection from the solid/liquid interface. PMID:12788216

  4. An improved technique for modeling initial reservoir hydrocarbon saturation distributions: Applications in Illinois (USA) aux vases oil reservoirs

    USGS Publications Warehouse

    Udegbunam, E.; Amaefule, J.O.

    1998-01-01

    An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, S(wir), P(d), and ??, derived from the Brooks and Corey (1966) model [Brooks, R.H., Corey, A.T., 1966. Hydraulic properties of porous media, Hydrology Papers, Colorado State Univ., Ft. Collins, No. 3, March.], are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, Swir, Pd, and ??, derived from the Brooks and Corey (1966) model, are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.

  5. Élaboration de couches minces de carbone par ablation laser femtoseconde pour application aux biomatériaux implantables

    NASA Astrophysics Data System (ADS)

    Loir, A.-S.; Garrelie, F.; Donnet, C.; Subtil, J.-L.; Belin, M.; Forest, B.; Rogemond, F.; Laporte, P.

    2005-06-01

    Des films de tetrahedral amorphous-Carbon (ta-C) ont été déposés, sous vide poussé, par ablation d'une cible de graphite avec un laser Ti : saphir (durée d'impulsion 170 fs, fréquence de répétition 1 kHz, énergie maximale par impulsion 1,5 mJ, longueur d'onde 800 nm) sur substrats standard et sur biomatériaux (acier AISI 316L, polyéthylène à très haut poids moléculaire). Les propriétés de ces couches (structure, propriétés nanomécaniques et tribologiques) ont été caractérisées, en fonction des conditions d'élaboration, en examinant l'intérêt de l'utilisation d'un laser femtoseconde et leur capacité à satisfaire aux exigences spécifiques du domaine biomédical. Les propriétés d'adhérence des films ont été considérablement améliorées lors du dépôt sur des substrats en acier inoxydable préalablement préparés par décapage ionique in situ sous atmosphère d'argon. La surface hémisphérique d'une tête fémorale, en acier inoxydable, de prothèse de hanche de diamètre 22,2 mm a été revêtue d'un film de DLC adhérent et homogène en épaisseur. La résistance à l'usure de ce revêtement sera quantifiée à l'aide d'un simulateur de marche durant un million de cycles (correspondant à une année d'activité physique d'un être humain).

  6. In situ real-time monitoring of geometric, electronic, and molecular structures at solid/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Uosaki, Kohei

    2015-03-01

    Many important processes take place at solid/liquid interfaces. To understand these processes, in situ real-time evaluation of the geometric, electronic, and molecular structures at solid/liquid interfaces at the atomic and molecular levels is essential. Owing to the presence of the liquid, however, techniques such as electron microscopy and low-energy electron diffraction, which are powerful tools for surface structural analysis in vacuum, cannot be used for solid/liquid interfaces. In this review, various techniques applicable to solid/liquid interfaces, including scanning probe microscopy, synchrotron-radiation-based X-ray techniques, and nonlinear spectroscopy, are briefly described. The characterization of the electrodeposition process of Pd layers on Au single-crystal electrode surfaces is presented as an example to demonstrate the importance of using multiple techniques in an integrated manner to understand the processes at solid/liquid interfaces. This is a translated version of the original paper which appeared in Oyo Buturi 82, 106 (2013) [in Japanese] with some modifications.

  7. Application du groupe de renormalisation aux conducteurs organiques quasi-unidimensionnels soumis a un champ magnetique

    NASA Astrophysics Data System (ADS)

    Hubert, Laurent

    Des conducteurs organiques fortement anisotropes presentent, sous l'effet d'un champ magnetique, une etonnante variete de proprietes physiques tel que: l'effet Shubnikov-de Haas, l'effet de Haas-van-Alphen, l'existence de cascades d'ondes de densite de spin apparentees a l'effet Hall quantique, reentrance vers la phase metallique pouvant provenir d'un 'breakdown' magnetique, et tout recemment la possibilite d'un confinement charge induit par le champ magnetique. A cela s'ajoute les nombreuses caracteristiques deja apparues en variant la pression hydrostatique ou la substitution chimique: separation spin-charge, localisation de la charge, transition spin-Peierls, antiferromagnetisme itinerant ou non, supraconductivite, et l'existence d'une frontiere commune entre les phases supraconductrice et antiferromagnetique. En vue de completer la description theorique du diagramme de phase generalise des conducteurs organiques, nous adaptons et elargissons la methode du groupe de renormalisation quantique (GRQ) au cas ou le champ magnetique est non nul. On sait deja que cette methode permet de resoudre le dilemme tout particulier des composes Q-1D, soit leur capacite de produire des transitions de phase malgre leur forte anisotropie et consequemment de leur faible dimensionalite. Cette methode est deja utilisee pour decrire le diagramme de phase temperature versus pression des sels de Bechgaard, de leurs analogues souffres et mixtes. Le GRQ permet aussi de comprendre comment des systemes anisotropes comme les conducteurs organiques peuvent se comporter comme des liquides de Luttinger a haute temperature et comme des liquides de Fermi ou condenses a basse temperature. Nous montrons que l'introduction d'un champ magnetique dans un regime de saut coherent interchai ne a deux particules n'apporte que de simples corrections aux lois d'echelles dans le canal zero son, alors qu'il introduit un mecanisme de brisure de paire dans le canal Cooper. Dans le regime de saut coherent a une particule, la situation est plus complexe puisque la structure de bande et la forme de la surface de Fermi deviennent pertinentes. Sous bon nesting, un champ magnetique le champ magnetique defavorise les phases magnetiques du type habituellement observe en champ nul. Nous obtenons en effet que leur temperature de transition diminue avec le champ magnetique. Sous deviations au nesting suffisant pour detruire l'ordre magnetique a champ nul, nous montrons que le nesting quantifie est compatible avec l'analyse du GRQ pour des champ faibles et intermediaires. Ainsi, le nesting quantifie fournit toujours une excellente base de description des cascades de phases d'onde de densite de spin induite en champ magnetique. D'autre part, l'utilisation du GRQ permet de mettre en evidence l'existence d'un regime de champ fort. Dans ce regime le mouvement coherent des electrons dans la direction transverse aux chai ne est fortement reduit. De cette reduction de la coherence transverse les regles de renormalisation 1D qui persistent a une temperature plus basse que dans les autres regimes. Ceci donne la possibilite d'atteindre grace au champ magnetique des etats de type localisation de charge et spin-Peierls qui sont habituellement observes, en champ nul, dans des composes ayant un caractere unidimensionnel beaucoup plus prononce.

  8. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles.

    PubMed

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties. PMID:21796304

  9. Trends in solids/liquids poisoning suicide rates in Taiwan: a test of the substitution hypothesis

    PubMed Central

    2011-01-01

    Background Several previous studies have illustrated that restricting access to lethal methods can reduce suicide rates. The most often cited example was Kreitman's study, showing a reduction not only in gas-specific suicide rates, but also in the overall suicide rates because of the lack of increase of other methods. However, method substitution is still a major concern in the application of the means restriction strategy to prevent suicide. The aim of the study was to investigate whether the reduction in the solids/liquids poisoning suicide rate in 1983-1993 after the launching of pesticide restriction interventions in Taiwan was accompanied with an increase in the suicide rate using other methods (method substitution). Methods Data on age-, sex- and method-specific suicide rates for 1971-1993 in Taiwan were obtained. Changes in solids/liquids poisoning suicide rates were compared with suicide rates by hanging and other methods between 1983 and 1993. Results No concomitant increase in suicide rates by hanging or other methods was noted from 1983 to 1993, during which the suicide rates by poisoning with solids/liquids (mainly pesticides) decreased markedly and steadily. The phenomenon of method substitution was also not found by sex and age groups. Conclusion In general, no method substitution was found along with the reduction in solids/liquids suicide rates in Taiwan. Our study results have also added the evidence that restricting access to methods maybe a promising strategy in preventing suicide, particularly in those countries where the "target method" has been found to contribute greatly to the suicide rates. PMID:21933432

  10. On the Temkin model of solid liquid interface

    NASA Astrophysics Data System (ADS)

    Mori, Atsushi; Maksimov, Igor L.

    1999-04-01

    The multilayer mean-field model of the solid-liquid interface (SLI) is studied. The nonequilibrium state diagram of the SLI is constructed on the basis of a continuum approach for diffuse SLIs. The kinetics of the SLI propagation in nonequilibrium conditions is considered; the dependence of the SLI velocity and the SLI width on the undercooling is found.

  11. Precise AuxPt1−x Alloy Nanoparticle Array of Tunable Composition for Catalytic Applications

    PubMed Central

    Jahn, Sarah; Lechner, Sebastian J.; Freichels, Helene; Möller, Martin; Spatz, Joachim P.

    2016-01-01

    A 3-dimensional Block Copolymer Micellar nanoLithography (BCML) process was used to prepare AuxPt1−x alloy nanoparticles (NPs) monodisperse in size and composition, strongly anchored onto SiO2-particles (0.2 wt.% AuxPt1−x/SiO2). The particles possess a face-centered cubic (fcc) crystal structure and their size could be varied from 3–12 nm. We demonstrate the uniformity of the Au/Pt composition by analyzing individual NPs by energy-dispersive X-ray spectroscopy. The strongly bound AuxPt1−x NPs catalyzed the oxidation of CO with high activity. Thermal ageing experiments in pure CO2 as well as in ambient atmosphere demonstrated stability of the size distribution for times as long as 22 h. PMID:26856888

  12. Solid–Liquid Phase Change Driven by Internal Heat Generation

    SciTech Connect

    John Crepeau; Ali s. Siahpush

    2012-07-01

    This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.

  13. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-01

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line. PMID:26100904

  14. Solid?liquid critical behavior of water in nanopores

    PubMed Central

    Mochizuki, Kenji; Koga, Kenichiro

    2015-01-01

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid?liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature?pressure?diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid?liquid critical phenomena of nanoconfined water. Solid?liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid?liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line. PMID:26100904

  15. Solid-liquid interfacial free energy out of equilibrium

    NASA Astrophysics Data System (ADS)

    Cheng, Bingqing; Tribello, Gareth A.; Ceriotti, Michele

    2015-11-01

    The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill defined. Here we draw a connection between the atomistic description of a diffuse solid-liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.

  16. Self-instability of finite sized solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wu, L. K.; Xu, B.; Li, Q. L.; Liu, W.

    2015-12-01

    In solid-liquid systems, macroscopic solids lose their equilibrium and melt in a manner that results in overall movement of the solid-liquid interface. This phenomenon occurs when they are subjected to temperature gradients or external stress, for example. However, many experiments suggest that the melting of nano- and micro-sized metallic nuclei follows a different process not described by traditional melting theory. In this paper, we demonstrate through simulation that the melting of solid nuclei of these sizes occurs via random breaches at the interfaces. Moreover, this breaching process occurs at the exact solid-liquid equilibrium temperature and in the absence of any external disturbance, which suggests the name “self-instability” for this melting process. We attribute this spontaneous instability to the curvature of the samples; based on the relationship between the sample’s instability and its curvature, we propose a destabilizing model for small systems. This model fits well with experimental results and leads to new insights into the instability behavior of small-sized systems; these insights have broad implications for research topics ranging from dendrite self-fragmentation to nanoparticle instability.

  17. Self-instability of finite sized solid-liquid interfaces.

    PubMed

    Wu, L K; Xu, B; Li, Q L; Liu, W

    2015-01-01

    In solid-liquid systems, macroscopic solids lose their equilibrium and melt in a manner that results in overall movement of the solid-liquid interface. This phenomenon occurs when they are subjected to temperature gradients or external stress, for example. However, many experiments suggest that the melting of nano- and micro-sized metallic nuclei follows a different process not described by traditional melting theory. In this paper, we demonstrate through simulation that the melting of solid nuclei of these sizes occurs via random breaches at the interfaces. Moreover, this breaching process occurs at the exact solid-liquid equilibrium temperature and in the absence of any external disturbance, which suggests the name "self-instability" for this melting process. We attribute this spontaneous instability to the curvature of the samples; based on the relationship between the sample's instability and its curvature, we propose a destabilizing model for small systems. This model fits well with experimental results and leads to new insights into the instability behavior of small-sized systems; these insights have broad implications for research topics ranging from dendrite self-fragmentation to nanoparticle instability. PMID:26685800

  18. Self-instability of finite sized solid-liquid interfaces

    PubMed Central

    Wu, L.K.; Xu, B.; Li, Q.L.; Liu, W.

    2015-01-01

    In solid-liquid systems, macroscopic solids lose their equilibrium and melt in a manner that results in overall movement of the solid-liquid interface. This phenomenon occurs when they are subjected to temperature gradients or external stress, for example. However, many experiments suggest that the melting of nano- and micro-sized metallic nuclei follows a different process not described by traditional melting theory. In this paper, we demonstrate through simulation that the melting of solid nuclei of these sizes occurs via random breaches at the interfaces. Moreover, this breaching process occurs at the exact solid-liquid equilibrium temperature and in the absence of any external disturbance, which suggests the name “self-instability” for this melting process. We attribute this spontaneous instability to the curvature of the samples; based on the relationship between the sample’s instability and its curvature, we propose a destabilizing model for small systems. This model fits well with experimental results and leads to new insights into the instability behavior of small-sized systems; these insights have broad implications for research topics ranging from dendrite self-fragmentation to nanoparticle instability. PMID:26685800

  19. Transport Electronique Dans Les Super Reseaux : Applications Aux Détecteurs Infrarouges à Grandes Longueur D'onde

    NASA Astrophysics Data System (ADS)

    Lhuillier, Emmanuel

    2010-11-01

    The low flux infrared imaging needs performant high wavelength detectors. Quantum Well Infrared Photodetectors (QWIP), thanks to the maturity of GaAs, the possibility to adjust the detected wavelength on a large range and to realize large uniform matrix are good candidate for such applications. In order to validate this interest, we have performed an electro-optic characterization of a 15{?}m sample. These measurements have been used to simulate the performance of a camera based on this QWIP and used in a low infrared photons flux scenario. We predict that this QWIP would succeed. Nevertheless these simulations also underline the detrimental role of the dark current. Thus we have developed a simulation tool based on a hoping approach between localized states, which provide us a better understanding of the transport in these heterostructures. The code has in particular underlines the role plays by the electron -ionized impurities interaction, which make the dark current very sensitive to the doping profile. Using this tool we have designed new structures, with optimized doping profile, in which the scattering rate has been decreased by a factor two. Moreover we have identified a quantum origin to the plateau shape of the I(V) curve. This code is more generally a useful simulation tool for the transport in hétérostructures. The influence of growth defects (non ideal interface and disorder) has been quantized and we have performed the first evaluation of The R0A in a THz QCD. Finally non local transport effects have been investigated. Saw teeth observation on the I(V) curves have been modeled and their influence on the detectivty estimated.

  20. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD); Kary, Tim (Union Bridge, MD)

    2010-07-20

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.

  1. Photolithographic fabrication of solid-liquid core waveguides by thiol-ene chemistry

    NASA Astrophysics Data System (ADS)

    Sagar, Kaushal; Gopalakrishnan, Nimi; Brøkner Christiansen, Mads; Kristensen, Anders; Ndoni, Sokol

    2011-09-01

    In this work we demonstrate an efficient and cleanroom compatible method for the fabrication of solid-liquid core waveguides based on nanoporous polymers. We have used thiol-ene photo-grafting to tune and pattern the hydrophilicity of an originally hydrophobic nanoporous 1, 2-polybutadiene. The generated refractive index contrast between the patterned water-filled volume and the surrounding empty hydrophobic porous polymer allows for light confinement within the water-filled volume—the solid-liquid core. The presented fabrication process is simple and fast. It allows a high degree of flexibility on the type and grade of surface chemistry imparted to the large nanoporous area depending upon the application. The fabrication does not need demanding chemical reaction conditions. Thus, it can be readily used on a standard silicon lithography bench. The propagation loss values reported in this work are comparable with literature values for state-of-the-art liquid-core waveguide devices. The demonstrated waveguide function added to the nanoporous polymer with a very high internal surface area makes the system interesting for many applications in different areas, such as diagnostics and bio-chemical sensing.

  2. Bioinspired solid-liquid mixed tunable lens with multilayered structure

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei

    2015-06-01

    A solid-liquid mixed tunable lens with multilayered structure is proposed. The designed lens utilizes a solid-state elastic polymer, optical liquid, and glass as the optical medium, and adjusts the focus by changing the surface curvature of the elastic polymer. The integrated structure of the tunable lens is presented, as well as detailed descriptions of the lens materials, fabrication, and assembling process. Images captured through the tunable lens under different displacement loads are presented, and the relationship among the displacement load, curvature radius, and effective focal length is analyzed. Additionally, the optical property of the tunable lens is simulated using the ZEMAX software. A change in focal length from 14.8 mm to 30 mm is demonstrated within the tiny 0.12 mm variation of the displacement load. Numerical analyses show that the lens distortion is less than 2%, and the modulation transfer function reaches 67 line pairs per mm. The solid-liquid mixed tunable lens shows the potential for developing a compact, low-aberration, and stable optical system.

  3. Comparison study of solid-liquid separation techniques for oilfield pit closures

    SciTech Connect

    Wojtanowicz, A.C.; Field, S.D.; Osterman, M.C.

    1986-01-01

    Extensive bench-scale and full-scale experiments were conducted at the LSU Solids Control Environmental Laboratory in order to evaluate application of the solids-liquid separation technology to oilfield waste pit volume reduction. The experiments addressed chemical conditioning of various pit slurries such as water-base and oil-base mud reserve pit slurries, mixed sludge from offshore operations, and oil production pit slurry. Effective treatment was found for the majority of the waste samples with pH adjustment and with nonionic and low-charge anionic, high molecular weight polymers. Ultimate dewaterability of various samples was determined by use of the belt press bench simulator. Bench simulators of belt press filtration, vacuum filtration and centrifuge sedimentation were used for design and optimization of the full-scale tests. Alternative solid-liquid separation techniques such as vacuum filtration, belt press filtration, screw press filtration and centrifuging were pilot-tested using field-size equipment and 200 bbls samples of water-base mud, reserve pit slurry and production pit sludge. The test data were analyzed at various operating conditions using a new graphical technique. Also, four typical oilfield solid-bowl centrifuges and a modern solid-bowl dewatering decanter were compared in a series of full-scale tests. Finally a preliminary process study on the mechanism of centrifuge separation of flocculated sludges was performed.

  4. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method.

    PubMed

    Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F A; Leroy, Frédéric

    2015-12-28

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces. PMID:26723620

  5. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method

    NASA Astrophysics Data System (ADS)

    Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F. A.; Leroy, Frédéric

    2015-12-01

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.

  6. Solid-liquid coexistence of polydisperse fluids via simulation.

    PubMed

    Wilding, Nigel B

    2009-03-14

    We describe a simulation method for the accurate study of the equilibrium freezing properties of polydisperse fluids under the experimentally relevant condition of fixed polydispersity. The approach is based on the phase switch Monte Carlo method of Wilding and Bruce [Phys. Rev. Lett. 85, 5138 (2000)]. This we have generalized to deal with particle size polydispersity by incorporating updates which alter the diameter sigma of a particle, under the control of a distribution of chemical potential differences mu(sigma). Within the resulting isobaric semi-grand-canonical ensemble, we detail how to adapt mu(sigma) and the applied pressure such as to study coexistence, while ensuring that the ensemble averaged density distribution rho(sigma) matches a fixed functional form. Results are presented for the effects of small degrees of polydispersity on the solid-liquid transition of soft spheres. PMID:19292519

  7. Solid-Liquid-Vapor Etching of Semiconductor Nanowires.

    PubMed

    Hui, Ho Yee; Filler, Michael A

    2015-10-14

    The vapor-liquid-solid (VLS) mechanism enables the bottom-up, or additive, growth of semiconductor nanowires. Here, we demonstrate a reverse process, whereby catalyst atoms are selectively removed from the eutectic catalyst droplet. This process, which is driven by the dicarbonyl precursor 2,3-butanedione, results in axial nanowire etching. Experiments as a function of substrate temperature, etchant flow rate, and nanowire diameter support a solid-liquid-vapor (SLV) mechanism. An etch model with reaction at the liquid-vapor interface as the rate-limiting step is consistent with our experiments. These results identify a new mechanism to in situ tune the concentration of semiconductor atoms in the catalyst droplet. PMID:26383971

  8. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD)

    2011-10-04

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).

  9. Solid/liquid interfacial free energies in binary systems

    NASA Technical Reports Server (NTRS)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  10. Influence of initial solid-liquid interface morphology on further microstructure evolution during directional solidification

    NASA Astrophysics Data System (ADS)

    Liu, Dongmei; Li, Xinzhong; Su, Yanqing; Guo, Jingjie; Luo, Liangshun; Fu, Hengzhi

    2013-02-01

    Preparation of the initial solid-liquid interface on which growth is started is a very critical step in directional solidification experiments. Dedicated experiments concerning preparation of the initial solid-liquid interface morphology and its influence on further directionally solidified microstructure were performed on Cu-20 wt% Sn peritectic alloy in a Bridgman-type furnace. To verify the morphology of the initial solid-liquid interface, steady-state directional dendritic growth was interrupted by thermal stabilization ranging from 0 to 1 h prior to quenching. With thermal stabilization duration increase, the solid-liquid interface morphology degenerated from dendritic to cellular and finally to planar. To verify the influence of the initial state on further solidification microstructure, directional solidification experiments were performed at a low pulling rate of 1 ?m/s with different initial solid-liquid interface morphologies. The initial state affects solute redistribution and formation of peritectic coupled growth structure in the subsequent directional solidification process.

  11. A microfluidic setup for studies of solid-liquid interfaces using x-ray reflectivity and fluorescence microscopy

    SciTech Connect

    Reich, Christian; Hochrein, Marion B.; Krause, Baerbel; Nickel, Bert

    2005-09-15

    In this paper we present a concept for a microfluidic chamber optimized for x-ray reflectivity studies at solid-liquid interfaces. Experiments of this kind are usually considerably limited by strong beam attenuation due to interactions with the aqueous environment. First experiments at synchrotron sources using supported model membranes showed that the microfluidic setup yields a very effective solution for minimizing background scattering and beam absorption, which are often accompanied by radiation damage of biological samples. Additionally, the setup is also well suited for the application of fluorescence microscopy. The application of these two different techniques on the same sample offers unique possibilities for complementary studies.

  12. Solid-Liquid Self-Adaptive Polymeric Composite.

    PubMed

    Dong, Pei; Chipara, Alin Cristian; Loya, Phillip; Yang, Yingchao; Ge, Liehui; Lei, Sidong; Li, Bo; Brunetto, Gustavo; Machado, Leonardo D; Hong, Liang; Wang, Qizhong; Yang, Bilan; Guo, Hua; Ringe, Emilie; Galvao, Douglas S; Vajtai, Robert; Chipara, Mircea; Tang, Ming; Lou, Jun; Ajayan, Pulickel M

    2016-01-27

    A solid-liquid self-adaptive composite (SAC) is synthesized using a simple mixing-evaporation protocol, with poly(dimethylsiloxane) (PDMS) and poly(vinylidene fluoride) (PVDF) as active constituents. SAC exists as a porous solid containing a near equivalent distribution of the solid (PVDF)-liquid (PDMS) phases, with the liquid encapsulated and stabilized within a continuous solid network percolating throughout the structure. The pores, liquid, and solid phases form a complex hierarchical structure, which offers both mechanical robustness and a significant structural adaptability under external forces. SAC exhibits attractive self-healing properties during tension, and demonstrates reversible self-stiffening properties under compression with a maximum of 7-fold increase seen in the storage modulus. In a comparison to existing self-healing and self-stiffening materials, SAC offers distinct advantages in the ease of fabrication, high achievable storage modulus, and reversibility. Such materials could provide a new class of adaptive materials system with multifunctionality, tunability, and scale-up potentials. PMID:26720058

  13. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  14. Studies of Biomembranes at Solid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Majewski, Jaroslaw

    2004-03-01

    In nature, membranes perform several functions of the living cell from selective transport and recognition, to simple sequestration. In general, the membrane consists of a single phospholipid bilayer or in special cases, such as the lung surfactants, a single monolayer. Several surface-sensitive scattering techniques have been developed for probing the structure of ultra-thin, molecular arrays of surfactants in aqueous environments. These include neutron and x-ray reflectometry. I will illustrate the use of the x-ray and neutron surface scattering methods to characterize the structures of several types of model membranes at the solid-liquid interface and their interactions with polymers present in the subphase. The properties of these soft-condensed, ultra-thin layers are of general interest to a wide scientific audience working in the fields of chemistry and biology since they are relevant to such important areas as bio-mineralization, biosensors, advanced drug delivery systems and polymer-membrane interactions. Support is acknowledged from DOE contract W7405-ENG-36 and the DOE Office of Basic Energy Sciences.

  15. Gastric emptying of a physiologic mixed solid-liquid meal

    SciTech Connect

    Fisher, R.S.; Malmud, L.S.; Bandini, P.; Rock, E.

    1982-05-01

    The purposes of this study were to use a noninvasive scintigraphic technique to measure gastric emptying of liquids and solids simultaneously, to study the interactions between emptying of the liquid and solid components of meals in normal subjects, and to employ dual isotope gastric scintigraphy to evaluate gastric emptying of liquids and solids in patients with clinical evidence of gastric outlet obstruction. The solid component of the test meal consisted of chicken liver, labeled in vivo with /sup 99m/Tc sulfur colloid, and the liquid component was water mixed with /sup 111/In DTPA. The rates of emptying were quantitated using a gamma camera on line to a digital computer. Twenty normal subjects were studied using this combined solid-liquid meal. Ten of them also ingested a liquid meal alone and ten a solid meal alone. Liquid emptied from the stomach significantly more rapidly than did solids. The emptying curve for liquids was exponential compared to a linear emptying curve for solids. The gastric emptying rate of the liquid component was slowed significantly by simultaneous ingestion of solids, but the emptying rate of solids was not affected by liquids. Several patients with clinical gastric outlet obstruction were evaluated. Both combined and selective abnormalities for gastric emptying of liquids and solids were demonstrated.

  16. Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics

    PubMed Central

    Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Chen, Hui-Yuan; Yang, Szu-Chi; Huang, Yu-Ru; -Ju Chen, I.; Chen, Yun-Wen; Gusev, Vitalyi; Chen, Miin-Jang; Kuo, Jer-Lai; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2014-01-01

    Despite the numerous devoted studies, water at solid interfaces remains puzzling. An ongoing debate concerns the nature of interfacial water at a hydrophilic surface, whether it is more solid-like, ice-like, or liquid-like. To answer this question, a complete picture of the distribution of the water molecule structure and molecular interactions has to be obtained in a non-invasive way and on an ultrafast time scale. We developed a new experimental technique that extends the classical acoustic technique to the molecular level. Using nanoacoustic waves with a femtosecond pulsewidth and an ångström resolution to noninvasively diagnose the hydration structure distribution at ambient solid/water interface, we performed a complete mapping of the viscoelastic properties and of the density in the whole interfacial water region at hydrophilic surfaces. Our results suggest that water in the interfacial region possesses mixed properties and that the different pictures obtained up to now can be unified. Moreover, we discuss the effect of the interfacial water structure on the abnormal thermal transport properties of solid/liquid interfaces. PMID:25176017

  17. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William K.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    In this paper, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray Transmission Microscope. The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate and the change in shape of the porosity during interaction with an advancing SL interface in pure Al and Al-0.25 wt% Au alloy. In addition, porosity induced solute segregation patterns surrounding a pore were also quantified.

  18. Solid-Liquid Interface Characterization Hardware: Advanced Technology Development (ATD)

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Sisk, R. C.; Sen, S.; Kaukler, W. F.; Curreri, Peter A.; Wang, F. C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This ATD has the goal of enabling the integration of three separate measurement techniques to characterize the solid-liquid interface of directionally solidified materials in real-time. Arrays of film-based metal thermocouple elements are under development along with compact Seebeck furnaces suitable for interfacing with separately developed X-ray Transmission Microscopes. Results of applying film arrays to furnace profiling are shown, demonstrating their ability to identify a previously undetected hardware flaw in the development of a second-generation compact furnace. Results of real-time furnace profiling also confirmed that the compact furnace design effectively isolates the temperature profiles in two halves of the furnace, a necessary feature. This isolation had only been inferred previously from the characteristics of Seebeck data reported. Results from a 24-thermocouple array successfully monitoring heating and isothermal cooling of a tin sample are shown. The importance of non-intrusion by the arrays, as well as furnace design, on the profiling of temperature gradients is illustrated with example measurements. Further developments underway for effectively combining all three measurements are assessed in terms of improved x-ray transmission, increased magnification, integral arrays with minimum intrusion, integral scales for velocity measurements and other features being incorporated into the third generation Seebeck furnace under construction.

  19. Toward a detailed characterization of oil adsorbates as "solid liquids".

    PubMed

    Kutza, Claudia; Metz, Hendrik; Kutza, Johannes; Syrowatka, Frank; Mäder, Karsten

    2013-05-01

    Solid lipid formulation systems are used to overcome oral bioavailability problems of poorly water-soluble drugs. One promising process is the conversion of a liquid lipid system in a free flowing powder by use of adsorbing excipients. The aim of this study was the detailed characterization of solid-liquid interactions in oil adsorbed to Fujicalin and Neusilin which were manufactured by means of dual asymmetric centrifugation or conventional mortar/pestle blending. The adsorption strength of the excipients was investigated by Benchtop-NMR and ESR spectroscopy revealing the highest adsorption power for the Neusilin products. The adsorbate production methods as well as the storage of the excipients impact their adsorption properties. Environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM) show that dual asymmetric centrifugation leads to a smoothing of the particle surface, whereas the mortar/pestle blending results in an uneven surface and particle destruction. The oil distribution at the particles is inhomogeneous for both production methods. The micropolarity of the adsorbed oil was investigated by ESR spectroscopy and multispectral fluorescence imaging. The adsorbing process on Neusilin leads to an increased micropolarity of the oil component. The release of the oil component in aqueous media could be verified by Benchtop-NMR and multispectral fluorescence imaging. PMID:23275113

  20. Final Report: Thermal Conductance of Solid-Liquid Interfaces

    SciTech Connect

    Cahil, David, G.; Braun, Paul, V.

    2006-05-31

    Research supported by this grant has significantly advanced fundamental understanding of the thermal conductance of solid-liquid interfaces, and the thermal conductivity of nanofluids and nanoscale composite materials. • The thermal conductance of interfaces between carbon nanotubes and a surrounding matrix of organic molecules is exceptionally small and this small value of the interface conductance limits the enhancement in thermal conductivity that can be achieved by loading a fluid or a polymer with nanotubes. • The thermal conductance of interfaces between metal nanoparticles coated with hydrophilic surfactants and water is relatively high and surprisingly independent of the details of the chemical structure of the surfactant. • We extended our experimental methods to enable studies of planar interfaces between surfactant-coated metals and water where the chemical functionalization can be varied between strongly hydrophobic and strongly hydrophilic. The thermal conductance of hydrophobic interfaces establishes an upper-limit of 0.25 nm on the thickness of the vapor-layer that is often proposed to exist at hydrophobic interfaces. • Our high-precision measurements of fluid suspensions show that the thermal conductivity of fluids is not significantly enhanced by loading with a small volume fraction of spherical nanoparticles. These experimental results directly contradict some of the anomalous results in the recent literature and also rule-out proposed mechanisms for the enhanced thermal conductivity of nanofluids that are based on modification of the fluid thermal conductivity by the coupling of fluid motion and the Brownian motion of the nanoparticles.

  1. Advanced Technology Development: Solid-Liquid Interface Characterization Hardware

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Characterizing the solid-liquid interface during directional solidification is key to understanding and improving material properties. The goal of this Advanced Technology Development (ATD) has been to develop hardware, which will enable real-time characterization of practical materials, such as aluminum (Al) alloys, to unprecedented levels. Required measurements include furnace and sample temperature gradients, undercooling at the growing interface, interface shape, or morphology, and furnace translation and sample growth rates (related). These and other parameters are correlated with each other and time. A major challenge was to design and develop all of the necessary hardware to measure the characteristics, nearly simultaneously, in a smaller integral furnace compatible with existing X-ray Transmission Microscopes, XTMs. Most of the desired goals have been accomplished through three generations of Seebeck furnace brassboards, several varieties of film thermocouple arrays, heaters, thermal modeling of the furnaces, and data acquisition and control (DAC) software. Presentations and publications have resulted from these activities, and proposals to use this hardware for further materials studies have been submitted as sequels to this last year of the ATD.

  2. Coarsening in Solid Liquid Systems: A Verification of Fundamental Theory

    NASA Astrophysics Data System (ADS)

    Thompson, John D.

    Coarsening is a process that occurs in nearly all multi-phase materials in which the total energy of a system is reduced through the reduction of total interfacial energy. The theoretical description of this process is of central importance to materials design, yet remains controversial. In order to directly compare experiment to theoretical predictions, low solid volume fraction PbSn alloys were coarsened in a microgravity environment aboard the International Space Station (ISS) as part of the Coarsening in Solid Liquid Mixtures (CSLM) project. PbSn samples with solid volume fractions of 15%, 20% and 30% were characterized in 2D and 3D using mechanical serial sectioning. The systems were observed in the self-similar regime predicted by theory and the particle size and particle density obeyed the temporal power laws predicted by theory. However, the magnitudes of the rate constants governing those temporal laws as well as the forms of the particle size distributions were not described well by theoretical predictions. Additionally, in the 30% solid volume fraction system, the higher volume fraction results in a non-spherical particle shape and a more closely packed spatial distribution. The presence of slow particle motion induced by vibrations on the ISS is presented as an explanation for this discrepancy. To model the effect of this particle motion, the Akaiwa-Voorhees multiparticle diffusion simulations are modified to treat coarsening in the presence of a small convection term, such as that of sedimentation, corresponding to low Peclet numbers. The simulations indicate that the particle size dependent velocity of the sedimentation increases the rate at which the system coarsens. This is due to the larger particles traveling farther than normal, resulting in them encountering more small particles, which favors their growth. Additionally, sedimentation resulted in broader PSDs with a peak located at the average particle size. When the simulations are modified to account for the particle sedimentation, the measurements for the 15% and 20% system are in excellent agreement with the theoretical predictions for both the rate constants and the PSDs. There is good agreement with the 30% system as well, though the simulations are less valid at this volume fraction.

  3. Solid/liquid lubrication of ceramics at elevated temperatures

    SciTech Connect

    Erdemir, A.; Erck, R.A.; Fenske, G.R.; Hong, H.

    1996-04-01

    This study investigates the effect of solid and liquid lubrication on friction and wear performance of silicon nitride (Si{sub 3}N{sub 4}) and cast iron. The solid lubricant was a thin silver film ({approx}2 {mu}m thick) produced on Si{sub 3}N{sub 4} by ion-beam-assisted deposition. A high-temperature polyol-ester-base synthetic oil served as the liquid lubricant. Friction and wear tests were performed with pin-on-disk and oscillating-slider wear test machines at temperatures up to 300{degrees}C. Without the silver films, the friction coefficients of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} test pairs were 0.05 to 0.14, and the average wear rates of Si{sub 3}N{sub 4} pins were {approx}5 x 10{sup -8} mm{sup 3} N{sup -1}. The friction coefficients of Si{sub 3}N{sub 4}/cast iron test pairs ranged from 0.08 to 0.11, depending on test temperature. The average specific wear rates of cast iron pins were {approx}3 x 10{sup -7} mm{sup 3} N{sup -1} m{sup -1}. However, simultaneous use of the solid-lubricant silver and synthetic oil on the sliding surfaces reduced friction coefficients to 0.02 to 0.08. Moreover, the wear of Si{sub 3}N{sub 4} pins and silver-coated Si{sub 3}N{sub 4} disks was so low that it was difficult to assess by a surface profilometer. The wear rates of cast iron pins were {approx}7 x 10{sup -9} mm{sup 3} N{sup -1} m{sup -1} up to 250{degrees}C, but showed a tendency to increase slightly at much higher temperatures. In general, the test results demonstrated that the solid/liquid lubrication of ceramic and/or metallic components is both feasible and effective in controlling friction and wear.

  4. Modeling the solid-liquid phase transition in saturated triglycerides

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman bands in the temperature range of -20 °C≤T ≤90 °C. The experimental results were in accord with the predictions of the h-Y model and support the proposal of Corkery et al. [Langmuir 23, 7241 (2007)] that the liquid state is made up of molecules that are each, on average, in a Y conformation. Finally, we carried out computer simulations of minimal-model TLs in the liquid phase, and concluded that although the individual TL molecules are, on average, Y conformers, long-range discotic order is unlikely to exist.

  5. Modeling the solid-liquid phase transition in saturated triglycerides.

    PubMed

    Pink, David A; Hanna, Charles B; Sandt, Christophe; MacDonald, Adam J; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of approximately 120 degrees between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h*-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h* conformation in the liquid state at temperatures higher than the phase-transition temperature, T*=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy DeltaH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of DeltaH in reasonable agreement with the experiment. We then defined an alternative h-h* model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h* model gave a value of DeltaH that was too small by a factor of approximately 3-4. We also predicted the temperature dependence of the 1132 cm(-1) Raman band for both models, and performed measurements of the ratios of three TL Raman bands in the temperature range of -20 degrees C < or = T < or = 90 degrees C. The experimental results were in accord with the predictions of the h-Y model and support the proposal of Corkery et al. [Langmuir 23, 7241 (2007)] that the liquid state is made up of molecules that are each, on average, in a Y conformation. Finally, we carried out computer simulations of minimal-model TLs in the liquid phase, and concluded that although the individual TL molecules are, on average, Y conformers, long-range discotic order is unlikely to exist. PMID:20136317

  6. Nonlinear vibrational spectroscopic studies of molecular interaction and charging behavior at solid/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Luning

    Solid-liquid interfaces have been the focus of different communities of scientists due to its importance in industrial applications and chemical processes in nature. Molecular interactions and surface charges affect the physicochemical properties of these interfaces and a thorough understanding is still lacking now. This thesis describes our work in studying several model solid-liquid interfaces using sum-frequency vibrational spectroscopy. Through the studies of interfacial vibrational spectra, we hope to gain better understanding of molecular interactions in competitive adsorption process and also surface charging behavior at different pH and salt concentrations. We start by studying alcohol-water mixture and the adsorption behavior at both hydrophilic and hydrophobic surfaces. In both cases, alcohol adsorbs preferentially from water. The tendency for water to form strong hydrogen-bonding network is the driving force for preferential adsorption of alcohol. We proposed two different interfacial molecular structures on hydrophilic and hydrophobic surfaces. We move on to study the interaction of pure water with a solid surface. Single crystal alumina is used as a model system. At different pH, the surface can undergo protonation and deprotonation reactions and accumulates surface charge. Both the hydrogen-bonding with water and the surface field created by surface charge can affect interfacial water structure. Combining the information obtained with intensity and phase spectra, we find water molecules have two types of bonding within the interfacial layer: weakly hydrogen-bonded species near 3450 cm-1 that does not flip with switching surface charge, and strongly hydrogen-bonded species at 3200 cm-1 that readily flips with switching surface field. One other system we have studied is nanoporous silica-water interface. We found that signal from interfacial water is reduced due to the porous nature of the film. The water spectral features tell us about the interfacial bonding environment and we found close relation of spectra features with surface morphology and surface silane coverage. Finally we studied the surface hydroxylation reaction of different crystalline alumina planes and its dependence on thermal-treatment history of the surface. The results indicate that upon hydroxylation, each crystal plane has distinct OH stretching vibrations that depend mainly on thermal-treatment temperature rather than other factors.

  7. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  8. Determination of pesticides in lettuce using solid-liquid extraction with low temperature partitioning.

    PubMed

    Costa, Anna I G; Queiroz, Maria E L R; Neves, Antônio A; de Sousa, Flaviane A; Zambolim, Laércio

    2015-08-15

    This work describes the optimization and validation of a method employing solid-liquid extraction with low temperature partitioning (SLE/LTP) together with analysis by gas chromatography with electron capture detection (GC/ECD) for the determination of nine pesticides (chlorothalonil, methyl parathion, procymidone, endosulfan, iprodione, λ-cyhalothrin, permethrin, cypermethrin, and deltamethrin) in lettuce. The method was found to be selective, accurate, and precise, with means recovery values in the range of 72.3-103.2%, coefficients of variation ⩽ 12%, and detection limits in the range 0.4-37 μg kg(-1). The matrix components significantly influence the chromatographic response of the analytes (above 10%). The optimized and validated method was applied to determine the residual concentrations of the fungicides iprodione and procymidone that had been applied to field crops of lettuce. The maximum residual concentrations of the pesticides in the lettuce samples were 13.6 ± 0.4 mg kg(-1) (iprodione) and 1.00 ± 0.01 mg kg(-1) (procymidone), on the day after application of the products. PMID:25794722

  9. Step free energies at faceted solid-liquid interfaces from equilibrium molecular dynamics simulations.

    PubMed

    Frolov, T; Asta, M

    2012-12-01

    In this work a method is proposed for computing step free energies for faceted solid-liquid interfaces based on atomistic simulations. The method is demonstrated in an application to (111) interfaces in elemental Si, modeled with the classical Stillinger-Weber potential. The approach makes use of an adiabatic trapping procedure, and involves simulations of systems with coexisting solid and liquid phases separated by faceted interfaces containing islands with different sizes, for which the corresponding equilibrium temperatures are computed. We demonstrate that the calculated coexistence temperature is strongly affected by the geometry of the interface. We find that island radius is inversely proportional to superheating, allowing us to compute the step free energy by fitting simulation data within the formalism of classical nucleation theory. The step free energy value is computed to be ?(st) = 0.103 ± 0.005 × 10(-10) J/m. The approach outlined in this work paves the way to the calculation of step free energies relevant to the solidification of faceted crystals from liquid mixtures, as encountered in nanowire growth by the vapor-liquid-solid mechanism and in alloy casting. The present work also shows that at low undercoolings the Stillinger-Weber interatomic potential for Si tends to crystallize in the wurtzite, rather than the diamond-cubic structure. PMID:23231218

  10. Step free energies at faceted solid-liquid interfaces from equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Frolov, T.; Asta, M.

    2012-12-01

    In this work a method is proposed for computing step free energies for faceted solid-liquid interfaces based on atomistic simulations. The method is demonstrated in an application to (111) interfaces in elemental Si, modeled with the classical Stillinger-Weber potential. The approach makes use of an adiabatic trapping procedure, and involves simulations of systems with coexisting solid and liquid phases separated by faceted interfaces containing islands with different sizes, for which the corresponding equilibrium temperatures are computed. We demonstrate that the calculated coexistence temperature is strongly affected by the geometry of the interface. We find that island radius is inversely proportional to superheating, allowing us to compute the step free energy by fitting simulation data within the formalism of classical nucleation theory. The step free energy value is computed to be ?st = 0.103 ± 0.005 × 10-10 J/m. The approach outlined in this work paves the way to the calculation of step free energies relevant to the solidification of faceted crystals from liquid mixtures, as encountered in nanowire growth by the vapor-liquid-solid mechanism and in alloy casting. The present work also shows that at low undercoolings the Stillinger-Weber interatomic potential for Si tends to crystallize in the wurtzite, rather than the diamond-cubic structure.

  11. Characterization of Solid Liquid Suspensions Utilizing Non-Invasive Ultrasonic Measurements

    SciTech Connect

    Panetta, P.D.; Tucker, B.; Ahmed, S.; Pappas, R.A.

    2004-03-31

    Rapid, on-line characterization of the particle size and concentration of moderate to highly concentrated slurries is required for efficient waste remediation at the DOE complexes. This paper discusses the advancements achieved under the Environmental Management Science Program to accurately characterize high-level waste at the high concentrations expected at the DOE complexes. In addition, the results are applicable to efficient process measurement and control in many chemical and pharmaceutical manufacturing processes. Existing methods for determining the particle size and concentration of non-dilute slurries based on ultrasonic attenuation can become inaccurate due to the complex interactions of ultrasonic waves with the constituents of the slurries and the necessity for very careful transducer alignment. Two measurements that help to overcome these difficulties are the ultrasonic backscattering and diffuse field. The backscattering measurement is attractive because viscous, thermal and inertial effects have small contributions to the backscattering. In addition, the backscattering theories are simpler than attenuation theories and lend themselves to more stable inversion processes. Furthermore, the measurements of backscattering measurement do not require long travel distances and can be made with a single transducer thus eliminating alignment problems. We will present ultrasonic measurements and theoretical comparisons on solid liquid suspensions designed to elucidate the particle size and concentration at high concentration relevant to the high level waste at the DOE complexes.

  12. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.

    PubMed

    Churnside, Allison B; Tung, Ryan C; Killgore, Jason P

    2015-10-13

    Viscoelastic property measurements made at the solid-liquid interface are key to characterizing materials for a variety of biological and industrial applications. Further, nanostructured materials require nanoscale measurements. Here, material loss tangents (tan ?) were extracted from confounding liquid effects in nanoscale contact resonance force microscopy (CR-FM), an atomic force microscope based technique for observing mechanical properties of surfaces. Obtaining reliable CR-FM viscoelastic measurements in liquid is complicated by two effects. First, in liquid, spurious signals arise during cantilever excitation. Second, it is challenging to separate changes to cantilever behavior due to the sample from changes due to environmental damping and added mass effects. We overcame these challenges by applying photothermal cantilever excitation in multiple resonance modes and a predictive model for the hydrodynamic effects. We demonstrated quantitative, nanoscale viscoelastic CR-FM measurements of polymers at the solid-liquid interface. The technique is demonstrated on a point-by-point basis on polymer samples and while imaging in contact mode on a fixed plant cell wall. Values of tan ? for measurements made in water agreed with the values for measurements in air for some experimental conditions on polystyrene and for all examined conditions on polypropylene. PMID:26426705

  13. Numerical simulations of solid-liquid stirred tank with an improved Intermig impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhang, Ting'an; Liu, Yan; Zhang, Zimu; Zhang, Chao

    2013-06-01

    Numerical simulations of solid-liquid mixing in a stirred tank with an improved Intermig impeller were performed by adopting standard ?-? turbulence model coupled with Eulerian granular multiphase model. An unsteady sliding mesh approach was used to simulate the impeller rotation. The flow field, solids hold-up and power consumptions were investigated in the solid-liquid mixing system. Compared to the standard Intermig impeller, the improved Intermig impeller coupled with the special sloped baffle could promote the fluid circulation, creating better solid suspension and consuming lesser power.

  14. CFD Analysis of Solid-Liquid Suspension Flow in a Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Tiwari, Arti; Nath, Triloki

    2010-10-01

    The present work focuses on the three-dimensional modeling of the solid -liquid suspension flow based on the Eulerian-Eularian multiphase flow model. The k-? turbulence model and particle- induced turbulence model were used to simulate the solid-liquid suspension flow. The momentum transfer between the solid and liquid phases including drag force, shear induced lift force and virtual mass force, together with buoyancy force were considered in the model. The simulation geometry focuses on a horizontal pipe. The simulation results showed that the suspension status of solid particles depends on the input flow rate.

  15. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    NASA Astrophysics Data System (ADS)

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-10-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  16. Bionic optical imaging system with aspheric solid-liquid mixed variable-focus lens

    NASA Astrophysics Data System (ADS)

    Du, Jia-Wei; Wang, Xuan-Yin; Liang, Dan

    2016-02-01

    A bionic optical imaging system with an aspheric solid-liquid mixed variable-focus lens was designed and fabricated. The entire system mainly consisted of a doublet lens, a solid-liquid mixed variable-focus lens, a connecting part, and a CCD imaging device. To mimic the structure of the crystalline lens, the solid-liquid mixed variable-focus lens consisted of a polydimethylsiloxane (PDMS) lens, a polymethyl methacrylate lens, and the liquid of ethyl silicone oil. By pumping liquid in or out of the cavity using a microinjector, the curvatures of the front and rear surfaces of the PDMS lens were varied, resulting in a change of focal length. The overall structure of the system was presented, as well as a detailed description of the solid-liquid mixed variable-focus lens, material, and fabrication process. Under different injection volumes, the deformation of the PDMS lens was measured and simulated, pictures were captured, and the optical performance was analyzed in simulations and experiments. The focal length of the system ranged from 25.05 to 14.61 mm, and the variation of the diopter was 28.5D, which was larger than that of the human eye.

  17. Enhanced solid-liquid separation of dairy manure with natural flocculants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural flocculants have potential to replace the use of synthetic flocculants used for enhanced solid-liquid separation of livestock effluents, especially with increased cost of energy and renewed interest on organic farming systems. We conducted a study to determine the effectiveness of natural fl...

  18. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer

    NASA Astrophysics Data System (ADS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  19. Abatement of ammonia emissions from swine lagoons using polymer enhanced solid-liquid separation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effects of solid-liquid separation of liquid swine manure on ammonia emissions from lagoons. This determination was done at full-scale in two contiguous swine production units that had similar animal production management. One of these units was maintained as a...

  20. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces. PMID:25923410

  1. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…

  2. Investigation of solid-liquid interfacial chemistry using nonlinear optical molecular probing method

    NASA Astrophysics Data System (ADS)

    Dong, Ying

    1999-12-01

    Solid-liquid interfacial chemistry studies adsorption and chemical reaction of molecules/ions in a very thin ( ~ 20-50 Å) interfacial region. Difficulties arise from the nature of the liquid phase and the equilibrium of solute molecules with the liquid phase and the interface. We overcome the difficulties using nonlinear optical molecular probing (NOMP) method-an innovative method that allows us to determine chemical processes at solid-liquid interfaces under real chemical conditions. Nonlinear optical molecular probes are certain organic molecules that have nonlinear optical response a thousand to million times stronger than those of commonly used small organic molecules such as CH3CN and ions such as Cl- and Na+. Therefore, their presence at a solid-liquid interface can easily be detected using second harmonic generation (SHG). The adsorption parameters of other chemical species present at the interface (e.g., organic molecules serving as corrosion inhibitors) can be extracted by investigating their co-adsorption behavior in the presence of properly chosen nonlinear optical molecular probes. Today, with over 1000 nonlinear optical molecular probes available, one can always find an appropriate molecular probe to suit the chemical requirements of a particular interfacial system. We have investigated several important issues using the NOMP method. These include the competitive adsorption of ions with different charges and sizes, the density distribution of silanol (SiOH) groups at silica surfaces, and the adsorption and reaction mechanism of small organic molecules at solid-liquid interfaces.

  3. Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.

    PubMed

    Kochergin, Vadim; Miller, Keith

    2011-01-01

    Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams. PMID:20607445

  4. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  5. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…

  6. Explicit equation for particle settling velocities in solid-liquid systems

    SciTech Connect

    Zigrang, D.J.; Sylvester, N.D.

    1981-11-01

    Zanker has recently presented nomographs for determining particle settling velocities in solid-liquid systems. These nomographs were based on the general correlations developed by Barnea and Mizrahi and Barnea and Mednick. This work presents an equation directly computing particle settling velocities, eliminating the uncertainty associated with nomographs.

  7. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  8. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  9. Occurrence and solid-liquid partition of sulfonated naphthalene-formaldehyde condensates in the aquatic environment.

    PubMed

    Lange, Frank T; Merklinger, Michael; Wenz, Michael; Brauch, Heinz-J; Lehmann, Markus; Pinter, Istvan

    2005-03-15

    Sulfonated naphthalene-formaldehyde condensates (SNFC) are high production volume chemicals used in a variety of applications, for example, as concrete plasticizers, tanning agents, or dye dispersants. They enter the aquatic environment primarily by the wastewater path. The occurrence and fate of the monomers, which are different isomers of mono- and disulfonated naphthalene, was intensively investigated in previous studies. However, the environmental fate of the persistent higher molecular SNFC is so far widely unknown. This paper describes an ultrasonic extraction under alkaline conditions, followed by ion-pair HPLC with fluorescence detection for the analysis of SNFC oligomers from solid environmental matrixes such as sewage sludge, suspended solids, and river sediments. Limits of quantification of about 0.1 mg kg-1 d.m. were well below the measured concentrations in environmental samples. SNFC were adsorbed to suspended solids and river sediments in three major German rivers (Rhine, Neckar, and Danube) in concentrations typically up to several mg kg(-1) d.m. A total content of about 4 g kg(-1) d.m. was measured in a sewage sludge of a municipal wastewater treatment plant, which receives wastewater from a textile dyeing plant. Furthermore, the first quantitative field data on the partition of SNFC and their monomers between the aqueous phase and solid environmental compartments are presented. Solid-liquid partition coefficients (Kd) of oligomers with a chain-length ranging from three to six naphthalenesulfonate units were derived from the analysis of corresponding wastewater and sewage sludge samples and from suspended solids and river water samples, respectively. Determined Kd values were in the range from 10(2) to 10(4) L kg(-1). PMID:15819205

  10. Thermodynamic and rheological properties of solid-liquid systems in coal processing

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1992-01-01

    In this report we present two data sets that have been compiled to assist in the model developments for solid-liquid equilibria and viscosities of coal derived systems. The first one is on vapor pressures of solid aromatics and the second one consists of viscosities of pure model compounds and some mixtures. These databanks are ready for usage in model development and are summarized in Tables 1 and 2. Literature is being searched to compile similar data for high pressure liquid compressibilities, liquid and solid heat capacities and solid-liquid equilibria for model compound systems. Literature search is also containing to investigate available viscosity models. Once this is completed a few models will be selected for evaluation and consideration as candidates for extension to coal liquids.

  11. Effect of thermal convection on the shape of a solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Mennetrier, C.; Chopra, M. A.; De Groh, H. C., III

    1991-01-01

    The effect of thermal convection on the shape of solid-liquid interface was investigated in experiments conducted in a transparent Bridgman-type directional solidification furnace. The relationship was numerically modeled using a standard 2D finite-difference approach, with the solid-liquid deformable interface approximated by a blocking-off technique. The directional solidification furnace was used with pure succinonitrile (which is also transparent) contained in a long square ampoule made of borosilicate glass. With the furnace in the vertical configuration, a flat interface was observed, in agreement with the model. On the other hand, a highly distorted interface was obtained in the horizontal configuration; the numerical results showed a strong recirculating cell in front of the interface due to natural thermal convection. The results indicate that thermal convection is responsible for the interface distortion.

  12. Numerical simulation of solid liquid interface behavior during continuous strip casting process.

    PubMed

    Lee, Changbum; Yoon, Wooyoung; Shin, Seungwon; Lee, Jaewoo; Jang, Bo-Yun; Kim, Joonsoo; Ahn, Youngsoo; Lee, Jinseok

    2013-05-01

    A new metal-strip-casting process called continuous strip-casting (CSC) has been developed for making thin metal strips. A numerical simulation model to help understand solid-liquid interface behavior during CSC has been developed and used to identify the solidification morphologies of the strips and to determine the optimum processing conditions. In this study, we used a modified level contour reconstruction method (LCRM) and the sharp interface method to modify interface tracking, and performed a simulation analysis of the CSC process. The effects of process parameters such as heat-transfer coefficient and extrusion velocity on the behavior of the solid-liquid interface were estimated and used to improve the apparatus. A Sn (Tin) plate of dimensions 200 x 50 x 1 mm3 was successfully produced by CSC for a heat-transfer coefficient of 104 W/m2 K and an extrusion velocity of 0.2 m/s. PMID:23858856

  13. A Study on Optimal Sizing of Pipeline Transporting Equi-sized Particulate Solid-Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Asim, Taimoor; Mishra, Rakesh; Pradhan, Suman; Ubbi, Kuldip

    2012-05-01

    Pipelines transporting solid-liquid mixtures are of practical interest to the oil and pipe industry throughout the world. Such pipelines are known as slurry pipelines where the solid medium of the flow is commonly known as slurry. The optimal designing of such pipelines is of commercial interests for their widespread acceptance. A methodology has been evolved for the optimal sizing of a pipeline transporting solid-liquid mixture. Least cost principle has been used in sizing such pipelines, which involves the determination of pipe diameter corresponding to the minimum cost for given solid throughput. The detailed analysis with regard to transportation of slurry having solids of uniformly graded particles size has been included. The proposed methodology can be used for designing a pipeline for transporting any solid material for different solid throughput.

  14. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    NASA Technical Reports Server (NTRS)

    Wang, Jai-Ching

    1994-01-01

    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  15. Note: Sample cells to investigate solid/liquid interfaces with neutrons

    SciTech Connect

    Rennie, Adrian R. Hellsing, Maja S.; Lindholm, Eric; Olsson, Anders

    2015-01-15

    The design of sample cells to study solid/liquid interfaces by neutron reflection is presented. Use of standardized components and a modular design has allowed a wide range of experiments that include grazing incidence scattering and conventional small-angle scattering. Features that reduce background scattering are emphasized. Various flow arrangements to fill and replenish the liquid in the cell as well as continuous stirring are described.

  16. Interaction of Porosity with an Advancing Solid/Liquid Interface: a Real-Time Investigation

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kaukler, W.; Catalina, A.; Stefanescu, D.; Curreri, P.

    1999-01-01

    Problems associated with formation of porosity during solidification continue to have a daily impact on the metal forming industry. Several past investigations have dealt with the nucleation and growth aspects of porosity. However, investigations related to the interaction of porosity with that of a solidification front has been limited mostly to organic analogues. In this paper we report on real time experimental observations of such interactions in metal alloys. Using a state of the art X-Ray Transmission Microscope (XTM) we have been able to observe and record the dynamics of the interaction. This includes distortion of the solid/liquid interface near a poro.sity, solute segr,egation patterns surrounding a porosity and the change in shape of the porosity during interaction with an advancing solid/liquid interface. Results will be presented for different Al alloys and growth conditions. The experimental data will be compared to theory using a recently developed 2D numerical model. The model employs a finite difference approach where the solid/liquid interface is defined through the points at which the interface intersects the grid lines. The transport variables are calculated at these points and the motion of the solidification front is determined by the magnitude of the transport variables. The model accounts for the interplay of the thermal and solutal field and the influence of capilarity to predict the shape of the solid/liquid interface with time in the vicinity of porosity. One can further calculate the perturbation of the solutal field by the presence of porosity in the melt.

  17. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.

    1988-01-01

    Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.

  18. Understanding the lateral movement of particles adsorbed at a solid-liquid interface.

    PubMed

    Savaji, Kunal; Li, Xue; Couzis, Alexander

    2015-09-01

    In this paper we study the phenomenon of lateral movement of particles that are electrostatically adsorbed at a solid-liquid interface. The experimental system involves negatively charged silica particles of two different sizes (65 nm and 90 nm) that are exposed to the positively charged solid surface (silane coated silicon wafer) in sequential steps. The particle-adsorbed wafers are analyzed under a scanning electron microscope and the images are processed to determine the pair-correlation function for the particles adsorbed in the first step. From the pair correlation data and the particle surface coverage data we show that the adsorbed particles are mobile at the solid-liquid interface. In specific, we show that the adsorbed particles are mobile at the solid-liquid interface when there is a driving force for the adsorbed particles to move. The driving force in the scheme of experiments discussed in this paper is the reduction in the free energy of the system. PMID:26005924

  19. Abrasion characteristic analyses of solid-liquid two-phase centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhu, Zuchao; He, Zhaohui; He, Weiqiang

    2011-09-01

    Based on the solid-liquid two-phase mixture transportation test, the renormalization group (RNG) k-e turbulent model was utilized to simulate the solid-liquid two-phase turbulent flow in a centrifugal pump. By comparing the simulated and experimental results, inner flow features were revealed to improve the abrasion characteristic of the solid-liquid two-phase centrifugal pump. The influence of the solid phase on centrifugal pump abrasive performance is small when the particle volume fraction is less than 2.5%. The aggregation degree of the solid particles is enhanced as the particle diameter increases from 0.1 to 1 mm; however, the mixture density on the pressure side is reduced when the particle diameter increases to 1 mm for the impact of inertia. The wear on the hub is most severe for the shear stress on this position; it is also the largest. The wear characteristic is affected greatly by the parameters of the solid phase. The wear chracteristic can be optimized by decreasing the blade outlet angle. In the modified design, the blade angle is different, whereas the other geometric dimensions remain the same. The improved pump is simulated to contrast with the original pump. The results show that the values of mixture density and shear stress both decrease. The wear condition of the blade is improved to a certain extent.

  20. Effect of confinement on the solid-liquid coexistence of Lennard-Jones Fluid

    SciTech Connect

    Das, Chandan K.; Singh, Jayant K.

    2013-11-07

    The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wall separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.

  1. Estimation of solid-liquid interfacial tension using curved surface of a soft solid.

    PubMed

    Mondal, Subrata; Phukan, Monmee; Ghatak, Animangsu

    2015-10-13

    Unlike liquids, for crystalline solids the surface tension is known to be different from the surface energy. However, the same cannot be said conclusively for amorphous materials like soft cross-linked elastomers. To resolve this issue we have introduced here a direct method for measuring solid-liquid interfacial tension by using the curved surface of a solid. In essence, we have used the inner surface of tiny cylindrical channels embedded inside a soft elastomeric film for sensing the effect of the interfacial tension. When a liquid is inserted into the channel, because of wetting-induced alteration in interfacial tension, its thin wall deflects considerably; the deflection is measured with an optical profilometer and analyzed using the Föppl-von Kármán equation. We have used several liquids and cross-linked poly(dimethylsiloxane) as the solid to show that the estimated values of the solid-liquid interfacial tension matches with the corresponding solid-liquid interfacial energy reasonably well. PMID:26420871

  2. Conception, elaboration et mise a l'essai d'un simulateur interactif permettant une approche modelisante: Application aux lois de la genetique mendelienne

    NASA Astrophysics Data System (ADS)

    Lasri, Abdel-Halim

    Dans cette recherche-developpement, nous avons concu, developpe et mis a l'essai un simulateur interactif pour favoriser l'apprentissage des lois probabilistes impliqees dans la genetique mendelienne. Cet environnement informatise devra permettre aux etudiants de mener des experiences simulees, utilisant les statistiques et les probebilites comme outils mathematiques pour modeliser le phenomene de la transmission des caracteres hereditaires. L'approche didactique est essentiellement orientee vers l'utilisation des methodes quantitatives impliquees dans l'experimentation des facteurs hereditaires. En incorporant au simulateur le principe de la "Lunette cognitive" de Nonnon (1986), l'etudiant fut place dans une situation ou il a pu synchroniser la perception de la representation iconique (concrete) et symbolique (abstraite) des lois probabilistes de Mendel. A l'aide de cet environnement, nous avons amene l'etudiant a identifier le(s) caractere(s) hereditaire(s) des parents a croiser, a predire les frequences phenotypiques probables de la descendance issue du croisement, a observer les resultats statistiques et leur fluctuation au niveau de l'histogramme des frequences, a comparer ces resultats aux predictions anticipees, a interpreter les donnees et a selectionner en consequence d'autres experiences a realiser. Les etapes de l'approche inductive sont privilegiees du debut a la fin des activites proposees. L'elaboration, du simulateur et des documents d'accompagnement, a ete concue a partir d'une vingtaine de principes directeurs et d'un modele d'action. Ces principes directeurs et le modele d'action decoulent de considerations theoriques psychologiques, didactiques et technologiques. La recherche decrit la structure des differentes parties composant le simulateur. L'architecture de celui-ci est construite autour d'une unite centrale, la "Principale", dont les liens et les ramifications avec les autres unites confere a l'ensemble du simulateur sa souplesse et sa facilite d'utilisation. Le simulateur "Genetique", a l'etat de prototype, et la documentation qui lui est afferente ont ete soumis a deux mises a l'essai: l'une fonctionnelle, l'autre empirique. La mise a l'essai fonctionnelle, menee aupres d'un groupe d'enseignants experts, a permis d'identifier les lacunes du materiel elabore afin de lui apporter les reajustements qui s'imposaient. La mise a l'essai empirique, conduite par un groupe de onze (11) etudiants de niveau secondaire, avait pour but, d'une part, de tester la facilite d'utilisation du simulateur "Genetique" ainsi que les documents d'accompagnement et, d'autre part, de verifier si les participants retiraient des avantages pedagogiques de cet environnement. Trois techniques furent exploitees pour recolter les donnees de la mise a l'essai empirique. L'analyse des resultats a permis de faire un retour critique sur les productions concretes de cette recherche et d'apporter les modifications necessaires tant au simulateur qu'aux documents d'accompagnement. Cette analyse a permis egalement de conclure que notre simulateur interactif favorise une approche inductive permettant aux etudiants de s'approprier les lois probabilistes de Mendel. Enfin, la conclusion degage des pistes de recherches destinees aux etudes ulterieures, plus particulierement celles qui s'interessent a developper des simulateurs, afin d'integrer a ceux-ci des representations concretes et abstraites presentees en temps reel. Les disquettes du simulateur "Genetique" et les documents d'accompagnement sont annexes a la presente recherche.

  3. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.

  4. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    SciTech Connect

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles based on EIS measurement using a sensor of 8 electrodes are reported. Results have demonstrated the potential as well as revealed the challenge in the use of EIS and EITS for characterisation of particle in suspension.

  5. A model of blind zone for in situ monitoring the solid/liquid interface using ultrasonic wave.

    PubMed

    Peng, Song; Ouyang, Qi; Zhu, Z Z; Zhang, X L

    2015-07-01

    To in situ monitor a solid/liquid interface to control metal qualities, the paper analysis blind models of the ultrasonic propagation in the solidifying molten metal with a solid/liquid interface in the Bridgman type furnace, and a mathematical calculation model of blind zone with different source locations and surface concavities is built. The study points out that the blind zone I is caused by ray bending in the interface edge, and the blind zone II is caused by totally reflection which is related with initial ray angle, critical refraction angle of solid/liquid media. A serial of simulation experiments are operated on the base of the model, and numerical computation results coincide with model calculated results very well. Therefore, receiver should locate beyond these blind zones in the right boundary to obtain time of flight data which is used to reconstruct the solid/liquid interface. PMID:25783779

  6. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu

    2013-01-01

    The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ? two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.

  7. Basic research needs and opportunities at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Cafasso, F. A.; Bockris, J. O.; Davison, S. G.; Furtak, T. E.; Heldt, L. A.; Knotek, M. L.; Truhan, J. J.; Weeks, J. R.; Wittenberg, L. J.

    1982-04-01

    Solid-liquid (S-L) interactions in photoelectrochemical and photoelectrosynthetic devices, the causes and forces of degradation, and the means to study the phenomena are reviewed. Improvements are asserted to be necessary in theoretical modeling, particularly in the fields of double layer theory and kinetic electrochemistry. It is suggested that the electrolyte be treated as a lattice gas, and that the theory of liquid mixtures be employed to find a pair correlation function on which an electronic theory of the electrolyte can be based. Research is recommended to concentrate on modified electrode materials and surfaces, thin film electrodes, and photo-assisted synthesis and electrocatalysis. Specific phenomena to be examined are discussed.

  8. Structural Evolution of Silicon Oxide Nanowires via Head-Growth Solid-Liquid-Solid Process

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hang; Chan, Shih-Yu; Chen, Chia-Fu

    2007-11-01

    In this paper, we propose a growth mechanism for silicon oxide nanowires (SiONWs) as a unique solid-liquid-solid process. SiONWs were synthesized in a furnace at 1000 °C and cooled at a high rate. Nickel and gold were introduced as catalysts to dissolve and precipitate the silicon oxide originally prepared by wet oxidation. The ratio of nickel to gold determined the precipitation rate and different “octopus-like” structures were formed. At a specific cooling rate, composition and amount of a catalyst, aligned silicon oxide nanowires with unattached ends were obtained.

  9. Free energies of ionic nanoclusters. Solid and coexistent solid-liquid states

    NASA Astrophysics Data System (ADS)

    Rodrigues, P. C. R.; Silva Fernandes, F. M. S.

    2008-10-01

    A strategy to overcome some specific problems associated to the computation of free energies in clusters is presented. Free energies and entropies of solid KCl nanoclusters are determined by thermodynamic integration, and Watanabe and Reinhardt’s dynamical method, based on molecular dynamics simulations. The values are in good agreement with experimental data. From a previous theoretical prediction of the caloric curve, T( E), for the coexistence region, an equation is derived to compute the free energies of the clusters at the solid-liquid coexistence. The results are discussed in the context of the thermodynamic stability of phase coexistent states for finite and infinite systems, yielding consistent conclusions.

  10. The Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows

    PubMed Central

    Alexiadis, Alessio

    2015-01-01

    This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling), flow conditions (confined, free-surface, microscopic), and scales (from microns to meters). Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow. PMID:25961561

  11. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  12. Evaluation and ranking of the tank focus area solid liquid separation needs

    SciTech Connect

    McCabe, D.J.

    1995-08-17

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing.

  13. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  14. Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids.

    PubMed

    Ahmed, Alauddin; Sadus, Richard J

    2009-11-01

    Molecular dynamics simulations are reported for the solid-liquid coexistence properties of n-6 Lennard-Jones fluids, where n=12, 11, 10, 9, 8, and 7. The complete phase behavior for these systems has been obtained by combining these data with vapor-liquid simulations. The influence of n on the solid-liquid coexistence region is compared using relative density difference and miscibility gap calculations. Analytical expressions for the coexistence pressure, liquid, and solid densities as a function of temperature have been determined, which accurately reproduce the molecular simulation data. The triple point temperature, pressure, and liquid and solid densities are estimated. The triple point temperature and pressure scale with respect to 1/n, resulting in simple linear relationships that can be used to determine the pressure and temperature for the limiting infinity-6 Lennard-Jones potential. The simulation data are used to obtain parameters for the Raveche, Mountain, and Streett and Lindemann melting rules, which indicate that they are obeyed by the n-6 Lennard Jones potentials. In contrast, it is demonstrated that the Hansen-Verlet freezing rule is not valid for n-6 Lennard-Jones potentials. PMID:19895022

  15. A level set method for solid-liquid interface tracking in texturally equilibrated pore networks

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, Soheil; Hesse, Marc; Prodanovic, Masa

    2015-04-01

    The properties of some porous media are determined by their evolution towards textural equilibrium. Melt drainage from temperate glacier ice and the accumulation of hydrocarbons beneath rock salt are two examples in natural systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining dihedral angle, ?, at solid-liquid contact lines. In this work we present the first computations of 3-D texturally equilibrated pore networks using a novel level set method. Interfacial energy minimization is achieved by evolving interface under surface diffusion to constant mean curvature surface. The porosity and dihedral angle constraints are added to the formulation using virtual velocity terms. A domain decomposition scheme is devised to restrict the computational domain and the coupling between the interfaces is achieved on the original computational domain. For the last 30 years, explicit representation of the interfaces limited the computations to highly idealized geometries. The presented model overcomes these limitations and opens the door to the exploration of the physics of these materials in realistic systems. For example, our results show that the fully wetted grain boundaries exist even for ?>0 which reconciles the theory with experimental observations. This work is sponsored by the Statoil Fellows Program at The University of Texas.

  16. Ultrasonic measurement of solid/liquid interface position during solidification and melting of metals

    NASA Astrophysics Data System (ADS)

    Parker, R. L.

    1982-05-01

    The use of pulse-echo ultrasonic flaw detectors to detect the presence and location of cracks, voids, and other discontinuities in metals and non-metal is well known. The solid-liquid interface in a melting or freezing metal can also be considered as a discontinuity, in that there is a measurable difference in both sound velocity and density across the interface. For normal incidence of longitudinal waves in a typical case, about 10% of the pressure amplitude of the incident wave would be expected to be reflected. Thus such a technique, if it worked, could be considered as a method for measurement, feedback, and closed-loop process control in such applications as continuous casting of metals. To examine the feasibility of this technique, the melting and freezing of 99.9 Sn has been studied at NBS using pulse-echo equipment at a nominal frequency of 5MHz. The transducer contacts the cold end of a 5/16? × 8? specimen in a graphite mold in a Bridgman gradient furnace (unidirectional melting/solidification). Sharp echoes easily locate the interface position, in both freezing and melting, to ±1 mm, over the range of interface velocities tested (up to˜4mm/min). A literature search showed that similar or related tests have been made by at least 5 other groups in the U. S. and abroad, in a number of materials and geometries. Most of them were also successful in locating the interface. In the relatively difficult case of steel, while interfaces could be located under certain conditions, there were also found some substantial problems involving signal attenuation and poor signal/noise ratios. Some possible causes for this could be poor reflection of the incident beam from the dendritic ?mushy zone? in the case of alloys, as well as bulk attenuation effects due to grain size or other scattering centers. In the case of continuous castings, the coupling of the acoustic energy into hot, rough and scaly surfaces presents additional problems. However, much progress has been made in recent years on the problems of getting acoustic energy into hot steel surfaces, including the use of noncontact Lorentz-force transducers (EMATS). NBS work is focussed o the study of the measurement factors inherent in possible use of the method for process control, as well as possible use for interface characterization. In those cases, such as steel continuous casting,where signal/noise problems may be limiting, appropriate signal processing techniques should make it possible to improve signal/noise ratios. The techniques include corrections for transducer response as well as signal averaging and correlation techniques. To do this, a sampling oscilloscope is used to provide a slowed but shape-preserving output of the received echo, which is then fed to a digitizer and then to a small computer (64 k memory, Z-80 CPU, 8? floppy discs).

  17. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    PubMed Central

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-01-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for ‘accommodating’ guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in ‘sensing’ application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials. PMID:26411980

  18. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-09-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for ‘accommodating’ guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in ‘sensing’ application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials.

  19. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    PubMed

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. PMID:26426309

  20. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  1. On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction.

    PubMed

    Riaño, B; García-González, M C

    2014-01-01

    In some regions, intensive pig farming has led to soil and water pollution due to the over-application of manure as an organic fertilizer, thereby necessitating alternative treatment technologies to help manage the large amounts of manure generated. The present study seeks to determine the effectiveness of an on-farm swine manure treatment plant consisting of a solid-liquid separation phase using screw pressing followed by a coagulation-flocculation process, and nitrification-denitrification of the liquid fraction. Each treatment unit was evaluated for its contribution towards reducing the raw manure concentration of solids, organic matter, nutrients (nitrogen and phosphorous), metals, and pathogens. The overall system presented high removal efficiencies of up to 71% of TS (total solids) and 97% of TCOD (total chemical oxygen demand). Approximately 97% TKN (total Kjeldahl nitrogen) and 89% TP (total phosphorous) removal was achieved. Metals (copper and zinc) diminished in the liquid fraction to non-detectable concentrations (<1.0 mg L(-1)). As regards microbial removal, total concentration reductions of 3.6 log10 for Escherichia coli and 1.8 log10 for Salmonella were achieved. Finally, the system was evaluated from a financial standpoint. Results indicate that screw pressing and coagulation-flocculation for solid-liquid separation and nitrification-denitrification of the liquid fraction is a technological alternative for reducing the environmental impact of intensive pig farming in a given area. PMID:24291581

  2. Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling

    2015-11-01

    In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.

  3. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.

  4. New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site

    SciTech Connect

    Bhave, Ramesh R

    2012-01-01

    New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site R. Bhave (Oak Ridge National Laboratory. Oak Ridge, TN) and M. R. Poirier* (Savannah River National Laboratory, Aiken SC) Solid-liquid separation is the limiting step for many waste treatment processes at the Savannah River Site. SRNL researchers have identified the rotary microfilter as a technology to improve the rate of solid-liquid separation processes. SRNL is currently developing the rotary microfilter for radioactive service and plans to deploy the technology as part of the small column ion exchange process. The rotary microfilter can utilize any filter media that is available as a flat sheet. The current baseline membrane is a 0.5 micron (nominal) porous metal filter (Pall PMM050). Previous testing with tubular filters showed that filters composed of a ceramic membrane on top of a stainless steel support produce higher flux than filters composed only of porous metal. The authors are working to develop flat sheet filter media composed of a ceramic membrane and/or ceramic-metal composite on top of a porous stainless steel support that can be used with the rotary microfilter to substantially increase filter flux resulting in a more compact, energy efficient and cost-effective high level radioactive waste treatment system. Composite membranes with precisely controlled pore size distribution were fabricated on porous metal supports. High quality uniform porous metal (316SS) supports were fabricated to achieve high water permeability. Separative layers of several different materials such as ultrafine metal particles and ceramic oxides were used to fabricate composite membranes. The fabrication process involved several high temperature heat treatments followed by characterization of gas and liquid permeability measurements and membrane integrity analysis. The fabricated composite membrane samples were evaluated in a static test cell manufactured by SpinTek. The composite membranes were evaluated on several feed slurries: 1 wt. % strontium carbonate in deionized water, 1 wt. % monosodium titanate in simulated salt solution, and 1 wt. % simulated sludge in simulated salt solution and deionized water. Flux as a function of feed flow rate and transmembrane pressure was measured for each of the above described feed slurries. The authors will discuss the new membrane development efforts, waste slurry filtration performance evaluations and scale-up considerations.

  5. Maladies reliées aux loisirs aquatiques

    PubMed Central

    Sanborn, Margaret; Takaro, Tim

    2013-01-01

    Résumé Objectif Passer en revue les facteurs de risque, la prise en charge et la prévention des maladies reliées aux loisirs aquatiques en pratique familiale. Sources des données Des articles originaux et de synthèse entre janvier 1998 et février 2012 ont été identifiés à l’aide de PubMed et des expressions de recherche en anglais water-related illness, recreational water illness et swimmer illness. Message principal Il y a un risque de 3 % à 8 % de maladies gastrointestinales (MGI) après la baignade. Les groupes à risque élevé de MGI sont les enfants de moins de 5 ans, surtout s’ils n’ont pas été vaccinés contre le rotavirus, les personnes âgées et les patients immunodéficients. Les enfants sont à plus grand risque parce qu’ils avalent plus d’eau quand ils nagent, restent dans l’eau plus longtemps et jouent dans l’eau peu profonde et le sable qui sont plus contaminés. Les adeptes des sports dans lesquels le contact avec l’eau est abondant comme le triathlon et le surf cerf-volant sont aussi à risque élevé et même ceux qui s’adonnent à des activités impliquant un contact partiel avec l’eau comme la navigation de plaisance et la pêche ont un risque de 40 % à 50 % fois plus grand de MGI par rapport à ceux qui ne pratiquent pas de sports aquatiques. Il y a lieu de faire une culture des selles quand on soupçonne une maladie reliée aux loisirs aquatiques et l’échelle clinique de la déshydratation est utile pour l’évaluation des besoins de traitement chez les enfants affectés. Conclusion Les maladies reliées aux loisirs aquatiques est la principale cause de MGI durant la saison des baignades. La reconnaissance que la baignade est une source importante de maladies peut aider à prévenir les cas récurrents et secondaires. On recommande fortement le vaccin contre le rotavirus chez les enfants qui se baignent souvent.

  6. Modélisation du cycle de vie d'un polluant en atmosphère : application aux oxydes d'azote (NO{X})

    NASA Astrophysics Data System (ADS)

    Hamzi, R.; Bourmada, N.; Benamrane, B. T.; Londiche, H.

    2005-05-01

    Les problèmes de l'environnement nécessitent des modélisations particulièrement difficiles, mais d'une grande importance sociale. C'est un domaine récent, où les données sont encore peu nombreuses, mais où les attentes sont considérables, tant auprès du public que des politiques et des industriels. En effet, la modélisation consiste à définir un modèle qui permettra de représenter efficacement le processus étudié. Dans cette optique le comportement modélisé n'est que la manifestation extérieure d'une structure plus profonde. La complexité du système et du problème posé détermine celle du modèle, qui va de la simple représentation qualitative d'un comportement aux formules mathématiques les plus élaborées. Lorsque la modélisation est exprimée mathématiquement, on recourt généralement à un programme de simulation pour calculer le comportement prévisionnel du modèle. La compréhension du cycle de vie d'un polluant en atmosphère, dans notre cas les oxydes d'azote (NOX), nécessite la modélisation de l'évolution des réactifs et des produits en fonction du temps exprimée par des équations différentielles. La réalisation de la simulation à partir de ces modèles, nous permet de connaître l'ensemble des processus ayant lieu lors de l'émission du polluant en atmosphère jusqu'à sa consommation.

  7. Local conformational switching of supramolecular networks at the solid/liquid interface.

    PubMed

    Cometto, Fernando P; Kern, Klaus; Lingenfelder, Magalí

    2015-05-26

    We use the electric field in a scanning tunneling microscope to manipulate the transition between open and close packed 2D supramolecular networks of neutral molecules in nonpolar media. We found that while the magnitude of the applied field is not decisive, it is the sign of the polarization that needs to be maintained to select one particular polymorph. Moreover, the switching is independent of the solvent used and fully reversible. We propose that the orientation of the surface dipole determined by the electric field might favor different conformation-depended charge transfer mechanisms of the adsorbates to the surface, inducing open (closed) structures for negative (positive) potentials. Our results show the use of local fields to select the polymorphic outcome of supramolecular assemblies at the solid/liquid interface. The effect has potential to locally control the capture and release of analytes in host-guest systems and the 2D morphology in multicomponent layers. PMID:25857528

  8. New density functional approach for solid-liquid-vapor transitions in pure materials.

    PubMed

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-17

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories. PMID:25933321

  9. Effects of Solid-Liquid Mixing on Microstructure of Semi-Solid A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Guo, H. M.; Wang, L. J.; Wang, Q.; Yang, X. J.

    2014-08-01

    The desired starting material for semi-solid processing is the semi-solid slurry in which the solid phase is present as fine and globular particles. A modified solid-liquid mixing (SLM) is reported wherein semi-solid slurry can be produced by mixing a solid alloy block into a liquid alloy, and mechanical vibration is utilized to enhance the mixing. Effects such as liquid alloy temperature, mass ratio, and mixing intensity on the microstructure and the cooling curves during SLM were evaluated. 2D and 3D microstructure analysis of treated A356 aluminum alloy shows that microstructure can be refined significantly with a considerable morphology change in primary Al phase. It is critical that the temperature of mixture after mixing is lower than its liquidus temperature to obtain a valid SLM process. Specially, mixing intensity is identified as a primary factor for a favorable microstructure of semi-solid slurry.

  10. Ginzburg-Landau theory for the solid-liquid interface of bcc elements

    NASA Technical Reports Server (NTRS)

    Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.

    1987-01-01

    Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.

  11. SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486

    SciTech Connect

    Shilova, E.; Viel, P.; Huc, V.

    2013-07-01

    This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

  12. Dependence of solid-liquid interface free energy on liquid structure

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Mendelev, M. I.

    2014-09-01

    The Turnbull relation is widely believed to enable prediction of solid-liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing's theory. A modification to Ewing's relation is proposed in this study that was found to provide excellent agreement with MD simulation data.

  13. Surface Specularity as an Indicator of Shock-induced Solid-liquid Phase Transitions in Tin

    SciTech Connect

    G. D. Stevens, S. S. Lutz, B. R. Marshall, W.D. Turley, et al.

    2007-12-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. Typical of this phenomenon is the loss of signal light in velocity interferometer system for any reflector (VISAR) measurements, which usually occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry, conductivity), that show relatively small (1%-10%) changes, the specularity of reflection provides a more sensitive and definitive (>10x) indication of the solid-liquid phase transition. Data will be presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  14. Overview of the current status of solid-liquid interface science

    NASA Astrophysics Data System (ADS)

    Bockris, J. O'm.

    1982-04-01

    The effectiveness of present techniques for examining the solid-liquid (S-L) interface in photoelectrochemical devices is reviewed. The S-L interface is presently modeled using the Guoy layer theory, although statistical deficiencies are present due to the large number of species to be modeled. The development of ellipsometric spectroscopy for studies in the visible and UV is recommended, along with electrocapillary thermodynamics, the zero charge potential as a parameter, spectroscopy, and the formation of a quantum electrochemical framework. Experimental methods are needed for measuring individual ionic concentrations 10-100 mm from the solid surface, and to determine the structure of H2O at the doublelayer Adsorption at the S-L interface is examined by sweep methods which expose the effects of varying the current and the potential. Present methods for studying the diffuse layer are limited to concentrations of 0.001 M or below. Monte Carlo techniques are needed at higher particle numbers.

  15. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management). PMID:26716354

  16. Equilibrium Solid-Liquid Interfacial Adsorption in Lennard-Jones Alloys

    NASA Astrophysics Data System (ADS)

    Becker, C. A.; Asta, M.; Hoyt, J. J.; Foiles, S. M.

    2004-03-01

    The composition dependence of the magnitude and associated crystalline anisotropy in the crystal-melt interfacial free energy is of fundamental importance in determining alloy solidification rates and growth morphologies. Due to the inherent difficulties associated with their direct experimental measurement, much of the current knowledge of solid-liquid interfacial properties has been derived from atomic-scale simulations. To date, most such work has focused on elemental systems, with little emphasis on alloys. We are using Metropolis Monte-Carlo techniques to determine how the equilibrium interfacial solute adsorption depends on atomic size mismatch and differences in chemical bonding "strengths" through a survey of model Lennard-Jones binary alloys. Our goal is to gain insight into the nature of the factors controlling the composition dependence of the interfacial free energy in simple alloy systems.

  17. Solid/Liquid phase diagram of the ammonium sulfate/maleic acid/water system.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Pearson, Christian S

    2011-12-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution. PMID:22017680

  18. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems. PMID:25431860

  19. Subpicosecond pulses from a neodymium-glass laser with a solid-liquid phototropic shutter

    NASA Astrophysics Data System (ADS)

    Altshuler, G. B.; Dulneva, E. G.; Karasev, V. B.; Okishev, A. V.; Telegin, L. S.

    1985-02-01

    Subpicosecond, spectrally limited pulses were generated in a mode-locked silicate-Nd-glass laser by means of a phototropic shutter. The shutter featured molecules of an organic dye added to a matrix composed of an isobutyl alcohol-filled quartz micropore glass plate. A coating on the inner surface of one of the cell windows was 0.99 reflective at the lasing wavelength. Single pulses with 0.5-1 psec length were generated, validating the use of a solid-liquid shutter for producing subpicosecond pulses with a Nd-glass laser. Furthermore, the liquid component permitted output powers of up to 5 W/sq cm without eliciting thermooptical effects.

  20. Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets

    SciTech Connect

    Paumel, K.; Baque, F.; Moysan, J.; Corneloup, G.; Chatain, D.

    2011-08-15

    Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.

  1. A low-cost solid-liquid separation process for enzymatically hydrolyzed corn stover slurries.

    PubMed

    Sievers, David A; Lischeske, James J; Biddy, Mary J; Stickel, Jonathan J

    2015-01-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantly reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter. PMID:25836372

  2. Numerical Calculation of the Morphology of a Solid/Liquid Interface Near an Insoluble Particle

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu

    2003-01-01

    A numerical mathematical model capable of accurately describing the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle is presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub P) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. Calculated critical solidification velocities for the pushing/engulfment transition are compared with experimental measurements performed in microgravity conditions.

  3. Solid-liquid phase equilibria of the Gaussian core model fluid.

    PubMed

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J

    2009-11-14

    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision. PMID:19916612

  4. Solid-liquid phase equilibria of the Gaussian core model fluid

    NASA Astrophysics Data System (ADS)

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J.

    2009-11-01

    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.

  5. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    SciTech Connect

    McDaniel, D.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function at winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)

  6. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid-Liquid Dynamic Extraction

    ERIC Educational Resources Information Center

    Naviglio, Daniele; Montesano, Domenico; Gallo, Monica

    2015-01-01

    Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…

  7. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid-Liquid Dynamic Extraction

    ERIC Educational Resources Information Center

    Naviglio, Daniele; Montesano, Domenico; Gallo, Monica

    2015-01-01

    Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…

  8. Probing the Solid-Liquid Interface using Single-Molecule Dynamics

    NASA Astrophysics Data System (ADS)

    Nelson, Nathaniel

    Molecular interactions with solid-liquid interfaces have long been studied through macroscopic observations. There were, however, only a limited number of ways to observe true molecular phenomena leading to a wide discrepancy between theoretical models and experimental results. The work presented here uses total internal reflection fluorescence (TIRF) microscopy to image individual molecules at the solid-liquid interface as they undergo the dynamic processes of adsorption, diffusion, and desorption. Studying these dynamic behaviors at the single-molecule level allowed great insight into the macroscopically observed hydrophobic effect as well as the Hofmeister effect. The hydrophobic effect was probed by looking at the response of individual molecules to surfaces with varying alkyl chain lengths. These experiments showed that surface residence time increased and mobility decreased with increasing alkyl chain length despite all of the surfaces having the same nominal hydrophobicity. Experiments using the salts NaF and NaSCN dissolved in water along with a fatty acid probe molecule were conducted to examine the Hofmeister effect at the molecular level. These experiments showed a dramatic change in adsorption rate of the hydrophobic probe onto a hydrophobic surface, but minimal change in diffusion or desorption rate. We used the knowledge that molecular probes interact with specific surface chemistries very differently to develop a super-resolution imaging technique called MAPT (mapping using accumulated probe trajectories). MAPT created images of a surface using each molecular behavior (e.g. diffusion) as a contrast mechanism. These images were first used to show variations in hydrophobicity on a photopatterned self-assembled monolayer. MAPT images also allowed us to differentiate between the 2D Brownian motion of a molecule on a surface and intermittent 3D flights through solution. Finally, we developed a technique for identifying surface chemistry using dynamic molecular interactions using an unsupervised Gaussian mixture modeling algorithm. This algorithm identifies regions on a surface that share similar molecular behaviors which can then be compared to the behaviors observed on surfaces of known chemistry. These identifications allow, for the first time, one to create true maps of surface chemistry.

  9. Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.

    PubMed

    Nishiyama, Takashi; Yamada, Yutaka; Ikuta, Tatsuya; Takahashi, Koji; Takata, Yasuyuki

    2015-01-27

    Nanobubbles exist at solid-liquid interfaces between pure water and hydrophobic surfaces with very high stability, lasting in certain cases up to several days. Not only semispherical but also other shapes, such as micropancakes, are known to exist at such interfaces. However, doubt has been raised as to whether or not the nanobubbles are gas-phase entities. In this study, surface nanobubbles at a pure water-highly ordered pyrolytic graphite (HOPG) interface were investigated by peak force quantitative nanomechanics (PF-QNM). Multiple isolated nanobubbles generated by the solvent-exchange method were present on the terraced areas, avoiding the steps of the HOPG surface. Adjacent nanobubbles coalesced and formed metastable nanobubbles. Coalescence was enhanced by the PF-QNM measurement. We determined that nanobubbles can exist for a long time because of nanoscale contact angle hysteresis at the water-HOPG interface. Moreover, the hydrophilic steps of HOPG were avoided during coalescence, providing evidence that the nanobubbles are truly gas phase. PMID:25540821

  10. Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures

    PubMed Central

    dos Santos, Silvia Cristina Cunha; Ouellette, Julianne; Juteau, Pierre; Lépine, François; Déziel, Eric

    2013-01-01

    Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents. PMID:23728808

  11. Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire Growth

    SciTech Connect

    Zhang, Jiguang; Liu, Jun; Wang, Donghai; Choi, Daiwon; Fifield, Leonard S.; Wang, Chong M.; Xia, Guanguang; Nie, Zimin; Yang, Zhenguo; Pederson, Larry R.; Graff, Gordon L.

    2010-03-10

    Silicon based nanowires have been grown from commercial silicon powders under conditions of differing oxygen and carbon activities. Nanowires grown in the presence of carbon sources consisted of a crystalline SiC core with an amorphous SiOx shell. The thickness of SiOx shell decreased as the oxygen concentration in the precursor gases was lowered. Nanowires grown in a carbon-free environment consisted of amorphous silicon oxide with a typical composition of SiO1.8. The growth rate of nanowires decreased with decreasing oxygen content in the precursor gases. SiO1.8 nanowires exhibited an initial discharge capacity of ~ 1,300 mAh/g and better stability than those of silicon powders. A Vapor Induced Solid-Liquid-Solid (VI-SLS) mechanism is proposed to explain the nanowire growth (including silicon and other metal based nanowires) from powder sources. In this approach, both a gas source and a solid powder source are required for nanowire growth. This mechanism is consistent with experimental observations and can also be used to guide the design and growth of other nanowires.

  12. Solid-liquid interface free energies of pure bcc metals and B2 phases

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  13. Numerical formulation for the prediction of solid/liquid change of a binary alloy

    NASA Technical Reports Server (NTRS)

    Schneider, G. E.; Tiwari, S. N.

    1990-01-01

    A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems.

  14. Solid-liquid reactions: The effect of Cu content on Sn-Ag-Cu interconnects

    NASA Astrophysics Data System (ADS)

    Lu, Henry Y.; Balkan, Haluk; Simon, K. Y.

    2005-06-01

    The impact of copper content on the Sn-Ag-y%Cu (Ag=constant=3.5; y=0.0, 0.5, 1.0, and 2.0) interconnects was investigated in this study. The copper content and solid-liquid (S-L) reactions were used as inputs, and the outputs were the interfacial microstructure evolution and joint macro-performance. Surface microetching microscopy, cross-section microscopy, energy-dispersive x-ray analysis, shear test, and differential scanning calorimetry were used in the studies. It was discovered that as-soldered Sn-Ag-y%Cu interconnects could have different interfacial microstructures depending on copper content; no Ag3Sn plates were observed for any alloy groups. After the S-L reactions, Ag3Sn plates occurred for all groups. The magnitude of the Ag3Sn plate growth depended on copper content. This and other effects of copper content on Sn-Ag-Cu interconnects are discussed in this article.

  15. Solid-liquid separation of oxidized americium from fission product lanthanides

    NASA Astrophysics Data System (ADS)

    Shehee, T. C.; Martin, L. R.; Nash, K. L.

    2010-03-01

    The separation of americium from the lanthanides and curium is a requirement if transmutation of americium is to be performed in advanced nuclear fuel cycles. Oxidation of Am3+ to AmO2+ or AmO22+ may allow separation of Am from Ln and Cm in one step, since the lanthanides and curium do not have higher oxidation states as accessible. Two possible solid-liquid separation methods have been developed to address this difficult separation. Under acidic conditions using oxone or persulfate, the oxidation and retention of tracer Am in the aqueous phase has been observed with a separation factor of 11 ± 1. Most of these studies have been conducted using 237NpO2(NO3), 233UO2(NO3)2, 238Pu(NO3)4 and 241Am(NO3)3 at radiotracer concentrations. Lanthanides precipitate as the sodium or potassium europium double sulfate salt. Under basic conditions, ozone oxidation of Am(CO3)OH(s) solubilizes Am from a lanthanide carbonate hydroxide solid phase to the aqueous phase as the AmO2(CO3)34-or AmO2(CO3)35- species. For the ozone oxidation of the americium tracer a separation factor of 1.6 ± 0.8 and 47 ± 2 for the oxidation/separation in Na2CO3 and NaHCO3 respectively.

  16. Effects of Ultrasound on Behavior of Fine Solid Particles in a Solid-Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Ohta, Junichi; Makara, Takashi; Hirobe, Seisuke

    In a solid-liquid two-phase flow, the separation of particles or a reduction of particle concentration is often desired. Utilization of ultrasound has been considered as one technique for the separation of particles. Particles are known to aggregate due to the radiation pressure of ultrasound. However, the effect of ultrasound including cavitation on particle behavior is not well understood. Thus, we horizontally irradiated water with aluminum particles having a density of 2720 kg/m3 and diameters of 50 to 150 ?m or smaller aluminum powder (flakes) in a rectangular vessel by ultrasound at frequencies of 23 kHz or 100 kHz. In this way, a standing wave was formed. The following results were obtained. For ultrasound of 100 kHz, the aluminum powder aggregates in vertical bands. When acoustic cavitation existed at the frequency of 23 kHz, we noticed that the aluminum particles aggregate as clumps near antinodes of the sound pressure profile because of the flow induced by acoustic cavitation. When the particles are continuously provided in a relatively high concentration, particle clumps form and remain. Then, the particle clumps become larger and suddenly fall faster than the surrounding small particles. Such phenomena repeat themselves periodically. At relatively low concentrations, particle clumps do not become large and remain stationary at the same positions.

  17. Universality and criticality of a second-order granular solid-liquid-like phase transition.

    PubMed

    Castillo, Gustavo; Mujica, Nicolás; Soto, Rodrigo

    2015-01-01

    We experimentally study the critical properties of the nonequilibrium solid-liquid-like transition that takes place in vibrated granular matter. The critical dynamics is characterized by the coupling of the density field with the bond-orientational order parameter Q(4), which measures the degree of local crystallization. Two setups are compared, which present the transition at different critical accelerations as a result of modifying the energy dissipation parameters. In both setups five independent critical exponents are measured, associated to different properties of Q(4): the correlation length, relaxation time, vanishing wavenumber limit (static susceptibility), the hydrodynamic regime of the pair correlation function, and the amplitude of the order parameter. The respective critical exponents agree in both setups and are given by ?(?)=1,?(?)=2,?=1,??0.6-0.67, and ?=1/2, whereas the dynamical critical exponent is z=?(?)/?(?)=2. The agreement on five exponents is an exigent test for the universality of the transition. Thus, while dissipation is strictly necessary to form the crystal, the path the system undergoes toward the phase separation is part of a well-defined universality class. In fact, the local order shows critical properties while density does not. Being the later conserved, the appropriate model that couples both is model C in the Hohenberg and Halperin classification. The measured exponents are in accord with the nonequilibrium extension to model C if we assume that ?, the exponent associated in equilibrium to the specific heat divergence but with no counterpart in this nonequilibrium experiment, vanishes. PMID:25679604

  18. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  19. Rapid heating of a strongly coupled plasma at the solid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Jensen, M. J.; Hasegawa, T.; Bollinger, J. J.; Dubin, D. H. E.

    2004-11-01

    Between 10^4 and 10^6 ^9Be^+ ions are trapped in a 4.5 Tesla Penning trap and laser-cooled to ˜1 mK, where the ions form a crystalline plasma with an interparticle spacing of ˜20 ?m. This system is a realization of a strongly coupled one-component plasma. Using Doppler laser spectroscopy on a single-photon transition, we measured the temperature and heating rate of this plasma when not being laser-cooled. We measured a slow heating rate of ? 100 mK/s due to residual gas collisions for the first 100-200 ms after turning off the cooling laser. This slow heating is followed by a rapid heating to 1-2 K in 100 ms as the plasma undergoes the solid-liquid phase transition at T=10 mK (? ˜ 170). We will present evidence that this rapid heating is due to a sudden release of energy from weakly cooled degrees of freedom involving the cyclotron motion of trapped impurity ions. We will also discuss the prospects for observing the latent heat associated with the phase transition.

  20. Observation of gaseous films at solid-liquid interfaces: removal by ultrasonic action.

    PubMed

    Zbik, Marek S; Du, Jianhua; Pushkarova, Rada A; Smart, Roger St C

    2009-08-15

    The critical role of dissolved gas nano-bubbles at solid surfaces in particle association, aggregation, adsorption and flotation has been recognised in the recent literature. The principles of mineral processing, fine particle separation, and water recovery depend upon changing the surface properties at the solid-liquid interface. It has been assumed that the solid surfaces are either in direct contact with the liquid or may have nano-bubbles attached only at hydrophobic surfaces. This paper shows that gaseous layers 50-100 nm thick can be attached surrounding high proportions of solid clay mineral surfaces restricting reagent access, producing buoyancy and aggregation. Ultrasonic treatment before flocculant addition effectively removes these gaseous layers as well as dispersed micro-bubbles. Re-aggregation after brief ultrasonication produces denser (less buoyant) flocs, demonstrated with cryo-SEM statistical analysis, giving more complete access of the flocculant to the aggregate surfaces. In the subsequent flocculant addition, the settling rates of the denser flocs can be increased up to 40%. If ultrasonic action is continued, the bridged flocs are disturbed with some redispersion of smaller flocs and individual platelets and consequent slower settling rates. PMID:19439314

  1. DETERMINATION OF SOLID-LIQUID EQUILIBRIA DATA FOR MIXTURES OF HEAVY HYDROCARBONS IN A LIGHT SOLVENT

    SciTech Connect

    F.V. Hanson; J.V. Fletcher; Karthik R.

    2003-06-01

    A methodology was developed using an FT-IR spectroscopic technique to obtain solid-liquid equilibria (SLE) data for mixtures of heavy hydrocarbons in significantly lighter hydrocarbon diluents. SLE was examined in multiple Model Oils that were assembled to simulate waxes. The various Model oils were comprised of C-30 to C-44 hydrocarbons in decane. The FT-IR technique was used to identify the wax precipitation temperature (WPT). The DSC technique was also used in the identification of the onset of the two-phase equilibrium in this work. An additional Model oil made up of C-20 to C-30 hydrocarbons in decane was studied using the DSC experiment. The weight percent solid below the WPT was calculated using the FT-IR experimental results. The WPT and the weight percent solid below the WPT were predicted using an activity coefficient based thermodynamic model. The FT-IR spectroscopy method is found to successfully provide SLE data and also has several advantages over other laboratory-based methods.

  2. Solid-liquid interface free energies of pure bcc metals and B2 phases

    SciTech Connect

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  3. Solid-liquid interface free energies of pure bcc metals and B2 phases

    DOE PAGESBeta

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observedmore » in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.« less

  4. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution. PMID:23544733

  5. Migration of cadmium through a natural porous medium : Influence of the solid-liquid interface processes

    NASA Astrophysics Data System (ADS)

    Petrangeli Papini, M.; Bianchi, A.; Behra, P.; Majone, M.; Beccari, M.

    2003-05-01

    Contaminated groundwater typically contains different metal contaminants which may compete with each other for the same adsorption sites. Understanding the fate of these micro-pollutants is of primary importance for the assessment of the risk associated to their dispersion in the environment and for the evaluation of the most appropriate remediation technology. By this regard, column techniques can be considered as a useful tool both to perform transport experiments and to obtain equilibrium adsorption data without any perturbation of the solid-liquid interface. Cd and Pb mono-component step column experiments were performed to obtain adsorption isotherms with a natural aquifer material. General Composite approach was used to define the equilibrium adsorption model characterised by two types of sites (ion-exchange and surface complexation sites). Coupling the adsorption model to the Advection-Dispersion equation (by IMPACT code) allowed to well represent the mono-component step experiments. The model was successfully used to predict the competitive Cd and Pb transport behaviour.

  6. Focused ultrasound solid-liquid extraction for the determination of organic biomarkers in beachrocks.

    PubMed

    Blanco-Zubiaguirre, L; Arrieta, N; Iturregui, A; Martinez-Arkarazo, I; Olivares, M; Castro, K; Olazabal, M A; Madariaga, J M

    2015-11-01

    Beachrocks are consolidated coastal sedimentary formations resulting mainly from the relative rapid cementation of beach sediments by different calcium carbonate polymorphs. Although previous works have already studied the elemental composition and the mineral phases composing these cements, few of them have focused their attention on the organic matter present therein. This work describes an extraction methodology based on focused ultrasound solid-liquid extraction (FUSLE), followed by analysis using large volume injection (LVI) in a programmable temperature vaporizer (PTV) combined with gas chromatography-mass spectrometry (GC-MS) in order to determine organics such as polycyclic aromatic hydrocarbons (PAHs) and biomarkers (hopanes), which can increase and confirm the information obtained so far. This goal has been achieved after the optimization of the main parameters affecting the extraction procedure, such as, extraction solvent, FUSLE variables (amplitude, extraction time and pulse time) and also variables affecting the LVI-PTV (vent time, injection speed and cryo-focusing temperature). The developed method rendered results comparable to traditional extraction methods in terms of accuracy (77-109%) and repeatability (RSD<23%). Finally, the analyses performed over real beachrock samples from the Bay of Biscay (Northern Spain) revealed the presence of the 16 EPA priority PAHs, as well as some organic biomarkers which could increase the knowledge about such beachrock formation. PMID:26186864

  7. Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.

    2013-01-01

    The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.

  8. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction. PMID:24274698

  9. Visualization of the solid-liquid equilibria for non-flammable mixed refrigerants

    NASA Astrophysics Data System (ADS)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Jeong, Sangkwon

    2016-04-01

    Non-flammable mixed refrigerant (NF-MR) Joule Thomson (J-T) refrigerators have desirable characteristics and wide cooling temperature range compared to those of pure J-T refrigerators. However, the operating challenge due to freezing is a critical issue to realize this type of refrigerator. In this paper, the solid-liquid phase equilibria (i.e. freezing point) of the NF-MR which is composed of Argon (Ar), R14 (CF4), and R218 (C3F8), has been experimentally investigated by a visualized apparatus. The accuracy of the apparatus is experimentally verified with pure refrigerants and selected binary mixed refrigerants. Freezing points of the ternary NF-MRs have been measured with the molar compositions from 0.1 to 0.8 for each component. Each test result is simultaneously acquired by a camcorder for visual inspection and temperature measurement during a warming process. Experimental results reveal that the specific MR, with R14 molar composition higher than 0.4, can achieve remarkably low freezing temperature even below 77 K. These unusual freezing point depression characteristics of the MR can be a useful information for designing a cryogenic MR J-T refrigerator to reach temperatures less than 77 K.

  10. Molecular Dynamics Study of Freezing Point and Solid-Liquid Interfacial Free Energy of Stockmayer Fluids

    SciTech Connect

    Wang, J.; Apte, Pankaj; Morris, James R; Zeng, X.C.

    2013-01-01

    Freezing temperatures of Stockmayer fluids with different dipolar strength at zero pressure are estimated and computed using three independent molecular-dynamics (MD) simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature (NPT) two phase coexistence method, and the constant-pressure and constant-enthalpy (NPH) coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with a reduced dipole moment is 0.656 0.001, 0.726 0.002 and 0.835 0.005, respectively. The freezing temperature increases with the dipolar strength. The solid-liquid interfacial free energies of the (111), (110) and (100) interface are calculated for the first time using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, that is, .

  11. Visual investigation of solid-liquid phase equilibria for nonflammable mixed refrigerant

    NASA Astrophysics Data System (ADS)

    Lee, C.; Yoo, J.; Park, I.; Park, J.; Cha, J.; Jeong, S.

    2015-12-01

    Non-flammable mixed refrigerant (NF-MR) Joule Thomson (J-T) refrigerators have desirable characteristics and wide cooling temperature range compared to those of pure J-T refrigerators. However, the operating challenge due to freezing is a critical issue to construct this refrigerator. In this paper, the solid-liquid phase equilibria (i.e. freezing point) of the NF-MR which is composed of Argon, R14 (CF4), and R218 (C3F8), has been experimentally investigated by a visualized apparatus. Argon, R14 and R218 mixtures are selected to be effectively capable of reaching 100 K in the MR J-T refrigerator system. Freezing points of the mixtures have been measured with the molar compositions from 0.1 to 0.8 for each component. Each test result is simultaneously acquired by a camcorder for visual inspection and temperature measurement during a warming process. Experimental results show that the certain mole fraction of Argon, R14, and R218 mixture can achieve remarkably low freezing temperature even below 77 K. This unusual freezing point depression characteristic of the MR can be a useful information for designing a cryogenic MR J-T refrigerator to reach further down to 77 K.

  12. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    NASA Astrophysics Data System (ADS)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  13. Band offsets across solid-liquid interfaces from continuum solvation methods

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Ping, Yuan; Galli, Giulia A.; Goddard, William A., III

    2015-03-01

    The band edge positions of photo-electrodes relative to water redox potentials play an important role in determining the efficiency of the photo-electrochemical cell. Direct theoretical calculations of solid-liquid interfaces are expensive and simplified models are desirable for rapid theoretical screening of new materials. However, traditional solvation models are extensively fit to describe organic solutes and hence extrapolate poorly to highly-polar inorganic surfaces. We develop minimally-empirical continuum solvation models suitable for treating such surfaces and present theoretical predictions of the band positions of rutile TiO2 (110) and WO3 (001) surfaces in water. We obtain non-negligible solvation effects ~ 1-2 eV, in good agreement with experimental results. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  14. Influence de la vitesse de chauffage sur l'atomisation électrothermique en spectrométrie d'absorption atomique. Applications aux éléments volatils, cadmium et plomb

    NASA Astrophysics Data System (ADS)

    Riandey, C.; Gavinelli, R.; Pinta, M.

    The advantages of electrothermal atomization by rapid heating (faster than 2000°C s -1) in atomic absorption for the determination of volatile elements are studied. The aim is to control the matrix effects, particularly the very high non-specific absorptions. It is shown that, unlike normal heating, now rapid heating makes it possible to atomize a volatile element without hardly covolatilizing its matrix, as a result of the change in the optimum atomization temperatures. Application examples are given: direct determination of cadmium and lead (atomized respectively at only 900 and 960°C) in sea water and related products. This method is likely to be applicable to other matrices which covolatilize normally with other elements. The mechanisms of atom formation in rapid heating are also investigated.

  15. Solid-Liquid Interdiffusion Bonding of Silicon Carbide to Steel for High Temperature MEMS Sensor Packaging and Bonding

    NASA Astrophysics Data System (ADS)

    Chan, Matthew Wei-Jen

    Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of SLID bonding for high temperature applications. Lastly, this dissertation provides recommendations for improving the strength and durability of the bond at temperatures of 400 °C and provides the framework for future work in the area of high temperature harsh environment MEMS packaging that would take directly bonded MEMS to temperatures of 600 °C and beyond.

  16. Effect of potential truncations and shifts on the solid-liquid phase coexistence of Lennard-Jones fluids.

    PubMed

    Ahmed, Alauddin; Sadus, Richard J

    2010-09-28

    Molecular simulation results for the solid-liquid coexistence properties of untruncated, truncated, truncated and shifted, and truncated and shifted-force 12-6 Lennard-Jones potentials are reported. It is found that solid-liquid coexistence properties vary systematically with potential truncations, shifts, and cut-off values. Potential truncations and shifts have important consequences at low temperatures, particularly in the vicinity of the triple point. The main influence is on the coexistence pressure whereas both liquid and solid densities are less sensitive to the truncations and shifts. The data reported in this work indicate that the cut-off radius mainly affects the properties of the liquid phase whereas its influence on the solid phase is almost negligible. The data suggest a monotonic variation of the melting temperature as a function of cut-off radius, which contradicts the oscillatory behavior of the melting temperature reported elsewhere. PMID:20886958

  17. A Bottom-Up Approach to Understanding Protein Layer Formation at Solid-Liquid Interfaces

    PubMed Central

    Kastantin, Mark; Langdon, Blake B.; Schwartz, Daniel K.

    2014-01-01

    A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors. PMID:24484895

  18. Linear morphological stability analysis of the solid-liquid interface in rapidsolidification of a binary system

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Danilov, D. A.

    2004-05-01

    The interface stability against small perturbations of the planar solid-liquid interface is considered analytically in linear approximation. Following the analytical procedure of Trivedi and Kurz [

    R. Trivedi and W. Kurz, Acta Metall. 34, 1663 (1986)
    ], which is advancing the original treatment of morphological stability by Mullins and Sekerka [
    W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964)
    ] to the case of rapid solidification, we extend the model by introducing the local nonequilibrium in the solute diffusion field around the interface. A solution to the heat- and mass-transport problem around the perturbed interface is given in the presence of the local nonequilibrium solute diffusion. Using the developing local nonequilibrium model of solidification, the self-consistent analysis of linear morphological stability is presented with the attribution to the marginal (neutral) and absolute morphological stability of a rapidly moving interface. Special consideration of the interface stability for the cases of solidification in negative and positive thermal gradients is given. A quantitative comparison of the model predictions for the absolute morphological stability is presented with regard to experimental results of Hoglund and Aziz [ D. E. Hoglund and M. J. Aziz, in Kinetics of Phase Transformations, edited by M.O. Thompson, M. J. Aziz, and G. B. Stephenson, MRS Symposia Proceedings No. 205 (Materials Research Society, Pittsburgh, 1991), p. 325 ] on critical solute concentration for the interface breakdown during rapid solidification of Si-Sn alloys.

  19. Real Time Characterization of Solid/Liquid Interfaces During Directional Solidification

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kaukler, W. K.; Curreri, P. A.; Peters, P.

    1997-01-01

    A X-Ray Transmission Microscope (XTM) has been developed to observe in real time and in-situ solidification phenomenon at the solid/liquid interface. Recent improvements in the horizontal Bridgman furnace design provides real-time magnification (during solidification) up to 12OX. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 3-6 micrometers. Further, morphological transitions from planar to cellular interfaces have also been imaged. Results from recent XTM studies on Al-Bi monotectic system, Al-Au eutectic system and interaction of insoluble particles with s/I interfaces in composite materials will be presented. An important parameter during directional solidification of molten metal is the interfacial undercooling. This parameter controls the morphology and composition at the s/I interface. Conventional probes such as thermocouples, due to their large bead size, do not have sufficient resolution for measuring undercooling at the s/I interface. Further, the intrusive nature of the thermocouples also distorts the thermal field at the s/I interface. To overcome these inherent problems we have recently developed a compact furnace which utilizes a non-intrusive technique (Seebeck) to measure undercooling at the S/I interface. Recent interfacial undercooling measurements obtained for the Pb-Sn system will be presented. The Seebeck measurement furnace in the future will be integrated with the XTM to provide the most comprehensive tool for real time characterization of s/I interfaces during solidification.

  20. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  1. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    SciTech Connect

    Rogers, S.; Cook, J.; Juratovac, J.; Goodwillie, J.; Burke, T.; Stuart, B., ed.

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities will be used to suggest a design for integration into commercial-scale production.

  2. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    SciTech Connect

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  3. Solid-liquid separation by sonochemistry: a new approach for the separation of mineral suspensions.

    PubMed

    Nakamura, Takashi; Okawa, Hirokazu; Kawamura, Youhei; Sugawara, Katsuyasu

    2011-01-01

    The effect of sonochemistry to acidify solutions was applied for the solid-liquid separation of three kinds of mineral suspensions. At first, the relationship was measured between zeta-potential and pH in these suspensions to find pH levels correspondent to the isoelectric points. Then sonication (200 kHz or 28 kHz) was applied to adjust pH to the isoelectric points and separated particles from solutions by still-standing and spontaneous precipitation. Compared to the conventional methods using filters and chemical agents, the advantage of this sonochemical separation is two-fold. First, it does not require the maintenance of filters. Second, separated particles are easy to use since they are not mixed with pH adjusters and chemical flocculants. Isoelectric zone (ion strength 0.01, concentration 0.001 wt.%) of green tuff, andesite and titanium dioxide suspensions tested in this study were pH 1.1-3.7, 0.8-3.4, 2.7-5.7, respectively. The sonication of green tuff and andesite suspensions at 200 kHz changed the pH to the isoelectric zone despite the pH buffering effect of eluted alkali earth metals, and successfully precipitated the particles. On the contrary, the sonication of these suspensions at 28 kHz failed to adjust pH to the isoelectric zone, and the particles did not precipitate. In addition, the degradation of particles was observed in the SEM photographs of particles sonicated at 28 kHz, whereas no significant change was detected in particles sonicated at 200 kHz. Thus, it is concluded that the optimal frequency is about 200 kHz because its strong chemical effect can easily adjust the pH while its relatively weak physical effect prevents the degradation of particles. PMID:20643570

  4. Nanobubbles do not sit alone at the solid-liquid interface.

    PubMed

    Peng, Hong; Hampton, Marc A; Nguyen, Anh V

    2013-05-21

    The unexpected stability and anomalous contact angle of gaseous nanobubbles at the hydrophobic solid-liquid interface has been an issue of debate for almost two decades. In this work silicon-nitride tipped AFM cantilevers are used to probe the highly ordered pyrolytic graphite (HOPG)-water interface with and without solvent-exchange (a common nanobubble production method). Without solvent-exchange the force obtained by the single force and force mapping techniques is consistent over the HOPG atomic layers and described by DLVO theory (strong EDL repulsion). With solvent-exchange the force is non-DLVO (no EDL repulsion) and the range of the attractive jump-in (>10 nm) over the surface is grouped into circular areas of longer range, consistent with nanobubbles, and the area of shorter range. The non-DLVO nature of the area between nanobubbles suggests that the interaction is no longer between a silicon-nitride tip and HOPG. Interfacial gas enrichment (IGE) covering the entire area between nanobubbles is suggested to be responsible for the non-DLVO forces. The absence of EDL repulsion suggests that both IGE and nanobubbles are not charged. The coexistence of nanobubbles and IGE provides further evidence of nanobubble stability by dynamic equilibrium. The IGE cannot be removed by contact mode scanning of a cantilever tip in pure water, but in a surfactant (SDS) solution the mechanical action of the tip and the chemical action of the surfactant molecules can successfully remove the enrichment. Strong EDL repulsion between the tip and nanobubbles/IGE in surfactant solutions is due to the polar heads of the adsorbed surfactant molecules. PMID:23597206

  5. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.

    PubMed

    Ramphao, M; Wentzel, M C; Merritt, R; Ekama, G A; Young, T; Buckley, C A

    2005-03-20

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only in the design of the BNR system itself, but also in the design approach for the whole wastewater treatment plant (WWTP). In multizone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic, and aerobic zones (i.e., fixed volume fractions), the mass fractions can be controlled (within a range) with the interreactor recycle ratios. This zone mass fraction flexibility is a significant advantage in membrane BNR systems over conventional BNR systems with SSTs, because it allows for changing of the mass fractions to optimize biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios in the upper range (f(q) approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60), and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs. Although the volume reduction compared with equivalent conventional BNR systems with secondary settling tanks is not as large (40% to 60%), the cost of the membranes can be offset against sludge thickening and stabilization costs. Moving from a flow-unbalanced raw wastewater system to a flow-balanced (f(q) = 1), low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes from extended aeration to include primary sludge stabilization. The cost of primary sludge treatment then has to be paid from the savings from the increased WWTP capacity. PMID:15696540

  6. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated systems included metal-ceramic particles (pure aluminum - zirconia particles) and transparent organic - non-reactive particles (succinonitrile - polystyrene and biphenyl - glass). This paper will discuss the experimental results obtained in both lg and pg conditions and the influence of the natural convection on V(sub cr). A summary of past mathematical models and our recent theoretical developments will also be presented to explain the experimentally observed particle/SLI interaction.

  7. Dynamique d'un laser a colorant a pompage synchrone avec cavite couplee et applications aux ondes terahertz breves et intenses

    NASA Astrophysics Data System (ADS)

    Baribault, Robert

    Nous presentons deux methodes de generation de battements de frequences terahertz pouvant servir a illuminer des antennes photoconductrices afin d'obtenir une emission a spectre etroit et une grande plage d'accordabilite dans l'infrarouge lointain (IRL). Nous discutons des differentes applications dans l'IRL, et presentons plusieurs techniques de generation d'IRL. Parmi ces methodes, nous choisissons celle qui depend de l'illumination incidente, basee sur un deplacement de charges dans un semi-conducteur soumis a une tension a ses bornes, l'antenne photoconductrice. Nous etudions l'emission d'ondes terahertz par cette antenne photoconductrice pour quatre types d'illumination, l'impulsion ultrabreve, l'impulsion ultrabreve modelee, le pseudo-battement par decalage d'impulsions avec glissement en frequence, et le battement. Nous presentons des resultats experimentaux d'illumination d'une antenne photoconductrice en silicium sur saphir endommage par radiation (rd-SOS) avec une impulsion breve et un battement. Un accroissement de l'efficacite est demontre pour le battement. Nous simulons la dynamique d'un laser a colorant a pompage synchrone (LACPS) afin de comprendre ses conditions optimales d'utilisation. Deux LACPS, pompes par le meme laser Nd:YAG, sont synchronises temporellement et spatialement et permettent d'obtenir un battement stable par le controle des delais optiques. Les durees a mi-hauteur des impulsions des deux LACPS doivent demeurer identiques en fonction de la longueur d'onde. La section efficace d'emission du milieu de gain est critique dans la dynamique de ce laser. La duree a mi-hauteur de l'impulsion varie peu avec la section efficace d'emission. Pour controler les fluctuations dues a l'emission spontanee, on ajoute une cavite couplee qui minimise l'effet de l'emission spontanee dans la dynamique du LACPS. Nous montrons les battements obtenus avec deux LACPS, de 0.5 THz et 18 THz, dont deux, a 0.85 THz et 9.36 THz sont amplifies jusqu'a une energie d'impulsion de l'ordre du millijoule. En conclusion, nous proposons une modification au systeme de generation de battement qui facilite l'utilisation du montage. Nous presentons une methode alternative de stabiliser la forme temporelle des impulsions du LACPS sans la cavite couplee. Nous presentons egalement une nouvelle approche d'illumination d'une antenne photoconductrice avec un battement avec un glissement en frequence.

  8. Bubble Induced Disruption of a Planar Solid-Liquid Interface During Controlled Directional Solidification in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2013-01-01

    Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.

  9. Comparison between sample disruption methods and solid-liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves.

    PubMed

    Teixeira, D Martins; Patão, R Ferreira; Coelho, A Varela; da Costa, C Teixeira

    2006-01-20

    Sea sand disruption method (SSDM) and matrix solid phase disruption (MSPD) were compared to solid-liquid extraction (SLE) for extraction of phenolic compounds from the Ficus carica leaves. Statistical treatment, ANOVA-single factor, was used to compare the extraction yields obtained by these methods, and for the majority of the extracted compounds, significantly higher yields were obtained by the solid disruption methods. Both solid disruption methods are faster and ecologically friendly, but the sea sand method was more reproducible (RSD < 5% for most compounds), and was also the least expensive method. Recoveries above 85% were obtained for chlorogenic acid, rutin, and psoralen using the sea sand extraction method. PMID:16343519

  10. Solid-liquid phase transitions in 3D systems with the inverse-power and Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Vaulina, O. S.; Koss, X. G.

    2016-03-01

    The melting of face-centered cubic (fcc) and body-centered cubic (bcc) crystal lattices was studied analytically and numerically for the systems of particles interacting via the inverse-power-law and Yukawa potentials. New approach is proposed for determination of the solid-liquid phase transitions in these systems. The suggested approach takes into account a nonlinearity (anharmonicity) of pair interaction forces and allows to correctly predict the conditions of melting of the systems with various isotropic pair interaction potentials. The obtained results are compared with the existing theoretical and numerical data.

  11. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries.

    PubMed

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng

    2015-09-01

    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible. PMID:26305572

  12. Collaborateurs aux lignes directrices en soins primaires

    PubMed Central

    Allan, G. Michael; Kraut, Roni; Crawshay, Aven; Korownyk, Christina; Vandermeer, Ben; Kolber, Michael R.

    2015-01-01

    Résumé Objectif Déterminer la profession des collaborateurs scientifiques aux lignes directrices, les variables associées aux différences de participation des collaborateurs et si oui ou non les lignes directrices en soins primaires fournissent un énoncé sur les conflits d’intérêts. Type d’étude Analyse rétrospective des lignes directrices en soins primaires affichées sur le site web de l’Association médicale canadienne. Deux extracteurs de données indépendants ont examiné les lignes directrices et ont extrait les données pertinentes. Contexte Canada Principaux paramètres à l’étude Commanditaires des lignes directrices, territoire (national ou provincial) visé par les lignes directrices, profession des collaborateurs scientifiques aux lignes directrices et énoncés de conflits d’intérêts rapportés dans les lignes directrices. Résultats Sur les 296 lignes directrices de pratique clinique trouvées dans la section de la médecine familiale de l’Infobanque AMC, 65 apparaissaient en double et 35 se rapportaient de façon limitée à la médecine familiale. Vingt ne fournissaient aucune information sur les collaborateurs scientifiques, ce qui laissait 176 lignes directrices propices à l’analyse. Au total, il y avait 2495 collaborateurs (auteurs et membres de comité) : 1343 (53,8 %) spécialistes autres que des médecins de famille, 423 (17,0 %) médecins de famille, 141 (5,7 %) infirmières, 75 (3,0 %) pharmaciens, 269 (10,8 %) autres cliniciens, 203 (8,1 %) scientifiques non cliniciens et 41 (1,6 %) collaborateurs de profession inconnue. La proportion des collaborateurs de ces professions différait significativement entre les lignes directrices nationales et provinciales, de même qu’entre les lignes directrices financées par l’industrie et celles qui ne l’étaient pas (p < 0,001 dans les 2 cas). Dans le cas des lignes directrices de pratique clinique provinciales, 30,8 % des collaborateurs étaient des médecins de famille et 37,3 % étaient d’autres spécialistes, comparativement à 13,9 % et à 57,4 %, respectivement, dans le cas des lignes directrices nationales. Parmi les lignes directrices financées par l’industrie, 7,8 % des collaborateurs étaient des médecins de famille et 68,6 % étaient d’autres spécialistes, comparativement à 19,4 % et à 49,9 %, respectivement, parmi les lignes directrices qui n’étaient pas financées par l’industrie. Les conflits d’intérêts n’étaient pas rapportés dans 68,9 % des cas. Lorsqu’ils l’étaient, les énoncés sur les conflits d’intérêts se rapportaient à 48,6 % aux spécialistes autres que les médecins de famille, à 30,0 % aux pharmaciens, à 27,7 % aux médecins de famille et à 10,0 % ou moins aux autres groupes; les différences étaient statistiquement significatives (p < 0,001). Conclusion Les spécialistes autres que les médecins de famille sont plus nombreux que tous les autres fournisseurs de soins de santé et sont plus de 3 fois plus enclins à collaborer aux lignes directrices en soins primaires que ne le sont les médecins de famille. Les énoncés sur les conflits d’intérêts n’apparaissaient que dans une minorité de lignes directrices, et lorsqu’ils apparaissaient, les spécialistes autres que les médecins de famille étaient plus enclins à les rapporter. Les lignes directrices ciblant les médecins de famille devraient compter plus de médecins de famille et de soins primaires et moins de collaborateurs en conflit d’intérêts.

  13. L'Anse Aux Meadows, Newfoundland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    L'Anse aux Meadows is a site on the northernmost tip of the island of Newfoundland, located in the Province of Newfoundland and Labrador, Canada, where the remains of a Viking village were discovered in 1960 by the Norwegians Helge and Anne Ingstad. The only authenticated Viking settlement in North America outside Greenland, it was the site of a multi-year archaeological dig that found dwellings, tools and implements that verified its time frame. The settlement, dating more than five hundred years before Christopher Columbus, contains the earliest European structures in North America. Named a World Heritage site by UNESCO, it is thought by many to be the semi-legendary 'Vinland' settlement of explorer Leif Ericson around AD 1000. The settlement at L'Anse aux Meadows consisted of at least eight buildings, including a forge and smelter, and a lumber yard that supported a shipyard. The largest house measured 28.8 by 15.6 m and consisted of several rooms. Sewing and knitting tools found at the site indicate women were present at L'Anse aux Meadows

    The image was acquired on September 14, 2007, covers an area of 14.2 x 14.6 km, and is located at 51.5 degrees north latitude, 55.6 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  14. A Diffuse Interface Model for solid-liquid-air dissolution problems based on a porous medium theory

    NASA Astrophysics Data System (ADS)

    Luo, H.; Quintard, M.; Debenest, G.; Laouafa, F.

    2011-12-01

    The underground cavities may be dissolved by the flows of groundwater where the dissolution mainly happens at the liquid-solid interface. In many real cases, the cavities are not occupied only by the water, but also the gas phase, e.g., air, or other gases. In this case, there are solid-liquid-gas three phases. Normally, the air does not participate the dissolution. However, it may influence the dissolution as the position of the solid-liquid interface may gradually lower down with the dissolution process. Simulating the dissolution problems with multi- moving interfaces is a difficult task but rather interesting to study the evolution of the underground cavities. In this paper, we propose a diffuse interface model (DIM) to simulate the three-phase dissolution problem, based on a porous medium theory and a volume averaging theory te{Whitaker1999,Golfier2002,Quintard1994}. The interface is regarded as a continuous layer where the phase indicator (mainly for solid-liquid interface) and phase saturation (mainly for liquid-gas interface) vary rapidly but smoothly. The DIM equations enable us to simulate the moving interface under a fixed mesh system, instead of a deformed or moving mesh. Suppose we have three phases, solid, liquid and gas. The solid phase contains only species A. The gas phase contains only the air. The volume averaging theory is used to upscale the balance equations. The final DIM equations are presented below. The balance equation of solid phase can be written as {partialrho_{s}(1-\\varepsilon_{f})}/{partial t}=-K_{sl} where \\varepsilonf represents the volume fraction of the fluids (liquid+gas) and Ksl refers to the mass exchange between the solid phase and the liquid phase. Ksl cam be expressed as K_{sl}=rho_{l}alpha(omega_{eq}-Omega_{Al}). The balance equations of liquid phase can be written as {partialrho_{l}\\varepsilon_{f}S_{l}}/{partial t}+nabla\\cdot(rho_{l}{V}_{l})= K_{sl}. The balance equation of liquid phase can be written as {partialrho_{g}\\varepsilon_{f}(1-S_{l})}/{partial t}+nabla\\cdot(rho_{g}{V}_{g}) =0. The balance equations of species A can be written as rho_{l}\\varepsilon_{f}S_{l} {partialOmega_{Al}}/{partial t} +rho_{l}{V}_{l}\\cdotnablaOmega_{Al} =nabla\\cdot(rho_{l}{D}_{Al}^{*}nablaOmega_{Al})+K_{sl}. We introduce the multi-phase Darcy's Law to {V}l and {V}g, {V}_{l}=-{{K}k_{rl}}/{mu_{l}}(nabla P_{l}-rho_{l}{g}) {V}_{g}=-{K}k_{rg}}/{mu_{g}}(nabla P_{g}-rho_{g}{g}) Kozeny-Carman equation is introduced to calculate {K}, Capillary pressure theory can be used to calculate krl, krg, and the capillary pressure Pc, as a function of Sl.

  15. Free-surface optical scattering as an indicator of the shock-induced solid-liquid phase transition in tin

    NASA Astrophysics Data System (ADS)

    Stevens, G. D.; Lutz, S. S.; Marshall, B. R.; Turley, W. D.; Veeser, L. R.; Furlanetto, M. R.; Hixson, R. S.; Holtkamp, D. B.; Jensen, B. J.; Rigg, P. A.; Wilke, M. D.

    2008-07-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest that significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (preshock) to diffuse upon melting. A familiar manifestation of this phenomenon is the loss of signal light observed with a velocity interferometer system for any reflector, which occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry and conductivity) that show relatively small changes, the specularity of reflection provides a more sensitive and definitive indication of the solid-liquid phase transition. Data are presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  16. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line

    NASA Astrophysics Data System (ADS)

    Benjamin, Ronald; Horbach, Jürgen

    2015-07-01

    Kinetics of crystal-growth is investigated along the solid-liquid coexistence line for the (100), (110), and (111) orientations of the Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) fcc crystal-liquid interface, using non-equilibrium molecular dynamics simulations. A slowing down of the growth kinetics along the coexistence line is observed, which is due to the decrease of the melting enthalpy with increasing coexistence temperature and pressure. Other quantities such as the melting pressure and liquid self-diffusion coefficient have a comparatively lesser impact on the kinetic growth coefficient. Growth kinetics of the LJ and WCA potentials become similar at large values of the melting temperature and pressure, when both resemble a purely repulsive soft-sphere potential. Classical models of crystallization from the melt are in reasonable qualitative agreement with our simulation data. Finally, several one-phase empirical melting/freezing rules are studied with respect to their validity along the coexistence line.

  17. Solid-Liquid Interfacial Energy of Solid Neopentylglycol Solution in Equilibrium with Neopentylglycol-Aminomethylpropanediol Eutectic Liquid

    NASA Astrophysics Data System (ADS)

    Bayram, Ümit; Özer, Alaaddin; Aksöz, Sezen; Mara?l?, Necmettin

    2013-09-01

    The grain boundary groove shapes for solid neopentylglycol solution (NPG-40 mol pct AMPD) in equilibrium with the neopentylglycol (NPG)-aminomethylpropanediol (AMPD) eutectic liquid (NPG-42.2 mol pct AMPD) have been directly observed using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (?) and solid-liquid interfacial energy ( ? SL) of solid NPG solution have been determined to be (7.4 ± 0.7) × 10-8 K m and (6.4 ± 1.0) × 10-3 J m-2, respectively. The grain boundary energy of solid NPG solution has been determined to be (12.5 ± 1.0) × 10-3 J m-2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated eutectic liquid to thermal conductivity of solid NPG solution has also been determined to be 0.48.

  18. Solid-liquid interfacial energy of neopentylglycol solid solution in equilibrium with succinonitrile-neopentylglycol-aminomethylpropanediol liquid

    NASA Astrophysics Data System (ADS)

    Özer, A.; Bayram, Ü.; Aksöz, S.; Mara?l?, N.

    2013-02-01

    The grain boundary groove shapes for equilibrated solid neopentylglycol (NPG) solution (NPG-26 mol% AMPD-4 mol% SCN) in equilibrium with the succinonitrile (SCN)-neopentylglycol (NPG)-aminomethylpropanediol (AMPD) liquid (NPG-45 mol% SCN-2 .9 mol% AMPD) have been directly observed by using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (?) and solid-liquid interfacial energy (?SL) of solid NPG solution have been determined to be (7.8±0.8)×10-8 K m and (8.1±1.2)×10-3 J m-2, respectively. The grain boundary energy of solid NPG solution has been determined to be (15.8±2.5)×10-3 J m-2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated liquid to thermal conductivity of solid NPG solution has also been determined to be 0.42.

  19. Free-Surface Optical Scattering as an Indicator of the Shock-Induced Solid-Liquid Phase Transition in Tin

    SciTech Connect

    Stevens, G. D.; Lutz, S. S.; Marshall, B. R.; Turley, W. D.; Veeser, L. R.; Furlanetto, M. R.; Hixson, R. S.; Holtkamp, D. B.; Jensen, B. J.; Rigg, P. A.; Wilke, M. D.

    2008-07-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. A familiar manifestation of this phenomenon is the loss of signal light in VISAR measurements, which occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry, conductivity) that show relatively small (1%–10%) changes, the specularity of reflection provides a more sensitive and definitive indication of the solid-liquid phase transition. Data will be presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  20. Inferences about radionuclide mobility in soils based on the solid/liquid partition coefficients and soil properties.

    PubMed

    Sohlenius, Gustav; Saetre, Peter; Nordén, Sara; Grolander, Sara; Sheppard, Steve

    2013-05-01

    To assist transport modeling in assessments of the radiological impact of a geological repository for radioactive wastes, the mobility of various elements was studied in arable and wetland soils in the Forsmark region, Sweden. Pore water and total element contents were determined for five types of unconsolidated deposits (regolith), spanning a wide range of soil properties with respect to pH and organic matter content. Two soil depths were sampled to capture element mobility in regolith layers affected and unaffected by soil-forming processes. The solid/liquid partition coefficients (K d values) for most elements varied significantly among regolith types. For most elements, the observed variations in K d values could be explained by variations in soil properties. For many elements, mobility increased with decreasing soil pH. The results provide a significant addition of data on radionuclide retention in soils, taking account of soil properties and processes. PMID:23619799

  1. Rapid carbonation for calcite from a solid-liquid-gas system with an imidazolium-based ionic liquid.

    PubMed

    Ibrahim, Abdul-Rauf; Vuningoma, Jean Bosco; Huang, Yan; Wang, Hongtao; Li, Jun

    2014-01-01

    Aqueous carbonation of Ca(OH)2 is a complex process that produces calcite with scalenohedral calcite phases and characterized by inadequate carbonate species for effective carbonation due to the poor dissolution of CO2 in water. Consequently, we report a solid-liquid-gas carbonation system with an ionic liquid (IL), 1-butyl-3-methylimidazolium bromide, in view of enhancing the reaction of CO2 with Ca(OH)2. The use of the IL increased the solubility of CO2 in the aqueous environment and enhanced the transport of the reactive species (Ca2+ and CO32-) and products. The presence of the IL also avoided the formation of the CaCO3 protective and passivation layer and ensured high carbonation yields, as well as the production of stoichiometric rhombohedral calcite phases in a short time. PMID:24968273

  2. Calculating the role of composition in the anisotropy of solid-liquid interface energy using phase-field-crystal theory.

    PubMed

    Jugdutt, Bernadine A; Ofori-Opoku, Nana; Provatas, Nikolas

    2015-10-01

    This work uses Ginzburg-Landau theory derived from a recent structural phase-field-crystal model of binary alloys developed by the authors to study the roles of concentration, temperature, and pressure on the interfacial energy anisotropy of a solid-liquid front. It is found that the main contribution to the change in anisotropy with concentration arises from a change in preferred crystallographic orientation controlled by solute-dependent changes in the two-point density correlation function of a binary alloy, a mechanism that leads to such phenomena as solute-induced elastic strain and dislocation-assisted solute clustering. Our results are consistent with experimental observations in recent studies by Rappaz et al. [J. Fife, P. Di Napoli, and M. Rappaz, Metall. Mater. Trans. A 44, 5522 (2013)]. This is the first PFC work, to our knowledge, to incorporate temperature, pressure, and density into the thermodynamic description of alloys. PMID:26565255

  3. Calculating the role of composition in the anisotropy of solid-liquid interface energy using phase-field-crystal theory

    NASA Astrophysics Data System (ADS)

    Jugdutt, Bernadine A.; Ofori-Opoku, Nana; Provatas, Nikolas

    2015-10-01

    This work uses Ginzburg-Landau theory derived from a recent structural phase-field-crystal model of binary alloys developed by the authors to study the roles of concentration, temperature, and pressure on the interfacial energy anisotropy of a solid-liquid front. It is found that the main contribution to the change in anisotropy with concentration arises from a change in preferred crystallographic orientation controlled by solute-dependent changes in the two-point density correlation function of a binary alloy, a mechanism that leads to such phenomena as solute-induced elastic strain and dislocation-assisted solute clustering. Our results are consistent with experimental observations in recent studies by Rappaz et al. [J. Fife, P. Di Napoli, and M. Rappaz, Metall. Mater. Trans. A 44, 5522 (2013), 10.1007/s11661-013-1912-7]. This is the first PFC work, to our knowledge, to incorporate temperature, pressure, and density into the thermodynamic description of alloys.

  4. Resonant anomalous x-ray reflectivity as a probe of ion adsorption at solid-liquid interfaces.

    SciTech Connect

    Fenter, P.; Park, C.; Nagy, K. L.; Sturchio, N. C.; Chemistry; Univ. of Illinois at Chicago

    2007-05-23

    We discuss new opportunities to understand processes at the solid-liquid interface using resonant anomalous X-ray reflectivity (RAXR). This approach is illustrated by determination of element-specific density profiles at mica surfaces in aqueous electrolyte solutions containing Rb{sup +} and Sr{sup 2+}. The total interfacial electron density profile is determined by specular reflectivity (i.e., reflected intensity vs. momentum transfer, q, at an energy, E, far from any characteristic absorption edge). RAXR spectra (i.e., intensity vs. E at fixed q) reveal element-specific ion distributions. Key differences in the interaction of Rb{sup +} and Sr{sup 2+} with mica are observed using resonant anomalous X-ray reflectivity: Rb{sup +} adsorbs in a partially hydrated state, but Sr{sup 2+} adsorbs in both fully and partially hydrated states.

  5. Solid-liquid boundaries in iron-rich alloys and the age of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Gao, L.

    2006-05-01

    Melting and solidification cause major chemical differentiation in the Earth. As the Earth cools, the liquid core solidifies from the center and the inner core grows at the expense of the outer core. The timing of the onset of core solidification remains poorly constrained. Labrosse et al. (2001) estimated the age of the Earth's inner core based on energy budget considerations. In their analysis, the latent heat and gravitational energy are calculated according to dislocation melting theory. We have conducted melting experiments on pure iron and an iron-sulfur alloy containing 15 at.% sulfur, in order to determine the effect of pressure on the Clapeyron slopes of the solid-liquid boundaries. Our results allow a critical examination of the energy estimates, hence the age of the inner core. The implications for the budget of radioactive elements will be discussed.

  6. Rapid Carbonation for Calcite from a Solid-Liquid-Gas System with an Imidazolium-Based Ionic Liquid

    PubMed Central

    Ibrahim, Abdul-Rauf; Vuningoma, Jean Bosco; Huang, Yan; Wang, Hongtao; Li, Jun

    2014-01-01

    Aqueous carbonation of Ca(OH)2 is a complex process that produces calcite with scalenohedral calcite phases and characterized by inadequate carbonate species for effective carbonation due to the poor dissolution of CO2 in water. Consequently, we report a solid-liquid-gas carbonation system with an ionic liquid (IL), 1-butyl-3-methylimidazolium bromide, in view of enhancing the reaction of CO2 with Ca(OH)2. The use of the IL increased the solubility of CO2 in the aqueous environment and enhanced the transport of the reactive species (Ca2+ and CO32?) and products. The presence of the IL also avoided the formation of the CaCO3 protective and passivation layer and ensured high carbonation yields, as well as the production of stoichiometric rhombohedral calcite phases in a short time. PMID:24968273

  7. Use of complementary neutron techniques in studying the effect of a solid/liquid interface on bulk solution structures

    SciTech Connect

    Butler, P.D.; Hamilton, W.A.; Magid, L.J.

    1996-12-31

    By appropriate combination of neutron scattering techniques, it is possible to obtain structural information at various distances from a solid/liquid interface and thus probe in some detail how the surface structures evolve into bulk structures. We have used neutron reflectometry (NR) with a newly developed shear cell, near surface small angle neutron scattering (NSSANS) again in combination with the new shear cell, and regular small angle neutron scattering (SANS) with a standard Couette shear cell to probe the structures formed in our aqueous surfactant systems and how they react to a flow field, particularly in the near surface region of a solid/liquid interface. We present data for a 20mM aqueous solutions of 70% cetyltrimethylammonium 3,5-dichlorobenzoate (abbreviated CTA3,5ClBz) and 30% CTAB. This system forms a very viscoelastic solution containing long threadlike micelles. NR only probes to a depth of about 0.5 {mu}m from the surface in these systems and clearly indicates that adsorbed onto the surface is, surfactant layer which is insensitive to shear. The depth probed by the NSSANS is on the order of 20-30 {mu}m and is determined by the transmission of the sample, the angle of incidence, and the wavelength. In this region, the rods align under shear into a remarkably well ordered hexagonal crystal. The SANS from the Couette cell averages over the entire sample, so that the signal is dominated by scattering from the bulk. While the near surface hexagonal structure is clearly visible, these data are not consistent with the crystal structure persisting throughout the bulk, leading to the postulate that the bulk structure is a two dimensional (2D) liquid where the rods align with the flow, but do not order in the other two dimensions.

  8. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  9. Pre-Service Primary Science Teachers' Understandings of the Effect of Temperature and Pressure on Solid-Liquid Phase Transition of Water

    ERIC Educational Resources Information Center

    Yalcin, Fatma Aggul

    2012-01-01

    The aim of this study was to explore pre-service primary teachers' understandings of the effect of temperature and pressure on the solid-liquid phase transition of water. In the study a survey approach was used, and the sample consisted of one-hundred and three, third year pre-service primary science teachers. As a tool for data collection, a test…

  10. Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.

    SciTech Connect

    Jayaraman, Saivenkataraman

    2010-03-01

    Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We are currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.

  11. Dissolution at Interfaces in Layered Solid-Liquid Thin Films: A Key Step in Joining Process

    NASA Astrophysics Data System (ADS)

    Baras, F.; Turlo, V.; Politano, O.

    2016-03-01

    We have studied the dissolution process of Ni into liquid Al in Ni-Al multilayer nanofilms by means of molecular dynamics simulations. The elemental mechanisms underlying the dissolution process were described and found to be diffusion-limited. The subsequent evolution leading to intermetallic compound formation was analyzed and interpreted on the basis of classical nucleation theory. A better understanding of the microscopic behavior of Ni-Al reactive multilayer foils, which was essential for their use in joining applications, was obtained.

  12. A Distributed Computing Infrastructure for Computational Thermodynamic Calculations of Solid-Liquid Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Ghiorso, M. S.; Kress, V. C.

    2004-12-01

    Software tools like MELTS (Ghiorso and Sack, 1995, CMP 119:197) and its derivatives (Ghiorso et al., 2002, G3 3:10.1029/2001GC000217) are sophisticated calculators used by geoscientists to quantify the chemistry of melt production, transport and storage. These tools utilize computational thermodynamics to evaluate the equilibrium state of the system under specified external conditions by minimizing a suitably constructed thermodynamic potential. Like any thermodynamically based tool, the principal advantage in employing these techniques to model igneous processes is the intrinsic ability to couple the chemistry and energetics of the evolution of the system in a self consistent and rigorous formalism. Access to MELTS is normally accomplished via a standalone X11-based executable or as a Java-based web applet. The latter is a dedicated client-server application rooted at the University of Chicago. Our on-going objective is the development of a distributed computing infrastructure to provide "MELTS-like" computations on demand to remote network users by utilizing a language independent client-server protocol based on CORBA. The advantages of this model are numerous. First, the burden of implementing and executing MELTS computations is centralized with a software implementation optimized to a compute cluster dedicated for that purpose. Improvements and updates to MELTS software are handled locally on the server side without intervention of the user and the server-model lessens the burden of supporting the computational code on a variety of hardware and OS platforms. Second, the client hardware platform does not incur the computational cost of performing a MELTS simulation and the remote user can focus on the task of incorporating results into their model. Third, the client user can write software in a computer language of their choosing and procedural calls to the MELTS library can be executed transparently over the network as if a local language-compatible library of routines is being accessed. Fourth, the flexibility of calling library functions means that the client has more control over the configuration and output of the MELTS calculation. Fifth, if the client computer is a multi-processor compute cluster capable of issuing parallel requests to the MELTS "remote" library, then these requests may be in turn parallelized to the server compute cluster to enhance throughput and performance. Application of this computational model to fluid dynamical simulations of melting and transport in the Earth's mantle is envisioned. Further information and example clients for utilizing the current prototype library for distributed computing applications can be found at http://melts.uchicago.edu.

  13. Direct imaging of complex nano- to microscale interfaces involving solid, liquid, and gas phases.

    PubMed

    Rykaczewski, Konrad; Landin, Trevan; Walker, Marlon L; Scott, John Henry J; Varanasi, Kripa K

    2012-10-23

    Surfaces with special wetting properties not only can efficiently repel or attract liquids such as water and oils but also can prevent formation of biofilms, ice, and clathrate hydrates. Predicting the wetting properties of these special surfaces requires detailed knowledge of the composition and geometry of the interfacial region between the droplet and the underlying substrate. In this work we introduce a 3D quantitative method for direct nanoscale visualization of such interfaces. Specifically, we demonstrate direct nano- to microscale imaging of complex fluidic interfaces using cryostabilization in combination with cryogenic focused ion beam milling and SEM imaging. We show that application of this method yields quantitative information about the interfacial geometry of water condensate on superhydrophilic, superhydrophobic, and lubricant-impregnated surfaces with previously unattainable nanoscale resolution. This type of information is crucial to a fundamental understanding as well as the design of surfaces with special wetting properties. PMID:23020195

  14. Interaction mechanism of in-situ nano-TiN-AlN particles and solid/liquid interface during solidification.

    PubMed

    Cui, Chunxiang; Li, Yanchun; Shen, Yutian; Sun, Jibing; Wang, Ru

    2003-10-01

    This paper deals with the interaction mechanism between in situ nanometer-grade TiN-AlN particles and the solid/liquid (S/L) interface during the solidification of an in situ TiN-AlN/Al composite. According to the setting of a force balance for the particles in front of the S/L interface during solidification, F = F(buoyant) + F(repulsive) + F(viscous). We obtained the relationship between the critical cooling velocity of the liquid composite, Vr, and the size of the ceramic particle, rp. By this relationship formula, we can know that the S/L interface engulfs particles or pushes them to the crystal grain boundary during the solidification of a TiN-AlN/Al composite. It is found that Vr is proportional to the radius of ceramic particles by transmission electron microscope (TEM) observation. The TEM test indicates that the smaller the particle is, the more easily the S/L interface engulfs particles. PMID:14733152

  15. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line.

    PubMed

    Benjamin, Ronald; Horbach, Jürgen

    2015-07-01

    Kinetics of crystal-growth is investigated along the solid-liquid coexistence line for the (100), (110), and (111) orientations of the Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) fcc crystal-liquid interface, using non-equilibrium molecular dynamics simulations. A slowing down of the growth kinetics along the coexistence line is observed, which is due to the decrease of the melting enthalpy with increasing coexistence temperature and pressure. Other quantities such as the melting pressure and liquid self-diffusion coefficient have a comparatively lesser impact on the kinetic growth coefficient. Growth kinetics of the LJ and WCA potentials become similar at large values of the melting temperature and pressure, when both resemble a purely repulsive soft-sphere potential. Classical models of crystallization from the melt are in reasonable qualitative agreement with our simulation data. Finally, several one-phase empirical melting/freezing rules are studied with respect to their validity along the coexistence line. PMID:26156487

  16. Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels

    NASA Astrophysics Data System (ADS)

    Kimura, Sei; Nabeshima, Y.; Nakajima, K.; Mizoguchi, S.

    2000-10-01

    The present study is concerned with the interaction phenomena of nonmetallic inclusions in front of a moving solid-liquid interface. The in situ observation was done in a high-temperature experiment by using a laser microscope. Alumina inclusions in an aluminum-killed steel with low oxygen content exhibited the well-known clustering behavior. The velocity of the advancing interface first increased while approaching the particle, but became stagnant during engulfment and increased again after that. Alumina-magnesia complex inclusions in a magnesium-added steel with high oxygen content were very finely dispersed in the molten pool. These inclusions escaped from the advancing interface during solidification, but gathered again at the retreating interface during remelting. The tiny inclusions were thought to behave just as tracer particles of a local flow. The velocity of particles was measured on a video image, and the significant acceleration or deceleration was found near the interface. It was concluded that the flow was induced by the Marangoni effect due to the local difference in temperature and oxygen content in front of the interface, particularly in the case of a higher oxygen content. However, the flow was weak in the case of a low oxygen content.

  17. Development of an Analytical Method Based on Temperature Controlled Solid-Liquid Extraction Using an Ionic Liquid as Solid Solvent.

    PubMed

    Pan, Zhongwei; Wang, Zhengquan; Zhu, Linna; Zhu, Zhiming; Cai, Jinying; Shen, Xiaoman; Fan, Tingli; Zhang, Yingnan; Chen, Zhixiu

    2015-01-01

    At the present paper, an analytical method based on temperature controlled solid-liquid extraction (TC-SLE) utilizing a synthesized ionic liquid, (N-butylpyridinium hexafluorophosphate, [BPy]PF₆), as solid solvent and phenanthroline (PT) as an extractant was developed to determine micro levels of Fe(2+) in tea by PT spectrophotometry. TC-SLE was carried out in two continuous steps: Fe(2+) can be completely extracted by PT-[BPy]PF₆ or back-extracted at 80 °C and the two phases were separated automatically by cooling to room temperature. Fe(2+), after back-extraction, needs 2 mol/L HNO₃ as stripping agent and the whole process was determined by PT spectrophotometry at room temperature. The extracted species was neutral Fe(PT)mCl₂ (m = 1) according to slope analysis in the Fe(2+)-[BPy]PF₆-PT TC-SLE system. The calibration curve was Y = 0.20856X - 0.000775 (correlation coefficient = 0.99991). The linear calibration range was 0.10-4.50 μg/mL and the limit of detection for Fe(2+) is 7.0 × 10(-2) μg/mL. In this method, the contents of Fe(2+) in Tieguanyin tea were determined with RSDs (n = 5) 3.05% and recoveries in range of 90.6%-108.6%. PMID:26690398

  18. Solid-liquid interfacial energy of solid succinonitrile solution in equilibrium with succinonitrile-neopentylglycol eutectic liquid

    NASA Astrophysics Data System (ADS)

    Karadağ, Saadet B.; Altıntas, Yemliha; Öztürk, Esra; Aksöz, Sezen; Keşlioğlu, Kâzım; Maraşlı, Necmettin

    2013-10-01

    The grain boundary groove shapes for solid succinonitrile solution (SCN-5 mole% NPG) in equilibrium with the succinonitrile (SCN)-neopentylglycol (NPG) eutectic liquid (SCN-9.55 mole% NPG) have been directly observed by using a horizontal linear temperature gradient apparatus at 317.1 K equilibrium temperature. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (Г) and solid-liquid interfacial energy (σSL) of solid SCN solution have been determined to be (5.43±0.50)×10-8 K m and (8.09±1.21)×10-3 J m-2, respectively. The grain boundary energy of solid SCN solution has been determined to be (14.22±2.28)×10-3 J m-2 from the observed grain boundary groove shapes. The thermal conductivity for SCN-9.55 mole% NPG eutectic solid phase and the thermal conductivity ratio of eutectic liquid phase to eutectic solid phase at the melting temperature have also been measured with a radial heat flow apparatus and Bridgman type growth apparatus, respectively.

  19. Solid-Liquid Interfacial Energy of Solid Succinonitrile in Equilibrium with Succinonitrile-(D)Camphor-Aminomethylpropanediol Eutectic Liquid

    NASA Astrophysics Data System (ADS)

    Ata, P?nar; Karamaz?, Yasin; Bayram, Ümit; Aksöz, Sezen; Ke?lio?lu, Kaz?m; Mara?l?, Necmettin

    2016-01-01

    The grain boundary groove shapes for equilibrated solid SCN in equilibrium with the eutectic liquid SCN-15.6 mol% DC-2.1 mol% AMPD have been directly observed by using a horizontal linear temperature gradient apparatus. The ratio of the thermal conductivity of the equilibrated liquid to the thermal conductivity of solid SCN has also been determined to be 0.89. From the observed grain boundary groove shapes and measured thermal conductivity ratio, the Gibbs-Thomson coefficient ({{\\varGamma }}), solid-liquid interfacial energy (? _{SL}), and the grain boundary energy (? _{gb}) have been determined to be (5.43 ± 0.54)× 10^{-8} K{\\cdot } m, (8.53 ± 1.28) × 10^{-3} J {\\cdot } m^{-2}, and (13.36 ± 2.14) × 10^{-3} J{\\cdot } m^{-2}, respectively, for equilibrated solid SCN in equilibrium with the eutectic liquid (SCN-15.6 mol% DC-2.1 mol% AMPD).

  20. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Y Wang, H.; Han, W.; Ma, W.; Shen, Z. J.

    2013-12-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance.

  1. Femtosecond optical Kerr effect setup with signal "live view" for measurements in the solid, liquid, and gas phases

    NASA Astrophysics Data System (ADS)

    Polok, K.; Gadomski, W.; Ratajska-Gadomska, B.

    2015-10-01

    We present the experimental setup constructed in our laboratory for measurement of the femtosecond optical Kerr effect. The setup allows measurements with high temporal resolution and acquisition speed. The high signal to noise ratio is obtained with use of a homemade balanced detector. Due to the high acquisition speed and good signal to noise ratio, it is possible to have a "live view" of the signal and to easily tune the sample position and orientation before the measurement. We show the example results obtained in the solid, liquid, and the gas phases and we use them in order to check on the precision of our setup. As the samples we have used a YAG crystal, liquid acetone, and atmospheric air. In the latter two cases, a good agreement with the literature data has been found. The measurements in the gas phase confirm that our setup, although utilizing low energy pulses from the sapphire oscillator, is able to acquire high quality rotational signal in a low density sample.

  2. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system.

    PubMed

    Zhang, Cunsheng; Su, Haijia; Tan, Tianwei

    2013-10-01

    To avoid the inhibition from both of waste oil and high concentrations of cationic elements, anaerobic digestion of food waste in a dual solid-liquid (ADSL) system was examined in this present paper. Results from batch test indicated that a higher methane yield could be obtained in the ADSL system. The methane yield of food solid waste (FSW), food liquid waste (FLW) and raw food waste (RFW) were 643, 659 and 581 mL/g-VS, respectively. In semi-continuous anaerobic digestion, the optimum organic loading rates (OLR) for FSW, FLW and RFW were 9, 4 and 7 g-VS/L/d, respectively. The total methane production of RFW and ADSL systems, based on 1 kg-VS(RFW), were 405 and 460 L, respectively, indicating that the methane production increased by 13.6% in the ADSL system. The optimum C/N ratio, redistribution of metal element and lower content of waste oil in FSW explain the higher methane production. PMID:23561948

  3. Synthesis of new phosphorus-containing (co)polyesters using solid-liquid phase transfer catalysis and product characterization.

    PubMed

    Iliescu, Smaranda; Augusti, Maite-Gyl; Fagadar-Cosma, Eugenia; Plesu, Nicoleta; Fagadar-Cosma, Gheorghe; Macarie, Lavinia; Popa, Adriana; Ilia, Gheorghe

    2012-01-01

    This paper is directed towards the development of safe, and thermally stable solid polymer electrolytes. Linear phosphorus-containing (co)polyesters are described, including their synthesis, thermal analysis, conductivity, and non-flammability. Polycondensation of phenylphosphonic dichloride (PPD) with poly(ethylene glycol) (PEG 12000) with and without bisphenol A (BA) was carried out using solid-liquid phase transfer catalysis. Potassium phosphate is used as base. Yields in the range of 85.0-88.0%, and inherent viscosities in the range of 0.32-0.58 dL/g were obtained. The polymers were characterized by gel permeation chromatography, FT-IR, (1)H- and (31)P-NMR spectroscopy and thermal analysis. Their flammability was investigated by measuring limiting oxygen index values. The polymers are flame retardants and begin to lose weight in the 190 °C-231 °C range. Solid phosphorus- containing (co)polyesters were complexed with lithium triflate and the resulting ionic conductivity was determined. Conductivities in the range of 10(-7)-10(-8) S cm(-1) were obtained. PMID:22850325

  4. Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation

    SciTech Connect

    Wilson, S. R.; Mendelev, M. I.

    2015-01-08

    Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.

  5. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs-Cahn integration.

    PubMed

    Laird, Brian B; Davidchack, Ruslan L; Yang, Yang; Asta, Mark

    2009-09-21

    We calculate the solid-liquid interfacial free energy gamma(sl) for the Lennard-Jones (LJ) system at several points along the pressure-temperature coexistence curve using molecular-dynamics simulation and Gibbs-Cahn integration. This method uses the excess interfacial energy (e) and stress (tau) along the coexistence curve to determine a differential equation for gamma(sl) as a function of temperature. Given the values of gamma(sl) for the (100), (110), and (111) LJ interfaces at the triple-point temperature (T( *)=kT/varepsilon=0.618), previously obtained using the cleaving method by Davidchack and Laird [J. Chem. Phys. 118, 7657 (2003)], this differential equation can be integrated to obtain gamma(sl) for these interfaces at higher coexistence temperatures. Our values for gamma(sl) calculated in this way at T( *)=1.0 and 1.5 are in good agreement with those determined previously by cleaving, but were obtained with significantly less computational effort than required by either the cleaving method or the capillary fluctuation method of Hoyt, Asta, and Karma [Phys. Rev. Lett. 86, 5530 (2001)]. In addition, the orientational anisotropy in the excess interface energy, stress and entropy, calculated using the conventional Gibbs dividing surface, are seen to be significantly larger than the relatively small anisotropies in gamma(sl) itself. PMID:19778103

  6. Heterogeneous nucleation of calcium phosphate salts at a solid/liquid interface examined by scanning angle reflectometry

    NASA Astrophysics Data System (ADS)

    Ngankam, P. A.; Schaaf, P.; Voegel, J. C.; Cuisinier, F. J. G.

    1999-03-01

    Mineralization of calcium phosphate salts at a solid/liquid silica interface was examined by means of scanning angle reflectometry (SAR). A critical supersaturation of 7.60±0.15 mM was found to be the lowest calcium phosphate concentration at pH 6.85 at which the reflectivity at the Brewster angle started to vary. The analyses of the signals by mean of the homogeneous isotropic layer model led to layer thicknesses of about 3.5 ?m also characterized by very low mean refractive index increments. These observations were completed by complementary experiments. Scanning and transmission electron microscopy led to similar layer thicknesses with crystallites dispersed in the whole layer confirming thus SAR results. X-ray analyses showed a presence of brushite (DCPD) at the silica interface. A pH of 5.44 was estimated for the acidic silica interface for which DCPD is nucleated after addition of 7.60±0.15 mM calcium and phosphate. However, at this pH value, the solution is largely supersaturated with respect to hydroxyapatite (HAP theoretical saturating concentration: 1.37 mM). A faster growth of DCPD crystals compared to HAP crystals is thus assumed to explain our observations.

  7. Femtosecond optical Kerr effect setup with signal "live view" for measurements in the solid, liquid, and gas phases.

    PubMed

    Polok, K; Gadomski, W; Ratajska-Gadomska, B

    2015-10-01

    We present the experimental setup constructed in our laboratory for measurement of the femtosecond optical Kerr effect. The setup allows measurements with high temporal resolution and acquisition speed. The high signal to noise ratio is obtained with use of a homemade balanced detector. Due to the high acquisition speed and good signal to noise ratio, it is possible to have a "live view" of the signal and to easily tune the sample position and orientation before the measurement. We show the example results obtained in the solid, liquid, and the gas phases and we use them in order to check on the precision of our setup. As the samples we have used a YAG crystal, liquid acetone, and atmospheric air. In the latter two cases, a good agreement with the literature data has been found. The measurements in the gas phase confirm that our setup, although utilizing low energy pulses from the sapphire oscillator, is able to acquire high quality rotational signal in a low density sample. PMID:26520942

  8. Morphology, mineralogy, and solid-liquid phase separation characteristics of Cu and Zn precipitates produced with biogenic sulfide.

    PubMed

    Villa-Gomez, D K; van Hullebusch, E D; Maestro, R; Farges, F; Nikitenko, S; Kramer, H; Gonzalez-Gil, G; Lens, P N L

    2014-01-01

    The morphology, mineralogy, and solid-liquid phase separation of the Cu and Zn precipitates formed with sulfide produced in a sulfate-reducing bioreactor were studied at pH 3, 5, and 7. The precipitates formed at pH 7 display faster settling rates, better dewaterability, and higher concentrations of settleable solids as compared to the precipitates formed at pH 3 and 5. These differences were linked to the agglomeration of the sulfidic precipitates and coprecipitation of the phosphate added to the bioreactor influent. The Cu and Zn quenched the intensity of the dissolved organic matter peaks identified by fluorescence-excitation emission matrix spectroscopy, suggesting a binding mechanism that decreases supersaturation, especially at pH 5. X-ray absorption fine structure spectroscopy analyses confirmed the precipitation of Zn-S as sphalerite and Cu-S as covellite in all samples, but also revealed the presence of Zn sorbed on hydroxyapatite. These analyses further showed that CuS structures remained amorphous regardless of the pH, whereas the ZnS structure was more organized at pH 5 as compared to the ZnS formed at pH 3 and 7, in agreement with the cubic sphalerite-type structures observed through scanning electron microscopy at pH 5. PMID:24164296

  9. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  10. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1992-12-31

    In this report we present two data sets that have been compiled to assist in the model developments for solid-liquid equilibria and viscosities of coal derived systems. The first one is on vapor pressures of solid aromatics and the second one consists of viscosities of pure model compounds and some mixtures. These databanks are ready for usage in model development and are summarized in Tables 1 and 2. Literature is being searched to compile similar data for high pressure liquid compressibilities, liquid and solid heat capacities and solid-liquid equilibria for model compound systems. Literature search is also containing to investigate available viscosity models. Once this is completed a few models will be selected for evaluation and consideration as candidates for extension to coal liquids.

  11. Effect of heat shield on the shape of the solid-liquid interface and temperature field in the BGO-eulithine LTG Cz growth

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. G.; Budenkova, O. N.; Yuferev, V. S.; Kalaev, V. V.; Shlegel, V. N.; Ivannikova, N. V.; Vasiliev, Ya. V.; Mamedov, V. M.

    2005-02-01

    In an effort to eliminate the strong deflection of the solid-liquid interface (SLI) toward a melt, caused by specular (Fresnel) reflection of heat radiation at the crystal surface, we have performed an experimental and numerical study of the growth of Bi 4Ge 3O 12 crystals in the presence of a thermal shield located directly above the crystal shoulder. A platinum shield of a conic shape was used in experiment, while in simulation the shape and radiative properties of the shield are varied. Both experiment and simulation showed that although the shield appreciably decreases the deflection of the solid-liquid interface, increases the size of the facets and diminishes the density of gas inclusions at the initial stage of the growth, the cardinal decrease of the deflection of the interface did not happen.

  12. Solid-liquid interfacial energy of the Bi sub 0. 7 Pb sub 0. 3 SrCaCu sub 1. 8 O sub x glass

    SciTech Connect

    Nishi, Y.; Manabe, T.; Watanabe, S.; Igarashi, A.; Mikagi, K. )

    1991-11-15

    The solid-liquid interfacial energy is estimated by use of the nucleation frequency of isothermal crystallization on aging in Bi{sub 0.7}Pb{sub 0.3}SrCaCu{sub 1.8}O{sub {ital x}} glassy samples above glass transition temperature. The value of solid-liquid interfacial energy {ital Q} is about 74.7 mJ/m{sup 2}. The {ital Q} value is often expressed by use of enthalpy change {Delta}{ital H}{sub {ital f}}, Avogadro's number {ital N} and molar volume {ital V}; {ital Q} = {ital C}{Delta}{ital H}{sub {ital f}}/({ital N}{sup 1/3}{ital V}{sup 2/3}). The constant {ital C} obtained is 0.38, which is between 0.32 for covalent bonded elements and 0.45 for metals.

  13. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGESBeta

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, MÃ¥rten O. M.; Lundqvist, MÃ¥ns; Moberg, Robert; Ross, Phil; et al

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  14. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    PubMed Central

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, MÃ¥rten O. M.; Lundqvist, MÃ¥ns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-01-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry. PMID:25950241

  15. Thermoelectric Magnetohydrodynamic Flows and Their Induced Change of Solid-Liquid Interface Shape in Static Magnetic Field-Assisted Directional Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Fautrelle, Yves; Nguyen-Thi, Henri; Reinhart, Guillaume; Liao, Hanlin; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-03-01

    Applying static magnetic field can produce flows (thermoelectric magnetohydrodynamic flows, TEMHDF) in the melt by interacting with the thermoelectric currents (TEC) during solidification of metals. A physical model was proposed to interpret how these TEC appear at the solid-liquid interface and verified by a corresponding simulation. The influences of TEMHDF on solidification were investigated through both ex-situ experiments and n situ observations by means of synchrotron X-ray radiography. The 3D numerical simulations of TEMHDF were performed for these two cases, respectively, and suggested that both the change of interface shape with different transverse static magnetic fields demonstrated by the ex-situ experiments and the real time observed interface shape varying under a 0.08 T transverse static magnetic field could attribute to the TEMHDF advanced solid-liquid interface in the static magnetic field-assisted directional solidification. The TEMHDF produced by an axial static magnetic field were also computed along with the interface change predicted based on which is good in line with the published experimental results. This study of TEMHDF and their impacts on the solid-liquid interface shape provides a method to tailor the structure during directional solidification using static magnetic field.

  16. A Few Case Studies on the Correlation of Particle Network and Its Stability on the Ionic Conductivity of Solid-Liquid Composite Electrolytes.

    PubMed

    Santhosha, Aggunda L; Bhattacharyya, Aninda J

    2015-08-27

    We discuss here the crucial role of the particle network and its stability on the long-range ion transport in solid-liquid composite electrolytes. The solid-liquid composite electrolytes chosen for the study here comprise nanometer sized silica (SiO2) particles having various surface chemical functionalities dispersed in nonaqueous lithium salt solutions, viz. lithium perchlorate (LiClO4) in two different polyethylene glycol based solvents. These systems constitute representative examples of an independent class of soft matter electrolytes known as "soggy sand" electrolytes, which have tremendous potential in diverse electrochemical devices. The oxide additive acts as a heterogeneous dopant creating free charge carriers and enhancing the local ion transport. For long-range transport, however, a stable spanning particle network is needed. Systematic experimental investigations here reveal that the spatial and time dependent characteristics of the particle network in the liquid solution are nontrivial. The network characteristics are predominantly determined by the chemical makeup of the electrolyte components and the chemical interactions between them. It is noteworthy that in this study the steady state macroscopic ionic conductivity and viscosity of the solid-liquid composite electrolyte are observed to be greatly determined by the additive oxide surface chemical functionality, solvent chemical composition, and solvent dielectric constant. PMID:26098017

  17. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    SciTech Connect

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²? and Pt?? interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  18. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7?keV) at a pressure up to 110?Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2?keV-7?keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  19. Solid-liquid separation method governs the in vitro bioaccessibility of metals in contaminated soil-like test materials.

    PubMed

    Laird, Brian D; Weiseth, Blake; Packull-McCormick, Sara R; Peak, Derek; Dodd, Matt; Siciliano, Steven D

    2015-09-01

    An in vitro gastrointestinal model was used to explore the role of solid-liquid separation method on the bioaccessibility of trace elements in a smelter-impacted soil (NIST-2711) from Helena, MT and a mine overburden from an open-pit gold and silver mine in Mount Nansen, YK (YK-OVB). Separation methods studied included centrifugation (5,000 g, 12,000 g), syringe microfiltration (0.45 μm), and ultrafiltration (1,000 kDa, 50 kDa, 30 kDa, 10 kDa, 3 kDa). Results indicated that the use of syringe microfiltration generally yields the same bioaccessibility as the use of centrifugation and that the speed of centrifugation does not typically affect metal bioaccessibility. However, ultrafiltration consistently yields a significantly lower bioaccessibility than the use of centrifugation and syringe microfiltration. There are rarely any differences between bioaccessibility estimates generated using a low-resistance (1,000 kDa) and a high-resistance (3 kDa) ultrafiltration membrane; therefore, under the in vitro gastrointestinal conditions modeled herein, negligible quantities of trace elements are complexed to small molecules between 3 and 1,000 kDa. The primary exceptions to these trends were observed for Pb in NIST-2711 (5,000 g>12,000 g>0.45 μm>ultrafiltration) and for Tl in NIST-2711 and YK-OVB (5000 g∼12,000 g>0.45 μm>ultrafiltration). These results provide valuable information to researchers attempting to expand the use of in vitro bioaccessibility beyond soil Pb and As. PMID:25600322

  20. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect

    Yu, Tang-Qing Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  1. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Oladi, Elham; Mohamadi, Maryam; Shamspur, Tayebeh; Mostafavi, Ali

    2014-11-01

    Melatonin is normally consumed to regulate the body's biological cycle. However it also has therapeutic properties, such as anti-tumor, anti-aging and protects the immune system. There are some reports on the presence of melatonin in edible kernels such as walnuts, but the extraction of melatonin from pistachio kernels is reported here for the first time. For this, the methanolic extract of pistachio kernels was exposed to gas chromatography/mass spectrometry analysis which confirmed the presence of melatonin. A fluorescence-based method was applied for the determination of melatonin in different extracts. When excited at λ = 275 nm, the fluorescence emission intensity of melatonin was measured at λ = 366 nm. Ultrasound-assisted solid-liquid extraction was used for the extraction of melatonin from pistachio kernels prior to fluorimetric determination. To achieve the highest extraction recovery, the main parameters affecting the extraction efficiency such as extracting solvent type and volume, temperature, sonication time and pH were evaluated. Under the optimized conditions, a linear dependence of fluorescence intensity on melatonin concentration was observed in the range of 0.0040-0.160 μg mL-1, with a detection limit of 0.0036 μg mL-1. This method was applied successfully for measuring and comparing the melatonin content in the kernels of four different varieties of Pistacia including Ahmad Aghaei, Akbari, Kalle Qouchi and Fandoghi. In addition, the results obtained were compared with those obtained using GC/MS. A good agreement was observed indicating the reliability of the proposed method.

  2. Optimization of solid-liquid extraction of resveratrol and other phenolic compounds from milled grape canes (Vitis vinifera).

    PubMed

    Karacabey, Erkan; Mazza, Giuseppe

    2008-08-13

    Optimization of the solid-liquid extraction conditions for trans-resveratrol, trans--viniferin, ferulic acid, and total phenolics from milled grape canes has been investigated. The temperature and ethanol concentration were found to be major process variables for all responses, whereas the solvent to solid ratio was found not to be significant for any of the responses studied. The yields of trans-resveratrol, trans--viniferin, and total phenolics increased with increasing temperature. Maximum yields of trans-resveratrol (4.25 mg/g dw), trans--viniferin (2.03 mg/g), and total phenolics (9.28 mg/g dw) were predicted from the combination of a moderate ethanol concentration (50-70%) and the highest temperature (83.6 degrees C), whereas an ethanol concentration of 35% at the lowest temperature studied (16.4 degrees C) was optimal for the extraction of ferulic acid (1.05 mg/g dw). Effective diffusivity values of resveratrol in the solid phase, D eff for different extraction conditions, were calculated by fitting the experimental results to a model derived from the Fick's second law. Effective diffusivity of resveratrol in the solid phase varied from 3.1 x 10 (-13) to 26.6 x 10 (-13) m (2) s (-1) with changing extraction conditions. The increase in effective diffusivity of resveratrol was observed with increasing temperature, and the highest predicted level was obtained when using 54% ethanol/water mixture at 83.6 degrees C. The increase in ethanol concentration exhibited the favorable effect up to 50-55%, thereafter effective diffusivity decreased with a further increase in concentration. PMID:18636680

  3. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    PubMed Central

    Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Vanden-Eijnden, Eric; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency. PMID:24907992

  4. Soins Aux Brules Apres Un Accident Nucleaire

    PubMed Central

    Bargues, L.; Donat, N.; Jault, P.; Leclerc, T.

    2010-01-01

    Summary Les lésions radiques sont dues le plus souvent à des radio-isotopes utilisés dans l’industrie. L’explosion d’un réacteur nucléaire, les armes nucléaires ou une attaque terroriste constituent un risque d’afflux massif de victimes brûlées. Les radiations ionisantes occasionnent des brûlures thermiques, des syndromes d’irradiation aiguë avec pancytopénie et des signes cutanés retardés. Après une période de latence, des symptômes cutanés apparaissent et leur profondeur est proportionnelle à la dose reçue. Les protocoles habituels de réanimation des brûlés s’appliquent ici. Les soins aux irradiés nécessitent aussi une mesure de l’irradiation et une décontamination par des personnels entraînés. En cas de catastrophe nucléaire, la priorité est d’optimiser les structures existantes et de préserver les moyens pour les patients ayant la plus forte probabilité de survie. Après un accident nucléaire isolé, les difficultés dans les centres de brûlés sont l’évaluation de la profondeur et les techniques chirurgicales de couverture cutanée. La préparation des moyens médicaux et des centres de brûlés est nécessaire pour faire face à la prise en charge de ces brûlures différentes et complexes. PMID:21991218

  5. Observation of linear to planar structural transition in sulfur-doped gold clusters: AuxS- (x = 2-5)

    NASA Astrophysics Data System (ADS)

    Wen, Hui; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Zhang, Wei-Jun; Huang, Wei; Wang, Lai-Sheng

    2013-05-01

    We report a joint experimental and theoretical study on the structures of a series of gold clusters doped with a sulfur atom, AuxS- (x = 2-5). Well-resolved photoelectron spectra are obtained and compared with theoretical results calculated using several density functional methods to elucidate the structures and bonding of AuxS- (x = 2-5). Au2S- is found to have an asymmetric linear global minimum structure with C∞v symmetry, while the most stable structure of neutral Au2S is bent with C2v symmetry, reminiscent of H2S. Au3S- is found to have an asymmetric bent structure with an Au-S-Au-Au connectivity. Two isomers are observed experimentally to co-exist for Au4S-: a symmetric bent 1D structure (C2v) and a 2D planar low-lying isomer (Cs). The global minimum of Au5S- is found to be a highly stable planar triangular structure (C2v). Thus, a 1D-to-2D structural transition is observed in the AuxS- clusters as a function of x at x = 4. Molecular orbital analyses are carried out to obtain insight into the nature of the chemical bonding in the S-doped gold clusters. Strong covalent bonding between S and Au is found to be responsible for the 1D structures of AuxS- (x = 2-4), whereas delocalized Au-Au interactions favor the 2D planar structure for the larger Au5S- cluster.

  6. Focused ultrasound solid-liquid extraction for the determination of perfluorinated compounds in fish, vegetables and amended soil.

    PubMed

    Zabaleta, Itsaso; Bizkarguenaga, Ekhiñe; Iparragirre, Arantza; Navarro, Patricia; Prieto, Ailette; Fernández, Luis Ángel; Zuloaga, Olatz

    2014-02-28

    In the present work a method was developed for the determination of different perfluorinated compounds (PFCs), including three perfluorinated sulfonic acids (PFSAs), seven perfluorocarboxylic acids (PFCAs), three perfluorophosphonic acids (PFPAs) and perfluorooctanesulfonamide (PFOSA) in fish, vegetables and amended soil samples based on focused ultrasound solid-liquid extraction (FUSLE) followed by solid-phase extraction (SPE) clean-up and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Different variables affecting the chromatographic separation (column type and pH of the mobile phase), the electrospray ionization (capillary voltage, nebulizer pressure and drying gas flow) and mass spectrometric detection (fragmentor voltage and collision energy) were optimized in order to improve the sensitivity of the separation and detection steps. In the case of FUSLE variables such as the solvent type, the solvent volume, the extraction temperature, the sonication and extraction time and the percentage of applied irradiation power were studied. Under optimized conditions, sonication of 2.5min with pulse times on of 0.8s and pulse times off of 0.2s in 7mL of (9:1) acetonitrile (ACN): water mixture in duplicate guaranteed exhaustive extraction of the matrices analyzed. Due to the non-selective extraction using FUSLE, different SPE cartridges (200-mg Waters Oasis-HLB, 150-mg Waters Oasis-WAX and 150-mg Waters Oasis-MAX) were tested in terms of extraction efficiency and matrix effect both in the extraction and detection steps. Mix mode SPE using Waters Oasis-WAX provided the best extraction efficiencies with the lowest matrix effect. The final method was validated in terms of recovery at two fortification levels (in the 80-120% for most of the analytes and matrices), precision (relative standard deviation in the 2-15% range) and method detection limits (MDLs, 0.3-12.4ng/g for vegetables, 0.2-12.5ng/g for fish and 1-22ng/g for amended soil). Finally the method was applied for the determination of the 14 PFCs in different vegetables and fish samples from a local supermarket and in a soil amended with a compost from a local wastewater treatment plant (WWTP). PMID:24495790

  7. Investigating the influence of production conditions on the energy distribution between the solid, liquid and gaseous products of slow pyrolysis

    NASA Astrophysics Data System (ADS)

    Crombie, Kyle; Masek, Ondrej

    2013-04-01

    Slow pyrolysis is a well established technology for converting biomass into a more stable form of carbon (biochar) while also producing energy rich by-products of bio-oil and syngas. Biochar is the porous, carbonaceous material produced by thermo-chemical treatment of organic materials in an oxygen-limited environment. Biochar can be incorporated into soils to improve soil fertility, reduce greenhouse gas emissions as well as provide long term storage of carbon or alternatively it can also provide additional energy to a pyrolysis system through combustion. Biochar production conditions have a significant influence on the yield as well as physiochemical and functional properties of the final pyrolysis products, resulting in a selection process aimed towards either agricultural benefits and carbon mitigation or heat/energy generation. This work aimed to investigate the effect of temperature, residence time and gas flow rate on the product energy distribution as well as the physical, chemical and soil functional properties of biochar, in order to optimise conditions best suited to maximise both energy value and agronomic benefit. Biochar samples were produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650oC), with three residence times (10, 20 and 40 minutes) and three carrier gas flow rates (0, 0.3 and 0.6 L min-1). The energy balance of the system was determined through the calorimetric analysis of biochar and bio-oil, while the higher heating value for the syngas was calculated from the gas composition measured via mass spectroscopy. Biochar was also analysed for the physiochemical properties of proximate analysis and ultimate analysis as well as the functional property of environmentally stable carbon (C) content. As expected the yield of biochar decreased with increasing temperature resulting in elevated yields of liquid and gas fractions. Increased temperature also resulted in higher values of fixed C, total C, stable C and calorific value due to the increased emission of volatiles. The higher heating value for the syngas was also shown to increase with temperature due to greater release of combustible gas species at higher temperatures. The impact of residence time and gas flow rate were not as clear as for temperature but still demonstrated decreasing biochar yields as the respective parameters were increased. However the greatest impact occurred at 350oC and diminished when temperature was increased to 650oC. An understanding of the influence that production conditions have on the long term stability of biochar as well as the energy content of the solid, liquid and gas fractions obtained from pyrolysis is critical towards the development of specifically engineered biochar to deliver a specific function be it for agricultural use, carbon storage, energy generation or combinations of the three.

  8. Mixing and solid-liquid mass-transfer rates in a creusot-loire uddeholm vessel: A water model case study

    NASA Astrophysics Data System (ADS)

    Nyoka, M.; Akdogan, G.; Eric, R. H.; Sutcliffe, N.

    2003-12-01

    The process of mixing and solid-liquid mass transfer in a one-fifth scale water model of a 100-ton Creusot-Loire Uddeholm (CLU) converter was investigated. The modified Froude number was used to relate gas flow rates between the model and its protoype. The influences of gas flow rate between 0.010 and 0.018 m3/s and bath height from 0.50 to 0.70 m on mixing time were examined. The results indicated that mixing time decreased with increasing gas flow rate and increased with increasing bath height. The mixing time results were evaluated in terms of specific energy input and the following correlation was proposed for estimating mixing times in the model CLU converter: T mix=1.08Q -1.05 W 0.35, where Q (m3/s) is the gas flow rate and W (tons) is the model bath weight. Solid-liquid mass-transfer rates from benzoic acid specimens immersed in the gas-agitated liquid phase were assessed by a weight loss measurement technique. The calculated mass-transfer coefficients were highest at the bath surface reaching a value of 6.40 × 10-5 m/s in the sprout region. Mass-transfer coefficients and turbulence parameters decreased with depth, reaching minimum values at the bottom of the vessel.

  9. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. PMID:26512860

  10. Novel, low-cost solid-liquid-solid process for the synthesis of ?-Si3N4 nanowires at lower temperatures and their luminescence properties.

    PubMed

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-01-01

    Ultra-long, single crystal, ?-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150?°C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the ?-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties. PMID:26607395

  11. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    SciTech Connect

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina; Eriksson, Susanna K.; Åhlund, John; Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  12. Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments.

    PubMed

    Meullemiestre, A; Petitcolas, E; Maache-Rezzoug, Z; Chemat, F; Rezzoug, S A

    2016-01-01

    Maritime pine sawdust, a by-product from industry of wood transformation, has been investigated as a potential source of polyphenols which were extracted by ultrasound-assisted maceration (UAM). UAM was optimized for enhancing extraction efficiency of polyphenols and reducing time-consuming. In a first time, a preliminary study was carried out to optimize the solid/liquid ratio (6g of dry material per mL) and the particle size (0.26 cm(2)) by conventional maceration (CVM). Under these conditions, the optimum conditions for polyphenols extraction by UAM, obtained by response surface methodology, were 0.67 W/cm(2) for the ultrasonic intensity (UI), 40°C for the processing temperature (T) and 43 min for the sonication time (t). UAM was compared with CVM, the results showed that the quantity of polyphenols was improved by 40% (342.4 and 233.5mg of catechin equivalent per 100g of dry basis, respectively for UAM and CVM). A multistage cross-current extraction procedure allowed evaluating the real impact of UAM on the solid-liquid extraction enhancement. The potential industrialization of this procedure was implemented through a transition from a lab sonicated reactor (3 L) to a large scale one with 30 L volume. PMID:26384903

  13. Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-11-01

    Ultra-long, single crystal, α-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150 °C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the α-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties.

  14. Finite element analysis of the effect of a non-planar solid-liquid interface on the lateral solute segregation during unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.

    1982-01-01

    The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.

  15. Determination of the Solid/Liquid Interface Shape and Resultant Radial Homogeneity in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky, S. L.; Szofran, F. R.; Hanson, B.

    1999-01-01

    Directional solidification and interrupted directional solidification experiments were used to determine tile shape of the solid/liquid interface and the resultant radial homogeneity in Hg(0.89)Mg(0.11)Te. For directionally solidified samples solidified at a rate of 0.09 microns/sec in a thermal gradient of 83 C/cm, a maximum of 0.006 molar percent MnTe radial variation across the Hg0.89)Mn(0.11)Te boules at specific locations was determined using an FTIR technique. This FTIR evaluation of the radial homogeneity also indicated an asymmetrical, convex interface shape during solidification. The asymmetrical, convex shape of the growth interface was confirmed by interrupted directional solidification experiments. These were performed under the same growth conditions as the normally completed directional solidification experiments except that the samples were quenched before the final growth transient was reached. In these experiments, etching and scanning X-ray fluorescence were used to reveal the shape of the solid/liquid interface. Microprobe analysis of composition gradients across the interface was used to confirm the authors' previous work in evaluating the segregation coefficient of Hg(0.89)Mn(0.11)Te alloy. Microprobe analysis of the interface region of the interrupted growth sample revealed a dendritic structure containing secondary and tertiary dendritic arms.

  16. Esterification of sodium 4-hydroxybenzoate by ultrasound-assisted solid-liquid phase-transfer catalysis using dual-site phase-transfer catalyst.

    PubMed

    Yang, Hung-Ming; Chu, Wei-Ming

    2014-01-01

    The catalytic esterification of sodium 4-hydroxybenzoate with benzyl bromide by ultrasound-assisted solid-liquid phase-transfer catalysis (U-SLPTC) was investigated using the novel dual-site phase-transfer catalyst 4,4'-bis(tributylammoniomethyl)-1,1'-biphenyl dichloride (BTBAMBC), which was synthesized from the reaction of 4,4'-bis(chloromethyl)-1,1'-biphenyl and tributylamine. Without catalyst and in the absence of water, the product yield at 60 °C was only 0.36% in 30 min of reaction even under ultrasound irradiation (28 kHz/300 W) and 250 rpm of stirring speed. When 1cm(3) of water and 0.5 mmol of BTBAMBC were added, the yield increased to 84.3%. The catalytic intermediate 4,4'-bis(tributylammoniomethyl)-1,1'-biphenyl di-4-hydroxybenzoate was also synthesized to verify the intrinsic reaction which was mainly conducted in the quasi-aqueous phase locating between solid and organic phases. Pseudo-first-order kinetic equation was used to correlate the overall reaction, and the apparent rate coefficient with ultrasound (28 kHz/300 W) was 0.1057 min(-1), with 88% higher than that (0.0563 min(-1)) without ultrasound. The esterification under ultrasonic irradiation using BTBAMBC by solid-liquid phase-transfer catalysis was developed. PMID:23972326

  17. Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties

    PubMed Central

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-01-01

    Ultra-long, single crystal, α-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150 °C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the α-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties. PMID:26607395

  18. Real-time image analysis and control of the solid/liquid interface during zone-melting recrystallization of thin films

    NASA Astrophysics Data System (ADS)

    Wong, Peter Y.; Miaoulis, Ioannis N.

    1994-02-01

    Thermal processing, a necessary step in the fabrication of most microelectronic devices, is used to improve the material quality of thin films. One example of thermal processing of thin films is Zone- Melting Recrystallization with a radiant line heat source. A line heater, situated above the film, heats a narrow region beyond its melt point creating a molten zone. As the line heater is moved slowly over the film, the material in the wake of the moving molten zone freezes in the form of a single crystal. The morphology of the solid/liquid interface strongly influences the resultant quality of the crystal. A planar morphology, in fact, produces a poor quality film which contains branching dislocations. A cellular morphology produces the highest quality films with limited point of line defects. In-situ observations of the crystalline quality can be made by examining the solid/liquid interface morphology. The real-time image analysis of the interface and the closed-loop control of the process are described in this paper.

  19. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    NASA Astrophysics Data System (ADS)

    Maibach, Julia; Xu, Chao; Eriksson, Susanna K.; Åhlund, John; Gustafsson, Torbjörn; Siegbahn, Hans; Rensmo, Hâkan; Edström, Kristina; Hahlin, Maria

    2015-04-01

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO4 in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N2 environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  20. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system.

    PubMed

    Maibach, Julia; Xu, Chao; Eriksson, Susanna K; Åhlund, John; Gustafsson, Torbjörn; Siegbahn, Hans; Rensmo, Håkan; Edström, Kristina; Hahlin, Maria

    2015-04-01

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO4 in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N2 environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible. PMID:25933870

  1. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 3: miscellany of radionuclides (Cd, Co, Ni, Zn, I, Se, Sb, Pu, Am, and others).

    PubMed

    Gil-García, C; Tagami, K; Uchida, S; Rigol, A; Vidal, M

    2009-09-01

    New best estimates for the solid-liquid distribution coefficient (K(d)) for a set of radionuclides are proposed, based on a selective data search and subsequent calculation of geometric means. The K(d) best estimates are calculated for soils grouped according to the texture and organic matter content. For a limited number of radionuclides this is extended to consider soil cofactors affecting soil-radionuclide interaction, such as pH, organic matter content, and radionuclide chemical speciation. Correlations between main soil properties and radionuclide K(d) are examined to complete the information derived from the best estimates with a rough prediction of K(d) based on soil parameters. Although there are still gaps for many radionuclides, new data from recent studies improve the calculation of K(d) best estimates for a number of radionuclides, such as selenium, antimony, and iodine. PMID:19111373

  2. Comparison between 2 methods of solid-liquid extraction for the production of Cinchona calisaya elixir: an experimental kinetics and numerical modeling approach.

    PubMed

    Naviglio, Daniele; Formato, Andrea; Gallo, Monica

    2014-09-01

    The purpose of this study is to compare the extraction process for the production of China elixir starting from the same vegetable mixture, as performed by conventional maceration or a cyclically pressurized extraction process (rapid solid-liquid dynamic extraction) using the Naviglio Extractor. Dry residue was used as a marker for the kinetics of the extraction process because it was proportional to the amount of active principles extracted and, therefore, to their total concentration in the solution. UV spectra of the hydroalcoholic extracts allowed for the identification of the predominant chemical species in the extracts, while the organoleptic tests carried out on the final product provided an indication of the acceptance of the beverage and highlighted features that were not detectable by instrumental analytical techniques. In addition, a numerical simulation of the process has been performed, obtaining useful information about the timing of the process (time history) as well as its mathematical description. PMID:25154593

  3. The movement of particles in liquid metals under gravity forces and the interaction of particles with advancing solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Weinberg, F.

    1984-01-01

    The problems of shrinkage and gas porosity are discussed. Gravity forces enhance the removal of gas bubbles from a metal melt and contribute to the feeding of shrinkage porosity in castings. Experiments are reviewed which determine how large a density difference is required for metal particles to float or sink in a metal melt and to what extent do factors not considered in Stokes Law influence particle movement in a real system. As to the interaction of particles with an advancing solid-liquid interface, the results indicate that the metal particles are not rejected in a metal melt, and that concentrations of particles in a metal following solidification are due to other factors.

  4. 2D or not 2D: structural and charge ordering at the solid-liquid interface of the 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid.

    PubMed

    Shimizu, Karina; Pensado, Alfonso; Malfreyt, Patrice; Pádua, Agílio A H; Canongia Lopes, José N

    2012-01-01

    Molecular dynamics simulations of a 5 nm-thick layer of the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [(OH)C2C1im][BF4], over silica, alumina and boro-silicate glass substrates have been performed. The structure of the ionic liquid at the solid-liquid interface has been interpreted taking into account the corresponding normal density profiles, lateral interfacial structure, orientational ordering and planar density contours. Comparisons with experimental data suggest that the adsorption and stratification process of ionic liquids over solid substrates can be correctly modeled using a realistic rendition of a non-uniform amorphous substrate such as a glass material. PMID:22455020

  5. Latent Heat storage characteristics of solid-liquid phase change Heat Storage Microcapsule Slurry by Boiling Heat Transfer under a Vacuum Condition

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Haruki, Naoto; Katayama, Masatoshi; Manabe, Ken

    Recently, the new heat transfer medium, which fulfills both functions of heat storage and heat transportation, has been developed in ah eat storage field. Solid-liquid latent heat microcapsule slurry would correspond to the topical medium, so-called functionally thermal fluid. The preset study has clarified the latent heat storage characteristics of microcapsule slurry by making heat transfer enlargement with the help of slurry water pool boiling phenomenon. The paraffin wax at a melting point of 62°C was used as a phase change material which was packed into the microcapsule. The heating surface temperature and concentration of paraffin in the microcapsule slurry was selected as experimental parameters. As a result, the non-dimensional correlation equations of heat storage completion time and heat transfer were derived in terms of non-dimensional parameters.

  6. Measurements of solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K

    NASA Astrophysics Data System (ADS)

    Sang, Shihua; Hu, Yongxia; Cui, Ruizhi; Hu, Juanxin; Wang, Yuan

    2015-07-01

    Solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K were measured by the isothermal dissolution equilibrium method. The solubilities of salts and densities of saturated solutions in the ternary system were determined experimentally. The equilibrium solid phases were also determined by chemical analysis and X-ray powder diffraction. Using the experimental data, the phase diagram of the ternary system was obtained, which comprise one univariant curve and one stationary phase in crystallization filed of Na (Cl, Br). The ternary system was solid solution type. Density values in the equilibrium solution increase with an increase of the sodium bromide concentration while decrease with an increase of the sodium chloride concentration. The relationship equation of equilibrium liquid phase and the solid phase composition data were fitted with a regression equation.

  7. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    PubMed

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. PMID:24995879

  8. Solid-liquid hybrid assembly for ultrasonic elasticity measurements under hydrostatic conditions of up to 8 GPa in a Kawai-type multianvil apparatus

    NASA Astrophysics Data System (ADS)

    Song, M.; Yoneda, A.; Ito, E.

    2005-03-01

    A solid-liquid hybrid assembly has been designed for ultrasonic elasticity measurements of materials under hydrostatic conditions in a Kawai-type multianvil apparatus. In the assembly, a tungsten-carbide cubic anvil served as the buffer rod for the acoustic signals. The transducer and sample were mounted on two diagonally opposite truncated corners of the buffer-rod anvil. The sample was immersed in a liquid cell filled with a liquid pressure medium, a methanol-ethanol mixture (4:1 in volume), which produced hydrostatic conditions for the sample. The pressure was monitored with a bismuth pressure calibrant inside the liquid cell. Preliminary experiments using single-crystal MgO, polycrystal alumina, and silicate glass samples were successfully conducted up to 8GPa. This assembly is especially useful for precise elasticity measurements of single-crystal samples under hydrostatic compression.

  9. Simultaneous determination of sulfonamides and metabolites in manure samples by one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction and liquid chromatography-mass spectrometry.

    PubMed

    Wu, Hui-zhen; Qian, Ming-rong; Wang, Jian-mei; Zhang, Hu; Ma, Jun-wei; Li, Zu-guang; Lee, Maw-rong

    2015-05-01

    An in-line matrix cleanup method was used for the simultaneous extraction of 15 sulfonamides and two metabolites from manure samples. The ultrasound/microwave-assisted extraction (UMAE) combined with solid-liquid-solid dispersive extraction (SLSDE) procedure provides a simple sample preparation approach for the processing of manure samples, in which the extraction and cleanup are integrated into one step. Ultrasonic irradiation power, extraction temperature, extraction time, and extraction solvent, which could influence the UMAE efficiency, were investigated. C18 was used as the adsorbent to reduce the effects of interfering components during the extraction procedure. The extracts were concentrated, and the analytes were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) without any further cleanup. The isotopically labeled compounds sulfamethoxazole-d 4, sulfamethazine-d 4, sulfamonomethoxine-d 4, and sulfadimethoxine-d 6 were selected as internal standards to minimize the matrix effect in this method. The recoveries of the antibiotics tested ranged from 71 to 118 % at the three spiking levels examined (20, 200, and 500 ?g?·?kg(-1)). The limits of detections were 1.2-3.6 ?g?·?kg(-1) and the limits of quantification were 4.0-12.3 ?g?·?kg(-1) for the sulfonamides and their metabolites. The applicability of the method was demonstrated by analyzing 30 commercial manure samples. The results indicated that UMAE-SLSDE combined with LC-MS/MS is a simple, rapid, and environmentally friendly method for the analysis of sulfonamides and their metabolites in manure, and it could provide the basis for a risk assessment of the antibiotics in agricultural environments. PMID:25732092

  10. Mechanism of atomic force microscopy imaging of three-dimensional hydration structures at a solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Reischl, Bernhard; Kobayashi, Naritaka; Spijker, Peter; Canova, Fillippo Federici; Miyazawa, Keisuke; Foster, Adam S.

    2015-10-01

    Here we present both subnanometer imaging of three-dimensional (3D) hydration structures using atomic force microscopy (AFM) and molecular dynamics simulations of the calcite-water interface. In AFM, by scanning the 3D interfacial space in pure water and recording the force on the tip, a 3D force image can be produced, which can then be directly compared to the simulated 3D water density and forces on a model tip. Analyzing in depth the resemblance between experiment and simulation as a function of the tip-sample distance allowed us to clarify the contrast mechanism in the force images and the reason for their agreement with water density distributions. This work aims to form the theoretical basis for AFM imaging of hydration structures and enables its application to future studies on important interfacial processes at the molecular scale.

  11. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus; Michailovski, Alexej; Patzke, Greta R.; Baiker, Alfons

    2005-05-01

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid/liquid interface at pressures up to 250 bar and temperatures up to 220 °C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for good mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in "supercritical" carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO3 nanorods from MoO3•2H2O.

  12. Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite without intermediate solid/liquid separation.

    PubMed

    Beccari, M; Majone, M; Papini, M P; Torrisi, L

    2001-01-01

    Previous work on the anaerobic treatment of olive oil mill effluents (OME) have shown: (a) lipids, even if more easily degraded than phenols, were potentially capable of inhibiting methanogenesis more strongly; (b) a pretreatment based on addition of Ca(OH)2 and bentonite removed lipids almost quantitatively; (c) preliminary biotreatability tests performed on the pretreated OME showed high bioconversion into methane at very low dilutions ratios, especially when the mixture (OME, Ca(OH)2 and bentonite) was fed to the biological treatment without providing an intermediate phase separation. This paper was directed towards two main aims: (a) to optimize pretreatment: the best results in terms of methane production were obtained by addition of Ca(OH)2 up to pH 6.5 and of 10 g L-1 of bentonite; (b) to evaluate the enhancement of anaerobic treatability of OME pretreated under optimized conditions in a lab-scale continuous methanogenic reactor fed with the substrate without intermediate solid/liquid separation: very satisfactory performances were obtained (at an organic load of 8.2 kg COD m-3 d-1 and at a dilution ratio of 1:1.5 total COD removal was 91%, biogas production was 0.80 g CH4 (as COD)/g tot. COD, lipids removal was 98%, phenols removal was 63%). The results confirm the double role played by bentonite (adsorption of the inhibiting substances and release of the adsorbed biodegradable matter in the methanogenic reactor). PMID:11443973

  13. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    SciTech Connect

    Hoffer, Saskia

    2002-08-19

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  14. Vortex-assisted matrix solid-liquid dispersive microextraction for the analysis of triazole fungicides in cotton seed and honeysuckle by gas chromatography.

    PubMed

    Xue, Jiaying; Li, Huichen; Liu, Fengmao; Jiang, Wenqing; Hou, Fan

    2016-04-01

    A one-step analytical method termed vortex-assisted matrix solid-liquid dispersive microextraction (VA-MSLDME) was developed for the determination of seven triazole fungicides from cotton seed and honeysuckle prior to gas chromatography with electron capture detection. The VA-MSLDME was performed by mixing the matrix, primary secondary amine, acetonitrile, toluene, and water in one single system. The target fungicides in the sample were extracted, cleaned up and preconcentrated simultaneously in the matrix/acetonitrile/water/toluene system. Meanwhile, the interferences were adsorbed by the cleanup adsorbent. The extraction recoveries of the fungicides from the samples varied from 82.9% to 97.8% with relative standard deviations of 4.4-8.5%. The enrichment factors of the analytes ranged from 22 to 47, and the limits of detection were in the range of 0.05-20 μg/kg. The results demonstrated the significant predominance of VA-MSLDME in the analysis of pesticide residues in cotton seed and honeysuckle samples. PMID:26593567

  15. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    NASA Astrophysics Data System (ADS)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 ?m on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  16. High quality, giant crystalline-Ge stripes on insulating substrate by rapid-thermal-annealing of Sn-doped amorphous-Ge in solid-liquid coexisting region

    NASA Astrophysics Data System (ADS)

    Matsumura, Ryo; Kai, Yuki; Chikita, Hironori; Sadoh, Taizoh; Miyao, Masanobu

    2015-06-01

    Formation of large-grain (?30 ?m) Ge crystals on insulating substrates is strongly desired to achieve high-speed thin-film transistors. For this purpose, we propose the methods of Sn-doping into amorphous-Ge combined with rapid-thermal-annealing (RTA) in the solid-liquid coexisting temperature region for the Ge-Sn alloy system. The densities of micro-crystal-nuclei formed in this temperature region become low by tuning the RTA temperature close to the liquidus curve, which enhances the lateral growth of GeSn. Thanks to the very small segregation coefficient of Sn, almost all Sn atoms segregate toward edges of the stripes during growth. Agglomeration of GeSn degrades the surface morphologies; however, it is significantly improved by lowering the initial Sn concentration. As a result, pure Ge with large crystal grains (˜40 ?m) with smooth surface are obtained by optimizing the initial Sn concentration as low as 3 ˜ 5%. Lateral growth lengths are further increased through decreasing the number of nuclei in stripes by narrowing stripe width. In this way, high-crystallinity giant Ge crystals (˜200 ?m) are obtained for the stripe width of 3 ?m. This "Si-seed free" technique for formation of large-grain pure Ge crystals is very useful to realize high-performance thin-film devices on insulator.

  17. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    PubMed

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ?80 times faster, and the activation energy is ?5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy. PMID:25337984

  18. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Cheng, X. R.; Li, R. N.; Gao, Y.; Guo, W. L.

    2013-12-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ?-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value.

  19. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  20. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    PubMed Central

    Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL?1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL?1 and 0.012 ng mL?1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  1. Phase relations in the system NaCl-KCl-H sub 2 O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    SciTech Connect

    Sterner, S.M.; Pitzer, K.S. ); Iming Chou ); Downs, R.T. )

    1992-06-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H{sub 2}O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1,200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1,200 K and from 1 bar to 5 kbar.

  2. Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid-liquid extraction followed by high performance liquid chromatography.

    PubMed

    Valdivielso, Izaskun; Bustamante, María Ángeles; Ruiz de Gordoa, Juan Carlos; Nájera, Ana Isabel; de Renobales, Mertxe; Barron, Luis Javier R

    2015-04-15

    Carotenoids and tocopherols from botanical species abundant in Atlantic mountain grasslands were simultaneously extracted using one-step solid-liquid phase. A single n-hexane/2-propanol extract containing both types of compounds was injected twice under two different sets of HPLC conditions to separate the tocopherols by normal-phase chromatography and carotenoids by reverse-phase mode. The method allowed reproducible quantification in plant samples of very low amounts of ?-, ?-, ?- and ?-tocopherols (LOD from 0.0379 to 0.0720 ?g g(-1) DM) and over 15 different xanthophylls and carotene isomers. The simplified one-step extraction without saponification significantly increased the recovery of tocopherols and carotenoids, thereby enabling the determination of ?-tocopherol acetate in plant samples. The two different sets of chromatographic analysis provided near baseline separation of individual compounds without interference from other lipid compounds extracted from plants, and a very sensitive and accurate detection of tocopherols and carotenoids. The detection of minor individual components in botanical species from grasslands is nowadays of high interest in searching for biomarkers for foods derived from grazing animals. PMID:25466080

  3. Nanopatterning of Surfaces with Monometallic and Heterobimetallic 1D Coordination Polymers: A Molecular Tectonics Approach at the Solid/Liquid Interface.

    PubMed

    El Garah, Mohamed; Marets, Nicolas; Mauro, Matteo; Aliprandi, Alessandro; Bonacchi, Sara; De Cola, Luisa; Ciesielski, Artur; Bulach, Véronique; Hosseini, Mir Wais; Samorì, Paolo

    2015-07-01

    The self-assembly of multiple molecular components into complex supramolecular architectures is ubiquitous in nature and constitutes one of the most powerful strategies to fabricate multifunctional nanomaterials making use of the bottom-up approach. When spatial confinement in two dimensions on a solid substrate is employed, this approach can be exploited to generate periodically ordered structures from suitably designed molecular tectons. In this study we demonstrate that physisorbed directional periodic arrays of monometallic or heterobimetallic coordination polymers can be generated on a highly oriented pyrolitic graphite surface by combinations of a suitably designed directional organic tecton or metallatecton based on a porphyrin or nickel(II) metalloporphyrin backbone bearing both a pyridyl unit and a terpyridyl unit acting as coordinating sites for CoCl2. The periodic architectures were visualized at the solid/liquid interface with a submolecular resolution by scanning tunneling microscopy and corroborated by combined density functional and time-dependent density functional theory calculations. The capacity to nanopattern the surface for the first time with two distinct metallic centers exhibiting different electronic and optical properties is a key step toward the bottom-up construction of robust multicomponent and, thus, multifunctional molecular nanostructures and nanodevices. PMID:26076095

  4. Facile synthesis of PbSe hollow nanostructure assemblies via a solid/liquid-phase chemical route and their electrogenerated chemiluminescence properties.

    PubMed

    Han, Min; Li, Yanrong; Niu, Hongyan; Liu, Lili; Chen, Kunji; Bao, Jianchun; Dai, Zhihui; Zhu, Jianming

    2011-03-21

    Spherical PbSe hollow nanostructure assemblies (HNSAs) were synthesized by a simple one-pot solid/liquid-phase reaction in which solid KPbI(3)?2?H(2)O and SeO(2) are heated in oleic acid/dodecylamine/1-octadecene at 250?°C for 30?min. XRD analysis shows that the obtained product is cubic-phase PbSe and well crystallized. FESEM and TEM images reveal that the obtained spherical PbSe assemblies are made up of small, irregular, and fused hollow nanostructure building blocks. On the basis of temperature- and time-dependent investigations as well as control experiments, molten-salt corrosion of solid PbSe nanocrystal aggregates formed in situ during the high-temperature ripening stage is suggested to explain the formation of such novel assemblies. Moreover, when the reaction temperature is further increased to 280 or 320?°C with other conditions unchanged, cubic and orthorhombic mixed-phase PbSe HNSAs is generated. The obtained PbSe HNSAs exhibit excellent electrogenerated chemiluminescence (ECL) performance. Two strong and stable emission peaks at about -1.4 and +1.5?V (vs. Ag/AgCl) are observed. In particular, the ECL intensity is influenced by the crystal phase of PbSe. PMID:21351177

  5. Effects of tilt angle of mirror-lamp system on shape of solid-liquid interface of silicon melt during floating zone growth using infrared convergent heating

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Mukter; Watauchi, Satoshi; Nagao, Masanori; Tanaka, Isao

    2016-01-01

    The tilt effects of the mirror-lamp (M-L) system on the shape of the interface of the silicon molten zone formed during growth using the infrared convergent heating floating zone method were studied at various positions of the M-L system. The stability and the interfaces of the molten zone formed in the tilted condition were compared with those in the no tilt condition. The molten zone appeared to be more stabilized in the tilted condition than in the no tilt condition. However, the conventional parameters characterizing the interface shape such as convexities (h/r), gap and zone length (L) were almost independent of the tilt angle (?) of the M-L system and insufficient to discuss the tilting effects on the molten zone shape. The curvature of the solid-liquid interface was affected by the ?. New characterizing parameters such as the growth interface and triple point angles (? and TPA, respectively) were effective to quantitatively describe the tilting effects on the interface shape. With increase of the ?, the ? was decreased and the TPA was increased in both the feed and crystal sides. A silicon crystal of 45 mm in diameter was grown successfully in the tilted condition.

  6. Investigation of grain boundary grooves at the solid-liquid interface during directional solidification of multi-crystalline silicon: in situ characterization by X-ray imaging

    NASA Astrophysics Data System (ADS)

    Tandjaoui, Amina; Mangelinck-Noel, Nathalie; Reinhart, Guillaume; Billia, Bernard; Lafford, Tamzin; Baruchel, José

    2013-08-01

    X-ray radiography imaging has been used to investigate the formation of the grain structure during directional solidification of multi-crystalline silicon (mc-Si). A unique experimental apparatus has been developed and allows following the evolution of the solid/liquid interface and describing its features accurately. In the present paper, grain boundary groove evolution mechanisms during solidification have been studied. Their shape and evolution revealed grain competition phenomena and were drastically modified by the occurrence of new grains or twins. Moreover, the grain boundary groove repeatedly deepens and shrunks during the experiments, with different behaviours depending on the groove type. We studied two groove types in detail: facetted on both sides, or rough on one side and facetted on the other. In the case of grain boundary grooves facetted on both sides, two mechanisms were observed. In the first situation, both facets that form the grain boundary groove grow at the same rate. The grain boundary followed the bisector of the angle of this groove during the progression of the interface during solidification. In the second situation, a small grain or a twin nucleated inside the groove. This new grain entered into competition with previously existing grains and modified the evolution of the grain boundary groove in a manner depending on the crystallographic orientation of the new grain. In the case of a rough/facetted grain boundary groove, the grain boundary followed the facet.

  7. Understanding the relationship between biotherapeutic protein stability and solid-liquid interfacial shear in constant region mutants of IgG1 and IgG4.

    PubMed

    Tavakoli-Keshe, Roumteen; Phillips, Jonathan J; Turner, Richard; Bracewell, Daniel G

    2014-02-01

    Relative stability of therapeutic antibody candidates is currently evaluated primarily through their response to thermal degradation, yet this technique is not always predictive of stability in manufacture, shipping, and storage. A rotating disk shear device is proposed that produces defined shear conditions at a known solid-liquid interface to measure stability in this environment. Five variants of IgG1 and IgG4 antibodies were created using combinations of two discrete triple amino acid sequence mutations denoted TM and YTE. Antibodies were ranked for stability based on shear device output (protein decay coefficient, PDC), and compared with accelerated thermal stability data and the melting temperature of the CH2 domain (Tm 1) from differential scanning calorimetry to investigate technique complimentarity. Results suggest that the techniques are orthogonal, with thermal methods based on intramolecular interaction and shear device stability based on localized unfolding revealing less stable regions that drive aggregation. Molecular modeling shows the modifications' effects on the antibody structures and indicates a possible role for Fc conformation and Fab-Fc docking in determining suspended protein stability. The data introduce the PDC value as an orthogonal stability indicator, complementary to traditional thermal methods, allowing lead antibody selection based on a more full understanding of process stability. PMID:24357426

  8. Numerical Modeling and In-Situ Observations of the Dynamics of the Solid/Liquid Interface Morphology During Directional Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Curreri, Peter A.; Kaukler, W. F.

    1999-01-01

    The departure from interface planarity and the subsequent evolution to a periodic array of cells or dendrites is a fundamental process that characterizes most microstructures in solidified alloys. The growing demand for high quality alloys and semiconductor crystals requires a precise methodology to predict and subsequently control both the interface morphology and the distribution of impurities, additives, and phases in the grown crystal. Apart from its practical significance, the study of morphological evolution has also been viewed as a means to unearth a general paradigm for pattern formation in nature. A previously developed 2D numerical model for the solid/liquid interface tracking has been further refined and used to simulate the time-evolution of the perturbations on the interface. The dynamics of the local growth velocity, interface undercooling and solute concentration at the interface has been theoretically predicted by means of the numerical model for Al-Cu and Pb-Sn alloys. The model shows that perturbations with a wavelengths, lambda greater than a critical wavelength lambda(sub c) continue to grow in time whereas perturbations with lambda < lambda(sub c) cease to propagate. The model further predicts that under certain conditions perturbation can also propagate along the interface. Comparison of these predictions with existing theories of pattern formation and experimental results will be discussed.

  9. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid-liquid interface

    SciTech Connect

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus; Michailovski, Alexej; Patzke, Greta R.; Baiker, Alfons

    2005-05-15

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid-liquid interface at pressures up to 250 bar and temperatures up to 220 deg. C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for good mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in 'supercritical' carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO{sub 3} nanorods from MoO{sub 3}-2H{sub 2}O.

  10. Controlled self-assembly and photovoltaic characteristics of porphyrin derivatives on a silicon surface at solid-liquid interfaces.

    PubMed

    Cai, Jinhua; Chen, Haihui; Huang, Jiangen; Wang, Jingxia; Tian, Dongliang; Dong, Huanli; Jiang, Lei

    2014-04-21

    Two meso-tetraphenylporphyrin (H2TPP) derivatives with different central metal ions, namely ZnTPP, CuTPP, were synthesized, and characterized by a series of spectroscopic methods. Their self-assembly behaviors in mixed solvents without surfactant were systematically investigated. The morphology of the thus produced nanoarchitectures could be efficiently controlled. Nanoslices can be manufactured when a volume of cyclohexane is involved, octahedrons can be produced when a mixed solvent of chloroform and isopropanol is employed, while four-leaf clover-shaped structures can be produced with a large volume of methanol injected. The nanostructures have been characterized by electronic absorption, scanning electron microscopy (SEM) and photoelectric conversion techniques. The internal structures of the nanostructures are well described by XRD. The nanostructures exhibit a power conversion under illumination intensity of 2.3 mW cm(-2). The present result appears to represent an effort toward controlling the morphology of self-assembled nanostructures of porphyrin derivatives via synthesis through introduction of metal-ligand and solvent interaction. Nevertheless, the fundamental study will be helpful to understand photoinduced energy/charge transport in an organic interface and this might also serve as promising building blocks for nanoscale power sources for potential application in solar energy technologies and organic electronics and optoelectronics. PMID:24647426

  11. Reliability study of Au-in solid-liquid interdiffusion bonding for GaN-based vertical LED packaging

    NASA Astrophysics Data System (ADS)

    Sung, Ho-Kun; Wang, Cong; Kim, Nam-Young

    2015-12-01

    An In-rich Au-In bonding system has been developed to transfer vertical light-emitting diodes (VLEDs) from a sapphire to a graphite substrate and enable them to survive under n-ohmic contact treatment at 350 °C. The bonding temperature is 210 °C, and three intermetallic compounds are detected: AuIn, AuIn2, and γ phase. As a result, the remelting temperature increases beyond the theoretical value of 450 °C according to the Au-In binary phase diagram. In fact, reliability testing showed that joints obtained by rapid thermal annealing at 400 °C for 1 min survived whereas those obtained at 500 °C for 1 min failed. Finally, a GaN-based blue VLED was transferred to the graphite substrate by means of the proposed bonding method, and its average light output power was measured to be 386.6 mW (@350 mA) after n-ohmic contact treatment. This wafer-level bonding technique also shows excellent potential for high-temperature packing applications.

  12. Des furoncles résistants aux antibiotiques: penser à la myiase !!

    PubMed Central

    Ajili, Faida; Abid, Rim; Bousseta, Najeh; Mrabet, Ali; Karoui, Ghazi; Louzir, Bassem; Battikh, Riadh; Othmani, Salah

    2013-01-01

    Les myiases sont des infections parasitaires par des larves de mouches. La localisation cutanée doit être évoquée de retour d'un pays tropical devant une évolution inhabituelle de lésions cutanées. Nous rapportons une observation d'un militaire tunisien, ayant séjourné en République Démocratique du Congo. Il était atteint de myiase cutanée simulatrice d'une furonculose résistante aux antibiotiques. L'intérêt de cette observation est de souligner l'importance d’évoquer la myiase dont le traitement est simple et rapide chez un patient de retour de zone d'endémie. PMID:24106569

  13. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-09-30

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass distribution in mixed systems. Such information will in future be used to identify optimum surfactant.

  14. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  15. Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1W?

    PubMed Central

    Swarup, Ranjan; Kargul, Joanna; Marchant, Alan; Zadik, Daniel; Rahman, Abidur; Mills, Rebecca; Yemm, Anthony; May, Sean; Williams, Lorraine; Millner, Paul; Tsurumi, Seiji; Moore, Ian; Napier, Richard; Kerr, Ian D.; Bennett, Malcolm J.

    2004-01-01

    We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalized with plasma membrane (PM) markers. Because of its PM localization, we were able to take advantage of the steep pH gradient that exists across the plant cell PM to investigate AUX1 topology using YFP as a pH-sensitive probe. The YFP-coding sequence was inserted in selected AUX1 hydrophilic loops to orient surface domains on either apoplastic or cytoplasmic faces of the PM based on the absence or presence of YFP fluorescence, respectively. We were able to demonstrate in conjunction with helix prediction programs that AUX1 represents a polytopic membrane protein composed of 11 transmembrane spanning domains. In parallel, a large aux1 allelic series containing null, partial-loss-of-function, and conditional mutations was characterized to identify the functionally important domains and amino acid residues within the AUX1 polypeptide. Whereas almost all partial-loss-of-function and null alleles cluster in the core permease region, the sole conditional allele aux1-7 modifies the function of the external C-terminal domain. PMID:15486104

  16. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  17. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    NASA Astrophysics Data System (ADS)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  18. Membrane filtration of the liquid fraction from a solid-liquid separator for swine manure using a cationic polymer as flocculating agent.

    PubMed

    Masse, L; Mondor, M; Dubreuil, J

    2013-01-01

    The liquid fraction from a solid-liquid separator for swine manure, which used a cationic polymer to promote particle flocculation, was processed by one nanofiltration and two reverse osmosis spiral-wound membranes. Eight different liquid fraction batches (750 to 1750 L) were concentrated at volumetric concentration ratios (VCRs, initial to final volumes) ranging from 2.3 to 4.2. Membrane fouling intensity was highly variable, as water flux recovery after concentration cycles ranged from 13% to 88%. The most severe fouling was caused by a liquid fraction that had relatively low suspended solids (SS) (774 mg/L) and was concentrated at a low VCR of 2.6. Raw manure collected the same day also contained low SS, suggesting that fewer sites were available for polymer adsorption and thus more polymer remained in the liquid. However, because of the high opacity of the samples, residual polymer could not be detected in any feed or concentrate samples. Fouling was not totally irreversible as over 97% of membrane flux could be recovered by cleaning with acidic and alkaline solutions. Further tests with spiked liquid fractions indicated that fouling due to residual polymer in solution started to occur at a polymer concentration of 3 and 11 mg/L in initial and concentrated effluents, respectively. If a cationic polymer is used to pretreat manure, the amount of added polymer would have to be closely related to SS content as opposed to manure volume, in order to leave very little residual polymer in solution. PMID:23837317

  19. Influence of solid/liquid interfaces on the microstructure and stress-rupture life of the single-crystal nickel-base superalloy NASAIR 100

    SciTech Connect

    Guo, X.; Fu, H.; Sun, J.

    1997-04-01

    The [001] oriented single crystals of nickel-base superalloy NASAIR 100 with the planar, cellular, coarse-dendritic, and fine-dendritic solid/liquid (S/L) interfaces were prepared, respectively, and their microstructure and stress-rupture behavior at 1,050 C were investigated in both as-cast and solution heat-treated conditions. It was found that in as-cast single crystals of NASAIR 100, microsegregation and {gamma}/{gamma}{prime} eutectic produced in the solidification process increased, {gamma}{prime} size decreased, and {gamma}{prime} shape tended progressively to be cuboidal, with the successive transition of the S/L interface from planar to cellular, then to coarse-dendritic, and finally to fine-dendritic morphology. Furthermore, the solution temperature required to dissolve all as-cast {gamma}{prime} and most of the {gamma}/{gamma}{prime} eutectic increased with the aforementioned successive transition of S/L interfaces. The reprecipitated {gamma}{prime}, after solution heat treatment (SHT), was usually fine and cuboidal. However, some W-rich phase was present in the heat-treated dendritic single crystals. Both the planar and the cellular single crystals of NASAIR 100 exhibited no superiority in stress-rupture life, irrespective of the heat-treatment conditions. Instead, the single crystals with dendritic morphology possessed excellent stress-rupture lives, after heat treatment of 1,320 C for 4 hours, followed by air cooling (AC). Perfect {gamma}{prime} rafts with high-average aspect ratios formed during the stress-rupture tests of dendritic single crystals; in contrast, irregularly coarsening structures appeared in both the planar and cellular single crystals. The microstructure and solution behavior were illustrated in detail. Furthermore, the microstructural factors to affect the high-temperature stress-rupture life of the single crystals of NASAIR 100 were also analyzed.

  20. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    PubMed

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. PMID:26292776

  1. Determination of caffeoylquinic acids in feed and related products by focused ultrasound solid-liquid extraction and ultra-high performance liquid chromatography-mass spectrometry.

    PubMed

    Tena, M T; Martínez-Moral, M P; Cardozo, P W

    2015-06-26

    A method to determine caffeoylquinic acids (CQAs) in three sources (herbal extract, feed additive and finished feed) using for the first time focused ultrasound solid-liquid extraction (FUSLE) followed by ultra-high performance liquid chromatography (UPLC) coupled to quadrupole-time of flight mass spectrometry is presented. Pressurized liquid extraction (PLE) was also tested as extraction technique but it was discarded because cynarin was not stable under temperature values used in PLE. The separation of the CQAs isomers was carried out in only seven minutes. FUSLE variables such as extraction solvent, power and time were optimized by a central composite design. Under optimal conditions, FUSLE extraction was performed with 8mL of an 83:17 methanol-water mixture for 30s at a power of 60%. Only two extraction steps were found necessary to recover analytes quantitatively. Sensitivity, linearity, accuracy and precision were established. Matrix effect was studied for each type of sample. It was not detected for mono-CQAs, whereas the cynarin signal was strongly decreased due to ionization suppression in presence of matrix components; so the quantification by standard addition was mandatory for the determination of di-caffeoylquinic acids. Finally, the method was applied to the analysis of herbal extracts, feed additives and finished feed. In all samples, chlorogenic acid was the predominant CQA, followed by criptochlorogenic acid, neochlorogenic acid and cynarin. The method allows an efficient determination of chlorogenic acid with good recovery rates. Therefore, it may be used for screening of raw material and for process and quality control in feed manufacture. PMID:25981290

  2. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2015-09-15

    Fluid drag of micro/nano fluidic systems has inspired wide scientific interest. Surface charge and boundary slip at the solid-liquid interface are believed to affect fluid drag. This review summarizes the recent studies on the coupling of surface charge and slip, and their combined effect on fluid drag at micro/nano scale. The effect of pH on surface charge of borosilicate glass and silica surfaces in deionized (DI) water and saline solution is discussed using a method based on colloidal probe atomic force microscopy (AFM). The boundary slip of various oil-solid interfaces are discussed for samples with different degrees of oleophobicity prepared by nanoparticle-binder system. By changing the pH of solution or applying an electric field, effect of surface charge on slip of a smooth hydrophobic octadecyltrichlorosilane (OTS) in DI water and saline solution is studied. A theoretical model incorporating the coupling relationship between surface charge and slip is used to discuss the combined effect of surface charge-induced electric double layer (EDL) and slip on fluid drag of pressure-driven flow in a one-dimensional parallel-plates microchannel. A theoretical method is used to reduce the fluid drag. The studies show that the increasing magnitude of surface charge density leads to a decrease in slip length. The surface charge results in a larger fluid drag, and the coupling of surface charge and slip can further increase the fluid drag. Surface charge-induced EDLs with asymmetric zeta potentials can effectively reduce the fluid drag. PMID:26021432

  3. Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection.

    PubMed

    Kong, Wei-Jun; Liu, Shu-Yu; Qiu, Feng; Xiao, Xiao-He; Yang, Mei-Hua

    2013-05-01

    A simple and sensitive analytical method based on ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with high performance liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection (USLE-IAC-HPLC-PCD-FLD) has been developed for simultaneous multi-mycotoxin determination of aflatoxins B1, B2, G1, G2 (AFB1, AFB2, AFG1, AFG2) and ochratoxin A (OTA) in 13 edible and medicinal nutmeg samples marketed in China. AFs and OTA were extracted from nutmeg samples by ultrasonication using a methanol : water (80 : 20, v/v) solution, followed by an IAC clean-up step. Different USL extraction conditions, pre-processing ways for nutmeg sample and clean-up columns for mycotoxins, as well as HPLC-PCD-FLD parameters (mobile phase, column temperature, elution procedure, excitation and emission wavelengths) were optimized. This method, which was appraised for analyzing nutmeg samples, showed satisfactory results with reference to limits of detection (LODs) (from 0.02 to 0.25 μg kg(-1)), limits of quantification (LOQs) (from 0.06 to 0.8 μg kg(-1)), linear ranges (up to 30 ng mL(-1) for AFB1, AFG1 and OTA and 9 ng mL(-1) for AFB2 and AFG2), intra- and inter-day variability (all <2%) and average recoveries (from 79.6 to 90.8% for AFs and from 93.6 to 97.3% for OTA, respectively). The results of the application of developed method in nutmeg samples have elucidated that four samples were detected with contamination of AFs and one with OTA. AFB1 was the most frequently found mycotoxin in 30.8% of nutmeg samples at contamination levels of 0.73-16.31 μg kg(-1). At least two different mycotoxins were co-occurred in three samples, and three AFs were simultaneously detected in one sample. PMID:23486692

  4. Phenomena associated with melting and supercooling in aluminum and the solid-liquid interface in an aluminum-silicon base alloy investigated by in-situ analytical transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Palanisamy, Prakash

    Crystal growth is an important technique for controlling the microstructure of materials, and hence, studies pertaining to crystal growth are crucial for developing new materials with novel properties. The present research explores the behavior of the core and valence electrons, and the nearest-neighbor atomic distance during heating and cooling of pure Al through the melting temperature, as well as the properties associated with the solid-liquid interface in a commercially important Al-Si-Cu-Mg alloy, using in-situ analytical transmission electron microscopy (TEM). Electron energy-loss spectroscopy (EELS) in a TEM was used to follow changes in the valence electron density through the melting temperature and during supercooling in pure Al particles. A non-linear plasmon energy change observed during heating solid Al is due to a phonon anharmonicity that is not present in liquid Al during heating. Similarly, a non-linear plasmon behavior observed during supercooling liquid Al could due to local ordering in the liquid. Comparing the full-width at half-maximum of the plasmon peaks show that damping of plasmons is faster in liquid than in solid Al due to electron-phonon interactions and/or Anderson localization. The extended energy-loss fine structure (EXEFLS) in the EELS spectrum is sensitive to the nearest-neighbor atomic distance and coordination in a material. A comparison of the nearest-neighbor distance and the inverse volume plasmon energy change through the melting temperature shows good agreement in the solid Al, whereas the correlation is less good in liquid Al because thermal vibrations (Debye-Waller factor) dampen the EXELFS oscillation at high temperatures. A qualitative comparison of the energy-loss near edge spectra (ELNES) of solid and liquid Al in both superheated and supercooled states shows that their partial electron density of states are quantitatively different and that the presence or absence of crystallinity is the most important factor contributing to the ELNES. The partitioning of solute elements was investigated by measuring the Cu concentrations in solid Si, liquid Al and at the solid-liquid interface at 585 °C, where the particle is partially molten, and subsequently undercooling to 565 and 470 °C. The Cu concentration after fluorescence correction was compared with thermodynamic calculations. The results shows that Cu segregation during undercooling assists in nucleating Al2Cu prior to Mg 2Si phase at a high-index Si facet-liquid Al interface under non-equilibrium conditions. The heterogeneous segregation of Cu at the interface was determined to be a thermodynamically driven process by measuring the Cu concentration in liquid Al and at the solid-liquid interface for prolonged times at temperature. The plasmon at a solid-liquid interface in an Al-Si alloy particle was investigated by stepping a 0.6 nm diameter electron beam at 0.8 nm increments across a singular Si{111}-liquid Al interface in sub-eV, sub-A microscope (SESAM). Low energy-loss spectra acquired across solid-liquid interface were compared with calculations using dielectric theory. The result shows that a unique plasmon resonance is present at the interface between the crystalline Si and liquid Al, thereby giving rise to a plasmon peak at 15.5 eV between the Si (16.3 eV) and liquid Al (14.2 eV) plasmons in the experimental EEL spectra. This result was corroborated with energy-filtered TEM. The intensity profile across the solid-liquid interface in the energy-filtered image shows that the interface plasmon signal is delocalized to within ˜5.5 nm of the interface.

  5. Symetries et integrabilite des equations aux differences finies

    NASA Astrophysics Data System (ADS)

    Lafortune, Stephane

    2000-09-01

    La présente thèse porte sur l'étude des symétries et des propriétés d'intégrabilité des équations aux différences finies. Dans le chapitre 1, le groupe de symétrie ponctuelle d'un système couplé à deux équations différentielles aux différences est étudié. On montre que dans certains cas, la dimension du groupe peut être infinie. Les équations peuvent décrire l'interaction de deux longues chaînes moléculaires, chacune étant composée d'atomes d'un même type. Dans le chapitre 2, une classe de théories de champs avec interaction exponentielle est introduite. L'interaction dépend de deux matrices de ``couplage'' et est suffisamment générale pour inclure toutes les théories de champs de Toda existant dans la littérature. Les symétries de Lie ponctuelles sont obtenues pour les cas où l'on a un nombre fini, infini ou semi-infini de champs. Une attention spéciale est accordée à la présence de l'invariance conforme. Dans le chapitre 3, nous procédons à la classification et à l'étude d'équations linéarisables. Nous examinons tout d'abord l'équation de Gambier continue qui contient, comme réductions, toutes les équations de deuxième ordre intégrables par linéarisation. Nous introduisons par la suite la forme discrète de cette équation et obtenons les conditions d'intégrabilité à l'aide du confinement des singularités. Nous étudions aussi les différentes réductions du cas discret. De plus, nous obtenons des transformations de Schlesinger pour les équations de Gambier discrète et continue. Dans la dernière partie du chapitre, nous étudions une famille d'équations discrètes du deuxième ordre incluant des équations résolubles par linéarisation. Plusieurs cas intégrables sont obtenus. Dans le cas discret, l'étude de l'intégrabilité est faite à l'aide du confinement des singularités. Dans le chapitre 4, nous étudions un autre critère d'intégrabilité: l'entropie algébrique. Nous montrons que les résultats obtenus avec ce critère pour les équations linéarisables sont les mêmes que ceux obtenus avec le confinement des singularités. Nous obtenons de plus une méthode algorithmique pour la détection de la linéarisabilité. Le chapitre 5 est consacré à l'étude d'équations du troisième ordre. Nous obtenons des équations intégrables par des couplages d'équations du premier et du deuxième ordre. Les équations continues sont étudiées à l'aide de l'analyse de Painlevé et le confinement des singularités est utilisé dans le cas discret.

  6. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect

    Cole, R.D. )

    1991-03-01

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  7. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements.

    PubMed Central

    Ulmasov, T; Murfett, J; Hagen, G; Guilfoyle, T J

    1997-01-01

    A highly active synthetic auxin response element (AuxRE), referred to as DR5, was created by performing site-directed mutations in a natural composite AuxRE found in the soybean GH3 promoter. DR5 consisted of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element. The DR5 AuxRE showed greater auxin responsiveness than a natural composite AuxRE and the GH3 promoter when assayed by transient expression in carrot protoplasts or in stably transformed Arabidopsis seedlings, and it provides a useful reporter gene for studying auxin-responsive transcription in wild-type plants and mutants. An auxin response transcription factor, ARF1, bound with specificity to the DR5 AuxRE in vitro and interacted with Aux/IAA proteins in a yeast two-hybrid system. Cotransfection experiments with natural and synthetic AuxRE reporter genes and effector genes encoding Aux/IAA proteins showed that overexpression of Aux/IAA proteins in carrot protoplasts resulted in specific repression of TGTCTC AuxRE reporter gene expression. PMID:9401121

  8. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis

    PubMed Central

    Piya, Sarbottam; Shrestha, Sandesh K.; Binder, Brad; Stewart, C. Neal; Hewezi, Tarek

    2014-01-01

    The phytohormone auxin regulates nearly all aspects of plant growth and development. Based on the current model in Arabidopsis thaliana, Auxin/indole-3-acetic acid (Aux/IAA) proteins repress auxin-inducible genes by inhibiting auxin response transcription factors (ARFs). Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are related to their unique biological functions. The objective of this study was to generate the Aux/IAA-ARF protein-protein interaction map using full length sequences and locate the interacting protein pairs to specific gene co-expression networks in order to define tissue-specific responses of the Aux/IAA-ARF interactome. Pairwise interactions between 19 ARFs and 29 Aux/IAAs resulted in the identification of 213 specific interactions of which 79 interactions were previously unknown. The incorporation of co-expression profiles with protein-protein interaction data revealed a strong correlation of gene co-expression for 70% of the ARF-Aux/IAA interacting pairs in at least one tissue/organ, indicative of the biological significance of these interactions. Importantly, ARF4-8 and 19, which were found to interact with almost all Aux-Aux/IAA showed broad co-expression relationships with Aux/IAA genes, thus, formed the central hubs of the co-expression network. Our analyses provide new insights into the biological significance of ARF-Aux/IAA associations in the morphogenesis and development of various plant tissues and organs. PMID:25566309

  9. Extraction and preconcentration of tylosin from milk samples through functionalized TiO? nanoparticles reinforced with a hollow fiber membrane as a novel solid/liquid-phase microextraction technique.

    PubMed

    Sehati, Negar; Dalali, Nasser; Soltanpour, Shahla; Dorraji, Mir Saeed Seyed

    2014-08-01

    The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so-called functionalized TiO2 hollow fiber solid/liquid-phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2 O2 and a mild acidic ambient under UV irradiation. This novel extraction method showed excellent extraction efficiency and a high enrichment factor (540.2) in comparison with conventional hollow fiber liquid-phase microextraction. All the experiments were monitored at ?max = 284 nm using a simple double beam UV-visible spectrophotometer. A Taguchi orthogonal array experimental design with an OA16 (4(5) ) matrix was employed to optimize the factors affecting the efficiency of hollow fiber solid/liquid-phase microextraction such as pH, stirring rate, salt addition, extraction time, and the volume of donor phase. This developed method was successfully applied for the separation and determination of tylosin in milk samples with a linear concentration range of 0.51-7000 ?g/L (r(2) = 0.991) and 0.21 ?g/L as the limit of detection. PMID:24890459

  10. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17

    PubMed Central

    Han, Mookyoung; Park, Yangshin; Kim, Iktae; Kim, Eun-Hee; Yu, Tae-Kyung; Rhee, Sangkee; Suh, Jeong-Yong

    2014-01-01

    Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III−IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III−IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact β-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 μM and 0.87 μM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼10- to ∼100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes. PMID:25512488

  11. Étude du comportement électrique du fusible aux fréquences élevées

    NASA Astrophysics Data System (ADS)

    Duong, S.; Rael, S.; Schaeffer, Ch.; Sarrus, F.

    1997-04-01

    Nowadays, the development of power semiconductors has made that fuses used for their protection have to be improved. The high working frequency of IGBT leads to a modification of fuse characteristics. For high frequencies, it may occur a bad working due to an unequal current distribution between two fuses in parallel, or even between fuse's elements. The result is that fuse operates at below rated current. This unexpected operation can be attributed to proximity effects which are consequences of electromagnetic laws between close conductors. To prevent such a failure, their current rating must be reduced as a function of frequency and distance between the fuselink and other conductors (e.g. the return conductor). L'évolution des interrupteurs semi-conducteurs de puissance est telle que les fusibles assurant leur protection ont dû eux aussi se développer. Ainsi, la fréquence de travail élevée de ces composants peut entraîner des modifications des caractéristiques du fusible. À haute fréquence, il peut apparaître un dysfonctionnement dû à une mauvaise répartition des courants entre des fusibles en parallèle ou même entre les différentes lames en parallèle constituant un fusible. Le résultat est alors une ouverture du fusible pour un courant inférieur à la valeur spécifiée par le constructeur. Ce dysfonctionnement peut être attribué aux phénomènes d'effets de proximité direct et inverse qui s'exercent sur plusieurs conducteurs proches. Pour éviter une ouverture intempestive, il est nécessaire de réduire le calibre du fusible en fonction de la fréquence et de la proximité d'autres conducteurs (par exemple le conducteur de retour).

  12. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints.

    PubMed

    Rendu, William; Beauval, Cédric; Crevecoeur, Isabelle; Bayle, Priscilla; Balzeau, Antoine; Bismuth, Thierry; Bourguignon, Laurence; Delfour, Géraldine; Faivre, Jean-Philippe; Lacrampe-Cuyaubère, François; Tavormina, Carlotta; Todisco, Dominique; Turq, Alain; Maureille, Bruno

    2014-01-01

    The bouffia Bonneval at La Chapelle-aux-Saints is well known for the discovery of the first secure Neandertal burial in the early 20th century. However, the intentionality of the burial remains an issue of some debate. Here, we present the results of a 12-y fieldwork project, along with a taphonomic analysis of the human remains, designed to assess the funerary context of the La Chapelle-aux-Saints Neandertal. We have established the anthropogenic nature of the burial pit and underlined the taphonomic evidence of a rapid burial of the body. These multiple lines of evidence support the hypothesis of an intentional burial. Finally, the discovery of skeletal elements belonging to the original La Chapelle aux Saints 1 individual, two additional young individuals, and a second adult in the bouffia Bonneval highlights a more complex site-formation history than previously proposed. PMID:24344286

  13. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints

    PubMed Central

    Rendu, William; Beauval, Cédric; Crevecoeur, Isabelle; Bayle, Priscilla; Balzeau, Antoine; Bismuth, Thierry; Bourguignon, Laurence; Delfour, Géraldine; Faivre, Jean-Philippe; Lacrampe-Cuyaubère, François; Tavormina, Carlotta; Todisco, Dominique; Turq, Alain; Maureille, Bruno

    2014-01-01

    The bouffia Bonneval at La Chapelle-aux-Saints is well known for the discovery of the first secure Neandertal burial in the early 20th century. However, the intentionality of the burial remains an issue of some debate. Here, we present the results of a 12-y fieldwork project, along with a taphonomic analysis of the human remains, designed to assess the funerary context of the La Chapelle-aux-Saints Neandertal. We have established the anthropogenic nature of the burial pit and underlined the taphonomic evidence of a rapid burial of the body. These multiple lines of evidence support the hypothesis of an intentional burial. Finally, the discovery of skeletal elements belonging to the original La Chapelle aux Saints 1 individual, two additional young individuals, and a second adult in the bouffia Bonneval highlights a more complex site-formation history than previously proposed. PMID:24344286

  14. Diagenesis and reservoir quality of the Upper Mississippian Aux Vases Sandstone, Illinois Basin

    USGS Publications Warehouse

    Pitman, Janet K.; Henry, Mitchell E.; Leetaru, Hannes E.

    1999-01-01

    Conventional reservoir quality data for more than 300 wells provided by the Illinois and Indiana state geological surveys were analyzed to determine the factors governing porosity and permeability in the Upper Mississippian Aux Vases Sandstone, an important hydrocarbon-producing unit in the Illinois Basin. In addition, approximately 150 samples of the Aux Vases Sandstone were collected for mineralogical and geochemical analysis to reconstruct the burial and diagenetic history and to establish the timing of diagenesis relative to the entrapment of hydrocarbons. One aspect of the study involved linking inorganic and organic diagenesis to late Paleozoic tectonism and hydrothermal fluid-flow events in the region.

  15. [Day-to-day support from the families from the Aide aux jeunes diabétiques association].

    PubMed

    Chadefaud, Nathalie

    2016-01-01

    Parents often feel helpless when their child is diagnosed with diabetes. After the initial hospitalisation and the return home, their day-to-day life has to be completely reorganised. Families from the Aide aux jeunes diabétiques association provide them a valuable support to help the development of their child. PMID:26776694

  16. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the auxin/indole-3-acetic acid (Aux/IAA) gene family encode proteins to mediate the responses of auxin gene expression and to regulate various aspects of plant morphological development. In this paper, we report the identification of nine cDNAs that contain complete open reading frame (OR...

  17. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-09-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane ? helices, of which S1-S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein's folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential.

  18. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    PubMed

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance. PMID:26154990

  19. Micro-focused ultrasonic solid-liquid extraction (muFUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: optimization and linking with the analytical minimalism concept.

    PubMed

    Capelo, J L; Galesio, M M; Felisberto, G M; Vaz, C; Pessoa, J Costa

    2005-06-15

    Analytical minimalism is a concept that deals with the optimization of all stages of an analytical procedure so that it becomes less time, cost, sample, reagent and energy consuming. The guide-lines provided in the USEPA extraction method 3550B recommend the use of focused ultrasound (FU), i.e., probe sonication, for the solid-liquid extraction of Polycyclic Aromatic Hydrocarbons, PAHs, but ignore the principle of analytical minimalism. The problems related with the dead sonication zones, often present when high volumes are sonicated with probe, are also not addressed. In this work, we demonstrate that successful extraction and quantification of PAHs from sediments can be done with low sample mass (0.125g), low reagent volume (4ml), short sonication time (3min) and low sonication amplitude (40%). Two variables are here particularly taken into account for total extraction: (i) the design of the extraction vessel and (ii) the solvent used to carry out the extraction. Results showed PAHs recoveries (EPA priority list) ranged between 77 and 101%, accounting for more than 95% for most of the PAHs here studied, as compared with the values obtained after soxhlet extraction. Taking into account the results reported in this work we recommend a revision of the EPA guidelines for PAHs extraction from solid matrices with focused ultrasound, so that these match the analytical minimalism concept. PMID:18970118

  20. Determination of perfluorinated alkyl acids in corn, popcorn and popcorn bags before and after cooking by focused ultrasound solid-liquid extraction, liquid chromatography and quadrupole-time of flight mass spectrometry.

    PubMed

    Moreta, Cristina; Tena, María Teresa

    2014-08-15

    An analytical method is proposed to determine ten perfluorinated alkyl acids (PFAAs) [nine perfluorocarboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS)] in corn, popcorn and microwave popcorn packaging by focused ultrasound solid-liquid extraction (FUSLE) and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-time of flight mass spectrometry (QTOF-MS/MS). Selected PFAAs were extracted efficiently in only one 10-s cycle by FUSLE, a simple, safe and inexpensive technique. The developed method was validated for microwave popcorn bags matrix as well as corn and popcorn matrices in terms of linearity, matrix effect error, detection and quantification limits, repeatability and recovery values. The method showed good accuracy with recovery values around 100% except for the lowest chain length PFAAs, satisfactory reproducibility with RSDs under 16%, and sensitivity with limits of detection in the order of hundreds picograms per gram of sample (between 0.2 and 0.7ng/g). This method was also applied to the analysis of six microwave popcorn bags and the popcorn inside before and after cooking. PFCAs contents between 3.50ng/g and 750ng/g were found in bags, being PFHxA (perfluorohexanoic acid) the most abundant of them. However, no PFAAs were detected either corn or popcorn, therefore no migration was assumed. PMID:24986069

  1. [PMIM]Br@TiO2 nanocomposite reinforced hollow fiber solid/liquid phase microextraction: an effective extraction technique for measurement of benzodiazepines in hair, urine and wastewater samples combined with high-performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Nezhadali, Azizollah; Bahar, Shahriyar; Bohlooli, Shahab; Banaei, Alireza

    2015-02-01

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of benzodiazepines (BZPs) in hair, urine and wastewater. The membrane extraction with 1-pentyl-3-methylimidazolium bromide coated titanium dioxide ([PMIM]Br@TiO2) sorbent used in this research is a two-phase supported membrane extraction consisting of an aqueous (donor phase), and n-octanol/nano [PMIM]Br@TiO2 (acceptor phase) system operated in direct immersion sampling mode. The 1-pentyl-3-methylimidazolium bromide (ionic liquid) coated nano TiO2 dispersed in the organic solvent (n-octanol) is held into a porous membrane supported by capillary forces and sonification. It is in contact with the feed phase, which is the aqueous sample. The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of BZPs into one single extract. In order to obtain high extraction efficiency of the analytes using this novel sorbent, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.05-6000ngmL(-1)), low limits of detection (0.08-0.5ngmL(-1)) and good enrichment (533-1190). PMID:25589255

  2. Adsorption of mixtures of nonionic sugar-based surfactants with other surfactants at solid/liquid interfaces II. Adsorption of n-dodecyl-beta-D-maltoside with a cationic surfactant and a nonionic ethoxylated surfactant on solids.

    PubMed

    Zhang, Lei; Zhang, Rui; Somasundaran, P

    2006-10-01

    Synergy and antagonism between sugar-based surfactants, a group of environmentally benign surfactants, and cationic surfactants and nonionic ethoxylated surfactants have been investigated in this study with solids which adsorbs only one or other when presented alone. Sugar-based n-dodecyl-beta-D-maltoside (DM) does not adsorb on silica by itself. However, in mixtures with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic nonylphenol ethoxylated decyl ether (NP-10), DM adsorbs on silica through hydrophobic interactions. In contrast, although DM does adsorb on alumina, the presence of NP-10 reduces the adsorption of DM as well as that of the total surfactant adsorption. Such synergistic/antagonistic effects of sugar-based n-dodecyl-beta-D-maltoside (DM) in mixtures with other surfactants at solid/liquid interfaces were systematically investigated and some general rules on synergy/antagonism in mixed surfactant systems are identified. These results have implications for designing surfactant combinations for controlled adsorption or prevention of adsorption. PMID:16890947

  3. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean

    PubMed Central

    Singh, Vikash K.; Jain, Mukesh

    2015-01-01

    Auxin plays a central role in many aspects of plant growth and development. Auxin/Indole-3-Acetic Acid (Aux/IAA) genes cooperate with several other components in the perception and signaling of plant hormone auxin. An investigation of chickpea and soybean genomes revealed 22 and 63 putative Aux/IAA genes, respectively. These genes were classified into six subfamilies on the basis of phylogenetic analysis. Among 63 soybean Aux/IAA genes, 57 (90.5%) were found to be duplicated via whole genome duplication (WGD)/segmental events. Transposed duplication played a significant role in tandem arrangements between the members of different subfamilies. Analysis of Ka/Ks ratio of duplicated Aux/IAA genes revealed purifying selection pressure with restricted functional divergence. Promoter sequence analysis revealed several cis-regulatory elements related to auxin, abscisic acid, desiccation, salt, seed, and endosperm, indicating their role in development and stress responses. Expression analysis of chickpea and soybean Aux/IAA genes in various tissues and stages of development demonstrated tissue/stage specific differential expression. In soybean, at least 16 paralog pairs, duplicated via WGD/segmental events, showed almost indistinguishable expression pattern, but eight pairs exhibited significantly diverse expression patterns. Under abiotic stress conditions, such as desiccation, salinity and/or cold, many Aux/IAA genes of chickpea and soybean revealed differential expression. qRT-PCR analysis confirmed the differential expression patterns of selected Aux/IAA genes in chickpea. The analyses presented here provide insights on putative roles of chickpea and soybean Aux/IAA genes and will facilitate elucidation of their precise functions during development and abiotic stress responses. PMID:26579165

  4. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean.

    PubMed

    Singh, Vikash K; Jain, Mukesh

    2015-01-01

    Auxin plays a central role in many aspects of plant growth and development. Auxin/Indole-3-Acetic Acid (Aux/IAA) genes cooperate with several other components in the perception and signaling of plant hormone auxin. An investigation of chickpea and soybean genomes revealed 22 and 63 putative Aux/IAA genes, respectively. These genes were classified into six subfamilies on the basis of phylogenetic analysis. Among 63 soybean Aux/IAA genes, 57 (90.5%) were found to be duplicated via whole genome duplication (WGD)/segmental events. Transposed duplication played a significant role in tandem arrangements between the members of different subfamilies. Analysis of Ka/Ks ratio of duplicated Aux/IAA genes revealed purifying selection pressure with restricted functional divergence. Promoter sequence analysis revealed several cis-regulatory elements related to auxin, abscisic acid, desiccation, salt, seed, and endosperm, indicating their role in development and stress responses. Expression analysis of chickpea and soybean Aux/IAA genes in various tissues and stages of development demonstrated tissue/stage specific differential expression. In soybean, at least 16 paralog pairs, duplicated via WGD/segmental events, showed almost indistinguishable expression pattern, but eight pairs exhibited significantly diverse expression patterns. Under abiotic stress conditions, such as desiccation, salinity and/or cold, many Aux/IAA genes of chickpea and soybean revealed differential expression. qRT-PCR analysis confirmed the differential expression patterns of selected Aux/IAA genes in chickpea. The analyses presented here provide insights on putative roles of chickpea and soybean Aux/IAA genes and will facilitate elucidation of their precise functions during development and abiotic stress responses. PMID:26579165

  5. Decommissioning of the Nuclear Licensed Facilities at the Fontenay aux Roses CEA Center

    SciTech Connect

    Jeanjacques, Michel; Piketty, Laurence; Mandard, Lionel; Pedron, Guy; Boissonneau, Jean Francois; Fouquereau, Alain; Pichereau, Eric; Lethuaire, Nathalie; Estivie, David; Binet, Cedric; Meden, Igor

    2008-01-15

    This is a summary of the program for the decommissioning of all the CEA's facilities in Fontenay aux Roses. The particularity of this center is that it is located in a built-up area. Taking into account the particularities of the various buildings and the levels of radioactivity in them, it was possible to devise a coherent, optimized program for the CEA-FAR licensed nuclear facility decommissioning operations.

  6. Decommissioning of the nuclear licensed facilities at the Fontenay aux Roses CEA center

    SciTech Connect

    Jeanjacques, Michel; Piketty, Laurence; Letuhaire, Nathalie; Mandard, Lionel; Meden, Igor; Estivie, David; Boissonneau, Jean Francois; Fouquereau, Alain; Pichereau, Eric; Binet, Cedric

    2007-07-01

    Available in abstract form only. Full text of publication follows: The French Atomic Energy Commission (CEA) center at Fontenay aux Roses (CEN-FAR) is the Commission's oldest center is located in the southern suburbs of Paris. It was opened on 26 March 1946 to host the first French nuclear reactor ZOE that went critical on 12 December 1946. The first laboratories were installed in existing buildings on the site. (authors)

  7. A gas-diffusion flow injection method coupled with online solid-liquid extraction for the determination of ammonium in solid samples.

    PubMed

    Timofeeva, Irina I; Bulatov, Andrey V; Moskvin, Aleksey L; Kolev, Spas D

    2015-09-01

    A simple, rapid and reliable gas-diffusion flow injection (GD-FI) method for ammonium determination in building materials has been developed. It is based on leaching ammonium from a ground solid sample into an alkaline solution with subsequent ammonia gas generation. Ammonia is then transported in a nitrogen stream to the GD cell of the FI system where it is absorbed into its acceptor solution containing a mixture of the acid-base indicators cresol red and thymol blue. The maximum increase in the absorbance of the acceptor solution at 580 nm is related to the ammonium concentration in the solid sample. The proposed method is characterized by a linear concentration range of 0.1-5.0 mg NH4(+) kg(-1), a limit of detection of 8 ?g NH4(+) kg(-1) and a sample throughput of 10h(-1). A successful application of this method for the determination of ammonium in building materials such as concrete, cement and sand is reported. PMID:26003703

  8. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    PubMed Central

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2009-01-01

    Background Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure leads to more compact solids, which may affect subsequent processing steps. This study was carried out to investigate the influence of pressing the biomass, in combination with the effects of not washing the material, on the sugar yield obtained from two-step dilute acid hydrolysis, with and without subsequent enzymatic digestion of the solids. Results Washing the material between the two acid hydrolysis steps, followed by enzymatic digestion, resulted in recovery of 96% of the mannose and 81% of the glucose (% of the theoretical) in the liquid fraction, regardless of the choice of dewatering method (pressing or vacuum filtration). Not washing the solids between the two acid hydrolysis steps led to elevated acidity of the remaining solids during the second hydrolysis step, which resulted in lower yields of mannose, 85% and 74% of the theoretical, for the pressed and vacuum-filtered slurry, respectively, due to sugar degradation. However, this increase in acidity resulted in a higher glucose yield (94.2%) from pressed slurry than from filtered slurry (77.6%). Conclusion Pressing the washed material between the two acid hydrolysis steps had no significant negative effect on the sugar yields of the second acid hydrolysis step or on enzymatic hydrolysis. Not washing the material resulted in a harsher second acid hydrolysis step, which caused greater degradation of the sugars during subsequent acid hydrolysis of the solids, particularly in case of the vacuum-filtered solids. However, pressing in combination with not washing the material between the two steps enhanced the sugar yield of the enzymatic digestion step. Hence, it is suggested that the unwashed slurry be pressed to as high a dry matter content as possible between the two acid hydrolysis stages in order to achieve high final sugar yields. PMID:19291286

  9. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission. PMID:25982744

  10. Determination of bisphenol-type endocrine disrupting compounds in food-contact recycled-paper materials by focused ultrasonic solid-liquid extraction and ultra performance liquid chromatography-high resolution mass spectrometry.

    PubMed

    Pérez-Palacios, David; Fernández-Recio, Miguel Ángel; Moreta, Cristina; Tena, María Teresa

    2012-09-15

    Focused ultrasonic solid-liquid extraction (FUSLE) and reverse-phase ultra performance liquid chromatography (UPLC) coupled to a quadrupole-time of flight mass spectrometer (Q-TOF-MS) was applied to the determination of bisphenol-type endocrine disrupting compounds (EDCs) in food-contact recycled-paper materials. Recycled paper is a potential source of EDCs. Bisphenol A (BPA), bisphenol F (BPF) and their derivatives bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) are used for the production of epoxy resins employed in the formulation of printing inks. The FUSLE of bisphenol-type EDCs from packaging is reported for the first time. First, different extraction solvents were studied and methanol was selected. Then, the main FUSLE factors affecting the extraction efficiency (solvent volume, extraction time and ultrasonic irradiation power) were studied by means of a central composite design. The FUSLE conditions selected for further experiments were 20 ml of methanol at ultrasonic amplitude of 100% for 5s. Finally, the number of extraction cycles necessary for complete extraction was established in two. The analysis of the FUSLE extracts was carried out by UPLC-Q-TOF-MS with electrospray ionization and the determination of the four analytes took place in only 4 min. The FUSLE and UPLC-ESI-QTOF-MS method was validated and applied to the analysis of different food-contact recycled-paper-based materials and packaging. The proposed method provided recoveries from 72% to 97%, repeatability and intermediate precision under 9% and 14%, respectively, and detection limits of 0.33, 0.16, 0.65 and 0.40 ?g/g for BPA, BPF, BADGE and BFDGE, respectively. The analysis of paper and cardboard samples confirmed the presence of EDCs in these packaging. PMID:22967537

  11. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Golsefidi, Mazyar Ahmadi; Saify, Ali; Tanha, Ali Akbar; Rezaeifar, Zohre; Alian-Nezhadi, Zahra

    2010-04-23

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of caffeic acid in medicinal plants samples as Echinacea purpure. The membrane extraction with sorbent interface used in this research is a three-phase supported liquid membrane consisting of an aqueous (donor phase), organic solvent/nano sorbent (membrane) and aqueous (acceptor phase) system operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores of a porous membrane supported by capillary forces and sonification. It is in contact with two aqueous phases: the donor phase, which is the aqueous sample, and the acceptor phase, usually an aqueous buffer. All microextraction experiments were supported using an Accurel Q3/2 polypropylene hollow fiber membrane (600 microm I.D., 200 microm wall thicknesses, and 0.2 microm pore size). The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of an acidic analyte into one single extract. In order to obtain high enrichment and extraction efficiency of the analyte using this novel technique, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.0001-50 microg/L), repeatability, low limits of detection (0.00005 microg/L) and excellent enrichment (EF=2108). PMID:20227700

  12. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    SciTech Connect

    Phillips, D.C.

    2006-05-16

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures ({alpha}-helix and {beta}-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  13. Loi constitutive chimioplastique pour le beton expose aux hautes temperatures

    NASA Astrophysics Data System (ADS)

    Hammoud, Rabah

    Concrete is the most widely used construction material in the world. Even though it has been used for several centuries, its behavior to high temperature remains to be understood. In the light of recent extreme events, including accidents, and arson, special attention has been focused on the performance of concrete in the fire safety assessment of buildings and tunnels. Fire represents one of the most severe conditions encountered during the life-time of a structure. Concrete exposed to high temperature can significantly jeopardize the structural integrity and load bearing capacity of the structure. Spalling of concrete remains one of the main issues to be addressed in the case of fire in buildings and tunnels. Successful modeling of this phenomenon depends not only on the accurate prediction of the temperature distribution through structural concrete but also on its mechanical response to the heating and boundaries restrains conditions and the migration of moisture and associated pore pressures. Therefore, it is necessary to develop a reliable formulation of concrete with all required information to understand its behavior during and after exposure to elevated temperature. It is also necessary to properly assess the effects of thermal degradation in order to develop predictive tools and validate design codes. Many structural problems can be adequately worthy by an elastoplastic model. The ultimate goal of this study is the development of a new constitutive model under a chemoplastic framework. To do this, an experimental program is carried out. The purpose of this program is twofold. First, it is essential to calibrate the proposed constitutive law that will be developed, and, second, for defining an inverse a problem. Usually, uniaxial and triaxial tests, conducted with confining pressure varied between 1.3 and 24 MPa and a temperature up to 700°C, allow us to identify the constitutive law parameters. This law reproduces the reduced field strength due to degradation of exothermic origin. This experimental program puts emphasis on the fragile nature of the preheated concrete and demonstrates the non-applicability of two failure criteria often used in engineering calculation. An alternative is proposed and well-tested. Indeed, exposing the concrete to high temperature results in irreversible loss of stiffness as well as a loss of decohesion strength. These losses are, typically, expressed through semi-empirical relationships of the mechanical properties with temperature. Unfortunately, these relationships are inadequate because the direct impact of this degradation, on the macroscopic scale, can result in a dependency relationship between the elastic properties and the hydrates mass. Therefore, unlike traditional methods using conventional elasto-plastic models and adjusting certain parameters with local temperature, the proposed constitutive law that incorporates a function of dehydration similar to the softening index in chemo-plastics gives good results. An Etse and Willam similar criterion is used and modified for the occasion. Hardening and softening mechanisms are then needed to expand and contract the loading surface for defining the strength of the concrete on a wide range of dehydration processes. The direction and magnitude of a permanent deformation, core of the inelastic domain, are defined through the development of non-associated chemoplastic potential and new curve of ductility. The influence of hydrostatic pressure (dilatancy) and dehydration on the concrete behavior are taken into account in our model. The model is implemented in the Matlab(c) code. Strains and stresses generated in the concrete are now accurately predicted. To illustrate the capabilities of the developed model to predict the complex behavior of concrete exposed to high temperature, simulations are performed through numerical loading paths scenarios. The model is able to accurately reproduce all the experimental data.

  14. Optimisation de dispositifs en guide d'onde avec coupleur a réseau : application aux commutateurs optiques

    NASA Astrophysics Data System (ADS)

    Bertrand, F.; Paraire, N.; Dansas, P.; Moresmau, N.

    1994-07-01

    Numerous devices used in the field of photonics and optronics are made of semiconductor multilayered structures including a nonlinear waveguide and a grating coupler. Optimization of such devices depends on the optical thicknesses of the various layers and on the grating characteristics. For a given sample, the layer parameters are usually known as a first approximation, but a good accuracy is necessary to define the operating wavelength and the coupler characteristics. In a particular case — a InP/InGaAsP/InP sample which operates for optical switching in the transmission mode — we have first defined an optimized structure. Then, we have built an experimental set-up able to measure reflection and transmission coefficients versus polarization, wavelength and incidence angle. From transmission measurements performed with this apparatus, we have deduced both real and imaginary parts of the layers refractive indices. These calculated values allowed us to reoptimize the structure and to determine the operating wavelength. De nombreux dispositifs utilisés en photonique et optoélectronique sont constitués de structures multicouches en semi-conducteurs comportant un guide d'onde non linéaire et d'un coupleur à réseau. Leurs performances dépendent, en particulier, des épaisseurs optiques des différentes couches constituantes et des caractéristiques du réseau de diffraction. Pour un échantillon, les paramètres nominaux des différentes couches sont connus en première approximation, mais il est nécessaire de les préciser pour définir les conditions de fonctionnement et les caractéristiques optimales du coupleur. Dans un cas particulier — échantillon de InP/InGaAsP/InP qui doit fonctionner en commutateur optique par transmission — nous avons défini une structure optimale, puis nous avons mis au point un montage expérimental permettant de mesurer les coefficients de réflexion et de transmission en fonction de la polarisation, de la longueur d'onde et de l'angle d'incidence. Nous avons déduit de ces mesures les parties réelle et imaginaire des indices. Ces résultats nous ont permis de réoptimiser la structure (définie a priori) et de déterminer sa longueur d'onde de fonctionnement.

  15. Groupes quantiques associes aux courbes rationnelles et elliptiques et leurs applications

    NASA Astrophysics Data System (ADS)

    Silantyev, A.

    2009-01-01

    The thesis was defended by the author in University of Angers (France). It consists of four parts. The fist part (in French) is introductory and is devoted to relation between quantum groups, integrable systems and statistical models. In the second part (in English) the transition function of the periodic Toda chain is interpreted in terms of the formalism of rational Lax operators. In the third part (in French) one compares two elliptic quantum groups and one conclude that they belong to two different bialgebra categories. The fourth part (in English) contains a construction of the partition function of the SOS model in terms of the projections of an elliptic quantum group.

  16. Vers une méthode de réglage expérimentale des commandes PID floues : application aux systèmes électromécaniques

    NASA Astrophysics Data System (ADS)

    Maussion, P.; Hissel, D.

    1998-08-01

    Electrical and electromechanical systems have to satisfy to more and more constrained specifications. Therefore, non-linear control structures must be spread out. Among them, fuzzy logic control can be one interessant and performant alternative. The main handicap of this kind of stucture resides in the fact that the tuning parameters are very numerous. In this paper, we first propose an on-site tuning strategy of this set of parameters in the case of a fuzzy proportionnal-integrative controller based on the experimental designs methodology and on a limited number of pre-defined closed-loop experiments. Then, a complete set of predetermined parameters for a fuzzy proportionnal-integrative-derivative controller will be given. These parameters have been optimized on a specified benchmark according to an IAE criterion. They are calculated like the Ziegler-Nichols or Broïda methodology on conventional controllers; that is, using a single open-loop step response to obtain a model of a first-order plus delay transfert function. Validity limits for this method are provided. Les systèmes électriques ou électromécaniques doivent satisfaire à des spécifications de plus en plus contraignantes qui nécessitent la mise au point de structures de commande non linéaires. Parmi celles-ci, la commande par logique floue constitue une alternative intéressante et performante. Son principal handicap réside dans le nombre très important de paramètres à régler. Dans cet article, nous nous proposons de systématiser ces réglages dans deux cas de figure. Tout d'abord nous utiliserons la méthodologie des plans d'expérimentations pour effectuer un réglage sur site d'un contrôleur flou de type proportionnel-intégral. Ce réglage sera obtenu en ne réalisant qu'un nombre limité d'essais expérimentaux en boucle fermée avec des combinaisons prédéfinies des paramètres à régler. La combinaison optimale de ces paramètres au sens d'un critère de type IAE (Intégrale de la valeur Absolue de l'Erreur) sera déduite de l'exploitation des résultats des essais. Dans un deuxième temps, nous proposerons des réglages prédéfinis et optimisés (au sens du même critère) d'un contrôleur flou de type proportionnel-intégral-dérivé. Ces réglages préétablis ne nécessiteront qu'un seul essai d'identification du système à contrôler en boucle ouverte et peuvent donc se rapprocher des méthodologies classiques et éprouvées de réglage sur site que constituent les réglages de Ziegler-Nichols ou de Broïda pour des contrôleurs conventionnels. Dans cet article, les jeux de paramètres préétablis que nous fournirons seront valables pour des systèmes dont la réponse indicielle en boucle ouverte est modélisable sous la forme d'une fonction de transfert du premier ordre plus un retard pur. Les limites de validité de cette méthode seront précisées.

  17. Diversity of Stability, Localization, Interaction and Control of Downstream Gene Activity in the Maize Aux/IAA Protein Family

    PubMed Central

    Ludwig, Yvonne; Berendzen, Kenneth W.; Xu, Changzheng; Piepho, Hans-Peter; Hochholdinger, Frank

    2014-01-01

    AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are central regulators of auxin signal transduction. They control many aspects of plant development, share a conserved domain structure and are localized in the nucleus. In the present study, five maize Aux/IAA proteins (ZmIAA2, ZmIAA11, ZmIAA15, ZmIAA20 and ZmIAA33) representing the evolutionary, phylogenetic and expression diversity of this gene family were characterized. Subcellular localization studies revealed that ZmIAA2, ZmIAA11 and ZmIAA15 are confined to the nucleus while ZmIAA20 and ZmIAA33 are localized in both the nucleus and the cytoplasm. Introduction of specific point mutations in the degron sequence (VGWPPV) of domain II by substituting the first proline by serine or the second proline by leucine stabilized the Aux/IAA proteins. While protein half-life times between ?11 min (ZmIAA2) to ?120 min (ZmIAA15) were observed in wild-type proteins, the mutated forms of all five proteins were almost as stable as GFP control proteins. Moreover, all five maize Aux/IAA proteins repressed downstream gene expression in luciferase assays to different degrees. In addition, bimolecular fluorescence complementation (BiFC) analyses demonstrated interaction of all five Aux/IAA proteins with RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1, ZmIAA10) while only ZmIAA15 and ZmIAA33 interacted with the RUM1 paralog RUL1 (RUM-LIKE 1, ZmIAA29). Moreover, ZmIAA11, ZmIAA15 ZmIAA33 displayed homotypic interaction. Hence, despite their conserved domain structure, maize Aux/IAA proteins display a significant variability in their molecular characteristics which is likely associated with the wide spectrum of their developmental functions. PMID:25203637

  18. Morphological variations in AuxSiy nanostructures under variable pressure and annealing conditions

    NASA Astrophysics Data System (ADS)

    Rath, A.; Dash, J. K.; Juluri, R. R.; Satyam, P. V.

    2015-03-01

    Well-ordered, substrate symmetry-driven, AuxSiy structures of average size ~25 nm were formed under ultra-high vacuum (UHV) conditions using molecular beam epitaxy method. Post-annealing was done at 500 °C in three different vacuum conditions: (1) low vacuum (LV) (10-2 mbar), (2) high vacuum (HV) (10-5 mbar) and (3) UHV (10-10 mbar) (MBE chamber). For both HV and LV cases, the AuxSiy nanostructures were found to have their corners rounded unlike in UHV case where the structures have sharp edges. In all the above three cases, samples were exposed to air before annealing. In situ annealing inside UHV chamber without exposing to air resulted in well-aligned rectangles with sharp corners, while sharp but irregular island structures were found for air exposed and UHV annealing system. The role of residual gases present in LV and HV annealing environment and inhibition of lateral surface diffusion due to the presence of surface oxide (through air exposure) would be discussed. Annealing at various conditions yielded variation in the coverage and correspondingly, the average area of nanostructures varied from a ~329 nm2 (as deposited) to ~2,578 nm2 (at high temperature). High-resolution transmission electron microscopy (planar and cross section) has been utilized to study the morphological variations.

  19. Exposition précoce aux aliments et allergies alimentaires chez les enfants

    PubMed Central

    Chin, Benetta; Chan, Edmond S.; Goldman, Ran D.

    2014-01-01

    Résumé Question J’étais sous l’impression qu’on devrait éviter de donner aux nourrissons des aliments potentiellement allergènes comme des noix, du lait de vache et des œufs pour prévenir le développement de réactions allergiques. Quels conseils devrait-on donner aux parents concernant l’introduction des aliments durant la petite enfance et le développement des allergies alimentaires? Réponse Il n’y a pas de données probantes indiquant que retarder l’introduction d’aliments particuliers après l’âge de 6 mois aide à prévenir les allergies. Une récente déclaration de la Société canadienne de pédiatrie ne recommande aucun délai quant à l’introduction d’aliments durant la petite enfance. De récentes études de recherche semblent aussi faire valoir que l’introduction précoce (entre 4 et 6 mois) d’aliments possiblement allergènes procure une forme de protection et contribue à prévenir les allergies, mais il faudrait plus de recherche à ce sujet.

  20. Simultaneous determination of a variety of endocrine disrupting compounds in carrot, lettuce and amended soil by means of focused ultrasonic solid-liquid extraction and dispersive solid-phase extraction as simplified clean-up strategy.

    PubMed

    Mijangos, L; Bizkarguenaga, E; Prieto, A; Fernández, L A; Zuloaga, O

    2015-04-10

    The present study is focused on the development of an analytical method based on focused ultrasonic solid-liquid extraction (FUSLE) followed by dispersive solid-phase extraction (dSPE) clean-up and liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) optimised for the simultaneous analysis of certain endocrine disrupting compounds (EDCs), including alkylphenols (APs), bisphenol A (BPA), triclosan (TCS) and several hormones and sterols in vegetables (lettuce and carrot) and amended soil samples. Different variables affecting the chromatographic separation, the electrospray ionisation and mass spectrometric detection were optimised in order to improve the sensitivity of the separation and detection steps. Under the optimised extraction conditions (sonication of 5min at 33% of power with pulse times on of 0.8s and pulse times off of 0.2s in 10mL of n-hexane:acetone (30:70, v:v) mixture using an ice bath), different dSPE clean-up sorbents, such as Florisil, Envi-Carb, primary-secondary amine bonded silica (PSA) and C18, or combinations of them were evaluated for FUSLE extracts before LC-MS/MS. Apparent recoveries and precision in terms of relative standard deviation (RSDs %) of the method were determined at two different fortification levels (according to the matrix and the analyte) and values in the 70-130% and 2-27% ranges, respectively, were obtained for most of the target analytes and matrices. Matrix-matched calibration approach and the use of labelled standards as surrogates were needed for the properly quantification of most analytes and matrices. Method detection limits (MDLs), estimated with fortified samples, in the ranges of 0.1-100ng/g for carrot, 0.2-152ng/g for lettuce and 0.9-31ng/g for amended soil were obtained. The developed methodology was applied to the analysis of 11 EDCs in both real vegetable bought in a local market and in compost (from a local wastewater treatment plant, WWTP) amended soil samples. PMID:25746759

  1. Electronic storage capacity of ceria: role of peroxide in Aux supported on CeO2(111) facet and CO adsorption.

    PubMed

    Liu, Yinli; Li, Huiying; Yu, Jun; Mao, Dongsen; Lu, Guanzhong

    2015-11-01

    Density functional theory (DFT+U) was used to study the adsorption of Aux (x = 1-4) clusters on the defective CeO2(111) facet and CO adsorption on the corresponding Aux/CeO2-x catalyst, in this work Aux clusters are adsorbed onto the CeO2-x + superoxide/peroxide surface. When Au1 is supported on the CeO2(111) facet with an O vacancy, the strong electronegative Au(?-) formed is not favorable for CO adsorption. When peroxide is adsorbed on the CeO2(111) facet with the O vacancy, Aux was oxidized, resulting in stable Aux adsorption on the defective ceria surface with peroxide, which promotes CO adsorption on the Aux/CeO2-x catalyst. With more Au atoms in supported Aux clusters, CO adsorption on this surface becomes stronger. During both the Au being supported on CeO2-x and CO being adsorbed on Aux/CeO2-x, CeO2 acts as an electron buffer that can store/release the electrons. These results provide a scientific understanding for the development of high-performance rare earth catalytic materials. PMID:26435048

  2. Soins primaires aux adultes ayant une déficience développementale

    PubMed Central

    Sullivan, William F.; Berg, Joseph M.; Bradley, Elspeth; Cheetham, Tom; Denton, Richard; Heng, John; Hennen, Brian; Joyce, David; Kelly, Maureen; Korossy, Marika; Lunsky, Yona; McMillan, Shirley

    2011-01-01

    Résumé Objectif Mettre à jour les lignes directrices canadiennes de 2006 sur les soins primaires aux adultes ayant une déficience développementale (DD) et présenter des recommandations pratiques fondées sur les connaissances actuelles pour traiter des problèmes de santé particuliers chez des adultes ayant une DD. Qualité des preuves Des professionnels de la santé expérimentés participant à un colloque et un groupe de travail subséquent ont discuté et convenu des révisions aux lignes directrices de 2006 en se fondant sur une recherche documentaire exhaustive, la rétroaction obtenue des utilisateurs du guide de pratique et les expériences cliniques personnelles. La plupart des preuves disponibles dans ce domaine viennent de l’opinion d’experts ou de déclarations consensuelles publiées (niveau III). Message principal Les adultes ayant une DD ont des problèmes de santé complexes, dont plusieurs diffèrent de ceux de la population en général. De bons soins primaires permettent d’identifier les problèmes de santé particuliers dont souffrent les adultes ayant une DD pour améliorer leur qualité de vie et leur accès aux soins de santé et prévenir la morbidité et le décès prématuré. Ces lignes directrices résument les problèmes de santé générale, physique, comportementale et mentale des adultes ayant une DD que devraient connaître les professionnels des soins primaires et présentent des recommandations pour le dépistage et la prise en charge en se basant sur les connaissances actuelles que les cliniciens peuvent mettre en pratique. En raison de l’interaction des facteurs biologiques, psychoaffectifs et sociaux qui contribuent à la santé et au bien-être des adultes ayant une DD, ces lignes directrices insistent sur la participation des aidants, l’adaptation des interventions, au besoin, et la consultation auprès de divers professionnels de la santé quand ils sont accessibles. Elles mettent aussi en évidence la nature éthique des soins. Les lignes directrices sont formulées dans le contexte d’un cadre éthique qui tient compte des questions comme le consentement éclairé et l’évaluation des bienfaits pour la santé par rapport aux risques de préjudice. Conclusion La mise en œuvre des lignes directrices proposées ici améliorerait la santé des adultes ayant une DD et minimiserait les disparités sur les plans de la santé et des soins de santé entre les adultes ayant une DD et la population en général.

  3. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2

    PubMed Central

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T.

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism. PMID:25738325

  4. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism. PMID:25738325

  5. Conséquences comportementales de la violence faite aux enfants

    PubMed Central

    Al Odhayani, Abdulaziz; Watson, William J.; Watson, Lindsay

    2013-01-01

    Résumé Objectif Discuter des répercussions de la violence sur le développement comportemental durant l’enfance, mettre en évidence certains signes comportementaux susceptibles d’alerter les médecins à la présence d’une maltraitance continue d’un enfant et explorer le rôle précis du médecin de famille dans une telle situation clinique. Sources des données Une recension systématique a servi à examiner la recherche pertinente, les articles de révision clinique et les sites web des organismes de protection de la jeunesse. Message principal Le comportement d’un enfant est une manifestation extériorisée de sa stabilité et de sa sécurité intérieures. C’est une lentille au travers de laquelle le médecin de famille peut observer le développement de l’enfant pendant toute sa vie. Tous les genres de violence sont dommageables pour les enfants, qu’elle soit physique, affective ou psychologique, et peuvent causer des problèmes à long terme dans le développement du comportement et de la santé mentale. Les médecins de famille doivent connaître les indices de maltraitance et de négligence envers les enfants et être aux aguets de ces derniers afin d’entreprendre les interventions appropriées et améliorer les résultats pour ces enfants. Conclusion La violence faite aux enfants peut causer un développement psychologique désordonné et des problèmes de comportement. Les médecins de famille exercent un rôle important dans la reconnaissance des signes comportementaux laissant présager une maltraitance, ainsi que pour offrir de l’aide afin de protéger les enfants.

  6. Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4](-) (X = F, CI, Br, I, At, Uus)

    SciTech Connect

    Li, Wan-Lu; Li, Yong; Xu, Congqiao; Wang, Xue B.; Vorpagel, Erich R.; Li, Jun

    2015-12-07

    Systematic theoretical and experimental investigations have been performed to understand the periodicity and electronic structures of trivalent-gold halides using gold tetrahalides [AuX4]⁻ anions (X = F, Cl, Br, I, At, Uus). The [AuX4]⁻ (X = Cl, Br, I) anions were produced in gas phase and their negative-ion photoelectron spectra were obtained, which exhibited rich and well-resolved spectral peaks. We calculated the adiabatic as well as vertical electron detachment energies using density functional methods with scalar and spin-orbit coupling relativistic effects. The simulated photoelectron spectra based on these calculations are in good agreement with the experimental spectra. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) is preferred when the halides become heavier along the Period Table. This trend reveals that the oxidation state of metals in complexes can be manipulated through ligand design

  7. Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4]- (X = F, Cl, Br, I, At, Uus).

    PubMed

    Li, Wan-Lu; Li, Yong; Xu, Cong-Qiao; Wang, Xue-Bin; Vorpagel, Erich; Li, Jun

    2015-12-01

    Systematic theoretical and experimental investigations have been performed to understand the periodicity, electronic structures, and bonding of gold halides using tetrahalide [AuX4](-) anions (X = F, Cl, Br, I, At, Uus). The [AuX4](-) (X = Cl, Br, I) anions were experimentally produced in the gas phase, and their negative-ion photoelectron spectra were obtained, exhibiting rich and well-resolved spectral peaks. As expected, Au-X bonds in such series contain generally increasing covalency when halogen ligands become heavier. We calculated the adiabatic electron detachment energies as well as vertical electron detachment energies using density functional theory methods with scalar relativistic and spin-orbit coupling effects. The computationally simulated photoelectron spectra are in good agreement with the experimental ones. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) tends to be preferred when the halides become heavier along the Periodic Table. This series of molecules provides an example for manipulating the oxidation state of metals in complexes through ligand design. PMID:26550845

  8. Coring Performance to Characterise the Geology in the ``Cran aux Iguanodons'' of Bernissart (Belgium)

    NASA Astrophysics Data System (ADS)

    Tshibangu, Jean-Pierre; Dagrain, Fabrice; Legrain, Hughes; Deschamps, Benoît

    The Cran aux iguanodons of Bernissart is a sinkhole (or chimney caving) with a valuable paleontological deposit due to the exceptional quantity and diversity of fossils found during the excavation conducted from 1878 to 1881. In fact, bones have been discovered in a clayey geological formation when digging à mine gallery at the -322 m level. A subsequent extraction gave an overall production of 29 iguanodons skeletons. Referring to the available data at the Natural Sciences Museum of Brussels where the found skeletons are exhibited, one does not know the degree of depletion of the deposit after the extraction. A feasibility study (Tshibangu and Dagrain 1998) showed then the need to drill 4 exploration wells of 400 m depth with different objectives: to evaluate the chance of finding more fossils, understanding how and when the geological formations moved down, and testing a seismic geophysical technique for ground imaging. The typical geological formations concerned are: chalk, limestone, conglomerate, clays, and layers of silex nodules. In October 2002 the workings started with a completely cored well (the Number 3) using the PQ wireline technique. During operations, different parameters have been recorded: rate of penetration, core recovery and a brief core description. Some problems have been encountered when crossing silex stones contained in a clayey matrix; and this paper gives some interpretations in terms of the relationship between the lithology and the drilling performances.

  9. Xe{sup +} formation following photolysis of Au-Xe: A velocity map imaging study

    SciTech Connect

    Hopkins, W. Scott; Woodham, Alex P.; Mackenzie, Stuart R.; Plowright, Richard J.; Wright, Timothy G.

    2011-03-07

    The photodissociation dynamics of Au-Xe leading to Xe{sup +} formation via the {Xi}{sub 1/2}-X{sup 2}{Sigma}{sup +} (v{sup '}, 0) band system (41 500-41 800 cm{sup -1}) have been investigated by velocity map imaging. Five product channels have been indentified, which can be assigned to photoinduced charge transfer followed by photodissociation in either the neutral or the [Au-Xe]{sup +} species. For the neutral species, charge transfer occurs via a superexcited Rydberg state prior to dissociative ionization, while single-photon excitation of the gold atom in Au{sup +}-Xe accesses an (Au{sup +})*-Xe excited state that couples to a dissociative continuum in Au-Xe{sup +}. Mechanisms by which charge transfer occurs are proposed, and branching ratios for Xe{sup +} formation via the superexcited Rydberg state are reported. The bond dissociation energy for the first excited state of Au{sup +}-Xe is determined to be {approx}9720 {+-} 110 cm{sup -1}.

  10. Expression of wild-type PtrIAA14.1, a poplar Aux/IAA gene causes morphological changes in Arabidopsis.

    PubMed

    Liu, Shanda; Hu, Qingnan; Luo, Sha; Li, Qianqian; Yang, Xiyu; Wang, Xianling; Wang, Shucai

    2015-01-01

    Aux/IAA proteins are transcriptional repressors that control auxin signaling by interacting with auxin response factors (ARFs). So far all of the identified Aux/IAA mutants with auxin-related phenotypes in Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants, with mutations in Domain II that affected stability of the corresponding Aux/IAA proteins. On the other hand, morphological changes were observed in knock-down mutants of Aux/IAA genes in tomato (Solanum lycopersicum), suggesting that functions of Aux/IAA proteins may be specific for certain plant species. We report here the characterization of PtrIAA14.1, a poplar (Populus trichocarpa) homolog of IAA7. Bioinformatics analysis showed that PtrIAA14.1 is a classic Aux/IAA protein. It contains four conserved domains with the repressor motif in Domain I, the degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. Protoplast transfection assays showed that PtrIAA14.1 is localized in nucleus. It is unable in the presence of auxin, and it represses auxin response reporter gene expression. Expression of wild-type PtrIAA14.1 in Arabidopsis resulted in auxin-related phenotypes including down-curling leaves, semi-draft with increased number of branches, and greatly reduced fertility, but expression of the Arabidopsis Aux/IAA genes tested remain largely unchanged in the transgenic plants. Protein-protein interaction assays in yeast and protoplasts showed that PtrIAA14.1 interacted with ARF5, but not other ARFs. Consistent with this observation, vascular patterning was altered in the transgenic plants, and the expression of AtHB8 (Arabidopsis thaliana homeobox gene 8) was reduced in transgenic plants. PMID:26082787

  11. Tectonic conditions of hydrothermal polymetallic vein-type mineralization, Sainte Marie-aux-Mines, France

    NASA Astrophysics Data System (ADS)

    Hafeznia, Y.; Bourlange, S.; Ohnenstetter, M.

    2012-04-01

    The Sainte-Marie-aux-Mines (SMM) mines host one of the most famous and oldest silver deposits in Europe. The SMM district is located in the central part of the Vosges mountains, France, within gneiss and granites of the Moldanubian zone. The SMM district includes the Neuenberg E-W vein-type Cu-Ag-As/Pb-Zn deposit and the Altenberg N-S vein-type Pb-Zn-Ag deposit. Deposition of the SMM hydrothermal mineralization occurred under a brittle tectonic regime that might be connected to neo-Variscan and/or post-Variscan tectonics, in a similar way as the polymetallic vein deposits of the Black Forest, Germany. A structural study was done in the Neuenberg area, in the vicinity of the Saint-Jacques vein, and within the Gabe Gottes mine, considering the orientation, extent, chronology and density of faults as well as the nature of the infilling minerals. In the Gabe-Gottes mine, the Saint-Jacques vein comprises multiple successive, sub-parallel subvertical veinlets with gangue minerals, mostly carbonates and quartz, and metal-bearing phases, sulfides and sulfosalts. The veinlets are 2 to 50 cm thick and strike N80° to N110°, the earlier veins slightly dipping towards the north, and the latest one, to the south. Seven systems of faults were identified, which may be classified into three major groups formed respectively before, during and after the main stage of ore deposition: a) Pre-mineralization faults - These consist of sinistral NE-SW strike-slip faults, and NW-SE and NE-SW steeply dipping normal faults. These could be related to Carboniferous events considering their relationships with the granitoid intrusives present in the mine area (Brézouard leucogranite ~329 Ma), and the extensional tectonics developed during exhumation processes. b) Faults associated with the main ore-deposition - These faults could be related to late-Hercynian processes from compressional to extensional tectonic regimes. Mineralization controlling faults consist of dextral and sinistral E-W strike-slip faults. Early strike-slip movements are assessed by the presence of striated iron oxides, the crystallization of which is considered to be early during the ore deposition process. Mineralizing fluids were probably fluorine-rich as F-bearing minerals, sericite, chlorite and apatite are present in the chlorite zone associated with early sulphide-rich ores. The E-W mineralized faults are only easily compatible with the tectonics known in Permian times. c) Late-stage faults - These could be related to the numerous changes in plate configuration which occur during the Mesozoic and Cenozoic times, in accordance with the creation of the Paris basin, the opening of Atlantic ocean and Rhine Graben, as well as with the Tethys closure. For example, the vertical lineation superposed on an horizontal lineation observed on mineralized rocks indicate reactivation of the former E-W mineralized veins under a normal movement. The latter may correspond to an extensive regime known during Oligocene times. On the other hand, one of the major late-stage faults strikes N-S and is related to a dextral strike-slip system, which could be considered as Miocene. It is expected that fluid remobilization occurred during fault reactivation, a process which could have led to successive ore deposition following the emplacement of the major E-W mineralized veins. A fluid inclusion study in the gangue minerals of the Gabe Gottes is now under investigation. This together with isotopic studies will help to determine the source of the mineralizing fluids, as well as the conditions of ore deposition. Keywords: Faults, polymetallic mineralization, variscan orogeny, Gabe-Gottes, Sainte-Marie-aux-Mines, Vosges, F-rich fluids.

  12. Contribution aux Methodes Analytiques des Substances a L'aide de Faisceaux de Particules Chargees

    NASA Astrophysics Data System (ADS)

    Saidi, Abdelmajid

    Nous avons vu les possibilites d'analyse par particules chargees des aerosols recueillis sur des filtres de type MILLIPORE. La meme technique a ete utilisee pour des filtres ayant servi a la filtration de l'eau du fleuve Saint-laurent. Deux techniques ont ete utilisees: (1) FAST (Forward Alpha Scattering Technique): pour analyser l'hydrogene, le carbone, l'oxygene et puis l'azote. Des alpha de 12 MeV ont ete utilises. (2) PIXE (Particle Induced X-ray Emission): pour analyser les elements moyens et lourds, dans ce cas des protons de 3 MeV ainsi que des ions d'argon de 1 et 1.6 MeV ont ete utilises. Les etudes ont montre que sous vide, la majorite des problemes proviennent des dommages causes par l'echauffement du a l'impact du faisceau sur le filtre. L'analyse quantitative par l'intermediaire du faisceau extrait peut presenter des difficultes en ce qui concerne les elements legers pour lesquels l'absorption des rayonnements caracteristiques dans l'atmosphere externe est importante. Les ions lourds se pretent mal aux analyses des aerosols du fait de leur limite de sensibilite. L'analyse directe de liquides par des protons est particulierement interessante puisqu'elle ne necessite aucune preparation prealable des echantillons. A cet effet, un programme de calcul de concentration des elements dans la solution a analyser a ete mis au point. Nous avons determine la limite de sensibilite de la methode PIXE pour les cibles minces (filtre) et pour le cas ou la matrice est de l'eau. Enfin, la technique FAST peut etre un complement de la technique PIXE.

  13. Traitement des conditions aux limites intérieures et extérieures pour la simulation numérique unidimensionnelle de l'écoulement de l'eau dans les canaux à surface libre

    NASA Astrophysics Data System (ADS)

    Abdallah, M.; Vazquez, J.; Mose, R.; Zoaeter, M.

    2005-05-01

    Dans ce papier, on décrit le traitement des conditions aux limites intérieures et extérieures couplé avec la méthode explicite aux différences finies de Roe pour le développement d'une modélisation unidimensionnelle qui sert à résoudre les équations de Saint-Venant décrivant l'écoulement de l'eau à surface libre. Les deux méthodes les plus utilisées pour trouver la solution aux nœuds intérieurs et extérieurs définissant les conditions aux limites intérieures et extérieures d'un schéma numérique sont décrites et comparées dans deux exemples: Le premier traite le problème du ressaut hydraulique et le second décrit l'écoulement de l'eau au dessus des seuils. Deux types de discrétisation du terme source, pointwise et upwind, sont considérés et comparés aussi. Les résultats obtenus et comparés avec la solution analytique dans le cas du ressaut, et avec les résultats numériques déjà publiés dans le cas des seuils, montrent l'avantage de la méthode des caractéristiques sur la méthode de l'extrapolation pour les conditions aux limites, et la discrétisation upwind du terme source sur la discrétisation pointwise.

  14. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): Identification, expression analysis, and evaluation of their roles in tuber development.

    PubMed

    Gao, Junpeng; Cao, Xiaoli; Shi, Shandang; Ma, Yuling; Wang, Kai; Liu, Shengjie; Chen, Dan; Chen, Qin; Ma, Haoli

    2016-03-01

    The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes. PMID:26869512

  15. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families.

    PubMed

    Pattison, Richard J; Catalá, Carmen

    2012-05-01

    The temporal and spatial control of auxin distribution has a key role in the regulation of plant growth and development, and much has been learnt about the mechanisms that influence auxin pools and gradients in vegetative tissues, particularly in Arabidopsis. For example polar auxin transport, mediated by PIN and AUX/LAX proteins, is central to the control of auxin distribution. In contrast, very little information is known about the dynamics of auxin distribution and the molecular basis of its transport within and between fruit tissues, despite the fact that auxin regulates many aspects of fruit development, which include fruit formation, expansion, ripening and abscission. In addition, functional information regarding the key regulators of auxin fluxes during both vegetative and reproductive development in species other than Arabidopsis is scarce. To address these issues, we have investigated the spatiotemporal distribution of auxin during tomato (Solanum lycopersicum) fruit development and the function of the PIN and AUX/LAX gene families. Differential concentrations of auxin become apparent during early fruit growth, with auxin levels being higher in internal tissues than in the fruit pericarp and the pattern of auxin accumulation depended on polar transport. Ten tomato PIN (SlPIN1 to 10) and five AUX/LAX (SlLAX1 to 5) genes were identified and found to display heterogeneous expression patterns, with tissue and developmental-stage specificity. RNAi-mediated co-silencing of SlPIN4 and SlPIN3 did not affect fruit development, which suggested functional redundancy of PIN proteins, but did lead to a vegetative phenotype, and revealed a role for these genes in the regulation of tomato shoot architecture. PMID:22211518

  16. Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Puppulin, Leonardo; La Rosa, Angelo; Boffelli, Marco; Zhu, Wenliang; McEntire, Bryan J.; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori

    2015-12-01

    The effect of hydrogen carbonate (HCO3-) and cations (Na+, K+) solvated in water were revisited according to high spectrally resolved Raman measurements. Water solutions with different bicarbonate concentrations or added with increasing amounts of monovalent cations were examined with respect to their Raman spectra both in the bulk state and at the solid/liquid interface with a silicon nitride (Si3N4) bioceramic. Spectroscopic calibrations confirmed that the Raman emission from OH-stretching in water is sensitive to molarity variations (in the order of tens of mM). The concentration gradient developed at the solid/liquid interface in cation-added solutions interacting with a Si3N4 surface was measured and found to be peculiar to individual cations. Local variation in pH was detected in ionic solutions interacting with Si3N4 samples, which might represent a useful property for Si3N4 in a number of biomedical applications.

  17. Approche aux soins en milieu communautaire à des adultes ayant une déficience développementale

    PubMed Central

    Osmun, W.E.; Chan, Nelson; Solomon, Robert

    2015-01-01

    Résumé Objectif Passer en revue les obligations d’ordre médical, éthique et juridique dans les soins aux adultes ayant une déficience développementale (DD) qui vivent dans la communauté. Sources des données Des recherches ont été faites dans Google et MEDLINE à l’aide des mots disabled, disability, vulnerable et community. Les lois pertinentes ont fait l’objet d’un examen. Message principal Le traitement d’un patient ayant une DD varie en fonction de facteurs comme la pathogenèse du problème actuel du patient, ses affections concomitantes, la gravité de ses déficiences et ses soutiens sociaux habituels. Bien que l’on s’entende sur les bienfaits du transfert des soins institutionnels vers des soins communautaires pour les patients ayant une DD, il s’est révélé difficile de leur dispenser des soins de grande qualité en milieu communautaire. Par ailleurs, il existe peu de travaux de recherche sur les façons d’offrir efficacement des soins aux adultes ayant une DD. En tant que professionnels des soins primaires, les médecins de famille sont souvent le premier point de contact pour les patients et sont à la fois responsables de la coordination et de la continuité des soins. Compte tenu de l’importance accrue accordée aux soins préventifs et à la détection précoce des maladies, la participation active du patient revêt aussi une grande importance. Les valeurs et les objectifs du patient sont des éléments essentiels à prendre en compte, même s’ils vont à l’encontre de la bonne santé du patient ou des propres valeurs du clinicien. Les lois s’appliquant aux personnes vulnérables varient d’une province à l’autre. Par conséquent, l’obligation de signaler des mauvais traitements suspectés pourrait différer selon que la personne vulnérable habite dans un centre de soins ou la communauté, que la personne qui soupçonne le comportement abusif est un fournisseur de services ou un professionnel de la santé ou encore que les circonstances spécifiques répondent à la définition légale de mauvais traitement ou de négligence. Conclusion Les professionnels des soins primaires doivent dispenser aux adultes ayant une DD des soins empreints de compassion qui respectent les souhaits du patient.

  18. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2014-09-01

    Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls. PMID:24938853

  19. Development of thermal energy storage materials for biomedical applications.

    PubMed

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits. PMID:26103988

  20. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth.

    PubMed

    Jung, Harin; Lee, Dong-Keun; Choi, Yang Do; Kim, Ju-Kon

    2015-07-01

    Auxin signaling is a fundamental part of many plant growth processes and stress responses and operates through Aux/IAA protein degradation and the transmission of the signal via auxin response factors (ARFs). A total of 31 Aux/IAA genes have been identified in rice (Oryza sativa), some of which are induced by drought stress. However, the mechanistic link between Aux/IAA expression and drought responses is not well understood. In this study we found that the rice Aux/IAA gene OsIAA6 is highly induced by drought stress and that its overexpression in transgenic rice improved drought tolerance, likely via the regulation of auxin biosynthesis genes. We observed that OsIAA6 was specifically expressed in the axillary meristem of the basal stem, which is the tissue that gives rise to tillers. A knock-down mutant of OsIAA6 showed abnormal tiller outgrowth, apparently due to the regulation of the auxin transporter OsPIN1 and the rice tillering inhibitor OsTB1. Our results confirm that the OsIAA6 gene is involved in drought stress responses and the control of tiller outgrowth. PMID:26025543

  1. Solid-liquid equilibria of Mg(OH) 2(cr) and Mg 2(OH) 3Cl·4H 2O(cr) in the system Mg-Na-H-OH-Cl-H 2O at 25°C

    NASA Astrophysics Data System (ADS)

    Altmaier, M.; Metz, V.; Neck, V.; Müller, R.; Fanghänel, Th.

    2003-10-01

    The solubility of crystalline Mg(OH) 2(cr) was determined by measuring the equilibrium H + concentration in water, 0.01-2.7 m MgCl 2, 0.1-5.6 m NaCl, and in mixtures of 0.5 and 5.0 m NaCl containing 0.01-0.05 m MgCl 2. In MgCl 2 solutions above 2 molal, magnesium hydroxide converted into hydrated magnesium oxychloride. The solid-liquid equilibrium of Mg 2(OH) 3Cl·4H 2O(cr) was studied in 2.1-5.2 m MgCl 2. Using known ion interaction Pitzer coefficients for the system Mg-Na-H-OH-Cl-H 2O (25°C), the following equilibrium constants at I = 0 are calculated: Mg(OH) 2(cr) + 2 H + ⇔ Mg 2+ + 2 H 2O log K° s = 17.1 ± 0.2 Mg 2(OH) 3Cl·4H 2O(cr) + 3 H + ⇔ 2 Mg 2+ + Cl - + 7 H 2O log K° s = 26.0 ± 0.2 The experimental results are discussed with regard to discrepancies in frequently used databases and computer codes for geochemical modeling, such as EQ3/6, Geochemist's Workbench and CHESS.

  2. Developpement d'une methode des caracteristiques tridimensionnelle et application aux calculs de supercellules d'un reacteur CANDU

    NASA Astrophysics Data System (ADS)

    Wu, Guang Jun

    The primary purpose of this study was to construct a new method for determining the cross section increments associated with the reactivity mechanisms in CANDU reactors. Based on the characteristics method, the module MCI is successfully developed and is ready to be integrated in the lattice code DRAGON. The module MCI utilizes non cyclic tracks in a three dimensional transport calculation. The characteristics method allows to resolve the same problems as the collision probabilities method but its main advantage relies on a substantial memory economy. The results of MCI module are similar to those of an EXCELL module in the CANDU-6 calculation scheme. The characteristics method is shown to be equivalent to the collision probability method for the finite domain. A new acceleration technique, the SCR (Self-Collision Rebalancing) technique, was developed using the equivalence of these two methods. When SCR is used with the one parameter variational acceleration method, the resolution converge faster than either of the two. The Tracks Merging Technique (TMT) is a new technique developed within this research to reduce the total number of tracks needed to cover the geometry of the problem studied. The TMT can be used on two levels: TMT-1 and TMT-2. We have observed a factor of four on the reduction of tracks when the TMT was used on the first level and a factor of forty when used on the second level. The TMT could be used without difficulty in the collision probability method. The MCI module was parallelized using the PVM (Parallel Virtual Machine) library for distributed-memory environment. One of four options can be used in the parallel calculation: SPLT, ANGL, STRD and MCRB. Each of the four options is associated with a special load balancing strategy. In the first three options, the load is measured in number of tracks, in the fourth option, the load is dispatched in units of macroband.

  3. Bruit généré par un écoulement turbulent affleurant une cavité à faible nombre de Mach : application aux césures de portes automobiles

    NASA Astrophysics Data System (ADS)

    Da Silva, Arthur; Kribèche, Ali; Loredo, Alexandre

    2009-02-01

    Noise produced by turbulent grazing flow over a generic cavity representing car door cavities was measured in a semi-anechoic wind tunnel. Two cavities were studied: one 50 mm large (dimension perpendicular to the airflow), functioning as a Helmholtz resonator, reaching sound pressure levels of 136 dB at 1776 Hz, for a downstream velocity of 54 m/s. The other, of scale 250 mm could not be regarded as a Helmholtz resonator although resonance occurred at 1902 Hz, at a level of 125 dB, for the same velocity. In both cases, noise was caused by Kelvin-Helmholtz instabilities in the mixing layer. To cite this article: A. Da Silva et al., C. R. Mecanique 337 (2009).

  4. Modèle multi-échelle du transport de fluide dans un milieu poreux chargé avec échanges cationiques : application aux tissus osseux

    NASA Astrophysics Data System (ADS)

    Kaiser, Joanna; Lemaire, Thibault; Naili, Salah; Sansalone, Vittorio

    2009-11-01

    To better understand the bone diseases, many models of porous cortical bone have been developed to simulate its in vivo behaviour. Thus we proposed multiscale models including multiphysical phenomena governing the hydraulic response of bone. However, all these models neglected the possible ionic exchanges at the cellular level. Since such chemical reactions directly change the physico-chemical properties of the tissue, the interstitial flow is also modified. The aim of this study is so to include these ionic exchanges in the bone fluid transport description by deriving their consequences at the macroscale. To cite this article: J. Kaiser et al., C. R. Mecanique 337 (2009).

  5. Applications

    NASA Astrophysics Data System (ADS)

    Stern, Arthur M.

    1986-07-01

    Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.

  6. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.).

    PubMed

    Yu, ChenLiang; Sun, ChenDong; Shen, Chenjia; Wang, Suikang; Liu, Fang; Liu, Yan; Chen, YunLong; Li, Chuanyou; Qian, Qian; Aryal, Bibek; Geisler, Markus; Jiang, De An; Qi, YanHua

    2015-09-01

    Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress. PMID:26140668

  7. The French Tsunami warning center for the Mediterranean and North-East Atlantic (CENtre d'ALerte aux Tsunamis, CENALT)

    NASA Astrophysics Data System (ADS)

    Schindelé, F.; Bossu, R.; Alabrune, N.; Arnoul, P.; Duperray, P.; Gailler, A.; Guilbert, J.; Hébert, H.; Hernandez, B.; Loevenbruck, A.; Roudil, P.

    2012-04-01

    The CENALT (CENtre d'Alerte aux Tsunamis) is responsible for the French NTWC (National Tsunami Warning Center). This center was established through a project that was requested by the French Ministry of Interior and the Ministry of Sustainable Development. It is implemented by the Commissariat à l'énergie atomique et aux énergies alternatives (CEA), the French Hydrographic and Oceanographic Service (SHOM) and the Centre National de la Recherche Scientifique (CNRS), and is based in Bruyères-le-Châtel (30 km from Paris). This center is based on three main components: seismic network data, sea level network data, dissemination system and processing and analyzing softwares and is operating on a 24/7 basis. The CENALT has established scientific cooperation with 8 institutions and implemented and funded private leased lines to exchange data with institutions from 5 different European countries (Germany, Italy, Portugal, Spain, Tunisia). The seismic data are processed with the Seiscomp 3 software. SHOM is working on making all French tide-gauge stations operated and available in real-time in 2012, and they installed 5 new tide gage stations. The tide gage data will be processed with a customized version of the Guitar (Gempa) software allowing the detection of tsunami signals, complemented by other softwares developed by the CEA. Historical tsunami databases (sources and observations) and earthquake databases, mostly based on available international databases, have been synthetized by CEA to produce information maps in real time, used to guide operators of permanence. Precomputed tsunami scenarios are implemented to build in real time maps of the highest tsunami impact expected in deep water. Along with an optimized tsunami modeling tool, these softwares help to define the areas where the tsunami may be observed and cause damage. The CENALT has been operating since early January 2012 as a pre-operational service and will be fully operational in July 2012. It is also ready to act as Candidate Watch Provider covering Western Mediterranean by July 2012.

  8. Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus

    PubMed Central

    Carraro, Nicola; Tisdale-Orr, Tracy Eizabeth; Clouse, Ronald Matthew; Knöller, Anne Sophie; Spicer, Rachel

    2012-01-01

    Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization. PMID:22645571

  9. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers

    PubMed Central

    Della Rovere, F.; Fattorini, L.; D’Angeli, S.; Veloccia, A.; Del Duca, S.; Cai, G.; Falasca, G.; Altamura, M. M.

    2015-01-01

    Background and Aims Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Methods Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. Key Results AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. Conclusions AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1. Pericycle activity is central for the equilibrium between xylary development and AR formation in the hypocotyl, with a role for AUX1 in switching between, and balancing of, the two developmental programmes. PMID:25617411

  10. Thermal Convection Affects Shape Of Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Mennetrier, C.; Chopra, M. A.; Yao, M.; De Groh, H. C., III; Yeoh, G. H.; De Vahl Davis, G.; Leonardi, E.

    1994-01-01

    Report describes experimental and theoretical study of effect of thermal convection on shape of interface between solid and liquid succinonitrile, clear commercially available plastic, in Bridgman (directional-solidification) apparatus in vertical and horizontal orientations.

  11. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  12. Solid-liquid iron partitioning in Earth's deep mantle.

    PubMed

    Andrault, Denis; Petitgirard, Sylvain; Lo Nigro, Giacomo; Devidal, Jean-Luc; Veronesi, Giulia; Garbarino, Gaston; Mezouar, Mohamed

    2012-07-19

    Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii. They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth. Melt production in the shallow mantle is quite well understood, but deeper melting near the core-mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanism or production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO(3) perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously. Calculated solid and melt density contrasts suggest that melt generated at the core-mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements. PMID:22810700

  13. Atomic Resolution Images of Solid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Giambattista, Brian; McNairy, W. W.; Slough, C. G.; Johnson, A.; Bell, L. D.; Coleman, R. V.; Schneir, J.; Sonnenfeld, R.; Drake, B.; Hansma, P. K.

    1987-07-01

    A scanning tunneling microscope (STM) can provide atomic-resolution images of solids covered with a variety of liquids, including cryogenic fluids, both polar and nonpolar solvents, conductive aqueous solutions, oils, and even greases. This short overview includes images of solids covered with liquid nitrogen, liquid helium, paraffin oil, silicone oil, microscope immersion oil, silicone vacuum grease, fluorocarbon grease, glycerol, and salt water. These images show atoms, charge-density waves, grains in an evaporated metal film, and even corrosion processes as they occur in real time. The future includes not only basic research in surface science but also applied research in lithography, lubrication, catalysis, corrosion, electrochemistry, and perhaps even biology.

  14. Manifold to uniformly distribute a solid-liquid slurry

    DOEpatents

    Kern, Kenneth C. (Lake Hiawatha, NJ)

    1983-01-01

    This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.

  15. Continuous or catastrophic solid-liquid transition in jammed systems

    NASA Astrophysics Data System (ADS)

    Coussot, P.; Roussel, N.; Jarny, S.; Chanson, H.

    2005-01-01

    Pasty materials encountered in industry and in earth science are intermediate between solids and liquids either in terms of their internal structure (disordered but jammed) or from a mechanical point of view. Our results indicate that the apparent behavior of a particulate system (soils, suspensions, clays, etc.) can range from liquid-like to soil or solid-like depending on the relative importance of the energy supplied to it and its "state of jamming" which evolves in time, and the transition from one state to another may appear either continuous or catastrophic.

  16. Rayleigh-Taylor stability boundary at solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Sun, Y. B.; Tahir, N. A.

    2013-08-01

    A previous model for the Rayleigh-Taylor instability [A. R. Piriz, J. J. López Cela, and N. A. Tahir, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.046305 80, 046305 (2009)] has been extended in order to study an interface between an elastic-plastic solid and a Newtonian liquid and determine the stability region given by the initial perturbation amplitude ?0 and wavelength ?. The stability region is found to be enhanced by the effect of the liquid viscosity, but it reaches an asymptote for a sufficiently high viscosity. In addition, it is also found that the boundary for the transition from the elastic to the plastic regime get closer to the stability boundary up to both boundaries coincide for a high enough liquid viscosity, thus making the onset of plastic flow a sufficient condition for instability.

  17. Observation of linear to planar structural transition in sulfur-doped gold clusters: Au(x)S- (x = 2-5).

    PubMed

    Wen, Hui; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Zhang, Wei-Jun; Huang, Wei; Wang, Lai-Sheng

    2013-05-01

    We report a joint experimental and theoretical study on the structures of a series of gold clusters doped with a sulfur atom, Au(x)S(-) (x = 2-5). Well-resolved photoelectron spectra are obtained and compared with theoretical results calculated using several density functional methods to elucidate the structures and bonding of Au(x)S(-) (x = 2-5). Au2S(-) is found to have an asymmetric linear global minimum structure with C(∞v) symmetry, while the most stable structure of neutral Au2S is bent with C(2v) symmetry, reminiscent of H2S. Au3S(-) is found to have an asymmetric bent structure with an Au-S-Au-Au connectivity. Two isomers are observed experimentally to co-exist for Au4S(-): a symmetric bent 1D structure (C(2v)) and a 2D planar low-lying isomer (C(s)). The global minimum of Au5S(-) is found to be a highly stable planar triangular structure (C(2v)). Thus, a 1D-to-2D structural transition is observed in the Au(x)S(-) clusters as a function of x at x = 4. Molecular orbital analyses are carried out to obtain insight into the nature of the chemical bonding in the S-doped gold clusters. Strong covalent bonding between S and Au is found to be responsible for the 1D structures of Au(x)S(-) (x = 2-4), whereas delocalized Au-Au interactions favor the 2D planar structure for the larger Au5S(-) cluster. PMID:23656130

  18. The PB1 Domain in Auxin Response Factor and Aux/IAA Proteins: A Versatile Protein Interaction Module in the Auxin Response[OPEN

    PubMed Central

    2015-01-01

    An integral part of auxin-regulated gene expression involves the interplay of two types of transcription factors, the DNA binding auxin response factor (ARF) activators and the interacting auxin/indole acetic acid (Aux/IAA) repressors. Insight into the mechanism of how these transcription factors interact with one another has recently been revealed from crystallographic information on ARF5 and ARF7 C-terminal domains (i.e., a protein-protein interaction domain referred to as domain III/IV that is related to domain III/IV in Aux/IAA proteins). Three-dimensional structures showed that this domain in ARF5 and ARF7 conforms to a well-known PB1 (Phox and Bem1) domain that confers protein-protein interactions with other PB1 domain proteins through electrostatic contacts. Experiments verifying the importance of charged amino acids in conferring ARF and Aux/IAA interactions have confirmed the PB1 domain structure. Some in planta experiments designed to test the validity of PB1 interactions in the auxin response have led to updated models for auxin-regulated gene expression and raised many questions that will require further investigation. In addition to the PB1 domain, a second protein interaction module that functions in ARF-ARF dimerization and facilitates DNA binding has recently been revealed from crystallography studies on the ARF1 and ARF5 DNA binding domains. PMID:25604444

  19. Le système opioïde endogène et l’addiction aux drogues1

    PubMed Central

    Maldonado, Rafael

    2010-01-01

    Résumé L’addiction aux drogues est une maladie psychiatrique chronique qui conduit à d’importantes altérations adaptatives dans les circuits de récompense du cerveau. Plusieurs systèmes de neurotransmission sont impliqués dans ces modifications. Cependant, un des systèmes neurochimiques qui joue un rôle essentiel dans l’addiction est le système opioïde endogène. Les récepteurs opioïdes et les peptides opioïdes endogènes sont très largement présents dans les structures cérébrales qui contrôlent les phénomènes de récompense, en particulier le système mésolimbique. Ces récepteurs et peptides opioïdes participent d’une manière sélective à plusieurs aspects des processus addictifs induits par les opiacés, les cannabinoïdes, les psychostimulants, l’alcool et la nicotine. Cette revue rend compte de l’état actuel des connaissances sur la participation de chaque composante du système opioïde endogène dans les propriétés addictives des différentes drogues. PMID:20176158

  20. Comparative Performance of the RapID Yeast Plus System and the API 20C AUX Clinical Yeast System

    PubMed Central

    Smith, Michael B.; Dunklee, Daisy; Vu, Hangna; Woods, Gail L.

    1999-01-01

    The performance of the RapID Yeast Plus System (Innovative Diagnostic Systems, Norcross, Ga.), a 4-h micropanel using single-substrate enzymatic test reactions, was compared with that of the API 20C AUX Clinical Yeast System (bioMerieux Vitek, Hazelwood, Mo.), a 48- to 72-h carbohydrate assimilation panel. Two hundred twenty-five yeasts, yeast-like fungi, and algae, comprising 28 species and including 30 isolates of Cryptococcus neoformans, an important pathogen not tested in appreciable numbers in other comparisons, were tested by both methods. On initial testing, 196 (87.1%) and 215 (95.6%) isolates were correctly identified by the RapID and API systems, respectively. Upon repeat testing, the number of correctly identified isolates increased to 220 (97.8%) for the RapID system and 223 (99.1%) for the API system. Reducing the turbidity of the test inoculum to that of a no. 3 McFarland turbidity standard, which is below that recommended by the manufacturer, resulted in the correct identification of most of the isolates initially misidentified by the RapID system, including 10 of 30 C. neoformans isolates. Concordance between the RapID and API results after repeat testing was 97.3%. PMID:10405424

  1. Gestion des ressources hydriques adaptee aux changements climatiques pour la production optimale d'hydroelectricite. Etude de cas: Bassin versant de la riviere Manicouagan

    NASA Astrophysics Data System (ADS)

    Haguma, Didier

    Il est dorenavant etabli que les changements climatiques auront des repercussions sur les ressources en eau. La situation est preoccupante pour le secteur de production d'energie hydroelectrique, car l'eau constitue le moteur pour generer cette forme d'energie. Il sera important d'adapter les regles de gestion et/ou les installations des systemes hydriques, afin de minimiser les impacts negatifs et/ou pour capitaliser sur les retombees positives que les changements climatiques pourront apporter. Les travaux de la presente recherche s'interessent au developpement d'une methode de gestion des systemes hydriques qui tient compte des projections climatiques pour mieux anticiper les impacts de l'evolution du climat sur la production d'hydroelectricite et d'etablir des strategies d'adaptation aux changements climatiques. Le domaine d'etude est le bassin versant de la riviere Manicouagan situe dans la partie centrale du Quebec. Une nouvelle approche d'optimisation des ressources hydriques dans le contexte des changements climatiques est proposee. L'approche traite le probleme de la saisonnalite et de la non-stationnarite du climat d'une maniere explicite pour representer l'incertitude rattachee a un ensemble des projections climatiques. Cette approche permet d'integrer les projections climatiques dans le probleme d'optimisation des ressources en eau pour une gestion a long terme des systemes hydriques et de developper des strategies d'adaptation de ces systemes aux changements climatiques. Les resultats montrent que les impacts des changements climatiques sur le regime hydrologique du bassin de la riviere Manicouagan seraient le devancement et l'attenuation de la crue printaniere et l'augmentation du volume annuel d'apports. L'adaptation des regles de gestion du systeme hydrique engendrerait une hausse de la production hydroelectrique. Neanmoins, une perte de la performance des installations existantes du systeme hydrique serait observee a cause de l'augmentation des deversements non productibles dans le climat futur. Des strategies d'adaptation structurale ont ete analysees pour augmenter la capacite de production et la capacite d'ecoulement de certaines centrales hydroelectriques afin d'ameliorer la performance du systeme. Une analyse economique a permis de choisir les meilleures mesures d'adaptation et de determiner le moment opportun pour la mise en oeuvre de ces mesures. Les resultats de la recherche offrent aux gestionnaires des systemes hydriques un outil qui permet de mieux anticiper les consequences des changements climatiques sur la production hydroelectrique, incluant le rendement de centrales, les deversements non productibles et le moment le plus opportun pour inclure des modifications aux systemes hydriques. Mots-cles : systemes hydriques, adaptation aux changements climatiques, riviere Manicouagan

  2. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  3. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszu?ski, Micha?; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  4. Algorithme d'adaptation du filtre de Kalman aux variations soudaines de bruit

    NASA Astrophysics Data System (ADS)

    Canciu, Vintila

    This research targets the case of Kalman filtering as applied to linear time-invariant systems having unknown process noise covariance and measurement noise covariance matrices and addresses the problem represented by the incomplete a priori knowledge of these two filter initialization parameters. The goal of this research is to determine in realtime both the process covariance matrix and the noise covariance matrix in the context of adaptive Kalman filtering. The resultant filter, called evolutionary adaptive Kalman filter, is able to adapt to sudden noise variations and constitutes a hybrid solution for adaptive Kalman filtering based on metaheuristic algorithms. MATLAB/Simulink simulation using several processes and covariance matrices plus comparison with other filters was selected as validation method. The Cramer-Rae Lower Bound (CRLB) was used as performance criterion. The thesis begins with a description of the problem under consideration (the design of a Kalman filter that is able to adapt to sudden noise variations) followed by a typical application (INS-GPS integrated navigation system) and by a statistical analysis of publications related to adaptive Kalman filtering. Next, the thesis presents the current architectures of the adaptive Kalman filtering: the innovation adaptive estimator (IAE) and the multiple model adaptive estimator (MMAE). It briefly presents their formulation, their behavior, and the limit of their performances. The thesis continues with the architectural synthesis of the evolutionary adaptive Kalman filter. The steps involved in the solution of the problem under consideration is also presented: an analysis of Kalman filtering and sub-optimal filtering methods, a comparison of current adaptive Kalman and sub-optimal filtering methods, the emergence of evolutionary adaptive Kalman filter as an enrichment of sub-optimal filtering with the help of biological-inspired computational intelligence methods, and the step-by-step architectural synthesis of the evolutionary adaptive Kalman filter. Next, the thesis describes all the aspects related to MATLAB/Simulink modeling and simulation: the performance criterion represented by the Cramer-Rae Lower Bound, the step-by-step modeling of the evolutionary adaptive Kalman filter, and the simulation results that confirm the viability of this approach. The thesis ends with the conclusion and the references. The appendices (the mathematical model of a 6DoF Inertial Measurement Unit, the experimental setup, the Simulink diagrams/MATLAB programs that constitute the evolutionary adaptive Kalman filter, plus the simulation results) are regrouped in a separate document.

  5. Acquisition de donnees a haute resolution et faible latence dediee aux capteurs avioniques de position

    NASA Astrophysics Data System (ADS)

    Koubaa, Zied

    The communication network and the detection mechanisms are two critical systems in a plane. Their performance has a direct impact on aircrafts. This is of particular interest for avionics designers, who have increasingly invested more and more in the development of these elements. As a part of a project in this domain, we introduce the design and the development of a smart interface for position sensors dedicated to flights (Smart Sensor Interface - SSI). This interface will serve to connect sensors of different technologies (electromagnetic, optical and MEMS) to the new communication network, AFDX. The role of this interface is to generate an appropriate excitation signal for certain types of sensors (R/LVDT), and to treat, demodulate, and digitize their output signals. The proposed interface is thus composed of a Signal Acquisition Path (SAP) and an Excitation Signal Generation (ESG). By adopting the Integrated Modular Avionics architecture (IMA), we can minimize the size of the classic interface, reduce its energy consumption and improve its reliability and its performance. The focus of our design is particularly on the Data Acquisition Path (DAP). An Architecture characterized by a high resolution (14 bits) and a low latency (1.2 ms) of this module is introduced and developed in this prestigious work. This architecture was developed after a wellconducted study of existing solutions found in literature work and a detailed analysis of the problems arise in the design and implementation of this system (DAP). The conversion of the sensor signal into a digital signal is the most important step in acquiring data, as it sets the resolution of the acquired information and generates the majority of its latency. This module can also affect the reliability and stability of the system. Among different models and architectures, the Delta-Sigma analog-to-digital converter (ADC) is preferred for this application (for better resolution). This converter is formed by an analog circuit (modulator) followed by digital filters. The complexity of the implementation, the processing delay and the output resolution are all susceptible to change depending on the architecture of these filters. Thus, the main problem while designing such a system arises in the opposing evolution of the resolution and latency parameters; the improvement or evolution of one, results in the destruction of the other. Therefore, our work aims to provide one or more method to optimize the latency caused by the CAN while maintaining the same resolution of the desired data (14 bits). This optimization takes into account the objective of integrating the DAP in modules of small size and low power consumption. This proposed solution was implemented in order to validate the design of the conception of the interface. We are also interested to achieve the proposed solution and validate our design. The obtained results will be evaluated after following the manufacturing strategy. The data acquisition unit is made up of two electronic components. The first component is an integrated circuit, which uses CMOS 0.13mum IBM technology and contains the analog part of CAN (SigmaDelta modulator). The second component is a Virtex-6 FPGA, which allows one to acquire the necessary digital processing required for the acquisition and conversion of the sensor signal. In the final version of the interface, our analog portion will be integrated with the analog portion of GSE in the same chip. The integrated digital logic in the (FPGA) role will thus provide digital data to the ESG module in order to generate the excitation signal.

  6. Methode des elements finis hybride appliquee aux vibrations des coques spheriques

    NASA Astrophysics Data System (ADS)

    Menaa, Mohamed

    The analysis of spherical shells filled with fluid and subjected to supersonic flow has been the subject of few research. Most of these studies treat the dynamic behaviour of empty shells. Few works have investigated spherical shells filled with fluid or subjected to supersonic flutter. In this thesis, we propose to develop a model to analyse the vibratory behaviour of both empty spherical shells and partially filled with fluid. This model is also applicable to study of the dynamic stability of spherical shells subjected to supersonic flow. The model developed is a combination of finite element method, thin shell theory, potential fluid theory and aerodynamic fluid theory. Different parameters are considered here in this study. In the first part of this study, free vibration analysis of spherical shell is carried out. The structural model is based on a combination of thin shell theory and the classical finite element method. Free vibration equations using the hybrid finite element formulation are derived and solved numerically. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for spherical shells of different geometries, boundary conditions and radius to thickness ratios. This proposed hybrid finite element method can be used efficiently for design and analysis of spherical shells employed in high speed aircraft structures. In the second part of the present study, a hybrid finite element method is applied to investigate the free vibration of spherical shell filled with fluid. The structural model is based on a combination of thin shell theory and the classical finite element method. It is assumed that the fluid is incompressible and has no free-surface effect. Fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacement at the fluid-structure interface. Numerical simulation is done and vibration frequencies for different filling ratios are obtained and compared with existing experimental and theoretical results. The dynamic behavior for different shell geometries, filling ratios and boundary conditions with different radius to thickness ratios is summarized. This proposed hybrid finite element method can be used efficiently for analyzing the dynamic behavior of aerospace structures at less computational cost than other commercial FEM software. In this study, aeroelastic analysis of a spherical shell subjected to the external supersonic airflow is carried out. The structural model is based on a combination of linear spherical shell theory and the classic finite element method. In this hybrid method, the nodal displacements are found from the exact solution of shell governing equations rather than approximated by polynomial functions. Linearized first-order potential (piston) theory with the curvature correction term is coupled with the structural model to account for pressure loading. Linear mass, stiffness and damping matrices are found using the hybrid finite element formulation. Aeroelastic equations are derived and solved numerically. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for spherical shells of different boundary conditions, geometries, flow parameters and radius to thickness ratios. Results show that the spherical shell loses its stability through coupled-mode flutter. This proposed hybrid finite element method can be used efficiently for design and analysis of spherical shells employed in high speed aircraft structures.

  7. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation.

    PubMed

    Yu, Hong; Soler, Marçal; San Clemente, Hélène; Mila, Isabelle; Paiva, Jorge A P; Myburg, Alexander A; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2015-04-01

    Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition. PMID:25577568

  8. Niveau socioéconomique et processus du recours aux soins par les familles de patients souffrant de troubles psychiques au Burkina Faso

    PubMed Central

    Yaogo, Ahmed; Sommer, Alain; Moulaï, Pierre; Chebili, Saïd; Abaoub-Germain, Agnès

    2014-01-01

    Introduction Le Burkina Faso a connu une amélioration constante depuis deux décennies de l'offre de soins en psychiatrie. De même, le taux d'alphabétisation sans cesse croissant s'accompagne d'une profonde modification des conceptions et des comportements. La présente étude visait à déterminer l′impact des déterminants socioéconomiques sur le processus du recours aux soins par les familles. Méthodes Il s'est agi d'une enquête transversale portant sur 200 familles, menée dans le service de psychiatrie du Centre Hospitalier Universitaire Yalgado Ouédraogo de Ouagadougou. Variable à expliquer: premier recours aux soins par les familles (guérisseur traditionnel ou prières religieuses vs. consultations psychiatrique ou médicale). Variable explicative: catégorie socioprofessionnelle classée en suivant la nomenclature des professions et catégories socioprofessionnelles; niveau d’études. L'analyse statistique a été effectuée à l'aide du logiciel SAS version 9.2. Le test du Khi deux a été utilisé. Résultats Il existait une association entre le choix du premier recours et la Profession et la catégorie socioprofessionnelledu « décideur » (p = 0.0006) ainsi que leniveau d’études du « décideur » (p = 0.0001). Conclusion La Profession et Catégorie Sociale et le niveau d'instruction scolaire pourraient être un marqueur important dans les politiques visant à optimiser les processus de recours aux soins des patients dans le circuit de soins. PMID:25161751

  9. Complex facies relationships and regional stratigraphy of the Mississippian Ste. Genevieve, Paoli, and Aux Vases Formations, Illinois basin: A major hydrocarbon-producing interval

    SciTech Connect

    Cole, R.D.; Nelson, W.J. )

    1993-03-01

    The Mississippian Ste. Genevieve and Paoli Limestones and sandstones of the Aux Vases Formation are lateral facies of one another. This interpretation is based on comprehensive investigations of outcrops, and selected cores, samples of well cuttings, and geophysical logs conducted over a period of four years. Both units exhibit similar sedimentological characteristics and represent open marine, shallow subtidal, and intertidal environments. The presence of low-angle cross-laminae, ripple- and plane-laminae, climbing ripples, and ooid shoals suggest most deposition occurred under low energy conditions. Lenticular, channel-like scour and fill structures that contain both fine-grained quartz sand and abraded, disarticulated fossil fragments indicate localized higher energy deposition. The authors studies indicate that siliciclastic vs. carbonate deposition was controlled strictly by available sediment, and not by regressive (siliciclastic) and transgressive (carbonate) events, as inferred by previous workers. This conclusion is based on lateral facies relationships, and the supplanting of carbonates by clastics occurring in the upper part of the Ste. Genevieve through the middle part of the Paoli. The Aux Vases is thickest, coarsest, and least mature in the northwestern part of the Illinois Basin, and pinches out to the southeast. This implies a northwesterly source for clastics, perhaps the Transcontinental Arch. After early Chesterian time, the Transcontinental Arch apparently supplied little or no sediment to any flanking basin. The Ste. Genevieve, Paoli, and Aux Vases are major oil-producing units in the Illinois Basin. New understanding of regional relationships should enhance exploratory success and improve recovery from established fields.

  10. Le recours aux modeles dans l'enseignement de la biologie au secondaire : Conceptions d'enseignantes et d'enseignants et modes d'utilisation

    NASA Astrophysics Data System (ADS)

    Varlet, Madeleine

    Le recours aux modeles et a la modelisation est mentionne dans la documentation scientifique comme un moyen de favoriser la mise en oeuvre de pratiques d'enseignement-apprentissage constructivistes pour pallier les difficultes d'apprentissage en sciences. L'etude prealable du rapport des enseignantes et des enseignants aux modeles et a la modelisation est alors pertinente pour comprendre leurs pratiques d'enseignement et identifier des elements dont la prise en compte dans les formations initiale et disciplinaire peut contribuer au developpement d'un enseignement constructiviste des sciences. Plusieurs recherches ont porte sur ces conceptions sans faire de distinction selon les matieres enseignees, telles la physique, la chimie ou la biologie, alors que les modeles ne sont pas forcement utilises ou compris de la meme maniere dans ces differentes disciplines. Notre recherche s'est interessee aux conceptions d'enseignantes et d'enseignants de biologie au secondaire au sujet des modeles scientifiques, de quelques formes de representations de ces modeles ainsi que de leurs modes d'utilisation en classe. Les resultats, que nous avons obtenus au moyen d'une serie d'entrevues semi-dirigees, indiquent que globalement leurs conceptions au sujet des modeles sont compatibles avec celle scientifiquement admise, mais varient quant aux formes de representations des modeles. L'examen de ces conceptions temoigne d'une connaissance limitee des modeles et variable selon la matiere enseignee. Le niveau d'etudes, la formation prealable, l'experience en enseignement et un possible cloisonnement des matieres pourraient expliquer les differentes conceptions identifiees. En outre, des difficultes temporelles, conceptuelles et techniques peuvent freiner leurs tentatives de modelisation avec les eleves. Toutefois, nos resultats accreditent l'hypothese que les conceptions des enseignantes et des enseignants eux-memes au sujet des modeles, de leurs formes de representation et de leur approche constructiviste en enseignement representent les plus grands obstacles a la construction des modeles en classe. Mots-cles : Modeles et modelisation, biologie, conceptions, modes d'utilisation, constructivisme, enseignement, secondaire.

  11. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1.

    PubMed

    Zhang, Yanxiang; von Behrens, Inga; Zimmermann, Roman; Ludwig, Yvonne; Hey, Stefan; Hochholdinger, Frank

    2015-07-01

    Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway. PMID:25911745

  12. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1

    PubMed Central

    Zhang, Yanxiang; von Behrens, Inga; Zimmermann, Roman; Ludwig, Yvonne; Hey, Stefan; Hochholdinger, Frank

    2015-01-01

    Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway. PMID:25911745

  13. Radiographie par rayons X à haute résolution de défauts topologiques en volume de structures modulées comparée aux neutrons en faisceau blanc

    NASA Astrophysics Data System (ADS)

    Fernandez Palacio, J.; Hamelin, B.; Marmeggi, J. C.

    2004-11-01

    Une émission de rayons X par un générateur à haute tension (plage : 50 - 410 kV) a été développée pour être utilisée avec un diffractomètre à rayons X durs et caractériser en volume des monocristaux. Le fort flux issu d'une installation de radiologie à foyer fin avec un grand pouvoir de pénétration en profondeur autorise l'étude d'échantillons très absorbants. Quelques exemples de l'utilisation de ces propriétés pour des échantillons épais et très absorbants sont présentés ; principalement l'analyse de contraintes et la topographie X projetée 2D dans des matériaux en comparaison avec l'information par la diffraction des neutrons. La diffraction à haute énergie apparaît dans la direction transmise, les angles de Bragg sont petits et ainsi les différentes lignes de réflexions sont réparties autour du faisceau principal. La presse uni-axiale utilisée pour les expériences est optimisée effectivement avec l'absence d'un bruit de fond dû à l'usage de fentes. L'optique des rayons X durs et neutrons appliquée aux échantillons épais donne une information complémentaire dans les expériences sur l'analyse de la densité volumétrique par la diffusion des rayons X et neutrons. On l'applique à des problèmes concernant des cristaux aux structures modulées étudiées sous des charges mécaniques et thermiques.

  14. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  15. Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces.

    PubMed

    Edel, Joshua B; Kornyshev, Alexei A; Kucernak, Anthony R; Urbakh, Michael

    2016-03-14

    This tutorial review will introduce and explore fundamental and applied aspects of electrolytic interfaces incorporating nanoscale building blocks for use in novel applications such as sensors and tunable optics. In order to do this, it is important to understand the principles behind even the simplest of immiscible interfaces such as those of the liquid|liquid and solid|liquid. Qualitatively, the picture is simple however the complexity is easily compounded by the addition of electrolyte, and further compounded by the addition of more complex entities such as nanoparticles. Nevertheless combining all these components surprisingly results in an elegant solution, where the nanoparticles have the ability to self-assemble at the interface with a high level of control. Importantly, this opens up the door to the development of new types of materials with a range of applications which have only recently been exploited. Initially we begin with a description of the fundamentals related to liquid|liquid and solid|liquid interfaces both with and without electrolyte. The discussion then shifts to a description of biasing the interface by the application of an electric field. This is followed by an exploration of nanoparticle assembly and disassembly at the interface by controlling parameters such as ligand composition, charge, pH, and electric field. Finally a description of the state-of-the-art is given in terms of current applications and possible future directions. It is perhaps fair to say that these new frontiers have caused great excitement within the sensing community not only due to the simplicity of the technique but also due to the unprecedented levels of sensitivity and control. PMID:26806599

  16. Croissance Par Epitaxie EN Phase Vapeur aux Organo - et Caracterisation des Heterostructures Contraintes a Base de Phosphur de Indium

    NASA Astrophysics Data System (ADS)

    Tran, Chuong Anh

    Trois systemes heteroepitaxiaux a base de InP:InP/Si, InAs/InP et InAsP/InP ont ete fabriques par epitaxie en phase vapeur aux organo-metalliques (EPVOM)conventionelle. En plus l'epitaxie par couches atomiques (ECA) a ete utilisee pour fabriquer des puits quantiques ultra-minces et des superreseaux a courte periode InAs/InP. L'epitaxie de InP sur le silicium pose des problemes lies a un desaccord de maille de 8%. Les resultats indiquent une relaxation totale de la couche de InP a la temperature de croissance. La contrainte residuelle observee par diffraction de rayons X a haute resolution (DRXHR) et photoluminescence s'explique par une difference dans les coefficients de dilatation thermique de InP et due Si. L'incorporation des impuretes ainsi que la diffusion d'atomes de Si du substrat dans la couche epitaxiale de InP dependent fortement des parametres de croissance. Les resultats montrents que le reseau de dislocations dans les couches de InP deposees sur un substrat de Si mesoriente est suffisamment asymetrique pour creer des constraintes locales. Celles-ci peuvent etre analysees par diffraction de rayons X. Par contre le systeme heteroepitaxial InAs/InP, dont le desaccord de maille est 3.2% peut etre realise sans dislocation a condition que l'epaisseur de toute heterostructure soit gardee inferieure a l'epaisseur critique. Des puits quantiques InAsP/InP a la temperature ambiante montre clairement l'inter et technologique du systeme InAs_ {x}P_{1-x}/InP pour la realisation de dispositifs tels que les modulateurs optiques. L'ECA a ete utilisee pour realiser des puits quantiques simples et des superreseaux a courte periode InAs/InP. Nous avons demontre que cette technique permet d'obtenir des interfaces tres abruptes et des epaisseurs bien definies, et de faire des heterostructures que peuvent combiner une large gamme de semiconducteurs de composition et desaccords de maille varies. Finalement nous avons fait une etude approfondie des modes vibratoires dans les puits quantiques simples et superresseaux a courte periode InAs/InP fabriques par l'ECA. Gr ace a la haute qualite structurale de ces heterostructures, les phonons acoustiques replies et les phonons optiques confines ont ete clairement observes pour la premiere fois dans ce systeme. Pour les puits quantiques multiples InAs _{x}P_{1-x }/InP, une combinaison de differentes techniques de caracterisation optique et structurale est necessaire pour pouvoir determiner l'efficacite de la sequence d'interruption a l'interface utilisee pendant la croissance. Nous avons montre que la photoluminescence, qui est une procedure repandue pour evaluer la qualite de l'interface d'une heterostructure n'est pas suffisante pour determiner la qualite de l'interface InAs_{x}P_ {1-x}/InP. Avec une sequence d'interruption non-optimisee, une grande densite d'etats localises peut etre creee. Dans ce cas le mesures d'absorption et de diffraction de rayons X sont complementaires a celles de photoluminescence. Les positions experimentales en energie des modes d'interface peuvent etre predites par le modele du continuum electrostatique. (Abstract shortened by UMI.).

  17. Developpement d'une plateforme de calcul d'equilibres chimiques complexes et adaptation aux problemes electrochimiques et d'equilibres contraints

    NASA Astrophysics Data System (ADS)

    Neron, Alex

    Avec l'arrivée de l'environnement comme enjeu mondial, le secteur de l'efficacité énergétique prend une place de plus en plus importante pour les entreprises autant au niveau économique que pour l'image de la compagnie. Par le fait même, le domaine des technologies de l'énergie est un créneau de recherche dont les projets en cours se multiplient. D'ailleurs, un des problèmes qui peut survenir fréquemment dans certaines entreprises est d'aller mesurer la composition des matériaux dans des conditions difficiles d'accès. C'est le cas par exemple de l'électrolyse de l'aluminium qui se réalise à des températures très élevées. Pour pallier à ce problème, il faut créer et valider des modèles mathématiques qui vont calculer la composition et les propriétés à l'équilibre du système chimique. Ainsi, l'objectif global du projet de recherche est de développer un outil de calcul d'équilibres chimiques complexes (plusieurs réactions et plusieurs phases) et l'adapter aux problèmes électrochimiques et d'équilibres contraints. Plus spécifiquement, la plateforme de calcul doit tenir compte de la variation de température due à un gain ou une perte en énergie du système. Elle doit aussi considérer la limitation de l'équilibre due à un taux de réaction et enfin, résoudre les problèmes d'équilibres électrochimiques. Pour y parvenir, les propriétés thermodynamiques telles que l'énergie libre de Gibbs, la fugacité et l'activité sont tout d'abord étudiées pour mieux comprendre les interactions moléculaires qui régissent les équilibres chimiques. Ensuite, un bilan énergétique est inséré à la plateforme de calcul, ce qui permet de calculer la température à laquelle le système est le plus stable en fonction d'une température initiale et d'une quantité d'énergie échangée. Puis, une contrainte cinétique est ajoutée au système afin de calculer les équilibres pseudo-stationnaires en évolution dans le temps. De plus, la contrainte d'un champ de potentiel électrique est considérée pour l'évaluation des équilibres électrochimiques par des techniques classiques de résolution et fera l'objet de travaux futurs via une technique d'optimisation. Enfin, les résultats obtenus sont comparés avec ceux présents dans la littérature scientifique pour valider le modèle. À terme, le modèle développé devient tin bon moyen de prédire des résultats en éliminant beaucoup de coût en recherche et développement. Les résultats ainsi obtenus sont applicables dans une grande variété de domaines tels que la chimie et l'électrochimie industrielle ainsi que la métallurgie et les matériaux. Ces applications permettraient de réduire la production de gaz à effet de serre en optimisant les procédés et en ayant une meilleure efficacité énergétique. Mots-clés : Systèmes énergétiques avancés, Équilibre thermodynamique, Équilibre contraint, Optimisation, Minimisation de l'énergie libre de Gibbs.

  18. Le syndrome d'insensibilité complète aux androgènes: à propos de deux cas et revue de la literature

    PubMed Central

    Lachiri, Boutaina; Hakimi, Ihssane; Boudhas, Adil; Guelzim, Khalid; Kouach, Jaouad; Oukabli, Mohamed; Rahali, Driss Moussaoui; Dehayni, Mohamed

    2015-01-01

    Le syndrome d'insensibilité complète aux androgènes (SICA) est une entité rare qui correspond à la forme complète des pseudohermaphrodismes androgynoïdes. Son incidence est en fait très variable, allant, selon les auteurs de 1/20000 à 1/60000 naissances. Il est caractérisé par la coexistence chez le même sujet d'un caryotype masculin (46 XY), avec des gonades males, et d'une morphologie féminine normale. Les auteurs rapportent deux observations de deux jeunes filles présentant le SICA ayant consulté pour aménorrhée primaire, illustrant les particularités cliniques, anatomopathologiques et biologiques du syndrome avec certaines particularités. PMID:26301004

  19. Transposition des gros vaisseaux associée aux communications interventriculaire et interauriculaire: à propos d'un cas et revue de la littérature

    PubMed Central

    Mutombo, Augustin Mulangu; Mukuku, Olivier; Lubala, Toni Kasole; Kabuya, Maguy Sangaji; Ilunga, Paul Makinko; Bugeme, Marcellin; Luboya, Oscar Numbi

    2013-01-01

    Nous rapportons une observation d'un nourrisson de 5 mois présentant une transposition des gros vaisseaux associée aux communications interventriculaire et interauriculaire. Il est né à terme sans aucun facteur de risque retrouvé dans les antécédents maternels. Le diagnostic est posé, grâce à une échocardiographie, à 5 mois après sa naissance lors de la survenue d'une cyanose et d'un malaise anoxique. Une prise en charge symptomatique a permis de stabiliser l’état du patient mais suite à l'absence d'un traitement chirurgical, il est décédé à domicile 3 semaines après sa sortie de l'hôpital. Dans les pays en développement, le diagnostic de la transposition des gros vaisseaux est souvent fait en période postnatale et son pronostic reste fatal par manque des centres médico-chirurgicaux spécialisés. PMID:24009800

  20. Paternité des articles et intérêts concurrents : une analyse des recommandations aux auteurs des journaux traitant de pratique pharmaceutique

    PubMed Central

    Courbon, Ève; Tanguay, Cynthia; Lebel, Denis; Bussières, Jean-François

    2014-01-01

    RÉSUMÉ Contexte : La présence d’auteurs honorifiques et fantômes ainsi que les intérêts concurrents représentent des difficultés bien documentées, liées à la publication d’articles scientifiques. Il existe des lignes directrices encadrant la rédaction et la publication de manuscrits scientifiques, notamment celles de l’International Committee of Medical Journal Editors (ICMJE). Objectifs : L’objectif principal de cette étude descriptive et transversale visait à recenser les instructions portant sur la paternité des articles et les intérêts concurrents provenant des recommandations aux auteurs des journaux traitant de pratique pharmaceutique. L’objectif secondaire visait à déterminer des mesures correctrices pour une paternité des articles plus transparente. Méthode : La recherche a débuté par l’identification des journaux traitant de pratique pharmaceutique. La consultation des instructions aux auteurs des journaux a permis ensuite de recenser les recommandations destinées à éviter les problèmes de paternité des articles et d’intérêts concurrents. Finalement, les membres de l’équipe de recherche se sont consultés afin de définir des mesures correctrices possibles à l’intention des chercheurs. Résultats : Des 232 journaux traitant de pharmacie, 33 ont été définis comme traitant de pratique pharmaceutique. Un total de 24 (73 %) journaux mentionnaient suivre la politique de l’ICMJE, 14 (42 %) demandaient aux auteurs de remplir un formulaire de déclaration d’intérêts concurrents au moment de la soumission de l’article, 17 (52 %) présentaient une définition de la qualité d’auteur et 5 (15 %) demandaient de détailler les contributions de chaque auteur. Une grille de 40 critères a été élaborée pour définir l’attribution du statut d’auteur. Conclusion : Moins de la moitié des journaux demandait aux auteurs de transmettre un formulaire de déclaration des intérêts concurrents au moment de la soumission d’un article et seulement la moitié des journaux avait donné une définition de la qualité d’auteur. La publication scientifique de travaux sur les pratiques pharmaceutiques n’est pas à l’abri des manques de transparence liés à la publication. L’utilisation d’une grille décrivant la contribution de chaque auteur et la publication en ligne des travaux peuvent contribuer à limiter ces risques. PMID:24970938

  1. Statut phospho-calcique en hémodialyse chronique dans l’Oriental Marocain: évaluation de l’adhésion aux recommandations K/DOQI et KDIGO

    PubMed Central

    Benabdellah, Nawal; Karimi, Ilham; Bentata, Yassamine; Yacoubi, Hicham; Haddiya, Intissar

    2013-01-01

    Les troubles phosphocalciques sont fréquents en hémodialyse chronique. Leurs conséquences justifient une prévention et un traitement adaptés aux recommandations des sociétés savantes. L’objectif de notre étude était de déterminer le statut phosphocalcique de nos patients hémodialysés chroniques (HDC) et l’évaluation des taux de conformité des indicateurs aux recommandations K/DOQI et KDIGO. Ainsi, nous avons réalisé une étude transversale incluant les 83 patients HDC du centre d’hémodialyse de l’hôpital Al Farabi d’Oujda. L’âge moyen de nos patients était de 49.8± 15.6 ans. Une prédominance masculine a été notée. La conformité des indicateurs du bilan phosphocalcique chez nos patients hémodialysés chroniques par rapport aux recommandations KDIGO était de l’ordre de 21.6%. Le pourcentage des patients ayant des données phosphocalciques conformes aux cibles recommandées par les K/DOQI était Les patients répondants simultanément aux quatres critères recommandés par les K/DOQI n’étaient que 8.4%. PMID:24570784

  2. Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1.

    PubMed

    Zhang, Yanxiang; Marcon, Caroline; Tai, Huanhuan; von Behrens, Inga; Ludwig, Yvonne; Hey, Stefan; Berendzen, Kenneth W; Hochholdinger, Frank

    2016-02-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1) is a key regulator of lateral and seminal root formation. An ancient maize genome duplication resulted in the emergence of its homeolog rum1-like1 (rul1), which displays 92% amino acid sequence identity with RUM1. Both, RUL1 and RUM1 exhibit the canonical four domain structure of Aux/IAA proteins. Moreover, both are localized to the nucleus, are instable and have similar short half-lives of ~23min. Moreover, RUL1 and RUM1 can be stabilized by specific mutations in the five amino acid degron sequence of domain II. In addition, proteins encoded by both genes interact in vivo with auxin response factors (ARFs) such as ZmARF25 and ZmARF34 in protoplasts. Although it was demonstrated that RUL1 and RUM1 can homo and heterodimerize in vivo, rul1 expression is independent of rum1. Moreover, on average rul1 expression is ~84-fold higher than rum1 in the 12 tested tissues and developmental stages, although the relative expression levels in different root tissues are very similar. While RUM1 and RUL1 display conserved biochemical properties, yeast-two-hybrid in combination with BiFC experiments identified a RUM1-associated protein 1 (RAP1) that specifically interacts with RUM1 but not with RUL1. This suggests that RUM1 and RUL1 are at least in part interwoven into different molecular networks. PMID:26672614

  3. Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS.

    PubMed

    Herud, Ole; Weijers, Dolf; Lau, Steffen; Jürgens, Gerd

    2016-01-01

    Primary root formation in early embryogenesis of Arabidopsis thaliana is initiated with the specification of a single cell called hypophysis. This initial step requires the auxin-dependent release of the transcription factor MONOPTEROS (MP, also known as ARF5) from its inhibition by the Aux/IAA protein BODENLOS (BDL, also known as IAA12). Auxin-insensitive bdl mutant embryos and mp loss-of-function embryos fail to specify the hypophysis, giving rise to rootless seedlings. A suppressor screen of rootless bdl mutant seedlings yielded a mutation in the nuclear import receptor IMPORTIN-ALPHA 6 (IMPα6) that promoted primary root formation through rescue of the embryonic hypophysis defects, without causing additional phenotypic changes. Aux/IAA proteins are continually synthesized and degraded, which is essential for rapid transcriptional responses to changing auxin concentrations. Nuclear translocation of bdl:3×GFP was slowed down in impα6 mutants as measured by fluorescence recovery after photobleaching (FRAP) analysis, which correlated with the reduced inhibition of MP by bdl in transient expression assays in impα6 knock-down protoplasts. The MP-BDL module acts like an auxin-triggered genetic switch because MP activates its own expression as well as the expression of its inhibitor BDL. Using an established simulation model, we determined that the reduced nuclear translocation rate of BDL in impα6 mutant embryos rendered the auxin-triggered switch unstable, impairing the fast response to changes in auxin concentration. Our results suggest that the instability of the inhibitor BDL necessitates a fast nuclear uptake in order to reach the critical threshold level required for auxin responsiveness of the MP-BDL module in primary root initiation. PMID:26714008

  4. Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1

    PubMed Central

    Zhang, Yanxiang; Marcon, Caroline; Tai, Huanhuan; von Behrens, Inga; Ludwig, Yvonne; Hey, Stefan; Berendzen, Kenneth W.; Hochholdinger, Frank

    2016-01-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1) is a key regulator of lateral and seminal root formation. An ancient maize genome duplication resulted in the emergence of its homeolog rum1-like1 (rul1), which displays 92% amino acid sequence identity with RUM1. Both, RUL1 and RUM1 exhibit the canonical four domain structure of Aux/IAA proteins. Moreover, both are localized to the nucleus, are instable and have similar short half-lives of ~23min. Moreover, RUL1 and RUM1 can be stabilized by specific mutations in the five amino acid degron sequence of domain II. In addition, proteins encoded by both genes interact in vivo with auxin response factors (ARFs) such as ZmARF25 and ZmARF34 in protoplasts. Although it was demonstrated that RUL1 and RUM1 can homo and heterodimerize in vivo, rul1 expression is independent of rum1. Moreover, on average rul1 expression is ~84-fold higher than rum1 in the 12 tested tissues and developmental stages, although the relative expression levels in different root tissues are very similar. While RUM1 and RUL1 display conserved biochemical properties, yeast-two-hybrid in combination with BiFC experiments identified a RUM1-associated protein 1 (RAP1) that specifically interacts with RUM1 but not with RUL1. This suggests that RUM1 and RUL1 are at least in part interwoven into different molecular networks. PMID:26672614

  5. Application of PTR-MS for measuring odorant emissions from soil application of manure slurry.

    PubMed

    Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs

    2015-01-01

    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103

  6. Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry

    PubMed Central

    Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs

    2015-01-01

    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103

  7. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  8. Approche micromécanique de l'inclusion enrobée et applications aux matériaux composites

    NASA Astrophysics Data System (ADS)

    Cherkaoui, M.; Sabar, H.; Berveiller, M.

    1994-04-01

    A micromechanical model using Green functions techniques and interfaces operators is proposed in order to solve the elastically inhomogeneous coated inclusion problem. For a composite material made of a non dilute concentration of coated inclusions and an homogeneous matrix, the interaction between the reinforcements are solved by a self consistent scheme. The theoretical results for a composite of hollow spheres of glass in a polyester matrix are in good agreement with experimental measurements of Huang and Gibson. Le travail présente une étude micromécanique des contraintes et déformations dans le cas d'une inclusion enrobée hétérogène, l'enrobage étant considéré comme une couche mince dont les propriétés élastiques sont différentes de celles de l'inclusion et de la matrice. La résolution de ce problème s'appuie simultanément sur les fonctions de Green et les opérateurs interfaciaux de la mécanique des solides. On utilise les résultats de cette étude pour déterminer les propriétés effectives d'un composite à partir d'une approche autocohérente prenant en compte les interactions entre inclusions enrobées. Les résultats théoriques appliqués au cas d'un composite constitué d'une matrice polyester et de billes de verre creuses sont en bon accord avec les mesures experimentales de Huang et Gibson.

  9. Développement d'une méthode originale d'imagerie haute résolution en temps réel à travers un milieu absorbant : application aux circuits microélectroniques

    NASA Astrophysics Data System (ADS)

    Abbadi, I.; Dilhaire, S.; Salin, F.; Claeys, W.

    2006-10-01

    Nous proposons l'étude d'une méthode originale de formation d'image au travers des milieux diffusants ou fortement absorbants. Une mire de résolution est placée derrière un wafer de silicium de 600 ? m d'épaisseur. Nous avons cherché à développer des outils optiques performants qui permettent une observation en profondeur et l'obtention d'images bidimensionnelles tomographiques. D'autres images de la partie active d'un circuit microélectronique en fonctionnement à travers le substrat de silicium ont été réalisées. Les images obtenues, ont une résolution spatiale latérale d'environ 12 ? m à travers un wafer de 600 ? m d'épaisseur.

  10. Aspects épidémiologiques des accidents vasculaires cérébraux (AVC) aux urgences de l'institut de cardiologie d'Abidjan (ICA)

    PubMed Central

    N'goran, Yves N'da Kouakou; Traore, Fatou; Tano, Micesse; Kramoh, Kouadio Euloge; Kakou, Jean-Baptiste Anzouan; Konin, Christophe; Kakou, Maurice Guikahue

    2015-01-01

    Introduction L'objectif de notre étude était de décrire les caractéristiques sociodémographiques et les Facteurs de Risque cardio-Vasculaires (FRV) des patients admis pour accidents vasculaires cérébraux (AVC) dans un service autre que celui de la neurologie. Méthodes Étude transversale rétrospective sur une période de 2 ans (janv. 2010 et déc. 2011), réalisée aux urgences de l'institut de cardiologie d'Abidjan. Résultats Il s'agissait de 176 adultes avec un âge moyen de 60 ans, une prédominance féminine. Les facteurs de risque majeurs retrouvés étaient l'hypertension artérielle dans 86,4% des cas, le diabète dans 11,4% des cas, le tabagisme dans 2,2% des cas. Les motifs de consultation étaient la perte de connaissance dans 36,4% des cas, l'hémiplégie dans 31,8% des cas, les céphalées dans 17,4% des cas, les vertiges dans 10,9% et les palpitations dans 2,2% des cas. La tension artérielle systolique moyenne était à 174 mmHg, la tension artérielle diastolique moyenne était à 105 mmHg et la pression pulsée moyenne était à 70 mmHg. Les AVC étaient associés à une arythmie complète par fibrillation auriculaire dans 11,4% des cas. Les AVC ischémiques représentaient 84,1%. L’évolution aux urgences a été marquée par un décès dans 17% (30) des cas. Conclusion Les AVC constituent un problème majeur de santé publique. Malgré sa prédominance féminine, ils (AVC) touchaient 44% des hommes dans notre étude lorsqu'on sait qu'en Afrique l'activité sociale repose sur les hommes. Ils restent une pathologie grave par la forte létalité. PMID:26327997

  11. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (MACINTOSH A/UX VERSION)

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.

  12. Application of electro acoustics for dewatering pharmaceutical sludge

    SciTech Connect

    Golla, P.S.; Johnson, H.W. ) Senthilnathan, P.R. )

    1992-02-01

    Application of electro acoustic principles for dewatering has been developed by Battelle Institute. The Department of Energy, Battelle Institute, and Ashbrook-Simon-Hartley, have jointly developed an Electro Acoustic Dewatering press (EAD press). The EAD press applies a combination of mechanical pressure, electrical current and ultrasonics. This press is utilized after conventional dewatering devices and can remove up to 50% water from filtered sludge cake at a fraction of the cost incurred in existing thermal drying devices. The dominant mechanism of sludge dewatering by EAD press is electro-osmosis due to the application of a direct current field. Electro-osmosis is caused by an electrical double layer of oppositely charged ions formed at the solid liquid interface, which is characterized by zeta potential. The ultrasonic fields help electro-osmosis by consolidation of the filter cake and by release of inaccessible liquid. The EAD press has been tested successfully on a variety of materials including apple pomace, corn gluten, sewage sludge, and coal fines. A three week long full scale trial was conducted successfully at a pharmaceutical industry to determine the application of this technology for dewatering waste activated sludge.

  13. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. PMID:26217884

  14. Contribution aux etudes de signaux radar de surfaces de mer et mise au point d'un traitement rapide

    NASA Astrophysics Data System (ADS)

    Jousselme, Anne-Laure

    Dans le but d'utiliser un radar comme instrument de mesures oceanographiques, il apparai t necessaire de developper des techniques pour extraire les caracteristiques d'une surface de mer a partir du signal recu par le radar. La plupart des algorithmes existant considerent les images radar comme des photographies de la surface oceanique, negligeant l'effet de la vitesse de rotation du radar sur le signal, ainsi que le systeme de coordonnees polaires intrinseque de l'image radar. De plus, a cause de la loudeur des calculs, ces methodes ne peuvent fournir de resultats dans des applications en temps reel. La premiere partie de notra travail consiste a modeliser et quantifier l'effet de la distorsion du spectre oceanique provoquee par une vitesse de rotation du radar trop faible. Les resultats permettent de definir clairement les vitesses de rotation du radar pour lesquelles cette distorsion est negligeable. La deuxieme partie prospose un algorithme de traitement en temps reel qui extrait les informations caracteristiques principales de la surface de mer observee, i.e., la longueur d'onde et la direction des vagues. Cette estimation, basees sur une modelisation autoregressive offre une ouverture pour le traitement des signaux en temps reel. A travers cette approche, une succession de signaux unidimensionnels est traitee, ce qui conduit a l'elimination naturelle de la distorsion introduite dans le spectre du signal.

  15. Cartographie de l'elevation de l'interface eau douce-eau salee aux iles-de-la-madeleine par la methode electromagnetique transitoire (TEM)

    NASA Astrophysics Data System (ADS)

    Madani, Abdelhamid

    This research project is dedicated to mapping the elevation of the freshwater-saltwater interface in Magdalen Islands using the transient electromagnetic method (TEM) in order to monitor time-varying quality of groundwater tables. Seventy-three TEM soundings were conducted between May 2010 and June 2011 close to Well regions in Fatima, Étang-du-Nord, Havre-Aux-Maisons, Grande-Entrée and Grosse-Île. TEM soundings were carried out with loops of 50 m x 50 m and 60 m x 40 m x 2 turns except some surveys of 100 m x 100 m. To control water quality and help constrain the interpretation of TEM soundings, conductivity logs were made in four previous exploration wells and fifteen wells drilled in 2009. Results show that saline water is associated with a low resistivity level between 2 and 4 ?.m and its elevation ranges from -40 m at Grand-Entrée and more than -250 m at Havre-Aubert. In Étang-du-Nord east, Fatima east and Grande-Entrée, saline water is shallow near shore and plunges inward as expected by the Ghyben Herzberg relation. These three areas have been identified to achieve the time-lapse monitoring of groundwater because of the risk associated with the proximity of wells in operation and the low elevation of saline water. Fatima center area close to FAT03 and FAT07 soundings and Havre-Aux-Maisons showed inconsistent results with the hydrogeological model, further work is recommended to verify the origin of the conductive areas highlighted. However, the results of the interpretation of areas at Havre-Aubert and Grosse-Île did not show a risk of contamination due to the depth of saline water. Modeling of the transition zone between the freshwater aquifer and the saline groundwater has demonstrated that it was difficult to solve it for thicknesses below 10 m and 30 m to depths of 40 and 130 m respectively. If the resistivity of the transition zone is known, the resolution is improved (5 and 10 m respectively). TEM soundings showed negative responses at late time associated with induced polarization (IP) effects. The inversion results of TEM soundings affected by this effect have shown that this dispersion most likely originates from near-surface layers. Chargeabilities ranging from 0.8 to 0.9 were obtained on the TEM soundings processed. The origin of this chargeability is currently unknown but could be related to the presence of fine material (clay). IP effect has not prevented determination of the saline water to a maximum depth of 250 m. The laboratory tests on core samples were unfortunately not able to determine the relationship between resistivity and water resistivity of saturated red sandstone. Immersion of cores in deionized water failed to eliminate the salt present in it. For time-varying monitoring of groundwater, we recommend performing drilling through the interface between freshwater and saltwater on selected areas, to conduct conductivity logs to fully characterize the level of this interface, to install multiparameter probes (conductivity, temperature, pressure) in monitoring wells located at different levels and to locate sites of TEM soundings in the vicinity that will be used to monitor the groundwater.

  16. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    PubMed

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. PMID:24928984

  17. Protein adsorption at solid-liquid interfaces: Part IV--Effects of different solid-liquid systems and various neutral salts.

    PubMed

    Hajra, S; Chattoraj, D K

    1991-08-01

    Adsorption isotherms of BSA at the solid-water interfaces have been studied as a function of protein concentration, ionic strength of the medium, pH and temperature using silica, barium sulphate, carbon, alumina, chromium, ion-exchange resins and sephadex as solid interfaces. In most cases, isotherms for adsorption of BSA attained the state of adsorption saturation. In the presence of barium sulphate, carbon and alumina, two types in the isotherms are observed. Adsorption of BSA is affected by change in pH, ionic strength and temperature of the medium. In the presence of metallic chromium, adsorbed BSA molecules are either denatured or negatively adsorbed at the metallic interface. Due to the presence of pores in ion-exchange resins, adsorption of BSA is followed by preferential hydration on resin surfaces in some cases. Sometimes two steps of isotherms are also observed during adsorption of BSA on the solid resins in chloride form. Adsorption of BSA, beta-lactoglobulin, gelatin, myosin and lysozyme is negative on Sephadex surface due to the excess adsorption of water by Sephadex. The negative adsorption is significantly affected in the presence of CaCl2, KSCN, LiCl, Na2SO4, NaI, KCl and urea. The values of absolute amounts of water and protein, simultaneously adsorbed on the surface of different solids, have been evaluated in some cases on critical thermodynamic analysis. The standard free energies (delta G0) of excess positive and negative adsorption of the protein per square meter at the state of monolayer saturation have been calculated using proposed universal scale of thermodynamics. The free energy of adsorption with reference to this state is shown to be strictly comparable to each other. The magnitude of standard free energy of transfer (delta G0B) of one mole of protein or a protein mixture at any type of physiochemical condition and at any type of surface is observed to be 38.5 kJ/mole. PMID:1752629

  18. A study of the applicability of nucleation theory to quasi-thermodynamic transitions of second and higher Ehrenfest-order, supplement 3

    NASA Technical Reports Server (NTRS)

    Barker, R. E., Jr.

    1986-01-01

    The work includes an investigation of the applicability of the nucleation theory to second and higher order thermodynamic transitions in the Ehrenfest sense, and a number of significant conclusions relevant to first order transitions, as well. The underlying theoretical method consisted of expanding the Gibbs' free energy in a Maclarin or Taylor series and then using fundamental thermodynamic determinable quantities, and interpreting the results. Work was performed on the existence and interpretation of an interfacial energy between phases in a second order transition in addition to an investigation of the solid-liquid interfacial energy for various polymers. Extensive considerations were devoted to various aspects of a particular polymer, polyvinylidene fluoride (PVDF or PVF2), including an experimetal investigation of the effects of an applied electric field on the morphology of melt crystallization and on the nucleation and growth of polarized domains.

  19. Advanced in situ Spectroscopic Techniques And Their Applications In Environmental Biogeochemistry: Introduction To The Special Section

    EPA Science Inventory

    Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describ...

  20. Evolution de la résistance aux antibiotiques des entérobactéries isolées à l'Hôpital Général de Douala de 2005 à 2012

    PubMed Central

    Ebongue, Cécile Okalla; Tsiazok, Martial Dongmo; Mefo'o, Jean Pierre Nda; Ngaba, Guy Pascal; Beyiha, Gérard; Adiogo, Dieudonné

    2015-01-01

    Introduction Cette étude vise à déterminer le profil de résistance aux antibiotiques des entérobactéries isolées à l'Hôpital Général de Douala (Cameroun) et analyser leur évolution dans le temps. Méthodes Etude rétrospective, sur une période de huit ans (2005 - 2012), portant sur l'ensemble des souches d'entérobactéries isolées chez les malades ambulatoires et hospitalisés. Les prélèvements ont été analysés au laboratoire de bactériologie de l'Hôpital Général de Douala. Résultats Les entérobactéries étaient les germes les plus fréquents sur l'ensemble des souches isolées. Nous avons noté une prédominance d’Escherichia coli (48,5%) et de Klebsiella pneumoniae (32,8%). Pendant la période d’étude, nous avons observé des taux de résistance élevés aux principales classes d'antibiotiques, et une augmentation entre 2005 et 2012 de 29,1% à 51,6% pour les céphalosporines de troisième génération, de 29,2% à 44% pour la ciprofloxacine. L'imipénème, l'amikacine et la fosfomycine étaient les molécules les plus actives avec respectivement 1,3%, 12,9% et 13,4% des souches d'entérobactéries résistantes. Conclusion L’évolution des résistances des entérobactéries aux antibiotiques est un phénomène réel dans la ville de Douala. Il expose à des difficultés de prise en charge thérapeutique des infections. Lamaitrise actuelle de ce phénomène est une véritable urgence et nécessite une implication des pouvoirs publics. Des tests spécifiques de recherche des bétalactamases à spectre élargi (BLSE) et AmpC doivent être mis en place dans nos laboratoires afin de mettre en évidence les différents phénotypes de résistances. PMID:26140070

  1. Differential Effects of NAA and 2,4-D in Reducing Floret Abscission in Cestrum (Cestrum elegans) Cut Flowers are Associated with their Differential Activation of Aux/IAA Homologous Genes

    PubMed Central

    Abebie, Bekele; Lers, Amnon; Philosoph-Hadas, Sonia; Goren, Raphael; Riov, Joseph; Meir, Shimon

    2008-01-01

    Background and Aims A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). Methods cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. Key Results Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. Conclusions The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission. PMID:17591611

  2. Thermodynamic and rheological properties of solid-liquid systems in coal processing

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1992-01-01

    None of the models available in the literature are known to work very well for aromatic compounds such as the ones that occur in coal derived materials. Two models - one by Van Velzen et al. (Ind Eng. Chem. Fundam. Vol 11, 1972, pp. 20-25) using a group contribution method and the other by Hwang et al (Ind. Eng. Chem. Process Des. Dev., Vol. 21, 1982, pp. 127-134) using a corresponding states method - were tested for some typical compounds that occur in coal liquids. These methods give errors ranging from 10 to 50% for viscosities of such compounds. These errors are too high and considering further errors in extension of these models to coal liquids, these models were considered unacceptable in our work. We have therefore set out to develop a new model for viscosities of aromatic compounds. We plan to base the model on the procedure similar to that of Van Velzen, however developed for just aromatic compounds. Our model, once developed will therefore be a group contribution method centered around the benzene ring structure.

  3. Direct calculation of the solid-liquid Gibbs free energy difference in a single equilibrium simulation

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.

    2013-09-01

    Computing phase diagrams of model systems is an essential part of computational condensed matter physics. In this paper, we discuss in detail the interface pinning (IP) method for calculation of the Gibbs free energy difference between a solid and a liquid. This is done in a single equilibrium simulation by applying a harmonic field that biases the system towards two-phase configurations. The Gibbs free energy difference between the phases is determined from the average force that the applied field exerts on the system. As a test system, we study the Lennard-Jones model. It is shown that the coexistence line can be computed efficiently to a high precision when the IP method is combined with the Newton-Raphson method for finding roots. Statistical and systematic errors are investigated. Advantages and drawbacks of the IP method are discussed. The high pressure part of the temperature-density coexistence region is outlined by isomorphs.

  4. Analysis of alternative solid/liquid separation techniques in non-beverage fermentation ethanol production

    SciTech Connect

    Not Available

    1982-06-01

    The biochemical and process design implications of separation alternatives were analyzed. Standard batches of corn mash were prepared and the solids and liquids were separated according to three alternative sequences: (1) prior to fermentation; (2) after fermentation; and (3) after distillation. Separation methods, such as screening, filtration, and centrifugation were also examined. Biochemical tests on the supernatants and precipitates identified the effects on total precipitate, carbohydrate, protein, reducing sugars, digestible nutrients, fiber, fat, ash, nitrogen free extract, Kjeldehl nitrogen, calcium, phosphorus, potassium, pH, BOD, specific gravity, viscosity, yeast cell number, starch, dissolved oxygen, percent alcohol, percent moisture and ethanol yield. The biochemical tests demonstrate that, depending on the effectiveness of additional product recovery steps, significant variances in ethanol yields may occur as a result of separation sequence and methodology. Highest ethanol yields without additional product recovery steps were obtained using the after distillation separation sequence.

  5. Study on effect of microparticle's size on cavitation erosion in solid-liquid system

    NASA Astrophysics Data System (ADS)

    Chen, Haosheng; Liu, Shihan; Wang, Jiadao; Chen, Darong

    2007-05-01

    Five different solutions containing microparticles in different sizes were tested in a vibration cavitation erosion experiment. After the experiment, the number of erosion pits on sample surfaces, free radicals HO• in solutions, and mass loss all show that the cavitation erosion strength is strongly related to the particle size, and 500nm particles cause more severe cavitation erosion than other smaller or larger particles do. A model is presented to explain such result considering both nucleation and bubble-particle collision effects. Particle of a proper size will increase the number of heterogeneous nucleation and at the same time reduce the number of bubble-particle combinations, which results in more free bubbles in the solution to generate stronger cavitation erosion.

  6. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1997-09-01

    The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translation diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei ({sup 14}N and {sup 15}N) in solution. Our results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 x 10{sup -3} M. Typical values measured for the diffusion coefficient of the ammonium ion are 2 x 10{sup -5} cm{sup 2/s} ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonium is less sensitive to the solution pH, extending the measurement range to pH of 9.5. Diffusion measurements were conducted with solutions of varying viscosity and porosity. The results show that the solution viscosity has a measureable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 mm PMMA resulted in a reduction of {approximately}30% in the diffusion coefficient as a result of hindered diffusion.

  7. Solids-liquid separation of swine manure with polymer treatment and sand filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small particles typical of liquid swine manure often clog sand filter beds and fine filters. We evaluated the effectiveness of polymer flocculants to improve drainage and filtration performance of sand filter beds by increasing the effective particle size. A pilot unit was evaluated at the Swine U...

  8. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  9. Teaching Sustainable Development Concepts in the Laboratory: A Solid-Liquid Extraction Experiment

    ERIC Educational Resources Information Center

    Parajo, Juan Carlos; Dominguez, Herminia; Santos, Valentin; Alonso, Jose Luis; Garrote, Gil

    2008-01-01

    One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. For example, phenol and phenol derivatives currently used in the manufacture of wood adhesives can be replaced (at least in part) by biopolymers extracted from biomass. In this work, pine bark (a renewable…

  10. Chain relaxation dynamics of DNA adsorbing at a solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Willem; de Feyter, Steven

    2013-02-01

    We have used scanning force microscopy (SFM) to elucidate the dynamic behavior of open (torsionally unconstrained) circular and long linear DNA molecules during the relaxation process following adsorption onto mica. We find that bending stress and excluded volume effects drive the conformational equilibration via segmental out-of-plane dynamics.We have used scanning force microscopy (SFM) to elucidate the dynamic behavior of open (torsionally unconstrained) circular and long linear DNA molecules during the relaxation process following adsorption onto mica. We find that bending stress and excluded volume effects drive the conformational equilibration via segmental out-of-plane dynamics. Electronic supplementary information (ESI) available: Intra-molecular chain crossings after kinetic trapping and surface equilibration; out-of-plane dynamics of small equilibrated DNA circles; evaluation of tip-sample forces. See DOI: 10.1039/c3nr34231j

  11. Parallel gastric emptying of nonhydrolyzable fat and water after a solid-liquid meal in humans

    SciTech Connect

    Cortot, A.; Phillips, S.F.; Malagelada, J.R.

    1982-05-01

    Our aim was to examine the control of gastric emptying of the oil phase of a mixed solid and liquid meal. Previous studies had shown that liquid dietary fats normally leave the stomach at a slower rate than does water. We wished to determine whether the slower emptying of fats was due to the physical characteristics of food (lower density and greater viscosity than water), to retardation by duodenal feedback mechanisms, or whether both factors contributed. Thus, we quantified the emptying rates of water and sucrose polyester (a nonabsorbable analog of dietary fat) ingested by healthy volunteers as a mixed solid and liquid meal. Gastric emptying was quantified by an intubation-perfusion method incorporating an occlusive jejunal balloon to facilitate recovery. Four phase-specific, nonabsorbable markers were used. (14C(Sucrose octaoleate and polyethylene glycol were incorporated in the meal and traced the lipid and water phases, respectively; (3H)glycerol triether and phenolsulfonphthalein were used as duodenal recovery markers. Sucrose polyester (substituting for dietary fat) was emptied very rapidly, and at about the same rate as was water, in contrast to natural fat, which empties very slowly. Emptying of water was rapid and comparable to that observed after mixed meals containing natural fat. These results imply that gastric emptying of the oil phase is controlled by receptors sensitive to the hydrolytic products of fat digestion and that the slow emptying of dietary fat is not simply due to its lower density.

  12. Solid-liquid mass transfer at gas sparged fixed bed of Rasching rings

    SciTech Connect

    Noseir, S.A.; El-Kayar, A.; Sedahmed, G.H.; Farag, H.A.

    1997-09-01

    Gas sparging is gaining increased importance as a tool for enhancing the rate of liquid-solid mass transfer in industrial reactors. The effect of nitrogen sparging on the rate of liquid-solid mass transfer at fixed beds of Rasching rings was studied by measuring the rate of diffusion-controlled dissolution of a bed or copper Rasching rings in acidified chromate solutions. Variables studied were: ring diameter, nitrogen superficial velocity and physical properties of the solution. The mass transfer data were correlated by the equation, J = 0.04 (Fr.Re){sup {minus}0.15} (d{sub r}/d){sup {minus}0.516}.

  13. Perturbation theory of solid-liquid interfacial free energies of bcc metals

    SciTech Connect

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2012-01-18

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two subwavelength slits, separated by two wavelengths.The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young’s experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  14. Physical Characterization of Solid-Liquid Slurries at High Weight Fractions Using Optical and Ultrasonic Methods

    SciTech Connect

    Burgess, L.W.; Brodsky, A.M.; Panetta P.D.

    2005-12-22

    Remediation of highly radioactive waste is a major technical and programmatic challenge for the DOE. Rapid, on-line physical characterization of highly concentrated slurries is required for the safe and efficient remediation of 90 million gallons of high level radioactive waste (HLW), sodium bearing waste, and mixed waste. The research presented here, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to directly address the need for rapid on-line characterization of the physical properties of HLW slurries during all phases of the remediation process, from in-tank characterization of sediments to monitoring of the concentration, particle size, and degree of agglomeration and gelation of slurries during transport. Near-surface characterization of the slurry flow in the particle size range from nanometer to micrometer is examined using optical low coherence reflectometry. Volumetric characterization at depths in the slurry flow, up to several centimeters in the particle size range from the micrometer to millimeter, is realized by utilizing ultrasonic backscatter and diffuses fields. One of the strengths, the teaming up of significant talents in both experimental and theoretical optics and in ultrasonics, provides a synergistic approach to integrate these complimentary techniques. One of the benefits of this combined approach is the physical characterization of HLW over a concentration and particle size range that is broader than can be achieved with today's technology. This will avoid a costly increase in waste stream volume due to excess dilution, and will lessen chance of plugging pipes that could shut down expensive processing lines.

  15. Adsorption of enzymes at the solid-liquid interface. I. Trypsin on polystyrene latex.

    PubMed

    Lewis, D; Whateley, T L

    1988-01-01

    The enzyme, trypsin, has been used to study conformational changes which occur when protein adsorption onto well-characterized, emulsifier-free, polystyrene latex surface takes place. The adsorption isotherm is of the high affinity, Langmuirian type with plateau adsorption of trypsin of 2.8 mg m-2. The enzymic activity of adsorbed trypsin to low molecular weight substrate is found to decrease as the surface coverage decreases indicating that 'spreading' or unfolding of the native protein conformation, with consequent loss of enzymic activity, occurs. On the close packed surface such 'spreading' is inhibited by steric factors. The view that protein adsorption onto hydrophobic surfaces is dominated by the entropy gain due to protein unfolding to maximize hydrophobic interactions is thus supported. PMID:3349124

  16. The influence of the solid/liquid interface on the dewetting of ultra thin polymer films

    NASA Astrophysics Data System (ADS)

    Lessel, Matthias; Klos, Mischa; Baeumchen, Oliver; Jacobs, Karin

    2012-02-01

    In recent years, many studies showed that a thin liquid film on a solid surface in air bears more complexity than expected from a simple three-layer-system: e.g. a highly mobile surface layer in case the liquid is an unentangled polystyrene (PS) melt (Yang et al., Science 2010; Seemann et al., J. of Polym. Sci. 2006) or the PS melt can slip over the solid substrate (Baeumchen et al., PRL 2009). Our study focuses on such phenomena and explores their influence on dewetting (speed, morphology, etc.). We use hydrophilic and -phobic Si wafer (either covered by a highly ordered silane layer or by a thin layer of an amorphous fluoropolymer, AF 1600). On each of the substrates, one expects for a certain set of parameters spinodal dewetting for the PS melt. Yet experimentally, a much higher hole density is observed for both types of hydrophobic wafers than is theoretically expected. Moreover, the two hydrophobic coatings induce different dewetting speeds: the PS melt dewets faster on the silane covered Si wafer. The difference is attributed to slip (silane) or to no slip (AF 1600) conditions at the PS/substrate interface, which is also observable in the type of liquid front profile, which in turn changes the dewetting morphology.

  17. Use of sol-gel systems for solid/liquid separation.

    SciTech Connect

    Chaiko, D. J.; Kopasz, J. P.; Elison, A. J. G.; Chemical Engineering

    1998-01-01

    A unique approach using sol-gel technology is presented for separating and recovering particulates and colloids from caustic waste slurries. The approach involves the addition of an alkali silicate and an organic gelling agent directly to the waste stream to immobilize particulates that range from macro sizes to submicron colloids. The particulates and colloids become trapped within a silica network that remains porous during the early stages of the sol-gel process. The freshly gelled monolith undergoes a process of syneresis, whereby the water and soluble salts are ejected from the monolith as it contracts. The approach has been illustrated by removal of ultrafine particulates from a Hanford Tank Waste simulant. Initial laboratory tests have shown that it is possible to produce silica monoliths in the presence of 4 M hydroxide. Analysis of the mother liquor produced during syneresis indicated quantitative recovery of the particulates within the monolith. The partitioning of ions between the silica gel and the mother liquor during syneresis correlates directly with the lyotropic series. Salt recoveries from the mother liquor in excess of 90% can be achieved. With a capability of recovering >99.999% of all particulates, including colloids, the process is more efficient than membrane filtration. This approach produces a rock-hard silica monolith that can be used directly as a feedstock to a glass melter or can be consolidated to near theoretical density by sintering.

  18. ADSORPTION OF SURFACTANTS AND POLYMERS AT THE SOLID-LIQUID INTERFACE. (R823301)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    SciTech Connect

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-02

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al{sub 2}O{sub 3} interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al{sub 2}O{sub 3} interfaces. Preferential oxygen segregation to the (0006) Al{sub 2}O{sub 3} plane was verified, and the (101{sup ¯}2) Al{sub 2}O{sub 3} plane was found to contain the lowest amount of segregated species.

  20. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-01

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al2O3 interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al2O3 interfaces. Preferential oxygen segregation to the (0006) Al2O3 plane was verified, and the ( 10 1 ¯ 2 ) Al2O3 plane was found to contain the lowest amount of segregated species.

  1. Molecular Structure and Equilibrium Forces of Bovine Submaxillary Mucin Adsorbed at a Solid-Liquid Interface.

    PubMed

    Zappone, Bruno; Patil, Navinkumar J; Madsen, Jan B; Pakkanen, Kirsi I; Lee, Seunghwan

    2015-04-21

    By combining dynamic light scattering, circular dichroism spectroscopy, atomic force microscopy, and surface force apparatus, the conformation of bovine submaxillary mucin in dilute solution and nanomechanical properties of mucin layers adsorbed on mica have been investigated. The samples were prepared by additional chromatographic purification of commercially available products. The mucin molecule was found to have a z-average hydrodynamic diameter of ca. 35 nm in phosphate buffered solution, without any particular secondary or tertiary structure. The contour length of the mucin is larger than, yet of the same order of magnitude as the diameter, indicating that the molecule can be modeled as a relatively rigid polymeric chain due to the large persistence length of the central glycosylated domain. Mucin molecules adsorbed abundantly onto mica from saline buffer, generating polymer-like, long-ranged, repulsive, and nonhysteretic forces upon compression of the adsorbed layers. Detailed analysis of such forces suggests that adsorbed mucins had an elongated conformation favored by the stiffness of the central domain. Acidification of aqueous media was chosen as means to reduce mucin-mucin and mucin-substrate electrostatic interactions. The hydrodynamic diameter in solution did not significantly change when the pH was lowered, showing that the large persistence length of the mucin molecule is due to steric hindrance between sugar chains, rather than electrostatic interactions. Remarkably, the force generated by an adsorbed layer with a fixed surface coverage also remained unaltered upon acidification. This observation can be linked to the surface-protective, pH-resistant role of bovine submaxillary mucin in the variable environmental conditions of the oral cavity. PMID:25806669

  2. Hydrothermodynamic consideration on the steady-state motion of a solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Mori, Atsushi

    1999-05-01

    We study a solid and a liquid coexisting at a plane interface in the nonequilibrium steady-state (NESS) condition on a hydrothermodynamic level. Both solid and liquid are treated as continuums. From the equations of mass-, momentum-, and energy-conservation we obtain relations for the velocity of the interface, the net mass-flow velocity, and thermodynamic variables such as temperature, pressure, and density. The second law of thermodynamics gives a criterion for the possibility of the NESS processes. It is shown that the NESS interface motion without extraction or addition of latent heat of fusion is possible.

  3. Thermal modeling with solid/liquid phase change of the thermal energy storage experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    1991-01-01

    A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.

  4. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  5. A Laboratory Experiment for Measuring Solid-Liquid Mass Transfer Parameters

    ERIC Educational Resources Information Center

    Dapia, Sonia; Vila, Carlos; Dominguez, Herminia; Parajo, Juan Carlos

    2004-01-01

    The lab experiment described starts from the principles developed by Sensel and Myers, but the experimental procedure are modified to provide a more reliable experiment assessment. The mass transfer equation is solved and all the involved parameters are calculated by a simple, numerical method.

  6. Potential of solid-liquid separation of swine wastes for methane production

    SciTech Connect

    Holmberg, R.D.; Hill, D.T.; Prince, T.J.; Van Dyke, N.J.

    1983-01-01

    The feasibility of using a vibrating screen separator to concentrate flushed swine waste for use in an anaerobic digestor system is evaluated on the basis of the properties of the solid separator Four flowrates (37.5, 75, 112.5, and 150 L/min) and five screen mesh sizes (8,18, 30, 60, and 150) were combined for trial runs on a 45.7 cum diameter Sweco vibrating separator. The waste was obtained from a finishing house flushing waste disposal system. Analysis of the flushed waste, and the liquid and solid separate included total solids (TS), volatile solids (VS), fixed solids (FS), total carbon (TC), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN-N), ammonia (NH3-N), total (TP-P) and orthophosphate (OP-P). Mass balances calculated from the results of the different combinations of flowrate and screen size in the continuous flow system showed that the total amount of organic material (measured as volatile solids) retained on the screens varied from 17 to 70%, TKN-N varied from 2.5 to 50%, NH3-N from 3 to 47%, and ortho-phosphate from 9 to 57% with increasing screen mesh and flowrate. (Refs. 11).

  7. Toxicity testing of marine, terrestrial, solid, liquid, clear, and turbid samples

    SciTech Connect

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L.

    1994-12-31

    A novel, patented toxicity testing procedure that compares the light generated by the naturally bioluminescent marine dinoflagellate alga, Pyrocystis lunula, in the presence of toxins, to light from a non-toxic control, is sensitive in parts per billion to all substances considered toxic to which it has been subjected: chemical warfare agents, metals, detergents, pesticides, herbicides, anticancer drugs, oil-well drilling fluids and produced waters, marine antifouling paints, and others. Preparation and testing time is less than eight hours. Variability is 10% or less. Solids and turbid or darkly colored samples can be tested without correction. Small sample substrates (10 to 50{mu}l) in the buffered 3ml test medium do not significantly affect pH or salinity, which permits testing of marine or terrestrial samples without special preparation. Also, the organism is insensitive to selected solvents for lipophyllic test substances. EC{sub 50} of sodium lauryl (dodecyl) sulphate is 3.7 ppm, and correlation with the Mysid LC{sub 50} EPA 30,000 ppm toxicity limit is 63% light inhibition.

  8. Surface induced ordering of micelles at the solid-liquid interface

    SciTech Connect

    Gerstenberg, M.C.; Pedersen, J.S.

    1998-12-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface. The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. {copyright} {ital 1998} {ital The American Physical Society}

  9. Supramolecular staircase via self-assembly of disklike molecules at the solid-liquid interface.

    PubMed

    Samorí, P; Fechtenkötter, A; Jäckel, F; Böhme, T; Müllen, K; Rabe, J P

    2001-11-21

    A series of soluble hexabenzocoronene (HBC) derivatives with pendant optically active (S)-3,7-dimethyloctanyl and (R,S)-3,7-dimethyloctanyl (mixture of stereoisomers) hydrocarbon side chains with and without a phenylene spacer were assembled into differently ordered arrays at the interface between a solution and the basal plane of highly oriented pyrolytic graphite (HOPG). Molecularly resolved scanning tunneling microscopy (STM) images revealed that all derivatives self-assemble into oriented crystals in quasi-two dimensions. However, while for the alkyl-substituted HBCs (1,4) all of the single aromatic cores within a monolayer exhibit the same contrast in the STM, the single aromatic cores with a phenylene group between the alkyl side chains and the aromatic core (2a,2b,3) exhibit different contrasts within a monolayer. For the disks carrying racemic branched or n-alkyl side chains (2b,3) a random distribution of the two different contrasts within the 2D-crystal is observed, while the optically active phenylene-alkyl-substituted HBC (2a) exhibits a periodical distribution of three contrasts within the monolayer. We attribute the different contrasts of the aromatic cores in the presence of the phenylene groups to a loss of the planarity of the whole molecule and different conformations, which allow the conjugated disks to attain different equilibrium positions above the surface of HOPG. In the case of the optically active side chains a regular superstructure with three distinctly different positions such as in a staircase is attained. The self-assembly processes are governed by the interplay of intramolecular as well as intermolecular and interfacial interactions. In the present case, the interactions may induce both the molecules to acquire well distinct positions along the z axis and to adopt different conformations. The reported results open new avenues of exploration. For instance, the different couplings of conjugated molecules with the substrate at different separations can be investigated by means of scanning tunneling spectroscopy (STS). Furthermore, experiments on the STM tip-induced switching of single molecules embedded in a monolayer appear feasible. PMID:11707124

  10. Thermodynamic and rheological properties of solid-liquid systems in coal processing

    SciTech Connect

    Kabadi, V.N.; Mohandas, P.; Wang, Jinsong

    1994-08-01

    The paper outlines background objectives, experimental methods and results for two studies: A group contribution method for the prediction of viscosity of coal-derived liquids, and Equation of state at high pressures for liquid aromatic compounds. Criteria for the new model, low pressure viscosity data set, new viscosity model for pure liquid aromatics, illustration of viscosity calculation using the model, and extension of the model to mixtures are discussed in the first study. Contents of the second study are: high pressure equation of state; new vapor pressure equation; and new correlation for saturated liquid densities.

  11. Elastic Variations of Paraffin Wax during Solid-Liquid Phase Transition

    NASA Astrophysics Data System (ADS)

    Kamioka, Hiroaki

    1995-05-01

    The shear wave velocity and the attenuation of ultrasonic waves in paraffin wax, which is a mixture of many paraffin hydrocarbons, were measured at 1 MHz using the pulse transmission method in the temperature range from 10 to 80° C exceeding the melting temperature of 44-46° C. By combining the present experimental data with our previous data on compressional wave velocity, the elastic properties of paraffin wax during melting and solidification were derived. Markedly high adiabatic compressibility during melting and solidification was obtained in the melting temperature region.

  12. Quartz Crystal Microbalance Studies of Multilayer Glucagon Fibrillation at the Solid-Liquid Interface

    PubMed Central

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-01-01

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro. PMID:17513349

  13. Simulation of microsegregation and the solid/liquid interface progression in the concentric solidification technique

    NASA Astrophysics Data System (ADS)

    Aminorroaya, Sima; Reid, Mark; Dippenaar, Rian

    2011-03-01

    A concentric solidification technique was employed to simulate experimentally the segregation of alloying elements during solidification at the centerline of continuously cast steel. Microstructural development of low carbon steel upon solidification has been observed in situ in a laser-scanning confocal microscope. Microscopic analyses following in situ observations, demonstrate that segregation occurring at steel slabs can reasonably be simulated by the use of the concentric solidification technique. The validity of these experimental simulations has been correlated with mathematical analyses using the Thermo-Calc and DICTRA (Diffusion Controlled Transformation) modeling tools. The effect of cooling rate on the sequence of events during solidification of Fe-0.18%C and Fe-4.2 wt%Ni peritectic alloys was studied and compared with the experimental observations.

  14. Simultaneous microwave-assisted solid-liquid extraction of polar and nonpolar compounds from alperujo.

    PubMed

    Pérez-Serradilla, J A; Japón-Luján, R; Luque de Castro, M D

    2007-10-17

    Microwave-assisted extraction (MAE) has been used for the simultaneous isolation of polar and nonpolar compounds from alperujo using methanol-water and n-hexane as extractant system. Multivariate methodology has been used to establish the optimum extraction conditions. The target fractions (phenol compounds and fatty acids) were quantitatively extracted within 14 min. Following leaching and separation of the two phases by centrifugation, the polar and nonpolar fractions were analysed by HPLC-MS-MS and GC-MS, respectively. The proposed method was compared with the reference method for the isolation of each fraction (Folch method and stirring-based method for fatty acids and biophenols extraction, respectively) in terms of efficiency and extract composition. The paramount importance of both fractions, the simplicity of the MAE approach and the low costs of the raw material make advisable the implementation of the proposed method at an industrial scale. PMID:17936110

  15. SESAME 96170, a solid-liquid equation of state for CeO2

    SciTech Connect

    Chisolm, Eric D.

    2014-05-02

    I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO2. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

  16. Correction for radon distribution in solid/liquid and air phases in gamma-ray spectrometry.

    PubMed

    Carconi, P; Cardellini, F; Cozzella, M L; De Felice, P; Fazio, A

    2012-09-01

    The effect of radon diffusion and distribution between a (226)Ra matrix and the top air gap inside sample containers for gamma-ray spectrometry was studied. Containers filled at almost 100% or just 70% of total capacity yielded correction factors of about 7% and 20% respectively. Applying these correction factors allowed activity values calculated from (226)Ra or radon decay products to agree within 2%. PMID:22476014

  17. Using Peltier cells to study solid liquid vapour transitions and supercooling

    NASA Astrophysics Data System (ADS)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-05-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid solid and liquid vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat.

  18. Solid-liquid separation of dairy manure with PAM and chitosan polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic polymers are useful to increase separation of suspended solids and carbon compounds from liquid swine manure, but experiences with dairy manure are limited. In this experiment, two polymers, a synthetic polyacrylamide (PAM) and a natural chitosan were used to increase separation of suspended...

  19. Teaching Sustainable Development Concepts in the Laboratory: A Solid-Liquid Extraction Experiment

    ERIC Educational Resources Information Center

    Parajo, Juan Carlos; Dominguez, Herminia; Santos, Valentin; Alonso, Jose Luis; Garrote, Gil

    2008-01-01

    One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. For example, phenol and phenol derivatives currently used in the manufacture of wood adhesives can be replaced (at least in part) by biopolymers extracted from biomass. In this work, pine bark (a renewable…

  20. Solid-liquid interfaces of ionic liquid solutions—Interfacial layering and bulk correlations

    NASA Astrophysics Data System (ADS)

    Mezger, Markus; Roth, Roland; Schröder, Heiko; Reichert, Peter; Pontoni, Diego; Reichert, Harald

    2015-04-01

    The influence of the polar, aprotic solvent propylene carbonate on the interfacial structure of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate on sapphire was investigated by high-energy x-ray reflectivity. Experiments at solvent concentrations between 17 mol. % and 83 mol. % bridge the gap between diluted electrolytes described by the classical Gouy-Chapman theory and pure ionic liquids. Analysis of our experimental data revealed interfacial profiles comprised of alternating anion and cation enriched regions decaying gradually into the bulk liquid. With increasing solvent concentration, we observed a decrease in correlation length of the interfacial layering structure. At high ion concentrations, solvent molecules were found to accumulate laterally within the layers. By separating like-charged ions, they reduce their Coulomb repulsion. The results are compared with the bulk structure of IL/solvent blends probed by x-ray scattering and predictions from fundamental fluid theory.

  1. Solid-liquid interfaces of ionic liquid solutions--Interfacial layering and bulk correlations.

    PubMed

    Mezger, Markus; Roth, Roland; Schröder, Heiko; Reichert, Peter; Pontoni, Diego; Reichert, Harald

    2015-04-28

    The influence of the polar, aprotic solvent propylene carbonate on the interfacial structure of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate on sapphire was investigated by high-energy x-ray reflectivity. Experiments at solvent concentrations between 17 mol. % and 83 mol. % bridge the gap between diluted electrolytes described by the classical Gouy-Chapman theory and pure ionic liquids. Analysis of our experimental data revealed interfacial profiles comprised of alternating anion and cation enriched regions decaying gradually into the bulk liquid. With increasing solvent concentration, we observed a decrease in correlation length of the interfacial layering structure. At high ion concentrations, solvent molecules were found to accumulate laterally within the layers. By separating like-charged ions, they reduce their Coulomb repulsion. The results are compared with the bulk structure of IL/solvent blends probed by x-ray scattering and predictions from fundamental fluid theory. PMID:25933784

  2. Theory of Brushes Formed by ?-Shaped Macromolecules at Solid-Liquid Interfaces.

    PubMed

    Zhulina, Ekaterina B; Leermakers, Frans A M; Borisov, Oleg V

    2015-06-16

    We present a theoretical analysis targeted to describe the structural properties of brushes formed by ?-shaped macromolecules tethered by terminal segment of stem to planar surface while exposing multiple free branches to the surrounding solution. We use an analytical self-consistent field approach based on the strong stretching approximation, and the assumption of Gaussian elasticity for linear chain fragments of the tethered macromolecules. The effect of weak and strong polydispersity of branches is analyzed. In the case of weakly polydisperse macromolecules, variations in length of branches lead to a more uniform polymer density distribution with slight increase in the brush thickness compared to the case of monodisperse chains with the same degree of polymerization. We demonstrate that in contrast to linear chains, strong polydispersity of ?-shaped macromolecules does not necessarily lead to strong perturbations in polymer density distribution. In particular, mixed brushes of the so-called "mirror" dendrons (in which number of stem monomers in one component coincides with number of monomers in a branch of the other component, and vice versa) give rise to a unified polymer density distribution with shape independent of the brush composition. The predictions of analytical theory are systematically compared to the results of numerical self-consistent field modeling based on the Scheutjens-Fleer approach. PMID:26029884

  3. Water-induced correlation between single ions imaged at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Ricci, Maria; Spijker, Peter; Voïtchovsky, Kislon

    2014-07-01

    When immersed into water, most solids develop a surface charge, which is neutralized by an accumulation of dissolved counterions at the interface. Although the density distribution of counterions perpendicular to the interface obeys well-established theories, little is known about counterions’ lateral organization at the surface of the solid. Here we show, by using atomic force microscopy and computer simulations, that single hydrated metal ions can spontaneously form ordered structures at the surface of homogeneous solids in aqueous solutions. The structures are laterally stabilized only by water molecules with no need for specific interactions between the surface and the ions. The mechanism, studied here for several systems, is controlled by the hydration landscape of both the surface and the adsorbed ions. The existence of discrete ion domains could play an important role in interfacial phenomena such as charge transfer, crystal growth, nanoscale self-assembly and colloidal stability.

  4. Effect of thermosolutal convection on the solid-liquid interface in Pb-Au alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Chopra, M. A.

    1990-01-01

    Liquid-solid interface distortion in the region of primary dendrite tips has been investigated in directionally solidified Pb-8 wt pct Au alloy. The distortions are caused by thermosolutal convection despite choice of growth conditions which should have been thermally and solutally stabilizing. The convection produces clustering of primary dendrites on a plane perpendicular to the growth direction. It produces a mushy zone, where the primary dendrites do not protrude with a uniform length, across the specimen cross section, resulting in large macrosegregation in the transverse direction. However, little macrosegregation is observed along the growth direction. The mushy zone, with uneven dendrite lengths, forms in the beginning of directional solidification. Its shape and dendrite distribution do not show much change during subsequent solidification. Tip morphologies of primary dendrites, within the dendrite clusters, appear to follow the morphological stability relationship.

  5. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries. Revision 1

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1998-01-01

    The flammability and toxicity of ammonia released from the nuclear waste tanks at Hanford have been the subject of several recent studies. These releases may occur episodically, such as the buoyant plume releases occurring in various double-shell tanks (DSTs); gradually through the surface of the waste; or from the partially saturated saltcakes in the single-shell tanks during salt-well pumping. The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translational diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei in solution. Results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 {times} 10{sup {minus}3} {und M}. Typical values measured for the diffusion coefficient of the ammonium ion are 2 {times} 10{sup {minus}5} cm{sup 2}/s ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonia is less sensitive to the solution pH, extending the measurement range to pH of 9.5. The results show that the solution viscosity has a measurable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 {micro}m PMMA resulted in a reduction of {approximately} 30% in the diffusion coefficient as a result of hindered diffusion.

  6. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  7. Melting Temperature of Ice Ih calculated from coexisting solid-liquid phases

    SciTech Connect

    Wang, J.; Yoo, S.; Bai, J.; Morris, James R; Zeng, X.C.

    2005-01-01

    In a previous paper we report the calculated melting temperature of the proton-disordered hexagonal ice I{sub h} using a four-site water model, the TIP4P (Ref. 2) and a five-site model, the TIP5P. In that work, we used a free-energy method. For the TIP4P model, the calculated melting temperature at 1 bar is T{sub m} = 229 {+-} 9 K, whereas for the TIP5P model, T{sub m} = 268 {+-} 6 K. For both models, the long-ranged interactions were truncated at 17 {angstrom}. Interestingly, these values of Tm are very close to T{sub m} = 232 {+-} 5 K and T{sub m} = 273.9 K reported by Sanz et al. and Vega et al. who used a slightly different free-energy method along with Ewald summation technique, although both the TIP4P and TIP5P models were originally developed for use with a truncated Coulomb interaction. The purpose of this paper is twofold: (1) to compute the melting temperature (T{sub m}) of ice I{sub h} with both TIP4P and TIP5P models by using the two-phase coexistence method and to compare with previously obtained T{sub m}; (2) to compute the T{sub m} using recently improved TIP4P and TIP5P models, namely, the TIP4P-Ew (Ref. 6) and TIP5P-Ew (Ref. 7) models. Both models are developed specifically for use with Ewald techniques. The TIP4P-Ew model, in particular, has shown substantial improvement over the original TIP4P model as it can reproduce the density maximum at about 274 K, very close to 277 K of the real water. The original TIP5P model can reproduce the measured T{sub m}. It will be of interest to see whether the improved TIP5P-Ew model can still hold the same level of prediction as far as the T{sub m} is concerned.

  8. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Nguyen, Nhat Thien; Li, Chi-Wang

    2015-01-01

    Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO4(3-)-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application. PMID:26465299

  9. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    PubMed

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-01

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices. PMID:25871732

  10. Developments to a landfill processes model following its application to two landfill modelling challenges.

    PubMed

    White, J K; Beaven, R P

    2013-10-01

    The landfill model LDAT simulates the transport and bio-chemical behaviour of the solid, liquid and gas phases of waste contained in a landfill. LDAT was applied to the LMC1 and LMC2 landfill modelling challenges held in 2009 and 2011. These were blind modelling challenges with the model acting in a predictive mode based on limited early time sections of full datasets. The LMC1 challenge dataset was from a 0.34m deep 0.48m diameter laboratory test cell, and the LMC2 dataset was from a 55m×80m 8m deep landfill test cell which formed part of the Dutch sustainable landfill research programme at Landgraaf in the Netherlands. The paper describes developments in LDAT arising directly from the experience of responding to the two challenges, and discusses the model input and output data obtained from a calibration using the full datasets. The developments include the modularisation of the model into a set of linked sub-models, the strategy for converting conventional waste characteristics into model input parameters, the identification of flexible degradation pathways to control the CO2:CH4 ratio, and the application of a chemical equilibrium model that includes a stage in which the solid waste components dissolve into the leachate. PMID:23318154

  11. Sarar technology for the application of Copper-64 in biology and materials science.

    PubMed

    Smith, S V

    2008-06-01

    This review provides an overview of the synthesis and metal complexation chemistry of the nitrogen and sulphur donor bicyclic ligands or cages, and the key criteria that led to the design of sarar for the application for (64)Cu(II). Aspects of the high yielding synthesis of sarar and strategies for its conjugation to a range of antibodies for targeting colorectal cancer, neuroblastoma and melanoma are described. Free and conjugated to proteins sarar can complex (64)Cu(II) rapidly at room temperature and quantitatively; the latter leading to products of high specific activity and purity. The full occupation of the (64)Cu(II) ions 6 coordination sites by the sarar cage prevents the ready exchange of the (64)Cu(II) from the cage and is the rational for the extraordinary thermodynamic and kinetic stability of (64)Cu(II) labelled sarar and its conjugates. It's in vivo stability is further highlighted by the low uptake and retention of (64)Cu-sarar-conjugated antibodies in the liver. Finally, the prospects for the use of the sarar technology in the materials science arena for probing solid liquid interfaces, in particular, the quantification of functional groups on microspheres and in the engineering of novel materials are discussed. PMID:18174877

  12. Admission Requirements to Canadian Faculties of Medicine and Their Selection Policies = Conditions d'Admission aux Facultes de Medecine Canadiennes et Leurs Politiques de Selection.

    ERIC Educational Resources Information Center

    Association of Canadian Medical Colleges, Ottawa (Ontario).

    Information is presented to help applicants to Canadian medical colleges realistically assess their chances for gaining admission. The guide is also intended for career counselors in high schools and higher education. One section provides statistics on the following characteristics that are associated with being selected: sex, age, Medical College…

  13. Extension of the broadband single-mode integrated optical waveguide technique to the ultraviolet spectral region and its applications.

    PubMed

    Wiederkehr, Rodrigo S; Mendes, Sergio B

    2014-03-21

    We report here the fabrication, characterization, and application of a single-mode integrated optical waveguide (IOW) spectrometer capable of acquiring optical absorbance spectra of surface-immobilized molecules in the visible and ultraviolet spectral region down to 315 nm. The UV-extension of the single-mode IOW technique to shorter wavelengths was made possible by our development of a low-loss single-mode dielectric waveguide in the UV region based on an alumina film grown by atomic layer deposition (ALD) over a high quality fused silica substrate, and by our design/fabrication of a broadband waveguide coupler formed by an integrated diffraction grating combined with a highly anamorphic optical beam of large numerical aperture. As an application of the developed technology, we report here the surface adsorption process of bacteriochlorophyll a on different interfaces using its Soret absorption band centred at 370 nm. The effects of different chemical compositions at the solid-liquid interface on the adsorption and spectral properties of bacteriochlorophyll a were determined from the polarized UV-Vis IOW spectra acquired with the developed instrumentation. The spectral extension of the single-mode IOW technique into the ultraviolet region is an important advance as it enables extremely sensitive studies in key characteristics of surface molecular processes (e.g., protein unfolding and solvation of aromatic amino-acid groups under surface binding) whose spectral features are mainly located at wavelengths below the visible spectrum. PMID:24466569

  14. Séroprévalence et facteurs associés au VIH et aux hépatites virales B et C dans la ville de Bafoussam au Cameroun

    PubMed Central

    Mbopi-Keou, Francois-Xavier; Nkala, Isabelle Vanessa Monthe; Kalla, Ginette Claude Mireille; Nguefack-Tsague, Georges; Kamga, Hortense Gonsu; Noubom, Michel; Mvogo, Côme Ebana; Sosso, Maurice Aurelien

    2015-01-01

    Introduction L'objectif de ce travail était de déterminer la séroprévalence et les facteurs associés au VIH et aux hépatites virales B et C dans la ville de Bafoussam au Cameroun. Méthodes Il s'agissait d'une étude descriptive et analytique réalisée de février 2012 à Juin 2012 dans la ville de Bafoussam au Cameroun. Pour cette étude, nous avons obtenu une clairance éthique. Résultats Au total, 982 personnes ont été dépistées pour le VIH et les hépatites virales B et C. Les femmes représentaient 56,3% des personnes dépistées. La tranche d’âge la plus représentée était celle des 20 à 24 ans. L’âge médian était de 34,5 ans. Les prévalences du VIH, de l'AgHBs, et de l'Ac anti HCV étaient respectivement de 6,0%, 4,1%, et 0,4%. La prévalence du VIH était 2 fois plus élevée parmi les femmes que les hommes avec 8,1% contre 3,5% (p=0,01). Les prévalences les plus élevées ont été observées chez les personnes de 30 à 34 ans, 40 à 44 ans avec 15,0% et 11,5% (p=0,01), les personnes sans emploi avec 11,1% (p<0,001) et les personnes en union libre avec 17,9% (p=0,000). La prévalence du VIH n’était pas directement liée aux comportements et pratiques sexuels de la population de l’étude. On enregistrait une prévalence élevée de 29,3% chez les individus ayant déclaré avoir au moins une infection sexuellement transmissible (p=0,000). Conclusion Il apparait urgent de mettre en place des stratégies de prévention contre le VIH, les hépatites virales et les facteurs associés au Cameroun. PMID:26113899

  15. X-Rays Compton Detectors For Biomedical Application

    NASA Astrophysics Data System (ADS)

    Rossi, Paolo; Baldazzi, Giuseppe; Battistella, Andrea; Bello, Michele; Bollini, Dante; Bonvicini, Valter; Fontana, Cristiano Lino; Gennaro, Gisella; Moschini, Giuliano; Navarria, Francesco; Rashevsky, Alexander; Uzunov, Nikolay; Zampa, Gianluigi; Zampa, Nicola; Vacchi, Andrea

    2011-06-01

    Collimators are usually needed to image sources emitting X-rays that cannot be focused. Alternately, one may employ a Compton Camera (CC) and measure the direction of the incident X-ray by letting it interact with a thin solid, liquid or gaseous material (Tracker) and determine the scattering angle. With respect to collimated cameras, CCs allow higher gamma-ray efficiency in spite of lighter geometry, and may feature comparable spatial resolution. CCs are better when the X-ray energy is high and small setups are required. We review current applications of CCs to Gamma Ray Astronomy and Biomedical systems stressing advantages and drawbacks. As an example, we focus on a particular CC we are developing, which is designed to image small animals administered with marked pharmaceuticals, and assess the bio-distribution and targeting capability of these latter. This camera has to address some requirements: relatively high activity of the imaged objects; detection of gamma-rays of different energies that may range from 140 keV (Tc99m) to 511 keV; presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Silicon Drift Detector as Tracker, and a further downstream position-sensitive system employing scintillating crystals and a multi-anode photo-multiplier (Calorimeter). The choice of crystal, pixel size, and detector geometry has been driven by measurements and simulations with the tracking code GEANT4. Spatial resolution, efficiency and scope are discussed.

  16. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals

    USGS Publications Warehouse

    Rosasco, G.J.; Roedder, E.

    1979-01-01

    Rosasco et al. (1975), reported the first successful application of laser-excited Raman spectroscopy for the identification and nondestructive partial analysis of individual solid, liquid, and gaseous phases in selected fluid inclusions. We report here the results of the application of a new instrument, based on back-scattering, that eliminates many of the previous stringent sample limitations and hence greatly expands the range of applicability of Raman spectroscopy to fluid inclusions. Fluid inclusions in many porphyry copper deposits contain 5-10 ??m 'daughter' crystals thought to be anhydrite but too small for identification by the previous Raman technique. Using the new instrument, we have verified that such daughter crystals in quartz from Bingham, Utah, are anhydrite. They may form by leakage of hydrogen causing internal autooxidation of sulfide ion. Daughter crystals were also examined in apatite (Durango, Mexico) and emerald (Muzo, Colombia). Valid analyses of sulfur species in solution in small fluid inclusions from ore deposits would be valuable, but are generally impossible by conventional methods. We present a calibration procedure for analyses for SO42- in such inclusions from Bingham, Utah (12,000 ?? 4000 ppm) and Creede, Colo. (probably < 500 ppm). A fetid Brazilian quartz, originally thought to contain liquid H2S, is shown to contain only HS- in major amounts. ?? 1979.

  17. Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles.

    PubMed

    Borel, T; Sabliov, C M

    2014-01-01

    Food bioactives are known to prevent aging, cancer, and other diseases for an overall improved health of the consumer. Nanodelivery provides a means to control stability, solubility, and bioavailability, and also provides controlled release of food bioactives. There are two main types of nanodelivery systems, liquid and solid. Liquid nanodelivery systems include nanoemulsions, nanoliposomes, and nanopolymersomes. Solid nanodelivery systems include nanocrystals, lipid nanoparticles, and polymeric nanoparticles. Each type of nanodelivery system offers distinct benefits depending on the compatibility of nanoparticle properties with the properties of the bioactive and the desired application. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion (ADME) of nanodelivery systems. The fate of the bioactive depends on its physicochemical properties and the location of its release. The safety of nanodelivery systems for use in food applications is largely unknown. Toxicological studies consisting of a combination of in silico, in vitro, and in vivo studies are needed to reveal the safety of nanodelivery systems for successful applications in food and agriculture. PMID:24387603

  18. Radiation applications research and facilities in AECL research company

    NASA Astrophysics Data System (ADS)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described.

  19. Synthesis and applications of RNAs with position-selective labeling and mosaic composition

    PubMed Central

    Liu, Yu; Holmstrom, Erik; Zhang, Jinwei; Yu, Ping; Wang, Jinbu; Dyba, Marzena A.; Chen, De; Ying, Jinfa; Lockett, Stephen; Nesbitt, David J.; Ferré-D'Amaré, Adrian R.; Sousa, Rui; Stagno, Jason R.; Wang, Yun-Xing

    2015-01-01

    Knowledge of the structure and dynamics of RNA molecules is critical to understand their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be significantly enhanced by methods that enable incorporation of modified or labeled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. We have developed a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labeling. We demonstrate its utility by successfully preparing various isotope- or fluorescently-labeled versions of the 71-nucleotide aptamer domain of an adenine riboswitch1 for nuclear magnetic resonance (NMR) spectroscopy or single molecule Förster resonance-energy transfer (smFRET), respectively. Those RNAs include molecules that were selectively isotope-labeled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently-labeled in and near kissing loops. These selectively labeled RNAs have the same fold as those transcribed using conventional methods, but greatly simplified the interpretation of NMR spectra. The single-position isotope-labeled and fluorescently-labeled RNA samples revealed multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labeling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection2 and disease diagnostics3,4. PMID:25938715

  20. Synthesis and applications of RNAs with position-selective labelling and mosaic composition.

    PubMed

    Liu, Yu; Holmstrom, Erik; Zhang, Jinwei; Yu, Ping; Wang, Jinbu; Dyba, Marzena A; Chen, De; Ying, Jinfa; Lockett, Stephen; Nesbitt, David J; Ferré-D'Amaré, Adrian R; Sousa, Rui; Stagno, Jason R; Wang, Yun-Xing

    2015-06-18

    Knowledge of the structure and dynamics of RNA molecules is critical to understanding their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be dramatically enhanced by methods that enable incorporation of modified or labelled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. Here we develop a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labelling. We demonstrate its use by successfully preparing various isotope- or fluorescently labelled versions of the 71-nucleotide aptamer domain of an adenine riboswitch for nuclear magnetic resonance spectroscopy or single-molecule Förster resonance energy transfer, respectively. Those RNAs include molecules that were selectively isotope-labelled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently labelled in and near kissing loops. These selectively labelled RNAs have the same fold as those transcribed using conventional methods, but they greatly simplify the interpretation of NMR spectra. The single-position isotope- and fluorescently labelled RNA samples reveal multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labelling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection, and disease diagnostics. PMID:25938715

  1. Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of 60Co radionuclide

    NASA Astrophysics Data System (ADS)

    El-Naggar, M. R.

    2014-04-01

    The present work was established to determine the applicability of local Egyptian kaolinite and blast furnace slag (BFS) as raw materials toward the synthesis of geopolymers and subsequent immobilization of cobalt-60, which is one of the most abundant radionuclides generated in radioactive waste streams in Egypt. XRF, XRD, FT-IR, and SEM techniques were used to characterize the local raw materials and their corresponding alkali activated products. Metakaolin (MK) was obtained by thermal treatment of Egyptian Sinai kaolin 750 °C/4 h. MK and five different BFS content (5, 10, 30, 50 and 80%) were used to synthesize geopolymeric matrices using an alkaline activator of Si-modulus = 1.35 at solid/liquid ratios of 0.8. Compressive strength tests were performed indicating that 50% BFS addition gave the highest values of compressive strength. The IAEA standard leaching tests of cobalt-60 from the solidified waste matrices were carried out. The effective diffusion coefficients of cobalt-60 radionuclides from the solidified waste matrices were calculated to be in the order of 10-14 cm2/s. Leaching of radionuclides was examined to be controlled by the wash-off mechanism with very acceptable values. These results gave encouragement that the tested Egyptian raw materials can be conveniently applied for the synthesis of geopolymers that can be used as a low-cost and high-efficiency materials for the immobilization of radioactive waste.

  2. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    PubMed

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. PMID:25488284

  3. An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water

    NASA Astrophysics Data System (ADS)

    Li, Jie; Hesse, Marc; Ziegler, Johanna; Woods, Andrew W.

    2005-09-01

    We develop an ALE (Arbitrary Lagrangian Eulerian) moving mesh method suitable for solving two-dimensional and axisymmetric moving-boundary problems, including the interaction between a free-surface and a solid structure. This method employs a body-fitted grid system where the gas-liquid interface and solid-liquid interface are lines of the grid system, and complicated dynamic boundary conditions are incorporated naturally and accurately in a Finite-Volume formulation. The resulting nonlinear system of mass and momentum conservation is then solved by a fractional step (projection) method. The method is validated on the uniform flow passing a cylinder (a two-dimensional flow with a solid structure) and several problems of bubble dynamics (axi-symmetrical flows with a free surface) for both steady and unsteady flows. Good agreement with other theoretical, numerical and experimental results is obtained. A further application is the investigation of a two-dimensional mechanical strider (a mass-spring system) interacting with a water surface, demonstrating the ability of the method in handling the interaction between a solid structure and a free surface. We find that the critical compression required to jump off the water surface varies linearly with spring constant for stiff springs and algebraically with exponent 0.7 for weak springs.

  4. A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis.

    PubMed

    Moreira, Manuela M; Morais, Simone; Barros, Aquiles A; Delerue-Matos, Cristina; Guido, Luís F

    2012-05-01

    This paper reports a novel application of microwave-assisted extraction (MAE) of polyphenols from brewer's spent grains (BSG). A 2(4) orthogonal composite design was used to obtain the optimal conditions of MAE. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the extraction yield of ferulic acid was investigated through response surface methodology. The results showed that the optimal conditions were 15 min extraction time, 100 °C extraction temperature, 20 mL of solvent, and maximum stirring speed. Under these conditions, the yield of ferulic acid was 1.31 ± 0.04% (w/w), which was fivefold higher than that obtained with conventional solid-liquid extraction techniques. The developed new extraction method considerably reduces extraction time, energy and solvent consumption, while generating fewer wastes. HPLC-DAD-MS analysis indicated that other hydroxycinnamic acids and several ferulic acid dehydrodimers, as well as one dehydrotrimer were also present, confirming that BSG is a valuable source of antioxidant compounds. PMID:22274285

  5. Remote sensing in environmental police investigations: aerial platforms and an innovative application of thermography to detect several illegal activities.

    PubMed

    Lega, M; Ferrara, C; Persechino, G; Bishop, P

    2014-12-01

    Being able to identify the environmental crimes and the guilty parties is central to police investigations, and new technologies enable the authorities to do this faster and more accurately than ever before. In recent years, our research team has introduced the use of a range of aerial platforms and an innovative application of thermography to detect several illegal activities; for example, illegal sanitary sewer and storm-drain connections, illicit wastewater discharges, and other "anomalies" on surface waters can be easily identified using their thermal infrared signatures. It can also be used to detect illegal solid/liquid waste dumps or illicit air discharges. This paper introduces first results of a Thermal Pattern and Thermal Tracking approach that can be used to identify different phenomena and several pollutants. The aims of this paper were to introduce a fingerprint paradigm for environmental police investigations, defining several specific signatures (patterns) that permit the identification of an illicit/anomalous activity, and establish a procedure to use this information to find the correlation (tracking) between the crime and the culprit or the source and the target. PMID:25154683

  6. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications.

    PubMed

    Li, Jian-Feng; Rudnev, Alexander; Fu, Yongchun; Bodappa, Nataraju; Wandlowski, Thomas

    2013-10-22

    We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4(-) and SO4(2-) ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces. PMID:24007327

  7. L'application de l'appareil Suvaglingua de correction phonetique a l'enseignement de l'espagnol aux francophones (The Use of the Suvaglingua Synthesizer for Phonetic Correction in Spanish Courses for French Speakers)

    ERIC Educational Resources Information Center

    Sarmiento, Jose; And Others

    1974-01-01

    Describes the use of the verbo-tonal method of phonetic correction and the Suvaglingua synthesizer in Spanish courses at the International School of Interpreters at Mons, France. (Text is in French.) (PMP)

  8. Apports du cryo-microscope électronique à balayage à émission de champ à l'étude des matières organiques et des relations organo-minérales naturelles. Application aux croûtes microbiotiques des sols

    NASA Astrophysics Data System (ADS)

    Défarge, Christian; Issa, Oumarou Malam; Trichet, Jean

    1999-05-01

    The cryo-SEM (SEM equipped with a freeze-drying sample preparation system) allows the micromorphological transformations occurring during desiccation-rewetting cycles of microbiotic crusts from Sahelian soils to be visualised, like the swelling up of mucilaginous envelopes of the constituent micro-organisms through water absorption. When the cryo-SEM is equipped with a field emission gun, which permits observations at low voltage operation (1 kV) without coating, the natural surface of the samples may be revealed, in particular the presence, at the surface of mineral grains, of microbe-derived organic meshes that probably play a role in the resistance of these crusts to erosion.

  9. Utilisation de la teledetection, des SIG et de l'intelligence artificielle pour determiner le niveau de susceptibilite aux mouvements de terrain: Application dans les Andes de la Bolivie

    NASA Astrophysics Data System (ADS)

    Peloquin, Stephane

    1999-11-01

    The socio-economic impact of mass movements for our society is getting more and more serious. The loss of lives and economic losses are now ten times greater than they were at the beginning of the decade. In the hope of reducing these impacts, it is essential to adopt a preventive policy that will encourage mapping of mass movement susceptibility level (MMSL) in critical zones. However, this task is complex and only experts using present techniques can provide satisfactory results. To make possible the production of these maps by a larger number of individuals, we have developed an expert system called EXPERIM that uses remote sensing data and geographic information systems to facilitate the complex tasks without requiring the user to be highly competent in this field of study. This thesis presents the results obtained from a complete strategy developed for a region surrounding Cochabamba, Bolivia. The operational expert system prototype will soon be integrated within the watershed management program directed by the local executing organisation PROMIC. The knowledge acquisition and its expression in concrete terms constitute the principal axis of this research, while the results obtained are the heart of the EXPERIM expert system. These strategic steps aim to establish a knowledge base of data and rules that describe field conditions for each MMSL. We have been able to extract this information by using binary discriminant analysis of a MMSL map produced by an expert for a pilot zone called Cuenca Taquina, which is geoecologically representative of the 38 neighbouring watersheds. Using this technique, we were able to establish a sensitivity model that recreates the expert's map with a success rate of 89% and 78% when two or three MMS levels are used. Based on a detailed analysis of the susceptibility model it was evident that stability conditions are the result of the topographic, geologic and geomorphologic environments. The level of susceptibility was found to be independent of the vegetation condition. In order to apply the model to the surrounding watersheds, we integrated remotely sensed data within the spatial database to map the presence/absence of five essential geoecological units required by the susceptibility model. This was done using a hierarchical classification method. Three sensors were evaluated: Landsat, SPOT and RADARSAT. In the elaboration of this specific step, we evaluated the most efficient spectral band combinations within each image and between images for each of the five geoecological units. For each of the land cover types, the analysis shows that LANDSAT constitutes the most powerful sensor to map these units and that image fusion does not provide significantly better results when compared to the extra amount of work that this requires. Using remote sensing data instead of field data or airphotograph interpretation in watersheds where only topographic data are available decreases the level of accuracy by less than 10%.

  10. Croissance de PrBa2CU{3-x}GaxO7 en ablation laser pulsée : application aux superréseaux (YBa2Cu3O7)M/(PrBa2CU{3-x}GaxO7)N

    NASA Astrophysics Data System (ADS)

    Ravelosona, D.; Contour, J. P.; Sant, C.

    1994-11-01

    PrBa2Cu{3-x}GaxO7 thin films up to x = 0.2 and YBa2Cu3O7/PrBa2CU{2.8}Ga{0.2}O7 superlattices have been grown by pulsed laser deposition (PLD) on \\{100\\} SrTiO3 substrate. At a growth temperature of 785 ^{circ}C, the multilayers have (c-axis normal to the substrate surface and satellite peaks have been observed up to i = ± 3 on X-ray diffraction spectra. At a lower growth temperature the structure becomes oriented with a-axis normal to the growth interface. Secondary-ion mass spectrometry reveals no interdiffusion beetween Y and Pr and no diffusion of Ga into the YBa2Cu3O7 layer. The RBS minimum yield indicates the high epitaxial relation beetween the substrate and the superlattice. L'oxyde PrBa3Cu{3-x}GaxO7 (PBCGO) a l'avantage de présenter une résistivité à 77 K qui est de 2 à 3 ordres de grandeur plus élevée que celle de PrBa2CU3O7 (PBCO). La mise au point des conditions de croissance de films de PBCGO (x = 0,2) sur SrTiO3 par ablation laser pulsée a permis la préparation de superréseaux (YBa2Cu3O7)M/(PrBa2CU{3-x}GaxO7)N avec l'axe c perpendiculaire ou parallèle au plan du substrat en fonction de la température de croissance. Les profils obtenus par spectrométrie de masse d'émission ionique secondaire ne révèlent ni interdiffusion entre Y et Pr, ni diffusion du gallium vers la couche de YBCO. Les rendements de canalisation mesurés en RBS sont caractéristiques d'une bonne relation épitaxiale entre le substrat et le superréseau.

  11. Thermoelectric Properties of Au- Containing Type-I Clathrates Ba8AuxGa16-3xGe30+2x

    SciTech Connect

    Ye, Zuxin; Cho, Jung Young; Tessema, Misle M.; Salvador, James R.; Waldo, Richard A.; Yang, Jihui; Wang, Hsin; Cai, Wei; Kirkham, Melanie J; Yang, Jiong; Zhang, Wenqing

    2014-01-01

    Type I clathrates, with compositions based on Ba8Ga16Ge30, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S2/ where is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution with a thermoelectric figure of merit ZT ~ 0.63 at temperature T = 740 K for the composition Ba8Au5.47Ge39.96. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  12. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications.

    PubMed

    van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick

    2014-08-27

    In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology. PMID:25105260

  13. A novel application of an anaerobic membrane process in wastewater treatment.

    PubMed

    You, H S; Tseng, C C; Peng, M J; Chang, S H; Chen, Y C; Peng, S H

    2005-01-01

    The applications of membrane processes in anaerobic biological wastewater treatment still have some limitations due to severe membrane scaling and fouling, although they have been proven to achieve superior COD removal and biomass retention. An innovative anaerobic membrane process for wastewater treatment was conducted to control the membrane scaling problems. The process comprises an anaerobic reactor, an aerobic reactor, and a membrane separation tank. Anaerobic sludge from a full-scale UASB reactor treating food wastewater was inoculated to anaerobic and aerobic reactor to purify synthetic wastewater consisting of glucose and sodium acetate. The anaerobic reactor was operated in a sludge bed type without three-phase separator. The aerobic reactor can eliminate residual organics from the anaerobic reactor effluent using facultative microorganisms. To provide solid-liquid separation, hollow fiber ultrafiltration module was submerged in the separation tank. The results clearly show that the anaerobic membrane process combined methanogenic and aerobic COD reduction is a stable system. No fatal scaling was found after two months of operation even without chemical cleaning for the membrane. It was also found that inorganic precipitates formed in the aerobic reactor were reduced due to CO2 stripping in aerobic reactor. Another important finding was that the inorganic precipitates were entrapped into facultative aerobes floc. The ash/SS ratio of aerobes floc increased from 0.17 to 0.55 after 50 days of operation, which confirms this phenomenon. Based on our investigation, the new process can control scaling effectively to extend the membrane application in anaerobic treatment. PMID:16003960

  14. Teeth and bones: applications of surface science to dental materials and related biomaterials

    NASA Astrophysics Data System (ADS)

    Jones, F. H.

    2001-05-01

    Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.

  15. L'hélium polarisé : méthodes et applications

    NASA Astrophysics Data System (ADS)

    Betts, D. S.; Leduc, M.

    Optical pumping is a method for creating large polarizations of electronic and nuclear spins in a gas of helium 4 and of helium 3. Recently some progress was made in this field with tunable infrared lasers. Nuclear polarizations over 50 % were thus obtained in helium 3 at room temperature. These techniques, combined with low temperature ones, allow polarizing to 50 % a relatively dense gas of helium 3 (n ˜ 10^18 cm-3) at 4 K. These results give a renewed interest to the applications of polarized helium, several of which are discussed in this article : helium magnetometers, NMR gyroscopes, beams of polarized particles extracted from the helium discharges (ions, electrons, metastable atoms, etc...), targets of polarized helium 3 for nuclear physics, helium 3 fuel for controlled fusion reactors and at last potential use of solid metastable helium for energy storage. Le pompage optique est une méthode qui permet d'atteindre de fortes polarisations de spin électronique et nucléaire dans un gaz d'hxA9lium 4 ou d'hélium 3. Récemment des progrès ont été réalisés dans ce domaine grâce aux lasers infrarouges accordables. Des polarisations nucléaires de 50 % et plus ont ainsi été observées dans l'hélium 3 à température ambiante. Ces techniques, combinées avec celle des basses températures, permettent d'obtenir des polarisations d'environ 50 % dans un gaz d'hélium 3 relativement dense (n ˜ 10^18 cm-3) à 4 K. Ces résultats ouvrent des perspectives en ce qui concerne les applications de l'hélium polarisé, dont plusieurs sont discutées dans cet article : magnétomètres à hélium, gyroscopes à RMN, faisceaux de particules polarisées extraits de l'hélium pompé (ions, électrons, métastables, etc...), cibles d'hélium 3 polarisé pour la physique nucléaire, combustible d'hélium 3 pour les réacteurs de fusion contrôlée et enfin utilisation éventuelle de l'hélium solide métastable pour le stockage de l'énergie.

  16. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    NASA Astrophysics Data System (ADS)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES vapor from penetrating the gel. Simultaneously, the RTIL gel actively decontaminated the substrate by reacting CEES with a sacrificial amine. The RTIL gel barrier was able to decontaminate up to 98% of the CEES applied to a painted steel substrate. Two gel barriers are tested: (1) RTIL gel with a LMOG solidifying agent, and (2) RTIL gel with a polymeric cross-linked network solidifying agent. The polymer gel provided a more mechanically robust barrier, however, the LMOG gel decontaminated at a faster rate. These new applications are but two of many possible applications for RTIL gels. Their negligible vapor pressure affords long term application in ambient conditions and their unique chemistry allows them to be tailored for specific applications.

  17. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.

  18. Ampleur et impact des évènements indésirables graves liés aux soins: étude d'incidence dans un hôpital du Centre-Est tunisien

    PubMed Central

    Bouafia, Nabiha; Bougmiza, Iheb; Bahri, Fathi; Letaief, Mondher; Astagneau, Pascal; Njah, Mansour

    2013-01-01

    Introduction La prévention des événements indésirables représente une priorité de santé du fait de leur fréquence et de leur gravité potentielle. Ce travail a été mené afin d'avoir un diagnostic de la situation épidémiologique relative aux événements indésirables survenant dans notre hôpital. Méthodes Une étude prospective a été menée auprès de tous les patients qui ont été hospitalisés au CHU Farhat Hached - Sousse (Tunisie) sur une période d'un mois dans quatorze services de l'hôpital. La détection d'évènement indésirable grave (EIG) était basée sur les critères adoptés dans différentes études. Les tests T et Chi 2 ont été utilisés pour identifier les facteurs contribuant à l'apparition d'évènements indésirables. Résultats Au total, 162 EIG ont été identifiés pendant la période. 45% de ces évènements étaient des infections nosocomiales. Ces EIG ont eu comme conséquences un décès chez 9,2% des patients, la mise en jeu du pronostic vital de 26% des patients et la prolongation de la durée de séjour chez 61,7% d'entre eux. L'admission dans des circonstances particulières et l'exposition à des soins invasifs étaient identifiés comme des facteurs de risque potentiels EIG. Conclusion Le renforcement de la stratégie de gestion des risques sanitaires en ciblant préférentiellement le risque infectieux constitue une étape fondamentale dans l'amélioration de la sécurité des patients au sein de notre établissement de santé. PMID:24711868

  19. Coupleurs fibres - metasurfaces aux frequences THz

    NASA Astrophysics Data System (ADS)

    Girard, Martin

    Metamaterials are a class of arficial materials where the electromagnetic properties can be tailored during the design process. Currently demonstrated properties are varied, ranging from frequency filters to enhancement of quentum effects such as photon spin Hall effect. While these materials are mastered from a theoretical point of view, their fabrication is much more complicated. It is generally accepted that metamaterial elements must be under the effective medium limit (Lambda < lambda/10). Moreover, assembly of a 3D periodical system becomes much more complicated for small elements. For this reason, metamaterials are usually printed in 2D, on a surface, which are called metasurfaces. Generally, these are produced for the THz frequencies (˜ 1012 Hz) or lower to have a large wavelength and thus easy fabrication. Working at THz frequencies also carries additional problems. Absorption in traditional optical mediums is typically large (for exemple, BK7 glass has losses of 20 dB / cm) and powers supplied by THz sources are generally weak ( 100 muW for a THz-TDS standard source). Metasurfaces can thus play an important role by replacing traditional mediums. Moreover, we can use the resonant properties of metamaterials to produce sensors and other devices. Currently, the metasurfaces are used in conjuction with a free-space beam instead of a typical waveguide, which may be problematic when implementing devices. A simple solution to this problem is to use the metamaterial as a standard coupler by placing a waveguide above the metasurface. As stated before, we generally consider metasurfaces as effective mediums, where the permittivity is insensitive to the angle of the incident beam. However, a large amount of publications on this subject shows that this is not respected. This can have a huge impact on properties of a coupler based on such a material. First, modelisation is not a simple 2D mode calculation with a simple expression for permittivity. Second, contra-directional coupling becomes permitted due to wavevector becoming close to the periodicity. This work shows modelisation of such a fiber-metasurface coupler while taking account of these problems, with two publications on the subject. The first article modelises the coupler using a 400 mum diameter subwavelength step-index fiber coupled to a metasurface made of SRR on a 700 mum thick fused silica substrate. Frequencies are around 300 GHz (lambda = 1000 mum). We obtain some interesting results. First, the system shows a large number of fine resonances (˜ 1.5 GHz) instead of a single large resonance which would be typically seen on such a metasurface. These are constitued of a both a SRR-bound field and a propagative substrate mode. Second, these resonances are strongly influenced by the fiber-metasurface distance. Third, the spectral position can be easily calculated using a band diagram since they are located at Van Hove singularities. The second article treats of a paper sensor based on such a device. The geometry used is the same as in the first article, except for two differences. First, the substrate thickness has been reduced to 320 mum to lower the amount of substrate modes available. Second, a paper layer was added underneath the substrate. Since the resonances are a mixture of SRR-bound and substrate modes, resonance parameters change with paper properties. The spectral position can be related to paper thickness and real part of the permittivity while the reflectance amplitude is related to the imaginary part of the permittivity. A Clausius-Mossotti model is used to link the imaginary part of epsilon to the water content. Assuming negligible losses for the fiber and substrate, we obtain limit of detections of 10 mum of paper thickness change and 0.02 % V/V for the water content.