Science.gov

Sample records for solide-liquide application aux

  1. I Situ Spectro-Ellipsometry on Solid/liquid Interfaces and Applications to Electrochemistry.

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Taik

    1990-01-01

    A fast scanning spectroscopic ellipsometer with an optical multichannel analyzer detection system has been developed and applied to study static as well as kinetic phenomena at the solid-liquid interface, such as electrochemical processes, molecular adsorption and the growth of polymers on metal surface. Electrochemical behavior of polycrystalline gold was monitored as the anodic potential was increased up to 1.5 V vs saturated calomel electrode (SCE). In the range of 1 to 1.5 V in highly acidic media (0.5 M H _2SO_4), gold oxides form in two different oxidation states, namely, AuOH at 1.1 V and a higher oxidation state of gold oxide at 1.3 V. The fast scanning spectroscopic ellipsometry enabled us to determine the optical properties (dielectric functions) and the thickness of the gold hydroxide and oxide species. As a result, the monolayer thickness of AuOH was determined to be 3.0 +/- 0.5 A, and that of gold oxide was 4.0 +/- 0.3 A. As far as the optical properties are concerned, the higher oxidation state of gold oxide shows more absorbance than that of AuOH corresponding to the higher order of the charge transfer for gold oxide. Deposition of a conducting polymer (polypyrrole) at an anodic potential was monitored as a function of time, every 7.5 seconds in aqeuous 0.1 M KNO_3 . The optical properties of oxidized polypyrrole in 0.1 M KNO_3 electrolyte was determined in situ using spectroscopic ellipsometry with optical multichannel analyzer detection. The determined dielectric function revealed the interband transitions at 3.8 eV and a transition at 1.7 eV suggesting high doping concentrations under our preparation condition of the oxidized polypyrrole. Also, the dielectric function of the oxidized polypyrrole and LRA allowed us to characterize the nucleation and growth of the polypyrrole. As a result, (i) monomer adsorption, (ii) two-dimensional nucleation and (iii) three-dimensional growth could be determined during the electrochemical deposition of polypyrrole. Finally, the orientational phase transition of the pyridine molecules on silver surface was studied by the measurement of surface plasmon polariton using spectorscopic ellipsometry. We could observe this phase transition at approximately 1 times 10 ^{-4} M of pyridine concentration in water at room temperature. Below 1 times 10^{-4} M, the ring of the pyridine is parallel to the silver surface; above 1 times 10^ {-4} M, the ring is aligned perpendicular to the surface.

  2. Les ADAF : Application aux binaires X

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Francois

    2001-01-01

    Based on the fundamental review by Narayan et al. (1998), this lecture for the ``23ieme Ecole du CNRS de Goutelas'' on binary systems describes the properties of advection-dominated accretion flows (ADAFs) and their applications to black hole X-ray binaries. The possibility of using ADAFs to explore the event horizons of black holes is highlighted.

  3. A sessile drop setup for the time-resolved synchrotron study of solid-liquid interactions: Application to intermetallic formation in 55%Al-Zn alloys

    SciTech Connect

    Bernier, N. De Bruyn, D.; De Craene, M.; Scheers, J.; Claessens, S.; Vaughan, G. B. M.; Vitoux, H.; Gleyzolle, H.; Gorges, B.

    2014-04-28

    We introduce a dedicated setup for measuring by synchrotron diffraction in-situ crystallographic and chemical information at the solid–liquid interface. This setup mostly consists of a double-heating furnace composed of a resistive heating for the solid surface and an inductive heating to produce a liquid droplet. The available high energy and high flux beams allow the rapid reaction kinetics to be investigated with very good time resolution down to 1 ms. An application of this setup is illustrated for the growth mechanisms of intermetallic phases during the hot-dipping of steel in a 55%Al-Zn bath. Results show that the three ?-Al{sub 5}Fe{sub 2}, ?-Al{sub 13}Fe{sub 4}, and ?-Al{sub 8}Fe{sub 2}Si phases grow at different times and rates during the dipping process, whereas the face-centered cubic AlFe{sub 3} phase is not formed.

  4. Application de la combustion catalytique aux turbines à gaz

    NASA Astrophysics Data System (ADS)

    Lebas, E.; Martin, G. H.

    2002-04-01

    La réduction des émissions d'oxydes d'azote sur turbines à gaz est obtenue par diminution de la température au sein de la chambre de combustion. Les techniques possibles comprennent l'injection d'eau ou de vapeur, la combustion pauvre et l'oxydation catalytique. Parmi celles-ci, la dernière est la plus prometteuse en terme de coûts et de performances, avec des émissions de NOx ramenées à un seul chiffre (typiquement inférieures à 3 ppm). L'IFP travaille depuis maintenant 10 ans sur l'adaptation de la combustion catalytique aux turbines à gaz. Les études ont été conduites au travers de projets européen tels que AGATA (Advance Gas Turbine for Automotive Application) et ULECAT (Ultra Low CATalytic combustor for dual fuel gas turbine). Le premier projet était destiné au développement de véhicules hybrides et le second à la combustion stationnaire de biogaz et de combustible Diesel. Les études en cours dans ce domaine portent sur le développement d'une unité de cogénération intégrant une microturbine à combustion catalytique. Les travaux menés à l'IFP concernent la mise au point de catalyseurs répondant aux exigences de la combustion catalytique en turbine à gaz et le développement de chambres de combustion permettant la mise en oeuvre de ces catalyseurs.

  5. Solid-Liquid Interfacial Premelting

    E-print Network

    Yang, Yang; Asta, Mark; Laird, Brian Bostian

    2013-02-28

    /plain; charset=UTF-8 KU ScholarWorks | http://kuscholarworks.ku.edu Solid-liquid interfacial premelting by Yang Yang, Mark Asta, and Brian Laird KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright...:096102:1-5 Published version: http://dx.doi.org/10.1103/PhysRevLett.110.096102 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml Please share your stories about how Open Access to this article benefits you. 2013 Solid-Liquid Interfacial Premelting Yang Yang...

  6. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the current state of CRYOCHEM in representing the SVE and SLV of chemical systems at temperatures and pressures relevant to Titan's tropopause and Pluto and the upper crusts of these objects.

  7. Calculation of multicomponent chemical equilibria in gas-solid- liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens

    USGS Publications Warehouse

    Symonds, R.B.; Reed, M.H.

    1993-01-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. Examples of gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mount St. Helens are shown. -from Authors

  8. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  9. Ultrasonic Spectroscopy of Solid-Liquid Suspensions.

    NASA Astrophysics Data System (ADS)

    Sharma, Arvind

    There is a great deal of interest in techniques which characterize solid-liquid suspensions through measurements of ultrasonic properties such as phase velocity and attenuation. In this study, a reliable ultrasonic spectroscopy methodology has been developed that is capable of handling commonly encountered solid-liquid suspensions at high particle concentrations, over a wide frequency range. Performance of the system has been validated using laboratory measurements of attenuation spectra of a reference liquid (Dow Corning 710 silicone fluid). Ultrasonic spectroscopy measurements of colloidal dispersions are obtained over a wide frequency range of 1-100 MHz using linear regression, with loss data for many pathlengths, and solids concentration varying from 3 to 43 volume percent. The current sensor provides reliable values of attenuation coefficients ranging from 0.1 to 2500 dB/cm. Quantitative comparison of experimental data on attenuation coefficients with corresponding predictions based on theoretical modeling that accounts for attenuation dependence on particle size distribution and particle volume fraction, over the wide range of operating frequencies is presented. The theoretical model is able to predict the experimentally observed complex functionality of frequency and concentration dependence of attenuation coefficients fairly well. Some new features of the data were observed when both, the sound speed and the attenuation coefficient spectra, were presented together on a complex plane through the complex wave number. An equivalent acoustophoretic diameter has been proposed which provides a convenient way of representing particle size distribution by means of a single parameter, which is associated with the two parameters (mass geometric mean and geometric standard deviation) of the log-normal distribution. Also, interpretation of sound speed has been made in terms of solids concentration estimation. During field tests at a manufacturing plant, the on-line sensor prototype has provided attenuation spectra, and corresponding particle size distribution estimates under processing conditions showing excellent reproducibility and robust operation. The tests of predictive model and on-line sensor prototype operation show that ultrasonic spectroscopy of concentrated colloids is a promising tool for on-line characterization of industrial slurries, and offers the possibility of its use in quality control and process control applications.

  10. rencontre du non-lin eaire 2001 1 Filaments enroul es en paires torsad ees : application aux plasmides

    E-print Network

    Neukirch, Sébastien

    aux plasmides d'A.D.N. S. Neukirch, J. M. T. Thompson et G. H. M. van der Heijden Centre for Nonlinear accord avec le mod#18;ele th#19;eorique. L'application de ce mod#18;ele aux plasmides d'A.D.N. #18; a fort twist permet de calculer une approximation du lien topologique d'un plasmide #18;a partir de la

  11. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  12. Systems and methods for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  13. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Technical Reports Server (NTRS)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  14. Solid liquid interfacial free energies of benzene

    NASA Astrophysics Data System (ADS)

    Azreg-A?¨nou, M.

    2007-02-01

    In this work we determine for the range of melting temperatures 284.6?T?306.7 K, corresponding to equilibrium pressures 20.6?P?102.9 MPa, the benzene solid-liquid interfacial free energy by a cognitive approach including theoretical and experimental physics, mathematics, computer algebra (MATLAB), and some results from molecular dynamics computer simulations. From a theoretical and mathematical points of view, we deal with the elaboration of an analytical expression for the internal energy derived from a unified solid-liquid-vapor equation of state and with the elaboration of an existing statistical model for the entropy drop of the melt near the solid-liquid interface. From an experimental point of view, we will use our results obtained in collaboration with colleagues concerning the supercooled liquid benzene. Of particular interest for this work is the existing center-of-mass radial distribution function of benzene at 298 K obtained by computer simulation. Crystal-orientation-independent and minimum interfacial free energies are calculated and shown to increase slightly with the above temperatures. Both crystal-orientation-independent and minimum free energies agree with existing calculations and with rare existing experimental data. Taking into account the fact that the extent of supercooling is generally admitted as a constant, we determine the limits of supercooling by which we explore the behavior of the critical nucleus radius which is shown to decrease in terms of the above temperatures. The radius of the, and the number of molecules per, critical nucleus are shown to assume the average values of 20.2 A? and 175 with standard deviations of 0.16 Å and 4.5, respectively.

  15. Ultrasonic characterization of solid liquid suspensions

    DOEpatents

    Panetta, Paul D.

    2010-06-22

    Using an ultrasonic field, properties of a solid liquid suspension such as through-transmission attenuation, backscattering, and diffuse field are measured. These properties are converted to quantities indicating the strength of different loss mechanisms (such as absorption, single scattering and multiple scattering) among particles in the suspension. Such separation of the loss mechanisms can allow for direct comparison of the attenuating effects of the mechanisms. These comparisons can also indicate a model most likely to accurately characterize the suspension and can aid in determination of properties such as particle size, concentration, and density of the suspension.

  16. Solid-Liquid Separation of Animal Manure and Wastewater 

    E-print Network

    Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

    1999-10-19

    Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators....

  17. An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2014-11-01

    In this work, an immersed boundary-thermal lattice Boltzmann method (IB-TLBM) is proposed to simulate solid-liquid phase change problems. To treat the velocity and temperature boundary conditions on the solid-liquid interface, immersed boundary method (IBM) is adopted, in which the solid-liquid interface is represented as a sharp interface rather than a diffusive interface and is tracked explicitly by Lagrangian grid. The surface forces along the immersed boundary, including the “momentum force” for velocity boundary condition and the “energy force” for temperature boundary condition, are calculated by the direct-forcing scheme. The moving velocity of solid-liquid interface induced by phase change is calculated by the amount of latent heat absorbed or released in a time step directly, with no need to compute temperature gradients in solid and liquid phases separately. The temperature on the solid-liquid interface is specified as the melting temperature, which means phase change happens at a constant temperature. As the solid-liquid interface evolves with time, the identification of phase of Eulerian points and the rearrangement of Lagrangian points are also considered. With regard to the velocity and temperature fields, passive scalar thermal lattice Boltzmann method (TLBM) with multiple-relaxation-time (MRT) collision schemes is adopted. Numerical examples, including conduction-induced melting in a semi-infinite space and melting in a square cavity, are carried out to verify the present method and good results are obtained. As a further application, melting in a circular cylinder with considering the motion of solid phase is simulated successfully by the present method; numerical results show that the motion of solid phase accelerates the melting process obviously.

  18. Solid liquid interfacial energy of aminomethylpropanediol

    NASA Astrophysics Data System (ADS)

    Ocak, Yavuz; Akbulut, Sezen; Ke?lio?lu, Kaz?m; Mara?l?, Necmettin

    2008-03-01

    The grain boundary groove shapes for equilibrated solid aminomethylpropanediol, 2-amino-2 methyl-1.3 propanediol (AMPD) with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (?), solid-liquid interfacial energy (?SL) and grain boundary energy (?gb) of AMPD have been determined to be (5.4 ± 0.5) × 10-8 K m, (8.5 ± 1.3) × 10-3 J m-2 and (16.5 ± 2.8) × 10-3 J m-2, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for the AMPD has also been measured to be 1.12 at the melting temperature.

  19. Computational Investigations of Solid-Liquid Interfaces

    SciTech Connect

    Mark Asta

    2011-08-31

    In a variety of materials synthesis and processing contexts, atomistic processes at heterophase interfaces play a critical role governing defect formation, growth morphologies, and microstructure evolution. Accurate knowledge of interfacial structure, free energies, mobilities and segregation coefficients are critical for predictive modeling of microstructure evolution, yet direct experimental measurement of these fundamental interfacial properties remains elusive in many cases. In this project first-principles calculations were combined with molecular-dynamics (MD) and Monte-Carlo (MC) simulations, to investigate the atomic-scale structural and dynamical properties of heterophase interfaces, and the relationship between these properties and the calculated thermodynamic and kinetic parameters that influence the evolution of phase transformation structures at nanometer to micron length scales. The topics investigated in this project were motivated primarily by phenomena associated with solidification processing of metals and alloys, and the main focus of the work was thus on solid-liquid interfaces and high-temperature grain boundaries. Additional efforts involved first-principles calculations of coherent solid-solid heterophase interfaces, where a close collaboration with researchers at the National Center for Electron Microscopy was undertaken to understand the evolution of novel core-shell precipitate microstructures in aluminum alloys.

  20. Characterization of Solid Liquid Suspensions Utilizing Ultrasonic Measurements

    SciTech Connect

    Panetta, Paul D. ); Tucker, Brian J. ); Pappas, Richard A. ); Ahmed, Salahuddin )

    2003-06-01

    Rapid, on-line, non-invasive measurements of the particle size and concentration of moderate to highly concentrated slurries is required for the efficient process measurement and control for many processes. High concentrations are often found in government applications such as waste remediation for the Department of Energy sites and in and industrial applications such as chemical and pharmaceutical manufacturing. However, existing methods based on ultrasonic attenuation can become inaccurate for nondilute suspensions due to the complex interactions of ultrasonic waves with the constituents of the slurries. Further complications arise because of the necessity for careful transducer alignment. We are developing two measurements that help to overcome these difficulties, the ultrasonic backscattering and measurements of the diffuse field properties. The backscattering measurement is attractive because viscous, thermal, and inertial effects have small contributions to backscattering. Furthermore, the backscattering theories are simpler than attenuation theories and lend themselves to more stable inversion processes. In addition, the measurements of backscattering and diffuse fields do not require long travel distances and can be performed with a single transducer thus eliminating alignment problems. We will present ultrasonic measurements on solid liquid suspensions designed to elucidate the particle size and concentration at high concentrations.

  1. In situ real-time monitoring of geometric, electronic, and molecular structures at solid/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Uosaki, Kohei

    2015-03-01

    Many important processes take place at solid/liquid interfaces. To understand these processes, in situ real-time evaluation of the geometric, electronic, and molecular structures at solid/liquid interfaces at the atomic and molecular levels is essential. Owing to the presence of the liquid, however, techniques such as electron microscopy and low-energy electron diffraction, which are powerful tools for surface structural analysis in vacuum, cannot be used for solid/liquid interfaces. In this review, various techniques applicable to solid/liquid interfaces, including scanning probe microscopy, synchrotron-radiation-based X-ray techniques, and nonlinear spectroscopy, are briefly described. The characterization of the electrodeposition process of Pd layers on Au single-crystal electrode surfaces is presented as an example to demonstrate the importance of using multiple techniques in an integrated manner to understand the processes at solid/liquid interfaces. This is a translated version of the original paper which appeared in Oyo Buturi 82, 106 (2013) [in Japanese] with some modifications.

  2. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles.

    PubMed

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties. PMID:21796304

  3. On the Temkin model of solid liquid interface

    NASA Astrophysics Data System (ADS)

    Mori, Atsushi; Maksimov, Igor L.

    1999-04-01

    The multilayer mean-field model of the solid-liquid interface (SLI) is studied. The nonequilibrium state diagram of the SLI is constructed on the basis of a continuum approach for diffuse SLIs. The kinetics of the SLI propagation in nonequilibrium conditions is considered; the dependence of the SLI velocity and the SLI width on the undercooling is found.

  4. Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales

    NASA Astrophysics Data System (ADS)

    Asadi, Ebrahim; Asle Zaeem, Mohsen; Nouranian, Sasan; Baskes, Michael I.

    2015-01-01

    In this paper, molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM) and a phase-field crystal (PFC) model are utilized to quantitatively investigate the solid-liquid properties of Fe. A set of second nearest-neighbor MEAM parameters for high-temperature applications are developed for Fe, and the solid-liquid coexisting approach is utilized in MD simulations to accurately calculate the melting point, expansion in melting, latent heat, and solid-liquid interface free energy, and surface anisotropy. The required input properties to determine the PFC model parameters, such as liquid structure factor and fluctuations of atoms in the solid, are also calculated from MD simulations. The PFC parameters are calculated utilizing an iterative procedure from the inputs of MD simulations. The solid-liquid interface free energy and surface anisotropy are calculated using the PFC simulations. Very good agreement is observed between the results of our calculations from MEAM-MD and PFC simulations and the available modeling and experimental results in the literature. As an application of the developed model, the grain boundary free energy of Fe is calculated using the PFC model and the results are compared against experiments.

  5. An improved technique for modeling initial reservoir hydrocarbon saturation distributions: Applications in Illinois (USA) aux vases oil reservoirs

    USGS Publications Warehouse

    Udegbunam, E.; Amaefule, J.O.

    1998-01-01

    An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, S(wir), P(d), and ??, derived from the Brooks and Corey (1966) model [Brooks, R.H., Corey, A.T., 1966. Hydraulic properties of porous media, Hydrology Papers, Colorado State Univ., Ft. Collins, No. 3, March.], are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, Swir, Pd, and ??, derived from the Brooks and Corey (1966) model, are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.

  6. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-01

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line. PMID:26100904

  7. Solid–Liquid Phase Change Driven by Internal Heat Generation

    SciTech Connect

    John Crepeau; Ali s. Siahpush

    2012-07-01

    This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.

  8. Self-instability of finite sized solid-liquid interfaces.

    PubMed

    Wu, L K; Xu, B; Li, Q L; Liu, W

    2015-01-01

    In solid-liquid systems, macroscopic solids lose their equilibrium and melt in a manner that results in overall movement of the solid-liquid interface. This phenomenon occurs when they are subjected to temperature gradients or external stress, for example. However, many experiments suggest that the melting of nano- and micro-sized metallic nuclei follows a different process not described by traditional melting theory. In this paper, we demonstrate through simulation that the melting of solid nuclei of these sizes occurs via random breaches at the interfaces. Moreover, this breaching process occurs at the exact solid-liquid equilibrium temperature and in the absence of any external disturbance, which suggests the name "self-instability" for this melting process. We attribute this spontaneous instability to the curvature of the samples; based on the relationship between the sample's instability and its curvature, we propose a destabilizing model for small systems. This model fits well with experimental results and leads to new insights into the instability behavior of small-sized systems; these insights have broad implications for research topics ranging from dendrite self-fragmentation to nanoparticle instability. PMID:26685800

  9. Self-instability of finite sized solid-liquid interfaces

    PubMed Central

    Wu, L.K.; Xu, B.; Li, Q.L.; Liu, W.

    2015-01-01

    In solid-liquid systems, macroscopic solids lose their equilibrium and melt in a manner that results in overall movement of the solid-liquid interface. This phenomenon occurs when they are subjected to temperature gradients or external stress, for example. However, many experiments suggest that the melting of nano- and micro-sized metallic nuclei follows a different process not described by traditional melting theory. In this paper, we demonstrate through simulation that the melting of solid nuclei of these sizes occurs via random breaches at the interfaces. Moreover, this breaching process occurs at the exact solid-liquid equilibrium temperature and in the absence of any external disturbance, which suggests the name “self-instability” for this melting process. We attribute this spontaneous instability to the curvature of the samples; based on the relationship between the sample’s instability and its curvature, we propose a destabilizing model for small systems. This model fits well with experimental results and leads to new insights into the instability behavior of small-sized systems; these insights have broad implications for research topics ranging from dendrite self-fragmentation to nanoparticle instability. PMID:26685800

  10. The solid-liquid interfacial free energy out of equilibrium

    E-print Network

    Bingqing Cheng; Gareth A. Tribello; Michele Ceriotti

    2015-11-27

    The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill-defined. Here we draw a connection between the atomistic description of a diffuse solid- liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.

  11. Solid-liquid interfacial free energy out of equilibrium

    NASA Astrophysics Data System (ADS)

    Cheng, Bingqing; Tribello, Gareth A.; Ceriotti, Michele

    2015-11-01

    The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill defined. Here we draw a connection between the atomistic description of a diffuse solid-liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.

  12. 2.3 Microscopic Representation of Solid-Liquid-Vapor Interactions The microscopic aspects of solid-liquid-vapor interactions are usually crucial when we consider

    E-print Network

    Maruyama, Shigeo

    .3-1). In principal, any of gas, liquid, solid states, and inter-phase phenomena can be solved without the knowledge1 2.3 Microscopic Representation of Solid-Liquid-Vapor Interactions The microscopic aspects of solid-liquid-vapor interactions are usually crucial when we consider theories of phase change phenomena

  13. Photolithographic fabrication of solid-liquid core waveguides by thiol-ene chemistry

    NASA Astrophysics Data System (ADS)

    Sagar, Kaushal; Gopalakrishnan, Nimi; Brøkner Christiansen, Mads; Kristensen, Anders; Ndoni, Sokol

    2011-09-01

    In this work we demonstrate an efficient and cleanroom compatible method for the fabrication of solid-liquid core waveguides based on nanoporous polymers. We have used thiol-ene photo-grafting to tune and pattern the hydrophilicity of an originally hydrophobic nanoporous 1, 2-polybutadiene. The generated refractive index contrast between the patterned water-filled volume and the surrounding empty hydrophobic porous polymer allows for light confinement within the water-filled volume—the solid-liquid core. The presented fabrication process is simple and fast. It allows a high degree of flexibility on the type and grade of surface chemistry imparted to the large nanoporous area depending upon the application. The fabrication does not need demanding chemical reaction conditions. Thus, it can be readily used on a standard silicon lithography bench. The propagation loss values reported in this work are comparable with literature values for state-of-the-art liquid-core waveguide devices. The demonstrated waveguide function added to the nanoporous polymer with a very high internal surface area makes the system interesting for many applications in different areas, such as diagnostics and bio-chemical sensing.

  14. Solid-liquid phase equilibria from free-energy perturbation calculations

    NASA Astrophysics Data System (ADS)

    Angioletti-Uberti, Stefano; Asta, Mark; Finnis, Mike W.; Lee, P. D.

    2008-10-01

    A method for calculating free-energy differences based on a free-energy perturbation (FEP) formalism in an alloy system described by two different Hamiltonians is reported. The intended application is the calculation of solid-liquid phase equilibria in alloys with the accuracy of first-principles electronic density-functional theory (DFT). For this purpose free energies are derived with a classical interatomic potential, and FEP calculations are used to compute corrections to these reference values. For practical applications of this approach, due to the relatively high computational cost of DFT calculations, it is critical that the FEP calculations converge rapidly in terms of the number of samples used to estimate relevant ensemble averages. This issue is investigated in the current study employing two classical interatomic-potential models for Ni-Cu. These models yield differences in predicted phase-boundary temperatures of approximately 100 K, comparable to those that might be expected between a DFT Hamiltonian and a well-fit classical potential. We show that for pure elements the FEP calculations converge rapidly with the number of samples, yielding free-energy differences converged to within a fraction of a meV/atom in a few dozen energy calculations. For a concentrated equiatomic alloy similar precision requires roughly a hundred samples. The results suggest that the proposed methodology could provide a computationally tractable framework for calculating solid-liquid phase equilibria in concentrated alloys with DFT accuracy.

  15. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD); Kary, Tim (Union Bridge, MD)

    2010-07-20

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.

  16. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method.

    PubMed

    Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F A; Leroy, Frédéric

    2015-12-28

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces. PMID:26723620

  17. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method

    NASA Astrophysics Data System (ADS)

    Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F. A.; Leroy, Frédéric

    2015-12-01

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.

  18. Solid/liquid interfacial free energies in binary systems

    NASA Technical Reports Server (NTRS)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  19. Solid-Liquid-Vapor Etching of Semiconductor Nanowires.

    PubMed

    Hui, Ho Yee; Filler, Michael A

    2015-10-14

    The vapor-liquid-solid (VLS) mechanism enables the bottom-up, or additive, growth of semiconductor nanowires. Here, we demonstrate a reverse process, whereby catalyst atoms are selectively removed from the eutectic catalyst droplet. This process, which is driven by the dicarbonyl precursor 2,3-butanedione, results in axial nanowire etching. Experiments as a function of substrate temperature, etchant flow rate, and nanowire diameter support a solid-liquid-vapor (SLV) mechanism. An etch model with reaction at the liquid-vapor interface as the rate-limiting step is consistent with our experiments. These results identify a new mechanism to in situ tune the concentration of semiconductor atoms in the catalyst droplet. PMID:26383971

  20. Solid-liquid coexistence of polydisperse fluids via simulation.

    PubMed

    Wilding, Nigel B

    2009-03-14

    We describe a simulation method for the accurate study of the equilibrium freezing properties of polydisperse fluids under the experimentally relevant condition of fixed polydispersity. The approach is based on the phase switch Monte Carlo method of Wilding and Bruce [Phys. Rev. Lett. 85, 5138 (2000)]. This we have generalized to deal with particle size polydispersity by incorporating updates which alter the diameter sigma of a particle, under the control of a distribution of chemical potential differences mu(sigma). Within the resulting isobaric semi-grand-canonical ensemble, we detail how to adapt mu(sigma) and the applied pressure such as to study coexistence, while ensuring that the ensemble averaged density distribution rho(sigma) matches a fixed functional form. Results are presented for the effects of small degrees of polydispersity on the solid-liquid transition of soft spheres. PMID:19292519

  1. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD)

    2011-10-04

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).

  2. A mean field approach for computing solid-liquid surface tension for nanoscale interfaces

    E-print Network

    Nielsen, Steven O.

    A mean field approach for computing solid-liquid surface tension for nanoscale interfaces Chi are largely determined by the solid-liquid surface tension. This is especially true for nanoscale systems with high surface area to volume ratios. While experimental techniques can only measure surface tension

  3. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.

    2012-09-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  4. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kova?í?ek, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different ?,?-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  5. Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics

    PubMed Central

    Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Chen, Hui-Yuan; Yang, Szu-Chi; Huang, Yu-Ru; -Ju Chen, I.; Chen, Yun-Wen; Gusev, Vitalyi; Chen, Miin-Jang; Kuo, Jer-Lai; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2014-01-01

    Despite the numerous devoted studies, water at solid interfaces remains puzzling. An ongoing debate concerns the nature of interfacial water at a hydrophilic surface, whether it is more solid-like, ice-like, or liquid-like. To answer this question, a complete picture of the distribution of the water molecule structure and molecular interactions has to be obtained in a non-invasive way and on an ultrafast time scale. We developed a new experimental technique that extends the classical acoustic technique to the molecular level. Using nanoacoustic waves with a femtosecond pulsewidth and an ångström resolution to noninvasively diagnose the hydration structure distribution at ambient solid/water interface, we performed a complete mapping of the viscoelastic properties and of the density in the whole interfacial water region at hydrophilic surfaces. Our results suggest that water in the interfacial region possesses mixed properties and that the different pictures obtained up to now can be unified. Moreover, we discuss the effect of the interfacial water structure on the abnormal thermal transport properties of solid/liquid interfaces. PMID:25176017

  6. Continuum approaches for describing solid-liquid flow

    NASA Astrophysics Data System (ADS)

    Diamond, P.; Harvey, J.; Levine, H.; Steinhardt, P.; Westervelt, R.

    1992-02-01

    Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage (1982) to describe granular flow. Jenkins and McTigue (1989) have proposed a modified model to describe the flow of dense suspensions, and, hence, many of our results can be straight-forwardly extended to this flow regime as well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments. The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregation effects, when there are two (or more) particle sizes are considered.

  7. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  8. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William K.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    In this paper, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray Transmission Microscope. The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate and the change in shape of the porosity during interaction with an advancing SL interface in pure Al and Al-0.25 wt% Au alloy. In addition, porosity induced solute segregation patterns surrounding a pore were also quantified.

  9. Ultrasound Study of the Solid-Liquid Transition and Solid-Liquid Interface of 4He in Aerogels

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Tsuboya, Hiroyuki; Yoshino, Keiichi; Abe, Satoshi; Tsujii, Hiroyuki; Suzuki, Haruhiko

    2009-03-01

    The freezing and melting of 4He in various aerogels with porosities ranging from 92 to 97% were studied using longitudinal ultrasound. The freezing pressure, detected from changes in velocity and attenuation, was elevated compared with that of the bulk by about 0.3 MPa, and showed a weak dependence on aerogel porosity. Inside the aerogels, there was a liquid phase, a solid phase or a coexisting state depending on temperature and pressure of the sample. We report the measurement of the transmission of sound through the solid-liquid interface in aerogel for the first time, which was independent of temperature and unaffected by a small addition of 3He, unlike that at the bulk interface. This indicates that sound attenuation at the interface is due to the disorder, originating from silica strands. Small amounts of 3He in the solid significantly decreased attenuation, because the resultant pinning of dislocations by 3He suppressed phonon scattering, as is observed in bulk solid 4He.

  10. Mathematical Models and Numerical Solutions of Liquid-Solid and Solid-Liquid Phase Change

    E-print Network

    Surana, Karan S.; Joy, Aaron; Quiros, Luis; Reddy, JN

    2015-04-01

    This paper presents numerical simulations of liquid-solid and solid-liquid phase change processes using mathematical models in Lagrangian and Eulerian descriptions. The mathematical models are derived by assuming a smooth interface or transition...

  11. Wastewater Triad Project: Solid-Liquid Separator FY 2000 Deployment

    SciTech Connect

    Walker, J.F.

    2001-01-11

    The Wastewater Triad Project (WTP) consists of three operational units: the cesium removal (CsR) system, the out-of-tank evaporator (OTE) system, and the solid/liquid separation (SLS) system. These systems were designed to reduce the volume and radioactivity of low-level liquid waste (LLLW) stored in the Melton Valley Storage Tanks (MVSTs) and are operated independently or in series in order to accomplish the treatment goals. Each is a modular, skid-mounted system that is self-contained, individually shielded, and designed to be decontaminated and removed once the project has been completed. The CsR and OTE systems are installed inside Building 7877; the SLS system is installed adjacent to the east side of the MVST 7830 vault cover. The CsR, which consists of ion-exchange equipment for removing {sup 137}Cs from LLLW, was demonstrated in 1997. During the Cesium Removal Demonstration, 30,853 gal of radioactive supernate was processed and 1142 Ci of {sup 137}Cs was removed from the supernate and loaded onto 70 gal of a crystalline silicotitanate sorbent manufactured by UOP, Inc. The OTE system is a subatmospheric single-stage evaporator system designed to concentrate LLLW to smaller volumes. It was previously demonstrated in 1996 and was operated in 1998 to process about 80,000 gal of LLLW. The SLS system was designed to filter and remove suspended solids from LLLW in order to minimize further accumulation of sludge in new storage tanks or to prevent fouling of CsR and OTE systems. The SLS was installed and demonstrated in 1999; {approximately}45,000 gal of radioactive supernate was processed during the demonstration.

  12. Nonlinear vibrational spectroscopic studies of molecular interaction and charging behavior at solid/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Luning

    Solid-liquid interfaces have been the focus of different communities of scientists due to its importance in industrial applications and chemical processes in nature. Molecular interactions and surface charges affect the physicochemical properties of these interfaces and a thorough understanding is still lacking now. This thesis describes our work in studying several model solid-liquid interfaces using sum-frequency vibrational spectroscopy. Through the studies of interfacial vibrational spectra, we hope to gain better understanding of molecular interactions in competitive adsorption process and also surface charging behavior at different pH and salt concentrations. We start by studying alcohol-water mixture and the adsorption behavior at both hydrophilic and hydrophobic surfaces. In both cases, alcohol adsorbs preferentially from water. The tendency for water to form strong hydrogen-bonding network is the driving force for preferential adsorption of alcohol. We proposed two different interfacial molecular structures on hydrophilic and hydrophobic surfaces. We move on to study the interaction of pure water with a solid surface. Single crystal alumina is used as a model system. At different pH, the surface can undergo protonation and deprotonation reactions and accumulates surface charge. Both the hydrogen-bonding with water and the surface field created by surface charge can affect interfacial water structure. Combining the information obtained with intensity and phase spectra, we find water molecules have two types of bonding within the interfacial layer: weakly hydrogen-bonded species near 3450 cm-1 that does not flip with switching surface charge, and strongly hydrogen-bonded species at 3200 cm-1 that readily flips with switching surface field. One other system we have studied is nanoporous silica-water interface. We found that signal from interfacial water is reduced due to the porous nature of the film. The water spectral features tell us about the interfacial bonding environment and we found close relation of spectra features with surface morphology and surface silane coverage. Finally we studied the surface hydroxylation reaction of different crystalline alumina planes and its dependence on thermal-treatment history of the surface. The results indicate that upon hydroxylation, each crystal plane has distinct OH stretching vibrations that depend mainly on thermal-treatment temperature rather than other factors.

  13. Characterization of Solid Liquid Suspensions Utilizing Non-Invasive Ultrasonic Measurements

    SciTech Connect

    Panetta, P.D.; Tucker, B.; Ahmed, S.; Pappas, R.A.

    2004-03-31

    Rapid, on-line characterization of the particle size and concentration of moderate to highly concentrated slurries is required for efficient waste remediation at the DOE complexes. This paper discusses the advancements achieved under the Environmental Management Science Program to accurately characterize high-level waste at the high concentrations expected at the DOE complexes. In addition, the results are applicable to efficient process measurement and control in many chemical and pharmaceutical manufacturing processes. Existing methods for determining the particle size and concentration of non-dilute slurries based on ultrasonic attenuation can become inaccurate due to the complex interactions of ultrasonic waves with the constituents of the slurries and the necessity for very careful transducer alignment. Two measurements that help to overcome these difficulties are the ultrasonic backscattering and diffuse field. The backscattering measurement is attractive because viscous, thermal and inertial effects have small contributions to the backscattering. In addition, the backscattering theories are simpler than attenuation theories and lend themselves to more stable inversion processes. Furthermore, the measurements of backscattering measurement do not require long travel distances and can be made with a single transducer thus eliminating alignment problems. We will present ultrasonic measurements and theoretical comparisons on solid liquid suspensions designed to elucidate the particle size and concentration at high concentration relevant to the high level waste at the DOE complexes.

  14. Determination of pesticides in lettuce using solid-liquid extraction with low temperature partitioning.

    PubMed

    Costa, Anna I G; Queiroz, Maria E L R; Neves, Antônio A; de Sousa, Flaviane A; Zambolim, Laércio

    2015-08-15

    This work describes the optimization and validation of a method employing solid-liquid extraction with low temperature partitioning (SLE/LTP) together with analysis by gas chromatography with electron capture detection (GC/ECD) for the determination of nine pesticides (chlorothalonil, methyl parathion, procymidone, endosulfan, iprodione, ?-cyhalothrin, permethrin, cypermethrin, and deltamethrin) in lettuce. The method was found to be selective, accurate, and precise, with means recovery values in the range of 72.3-103.2%, coefficients of variation ? 12%, and detection limits in the range 0.4-37 ?g kg(-1). The matrix components significantly influence the chromatographic response of the analytes (above 10%). The optimized and validated method was applied to determine the residual concentrations of the fungicides iprodione and procymidone that had been applied to field crops of lettuce. The maximum residual concentrations of the pesticides in the lettuce samples were 13.6 ± 0.4 mg kg(-1) (iprodione) and 1.00 ± 0.01 mg kg(-1) (procymidone), on the day after application of the products. PMID:25794722

  15. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    E-print Network

    Natacha Altamirano; David Kubiznak; Robert B. Mann; Zeinab Sherkatghanad

    2014-01-25

    We study the thermodynamic behavior of multi-spinning d=6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q=J2/J1, qualitatively different interesting phenomena known from the `every day thermodynamics' of simple substances. For q=0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0solid/liquid' phase transition. Furthermore, for 0.00905solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q>0.0985 we observe the `standard liquid/gas behavior' of the Van der Waals fluid.

  16. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    NASA Astrophysics Data System (ADS)

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-10-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  17. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  18. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    PubMed

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  19. PHYSICAL REVIEW E 86, 031602 (2012) Perturbation theory of solid-liquid interfacial free energies of bcc metals

    E-print Network

    Song, Xueyu

    2012-01-01

    is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embeddedPHYSICAL REVIEW E 86, 031602 (2012) Perturbation theory of solid-liquid interfacial free energies of bcc metals Vadim B. Warshavsky and Xueyu Song Ames Laboratory and Department of Chemistry, Iowa State

  20. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  1. Competitive Adsorption, Phase Segregation, and Molecular Motion at a Solid-Liquid Interface Studied by Scanning

    E-print Network

    Patrick, David L.

    Competitive Adsorption, Phase Segregation, and Molecular Motion at a Solid-Liquid Interface Studied- alkane interface. Introduction Competitive adsorption occurs whenever a multicom- ponent solution, competitive adsorption is a ubiquitous phenomenon. It plays an important role in systems as diverse as column

  2. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer

    NASA Astrophysics Data System (ADS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  3. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces. PMID:25923410

  4. The Effect of Curvature on the Instability of a Solid/Liquid Interface

    NASA Astrophysics Data System (ADS)

    Ogasawara, Yoshihito; Eda, Katsuya; Kitada, Akihiko

    2005-09-01

    An essential factor causing the instability (stability) of a solid/liquid interface during solidification is explored. By examining the qualitative properties of the classical solution of a nonlinear evolution equation, the bifurcation, the coalescence and the growth rate of the interface are discussed. These discussions lead to the relation between the instability (stability) and the curvature of the interface.

  5. Enhanced solid-liquid separation of dairy manure with natural flocculants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural flocculants have potential to replace the use of synthetic flocculants used for enhanced solid-liquid separation of livestock effluents, especially with increased cost of energy and renewed interest on organic farming systems. We conducted a study to determine the effectiveness of natural fl...

  6. Polymer Selection for Biphenyl Degradation in a Solid-Liquid Two-Phase Partitioning Bioreactor

    E-print Network

    Daugulis, Andrew J.

    Polymer Selection for Biphenyl Degradation in a Solid-Liquid Two-Phase Partitioning Bioreactor Lars, Kingston, Ontario, Canada K7L 3N6 The commercially available thermoplastic polymer Hytrel was selected biphenyl. The partitioning of biphenyl between the selected polymers and water was analogous

  7. Abatement of ammonia emissions from swine lagoons using polymer enhanced solid-liquid separation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effects of solid-liquid separation of liquid swine manure on ammonia emissions from lagoons. This determination was done at full-scale in two contiguous swine production units that had similar animal production management. One of these units was maintained as a...

  8. ORIGINAL RESEARCH PAPER Solid-liquid two-phase partitioning bioreactors

    E-print Network

    Daugulis, Andrew J.

    ORIGINAL RESEARCH PAPER Solid-liquid two-phase partitioning bioreactors for the treatment of gas-phase volatile organic carbons (VOCs) by a microbial consortium Andrew J. Daugulis Æ Neal G. Boudreau Received bioreactors (TPPBs) rely on the use of an immiscible organic phase that acts as a reservoir for inhibitory

  9. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  10. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…

  11. Electric current effects on solid-solid and solid-liquid metallic reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Jinfeng

    The interactions at high temperatures between contacting dissimilar metals and the nature of the phases formed from such interactions are of importance in a variety of applications. Solid-solid interactions are important in such considerations as fiber-matrix reactions, diffusion bonding, and electromigration in interconnects in electronic devices, while solid-liquid interactions have practical significance in liquid metal infiltration, soldering and brazing, liquid-metal coating, and liquid metal corrosion. Related to the latter are investigations on solidification and the effect of various parameters on the resulting microstructure. One parameter of interest to the present investigation relates to the effect of electric fields. It was found that the electric field played a dominant role in the dynamics of these reactions and in the concomitant phase formation and microstructure evolution. Due to the difficulty in decoupling the large effect of Joule heating from other current effects, the role of the current is not fully understood. Electromigration is perhaps the best-known electric current effect on conductors. However, the nature of the role of the field in these processes could not be unambiguously determined. In this research, the electric field effect on two simple systems: solid Ni/liquid Al and solid Cu/Ni, was investigated. In solid Ni/liquid Al case, the current effects on the dissolution kinetics of solid Ni into liquid Al, and on the microstructure of solidified samples were investigated. The current had a marked effect on the dissolution rate constant. Correspondingly, the application of the current decreased the activation energy of dissolution significantly. The direction of the DC current was shown to have an effect on dissolution. The influence of a DC current on the microstructural evolution of phases resulting from the dissolution of solid nickel in pure and Ni-saturated liquid aluminum was investigated. In solid Cu/Ni case, the effect of a DC current on the interdiffusivity, D˜, was investigated. Interdiffusivities were calculated using the Sauer-Freise-den Broeder (SFB) method and the values calculated in the absence of a current were in agreement with previously published results. The influence of the current on D˜ depended on its direction relative to the two interfaces in the tri-layered Cu-Ni-Cu samples.

  12. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    NASA Technical Reports Server (NTRS)

    Wang, Jai-Ching

    1994-01-01

    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  13. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.

    1988-01-01

    Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.

  14. Note: Sample cells to investigate solid/liquid interfaces with neutrons

    SciTech Connect

    Rennie, Adrian R. Hellsing, Maja S.; Lindholm, Eric; Olsson, Anders

    2015-01-15

    The design of sample cells to study solid/liquid interfaces by neutron reflection is presented. Use of standardized components and a modular design has allowed a wide range of experiments that include grazing incidence scattering and conventional small-angle scattering. Features that reduce background scattering are emphasized. Various flow arrangements to fill and replenish the liquid in the cell as well as continuous stirring are described.

  15. Note: Sample cells to investigate solid/liquid interfaces with neutrons

    NASA Astrophysics Data System (ADS)

    Rennie, Adrian R.; Hellsing, Maja S.; Lindholm, Eric; Olsson, Anders

    2015-01-01

    The design of sample cells to study solid/liquid interfaces by neutron reflection is presented. Use of standardized components and a modular design has allowed a wide range of experiments that include grazing incidence scattering and conventional small-angle scattering. Features that reduce background scattering are emphasized. Various flow arrangements to fill and replenish the liquid in the cell as well as continuous stirring are described.

  16. Estimation of solid-liquid interfacial tension using curved surface of a soft solid.

    PubMed

    Mondal, Subrata; Phukan, Monmee; Ghatak, Animangsu

    2015-10-13

    Unlike liquids, for crystalline solids the surface tension is known to be different from the surface energy. However, the same cannot be said conclusively for amorphous materials like soft cross-linked elastomers. To resolve this issue we have introduced here a direct method for measuring solid-liquid interfacial tension by using the curved surface of a solid. In essence, we have used the inner surface of tiny cylindrical channels embedded inside a soft elastomeric film for sensing the effect of the interfacial tension. When a liquid is inserted into the channel, because of wetting-induced alteration in interfacial tension, its thin wall deflects considerably; the deflection is measured with an optical profilometer and analyzed using the Föppl-von Kármán equation. We have used several liquids and cross-linked poly(dimethylsiloxane) as the solid to show that the estimated values of the solid-liquid interfacial tension matches with the corresponding solid-liquid interfacial energy reasonably well. PMID:26420871

  17. Effect of confinement on the solid-liquid coexistence of Lennard-Jones Fluid

    SciTech Connect

    Das, Chandan K.; Singh, Jayant K.

    2013-11-07

    The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wall separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.

  18. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubiz?ák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ? 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ? (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  19. Extrait des dispositions principales du Rglement sur le personnel de l'Universit applicables aux membres du personnel administratif et technique ANNEXE AU CONTRAT DE DROIT PRIVE

    E-print Network

    Halazonetis, Thanos

    membres du personnel administratif et technique 1 ANNEXE AU CONTRAT DE DROIT PRIVE Nous attirons dispositions du Titre III de la présente partie ; b) aux dispositions du contrat ; c) à titre subsidiaire, à la décembre 1973. Art. 210 Principes de l'engagement 1 L'engagement fait l'objet d'un contrat de travail de

  20. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    SciTech Connect

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (?), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles based on EIS measurement using a sensor of 8 electrodes are reported. Results have demonstrated the potential as well as revealed the challenge in the use of EIS and EITS for characterisation of particle in suspension.

  1. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.

  2. A model of blind zone for in situ monitoring the solid/liquid interface using ultrasonic wave.

    PubMed

    Peng, Song; Ouyang, Qi; Zhu, Z Z; Zhang, X L

    2015-07-01

    To in situ monitor a solid/liquid interface to control metal qualities, the paper analysis blind models of the ultrasonic propagation in the solidifying molten metal with a solid/liquid interface in the Bridgman type furnace, and a mathematical calculation model of blind zone with different source locations and surface concavities is built. The study points out that the blind zone I is caused by ray bending in the interface edge, and the blind zone II is caused by totally reflection which is related with initial ray angle, critical refraction angle of solid/liquid media. A serial of simulation experiments are operated on the base of the model, and numerical computation results coincide with model calculated results very well. Therefore, receiver should locate beyond these blind zones in the right boundary to obtain time of flight data which is used to reconstruct the solid/liquid interface. PMID:25783779

  3. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu

    2013-01-01

    The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ? two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.

  4. Melting, freezing and nucleation in nanoclusters of potassium chloride. II - Modelling the solid-liquid coexistence

    NASA Astrophysics Data System (ADS)

    Rodrigues, P. C. R.; Silva Fernandes, F. M. S.

    2007-01-01

    In a recent article we have reported extensive molecular dynamics simulations for the melting freezing and nucleation in unconstrained nanoclusters of KCl. Based on that study we propose, in the present article, a theoretical model for the solid-liquid coexistence in finite systems, at virtually zero external pressure and no vaporisation. The main trends of the phase coexistence behaviour, namely the starting and the end points, are explained by the model as a function of system size. Other specific properties of clusters, eventually accessible by experiment, are defined and their values predicted. On the absence of available experimental data, the model is tested against simulation results with fairly good accordance.

  5. Solid-liquid composite structures: elastic beams with embedded liquid-filled parallel-channel networks

    E-print Network

    Yoav Matia; Amir Gat

    2014-09-07

    Deformation due to embedded fluidic networks is currently studied in the context of soft-actuators and soft-robotics. Expanding on this concept, beams can be designed so that the pressure in the channel-network is created directly from external forces acting on the beam, and thus can be viewed as passive solid-liquid composite structure. We obtain a continuous function relating the network geometry to the deformation. This enables design of networks creating arbitrary steady and time varying deformation-fields as well as to eliminate deformation created by external forces.

  6. Free energies of ionic nanoclusters. Solid and coexistent solid-liquid states

    NASA Astrophysics Data System (ADS)

    Rodrigues, P. C. R.; Silva Fernandes, F. M. S.

    2008-10-01

    A strategy to overcome some specific problems associated to the computation of free energies in clusters is presented. Free energies and entropies of solid KCl nanoclusters are determined by thermodynamic integration, and Watanabe and Reinhardt’s dynamical method, based on molecular dynamics simulations. The values are in good agreement with experimental data. From a previous theoretical prediction of the caloric curve, T( E), for the coexistence region, an equation is derived to compute the free energies of the clusters at the solid-liquid coexistence. The results are discussed in the context of the thermodynamic stability of phase coexistent states for finite and infinite systems, yielding consistent conclusions.

  7. Determination of the mean solid-liquid interface energy of pivalic acid

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gliksman, M. E.

    1989-01-01

    A high-confidence solid-liquid interfacial energy is determined for an anisotropic material. A coaxial composite having a cylindrical specimen chamber geometry provides a thermal gradient with an axial heating wire. The surface energy is derived from measurements of grain boundary groove shapes. Applying this method to pivalic acid, a surface energy of 2.84 erg/sq cm was determined with a total systematic and random error less than 10 percent. The value of interfacial energy corresponds to 24 percent of the latent heat of fusion per molecule.

  8. The Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows

    PubMed Central

    Alexiadis, Alessio

    2015-01-01

    This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling), flow conditions (confined, free-surface, microscopic), and scales (from microns to meters). Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow. PMID:25961561

  9. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    PubMed Central

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-01-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for ‘accommodating’ guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in ‘sensing’ application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials. PMID:26411980

  10. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-09-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for ‘accommodating’ guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in ‘sensing’ application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials.

  11. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface.

    PubMed

    Mande, Hemant M; Ghalsasi, Prasanna S

    2015-01-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable 'molecular' property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly 'adsorb' HCl gas at solid-gas interface as well as 'accommodate' azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for 'accommodating' guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in 'sensing' application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials. PMID:26411980

  12. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure. PMID:26274309

  13. Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Ahmed, Alauddin; Sadus, Richard J.

    2009-11-01

    Molecular dynamics simulations are reported for the solid-liquid coexistence properties of n-6 Lennard-Jones fluids, where n =12, 11, 10, 9, 8, and 7. The complete phase behavior for these systems has been obtained by combining these data with vapor-liquid simulations. The influence of n on the solid-liquid coexistence region is compared using relative density difference and miscibility gap calculations. Analytical expressions for the coexistence pressure, liquid, and solid densities as a function of temperature have been determined, which accurately reproduce the molecular simulation data. The triple point temperature, pressure, and liquid and solid densities are estimated. The triple point temperature and pressure scale with respect to 1/n, resulting in simple linear relationships that can be used to determine the pressure and temperature for the limiting ?-6 Lennard-Jones potential. The simulation data are used to obtain parameters for the Raveché, Mountain, and Streett and Lindemann melting rules, which indicate that they are obeyed by the n-6 Lennard Jones potentials. In contrast, it is demonstrated that the Hansen-Verlet freezing rule is not valid for n-6 Lennard-Jones potentials.

  14. Atomistic simulation of CdTe solid-liquid coexistence equilibria

    SciTech Connect

    Henager, Charles H.; Morris, James R.

    2009-12-07

    Atomistic simulations of CdTe using a Stillinger-Weber (S-W) interatomic potential were undertaken to model the solid-liquid phase equilibria of this important compound semiconductor. Although this potential has been used by others to study liquid CdTe and vapor-liquid interface, it is based on fitting parameters optimized only for the zincblende solid. It has not been fully explored as a potential for solid-liquid phase equilibria until this work. This research reports an accurate determination of the melting temperature, TM=1305K near P=0, the heat of fusion at melting and as a function of temperature up to 1700K, and on the relative phase densities with a particular emphasis on the melting line. The S-W potential for CdTe predicts a liquid with a density slightly less than that of the solid and, hence, the pressure-temperature melting line has a positive slope. The pair correlation structure of the liquid is determined and favorably compared to neutron scattering data. The liquid-solid interface is discussed using density profiles and a short-range order parameter for models having principal orientations along <100>, <110>, and <111> crystallographic directions.

  15. Evaluation and ranking of the tank focus area solid liquid separation needs

    SciTech Connect

    McCabe, D.J.

    1995-08-17

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing.

  16. A level set method for solid-liquid interface tracking in texturally equilibrated pore networks

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, Soheil; Hesse, Marc; Prodanovic, Masa

    2015-04-01

    The properties of some porous media are determined by their evolution towards textural equilibrium. Melt drainage from temperate glacier ice and the accumulation of hydrocarbons beneath rock salt are two examples in natural systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining dihedral angle, ?, at solid-liquid contact lines. In this work we present the first computations of 3-D texturally equilibrated pore networks using a novel level set method. Interfacial energy minimization is achieved by evolving interface under surface diffusion to constant mean curvature surface. The porosity and dihedral angle constraints are added to the formulation using virtual velocity terms. A domain decomposition scheme is devised to restrict the computational domain and the coupling between the interfaces is achieved on the original computational domain. For the last 30 years, explicit representation of the interfaces limited the computations to highly idealized geometries. The presented model overcomes these limitations and opens the door to the exploration of the physics of these materials in realistic systems. For example, our results show that the fully wetted grain boundaries exist even for ?>0 which reconciles the theory with experimental observations. This work is sponsored by the Statoil Fellows Program at The University of Texas.

  17. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  18. Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling

    2015-11-01

    In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.

  19. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.

    PubMed

    Leroy, Frédéric; Müller-Plathe, Florian

    2015-08-01

    We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed. PMID:26158205

  20. Conception, elaboration et mise a l'essai d'un simulateur interactif permettant une approche modelisante: Application aux lois de la genetique mendelienne

    NASA Astrophysics Data System (ADS)

    Lasri, Abdel-Halim

    Dans cette recherche-developpement, nous avons concu, developpe et mis a l'essai un simulateur interactif pour favoriser l'apprentissage des lois probabilistes impliqees dans la genetique mendelienne. Cet environnement informatise devra permettre aux etudiants de mener des experiences simulees, utilisant les statistiques et les probebilites comme outils mathematiques pour modeliser le phenomene de la transmission des caracteres hereditaires. L'approche didactique est essentiellement orientee vers l'utilisation des methodes quantitatives impliquees dans l'experimentation des facteurs hereditaires. En incorporant au simulateur le principe de la "Lunette cognitive" de Nonnon (1986), l'etudiant fut place dans une situation ou il a pu synchroniser la perception de la representation iconique (concrete) et symbolique (abstraite) des lois probabilistes de Mendel. A l'aide de cet environnement, nous avons amene l'etudiant a identifier le(s) caractere(s) hereditaire(s) des parents a croiser, a predire les frequences phenotypiques probables de la descendance issue du croisement, a observer les resultats statistiques et leur fluctuation au niveau de l'histogramme des frequences, a comparer ces resultats aux predictions anticipees, a interpreter les donnees et a selectionner en consequence d'autres experiences a realiser. Les etapes de l'approche inductive sont privilegiees du debut a la fin des activites proposees. L'elaboration, du simulateur et des documents d'accompagnement, a ete concue a partir d'une vingtaine de principes directeurs et d'un modele d'action. Ces principes directeurs et le modele d'action decoulent de considerations theoriques psychologiques, didactiques et technologiques. La recherche decrit la structure des differentes parties composant le simulateur. L'architecture de celui-ci est construite autour d'une unite centrale, la "Principale", dont les liens et les ramifications avec les autres unites confere a l'ensemble du simulateur sa souplesse et sa facilite d'utilisation. Le simulateur "Genetique", a l'etat de prototype, et la documentation qui lui est afferente ont ete soumis a deux mises a l'essai: l'une fonctionnelle, l'autre empirique. La mise a l'essai fonctionnelle, menee aupres d'un groupe d'enseignants experts, a permis d'identifier les lacunes du materiel elabore afin de lui apporter les reajustements qui s'imposaient. La mise a l'essai empirique, conduite par un groupe de onze (11) etudiants de niveau secondaire, avait pour but, d'une part, de tester la facilite d'utilisation du simulateur "Genetique" ainsi que les documents d'accompagnement et, d'autre part, de verifier si les participants retiraient des avantages pedagogiques de cet environnement. Trois techniques furent exploitees pour recolter les donnees de la mise a l'essai empirique. L'analyse des resultats a permis de faire un retour critique sur les productions concretes de cette recherche et d'apporter les modifications necessaires tant au simulateur qu'aux documents d'accompagnement. Cette analyse a permis egalement de conclure que notre simulateur interactif favorise une approche inductive permettant aux etudiants de s'approprier les lois probabilistes de Mendel. Enfin, la conclusion degage des pistes de recherches destinees aux etudes ulterieures, plus particulierement celles qui s'interessent a developper des simulateurs, afin d'integrer a ceux-ci des representations concretes et abstraites presentees en temps reel. Les disquettes du simulateur "Genetique" et les documents d'accompagnement sont annexes a la presente recherche.

  1. Influence of solid-liquid interface shape on striations during CZ InSb single crystal growth in ultrasonic fields

    NASA Astrophysics Data System (ADS)

    Kozhemyakin, G. N.

    2012-12-01

    InSb single crystals were grown in the <111> direction by a modified Czochralski method. Ultrasonic waves at a frequency of 0.71 MHz were introduced into the melt parallel and perpendicular to the pulling axis at frequencies of 1.25, 1.44, and 2 MHz under the solid-liquid interface. The influence of solid-liquid interface shape on morphology and elimination of striations was found during crystal growth due to the effect of the ultrasound in two orthogonal directions.

  2. Biofilm formation at the solid-liquid and air-liquid interfaces by Acinetobacter species

    PubMed Central

    2011-01-01

    Background The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. Findings Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). Conclusions Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species. PMID:21223561

  3. New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site

    SciTech Connect

    Bhave, Ramesh R

    2012-01-01

    New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site R. Bhave (Oak Ridge National Laboratory. Oak Ridge, TN) and M. R. Poirier* (Savannah River National Laboratory, Aiken SC) Solid-liquid separation is the limiting step for many waste treatment processes at the Savannah River Site. SRNL researchers have identified the rotary microfilter as a technology to improve the rate of solid-liquid separation processes. SRNL is currently developing the rotary microfilter for radioactive service and plans to deploy the technology as part of the small column ion exchange process. The rotary microfilter can utilize any filter media that is available as a flat sheet. The current baseline membrane is a 0.5 micron (nominal) porous metal filter (Pall PMM050). Previous testing with tubular filters showed that filters composed of a ceramic membrane on top of a stainless steel support produce higher flux than filters composed only of porous metal. The authors are working to develop flat sheet filter media composed of a ceramic membrane and/or ceramic-metal composite on top of a porous stainless steel support that can be used with the rotary microfilter to substantially increase filter flux resulting in a more compact, energy efficient and cost-effective high level radioactive waste treatment system. Composite membranes with precisely controlled pore size distribution were fabricated on porous metal supports. High quality uniform porous metal (316SS) supports were fabricated to achieve high water permeability. Separative layers of several different materials such as ultrafine metal particles and ceramic oxides were used to fabricate composite membranes. The fabrication process involved several high temperature heat treatments followed by characterization of gas and liquid permeability measurements and membrane integrity analysis. The fabricated composite membrane samples were evaluated in a static test cell manufactured by SpinTek. The composite membranes were evaluated on several feed slurries: 1 wt. % strontium carbonate in deionized water, 1 wt. % monosodium titanate in simulated salt solution, and 1 wt. % simulated sludge in simulated salt solution and deionized water. Flux as a function of feed flow rate and transmembrane pressure was measured for each of the above described feed slurries. The authors will discuss the new membrane development efforts, waste slurry filtration performance evaluations and scale-up considerations.

  4. A low-cost solid-liquid separation process for enzymatically hydrolyzed corn stover slurries.

    PubMed

    Sievers, David A; Lischeske, James J; Biddy, Mary J; Stickel, Jonathan J

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantly reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter. PMID:25836372

  5. Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets

    SciTech Connect

    Paumel, K.; Baque, F.; Moysan, J.; Corneloup, G.; Chatain, D.

    2011-08-15

    Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.

  6. Dependence of solid-liquid interface free energy on liquid structure

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Mendelev, M. I.

    2014-09-01

    The Turnbull relation is widely believed to enable prediction of solid-liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing's theory. A modification to Ewing's relation is proposed in this study that was found to provide excellent agreement with MD simulation data.

  7. Numerical Calculation of the Morphology of a Solid/Liquid Interface Near an Insoluble Particle

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu

    2003-01-01

    A numerical mathematical model capable of accurately describing the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle is presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub P) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. Calculated critical solidification velocities for the pushing/engulfment transition are compared with experimental measurements performed in microgravity conditions.

  8. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems. PMID:25431860

  9. Solid/Liquid phase diagram of the ammonium sulfate/maleic acid/water system.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Pearson, Christian S

    2011-12-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution. PMID:22017680

  10. Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets

    NASA Astrophysics Data System (ADS)

    Paumel, K.; Moysan, J.; Chatain, D.; Corneloup, G.; Baqué, F.

    2011-08-01

    Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.

  11. SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486

    SciTech Connect

    Shilova, E.; Viel, P.; Huc, V.

    2013-07-01

    This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

  12. Dependence of solid-liquid interface free energy on liquid structure

    SciTech Connect

    Wilson, S R; Mendelev, M I

    2014-09-01

    The Turnbull relation is widely believed to enable prediction of solid–liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing’s theory. A modification to Ewing’s relation is proposed in this study that was found to provide excellent agreement with MD simulation data.

  13. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    SciTech Connect

    McDaniel, D.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function at winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)

  14. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid-Liquid Dynamic Extraction

    ERIC Educational Resources Information Center

    Naviglio, Daniele; Montesano, Domenico; Gallo, Monica

    2015-01-01

    Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…

  15. A study on the thermal resistance over solid-liquid-vapor interfaces in a finite-space by a molecular dynamics method

    E-print Network

    Maruyama, Shigeo

    and argon internal relation Ar Argon G Gas L Liquid I Intermediate S Solid surf surface W wall #12A study on the thermal resistance over solid-liquid-vapor interfaces in a finite that the total thermal resistance is characterized not only by the thermal boundary resistances of the solid-liquid

  16. Investigations of Water Structure at the Solid/Liquid Interface in the Presence of Supported Lipid Bilayers by

    E-print Network

    Investigations of Water Structure at the Solid/Liquid Interface in the Presence of Supported Lipid spectroscopy. By varying the pH of the bulk solution and the charge on the SLB, changes in both ice many properties of biological membranes including two-dimensional fluidity (Figure 1).1-6 Lateral

  17. Polymer Development for Enhanced Delivery of Phenol in a Solid-Liquid Two-Phase Partitioning Bioreactor

    E-print Network

    Daugulis, Andrew J.

    Polymer Development for Enhanced Delivery of Phenol in a Solid-Liquid Two-Phase Partitioning liquid TPPBs to the use of pure strains of microbes. Solid polymer beads have recently been introduced to be used with mixed microbial populations. The present work was aimed at identifying a polymer

  18. Probing the Solid-Liquid Interface using Single-Molecule Dynamics

    NASA Astrophysics Data System (ADS)

    Nelson, Nathaniel

    Molecular interactions with solid-liquid interfaces have long been studied through macroscopic observations. There were, however, only a limited number of ways to observe true molecular phenomena leading to a wide discrepancy between theoretical models and experimental results. The work presented here uses total internal reflection fluorescence (TIRF) microscopy to image individual molecules at the solid-liquid interface as they undergo the dynamic processes of adsorption, diffusion, and desorption. Studying these dynamic behaviors at the single-molecule level allowed great insight into the macroscopically observed hydrophobic effect as well as the Hofmeister effect. The hydrophobic effect was probed by looking at the response of individual molecules to surfaces with varying alkyl chain lengths. These experiments showed that surface residence time increased and mobility decreased with increasing alkyl chain length despite all of the surfaces having the same nominal hydrophobicity. Experiments using the salts NaF and NaSCN dissolved in water along with a fatty acid probe molecule were conducted to examine the Hofmeister effect at the molecular level. These experiments showed a dramatic change in adsorption rate of the hydrophobic probe onto a hydrophobic surface, but minimal change in diffusion or desorption rate. We used the knowledge that molecular probes interact with specific surface chemistries very differently to develop a super-resolution imaging technique called MAPT (mapping using accumulated probe trajectories). MAPT created images of a surface using each molecular behavior (e.g. diffusion) as a contrast mechanism. These images were first used to show variations in hydrophobicity on a photopatterned self-assembled monolayer. MAPT images also allowed us to differentiate between the 2D Brownian motion of a molecule on a surface and intermittent 3D flights through solution. Finally, we developed a technique for identifying surface chemistry using dynamic molecular interactions using an unsupervised Gaussian mixture modeling algorithm. This algorithm identifies regions on a surface that share similar molecular behaviors which can then be compared to the behaviors observed on surfaces of known chemistry. These identifications allow, for the first time, one to create true maps of surface chemistry.

  19. Effects of Ultrasound on Behavior of Fine Solid Particles in a Solid-Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Ohta, Junichi; Makara, Takashi; Hirobe, Seisuke

    In a solid-liquid two-phase flow, the separation of particles or a reduction of particle concentration is often desired. Utilization of ultrasound has been considered as one technique for the separation of particles. Particles are known to aggregate due to the radiation pressure of ultrasound. However, the effect of ultrasound including cavitation on particle behavior is not well understood. Thus, we horizontally irradiated water with aluminum particles having a density of 2720 kg/m3 and diameters of 50 to 150 ?m or smaller aluminum powder (flakes) in a rectangular vessel by ultrasound at frequencies of 23 kHz or 100 kHz. In this way, a standing wave was formed. The following results were obtained. For ultrasound of 100 kHz, the aluminum powder aggregates in vertical bands. When acoustic cavitation existed at the frequency of 23 kHz, we noticed that the aluminum particles aggregate as clumps near antinodes of the sound pressure profile because of the flow induced by acoustic cavitation. When the particles are continuously provided in a relatively high concentration, particle clumps form and remain. Then, the particle clumps become larger and suddenly fall faster than the surrounding small particles. Such phenomena repeat themselves periodically. At relatively low concentrations, particle clumps do not become large and remain stationary at the same positions.

  20. Solid-liquid interface free energies of pure bcc metals and B2 phases

    SciTech Connect

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  1. Solid-liquid interface free energies of pure bcc metals and B2 phases

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  2. Band offsets across solid-liquid interfaces from continuum solvation methods

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Ping, Yuan; Galli, Giulia A.; Goddard, William A., III

    2015-03-01

    The band edge positions of photo-electrodes relative to water redox potentials play an important role in determining the efficiency of the photo-electrochemical cell. Direct theoretical calculations of solid-liquid interfaces are expensive and simplified models are desirable for rapid theoretical screening of new materials. However, traditional solvation models are extensively fit to describe organic solutes and hence extrapolate poorly to highly-polar inorganic surfaces. We develop minimally-empirical continuum solvation models suitable for treating such surfaces and present theoretical predictions of the band positions of rutile TiO2 (110) and WO3 (001) surfaces in water. We obtain non-negligible solvation effects ~ 1-2 eV, in good agreement with experimental results. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  3. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  4. Solid-liquid separation of oxidized americium from fission product lanthanides

    NASA Astrophysics Data System (ADS)

    Shehee, T. C.; Martin, L. R.; Nash, K. L.

    2010-03-01

    The separation of americium from the lanthanides and curium is a requirement if transmutation of americium is to be performed in advanced nuclear fuel cycles. Oxidation of Am3+ to AmO2+ or AmO22+ may allow separation of Am from Ln and Cm in one step, since the lanthanides and curium do not have higher oxidation states as accessible. Two possible solid-liquid separation methods have been developed to address this difficult separation. Under acidic conditions using oxone or persulfate, the oxidation and retention of tracer Am in the aqueous phase has been observed with a separation factor of 11 ± 1. Most of these studies have been conducted using 237NpO2(NO3), 233UO2(NO3)2, 238Pu(NO3)4 and 241Am(NO3)3 at radiotracer concentrations. Lanthanides precipitate as the sodium or potassium europium double sulfate salt. Under basic conditions, ozone oxidation of Am(CO3)OH(s) solubilizes Am from a lanthanide carbonate hydroxide solid phase to the aqueous phase as the AmO2(CO3)34-or AmO2(CO3)35- species. For the ozone oxidation of the americium tracer a separation factor of 1.6 ± 0.8 and 47 ± 2 for the oxidation/separation in Na2CO3 and NaHCO3 respectively.

  5. Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures

    PubMed Central

    dos Santos, Silvia Cristina Cunha; Ouellette, Julianne; Juteau, Pierre; Lépine, François; Déziel, Eric

    2013-01-01

    Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents. PMID:23728808

  6. Molecular Dynamics Study of Freezing Point and Solid-Liquid Interfacial Free Energy of Stockmayer Fluids

    SciTech Connect

    Wang, J.; Apte, Pankaj; Morris, James R; Zeng, X.C.

    2013-01-01

    Freezing temperatures of Stockmayer fluids with different dipolar strength at zero pressure are estimated and computed using three independent molecular-dynamics (MD) simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature (NPT) two phase coexistence method, and the constant-pressure and constant-enthalpy (NPH) coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with a reduced dipole moment is 0.656 0.001, 0.726 0.002 and 0.835 0.005, respectively. The freezing temperature increases with the dipolar strength. The solid-liquid interfacial free energies of the (111), (110) and (100) interface are calculated for the first time using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, that is, .

  7. Solid-liquid interface free energies of pure bcc metals and B2 phases

    DOE PAGESBeta

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observedmore »in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.« less

  8. Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.

    2013-01-01

    The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.

  9. Migration of cadmium through a natural porous medium : Influence of the solid-liquid interface processes

    NASA Astrophysics Data System (ADS)

    Petrangeli Papini, M.; Bianchi, A.; Behra, P.; Majone, M.; Beccari, M.

    2003-05-01

    Contaminated groundwater typically contains different metal contaminants which may compete with each other for the same adsorption sites. Understanding the fate of these micro-pollutants is of primary importance for the assessment of the risk associated to their dispersion in the environment and for the evaluation of the most appropriate remediation technology. By this regard, column techniques can be considered as a useful tool both to perform transport experiments and to obtain equilibrium adsorption data without any perturbation of the solid-liquid interface. Cd and Pb mono-component step column experiments were performed to obtain adsorption isotherms with a natural aquifer material. General Composite approach was used to define the equilibrium adsorption model characterised by two types of sites (ion-exchange and surface complexation sites). Coupling the adsorption model to the Advection-Dispersion equation (by IMPACT code) allowed to well represent the mono-component step experiments. The model was successfully used to predict the competitive Cd and Pb transport behaviour.

  10. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution. PMID:23544733

  11. DETERMINATION OF SOLID-LIQUID EQUILIBRIA DATA FOR MIXTURES OF HEAVY HYDROCARBONS IN A LIGHT SOLVENT

    SciTech Connect

    F.V. Hanson; J.V. Fletcher; Karthik R.

    2003-06-01

    A methodology was developed using an FT-IR spectroscopic technique to obtain solid-liquid equilibria (SLE) data for mixtures of heavy hydrocarbons in significantly lighter hydrocarbon diluents. SLE was examined in multiple Model Oils that were assembled to simulate waxes. The various Model oils were comprised of C-30 to C-44 hydrocarbons in decane. The FT-IR technique was used to identify the wax precipitation temperature (WPT). The DSC technique was also used in the identification of the onset of the two-phase equilibrium in this work. An additional Model oil made up of C-20 to C-30 hydrocarbons in decane was studied using the DSC experiment. The weight percent solid below the WPT was calculated using the FT-IR experimental results. The WPT and the weight percent solid below the WPT were predicted using an activity coefficient based thermodynamic model. The FT-IR spectroscopy method is found to successfully provide SLE data and also has several advantages over other laboratory-based methods.

  12. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    E-print Network

    Dima Bolmatov; Dmitry Zavyalov; Mikhail Zhernenkov; Edvard T. Musaev; Yong Q. Cai

    2015-12-22

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit, the ideal gas limit and the new thermodynamic limit, dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  13. The contact line behaviour of solid-liquid-gas diffuse-interface models

    E-print Network

    Sibley, David N; Savva, Nikos; Kalliadasis, Serafim

    2013-01-01

    A solid-liquid-gas moving contact line is considered through a diffuse-interface model with the classical boundary condition of no-slip at the solid surface. Examination of the asymptotic behaviour as the contact line is approached shows that the relaxation of the classical model of a sharp liquid-gas interface, whilst retaining the no-slip condition, resolves the stress and pressure singularities associated with the moving contact line problem while the fluid velocity is well defined (not multi-valued). The moving contact line behaviour is analysed for a general problem relevant for any density dependent dynamic viscosity and volume viscosity, and for general microscopic contact angle and double well free-energy forms. Away from the contact line, analysis of the diffuse-interface model shows that the Navier--Stokes equations and classical interfacial boundary conditions are obtained at leading order in the sharp-interface limit, justifying the creeping flow problem imposed in an intermediate region in the se...

  14. Kinetics of Dissolution and Isothermal Solidification for Gold-Enriched Solid-Liquid Interdiffusion (SLID) Bonding

    NASA Astrophysics Data System (ADS)

    Rodriguez, Rogie I.; Ibitayo, Dimeji; Quintero, Pedro O.

    2013-08-01

    This paper presents the development and characterization of a fluxless die-attach soldering process based on gold-enriched solid-liquid interdiffusion (SLID). Eutectic Au-Sn and pure Au were deposited by jet vapor deposition (JVD) onto two substrates, assembled in a sandwiched structure, and processed in a vacuum furnace using different temperatures and times. Microstructural characterization, based on scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) analysis, revealed the formation of sound joints governed by the interdiffusion of the main constituents. Kinetic studies for the dissolution and the isothermal solidification stages were conducted. Differential scanning calorimetry (DSC) revealed a solder joint that is thermally stable up to 498°C, thus demonstrating the effectiveness of using the SLID process for the production of joints which require a lower processing temperature compared with their remelting point. Based on these findings, the recommended final bonding parameters are processing temperature and time of 340°C (310°C < T P < 340°C) and 5 min, respectively.

  15. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    NASA Astrophysics Data System (ADS)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  16. Focused ultrasound solid-liquid extraction for the determination of organic biomarkers in beachrocks.

    PubMed

    Blanco-Zubiaguirre, L; Arrieta, N; Iturregui, A; Martinez-Arkarazo, I; Olivares, M; Castro, K; Olazabal, M A; Madariaga, J M

    2015-11-01

    Beachrocks are consolidated coastal sedimentary formations resulting mainly from the relative rapid cementation of beach sediments by different calcium carbonate polymorphs. Although previous works have already studied the elemental composition and the mineral phases composing these cements, few of them have focused their attention on the organic matter present therein. This work describes an extraction methodology based on focused ultrasound solid-liquid extraction (FUSLE), followed by analysis using large volume injection (LVI) in a programmable temperature vaporizer (PTV) combined with gas chromatography-mass spectrometry (GC-MS) in order to determine organics such as polycyclic aromatic hydrocarbons (PAHs) and biomarkers (hopanes), which can increase and confirm the information obtained so far. This goal has been achieved after the optimization of the main parameters affecting the extraction procedure, such as, extraction solvent, FUSLE variables (amplitude, extraction time and pulse time) and also variables affecting the LVI-PTV (vent time, injection speed and cryo-focusing temperature). The developed method rendered results comparable to traditional extraction methods in terms of accuracy (77-109%) and repeatability (RSD<23%). Finally, the analyses performed over real beachrock samples from the Bay of Biscay (Northern Spain) revealed the presence of the 16 EPA priority PAHs, as well as some organic biomarkers which could increase the knowledge about such beachrock formation. PMID:26186864

  17. Rapid heating of a strongly coupled plasma at the solid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Jensen, M. J.; Hasegawa, T.; Bollinger, J. J.; Dubin, D. H. E.

    2004-11-01

    Between 10^4 and 10^6 ^9Be^+ ions are trapped in a 4.5 Tesla Penning trap and laser-cooled to ˜1 mK, where the ions form a crystalline plasma with an interparticle spacing of ˜20 ?m. This system is a realization of a strongly coupled one-component plasma. Using Doppler laser spectroscopy on a single-photon transition, we measured the temperature and heating rate of this plasma when not being laser-cooled. We measured a slow heating rate of ? 100 mK/s due to residual gas collisions for the first 100-200 ms after turning off the cooling laser. This slow heating is followed by a rapid heating to 1-2 K in 100 ms as the plasma undergoes the solid-liquid phase transition at T=10 mK (? ˜ 170). We will present evidence that this rapid heating is due to a sudden release of energy from weakly cooled degrees of freedom involving the cyclotron motion of trapped impurity ions. We will also discuss the prospects for observing the latent heat associated with the phase transition.

  18. Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.

    PubMed

    Nishiyama, Takashi; Yamada, Yutaka; Ikuta, Tatsuya; Takahashi, Koji; Takata, Yasuyuki

    2015-01-27

    Nanobubbles exist at solid-liquid interfaces between pure water and hydrophobic surfaces with very high stability, lasting in certain cases up to several days. Not only semispherical but also other shapes, such as micropancakes, are known to exist at such interfaces. However, doubt has been raised as to whether or not the nanobubbles are gas-phase entities. In this study, surface nanobubbles at a pure water-highly ordered pyrolytic graphite (HOPG) interface were investigated by peak force quantitative nanomechanics (PF-QNM). Multiple isolated nanobubbles generated by the solvent-exchange method were present on the terraced areas, avoiding the steps of the HOPG surface. Adjacent nanobubbles coalesced and formed metastable nanobubbles. Coalescence was enhanced by the PF-QNM measurement. We determined that nanobubbles can exist for a long time because of nanoscale contact angle hysteresis at the water-HOPG interface. Moreover, the hydrophilic steps of HOPG were avoided during coalescence, providing evidence that the nanobubbles are truly gas phase. PMID:25540821

  19. Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire Growth

    SciTech Connect

    Zhang, Jiguang; Liu, Jun; Wang, Donghai; Choi, Daiwon; Fifield, Leonard S.; Wang, Chong M.; Xia, Guanguang; Nie, Zimin; Yang, Zhenguo; Pederson, Larry R.; Graff, Gordon L.

    2010-03-10

    Silicon based nanowires have been grown from commercial silicon powders under conditions of differing oxygen and carbon activities. Nanowires grown in the presence of carbon sources consisted of a crystalline SiC core with an amorphous SiOx shell. The thickness of SiOx shell decreased as the oxygen concentration in the precursor gases was lowered. Nanowires grown in a carbon-free environment consisted of amorphous silicon oxide with a typical composition of SiO1.8. The growth rate of nanowires decreased with decreasing oxygen content in the precursor gases. SiO1.8 nanowires exhibited an initial discharge capacity of ~ 1,300 mAh/g and better stability than those of silicon powders. A Vapor Induced Solid-Liquid-Solid (VI-SLS) mechanism is proposed to explain the nanowire growth (including silicon and other metal based nanowires) from powder sources. In this approach, both a gas source and a solid powder source are required for nanowire growth. This mechanism is consistent with experimental observations and can also be used to guide the design and growth of other nanowires.

  20. Solid-Liquid Interdiffusion Bonding of Silicon Carbide to Steel for High Temperature MEMS Sensor Packaging and Bonding

    NASA Astrophysics Data System (ADS)

    Chan, Matthew Wei-Jen

    Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of SLID bonding for high temperature applications. Lastly, this dissertation provides recommendations for improving the strength and durability of the bond at temperatures of 400 °C and provides the framework for future work in the area of high temperature harsh environment MEMS packaging that would take directly bonded MEMS to temperatures of 600 °C and beyond.

  1. Aide aux doctorants pour la participation des Aide aux doctorants pour la participation des colloques

    E-print Network

    Di Girolami, Cristina

    Aide aux doctorants pour la participation à des colloques Aide aux doctorants pour la participation à des colloques retour Formation doctorale Aide aux doctorants pour la participation à des colloques aide vient compléter les financements déjà prévus par les laboratoires et les Écoles doctorales pour

  2. Application of SolidLiquid TPPBs to the Production of L-Phenylacetylcarbinol From

    E-print Network

    Daugulis, Andrew J.

    .daugulis@chee.queensu.ca Received 30 March 2010; revision received 27 May 2010; accepted 2 June 2010 Published online 15 June 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.22839 ABSTRACT: The biotransformation-Phenylacetylcarbinol (PAC) is a precursor to the drugs L-ephedrine and pseudoephedrine, which are used as decongestants

  3. Multivariate analysis of ATR-IR spectroscopic data: applications to the solid-liquid catalytic interface.

    PubMed

    Ortiz-Hernandez, Ivelisse; Owens, D Jason; Strunk, Michael R; Williams, Christopher T

    2006-03-14

    It is demonstrated that attenuated total reflection infrared (ATR-IR) spectroscopy coupled with multivariate data analysis can be effectively used for in situ investigation of supported catalyst-liquid interfaces. Both formaldehyde adsorption/dissociation in water and acetonitrile adsorption in hexane on thin (ca 10 mum) films of 5 wt % Pt/gamma-Al(2)O(3) deposited on a germanium waveguide have been investigated. The multivariate analysis applies classical least squares (CLS) and partial least squares (PLS) methods to the ATR-IR data in order to correlate spectral changes with known sources of experimental variation (i.e., time, concentration of solution species, etc.). The formaldehyde adsorption experiments revealed no spectroscopic evidence for adsorbed molecular formaldehyde under the conditions examined. However, the dissociation product carbon monoxide was observed to form in atop configuration on Pt, likely on edges and terrace sites. Isotope labeling experiments suggest that a pair of peaks observed at 1990 and 2060 cm(-)(1) during treatments of Pt in H(2)-saturated water arise at least in part from nu(Pt)(-)(H) stretching of adsorbed atomic hydrogen. Acetonitrile was found to adsorb on the Pt catalyst by sigma-bonding of the CN group with the platinum, yielding apparent surface peaks that are almost identical to that observed in the liquid phase. A peak at 1641 cm(-)(1) was observed which was assigned to the adsorption of the CN group in a tilted configuration involving a combination of end-on and pi interaction with the surface. This species was found to be reactive toward hydrogen, suggesting that it might play a role in nitrile hydrogenation. The prospects of using this approach to examine solid-catalyzed liquid-phase reactions are discussed in light of these findings. PMID:16519463

  4. Simultaneous biodegradation of volatile and toxic contaminant mixtures by solid-liquid two-phase partitioning bioreactors.

    PubMed

    Poleo, Eduardo E; Daugulis, Andrew J

    2013-06-15

    Microbial inhibition and stripping of volatile compounds are two common problems encountered in the biotreatment of contaminated wastewaters. Both can be addressed by the addition of a hydrophobic auxiliary phase that can absorb and subsequently re-release the substrates, lowering their initial aqueous concentrations. Such systems have been described as Two Phase Partitioning Bioreactors (TPPBs). In the current work the performances of a solid-liquid TPPB, a liquid-liquid TPPB and a single phase reactor for the simultaneous degradation of butyl acetate (the volatile component) and phenol (the toxic component) have been compared. The auxiliary phase used in the solid-liquid TPPB was a 50:50 polymer mixture of styrene-butadiene rubber and Hytrel 8206, with high affinities for butyl acetate and phenol, respectively. The liquid-liquid TPPB employed silicone oil which has fixed physical properties, and had no capacity to absorb the toxic contaminant (phenol). Butyl acetate degradation was enhanced in both TPPBs relative to the single phase, arising from its sequestration into the auxiliary phase, thereby reducing volatilization losses. The solid-liquid TPPB additionally showed a substantial increase in the phenol degradation rate, relative to the silicone oil system, demonstrating the superiority and versatility of polymer based systems. PMID:23611802

  5. Maladies reliées aux loisirs aquatiques

    PubMed Central

    Sanborn, Margaret; Takaro, Tim

    2013-01-01

    Résumé Objectif Passer en revue les facteurs de risque, la prise en charge et la prévention des maladies reliées aux loisirs aquatiques en pratique familiale. Sources des données Des articles originaux et de synthèse entre janvier 1998 et février 2012 ont été identifiés à l’aide de PubMed et des expressions de recherche en anglais water-related illness, recreational water illness et swimmer illness. Message principal Il y a un risque de 3 % à 8 % de maladies gastrointestinales (MGI) après la baignade. Les groupes à risque élevé de MGI sont les enfants de moins de 5 ans, surtout s’ils n’ont pas été vaccinés contre le rotavirus, les personnes âgées et les patients immunodéficients. Les enfants sont à plus grand risque parce qu’ils avalent plus d’eau quand ils nagent, restent dans l’eau plus longtemps et jouent dans l’eau peu profonde et le sable qui sont plus contaminés. Les adeptes des sports dans lesquels le contact avec l’eau est abondant comme le triathlon et le surf cerf-volant sont aussi à risque élevé et même ceux qui s’adonnent à des activités impliquant un contact partiel avec l’eau comme la navigation de plaisance et la pêche ont un risque de 40 % à 50 % fois plus grand de MGI par rapport à ceux qui ne pratiquent pas de sports aquatiques. Il y a lieu de faire une culture des selles quand on soupçonne une maladie reliée aux loisirs aquatiques et l’échelle clinique de la déshydratation est utile pour l’évaluation des besoins de traitement chez les enfants affectés. Conclusion Les maladies reliées aux loisirs aquatiques est la principale cause de MGI durant la saison des baignades. La reconnaissance que la baignade est une source importante de maladies peut aider à prévenir les cas récurrents et secondaires. On recommande fortement le vaccin contre le rotavirus chez les enfants qui se baignent souvent.

  6. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated systems included metal-ceramic particles (pure aluminum - zirconia particles) and transparent organic - non-reactive particles (succinonitrile - polystyrene and biphenyl - glass). This paper will discuss the experimental results obtained in both lg and pg conditions and the influence of the natural convection on V(sub cr). A summary of past mathematical models and our recent theoretical developments will also be presented to explain the experimentally observed particle/SLI interaction.

  7. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    SciTech Connect

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  8. A Bottom-Up Approach to Understanding Protein Layer Formation at Solid-Liquid Interfaces

    PubMed Central

    Kastantin, Mark; Langdon, Blake B.; Schwartz, Daniel K.

    2014-01-01

    A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors. PMID:24484895

  9. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    SciTech Connect

    Rogers, S.; Cook, J.; Juratovac, J.; Goodwillie, J.; Burke, T.; Stuart, B., ed.

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities will be used to suggest a design for integration into commercial-scale production.

  10. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  11. Solid-liquid separation by sonochemistry: a new approach for the separation of mineral suspensions.

    PubMed

    Nakamura, Takashi; Okawa, Hirokazu; Kawamura, Youhei; Sugawara, Katsuyasu

    2011-01-01

    The effect of sonochemistry to acidify solutions was applied for the solid-liquid separation of three kinds of mineral suspensions. At first, the relationship was measured between zeta-potential and pH in these suspensions to find pH levels correspondent to the isoelectric points. Then sonication (200 kHz or 28 kHz) was applied to adjust pH to the isoelectric points and separated particles from solutions by still-standing and spontaneous precipitation. Compared to the conventional methods using filters and chemical agents, the advantage of this sonochemical separation is two-fold. First, it does not require the maintenance of filters. Second, separated particles are easy to use since they are not mixed with pH adjusters and chemical flocculants. Isoelectric zone (ion strength 0.01, concentration 0.001 wt.%) of green tuff, andesite and titanium dioxide suspensions tested in this study were pH 1.1-3.7, 0.8-3.4, 2.7-5.7, respectively. The sonication of green tuff and andesite suspensions at 200 kHz changed the pH to the isoelectric zone despite the pH buffering effect of eluted alkali earth metals, and successfully precipitated the particles. On the contrary, the sonication of these suspensions at 28 kHz failed to adjust pH to the isoelectric zone, and the particles did not precipitate. In addition, the degradation of particles was observed in the SEM photographs of particles sonicated at 28 kHz, whereas no significant change was detected in particles sonicated at 200 kHz. Thus, it is concluded that the optimal frequency is about 200 kHz because its strong chemical effect can easily adjust the pH while its relatively weak physical effect prevents the degradation of particles. PMID:20643570

  12. Continuum approaches for describing solid-gas and solid-liquid flow

    SciTech Connect

    Diamond, P.; Harvey, J.; Levine, H.; Steinhardt, P.; Westervelt, R.

    1992-02-01

    Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime as well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.

  13. Continuum approaches for describing solid-gas and solid-liquid flow

    NASA Astrophysics Data System (ADS)

    Diamond, P.; Harvey, J.; Levine, H.; Steinhardt, P.; Westervelt, R.

    1992-02-01

    Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime as well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments. The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle sizes are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow.

  14. Nanobubbles do not sit alone at the solid-liquid interface.

    PubMed

    Peng, Hong; Hampton, Marc A; Nguyen, Anh V

    2013-05-21

    The unexpected stability and anomalous contact angle of gaseous nanobubbles at the hydrophobic solid-liquid interface has been an issue of debate for almost two decades. In this work silicon-nitride tipped AFM cantilevers are used to probe the highly ordered pyrolytic graphite (HOPG)-water interface with and without solvent-exchange (a common nanobubble production method). Without solvent-exchange the force obtained by the single force and force mapping techniques is consistent over the HOPG atomic layers and described by DLVO theory (strong EDL repulsion). With solvent-exchange the force is non-DLVO (no EDL repulsion) and the range of the attractive jump-in (>10 nm) over the surface is grouped into circular areas of longer range, consistent with nanobubbles, and the area of shorter range. The non-DLVO nature of the area between nanobubbles suggests that the interaction is no longer between a silicon-nitride tip and HOPG. Interfacial gas enrichment (IGE) covering the entire area between nanobubbles is suggested to be responsible for the non-DLVO forces. The absence of EDL repulsion suggests that both IGE and nanobubbles are not charged. The coexistence of nanobubbles and IGE provides further evidence of nanobubble stability by dynamic equilibrium. The IGE cannot be removed by contact mode scanning of a cantilever tip in pure water, but in a surfactant (SDS) solution the mechanical action of the tip and the chemical action of the surfactant molecules can successfully remove the enrichment. Strong EDL repulsion between the tip and nanobubbles/IGE in surfactant solutions is due to the polar heads of the adsorbed surfactant molecules. PMID:23597206

  15. Bubble Induced Disruption of a Planar Solid-Liquid Interface During Controlled Directional Solidification in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2013-01-01

    Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.

  16. Intense violet and blue light emission from Si nanowires fabricated via solid-liquid-solid growth from amorphous Si films

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Li, Yanli; Cai, Hua; Yang, Xu; Li, Hui; Sun, Jian; Xu, Ning; Wu, Jiada

    2015-08-01

    Violet and blue luminescent Si nanowires were fabricated by annealing an amorphous Si film on a Ni-coated Si substrate via solid-liquid-solid growth. The fabricated Si nanowires have an average diameter of 50 nm. The wire stem is composed of a crystalline Si core of several nanometers and an amorphous oxide sheath. The Si nanowires are capable of emitting strong violet and blue luminescence in the spectral region ranging from 380 to 500 nm, which has a very short decay time of tens of nanoseconds, and is remarkably different in spectral region and luminescence time from the luminescence emitted by Si nanocrystals.

  17. Influence de la vitesse de chauffage sur l'atomisation électrothermique en spectrométrie d'absorption atomique. Applications aux éléments volatils, cadmium et plomb

    NASA Astrophysics Data System (ADS)

    Riandey, C.; Gavinelli, R.; Pinta, M.

    The advantages of electrothermal atomization by rapid heating (faster than 2000°C s -1) in atomic absorption for the determination of volatile elements are studied. The aim is to control the matrix effects, particularly the very high non-specific absorptions. It is shown that, unlike normal heating, now rapid heating makes it possible to atomize a volatile element without hardly covolatilizing its matrix, as a result of the change in the optimum atomization temperatures. Application examples are given: direct determination of cadmium and lead (atomized respectively at only 900 and 960°C) in sea water and related products. This method is likely to be applicable to other matrices which covolatilize normally with other elements. The mechanisms of atom formation in rapid heating are also investigated.

  18. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.

    PubMed

    Warzoha, Ronald J; Fleischer, Amy S

    2014-08-13

    Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications but have limited applicability in state-of-the-art technologies due to their low intrinsic thermal conductivities. Recent efforts to incorporate graphene and multilayer graphene into PCMs have led to the development of thermal energy storage materials with remarkable values of bulk thermal conductivity. However, the full potential of graphene as a filler material for the thermal enhancement of PCMs remains unrealized, largely due to an incomplete understanding of the physical mechanisms that govern thermal transport within graphene-based nanocomposites. In this work, we show that the number of graphene layers (n) within an individual graphene nanoparticle has a significant effect on the bulk thermal conductivity of an organic PCM. Results indicate that the bulk thermal conductivity of PCMs can be tuned by over an order of magnitude simply by adjusting the number of graphene layers (n) from n = 3 to 44. Using scanning electron microscopy in tandem with nanoscale analytical techniques, the physical mechanisms that govern heat flow within a graphene nanocomposite PCM are found to be nearly independent of the intrinsic thermal conductivity of the graphene nanoparticle itself and are instead found to be dependent on the mechanical compliance of the graphene nanoparticles. These findings are critical for the design and development of PCMs that are capable of cooling next-generation electronics and storing heat effectively in medium-to-large-scale energy systems, including solar-thermal power plants and building heating and cooling systems. PMID:24983698

  19. Inferences about radionuclide mobility in soils based on the solid/liquid partition coefficients and soil properties.

    PubMed

    Sohlenius, Gustav; Saetre, Peter; Nordén, Sara; Grolander, Sara; Sheppard, Steve

    2013-05-01

    To assist transport modeling in assessments of the radiological impact of a geological repository for radioactive wastes, the mobility of various elements was studied in arable and wetland soils in the Forsmark region, Sweden. Pore water and total element contents were determined for five types of unconsolidated deposits (regolith), spanning a wide range of soil properties with respect to pH and organic matter content. Two soil depths were sampled to capture element mobility in regolith layers affected and unaffected by soil-forming processes. The solid/liquid partition coefficients (K d values) for most elements varied significantly among regolith types. For most elements, the observed variations in K d values could be explained by variations in soil properties. For many elements, mobility increased with decreasing soil pH. The results provide a significant addition of data on radionuclide retention in soils, taking account of soil properties and processes. PMID:23619799

  20. Solid-liquid boundaries in iron-rich alloys and the age of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Gao, L.

    2006-05-01

    Melting and solidification cause major chemical differentiation in the Earth. As the Earth cools, the liquid core solidifies from the center and the inner core grows at the expense of the outer core. The timing of the onset of core solidification remains poorly constrained. Labrosse et al. (2001) estimated the age of the Earth's inner core based on energy budget considerations. In their analysis, the latent heat and gravitational energy are calculated according to dislocation melting theory. We have conducted melting experiments on pure iron and an iron-sulfur alloy containing 15 at.% sulfur, in order to determine the effect of pressure on the Clapeyron slopes of the solid-liquid boundaries. Our results allow a critical examination of the energy estimates, hence the age of the inner core. The implications for the budget of radioactive elements will be discussed.

  1. Solid-Liquid Interfacial Energy of Solid Neopentylglycol Solution in Equilibrium with Neopentylglycol-Aminomethylpropanediol Eutectic Liquid

    NASA Astrophysics Data System (ADS)

    Bayram, Ümit; Özer, Alaaddin; Aksöz, Sezen; Mara?l?, Necmettin

    2013-09-01

    The grain boundary groove shapes for solid neopentylglycol solution (NPG-40 mol pct AMPD) in equilibrium with the neopentylglycol (NPG)-aminomethylpropanediol (AMPD) eutectic liquid (NPG-42.2 mol pct AMPD) have been directly observed using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (?) and solid-liquid interfacial energy ( ? SL) of solid NPG solution have been determined to be (7.4 ± 0.7) × 10-8 K m and (6.4 ± 1.0) × 10-3 J m-2, respectively. The grain boundary energy of solid NPG solution has been determined to be (12.5 ± 1.0) × 10-3 J m-2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated eutectic liquid to thermal conductivity of solid NPG solution has also been determined to be 0.48.

  2. Solid-liquid interfacial energy of neopentylglycol solid solution in equilibrium with succinonitrile-neopentylglycol-aminomethylpropanediol liquid

    NASA Astrophysics Data System (ADS)

    Özer, A.; Bayram, Ü.; Aksöz, S.; Mara?l?, N.

    2013-02-01

    The grain boundary groove shapes for equilibrated solid neopentylglycol (NPG) solution (NPG-26 mol% AMPD-4 mol% SCN) in equilibrium with the succinonitrile (SCN)-neopentylglycol (NPG)-aminomethylpropanediol (AMPD) liquid (NPG-45 mol% SCN-2 .9 mol% AMPD) have been directly observed by using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (?) and solid-liquid interfacial energy (?SL) of solid NPG solution have been determined to be (7.8±0.8)×10-8 K m and (8.1±1.2)×10-3 J m-2, respectively. The grain boundary energy of solid NPG solution has been determined to be (15.8±2.5)×10-3 J m-2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated liquid to thermal conductivity of solid NPG solution has also been determined to be 0.42.

  3. Resonant anomalous x-ray reflectivity as a probe of ion adsorption at solid-liquid interfaces.

    SciTech Connect

    Fenter, P.; Park, C.; Nagy, K. L.; Sturchio, N. C.; Chemistry; Univ. of Illinois at Chicago

    2007-05-23

    We discuss new opportunities to understand processes at the solid-liquid interface using resonant anomalous X-ray reflectivity (RAXR). This approach is illustrated by determination of element-specific density profiles at mica surfaces in aqueous electrolyte solutions containing Rb{sup +} and Sr{sup 2+}. The total interfacial electron density profile is determined by specular reflectivity (i.e., reflected intensity vs. momentum transfer, q, at an energy, E, far from any characteristic absorption edge). RAXR spectra (i.e., intensity vs. E at fixed q) reveal element-specific ion distributions. Key differences in the interaction of Rb{sup +} and Sr{sup 2+} with mica are observed using resonant anomalous X-ray reflectivity: Rb{sup +} adsorbs in a partially hydrated state, but Sr{sup 2+} adsorbs in both fully and partially hydrated states.

  4. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line

    E-print Network

    Ronald Benjamin; Jürgen Horbach

    2015-04-28

    Kinetics of crystal-growth is investigated along the solid-liquid coexistence line for the (100), (110) and (111) orientations of the Lennard-Jones and Weeks-Chandler-Andersen fcc crystal-liquid interface, using non-equilibrium molecular dynamics simulations. A slowing down of the growth kinetics along the coexistence line is observed, which is mostly a temperature effect, with other quantities such as the melting pressure and liquid self-diffusion coefficient having a negligible impact. The growth kinetics of the two potentials become similar at large values of the melting temperature and pressure, when both resemble a purely repulsive soft-sphere potential. Classical models of crystallization from the melt are in reasonable qualitative agreement with our simulation data. Finally, several one-phase empirical melting/freezing rules are studied with respect to their validity along the coexistence line.

  5. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line

    NASA Astrophysics Data System (ADS)

    Benjamin, Ronald; Horbach, Jürgen

    2015-07-01

    Kinetics of crystal-growth is investigated along the solid-liquid coexistence line for the (100), (110), and (111) orientations of the Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) fcc crystal-liquid interface, using non-equilibrium molecular dynamics simulations. A slowing down of the growth kinetics along the coexistence line is observed, which is due to the decrease of the melting enthalpy with increasing coexistence temperature and pressure. Other quantities such as the melting pressure and liquid self-diffusion coefficient have a comparatively lesser impact on the kinetic growth coefficient. Growth kinetics of the LJ and WCA potentials become similar at large values of the melting temperature and pressure, when both resemble a purely repulsive soft-sphere potential. Classical models of crystallization from the melt are in reasonable qualitative agreement with our simulation data. Finally, several one-phase empirical melting/freezing rules are studied with respect to their validity along the coexistence line.

  6. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line

    E-print Network

    Benjamin, Ronald

    2015-01-01

    Kinetics of crystal-growth is investigated along the solid-liquid coexistence line for the (100), (110) and (111) orientations of the Lennard-Jones and Weeks-Chandler-Andersen fcc crystal-liquid interface, using non-equilibrium molecular dynamics simulations. A slowing down of the growth kinetics along the coexistence line is observed, which is mostly a temperature effect, with other quantities such as the melting pressure and liquid self-diffusion coefficient having a negligible impact. The growth kinetics of the two potentials become similar at large values of the melting temperature and pressure, when both resemble a purely repulsive soft-sphere potential. Classical models of crystallization from the melt are in reasonable qualitative agreement with our simulation data. Finally, several one-phase empirical melting/freezing rules are studied with respect to their validity along the coexistence line.

  7. Calculating the role of composition in the anisotropy of solid-liquid interface energy using phase-field-crystal theory

    NASA Astrophysics Data System (ADS)

    Jugdutt, Bernadine A.; Ofori-Opoku, Nana; Provatas, Nikolas

    2015-10-01

    This work uses Ginzburg-Landau theory derived from a recent structural phase-field-crystal model of binary alloys developed by the authors to study the roles of concentration, temperature, and pressure on the interfacial energy anisotropy of a solid-liquid front. It is found that the main contribution to the change in anisotropy with concentration arises from a change in preferred crystallographic orientation controlled by solute-dependent changes in the two-point density correlation function of a binary alloy, a mechanism that leads to such phenomena as solute-induced elastic strain and dislocation-assisted solute clustering. Our results are consistent with experimental observations in recent studies by Rappaz et al. [J. Fife, P. Di Napoli, and M. Rappaz, Metall. Mater. Trans. A 44, 5522 (2013), 10.1007/s11661-013-1912-7]. This is the first PFC work, to our knowledge, to incorporate temperature, pressure, and density into the thermodynamic description of alloys.

  8. Vitreous ice as a cryoprotectant for imaging atom-probe studies of adsorption phenomena at a solid--liquid interface

    SciTech Connect

    Panitz, J. A.

    1989-07-01

    A novel approach is outlined for studying adsoption phenomena at a solid--liquid interface in the imaging atom-probe mass spectrometer. An interface is preserved for analysis by embedding it within a thin, conducting layer of vitreous ice formed from its native environment. The ice is controllably sublimed at 20 K using a high electric field to dissect the layer, and to map the distribution of species within the layer as a function of depth from its surface. Procedures are described for creating a layer of ice believed to be vitreous in nature, and for transporting an interface embedded within the ice layer into high vacuum without damage (and without contamination from laboratory ambient). Field-ion imaging suggests these procedures are effective for preserving the surface structure of a solid on a subnanometer scale.

  9. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  10. Measurement of Solid-Liquid Equilibria by a Flow-Cloud-Point Luzheng Zhang, Qiliang Gui, Xiaohua Lu, Yanru Wang,* and Jun Shi

    E-print Network

    Zhang, Luzheng

    Measurement of Solid-Liquid Equilibria by a Flow-Cloud-Point Method Luzheng Zhang, Qiliang Gui of salt in water is a fundamental property that plays an important role in industrial processes and in theoretical research. For example, optimal crystalliza- tion processes of inorganic salts from industrial

  11. Molecular simulation of biomaterials and biomolecules at the solid-liquid interface

    E-print Network

    Kottmann, Stephen Thomas

    2008-01-01

    Biomaterials and biomineralization have been successfully utilized in a broad variety of technical applications. Properties of natural biopolymers, such as the ability to control the nucleation, growth, and organization ...

  12. Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.

    SciTech Connect

    Jayaraman, Saivenkataraman

    2010-03-01

    Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We are currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.

  13. Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels

    NASA Astrophysics Data System (ADS)

    Kimura, Sei; Nabeshima, Y.; Nakajima, K.; Mizoguchi, S.

    2000-10-01

    The present study is concerned with the interaction phenomena of nonmetallic inclusions in front of a moving solid-liquid interface. The in situ observation was done in a high-temperature experiment by using a laser microscope. Alumina inclusions in an aluminum-killed steel with low oxygen content exhibited the well-known clustering behavior. The velocity of the advancing interface first increased while approaching the particle, but became stagnant during engulfment and increased again after that. Alumina-magnesia complex inclusions in a magnesium-added steel with high oxygen content were very finely dispersed in the molten pool. These inclusions escaped from the advancing interface during solidification, but gathered again at the retreating interface during remelting. The tiny inclusions were thought to behave just as tracer particles of a local flow. The velocity of particles was measured on a video image, and the significant acceleration or deceleration was found near the interface. It was concluded that the flow was induced by the Marangoni effect due to the local difference in temperature and oxygen content in front of the interface, particularly in the case of a higher oxygen content. However, the flow was weak in the case of a low oxygen content.

  14. Femtosecond optical Kerr effect setup with signal "live view" for measurements in the solid, liquid, and gas phases

    NASA Astrophysics Data System (ADS)

    Polok, K.; Gadomski, W.; Ratajska-Gadomska, B.

    2015-10-01

    We present the experimental setup constructed in our laboratory for measurement of the femtosecond optical Kerr effect. The setup allows measurements with high temporal resolution and acquisition speed. The high signal to noise ratio is obtained with use of a homemade balanced detector. Due to the high acquisition speed and good signal to noise ratio, it is possible to have a "live view" of the signal and to easily tune the sample position and orientation before the measurement. We show the example results obtained in the solid, liquid, and the gas phases and we use them in order to check on the precision of our setup. As the samples we have used a YAG crystal, liquid acetone, and atmospheric air. In the latter two cases, a good agreement with the literature data has been found. The measurements in the gas phase confirm that our setup, although utilizing low energy pulses from the sapphire oscillator, is able to acquire high quality rotational signal in a low density sample.

  15. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line.

    PubMed

    Benjamin, Ronald; Horbach, Jürgen

    2015-07-01

    Kinetics of crystal-growth is investigated along the solid-liquid coexistence line for the (100), (110), and (111) orientations of the Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) fcc crystal-liquid interface, using non-equilibrium molecular dynamics simulations. A slowing down of the growth kinetics along the coexistence line is observed, which is due to the decrease of the melting enthalpy with increasing coexistence temperature and pressure. Other quantities such as the melting pressure and liquid self-diffusion coefficient have a comparatively lesser impact on the kinetic growth coefficient. Growth kinetics of the LJ and WCA potentials become similar at large values of the melting temperature and pressure, when both resemble a purely repulsive soft-sphere potential. Classical models of crystallization from the melt are in reasonable qualitative agreement with our simulation data. Finally, several one-phase empirical melting/freezing rules are studied with respect to their validity along the coexistence line. PMID:26156487

  16. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Y Wang, H.; Han, W.; Ma, W.; Shen, Z. J.

    2013-12-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance.

  17. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. PMID:26082329

  18. Femtosecond optical Kerr effect setup with signal "live view" for measurements in the solid, liquid, and gas phases.

    PubMed

    Polok, K; Gadomski, W; Ratajska-Gadomska, B

    2015-10-01

    We present the experimental setup constructed in our laboratory for measurement of the femtosecond optical Kerr effect. The setup allows measurements with high temporal resolution and acquisition speed. The high signal to noise ratio is obtained with use of a homemade balanced detector. Due to the high acquisition speed and good signal to noise ratio, it is possible to have a "live view" of the signal and to easily tune the sample position and orientation before the measurement. We show the example results obtained in the solid, liquid, and the gas phases and we use them in order to check on the precision of our setup. As the samples we have used a YAG crystal, liquid acetone, and atmospheric air. In the latter two cases, a good agreement with the literature data has been found. The measurements in the gas phase confirm that our setup, although utilizing low energy pulses from the sapphire oscillator, is able to acquire high quality rotational signal in a low density sample. PMID:26520942

  19. Communication: Thermal rectification in liquids by manipulating the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Murad, Sohail; Puri, Ishwar K.

    2012-08-01

    Thermal rectification, the origin of which lies in modifying the thermal resistance in a nonlinear manner, could significantly improve the thermal management of a wide range of nano-devices (both electronic and thermoelectric), thereby improving their efficiencies. Since rectification requires a material to be inhomogeneous, it has been typically associated with solids. However, the structure of solids is relatively difficult to manipulate, which makes the tuning of thermal rectification devices challenging. Since liquids are more amenable to tuning, this could open up new applications for thermal rectification. We use molecular dynamics simulations to demonstrate thermal rectification using liquid water. This is accomplished by creating an inhomogeneous water phase, either by changing the morphology of the surface in contact with the liquid or by imposing an arbitrary external force, which in practice could be through an electric or magnetic field. Our system consists of a bulk fluid that is confined in a reservoir that is bounded by two walls, one hot and the other cold. The interfacial (Kapitza) thermal resistance at the solid-fluid interface and the density gradient of the bulk fluid both influence the magnitude of the thermal rectification. However, we find that the role of the interfacial resistance is more prominent than the application of an external force on the bulk fluid.

  20. A Distributed Computing Infrastructure for Computational Thermodynamic Calculations of Solid-Liquid Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Ghiorso, M. S.; Kress, V. C.

    2004-12-01

    Software tools like MELTS (Ghiorso and Sack, 1995, CMP 119:197) and its derivatives (Ghiorso et al., 2002, G3 3:10.1029/2001GC000217) are sophisticated calculators used by geoscientists to quantify the chemistry of melt production, transport and storage. These tools utilize computational thermodynamics to evaluate the equilibrium state of the system under specified external conditions by minimizing a suitably constructed thermodynamic potential. Like any thermodynamically based tool, the principal advantage in employing these techniques to model igneous processes is the intrinsic ability to couple the chemistry and energetics of the evolution of the system in a self consistent and rigorous formalism. Access to MELTS is normally accomplished via a standalone X11-based executable or as a Java-based web applet. The latter is a dedicated client-server application rooted at the University of Chicago. Our on-going objective is the development of a distributed computing infrastructure to provide "MELTS-like" computations on demand to remote network users by utilizing a language independent client-server protocol based on CORBA. The advantages of this model are numerous. First, the burden of implementing and executing MELTS computations is centralized with a software implementation optimized to a compute cluster dedicated for that purpose. Improvements and updates to MELTS software are handled locally on the server side without intervention of the user and the server-model lessens the burden of supporting the computational code on a variety of hardware and OS platforms. Second, the client hardware platform does not incur the computational cost of performing a MELTS simulation and the remote user can focus on the task of incorporating results into their model. Third, the client user can write software in a computer language of their choosing and procedural calls to the MELTS library can be executed transparently over the network as if a local language-compatible library of routines is being accessed. Fourth, the flexibility of calling library functions means that the client has more control over the configuration and output of the MELTS calculation. Fifth, if the client computer is a multi-processor compute cluster capable of issuing parallel requests to the MELTS "remote" library, then these requests may be in turn parallelized to the server compute cluster to enhance throughput and performance. Application of this computational model to fluid dynamical simulations of melting and transport in the Earth's mantle is envisioned. Further information and example clients for utilizing the current prototype library for distributed computing applications can be found at http://melts.uchicago.edu.

  1. Direct imaging of complex nano- to microscale interfaces involving solid, liquid, and gas phases.

    PubMed

    Rykaczewski, Konrad; Landin, Trevan; Walker, Marlon L; Scott, John Henry J; Varanasi, Kripa K

    2012-10-23

    Surfaces with special wetting properties not only can efficiently repel or attract liquids such as water and oils but also can prevent formation of biofilms, ice, and clathrate hydrates. Predicting the wetting properties of these special surfaces requires detailed knowledge of the composition and geometry of the interfacial region between the droplet and the underlying substrate. In this work we introduce a 3D quantitative method for direct nanoscale visualization of such interfaces. Specifically, we demonstrate direct nano- to microscale imaging of complex fluidic interfaces using cryostabilization in combination with cryogenic focused ion beam milling and SEM imaging. We show that application of this method yields quantitative information about the interfacial geometry of water condensate on superhydrophilic, superhydrophobic, and lubricant-impregnated surfaces with previously unattainable nanoscale resolution. This type of information is crucial to a fundamental understanding as well as the design of surfaces with special wetting properties. PMID:23020195

  2. Collaborateurs aux lignes directrices en soins primaires

    PubMed Central

    Allan, G. Michael; Kraut, Roni; Crawshay, Aven; Korownyk, Christina; Vandermeer, Ben; Kolber, Michael R.

    2015-01-01

    Résumé Objectif Déterminer la profession des collaborateurs scientifiques aux lignes directrices, les variables associées aux différences de participation des collaborateurs et si oui ou non les lignes directrices en soins primaires fournissent un énoncé sur les conflits d’intérêts. Type d’étude Analyse rétrospective des lignes directrices en soins primaires affichées sur le site web de l’Association médicale canadienne. Deux extracteurs de données indépendants ont examiné les lignes directrices et ont extrait les données pertinentes. Contexte Canada Principaux paramètres à l’étude Commanditaires des lignes directrices, territoire (national ou provincial) visé par les lignes directrices, profession des collaborateurs scientifiques aux lignes directrices et énoncés de conflits d’intérêts rapportés dans les lignes directrices. Résultats Sur les 296 lignes directrices de pratique clinique trouvées dans la section de la médecine familiale de l’Infobanque AMC, 65 apparaissaient en double et 35 se rapportaient de façon limitée à la médecine familiale. Vingt ne fournissaient aucune information sur les collaborateurs scientifiques, ce qui laissait 176 lignes directrices propices à l’analyse. Au total, il y avait 2495 collaborateurs (auteurs et membres de comité) : 1343 (53,8 %) spécialistes autres que des médecins de famille, 423 (17,0 %) médecins de famille, 141 (5,7 %) infirmières, 75 (3,0 %) pharmaciens, 269 (10,8 %) autres cliniciens, 203 (8,1 %) scientifiques non cliniciens et 41 (1,6 %) collaborateurs de profession inconnue. La proportion des collaborateurs de ces professions différait significativement entre les lignes directrices nationales et provinciales, de même qu’entre les lignes directrices financées par l’industrie et celles qui ne l’étaient pas (p < 0,001 dans les 2 cas). Dans le cas des lignes directrices de pratique clinique provinciales, 30,8 % des collaborateurs étaient des médecins de famille et 37,3 % étaient d’autres spécialistes, comparativement à 13,9 % et à 57,4 %, respectivement, dans le cas des lignes directrices nationales. Parmi les lignes directrices financées par l’industrie, 7,8 % des collaborateurs étaient des médecins de famille et 68,6 % étaient d’autres spécialistes, comparativement à 19,4 % et à 49,9 %, respectivement, parmi les lignes directrices qui n’étaient pas financées par l’industrie. Les conflits d’intérêts n’étaient pas rapportés dans 68,9 % des cas. Lorsqu’ils l’étaient, les énoncés sur les conflits d’intérêts se rapportaient à 48,6 % aux spécialistes autres que les médecins de famille, à 30,0 % aux pharmaciens, à 27,7 % aux médecins de famille et à 10,0 % ou moins aux autres groupes; les différences étaient statistiquement significatives (p < 0,001). Conclusion Les spécialistes autres que les médecins de famille sont plus nombreux que tous les autres fournisseurs de soins de santé et sont plus de 3 fois plus enclins à collaborer aux lignes directrices en soins primaires que ne le sont les médecins de famille. Les énoncés sur les conflits d’intérêts n’apparaissaient que dans une minorité de lignes directrices, et lorsqu’ils apparaissaient, les spécialistes autres que les médecins de famille étaient plus enclins à les rapporter. Les lignes directrices ciblant les médecins de famille devraient compter plus de médecins de famille et de soins primaires et moins de collaborateurs en conflit d’intérêts.

  3. Effect of heat shield on the shape of the solid-liquid interface and temperature field in the BGO-eulithine LTG Cz growth

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. G.; Budenkova, O. N.; Yuferev, V. S.; Kalaev, V. V.; Shlegel, V. N.; Ivannikova, N. V.; Vasiliev, Ya. V.; Mamedov, V. M.

    2005-02-01

    In an effort to eliminate the strong deflection of the solid-liquid interface (SLI) toward a melt, caused by specular (Fresnel) reflection of heat radiation at the crystal surface, we have performed an experimental and numerical study of the growth of Bi 4Ge 3O 12 crystals in the presence of a thermal shield located directly above the crystal shoulder. A platinum shield of a conic shape was used in experiment, while in simulation the shape and radiative properties of the shield are varied. Both experiment and simulation showed that although the shield appreciably decreases the deflection of the solid-liquid interface, increases the size of the facets and diminishes the density of gas inclusions at the initial stage of the growth, the cardinal decrease of the deflection of the interface did not happen.

  4. Solid-liquid interfacial energy of the Bi sub 0. 7 Pb sub 0. 3 SrCaCu sub 1. 8 O sub x glass

    SciTech Connect

    Nishi, Y.; Manabe, T.; Watanabe, S.; Igarashi, A.; Mikagi, K. )

    1991-11-15

    The solid-liquid interfacial energy is estimated by use of the nucleation frequency of isothermal crystallization on aging in Bi{sub 0.7}Pb{sub 0.3}SrCaCu{sub 1.8}O{sub {ital x}} glassy samples above glass transition temperature. The value of solid-liquid interfacial energy {ital Q} is about 74.7 mJ/m{sup 2}. The {ital Q} value is often expressed by use of enthalpy change {Delta}{ital H}{sub {ital f}}, Avogadro's number {ital N} and molar volume {ital V}; {ital Q} = {ital C}{Delta}{ital H}{sub {ital f}}/({ital N}{sup 1/3}{ital V}{sup 2/3}). The constant {ital C} obtained is 0.38, which is between 0.32 for covalent bonded elements and 0.45 for metals.

  5. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  6. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGESBeta

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; et al

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore »and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²? and Pt?? interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  7. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    PubMed Central

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-01-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7?keV) at a pressure up to 110?Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2?keV–7?keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry. PMID:25950241

  8. Atomic Force Microscopy of Physical and Chemical Processes at the Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Manne, Srinivas

    This thesis describes research using atomic force microscopy (AFM) to study dynamics of solid surfaces in contact with liquids. Specifically, three applications are described: electrochemistry (Chapters 1-3), crystal growth (Chapters 4 and 5), and biomineralization (Chapter 6). Chapter 1 shows the feasibility of using AFM to image metal atoms in liquid, which sets the stage for high -resolution electrochemistry. Chapter 2 describes methods to convert the standard AFM liquid cell into an electrochemical cell and shows images of a gold electrode during oxidation/reduction cycling. Chapter 3 follows an electroplating cycle, wherein copper is deposited from electrolyte onto a gold electrode and then stripped off. The surface lattice is shown to change from that of bulk gold to bulk copper during plating, and back to bulk gold after stripping. Moreover, the first monolayer of copper--which deposits at an "underpotential", before the bulk deposition--is shown to have a lattice which differs from the bulk and is electrolyte dependent. Like electrochemistry, the study of crystal growth is also perfectly suited to a surface technique such as AFM. AFM makes it possible to image "elemental steps" (i.e., steps one unit cell thick) on a single crystal and quantify their motion during growth and dissolution. This is illustrated for the inorganic crystal calcite (Chapter 4) and the more fragile organic crystal L-leucine (Chapter 5). In both cases it is shown that step speed is independent of spacing between steps, indicating that motion occurs by direct interaction of the step-site molecules with the solvent. Chapter 5 also describes techniques for growing and imaging organic crystals. Living organisms also use crystal growth, modified by inorganic and organic additives, to grow mineralized structures such as bones, teeth and seashells. In Chapter 6, AFM reveals the three-dimensional structure of the nacreous or pearly layer of mollusc shells by slowly etching away successive mineral layers (in weak acid) while imaging. Etch figures on the mineral (aragonite) are correlated with crystallographic directions, revealing overall crystalline order on large scans. In bivalves, this order is observed both laterally across the layer and vertically between layers, whereas gastropod nacre is observed to be ordered only vertically.

  9. Electrochemical impedance and surface plasmon resonance studies of reactions at solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Pettit, Christopher

    The interface created by the presence of a solid material placed in a liquid environment can be studied using electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR). A selected set of systems are studied using these techniques and explored as is relevant to their applications in chemical mechanical planarization (CMP) and for the development of chemical and biological sensors. Studies of Cu in the presence of KI was performed as a means of exploring the capabilities of EIS for determining the differential capacitance (C diff) under potentiodynamic conditions, and examine the constraints and experimental variables present for such measurements. The use of Cu in the presence of KI was a sample system for these measurements and also provided us with the opportunity to examine the specific adsorption of I- on Cu which is relevant to CMP of Cu. EIS was also applied to study of Ta in the presence of KIO3. This system used EIS measurements to examine the specific surface reactions that occur during the CMP of Ta, due to the presence of KIO3, in order to explore other means of chemically or electrochemically removing excess material after it is deposited on nano-scale structures. We propose that the presence of KIO3 supports similar reactions to those reported by us for peroxide based alkaline solutions and will therefore result in the same soluble hexatantalate complex. The formation of a self-assembled molecule (SAM) of 11-mercaptoundecanoic acid (MUA) on thin film gold was studied using SPR. The kinetics of the formation of the MUA layer on the Au surface in ethanol and the kinetics associated with the conformational changes in MUA due to changes in the pH of the ambient aqueous solution were explored by examining the changes in the structural and optical characteristics of the MUA layer. The formation of MUA exhibited simple Langmuir kinetics during early and late stages in the formation and reorientation during the intermediate stages. The ionization/neutralization of the MUA tail groups occurs rapidly with slower changes in the alkaline solution resulting from cation-binding to the ionized tail groups. Simultaneous nonfaradaic adsorption and faradaic reactions were studied using a combination of time resolved EIS and cyclic voltammetry (CV) techniques to examine the role of DC reactions in the measured AC response of such systems. These reactions were studied under potentiodynamic conditions in 0.1 M NaF on a thin film Au electrode with and without 1 mM Cl-. Time-resolved impedance spectra were recorded under transient conditions of CV, and electrode-equivalent circuit (EEC) models are obtained as functions of the CV scans. These results demonstrate how the relative roles of DC and AC effects in potentiodynamically acquired EECs can be analyzed to study detailed kinetics of surface reactions.

  10. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Vanden-Eijnden, Eric; Tuckerman, Mark

    2014-06-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  11. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect

    Yu, Tang-Qing Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  12. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    PubMed Central

    Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Vanden-Eijnden, Eric; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency. PMID:24907992

  13. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Oladi, Elham; Mohamadi, Maryam; Shamspur, Tayebeh; Mostafavi, Ali

    2014-11-01

    Melatonin is normally consumed to regulate the body's biological cycle. However it also has therapeutic properties, such as anti-tumor, anti-aging and protects the immune system. There are some reports on the presence of melatonin in edible kernels such as walnuts, but the extraction of melatonin from pistachio kernels is reported here for the first time. For this, the methanolic extract of pistachio kernels was exposed to gas chromatography/mass spectrometry analysis which confirmed the presence of melatonin. A fluorescence-based method was applied for the determination of melatonin in different extracts. When excited at ? = 275 nm, the fluorescence emission intensity of melatonin was measured at ? = 366 nm. Ultrasound-assisted solid-liquid extraction was used for the extraction of melatonin from pistachio kernels prior to fluorimetric determination. To achieve the highest extraction recovery, the main parameters affecting the extraction efficiency such as extracting solvent type and volume, temperature, sonication time and pH were evaluated. Under the optimized conditions, a linear dependence of fluorescence intensity on melatonin concentration was observed in the range of 0.0040-0.160 ?g mL-1, with a detection limit of 0.0036 ?g mL-1. This method was applied successfully for measuring and comparing the melatonin content in the kernels of four different varieties of Pistacia including Ahmad Aghaei, Akbari, Kalle Qouchi and Fandoghi. In addition, the results obtained were compared with those obtained using GC/MS. A good agreement was observed indicating the reliability of the proposed method.

  14. Universit de Montral Immigration et alimentation Montral aux XVIIe

    E-print Network

    Université de Montréal Immigration et alimentation à Montréal aux XVIIe et XVIIIe siècles : Essai d;#12;Université de Montréal Faculté des études supérieures Ce mémoire intitulé : Immigration et alimentation à migration sur l'alimentation à Montréal aux XVIIe et XVIIIe siècles, 64 individus de la collection du

  15. Les posters sont prparer et prsenter en binme. La prsentation sera faite aux autres tudiants et aux enseignants.

    E-print Network

    Hoepffner, Jérôme

    Les posters sont à préparer et à présenter en binôme. La présentation sera faite aux autres étudiants et aux enseignants. Les poster/présentation font partie du contrôle des connaissances de cette UE oscillant - Les oscillateurs nonlinéaires - Instabilité de Benjamin Feir Le poster doit comporter: - Images

  16. Investigating the influence of production conditions on the energy distribution between the solid, liquid and gaseous products of slow pyrolysis

    NASA Astrophysics Data System (ADS)

    Crombie, Kyle; Masek, Ondrej

    2013-04-01

    Slow pyrolysis is a well established technology for converting biomass into a more stable form of carbon (biochar) while also producing energy rich by-products of bio-oil and syngas. Biochar is the porous, carbonaceous material produced by thermo-chemical treatment of organic materials in an oxygen-limited environment. Biochar can be incorporated into soils to improve soil fertility, reduce greenhouse gas emissions as well as provide long term storage of carbon or alternatively it can also provide additional energy to a pyrolysis system through combustion. Biochar production conditions have a significant influence on the yield as well as physiochemical and functional properties of the final pyrolysis products, resulting in a selection process aimed towards either agricultural benefits and carbon mitigation or heat/energy generation. This work aimed to investigate the effect of temperature, residence time and gas flow rate on the product energy distribution as well as the physical, chemical and soil functional properties of biochar, in order to optimise conditions best suited to maximise both energy value and agronomic benefit. Biochar samples were produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650oC), with three residence times (10, 20 and 40 minutes) and three carrier gas flow rates (0, 0.3 and 0.6 L min-1). The energy balance of the system was determined through the calorimetric analysis of biochar and bio-oil, while the higher heating value for the syngas was calculated from the gas composition measured via mass spectroscopy. Biochar was also analysed for the physiochemical properties of proximate analysis and ultimate analysis as well as the functional property of environmentally stable carbon (C) content. As expected the yield of biochar decreased with increasing temperature resulting in elevated yields of liquid and gas fractions. Increased temperature also resulted in higher values of fixed C, total C, stable C and calorific value due to the increased emission of volatiles. The higher heating value for the syngas was also shown to increase with temperature due to greater release of combustible gas species at higher temperatures. The impact of residence time and gas flow rate were not as clear as for temperature but still demonstrated decreasing biochar yields as the respective parameters were increased. However the greatest impact occurred at 350oC and diminished when temperature was increased to 650oC. An understanding of the influence that production conditions have on the long term stability of biochar as well as the energy content of the solid, liquid and gas fractions obtained from pyrolysis is critical towards the development of specifically engineered biochar to deliver a specific function be it for agricultural use, carbon storage, energy generation or combinations of the three.

  17. Mixing and solid-liquid mass-transfer rates in a creusot-loire uddeholm vessel: A water model case study

    NASA Astrophysics Data System (ADS)

    Nyoka, M.; Akdogan, G.; Eric, R. H.; Sutcliffe, N.

    2003-12-01

    The process of mixing and solid-liquid mass transfer in a one-fifth scale water model of a 100-ton Creusot-Loire Uddeholm (CLU) converter was investigated. The modified Froude number was used to relate gas flow rates between the model and its protoype. The influences of gas flow rate between 0.010 and 0.018 m3/s and bath height from 0.50 to 0.70 m on mixing time were examined. The results indicated that mixing time decreased with increasing gas flow rate and increased with increasing bath height. The mixing time results were evaluated in terms of specific energy input and the following correlation was proposed for estimating mixing times in the model CLU converter: T mix=1.08Q -1.05 W 0.35, where Q (m3/s) is the gas flow rate and W (tons) is the model bath weight. Solid-liquid mass-transfer rates from benzoic acid specimens immersed in the gas-agitated liquid phase were assessed by a weight loss measurement technique. The calculated mass-transfer coefficients were highest at the bath surface reaching a value of 6.40 × 10-5 m/s in the sprout region. Mass-transfer coefficients and turbulence parameters decreased with depth, reaching minimum values at the bottom of the vessel.

  18. Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments.

    PubMed

    Meullemiestre, A; Petitcolas, E; Maache-Rezzoug, Z; Chemat, F; Rezzoug, S A

    2016-01-01

    Maritime pine sawdust, a by-product from industry of wood transformation, has been investigated as a potential source of polyphenols which were extracted by ultrasound-assisted maceration (UAM). UAM was optimized for enhancing extraction efficiency of polyphenols and reducing time-consuming. In a first time, a preliminary study was carried out to optimize the solid/liquid ratio (6g of dry material per mL) and the particle size (0.26 cm(2)) by conventional maceration (CVM). Under these conditions, the optimum conditions for polyphenols extraction by UAM, obtained by response surface methodology, were 0.67 W/cm(2) for the ultrasonic intensity (UI), 40°C for the processing temperature (T) and 43 min for the sonication time (t). UAM was compared with CVM, the results showed that the quantity of polyphenols was improved by 40% (342.4 and 233.5mg of catechin equivalent per 100g of dry basis, respectively for UAM and CVM). A multistage cross-current extraction procedure allowed evaluating the real impact of UAM on the solid-liquid extraction enhancement. The potential industrialization of this procedure was implemented through a transition from a lab sonicated reactor (3 L) to a large scale one with 30 L volume. PMID:26384903

  19. Determination of the Solid/Liquid Interface Shape and Resultant Radial Homogeneity in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky, S. L.; Szofran, F. R.; Hanson, B.

    1999-01-01

    Directional solidification and interrupted directional solidification experiments were used to determine tile shape of the solid/liquid interface and the resultant radial homogeneity in Hg(0.89)Mg(0.11)Te. For directionally solidified samples solidified at a rate of 0.09 microns/sec in a thermal gradient of 83 C/cm, a maximum of 0.006 molar percent MnTe radial variation across the Hg0.89)Mn(0.11)Te boules at specific locations was determined using an FTIR technique. This FTIR evaluation of the radial homogeneity also indicated an asymmetrical, convex interface shape during solidification. The asymmetrical, convex shape of the growth interface was confirmed by interrupted directional solidification experiments. These were performed under the same growth conditions as the normally completed directional solidification experiments except that the samples were quenched before the final growth transient was reached. In these experiments, etching and scanning X-ray fluorescence were used to reveal the shape of the solid/liquid interface. Microprobe analysis of composition gradients across the interface was used to confirm the authors' previous work in evaluating the segregation coefficient of Hg(0.89)Mn(0.11)Te alloy. Microprobe analysis of the interface region of the interrupted growth sample revealed a dendritic structure containing secondary and tertiary dendritic arms.

  20. Finite element analysis of the effect of a non-planar solid-liquid interface on the lateral solute segregation during unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.

    1982-01-01

    The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.

  1. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    SciTech Connect

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina; Eriksson, Susanna K.; Åhlund, John; Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  2. Novel, low-cost solid-liquid-solid process for the synthesis of ?-Si3N4 nanowires at lower temperatures and their luminescence properties

    PubMed Central

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-01-01

    Ultra-long, single crystal, ?-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150?°C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the ?-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties. PMID:26607395

  3. Novel, low-cost solid-liquid-solid process for the synthesis of ?-Si3N4 nanowires at lower temperatures and their luminescence properties.

    PubMed

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-01-01

    Ultra-long, single crystal, ?-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150?°C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the ?-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties. PMID:26607395

  4. Real-time image analysis and control of the solid/liquid interface during zone-melting recrystallization of thin films

    NASA Astrophysics Data System (ADS)

    Wong, Peter Y.; Miaoulis, Ioannis N.

    1994-02-01

    Thermal processing, a necessary step in the fabrication of most microelectronic devices, is used to improve the material quality of thin films. One example of thermal processing of thin films is Zone- Melting Recrystallization with a radiant line heat source. A line heater, situated above the film, heats a narrow region beyond its melt point creating a molten zone. As the line heater is moved slowly over the film, the material in the wake of the moving molten zone freezes in the form of a single crystal. The morphology of the solid/liquid interface strongly influences the resultant quality of the crystal. A planar morphology, in fact, produces a poor quality film which contains branching dislocations. A cellular morphology produces the highest quality films with limited point of line defects. In-situ observations of the crystalline quality can be made by examining the solid/liquid interface morphology. The real-time image analysis of the interface and the closed-loop control of the process are described in this paper.

  5. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ?35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. PMID:26512860

  6. Solid-liquid equilibria in the systems NH3-H2O-LiBr and H2O-LiBr at p=1 atm in the range from -35 to 80°C

    NASA Astrophysics Data System (ADS)

    Peters, R.; Busse, R.; Keller, J. U.

    1993-07-01

    Solid-liquid equilibria at ambient pressure and solid-liquid-vapor equilibria at T=303.15 K have been measured in the system ammonia-water-lithium bromide for various initial concentrations of lithium bromide. Liquid phases have been analyzed using ion selective electrodes. A ternary phase diagram of the system at T=303.15 K is provided showing a triple line and several regions in which solid phases of different kind occur. This will restrict considerably the use of these systems as working fluids in absorption machinery.

  7. Comportement de frittés et de films d'oxyde de titane en présence d'atmosphères gazeuses, hors équilibre thermodynamique, en régime stationnaire; application aux capteurs résistifs d'oxygène

    NASA Astrophysics Data System (ADS)

    Jerisian, R.; Gautron, J.; Loup, J. P.

    1992-04-01

    Oxygen resistive titanium dioxide sensors are useful to control combustion but their studies raise fundamental problems. The non-stoichiometry of titanium dioxide is studied in the 870-1 100 K temperature range by using, out of equilibrium, gas mixture flow of CO, CO2, O2 and Ar. The electrical resistance of sintered samples (dense or porous) or films is measured in steady-state conditions as a function of th gaz flow rate. The deviation to equilibrium increases with the flow rate. The sample resistance is a function of the flow rate, oxygen partial pressure, temperature and microstructure of the specimen. The sensitivity to oxygen is increased by fast oxygen diffusion through the bulk creating a potential barrier at the surface of the grains. Under oxidizing conditions at 870 K, a bulk mechanism determines the resistance variation which is proportional to P_{O_2}^{1/4}/P_{CO}^{1/2}. If reducing conditions are applied, in the same conditions of temperature, the oxide develops a bulk non-stoichiometry which is controlled by the redox couple CO/CO2 assuming thermodynamical equilibrium. However the large number of conducting electrons favors an oxygen chemisorption, creating potential barriers at the surface of the grains. Accordingly the film resistance is a P_{O_2}^{1/2} function. The surface potential and coverage rate are calculated through several theoretical models ; their comparison allows to conclude in a relatively slow diffusion of oxygen vacancies at 870 K. At 1 100 K, the gaz mixture is rather close to thermodynamical equilibrium : in oxidizing medium the sample is equilibrated with oxygen, under CO/CO2 reducing conditions film sensors are only sensitive to oxygen traces. La non-stœchiométrie de l'oxyde de titane est étudiée, dans le domaine de température 870-1 100 K, en présence d'atmosphères hors équilibre thermodynamique, composées de CO, CO2, O2, Ar. La résistance électrique de différentes structures massives, poreuses ou en couches est mesurée, en régime stationnaire, en fonction du débit des gaz ; ces atmosphères sont d'autant plus éloignées de l'équilibre que le débit est élevé. On montre que les variations de résistance des échantillons, en fonction du débit, dépendent du domaine de pression partielle d'oxygène, de la température et de la structure des échantillons. La sensibilité à l'oxygène est accrue par un morphologie qui, à l'échelle macroscopique, favorise la diffusion de l'oxygène et qui, à l'échelle microscopique, permet la création de barrière de potentiel aux joints de grains. En milieu oxydant, à 870 K, un mécanisme de volume qui met en jeu la cinétique des échanges avec la phase gazeuse, détermine une variation de résistance en P_{O_2}^{1/4}/P_{CO}^{1/2}. En milieu réducteur, à la même température, la non-stœchiométrie en volume de l'oxyde est fixée par le couple redox CO/CO2 comme si l'atmosphère était en équilibre thermodynamique. Mais l'abondance des électrons de conduction, favorise la chimisorption de l'oxygène qui contrôle la résistance des couches selon une loi en P_{O_2}^{1/2} en créant des barrières de potentiel à la surface des grains. Des modèles, permettant le calcul du potentiel de surface ainsi que du taux de recouvrement, sont développés ; la comparaison des modèles indique une diffusion relativement lente des lacunes d'oxygène à 870 K. A 1 100 K, l'atmosphère tend à être à l'équilibre thermodynamique : i) en atmosphère oxydante, tous les capteurs sont en équilibre avec la pression partielle d'oxygène ; ii) en atmosphère réductrice, dominée par le couple redox CO/CO2, seules les couches sont sensibles à la présence de traces d'oxygène.

  8. Soins Aux Brules Apres Un Accident Nucleaire

    PubMed Central

    Bargues, L.; Donat, N.; Jault, P.; Leclerc, T.

    2010-01-01

    Summary Les lésions radiques sont dues le plus souvent à des radio-isotopes utilisés dans l’industrie. L’explosion d’un réacteur nucléaire, les armes nucléaires ou une attaque terroriste constituent un risque d’afflux massif de victimes brûlées. Les radiations ionisantes occasionnent des brûlures thermiques, des syndromes d’irradiation aiguë avec pancytopénie et des signes cutanés retardés. Après une période de latence, des symptômes cutanés apparaissent et leur profondeur est proportionnelle à la dose reçue. Les protocoles habituels de réanimation des brûlés s’appliquent ici. Les soins aux irradiés nécessitent aussi une mesure de l’irradiation et une décontamination par des personnels entraînés. En cas de catastrophe nucléaire, la priorité est d’optimiser les structures existantes et de préserver les moyens pour les patients ayant la plus forte probabilité de survie. Après un accident nucléaire isolé, les difficultés dans les centres de brûlés sont l’évaluation de la profondeur et les techniques chirurgicales de couverture cutanée. La préparation des moyens médicaux et des centres de brûlés est nécessaire pour faire face à la prise en charge de ces brûlures différentes et complexes. PMID:21991218

  9. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 3: miscellany of radionuclides (Cd, Co, Ni, Zn, I, Se, Sb, Pu, Am, and others).

    PubMed

    Gil-García, C; Tagami, K; Uchida, S; Rigol, A; Vidal, M

    2009-09-01

    New best estimates for the solid-liquid distribution coefficient (K(d)) for a set of radionuclides are proposed, based on a selective data search and subsequent calculation of geometric means. The K(d) best estimates are calculated for soils grouped according to the texture and organic matter content. For a limited number of radionuclides this is extended to consider soil cofactors affecting soil-radionuclide interaction, such as pH, organic matter content, and radionuclide chemical speciation. Correlations between main soil properties and radionuclide K(d) are examined to complete the information derived from the best estimates with a rough prediction of K(d) based on soil parameters. Although there are still gaps for many radionuclides, new data from recent studies improve the calculation of K(d) best estimates for a number of radionuclides, such as selenium, antimony, and iodine. PMID:19111373

  10. Comparison between 2 methods of solid-liquid extraction for the production of Cinchona calisaya elixir: an experimental kinetics and numerical modeling approach.

    PubMed

    Naviglio, Daniele; Formato, Andrea; Gallo, Monica

    2014-09-01

    The purpose of this study is to compare the extraction process for the production of China elixir starting from the same vegetable mixture, as performed by conventional maceration or a cyclically pressurized extraction process (rapid solid-liquid dynamic extraction) using the Naviglio Extractor. Dry residue was used as a marker for the kinetics of the extraction process because it was proportional to the amount of active principles extracted and, therefore, to their total concentration in the solution. UV spectra of the hydroalcoholic extracts allowed for the identification of the predominant chemical species in the extracts, while the organoleptic tests carried out on the final product provided an indication of the acceptance of the beverage and highlighted features that were not detectable by instrumental analytical techniques. In addition, a numerical simulation of the process has been performed, obtaining useful information about the timing of the process (time history) as well as its mathematical description. PMID:25154593

  11. 2D or not 2D: structural and charge ordering at the solid-liquid interface of the 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid.

    PubMed

    Shimizu, Karina; Pensado, Alfonso; Malfreyt, Patrice; Pádua, Agílio A H; Canongia Lopes, José N

    2012-01-01

    Molecular dynamics simulations of a 5 nm-thick layer of the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [(OH)C2C1im][BF4], over silica, alumina and boro-silicate glass substrates have been performed. The structure of the ionic liquid at the solid-liquid interface has been interpreted taking into account the corresponding normal density profiles, lateral interfacial structure, orientational ordering and planar density contours. Comparisons with experimental data suggest that the adsorption and stratification process of ionic liquids over solid substrates can be correctly modeled using a realistic rendition of a non-uniform amorphous substrate such as a glass material. PMID:22455020

  12. Solid-liquid hybrid assembly for ultrasonic elasticity measurements under hydrostatic conditions of up to 8 GPa in a Kawai-type multianvil apparatus

    NASA Astrophysics Data System (ADS)

    Song, M.; Yoneda, A.; Ito, E.

    2005-03-01

    A solid-liquid hybrid assembly has been designed for ultrasonic elasticity measurements of materials under hydrostatic conditions in a Kawai-type multianvil apparatus. In the assembly, a tungsten-carbide cubic anvil served as the buffer rod for the acoustic signals. The transducer and sample were mounted on two diagonally opposite truncated corners of the buffer-rod anvil. The sample was immersed in a liquid cell filled with a liquid pressure medium, a methanol-ethanol mixture (4:1 in volume), which produced hydrostatic conditions for the sample. The pressure was monitored with a bismuth pressure calibrant inside the liquid cell. Preliminary experiments using single-crystal MgO, polycrystal alumina, and silicate glass samples were successfully conducted up to 8GPa. This assembly is especially useful for precise elasticity measurements of single-crystal samples under hydrostatic compression.

  13. Measurements of solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K

    NASA Astrophysics Data System (ADS)

    Sang, Shihua; Hu, Yongxia; Cui, Ruizhi; Hu, Juanxin; Wang, Yuan

    2015-07-01

    Solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K were measured by the isothermal dissolution equilibrium method. The solubilities of salts and densities of saturated solutions in the ternary system were determined experimentally. The equilibrium solid phases were also determined by chemical analysis and X-ray powder diffraction. Using the experimental data, the phase diagram of the ternary system was obtained, which comprise one univariant curve and one stationary phase in crystallization filed of Na (Cl, Br). The ternary system was solid solution type. Density values in the equilibrium solution increase with an increase of the sodium bromide concentration while decrease with an increase of the sodium chloride concentration. The relationship equation of equilibrium liquid phase and the solid phase composition data were fitted with a regression equation.

  14. The movement of particles in liquid metals under gravity forces and the interaction of particles with advancing solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Weinberg, F.

    1984-01-01

    The problems of shrinkage and gas porosity are discussed. Gravity forces enhance the removal of gas bubbles from a metal melt and contribute to the feeding of shrinkage porosity in castings. Experiments are reviewed which determine how large a density difference is required for metal particles to float or sink in a metal melt and to what extent do factors not considered in Stokes Law influence particle movement in a real system. As to the interaction of particles with an advancing solid-liquid interface, the results indicate that the metal particles are not rejected in a metal melt, and that concentrations of particles in a metal following solidification are due to other factors.

  15. Extending atomistic simulation timescale in solid/liquid systems: Crystal growth from solution by a parallel-replica dynamics and continuum hybrid method

    SciTech Connect

    Lu, Chun-Yaung; Voter, Arthur F.; Perez, Danny

    2014-01-28

    Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.

  16. Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at off-design conditions

    NASA Astrophysics Data System (ADS)

    Zhao, B. J.; Huang, Z. F.; Chen, H. L.; Hou, D. H.

    2012-11-01

    The solid-liquid two-phase flow fields in the non-clogging centrifugal pump with a double-channel impeller have been investigated numerically for the design condition and also off-design conditions, in order to study the solid-liquid two-phase flow pattern and non-clogging mechanism in non-clogging centrifugal pumps. The main conclusions include: The sand volume fraction distribution is extremely inhomogeneous in the whole flow channel of the pump at off-design conditions. In the impeller, particles mainly flow along the pressure surface and hub; In the volute, particles mainly accumulate in the region near to the exit of volute, the largest sand volume fraction is observed at the tongue, and a large number of particles collide with volute wall and exit the volute after circling around the volute for several times. When the particle diameter increases, particles tend to accumulate on the pressure side of the impeller, and more particles crash with the pressure side of the blade. And larger sand volume fraction gratitude is also observed in the whole flow channel of the pump. With the decrease of the inlet sand volume fraction, particles tend to accumulate on the suction side of the blade. Compared with the particle diameter, the inlet sand volume fraction has less influence on the sand volume fraction gratitude in the whole channel of the pump. At the large flow rate, the minimum and maximum sand volume fraction in the whole flow channel of the model pump tends to be smaller than that at the small flow rate. Thus, it is concluded that the water transportation capacity increases with the flow rate. This research will strengthen people's understanding of the multiphase flow pattern in non-clogging centrifugal pumps, thus provides a theoretical basis for the optimal design of non-clogging centrifugal pumps.

  17. Du royaume de Fourier aux ondelettes D'une argumentation scientique une ralit numrique

    E-print Network

    Menichi, Luc

    Du royaume de Fourier aux ondelettes D'une argumentation scientique à une réalité numérique Générale Du royaume de Fourier aux ondelettes 1 / 58 #12;Conférence Scientique Générale Du royaume de Fourier aux ondelettes 2 / 58 #12;Jean Morlet (13 janvier 1931, 27 avril 2007) Nationalité : Française

  18. Des robots qui s'adaptent aux dommages en quelques minutes

    E-print Network

    Des robots qui s'adaptent aux dommages en quelques minutes Les robots pourraient aider notre) montrent comment des robots peuvent automatiquement s'adapter aux dommages en moins de deux minutes. Leurs résultats sont publiés dans Nature le 28 mai 2015. Contrairement aux robots actuels, les êtres vivants ont

  19. L'intérêt de l'accoutumance aux antituberculeux majeurs

    PubMed Central

    Aniked, Sarra; Bakouh, Ouiam; Bourkadi, Jamal Eddine

    2014-01-01

    Les réactions d’ hypersensibilité aux antituberculeux sont relativement rares et graves par leur caractère imprévisible, elles conduisent généralement à l'arrêt ou au changement thérapeutique. Nous rapportons un cas d'hypersensibilité à trois antibacillaires majeurs (Isoniazide, Pyrazinamide, Ethombutol). Une accoutumance orale à ces trois médicaments a été réalisée permettant à la patiente de bénéficier d'un traitement antibacillaire optimal. PMID:25821550

  20. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    SciTech Connect

    Hoffer, Saskia

    2002-08-19

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  1. Vortex-assisted matrix solid-liquid dispersive microextraction for the analysis of triazole fungicides in cotton seed and honeysuckle by gas chromatography.

    PubMed

    Xue, Jiaying; Li, Huichen; Liu, Fengmao; Jiang, Wenqing; Hou, Fan

    2016-04-01

    A one-step analytical method termed vortex-assisted matrix solid-liquid dispersive microextraction (VA-MSLDME) was developed for the determination of seven triazole fungicides from cotton seed and honeysuckle prior to gas chromatography with electron capture detection. The VA-MSLDME was performed by mixing the matrix, primary secondary amine, acetonitrile, toluene, and water in one single system. The target fungicides in the sample were extracted, cleaned up and preconcentrated simultaneously in the matrix/acetonitrile/water/toluene system. Meanwhile, the interferences were adsorbed by the cleanup adsorbent. The extraction recoveries of the fungicides from the samples varied from 82.9% to 97.8% with relative standard deviations of 4.4-8.5%. The enrichment factors of the analytes ranged from 22 to 47, and the limits of detection were in the range of 0.05-20?g/kg. The results demonstrated the significant predominance of VA-MSLDME in the analysis of pesticide residues in cotton seed and honeysuckle samples. PMID:26593567

  2. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  3. Facile synthesis of PbSe hollow nanostructure assemblies via a solid/liquid-phase chemical route and their electrogenerated chemiluminescence properties.

    PubMed

    Han, Min; Li, Yanrong; Niu, Hongyan; Liu, Lili; Chen, Kunji; Bao, Jianchun; Dai, Zhihui; Zhu, Jianming

    2011-03-21

    Spherical PbSe hollow nanostructure assemblies (HNSAs) were synthesized by a simple one-pot solid/liquid-phase reaction in which solid KPbI(3)?2?H(2)O and SeO(2) are heated in oleic acid/dodecylamine/1-octadecene at 250?°C for 30?min. XRD analysis shows that the obtained product is cubic-phase PbSe and well crystallized. FESEM and TEM images reveal that the obtained spherical PbSe assemblies are made up of small, irregular, and fused hollow nanostructure building blocks. On the basis of temperature- and time-dependent investigations as well as control experiments, molten-salt corrosion of solid PbSe nanocrystal aggregates formed in situ during the high-temperature ripening stage is suggested to explain the formation of such novel assemblies. Moreover, when the reaction temperature is further increased to 280 or 320?°C with other conditions unchanged, cubic and orthorhombic mixed-phase PbSe HNSAs is generated. The obtained PbSe HNSAs exhibit excellent electrogenerated chemiluminescence (ECL) performance. Two strong and stable emission peaks at about -1.4 and +1.5?V (vs. Ag/AgCl) are observed. In particular, the ECL intensity is influenced by the crystal phase of PbSe. PMID:21351177

  4. Phase relations in the system NaCl-KCl-H sub 2 O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    SciTech Connect

    Sterner, S.M.; Pitzer, K.S. ); Iming Chou ); Downs, R.T. )

    1992-06-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H{sub 2}O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1,200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1,200 K and from 1 bar to 5 kbar.

  5. Phase relations in the system NaCl-KCl-H 2O: V. Thermodynamic- PTX analysis of solid-liquid equilibria at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sterner, S. Michael; Chou, I.-Ming; Downs, Robert T.; Pitzer, Kenneth S.

    1992-06-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H 2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar.

  6. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus; Michailovski, Alexej; Patzke, Greta R.; Baiker, Alfons

    2005-05-01

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid/liquid interface at pressures up to 250 bar and temperatures up to 220 °C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for good mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in "supercritical" carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO3 nanorods from MoO3•2H2O.

  7. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    NASA Astrophysics Data System (ADS)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 ?m on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  8. Effects of tilt angle of mirror-lamp system on shape of solid-liquid interface of silicon melt during floating zone growth using infrared convergent heating

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Mukter; Watauchi, Satoshi; Nagao, Masanori; Tanaka, Isao

    2016-01-01

    The tilt effects of the mirror-lamp (M-L) system on the shape of the interface of the silicon molten zone formed during growth using the infrared convergent heating floating zone method were studied at various positions of the M-L system. The stability and the interfaces of the molten zone formed in the tilted condition were compared with those in the no tilt condition. The molten zone appeared to be more stabilized in the tilted condition than in the no tilt condition. However, the conventional parameters characterizing the interface shape such as convexities (h/r), gap and zone length (L) were almost independent of the tilt angle (?) of the M-L system and insufficient to discuss the tilting effects on the molten zone shape. The curvature of the solid-liquid interface was affected by the ?. New characterizing parameters such as the growth interface and triple point angles (? and TPA, respectively) were effective to quantitatively describe the tilting effects on the interface shape. With increase of the ?, the ? was decreased and the TPA was increased in both the feed and crystal sides. A silicon crystal of 45 mm in diameter was grown successfully in the tilted condition.

  9. Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid-liquid extraction followed by high performance liquid chromatography.

    PubMed

    Valdivielso, Izaskun; Bustamante, María Ángeles; Ruiz de Gordoa, Juan Carlos; Nájera, Ana Isabel; de Renobales, Mertxe; Barron, Luis Javier R

    2015-04-15

    Carotenoids and tocopherols from botanical species abundant in Atlantic mountain grasslands were simultaneously extracted using one-step solid-liquid phase. A single n-hexane/2-propanol extract containing both types of compounds was injected twice under two different sets of HPLC conditions to separate the tocopherols by normal-phase chromatography and carotenoids by reverse-phase mode. The method allowed reproducible quantification in plant samples of very low amounts of ?-, ?-, ?- and ?-tocopherols (LOD from 0.0379 to 0.0720 ?g g(-1) DM) and over 15 different xanthophylls and carotene isomers. The simplified one-step extraction without saponification significantly increased the recovery of tocopherols and carotenoids, thereby enabling the determination of ?-tocopherol acetate in plant samples. The two different sets of chromatographic analysis provided near baseline separation of individual compounds without interference from other lipid compounds extracted from plants, and a very sensitive and accurate detection of tocopherols and carotenoids. The detection of minor individual components in botanical species from grasslands is nowadays of high interest in searching for biomarkers for foods derived from grazing animals. PMID:25466080

  10. Ultra-low temperature (?300 °C) growth of Ge-rich SiGe by solid-liquid-coexisting annealing of a-GeSn/c-Si structures

    NASA Astrophysics Data System (ADS)

    Sadoh, Taizoh; Chikita, Hironori; Matsumura, Ryo; Miyao, Masanobu

    2015-09-01

    Ultra-low temperature (?300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%-26%) and annealing conditions (300-1000 °C, 1 s-48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (˜80%) SiGe layers with Sn concentrations of ˜2% are realized by ultra-low temperature annealing (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.

  11. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    PubMed Central

    Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL?1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL?1 and 0.012 ng mL?1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  12. Understanding the relationship between biotherapeutic protein stability and solid-liquid interfacial shear in constant region mutants of IgG1 and IgG4.

    PubMed

    Tavakoli-Keshe, Roumteen; Phillips, Jonathan J; Turner, Richard; Bracewell, Daniel G

    2014-02-01

    Relative stability of therapeutic antibody candidates is currently evaluated primarily through their response to thermal degradation, yet this technique is not always predictive of stability in manufacture, shipping, and storage. A rotating disk shear device is proposed that produces defined shear conditions at a known solid-liquid interface to measure stability in this environment. Five variants of IgG1 and IgG4 antibodies were created using combinations of two discrete triple amino acid sequence mutations denoted TM and YTE. Antibodies were ranked for stability based on shear device output (protein decay coefficient, PDC), and compared with accelerated thermal stability data and the melting temperature of the CH2 domain (Tm 1) from differential scanning calorimetry to investigate technique complimentarity. Results suggest that the techniques are orthogonal, with thermal methods based on intramolecular interaction and shear device stability based on localized unfolding revealing less stable regions that drive aggregation. Molecular modeling shows the modifications' effects on the antibody structures and indicates a possible role for Fc conformation and Fab-Fc docking in determining suspended protein stability. The data introduce the PDC value as an orthogonal stability indicator, complementary to traditional thermal methods, allowing lead antibody selection based on a more full understanding of process stability. PMID:24357426

  13. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Cheng, X. R.; Li, R. N.; Gao, Y.; Guo, W. L.

    2013-12-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ?-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value.

  14. Mechanism of atomic force microscopy imaging of three-dimensional hydration structures at a solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Reischl, Bernhard; Kobayashi, Naritaka; Spijker, Peter; Canova, Fillippo Federici; Miyazawa, Keisuke; Foster, Adam S.

    2015-10-01

    Here we present both subnanometer imaging of three-dimensional (3D) hydration structures using atomic force microscopy (AFM) and molecular dynamics simulations of the calcite-water interface. In AFM, by scanning the 3D interfacial space in pure water and recording the force on the tip, a 3D force image can be produced, which can then be directly compared to the simulated 3D water density and forces on a model tip. Analyzing in depth the resemblance between experiment and simulation as a function of the tip-sample distance allowed us to clarify the contrast mechanism in the force images and the reason for their agreement with water density distributions. This work aims to form the theoretical basis for AFM imaging of hydration structures and enables its application to future studies on important interfacial processes at the molecular scale.

  15. Controlled self-assembly and photovoltaic characteristics of porphyrin derivatives on a silicon surface at solid-liquid interfaces.

    PubMed

    Cai, Jinhua; Chen, Haihui; Huang, Jiangen; Wang, Jingxia; Tian, Dongliang; Dong, Huanli; Jiang, Lei

    2014-04-21

    Two meso-tetraphenylporphyrin (H2TPP) derivatives with different central metal ions, namely ZnTPP, CuTPP, were synthesized, and characterized by a series of spectroscopic methods. Their self-assembly behaviors in mixed solvents without surfactant were systematically investigated. The morphology of the thus produced nanoarchitectures could be efficiently controlled. Nanoslices can be manufactured when a volume of cyclohexane is involved, octahedrons can be produced when a mixed solvent of chloroform and isopropanol is employed, while four-leaf clover-shaped structures can be produced with a large volume of methanol injected. The nanostructures have been characterized by electronic absorption, scanning electron microscopy (SEM) and photoelectric conversion techniques. The internal structures of the nanostructures are well described by XRD. The nanostructures exhibit a power conversion under illumination intensity of 2.3 mW cm(-2). The present result appears to represent an effort toward controlling the morphology of self-assembled nanostructures of porphyrin derivatives via synthesis through introduction of metal-ligand and solvent interaction. Nevertheless, the fundamental study will be helpful to understand photoinduced energy/charge transport in an organic interface and this might also serve as promising building blocks for nanoscale power sources for potential application in solar energy technologies and organic electronics and optoelectronics. PMID:24647426

  16. Reliability study of Au-in solid-liquid interdiffusion bonding for GaN-based vertical LED packaging

    NASA Astrophysics Data System (ADS)

    Sung, Ho-Kun; Wang, Cong; Kim, Nam-Young

    2015-12-01

    An In-rich Au-In bonding system has been developed to transfer vertical light-emitting diodes (VLEDs) from a sapphire to a graphite substrate and enable them to survive under n-ohmic contact treatment at 350 °C. The bonding temperature is 210 °C, and three intermetallic compounds are detected: AuIn, AuIn2, and ? phase. As a result, the remelting temperature increases beyond the theoretical value of 450 °C according to the Au-In binary phase diagram. In fact, reliability testing showed that joints obtained by rapid thermal annealing at 400 °C for 1?min survived whereas those obtained at 500 °C for 1?min failed. Finally, a GaN-based blue VLED was transferred to the graphite substrate by means of the proposed bonding method, and its average light output power was measured to be 386.6 mW (@350 mA) after n-ohmic contact treatment. This wafer-level bonding technique also shows excellent potential for high-temperature packing applications.

  17. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-09-30

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass distribution in mixed systems. Such information will in future be used to identify optimum surfactant.

  18. Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection.

    PubMed

    Kong, Wei-Jun; Liu, Shu-Yu; Qiu, Feng; Xiao, Xiao-He; Yang, Mei-Hua

    2013-05-01

    A simple and sensitive analytical method based on ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with high performance liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection (USLE-IAC-HPLC-PCD-FLD) has been developed for simultaneous multi-mycotoxin determination of aflatoxins B1, B2, G1, G2 (AFB1, AFB2, AFG1, AFG2) and ochratoxin A (OTA) in 13 edible and medicinal nutmeg samples marketed in China. AFs and OTA were extracted from nutmeg samples by ultrasonication using a methanol?:?water (80?:?20, v/v) solution, followed by an IAC clean-up step. Different USL extraction conditions, pre-processing ways for nutmeg sample and clean-up columns for mycotoxins, as well as HPLC-PCD-FLD parameters (mobile phase, column temperature, elution procedure, excitation and emission wavelengths) were optimized. This method, which was appraised for analyzing nutmeg samples, showed satisfactory results with reference to limits of detection (LODs) (from 0.02 to 0.25 ?g kg(-1)), limits of quantification (LOQs) (from 0.06 to 0.8 ?g kg(-1)), linear ranges (up to 30 ng mL(-1) for AFB1, AFG1 and OTA and 9 ng mL(-1) for AFB2 and AFG2), intra- and inter-day variability (all <2%) and average recoveries (from 79.6 to 90.8% for AFs and from 93.6 to 97.3% for OTA, respectively). The results of the application of developed method in nutmeg samples have elucidated that four samples were detected with contamination of AFs and one with OTA. AFB1 was the most frequently found mycotoxin in 30.8% of nutmeg samples at contamination levels of 0.73-16.31 ?g kg(-1). At least two different mycotoxins were co-occurred in three samples, and three AFs were simultaneously detected in one sample. PMID:23486692

  19. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    PubMed

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. PMID:26292776

  20. Enhanced biotransformation of 2-phenylethanol with ethanol oxidation in a solid-liquid two-phase system by active dry yeast.

    PubMed

    Rong, Shaofeng; Ding, Baomei; Zhang, Xiaoli; Zheng, Xuesong; Wang, Yifei

    2011-11-01

    2-Phenylethanol (2-PE) can be produced from L: -phenylalanine (L: -Phe) with the oxidation degradation of ethanol by active dry yeast. In this study, the catalysis effect of ethanol on biotransforming L: -Phe into 2-PE by yeast was evaluated and optimized. The results indicated that increasing ethanol concentration was beneficial for enhancing 2-PE concentration but lowered the 2-PE productivity. Initial ethanol concentration above 25 g/l could strongly inhibit the 2-PE production. To obtain 2-PE with desirable concentrations with an economical operation mode, three fed-batch biotransformation operation methods using ethanol or/and glucose were carried out in a solid-liquid two-phase system. When using ethanol alone with the initial concentration of 10 g/l, the total concentration and overall productivity of 2-PE were 7.6 g/l and 0.065 g l(-1) h(-1), respectively. Furthermore, an experiment with controlled glucose solely (higher than 2 g/l) was finished. In this case, phenylacetaldehyde (PA) was detected along with ethanol accumulation, suggesting that reaction of PA ? 2-PE in Ehrlich pathway was inhibited. To further enhance 2-PE production by using glucose only, a novel operation strategy to simultaneously control rates of glucose glycolysis and ethanol oxidative degradation with the aid of ISPR techniques was developed. With this strategy, 2-PE concentration and yield based on glucose consumption reached a higher level of 14.8 g/l and 0.12 g-PE/g-glucose, respectively, and these are the highest values reported up to date with the fed-batch biotransformation operation mode. PMID:21910022

  1. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  2. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2015-09-15

    Fluid drag of micro/nano fluidic systems has inspired wide scientific interest. Surface charge and boundary slip at the solid-liquid interface are believed to affect fluid drag. This review summarizes the recent studies on the coupling of surface charge and slip, and their combined effect on fluid drag at micro/nano scale. The effect of pH on surface charge of borosilicate glass and silica surfaces in deionized (DI) water and saline solution is discussed using a method based on colloidal probe atomic force microscopy (AFM). The boundary slip of various oil-solid interfaces are discussed for samples with different degrees of oleophobicity prepared by nanoparticle-binder system. By changing the pH of solution or applying an electric field, effect of surface charge on slip of a smooth hydrophobic octadecyltrichlorosilane (OTS) in DI water and saline solution is studied. A theoretical model incorporating the coupling relationship between surface charge and slip is used to discuss the combined effect of surface charge-induced electric double layer (EDL) and slip on fluid drag of pressure-driven flow in a one-dimensional parallel-plates microchannel. A theoretical method is used to reduce the fluid drag. The studies show that the increasing magnitude of surface charge density leads to a decrease in slip length. The surface charge results in a larger fluid drag, and the coupling of surface charge and slip can further increase the fluid drag. Surface charge-induced EDLs with asymmetric zeta potentials can effectively reduce the fluid drag. PMID:26021432

  3. Hybrid field-assisted solid-liquid-solid dispersive extraction for the determination of organochlorine pesticides in tobacco with gas chromatography.

    PubMed

    Zhou, Ting; Xiao, Xiaohua; Li, Gongke

    2012-01-01

    A novel one-step sample preparation technique termed hybrid field-assisted solid-liquid-solid dispersive extraction (HF-SLSDE) was developed in this study. A simple glass system equipped with a condenser was designed as an extraction vessel. The HF-SLSDE technique was a three-phase dispersive extraction approach. Target analytes were extracted from the sample into the extraction solvent enhanced by the hybrid field. Meanwhile, the interfering components were adsorbed by dispersing sorbent. No cleanup step preceded chromatographic analysis. The efficiency of the HF-SLSDE approach was demonstrated in the determination of organochlorine pesticide (OCP) residues in tobacco with a gas chromatography-electron capture detector (GC-ECD). Various operation conditions were studied systematically. Low detection limits (0.3-1.6 ?g/kg) and low quantification limits (1.0-4.5 ?g/kg) were achieved under the optimized conditions. The recoveries of OCPs ranged from 70.2% to 118.2%, with relative standard deviations of <9.6%, except for the lowest fortification level. Because of the effect of the hybrid field, HF-SLSDE showed significant predominance compared with other extraction techniques. The dispersing sorbent with good cleanup ability used in this study was also found to be a microwave absorption medium, which could heat the nonpolar extraction solvent under microwave irradiation. Different microstructures of tobacco samples before and after extractions demonstrated the mechanism of HF-SLSDE was based on an explosion at the cell level. According to the results, HF-SLSDE was proved to be a simple and effective sample preparation method for the analysis of pesticide residues in solid samples and could potentially be extended to other nonpolar target analytes in a complex matrix. PMID:22092268

  4. Determination of caffeoylquinic acids in feed and related products by focused ultrasound solid-liquid extraction and ultra-high performance liquid chromatography-mass spectrometry.

    PubMed

    Tena, M T; Martínez-Moral, M P; Cardozo, P W

    2015-06-26

    A method to determine caffeoylquinic acids (CQAs) in three sources (herbal extract, feed additive and finished feed) using for the first time focused ultrasound solid-liquid extraction (FUSLE) followed by ultra-high performance liquid chromatography (UPLC) coupled to quadrupole-time of flight mass spectrometry is presented. Pressurized liquid extraction (PLE) was also tested as extraction technique but it was discarded because cynarin was not stable under temperature values used in PLE. The separation of the CQAs isomers was carried out in only seven minutes. FUSLE variables such as extraction solvent, power and time were optimized by a central composite design. Under optimal conditions, FUSLE extraction was performed with 8mL of an 83:17 methanol-water mixture for 30s at a power of 60%. Only two extraction steps were found necessary to recover analytes quantitatively. Sensitivity, linearity, accuracy and precision were established. Matrix effect was studied for each type of sample. It was not detected for mono-CQAs, whereas the cynarin signal was strongly decreased due to ionization suppression in presence of matrix components; so the quantification by standard addition was mandatory for the determination of di-caffeoylquinic acids. Finally, the method was applied to the analysis of herbal extracts, feed additives and finished feed. In all samples, chlorogenic acid was the predominant CQA, followed by criptochlorogenic acid, neochlorogenic acid and cynarin. The method allows an efficient determination of chlorogenic acid with good recovery rates. Therefore, it may be used for screening of raw material and for process and quality control in feed manufacture. PMID:25981290

  5. Des widgets aux comets pour la Plasticit des Systmes Interactifs

    E-print Network

    Des widgets aux comets pour la Plasticité des Systèmes Interactifs From widgets to comets utilisabilité. L'article propose une nouvelle génération de widgets, les « comets » (COntext Mouldable widgETs), pour la construction de systèmes interactifs plastiques. Une comet est, par définition, un widget

  6. Vaincre la réticence à l’instauration d’un nouveau schéma à base d’enfuvirtide grâce aux soins aux patients et aux mesures de soutien

    PubMed Central

    Trottier, Benoît

    2007-01-01

    Les patients peuvent être réticents à l’idée de commencer un traitement par l’enfuvirtide en raison de préoccupations relatives à l’auto-injection et à d’autres questions connexes. Étant donné que l’introduction d’une nouvelle classe de médicaments peut améliorer considérablement l’efficacité d’un schéma antirétroviral, appuyer le patient dans l’instauration de l’enfuvirtide, un agent sûr et efficace appartenant à une nouvelle classe, offre des bienfaits thérapeutiques. Dans le cas du présent patient, qui affichait une résistance aux trois grandes classes d’antirétroviraux, l’enfuvirtide a été ajouté avec succès au traitement grâce à un groupe d’aide par les pairs et à une assistance clinique. L’acceptation du patient a augmenté grâce à l’utilisation d’un système d’injection sans aiguilles (Biojector), avec des effets secondaires minimes et une amélioration significative du contrôle virologique et immunologique.

  7. Des furoncles résistants aux antibiotiques: penser à la myiase !!

    PubMed Central

    Ajili, Faida; Abid, Rim; Bousseta, Najeh; Mrabet, Ali; Karoui, Ghazi; Louzir, Bassem; Battikh, Riadh; Othmani, Salah

    2013-01-01

    Les myiases sont des infections parasitaires par des larves de mouches. La localisation cutanée doit être évoquée de retour d'un pays tropical devant une évolution inhabituelle de lésions cutanées. Nous rapportons une observation d'un militaire tunisien, ayant séjourné en République Démocratique du Congo. Il était atteint de myiase cutanée simulatrice d'une furonculose résistante aux antibiotiques. L'intérêt de cette observation est de souligner l'importance d’évoquer la myiase dont le traitement est simple et rapide chez un patient de retour de zone d'endémie. PMID:24106569

  8. Soins primaires aux adultes ayant une déficience développementale

    PubMed Central

    Sullivan, William F.; Berg, Joseph M.; Bradley, Elspeth; Cheetham, Tom; Denton, Richard; Heng, John; Hennen, Brian; Joyce, David; Kelly, Maureen; Korossy, Marika; Lunsky, Yona; McMillan, Shirley

    2011-01-01

    Résumé Objectif Mettre à jour les lignes directrices canadiennes de 2006 sur les soins primaires aux adultes ayant une déficience développementale (DD) et présenter des recommandations pratiques fondées sur les connaissances actuelles pour traiter des problèmes de santé particuliers chez des adultes ayant une DD. Qualité des preuves Des professionnels de la santé expérimentés participant à un colloque et un groupe de travail subséquent ont discuté et convenu des révisions aux lignes directrices de 2006 en se fondant sur une recherche documentaire exhaustive, la rétroaction obtenue des utilisateurs du guide de pratique et les expériences cliniques personnelles. La plupart des preuves disponibles dans ce domaine viennent de l’opinion d’experts ou de déclarations consensuelles publiées (niveau III). Message principal Les adultes ayant une DD ont des problèmes de santé complexes, dont plusieurs diffèrent de ceux de la population en général. De bons soins primaires permettent d’identifier les problèmes de santé particuliers dont souffrent les adultes ayant une DD pour améliorer leur qualité de vie et leur accès aux soins de santé et prévenir la morbidité et le décès prématuré. Ces lignes directrices résument les problèmes de santé générale, physique, comportementale et mentale des adultes ayant une DD que devraient connaître les professionnels des soins primaires et présentent des recommandations pour le dépistage et la prise en charge en se basant sur les connaissances actuelles que les cliniciens peuvent mettre en pratique. En raison de l’interaction des facteurs biologiques, psychoaffectifs et sociaux qui contribuent à la santé et au bien-être des adultes ayant une DD, ces lignes directrices insistent sur la participation des aidants, l’adaptation des interventions, au besoin, et la consultation auprès de divers professionnels de la santé quand ils sont accessibles. Elles mettent aussi en évidence la nature éthique des soins. Les lignes directrices sont formulées dans le contexte d’un cadre éthique qui tient compte des questions comme le consentement éclairé et l’évaluation des bienfaits pour la santé par rapport aux risques de préjudice. Conclusion La mise en œuvre des lignes directrices proposées ici améliorerait la santé des adultes ayant une DD et minimiserait les disparités sur les plans de la santé et des soins de santé entre les adultes ayant une DD et la population en général.

  9. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005 Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005

  10. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23

  11. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005: Solution 2: #12;CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum

  12. Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1W?

    PubMed Central

    Swarup, Ranjan; Kargul, Joanna; Marchant, Alan; Zadik, Daniel; Rahman, Abidur; Mills, Rebecca; Yemm, Anthony; May, Sean; Williams, Lorraine; Millner, Paul; Tsurumi, Seiji; Moore, Ian; Napier, Richard; Kerr, Ian D.; Bennett, Malcolm J.

    2004-01-01

    We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalized with plasma membrane (PM) markers. Because of its PM localization, we were able to take advantage of the steep pH gradient that exists across the plant cell PM to investigate AUX1 topology using YFP as a pH-sensitive probe. The YFP-coding sequence was inserted in selected AUX1 hydrophilic loops to orient surface domains on either apoplastic or cytoplasmic faces of the PM based on the absence or presence of YFP fluorescence, respectively. We were able to demonstrate in conjunction with helix prediction programs that AUX1 represents a polytopic membrane protein composed of 11 transmembrane spanning domains. In parallel, a large aux1 allelic series containing null, partial-loss-of-function, and conditional mutations was characterized to identify the functionally important domains and amino acid residues within the AUX1 polypeptide. Whereas almost all partial-loss-of-function and null alleles cluster in the core permease region, the sole conditional allele aux1-7 modifies the function of the external C-terminal domain. PMID:15486104

  13. Aide aux dplacements l'tranger des enseignants-chercheurs de l'Universit du Maine

    E-print Network

    Di Girolami, Cristina

    Aide aux déplacements à l'étranger des enseignants-chercheurs de l'Université du Maine retour Mobilité entrante et sortante Aide aux déplacements à l'étranger des enseignants-chercheurs de l-chercheurs, chercheurs et doctorants des laboratoires de l'Université du Maine. Il s'agit d'une aide strictement soumise

  14. Introduction aux filtres de Kalman et interprtation en terme de processus

    E-print Network

    Baehr, Christophe

    Introduction aux filtres de Kalman et interprétation en terme de processus à champ moyen christophe Septembre 2008 Christophe Baehr Introduction aux filtres de Kalman #12;2 / 49 Les points que nous aborderons 1. Le filtre de Kalman-Bucy 2. Les filtres particulaires en quelques mots 3. Les filtres de Kalman

  15. Conséquences comportementales de la violence faite aux enfants

    PubMed Central

    Al Odhayani, Abdulaziz; Watson, William J.; Watson, Lindsay

    2013-01-01

    Résumé Objectif Discuter des répercussions de la violence sur le développement comportemental durant l’enfance, mettre en évidence certains signes comportementaux susceptibles d’alerter les médecins à la présence d’une maltraitance continue d’un enfant et explorer le rôle précis du médecin de famille dans une telle situation clinique. Sources des données Une recension systématique a servi à examiner la recherche pertinente, les articles de révision clinique et les sites web des organismes de protection de la jeunesse. Message principal Le comportement d’un enfant est une manifestation extériorisée de sa stabilité et de sa sécurité intérieures. C’est une lentille au travers de laquelle le médecin de famille peut observer le développement de l’enfant pendant toute sa vie. Tous les genres de violence sont dommageables pour les enfants, qu’elle soit physique, affective ou psychologique, et peuvent causer des problèmes à long terme dans le développement du comportement et de la santé mentale. Les médecins de famille doivent connaître les indices de maltraitance et de négligence envers les enfants et être aux aguets de ces derniers afin d’entreprendre les interventions appropriées et améliorer les résultats pour ces enfants. Conclusion La violence faite aux enfants peut causer un développement psychologique désordonné et des problèmes de comportement. Les médecins de famille exercent un rôle important dans la reconnaissance des signes comportementaux laissant présager une maltraitance, ainsi que pour offrir de l’aide afin de protéger les enfants.

  16. Extraction and preconcentration of tylosin from milk samples through functionalized TiO? nanoparticles reinforced with a hollow fiber membrane as a novel solid/liquid-phase microextraction technique.

    PubMed

    Sehati, Negar; Dalali, Nasser; Soltanpour, Shahla; Dorraji, Mir Saeed Seyed

    2014-08-01

    The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so-called functionalized TiO2 hollow fiber solid/liquid-phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2 O2 and a mild acidic ambient under UV irradiation. This novel extraction method showed excellent extraction efficiency and a high enrichment factor (540.2) in comparison with conventional hollow fiber liquid-phase microextraction. All the experiments were monitored at ?max = 284 nm using a simple double beam UV-visible spectrophotometer. A Taguchi orthogonal array experimental design with an OA16 (4(5) ) matrix was employed to optimize the factors affecting the efficiency of hollow fiber solid/liquid-phase microextraction such as pH, stirring rate, salt addition, extraction time, and the volume of donor phase. This developed method was successfully applied for the separation and determination of tylosin in milk samples with a linear concentration range of 0.51-7000 ?g/L (r(2) = 0.991) and 0.21 ?g/L as the limit of detection. PMID:24890459

  17. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect

    Cole, R.D. )

    1991-03-01

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  18. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements.

    PubMed Central

    Ulmasov, T; Murfett, J; Hagen, G; Guilfoyle, T J

    1997-01-01

    A highly active synthetic auxin response element (AuxRE), referred to as DR5, was created by performing site-directed mutations in a natural composite AuxRE found in the soybean GH3 promoter. DR5 consisted of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element. The DR5 AuxRE showed greater auxin responsiveness than a natural composite AuxRE and the GH3 promoter when assayed by transient expression in carrot protoplasts or in stably transformed Arabidopsis seedlings, and it provides a useful reporter gene for studying auxin-responsive transcription in wild-type plants and mutants. An auxin response transcription factor, ARF1, bound with specificity to the DR5 AuxRE in vitro and interacted with Aux/IAA proteins in a yeast two-hybrid system. Cotransfection experiments with natural and synthetic AuxRE reporter genes and effector genes encoding Aux/IAA proteins showed that overexpression of Aux/IAA proteins in carrot protoplasts resulted in specific repression of TGTCTC AuxRE reporter gene expression. PMID:9401121

  19. Journal of Mathematical Analysis and Applications 264, 288310 (2001) doi:10.1006/jmaa.2001.7646, available online at http://www.idealibrary.com on

    E-print Network

    Bürger, Raimund

    2001-01-01

    multidimensional initial-boundary value problems modelling sedimentation­consolidation processes of a flocculated of applications such as wastewater treatment, mineral processing, chemical and civil engineering sedimentation­ consolidation equations. This is in part due to the fact that the solid­liquid separation takes

  20. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-09-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane ? helices, of which S1-S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein's folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential.

  1. [PMIM]Br@TiO2 nanocomposite reinforced hollow fiber solid/liquid phase microextraction: an effective extraction technique for measurement of benzodiazepines in hair, urine and wastewater samples combined with high-performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Nezhadali, Azizollah; Bahar, Shahriyar; Bohlooli, Shahab; Banaei, Alireza

    2015-02-01

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of benzodiazepines (BZPs) in hair, urine and wastewater. The membrane extraction with 1-pentyl-3-methylimidazolium bromide coated titanium dioxide ([PMIM]Br@TiO2) sorbent used in this research is a two-phase supported membrane extraction consisting of an aqueous (donor phase), and n-octanol/nano [PMIM]Br@TiO2 (acceptor phase) system operated in direct immersion sampling mode. The 1-pentyl-3-methylimidazolium bromide (ionic liquid) coated nano TiO2 dispersed in the organic solvent (n-octanol) is held into a porous membrane supported by capillary forces and sonification. It is in contact with the feed phase, which is the aqueous sample. The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of BZPs into one single extract. In order to obtain high extraction efficiency of the analytes using this novel sorbent, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.05-6000ngmL(-1)), low limits of detection (0.08-0.5ngmL(-1)) and good enrichment (533-1190). PMID:25589255

  2. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    PubMed

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance. PMID:26154990

  3. A gas-diffusion flow injection method coupled with online solid-liquid extraction for the determination of ammonium in solid samples.

    PubMed

    Timofeeva, Irina I; Bulatov, Andrey V; Moskvin, Aleksey L; Kolev, Spas D

    2015-09-01

    A simple, rapid and reliable gas-diffusion flow injection (GD-FI) method for ammonium determination in building materials has been developed. It is based on leaching ammonium from a ground solid sample into an alkaline solution with subsequent ammonia gas generation. Ammonia is then transported in a nitrogen stream to the GD cell of the FI system where it is absorbed into its acceptor solution containing a mixture of the acid-base indicators cresol red and thymol blue. The maximum increase in the absorbance of the acceptor solution at 580 nm is related to the ammonium concentration in the solid sample. The proposed method is characterized by a linear concentration range of 0.1-5.0 mg NH4(+) kg(-1), a limit of detection of 8 ?g NH4(+) kg(-1) and a sample throughput of 10h(-1). A successful application of this method for the determination of ammonium in building materials such as concrete, cement and sand is reported. PMID:26003703

  4. The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts.

    PubMed

    Rutschow, Heidi L; Baskin, Tobias I; Kramer, Eric M

    2014-11-01

    The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants. Radiolabeled auxin uptake was measured in protoplasts isolated from roots of Arabidopsis thaliana. This was done for the wild-type, under treatments with additional unlabeled auxin to saturate the influx carriers, and for the influx carrier mutant auxin resistant 1 (aux1). We also used flow cytometry to quantify the relative abundance of cells expressing AUX1-YFP in the assayed population. At pH 5.7, the majority of auxin influx into protoplasts - 75% - was mediated by the influx carrier AUX1. An additional 20% was mediated by other saturable carriers. The diffusive influx of auxin was essentially negligible at pH 5.7. The influx of auxin mediated by AUX1, expressed as a membrane permeability, was 1.5 ± 0.3 ?m s(-1) . This value is comparable in magnitude to estimates of efflux permeability. Thus, auxin-transporting tissues can sustain relatively high auxin efflux and yet not become depleted of auxin. PMID:25039492

  5. Systme de rapports d'incidents conforme aux normes ITIL pour le

    E-print Network

    Libre de Bruxelles, Université

    Système de rapports d'incidents conforme aux normes ITIL pour le réseau A.S.T.R.I.D Mémoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Aper¸cu d'ITIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Objectifs de ce m´emoire . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 ITIL 4 2.1 Introduction

  6. dition interactive d'noncs en langue des signes franaise ddie aux avatars signeurs

    E-print Network

    Édition interactive d'énoncés en langue des signes française dédiée aux avatars signeurs Ludovic IIIkirch Cedex, France RÉSUMÉ Les avatars signeurs en Langue des Signes Française (LSF) sont de plus en critères d'acceptation de ces avatars est l'aspect naturel et réaliste des gestes produits. Par conséquent

  7. Simulation et prvision de la qualit de l'air aux chelles continentale et rgionale.

    E-print Network

    Simulation et prévision de la qualité de l'air aux échelles continentale et régionale. Anne Dufour ............ Episode de pollution à l'ozone en PACA 14 au 17 juillet 2006 Observations BASTER et Prévisions MOCAGE 40 problproblproblproblèèèèmemememe local etlocal etlocal etlocal et planplanplanplanéééétairetairetairetaire Episode de pollution à

  8. Vulnrabilit des zones ctires face aux tsunamis, l'exemple d'Hispaniola.

    E-print Network

    Grilli, Stéphan T.

    Vulnérabilité des zones côtières face aux tsunamis, l'exemple d'Hispaniola. Eric DAVID1-de-Paix, avaient déjà connu en 1842 un tremblement de terre d'une magnitude estimée Mw 7.6 à 8.1. Un tsunami destructeur l'avait accompagné. Le séisme et le tsunami ont fortement affecté la côte nord d'Hispaniola depuis

  9. Directives Septembre 2012 Directives relatives aux sjours dans d'autres universits

    E-print Network

    Halazonetis, Thanos

    1 Directives ­ Septembre 2012 Directives relatives aux séjours dans d'autres universités (Entrée en séjour ait été effectué dans une université de l'aire linguistique correspondant à une de ses langues cours dispensés dans la langue passive correspondant à l'aire linguistique de l'université de

  10. Determination of bisphenol-type endocrine disrupting compounds in food-contact recycled-paper materials by focused ultrasonic solid-liquid extraction and ultra performance liquid chromatography-high resolution mass spectrometry.

    PubMed

    Pérez-Palacios, David; Fernández-Recio, Miguel Ángel; Moreta, Cristina; Tena, María Teresa

    2012-09-15

    Focused ultrasonic solid-liquid extraction (FUSLE) and reverse-phase ultra performance liquid chromatography (UPLC) coupled to a quadrupole-time of flight mass spectrometer (Q-TOF-MS) was applied to the determination of bisphenol-type endocrine disrupting compounds (EDCs) in food-contact recycled-paper materials. Recycled paper is a potential source of EDCs. Bisphenol A (BPA), bisphenol F (BPF) and their derivatives bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) are used for the production of epoxy resins employed in the formulation of printing inks. The FUSLE of bisphenol-type EDCs from packaging is reported for the first time. First, different extraction solvents were studied and methanol was selected. Then, the main FUSLE factors affecting the extraction efficiency (solvent volume, extraction time and ultrasonic irradiation power) were studied by means of a central composite design. The FUSLE conditions selected for further experiments were 20 ml of methanol at ultrasonic amplitude of 100% for 5s. Finally, the number of extraction cycles necessary for complete extraction was established in two. The analysis of the FUSLE extracts was carried out by UPLC-Q-TOF-MS with electrospray ionization and the determination of the four analytes took place in only 4 min. The FUSLE and UPLC-ESI-QTOF-MS method was validated and applied to the analysis of different food-contact recycled-paper-based materials and packaging. The proposed method provided recoveries from 72% to 97%, repeatability and intermediate precision under 9% and 14%, respectively, and detection limits of 0.33, 0.16, 0.65 and 0.40 ?g/g for BPA, BPF, BADGE and BFDGE, respectively. The analysis of paper and cardboard samples confirmed the presence of EDCs in these packaging. PMID:22967537

  11. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    SciTech Connect

    Phillips, D.C.

    2006-05-16

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures ({alpha}-helix and {beta}-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  12. Solid liquid phase changes with different densities

    E-print Network

    Fremond, Michel

    2008-01-01

    In this paper we present a new thermodynamically consistent phase transition model describing the evolution of a liquid substance, e.g., water, in a rigid container $\\Omega$ when we freeze the container. Since the density $\\varrho_{2}$ of ice with volume fraction $\\beta_{2}$, is lower than the density $\\varrho_{1}$ of water with volume fraction $\\beta_{1}$, experiments - for instance the freezing of a glass bottle filled with water - show that the water pressure increases up to the rupture of the bottle. When the container is not impermeable, freezing may produce a non-homogeneous material, for instance water ice or sorbet. Here we describe a general class of phase transition processes including this example as particular case. Moreover, we study the resulting nonlinear and singular PDE system from the analytical viewpoint recovering existence of a global (in time) weak solution and also uniqueness for some particular choices of the nonlinear functions involved.

  13. Solid liquid phase changes with different densities

    E-print Network

    Michel Fremond; Elisabetta Rocca

    2008-06-18

    In this paper we present a new thermodynamically consistent phase transition model describing the evolution of a liquid substance, e.g., water, in a rigid container $\\Omega$ when we freeze the container. Since the density $\\varrho_{2}$ of ice with volume fraction $\\beta_{2}$, is lower than the density $\\varrho_{1}$ of water with volume fraction $\\beta_{1}$, experiments - for instance the freezing of a glass bottle filled with water - show that the water pressure increases up to the rupture of the bottle. When the container is not impermeable, freezing may produce a non-homogeneous material, for instance water ice or sorbet. Here we describe a general class of phase transition processes including this example as particular case. Moreover, we study the resulting nonlinear and singular PDE system from the analytical viewpoint recovering existence of a global (in time) weak solution and also uniqueness for some particular choices of the nonlinear functions involved.

  14. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005. The contribution will be organised as a poster and will present illustrations of the way student teachers meet

  15. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005 with his education. In this poster, we study the students' personal school-routes as a variable

  16. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005

  17. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean

    PubMed Central

    Singh, Vikash K.; Jain, Mukesh

    2015-01-01

    Auxin plays a central role in many aspects of plant growth and development. Auxin/Indole-3-Acetic Acid (Aux/IAA) genes cooperate with several other components in the perception and signaling of plant hormone auxin. An investigation of chickpea and soybean genomes revealed 22 and 63 putative Aux/IAA genes, respectively. These genes were classified into six subfamilies on the basis of phylogenetic analysis. Among 63 soybean Aux/IAA genes, 57 (90.5%) were found to be duplicated via whole genome duplication (WGD)/segmental events. Transposed duplication played a significant role in tandem arrangements between the members of different subfamilies. Analysis of Ka/Ks ratio of duplicated Aux/IAA genes revealed purifying selection pressure with restricted functional divergence. Promoter sequence analysis revealed several cis-regulatory elements related to auxin, abscisic acid, desiccation, salt, seed, and endosperm, indicating their role in development and stress responses. Expression analysis of chickpea and soybean Aux/IAA genes in various tissues and stages of development demonstrated tissue/stage specific differential expression. In soybean, at least 16 paralog pairs, duplicated via WGD/segmental events, showed almost indistinguishable expression pattern, but eight pairs exhibited significantly diverse expression patterns. Under abiotic stress conditions, such as desiccation, salinity and/or cold, many Aux/IAA genes of chickpea and soybean revealed differential expression. qRT-PCR analysis confirmed the differential expression patterns of selected Aux/IAA genes in chickpea. The analyses presented here provide insights on putative roles of chickpea and soybean Aux/IAA genes and will facilitate elucidation of their precise functions during development and abiotic stress responses. PMID:26579165

  18. Simultaneous determination of a variety of endocrine disrupting compounds in carrot, lettuce and amended soil by means of focused ultrasonic solid-liquid extraction and dispersive solid-phase extraction as simplified clean-up strategy.

    PubMed

    Mijangos, L; Bizkarguenaga, E; Prieto, A; Fernández, L A; Zuloaga, O

    2015-04-10

    The present study is focused on the development of an analytical method based on focused ultrasonic solid-liquid extraction (FUSLE) followed by dispersive solid-phase extraction (dSPE) clean-up and liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) optimised for the simultaneous analysis of certain endocrine disrupting compounds (EDCs), including alkylphenols (APs), bisphenol A (BPA), triclosan (TCS) and several hormones and sterols in vegetables (lettuce and carrot) and amended soil samples. Different variables affecting the chromatographic separation, the electrospray ionisation and mass spectrometric detection were optimised in order to improve the sensitivity of the separation and detection steps. Under the optimised extraction conditions (sonication of 5min at 33% of power with pulse times on of 0.8s and pulse times off of 0.2s in 10mL of n-hexane:acetone (30:70, v:v) mixture using an ice bath), different dSPE clean-up sorbents, such as Florisil, Envi-Carb, primary-secondary amine bonded silica (PSA) and C18, or combinations of them were evaluated for FUSLE extracts before LC-MS/MS. Apparent recoveries and precision in terms of relative standard deviation (RSDs %) of the method were determined at two different fortification levels (according to the matrix and the analyte) and values in the 70-130% and 2-27% ranges, respectively, were obtained for most of the target analytes and matrices. Matrix-matched calibration approach and the use of labelled standards as surrogates were needed for the properly quantification of most analytes and matrices. Method detection limits (MDLs), estimated with fortified samples, in the ranges of 0.1-100ng/g for carrot, 0.2-152ng/g for lettuce and 0.9-31ng/g for amended soil were obtained. The developed methodology was applied to the analysis of 11 EDCs in both real vegetable bought in a local market and in compost (from a local wastewater treatment plant, WWTP) amended soil samples. PMID:25746759

  19. L'UBP reprsente lors de la Visite d'Etat aux Philippines

    E-print Network

    Sart, Remi

    L'UBP représentée lors de la Visite d'Etat aux Philippines UNIVERSIT� BLAISE PASCAL www française, repré- sentant l'Université Blaise Pascal et le Laboratoire Magmas et Volcans, qui coopèrent Philippines UNIVERSIT� BLAISE PASCAL www.univ-bpclermont.fr POINT PRESSE Elle a commencé en 1999 avec des

  20. RENFORCER LE QUBEC comme PLE D'INNOVATION grce aux SCIENCES NATURELLES et au GNIE

    E-print Network

    Meunier, Michel

    RENFORCER LE QUÉBEC comme PÔLE D'INNOVATION grâce aux SCIENCES NATURELLES et au GÉNIE FAIRE DU RECHERCHE SUR LA NATURE ET LES TECHNOLOGIES Novembre 2003 #12;T A B L E D E S M A T I È R E S Page MANDAT ET 1. LES SCIENCES NATURELLES ET LE GÉNIE, FER DE LANCE DE L'INNOVATION ET DU DÉVELOPPEMENT DE NOTRE

  1. The Arabidopsis Aux/IAA Protein Family Has Diversified in Degradation and Auxin Responsiveness[W

    PubMed Central

    Dreher, Kate A.; Brown, Jessica; Saw, Robert E.; Callis, Judy

    2006-01-01

    Rapid, auxin-responsive degradation of multiple auxin/indole-3-acetic acid (Aux/IAA) proteins is essential for plant growth and development. Domain II residues were previously shown to be required for the degradation of several Arabidopsis thaliana Aux/IAA proteins. We examined the degradation of additional full-length family members and the proteolytic importance of N-terminal residues outside domain II using luciferase (LUC) fusions. Elimination of domain I did not affect degradation. However, substituting an Arg for a conserved Lys between domains I and II specifically impaired basal degradation without compromising the auxin-mediated acceleration of degradation. IAA8, IAA9, and IAA28 contain domain II and a conserved Lys, but they were degraded more slowly than previously characterized family members when expressed as LUC fusions, suggesting that sequences outside domain II influence proteolysis. We analyzed the degradation of IAA31, with a region somewhat similar to domain II but without the conserved Lys, and of IAA20, which lacks domain II and the conserved Lys. Both IAA20:LUC and epitope-tagged IAA20 were long-lived, and their longevity was not influenced by auxin. Epitope-tagged IAA31 was long-lived, like IAA20, but by contrast, it showed accelerated degradation in response to auxin. The existence of long-lived and auxin-insensitive Aux/IAA proteins suggeststhat they may play a novel role in auxin signaling. PMID:16489122

  2. Approche aux soins en milieu communautaire à des adultes ayant une déficience développementale

    PubMed Central

    Osmun, W.E.; Chan, Nelson; Solomon, Robert

    2015-01-01

    Résumé Objectif Passer en revue les obligations d’ordre médical, éthique et juridique dans les soins aux adultes ayant une déficience développementale (DD) qui vivent dans la communauté. Sources des données Des recherches ont été faites dans Google et MEDLINE à l’aide des mots disabled, disability, vulnerable et community. Les lois pertinentes ont fait l’objet d’un examen. Message principal Le traitement d’un patient ayant une DD varie en fonction de facteurs comme la pathogenèse du problème actuel du patient, ses affections concomitantes, la gravité de ses déficiences et ses soutiens sociaux habituels. Bien que l’on s’entende sur les bienfaits du transfert des soins institutionnels vers des soins communautaires pour les patients ayant une DD, il s’est révélé difficile de leur dispenser des soins de grande qualité en milieu communautaire. Par ailleurs, il existe peu de travaux de recherche sur les façons d’offrir efficacement des soins aux adultes ayant une DD. En tant que professionnels des soins primaires, les médecins de famille sont souvent le premier point de contact pour les patients et sont à la fois responsables de la coordination et de la continuité des soins. Compte tenu de l’importance accrue accordée aux soins préventifs et à la détection précoce des maladies, la participation active du patient revêt aussi une grande importance. Les valeurs et les objectifs du patient sont des éléments essentiels à prendre en compte, même s’ils vont à l’encontre de la bonne santé du patient ou des propres valeurs du clinicien. Les lois s’appliquant aux personnes vulnérables varient d’une province à l’autre. Par conséquent, l’obligation de signaler des mauvais traitements suspectés pourrait différer selon que la personne vulnérable habite dans un centre de soins ou la communauté, que la personne qui soupçonne le comportement abusif est un fournisseur de services ou un professionnel de la santé ou encore que les circonstances spécifiques répondent à la définition légale de mauvais traitement ou de négligence. Conclusion Les professionnels des soins primaires doivent dispenser aux adultes ayant une DD des soins empreints de compassion qui respectent les souhaits du patient.

  3. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission. PMID:25982744

  4. Loi constitutive chimioplastique pour le beton expose aux hautes temperatures

    NASA Astrophysics Data System (ADS)

    Hammoud, Rabah

    Concrete is the most widely used construction material in the world. Even though it has been used for several centuries, its behavior to high temperature remains to be understood. In the light of recent extreme events, including accidents, and arson, special attention has been focused on the performance of concrete in the fire safety assessment of buildings and tunnels. Fire represents one of the most severe conditions encountered during the life-time of a structure. Concrete exposed to high temperature can significantly jeopardize the structural integrity and load bearing capacity of the structure. Spalling of concrete remains one of the main issues to be addressed in the case of fire in buildings and tunnels. Successful modeling of this phenomenon depends not only on the accurate prediction of the temperature distribution through structural concrete but also on its mechanical response to the heating and boundaries restrains conditions and the migration of moisture and associated pore pressures. Therefore, it is necessary to develop a reliable formulation of concrete with all required information to understand its behavior during and after exposure to elevated temperature. It is also necessary to properly assess the effects of thermal degradation in order to develop predictive tools and validate design codes. Many structural problems can be adequately worthy by an elastoplastic model. The ultimate goal of this study is the development of a new constitutive model under a chemoplastic framework. To do this, an experimental program is carried out. The purpose of this program is twofold. First, it is essential to calibrate the proposed constitutive law that will be developed, and, second, for defining an inverse a problem. Usually, uniaxial and triaxial tests, conducted with confining pressure varied between 1.3 and 24 MPa and a temperature up to 700°C, allow us to identify the constitutive law parameters. This law reproduces the reduced field strength due to degradation of exothermic origin. This experimental program puts emphasis on the fragile nature of the preheated concrete and demonstrates the non-applicability of two failure criteria often used in engineering calculation. An alternative is proposed and well-tested. Indeed, exposing the concrete to high temperature results in irreversible loss of stiffness as well as a loss of decohesion strength. These losses are, typically, expressed through semi-empirical relationships of the mechanical properties with temperature. Unfortunately, these relationships are inadequate because the direct impact of this degradation, on the macroscopic scale, can result in a dependency relationship between the elastic properties and the hydrates mass. Therefore, unlike traditional methods using conventional elasto-plastic models and adjusting certain parameters with local temperature, the proposed constitutive law that incorporates a function of dehydration similar to the softening index in chemo-plastics gives good results. An Etse and Willam similar criterion is used and modified for the occasion. Hardening and softening mechanisms are then needed to expand and contract the loading surface for defining the strength of the concrete on a wide range of dehydration processes. The direction and magnitude of a permanent deformation, core of the inelastic domain, are defined through the development of non-associated chemoplastic potential and new curve of ductility. The influence of hydrostatic pressure (dilatancy) and dehydration on the concrete behavior are taken into account in our model. The model is implemented in the Matlab(c) code. Strains and stresses generated in the concrete are now accurately predicted. To illustrate the capabilities of the developed model to predict the complex behavior of concrete exposed to high temperature, simulations are performed through numerical loading paths scenarios. The model is able to accurately reproduce all the experimental data.

  5. Genome-Wide Identification and Expression Profiling Analysis of the Aux/IAA Gene Family in Medicago truncatula during the Early Phase of Sinorhizobium meliloti Infection

    PubMed Central

    Zhang, Lei; Sun, Tao; Xu, Luqin; Tie, Shuanggui; Wang, Huizhong

    2014-01-01

    Background Auxin/indoleacetic acid (Aux/IAA) genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation. Principal Findings Using the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti) infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application. Conclusion The genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection. PMID:25226164

  6. Optimisation de dispositifs en guide d'onde avec coupleur a réseau : application aux commutateurs optiques

    NASA Astrophysics Data System (ADS)

    Bertrand, F.; Paraire, N.; Dansas, P.; Moresmau, N.

    1994-07-01

    Numerous devices used in the field of photonics and optronics are made of semiconductor multilayered structures including a nonlinear waveguide and a grating coupler. Optimization of such devices depends on the optical thicknesses of the various layers and on the grating characteristics. For a given sample, the layer parameters are usually known as a first approximation, but a good accuracy is necessary to define the operating wavelength and the coupler characteristics. In a particular case — a InP/InGaAsP/InP sample which operates for optical switching in the transmission mode — we have first defined an optimized structure. Then, we have built an experimental set-up able to measure reflection and transmission coefficients versus polarization, wavelength and incidence angle. From transmission measurements performed with this apparatus, we have deduced both real and imaginary parts of the layers refractive indices. These calculated values allowed us to reoptimize the structure and to determine the operating wavelength. De nombreux dispositifs utilisés en photonique et optoélectronique sont constitués de structures multicouches en semi-conducteurs comportant un guide d'onde non linéaire et d'un coupleur à réseau. Leurs performances dépendent, en particulier, des épaisseurs optiques des différentes couches constituantes et des caractéristiques du réseau de diffraction. Pour un échantillon, les paramètres nominaux des différentes couches sont connus en première approximation, mais il est nécessaire de les préciser pour définir les conditions de fonctionnement et les caractéristiques optimales du coupleur. Dans un cas particulier — échantillon de InP/InGaAsP/InP qui doit fonctionner en commutateur optique par transmission — nous avons défini une structure optimale, puis nous avons mis au point un montage expérimental permettant de mesurer les coefficients de réflexion et de transmission en fonction de la polarisation, de la longueur d'onde et de l'angle d'incidence. Nous avons déduit de ces mesures les parties réelle et imaginaire des indices. Ces résultats nous ont permis de réoptimiser la structure (définie a priori) et de déterminer sa longueur d'onde de fonctionnement.

  7. Appel projets SESAME Equipements mi-lourds 2013 Le prsent appel projets s'adresse aux tablissements de recherche et

    E-print Network

    van Tiggelen, Bart

    1 Appel à projets SESAME ­ Equipements mi-lourds 2013 Le présent appel à projets s'adresse aux équipes scientifiques pour l'acquisition de moyens expérimentaux ­ SESAME ». Le dispositif SESAME'appel à projets « équipement mi-lourd » SESAME a pour ambition de : - permettre le développement de

  8. [Molecular cloning and expression analysis of an Aux/IAA gene (RgIAA1) from Rehmannia glutinosa].

    PubMed

    Wang, Feng-Qing; Tian, Yun-He; Li, Ming-Jie; Yang, Jin-Feng; Zhang, Bao; Lin, Wen-Xiong; Chen, Xin-Jian; Zhang, Zhong-Yi

    2013-12-01

    To clone and analyze a member of the Auxin/indole-3-acetic acid (Aux/IAA) gene family, RgIAA1, from Rehmannia glutinosa. The transcriptional EST database of R. glutinosa was used to clone the new Aux/IAA gene by cDNA probe of AtIAA14. Bioinformatics was applied to analyze the sequence characteristics of RgIAA1 protein and construct phylogenetiC trees. Quantitative RT-PCR has been applied to detect the transcription level of RgIAA1 in seven tissues as well as in leaves under three stresses. The results showed that, the cDNA sequence of RgIAA1 contains 903 bp was obtained. The open reading frame (ORF) of RgIAA1 was 681 bp encoding 226 amino acids, which has typical structural domains and characteristic sequence of Aux/IAA family proteins. RgIAA1 showed the highest expression level in unfolded leaf, followed by the stem. And the expression of RglAA1 was quickly decreased with leaf growing up. The transcription level increased under continuous cropping conditions while it reduced both in salinity and waterlogging stresses. RgIAA1, an Aux/IAA gene from R. glutinosa has been obtained for the first time, which can lay the foundation for further studies about its molecular function in development and responses to stress. PMID:24791483

  9. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005 will have a format of a poster. It will focus on the illustrations of the above goals. Problems from

  10. CIEAEM 57 Italie Italy Foire aux ides, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session

    E-print Network

    Spagnolo, Filippo

    CIEAEM 57 ­ Italie ­ Italy Foire aux idées, Session de Poster Piazza Armerina, Forum of Ideas, Poster Session July 23-29, 2005. Kiliskiego 12, piotr@wlodkowic.pl The poster is to present the first results of research made among teachers

  11. AUX GESTIONNAIRES AYANT L'AUTORIT DE CONFIER UN MANDAT OU UN CONTRAT DE SERVICE OU D'ENTREPRISE.

    E-print Network

    Charette, André

    AUX GESTIONNAIRES AYANT L'AUTORITÉ DE CONFIER UN MANDAT OU UN CONTRAT DE SERVICE OU D'ENTREPRISE. Si vous octroyez un mandat ou un contrat de service ou d'entreprise impliquant la communication de dans le cadre du contrat. Cette clause n'est pas requise si le contrat est passé avec un membre d

  12. Equations Aux Derivees Partielles/Probl`emes Mathematiques en Mecanique The Regularity of Solutions of the Primitive Equations of the

    E-print Network

    Kukavica, Igor

    ´Equations Aux D´eriv´ees Partielles/Probl`emes Math´ematiques en M´ecanique The Regularity article : I. Kukavica, M. Ziane, C. R. Acad. Sci. Paris, Ser. I (). Abstract In this Note, the global primitive equations in a domain with a varying bottom topography. To cite this article: I. Kukavica, M

  13. Le système opioïde endogène et l’addiction aux drogues1

    PubMed Central

    Maldonado, Rafael

    2010-01-01

    Résumé L’addiction aux drogues est une maladie psychiatrique chronique qui conduit à d’importantes altérations adaptatives dans les circuits de récompense du cerveau. Plusieurs systèmes de neurotransmission sont impliqués dans ces modifications. Cependant, un des systèmes neurochimiques qui joue un rôle essentiel dans l’addiction est le système opioïde endogène. Les récepteurs opioïdes et les peptides opioïdes endogènes sont très largement présents dans les structures cérébrales qui contrôlent les phénomènes de récompense, en particulier le système mésolimbique. Ces récepteurs et peptides opioïdes participent d’une manière sélective à plusieurs aspects des processus addictifs induits par les opiacés, les cannabinoïdes, les psychostimulants, l’alcool et la nicotine. Cette revue rend compte de l’état actuel des connaissances sur la participation de chaque composante du système opioïde endogène dans les propriétés addictives des différentes drogues. PMID:20176158

  14. Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Puppulin, Leonardo; La Rosa, Angelo; Boffelli, Marco; Zhu, Wenliang; McEntire, Bryan J.; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori

    2015-12-01

    The effect of hydrogen carbonate (HCO3-) and cations (Na+, K+) solvated in water were revisited according to high spectrally resolved Raman measurements. Water solutions with different bicarbonate concentrations or added with increasing amounts of monovalent cations were examined with respect to their Raman spectra both in the bulk state and at the solid/liquid interface with a silicon nitride (Si3N4) bioceramic. Spectroscopic calibrations confirmed that the Raman emission from OH-stretching in water is sensitive to molarity variations (in the order of tens of mM). The concentration gradient developed at the solid/liquid interface in cation-added solutions interacting with a Si3N4 surface was measured and found to be peculiar to individual cations. Local variation in pH was detected in ionic solutions interacting with Si3N4 samples, which might represent a useful property for Si3N4 in a number of biomedical applications.

  15. RGLEMENTS SUR L'UTILISATION DES SALLES DE TRAVAIL D'QUIPE 1) Les salles de travail d'quipe sont rserves uniquement aux membres de la communaut

    E-print Network

    Laval, Université

    R�GLEMENTS SUR L'UTILISATION DES SALLES DE TRAVAIL D'�QUIPE 1) Les salles de travail d'équipe sont réservées uniquement aux membres de la communauté universitaire de l'Université Laval. 2) Les espaces recherche de l'Université Laval. 3) Les salles de travail en équipe sont réservées aux groupes de 3

  16. Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4](-) (X = F, Cl, Br, I, At, Uus).

    PubMed

    Li, Wan-Lu; Li, Yong; Xu, Cong-Qiao; Wang, Xue-Bin; Vorpagel, Erich; Li, Jun

    2015-12-01

    Systematic theoretical and experimental investigations have been performed to understand the periodicity, electronic structures, and bonding of gold halides using tetrahalide [AuX4](-) anions (X = F, Cl, Br, I, At, Uus). The [AuX4](-) (X = Cl, Br, I) anions were experimentally produced in the gas phase, and their negative-ion photoelectron spectra were obtained, exhibiting rich and well-resolved spectral peaks. As expected, Au-X bonds in such series contain generally increasing covalency when halogen ligands become heavier. We calculated the adiabatic electron detachment energies as well as vertical electron detachment energies using density functional theory methods with scalar relativistic and spin-orbit coupling effects. The computationally simulated photoelectron spectra are in good agreement with the experimental ones. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) tends to be preferred when the halides become heavier along the Periodic Table. This series of molecules provides an example for manipulating the oxidation state of metals in complexes through ligand design. PMID:26550845

  17. Niveau socioéconomique et processus du recours aux soins par les familles de patients souffrant de troubles psychiques au Burkina Faso

    PubMed Central

    Yaogo, Ahmed; Sommer, Alain; Moulaï, Pierre; Chebili, Saïd; Abaoub-Germain, Agnès

    2014-01-01

    Introduction Le Burkina Faso a connu une amélioration constante depuis deux décennies de l'offre de soins en psychiatrie. De même, le taux d'alphabétisation sans cesse croissant s'accompagne d'une profonde modification des conceptions et des comportements. La présente étude visait à déterminer l?impact des déterminants socioéconomiques sur le processus du recours aux soins par les familles. Méthodes Il s'est agi d'une enquête transversale portant sur 200 familles, menée dans le service de psychiatrie du Centre Hospitalier Universitaire Yalgado Ouédraogo de Ouagadougou. Variable à expliquer: premier recours aux soins par les familles (guérisseur traditionnel ou prières religieuses vs. consultations psychiatrique ou médicale). Variable explicative: catégorie socioprofessionnelle classée en suivant la nomenclature des professions et catégories socioprofessionnelles; niveau d’études. L'analyse statistique a été effectuée à l'aide du logiciel SAS version 9.2. Le test du Khi deux a été utilisé. Résultats Il existait une association entre le choix du premier recours et la Profession et la catégorie socioprofessionnelledu « décideur » (p = 0.0006) ainsi que leniveau d’études du « décideur » (p = 0.0001). Conclusion La Profession et Catégorie Sociale et le niveau d'instruction scolaire pourraient être un marqueur important dans les politiques visant à optimiser les processus de recours aux soins des patients dans le circuit de soins. PMID:25161751

  18. Coring Performance to Characterise the Geology in the ``Cran aux Iguanodons'' of Bernissart (Belgium)

    NASA Astrophysics Data System (ADS)

    Tshibangu, Jean-Pierre; Dagrain, Fabrice; Legrain, Hughes; Deschamps, Benoît

    The Cran aux iguanodons of Bernissart is a sinkhole (or chimney caving) with a valuable paleontological deposit due to the exceptional quantity and diversity of fossils found during the excavation conducted from 1878 to 1881. In fact, bones have been discovered in a clayey geological formation when digging à mine gallery at the -322 m level. A subsequent extraction gave an overall production of 29 iguanodons skeletons. Referring to the available data at the Natural Sciences Museum of Brussels where the found skeletons are exhibited, one does not know the degree of depletion of the deposit after the extraction. A feasibility study (Tshibangu and Dagrain 1998) showed then the need to drill 4 exploration wells of 400 m depth with different objectives: to evaluate the chance of finding more fossils, understanding how and when the geological formations moved down, and testing a seismic geophysical technique for ground imaging. The typical geological formations concerned are: chalk, limestone, conglomerate, clays, and layers of silex nodules. In October 2002 the workings started with a completely cored well (the Number 3) using the PQ wireline technique. During operations, different parameters have been recorded: rate of penetration, core recovery and a brief core description. Some problems have been encountered when crossing silex stones contained in a clayey matrix; and this paper gives some interpretations in terms of the relationship between the lithology and the drilling performances.

  19. Statut phospho-calcique en hémodialyse chronique dans l’Oriental Marocain: évaluation de l’adhésion aux recommandations K/DOQI et KDIGO

    PubMed Central

    Benabdellah, Nawal; Karimi, Ilham; Bentata, Yassamine; Yacoubi, Hicham; Haddiya, Intissar

    2013-01-01

    Les troubles phosphocalciques sont fréquents en hémodialyse chronique. Leurs conséquences justifient une prévention et un traitement adaptés aux recommandations des sociétés savantes. L’objectif de notre étude était de déterminer le statut phosphocalcique de nos patients hémodialysés chroniques (HDC) et l’évaluation des taux de conformité des indicateurs aux recommandations K/DOQI et KDIGO. Ainsi, nous avons réalisé une étude transversale incluant les 83 patients HDC du centre d’hémodialyse de l’hôpital Al Farabi d’Oujda. L’âge moyen de nos patients était de 49.8± 15.6 ans. Une prédominance masculine a été notée. La conformité des indicateurs du bilan phosphocalcique chez nos patients hémodialysés chroniques par rapport aux recommandations KDIGO était de l’ordre de 21.6%. Le pourcentage des patients ayant des données phosphocalciques conformes aux cibles recommandées par les K/DOQI était Les patients répondants simultanément aux quatres critères recommandés par les K/DOQI n’étaient que 8.4%. PMID:24570784

  20. Traitement des conditions aux limites intérieures et extérieures pour la simulation numérique unidimensionnelle de l'écoulement de l'eau dans les canaux à surface libre

    NASA Astrophysics Data System (ADS)

    Abdallah, M.; Vazquez, J.; Mose, R.; Zoaeter, M.

    2005-05-01

    Dans ce papier, on décrit le traitement des conditions aux limites intérieures et extérieures couplé avec la méthode explicite aux différences finies de Roe pour le développement d'une modélisation unidimensionnelle qui sert à résoudre les équations de Saint-Venant décrivant l'écoulement de l'eau à surface libre. Les deux méthodes les plus utilisées pour trouver la solution aux nœuds intérieurs et extérieurs définissant les conditions aux limites intérieures et extérieures d'un schéma numérique sont décrites et comparées dans deux exemples: Le premier traite le problème du ressaut hydraulique et le second décrit l'écoulement de l'eau au dessus des seuils. Deux types de discrétisation du terme source, pointwise et upwind, sont considérés et comparés aussi. Les résultats obtenus et comparés avec la solution analytique dans le cas du ressaut, et avec les résultats numériques déjà publiés dans le cas des seuils, montrent l'avantage de la méthode des caractéristiques sur la méthode de l'extrapolation pour les conditions aux limites, et la discrétisation upwind du terme source sur la discrétisation pointwise.

  1. Evolution de la résistance aux antibiotiques des entérobactéries isolées à l'Hôpital Général de Douala de 2005 à 2012

    PubMed Central

    Ebongue, Cécile Okalla; Tsiazok, Martial Dongmo; Mefo'o, Jean Pierre Nda; Ngaba, Guy Pascal; Beyiha, Gérard; Adiogo, Dieudonné

    2015-01-01

    Introduction Cette étude vise à déterminer le profil de résistance aux antibiotiques des entérobactéries isolées à l'Hôpital Général de Douala (Cameroun) et analyser leur évolution dans le temps. Méthodes Etude rétrospective, sur une période de huit ans (2005 - 2012), portant sur l'ensemble des souches d'entérobactéries isolées chez les malades ambulatoires et hospitalisés. Les prélèvements ont été analysés au laboratoire de bactériologie de l'Hôpital Général de Douala. Résultats Les entérobactéries étaient les germes les plus fréquents sur l'ensemble des souches isolées. Nous avons noté une prédominance d’Escherichia coli (48,5%) et de Klebsiella pneumoniae (32,8%). Pendant la période d’étude, nous avons observé des taux de résistance élevés aux principales classes d'antibiotiques, et une augmentation entre 2005 et 2012 de 29,1% à 51,6% pour les céphalosporines de troisième génération, de 29,2% à 44% pour la ciprofloxacine. L'imipénème, l'amikacine et la fosfomycine étaient les molécules les plus actives avec respectivement 1,3%, 12,9% et 13,4% des souches d'entérobactéries résistantes. Conclusion L’évolution des résistances des entérobactéries aux antibiotiques est un phénomène réel dans la ville de Douala. Il expose à des difficultés de prise en charge thérapeutique des infections. Lamaitrise actuelle de ce phénomène est une véritable urgence et nécessite une implication des pouvoirs publics. Des tests spécifiques de recherche des bétalactamases à spectre élargi (BLSE) et AmpC doivent être mis en place dans nos laboratoires afin de mettre en évidence les différents phénotypes de résistances. PMID:26140070

  2. Paternité des articles et intérêts concurrents : une analyse des recommandations aux auteurs des journaux traitant de pratique pharmaceutique

    PubMed Central

    Courbon, Ève; Tanguay, Cynthia; Lebel, Denis; Bussières, Jean-François

    2014-01-01

    RÉSUMÉ Contexte : La présence d’auteurs honorifiques et fantômes ainsi que les intérêts concurrents représentent des difficultés bien documentées, liées à la publication d’articles scientifiques. Il existe des lignes directrices encadrant la rédaction et la publication de manuscrits scientifiques, notamment celles de l’International Committee of Medical Journal Editors (ICMJE). Objectifs : L’objectif principal de cette étude descriptive et transversale visait à recenser les instructions portant sur la paternité des articles et les intérêts concurrents provenant des recommandations aux auteurs des journaux traitant de pratique pharmaceutique. L’objectif secondaire visait à déterminer des mesures correctrices pour une paternité des articles plus transparente. Méthode : La recherche a débuté par l’identification des journaux traitant de pratique pharmaceutique. La consultation des instructions aux auteurs des journaux a permis ensuite de recenser les recommandations destinées à éviter les problèmes de paternité des articles et d’intérêts concurrents. Finalement, les membres de l’équipe de recherche se sont consultés afin de définir des mesures correctrices possibles à l’intention des chercheurs. Résultats : Des 232 journaux traitant de pharmacie, 33 ont été définis comme traitant de pratique pharmaceutique. Un total de 24 (73 %) journaux mentionnaient suivre la politique de l’ICMJE, 14 (42 %) demandaient aux auteurs de remplir un formulaire de déclaration d’intérêts concurrents au moment de la soumission de l’article, 17 (52 %) présentaient une définition de la qualité d’auteur et 5 (15 %) demandaient de détailler les contributions de chaque auteur. Une grille de 40 critères a été élaborée pour définir l’attribution du statut d’auteur. Conclusion : Moins de la moitié des journaux demandait aux auteurs de transmettre un formulaire de déclaration des intérêts concurrents au moment de la soumission d’un article et seulement la moitié des journaux avait donné une définition de la qualité d’auteur. La publication scientifique de travaux sur les pratiques pharmaceutiques n’est pas à l’abri des manques de transparence liés à la publication. L’utilisation d’une grille décrivant la contribution de chaque auteur et la publication en ligne des travaux peuvent contribuer à limiter ces risques. PMID:24970938

  3. Universite Pierre et Marie Curie, Master de Mathematiques, M1, Equations aux derivees partielles MM046, 5 juin 2013

    E-print Network

    Lerner, Nicolas

    Universit´e Pierre et Marie Curie, Master de Math´ematiques, M1, Equations aux d - c x2 x = x1 x x1 + x2 x x2 = x1 + x2 et par cons´equent c = 2 x2 1 + 2 x2 2 - 2 2 x1x2 - 2 x2) = 1 - |x|, x R. La m´ethode des caract´eristiques donne x = u u = u x = x0 + u0(et - 1) u = u0et et

  4. Le syndrome d'insensibilité complète aux androgènes: à propos de deux cas et revue de la literature

    PubMed Central

    Lachiri, Boutaina; Hakimi, Ihssane; Boudhas, Adil; Guelzim, Khalid; Kouach, Jaouad; Oukabli, Mohamed; Rahali, Driss Moussaoui; Dehayni, Mohamed

    2015-01-01

    Le syndrome d'insensibilité complète aux androgènes (SICA) est une entité rare qui correspond à la forme complète des pseudohermaphrodismes androgynoïdes. Son incidence est en fait très variable, allant, selon les auteurs de 1/20000 à 1/60000 naissances. Il est caractérisé par la coexistence chez le même sujet d'un caryotype masculin (46 XY), avec des gonades males, et d'une morphologie féminine normale. Les auteurs rapportent deux observations de deux jeunes filles présentant le SICA ayant consulté pour aménorrhée primaire, illustrant les particularités cliniques, anatomopathologiques et biologiques du syndrome avec certaines particularités. PMID:26301004

  5. Applications

    NASA Astrophysics Data System (ADS)

    Stern, Arthur M.

    1986-07-01

    Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.

  6. littrature. Dans cet article, un nombre important de solutions analytiques aux quations de SaintVenant est dcrit dans un formalisme unifi. Elles englobent

    E-print Network

    Lucas, Carine - Le Laboratoire de Mathématiques

    #12;littérature. Dans cet article, un nombre important de solutions analytiques aux équations de://www.univ-orleans.fr/mapmo/soft/ SWASHES), afin que les utilisateurs de modèles en eaux peu profondes puissent facilement trouver un banc d potential for numerical code validation. In the literature, we can find benchmarks for hydraulic river

  7. Solid-liquid iron partitioning in Earth's deep mantle.

    PubMed

    Andrault, Denis; Petitgirard, Sylvain; Lo Nigro, Giacomo; Devidal, Jean-Luc; Veronesi, Giulia; Garbarino, Gaston; Mezouar, Mohamed

    2012-07-19

    Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii. They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth. Melt production in the shallow mantle is quite well understood, but deeper melting near the core-mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanism or production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO(3) perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously. Calculated solid and melt density contrasts suggest that melt generated at the core-mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements. PMID:22810700

  8. Electrofiltration: An Energy Efficient Alternative in Solid-Liquid Separations 

    E-print Network

    Bollinger, J. M.; Adams, R. A.

    1984-01-01

    Electrofiltration has established itself as an energy efficient unit operation in ultrafine particle dewatering. The Dorr-Oliver Electrofilter combines vacuum cake filtration with electrophoresis and electroosmosis. This results in an order...

  9. Solid-liquid iron partitioning in Earth's deep mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Petitgirard, S.; Lo Nigro, G.; Devidal, J.; Veronesi, G.; Garbarino, G.; Mezouar, M.

    2012-12-01

    Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii (1). They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth (2). Melt production in the shallow mantle is quite well understood, but deeper melting near the core-mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanismor production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO3 perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously (3). Calculated solid and melt density contrasts suggest that melt generated at the core-mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements. (1) Lay et al. (2004) Phys. Earth Planet. Inter. 146, 441-467. (2) Solomatov (2000) in Origin of the Earth and Moon, 323-338, Univ. Arizona Press. (3) Nomura et al. (2011) Nature 473, 199-202 (2011).ressure evolution of the Fe-partition coefficient between silicate melt and the Mg-Pv liquidus phase. It is determined using XRF (Red circles) and EPMA (red square) analyses of this study. We report the recent results obtained after melting of olivine (Green circles, ref. 3). The coloured diamonds correspond to previous data sets obtained using the large volume press.

  10. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.).

    PubMed

    Yu, ChenLiang; Sun, ChenDong; Shen, Chenjia; Wang, Suikang; Liu, Fang; Liu, Yan; Chen, YunLong; Li, Chuanyou; Qian, Qian; Aryal, Bibek; Geisler, Markus; Jiang, De An; Qi, YanHua

    2015-09-01

    Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress. PMID:26140668

  11. Developpement d'une methode des caracteristiques tridimensionnelle et application aux calculs de supercellules d'un reacteur CANDU

    NASA Astrophysics Data System (ADS)

    Wu, Guang Jun

    The primary purpose of this study was to construct a new method for determining the cross section increments associated with the reactivity mechanisms in CANDU reactors. Based on the characteristics method, the module MCI is successfully developed and is ready to be integrated in the lattice code DRAGON. The module MCI utilizes non cyclic tracks in a three dimensional transport calculation. The characteristics method allows to resolve the same problems as the collision probabilities method but its main advantage relies on a substantial memory economy. The results of MCI module are similar to those of an EXCELL module in the CANDU-6 calculation scheme. The characteristics method is shown to be equivalent to the collision probability method for the finite domain. A new acceleration technique, the SCR (Self-Collision Rebalancing) technique, was developed using the equivalence of these two methods. When SCR is used with the one parameter variational acceleration method, the resolution converge faster than either of the two. The Tracks Merging Technique (TMT) is a new technique developed within this research to reduce the total number of tracks needed to cover the geometry of the problem studied. The TMT can be used on two levels: TMT-1 and TMT-2. We have observed a factor of four on the reduction of tracks when the TMT was used on the first level and a factor of forty when used on the second level. The TMT could be used without difficulty in the collision probability method. The MCI module was parallelized using the PVM (Parallel Virtual Machine) library for distributed-memory environment. One of four options can be used in the parallel calculation: SPLT, ANGL, STRD and MCRB. Each of the four options is associated with a special load balancing strategy. In the first three options, the load is measured in number of tracks, in the fourth option, the load is dispatched in units of macroband.

  12. Bruit généré par un écoulement turbulent affleurant une cavité à faible nombre de Mach : application aux césures de portes automobiles

    NASA Astrophysics Data System (ADS)

    Da Silva, Arthur; Kribèche, Ali; Loredo, Alexandre

    2009-02-01

    Noise produced by turbulent grazing flow over a generic cavity representing car door cavities was measured in a semi-anechoic wind tunnel. Two cavities were studied: one 50 mm large (dimension perpendicular to the airflow), functioning as a Helmholtz resonator, reaching sound pressure levels of 136 dB at 1776 Hz, for a downstream velocity of 54 m/s. The other, of scale 250 mm could not be regarded as a Helmholtz resonator although resonance occurred at 1902 Hz, at a level of 125 dB, for the same velocity. In both cases, noise was caused by Kelvin-Helmholtz instabilities in the mixing layer. To cite this article: A. Da Silva et al., C. R. Mecanique 337 (2009).

  13. Modèle multi-échelle du transport de fluide dans un milieu poreux chargé avec échanges cationiques : application aux tissus osseux

    NASA Astrophysics Data System (ADS)

    Kaiser, Joanna; Lemaire, Thibault; Naili, Salah; Sansalone, Vittorio

    2009-11-01

    To better understand the bone diseases, many models of porous cortical bone have been developed to simulate its in vivo behaviour. Thus we proposed multiscale models including multiphysical phenomena governing the hydraulic response of bone. However, all these models neglected the possible ionic exchanges at the cellular level. Since such chemical reactions directly change the physico-chemical properties of the tissue, the interstitial flow is also modified. The aim of this study is so to include these ionic exchanges in the bone fluid transport description by deriving their consequences at the macroscale. To cite this article: J. Kaiser et al., C. R. Mecanique 337 (2009).

  14. Chapter 5 Laser Ablation at the Solid/Liquid Interface 138 Chapter 5 Laser Ablation at the Solid/Liquid

    E-print Network

    Bristol, University of

    of the micrograph shows a thin section, with sheet like layers and wave like features. From Selected Area Electron of both white and red phosphorus under various carbon containing liquids will be presented. From ablation of graphite under water was clear in appearance, containing a visible suspended black solid. After

  15. EBCO Technologies TR Cyclotrons, Dynamics, Equipment, and Applications

    SciTech Connect

    Johnson, R.R.; Erdman, K. L.; Gyles, Wm.; Burbee, J.; Kovacs, M.; VanLier, E.; Perron, F.

    2003-08-26

    The Ebco Technologies TR cyclotrons have a common parent in the 500 MeV negative ion cyclotron at TRIUMF in Vancouver. As such, the TR cyclotrons have features that can be adapted for specific application. The cyclotron design is modularized into ion source and injection system, central region and then extraction. The cyclotron ion source is configured for cyclotron beam currents ranging from 50 microAmps to 2 milliAmps. The injection line can be operated in either continuous (CW) or in pulsed mode. The center region of the cyclotron is configured to match the ion source configuration. The extracted beams are directed either to a local target station or to beam lines and thence to target stations. There has been development both in solid, liquid and gas targets. There has been development in radioisotope handling techniques, target material recovery and radiochemical synthesis.

  16. Aspects épidémiologiques des accidents vasculaires cérébraux (AVC) aux urgences de l'institut de cardiologie d'Abidjan (ICA)

    PubMed Central

    N'goran, Yves N'da Kouakou; Traore, Fatou; Tano, Micesse; Kramoh, Kouadio Euloge; Kakou, Jean-Baptiste Anzouan; Konin, Christophe; Kakou, Maurice Guikahue

    2015-01-01

    Introduction L'objectif de notre étude était de décrire les caractéristiques sociodémographiques et les Facteurs de Risque cardio-Vasculaires (FRV) des patients admis pour accidents vasculaires cérébraux (AVC) dans un service autre que celui de la neurologie. Méthodes Étude transversale rétrospective sur une période de 2 ans (janv. 2010 et déc. 2011), réalisée aux urgences de l'institut de cardiologie d'Abidjan. Résultats Il s'agissait de 176 adultes avec un âge moyen de 60 ans, une prédominance féminine. Les facteurs de risque majeurs retrouvés étaient l'hypertension artérielle dans 86,4% des cas, le diabète dans 11,4% des cas, le tabagisme dans 2,2% des cas. Les motifs de consultation étaient la perte de connaissance dans 36,4% des cas, l'hémiplégie dans 31,8% des cas, les céphalées dans 17,4% des cas, les vertiges dans 10,9% et les palpitations dans 2,2% des cas. La tension artérielle systolique moyenne était à 174 mmHg, la tension artérielle diastolique moyenne était à 105 mmHg et la pression pulsée moyenne était à 70 mmHg. Les AVC étaient associés à une arythmie complète par fibrillation auriculaire dans 11,4% des cas. Les AVC ischémiques représentaient 84,1%. L’évolution aux urgences a été marquée par un décès dans 17% (30) des cas. Conclusion Les AVC constituent un problème majeur de santé publique. Malgré sa prédominance féminine, ils (AVC) touchaient 44% des hommes dans notre étude lorsqu'on sait qu'en Afrique l'activité sociale repose sur les hommes. Ils restent une pathologie grave par la forte létalité. PMID:26327997

  17. Séroprévalence et facteurs associés au VIH et aux hépatites virales B et C dans la ville de Bafoussam au Cameroun

    PubMed Central

    Mbopi-Keou, Francois-Xavier; Nkala, Isabelle Vanessa Monthe; Kalla, Ginette Claude Mireille; Nguefack-Tsague, Georges; Kamga, Hortense Gonsu; Noubom, Michel; Mvogo, Côme Ebana; Sosso, Maurice Aurelien

    2015-01-01

    Introduction L'objectif de ce travail était de déterminer la séroprévalence et les facteurs associés au VIH et aux hépatites virales B et C dans la ville de Bafoussam au Cameroun. Méthodes Il s'agissait d'une étude descriptive et analytique réalisée de février 2012 à Juin 2012 dans la ville de Bafoussam au Cameroun. Pour cette étude, nous avons obtenu une clairance éthique. Résultats Au total, 982 personnes ont été dépistées pour le VIH et les hépatites virales B et C. Les femmes représentaient 56,3% des personnes dépistées. La tranche d’âge la plus représentée était celle des 20 à 24 ans. L’âge médian était de 34,5 ans. Les prévalences du VIH, de l'AgHBs, et de l'Ac anti HCV étaient respectivement de 6,0%, 4,1%, et 0,4%. La prévalence du VIH était 2 fois plus élevée parmi les femmes que les hommes avec 8,1% contre 3,5% (p=0,01). Les prévalences les plus élevées ont été observées chez les personnes de 30 à 34 ans, 40 à 44 ans avec 15,0% et 11,5% (p=0,01), les personnes sans emploi avec 11,1% (p<0,001) et les personnes en union libre avec 17,9% (p=0,000). La prévalence du VIH n’était pas directement liée aux comportements et pratiques sexuels de la population de l’étude. On enregistrait une prévalence élevée de 29,3% chez les individus ayant déclaré avoir au moins une infection sexuellement transmissible (p=0,000). Conclusion Il apparait urgent de mettre en place des stratégies de prévention contre le VIH, les hépatites virales et les facteurs associés au Cameroun. PMID:26113899

  18. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers

    PubMed Central

    Della Rovere, F.; Fattorini, L.; D’Angeli, S.; Veloccia, A.; Del Duca, S.; Cai, G.; Falasca, G.; Altamura, M. M.

    2015-01-01

    Background and Aims Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Methods Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. Key Results AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. Conclusions AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1. Pericycle activity is central for the equilibrium between xylary development and AR formation in the hypocotyl, with a role for AUX1 in switching between, and balancing of, the two developmental programmes. PMID:25617411

  19. Waste Heat Boilers for Incineration Applications 

    E-print Network

    Ganapathy, V.

    1998-01-01

    Incineration is a widely used process for disposing of solid, liquid and gaseous wastes generated in various types of industries. In addition to destroying pollutants, energy may also be recovered from the waste gas streams in the form of steam...

  20. The PB1 Domain in Auxin Response Factor and Aux/IAA Proteins: A Versatile Protein Interaction Module in the Auxin Response[OPEN

    PubMed Central

    2015-01-01

    An integral part of auxin-regulated gene expression involves the interplay of two types of transcription factors, the DNA binding auxin response factor (ARF) activators and the interacting auxin/indole acetic acid (Aux/IAA) repressors. Insight into the mechanism of how these transcription factors interact with one another has recently been revealed from crystallographic information on ARF5 and ARF7 C-terminal domains (i.e., a protein-protein interaction domain referred to as domain III/IV that is related to domain III/IV in Aux/IAA proteins). Three-dimensional structures showed that this domain in ARF5 and ARF7 conforms to a well-known PB1 (Phox and Bem1) domain that confers protein-protein interactions with other PB1 domain proteins through electrostatic contacts. Experiments verifying the importance of charged amino acids in conferring ARF and Aux/IAA interactions have confirmed the PB1 domain structure. Some in planta experiments designed to test the validity of PB1 interactions in the auxin response have led to updated models for auxin-regulated gene expression and raised many questions that will require further investigation. In addition to the PB1 domain, a second protein interaction module that functions in ARF-ARF dimerization and facilitates DNA binding has recently been revealed from crystallography studies on the ARF1 and ARF5 DNA binding domains. PMID:25604444

  1. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszu?ski, Micha?; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  2. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszu?ski, Micha?; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  3. Gestion des ressources hydriques adaptee aux changements climatiques pour la production optimale d'hydroelectricite. Etude de cas: Bassin versant de la riviere Manicouagan

    NASA Astrophysics Data System (ADS)

    Haguma, Didier

    Il est dorenavant etabli que les changements climatiques auront des repercussions sur les ressources en eau. La situation est preoccupante pour le secteur de production d'energie hydroelectrique, car l'eau constitue le moteur pour generer cette forme d'energie. Il sera important d'adapter les regles de gestion et/ou les installations des systemes hydriques, afin de minimiser les impacts negatifs et/ou pour capitaliser sur les retombees positives que les changements climatiques pourront apporter. Les travaux de la presente recherche s'interessent au developpement d'une methode de gestion des systemes hydriques qui tient compte des projections climatiques pour mieux anticiper les impacts de l'evolution du climat sur la production d'hydroelectricite et d'etablir des strategies d'adaptation aux changements climatiques. Le domaine d'etude est le bassin versant de la riviere Manicouagan situe dans la partie centrale du Quebec. Une nouvelle approche d'optimisation des ressources hydriques dans le contexte des changements climatiques est proposee. L'approche traite le probleme de la saisonnalite et de la non-stationnarite du climat d'une maniere explicite pour representer l'incertitude rattachee a un ensemble des projections climatiques. Cette approche permet d'integrer les projections climatiques dans le probleme d'optimisation des ressources en eau pour une gestion a long terme des systemes hydriques et de developper des strategies d'adaptation de ces systemes aux changements climatiques. Les resultats montrent que les impacts des changements climatiques sur le regime hydrologique du bassin de la riviere Manicouagan seraient le devancement et l'attenuation de la crue printaniere et l'augmentation du volume annuel d'apports. L'adaptation des regles de gestion du systeme hydrique engendrerait une hausse de la production hydroelectrique. Neanmoins, une perte de la performance des installations existantes du systeme hydrique serait observee a cause de l'augmentation des deversements non productibles dans le climat futur. Des strategies d'adaptation structurale ont ete analysees pour augmenter la capacite de production et la capacite d'ecoulement de certaines centrales hydroelectriques afin d'ameliorer la performance du systeme. Une analyse economique a permis de choisir les meilleures mesures d'adaptation et de determiner le moment opportun pour la mise en oeuvre de ces mesures. Les resultats de la recherche offrent aux gestionnaires des systemes hydriques un outil qui permet de mieux anticiper les consequences des changements climatiques sur la production hydroelectrique, incluant le rendement de centrales, les deversements non productibles et le moment le plus opportun pour inclure des modifications aux systemes hydriques. Mots-cles : systemes hydriques, adaptation aux changements climatiques, riviere Manicouagan

  4. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  5. Free SAS dclare que le produit rfrence F-PL01C est conforme aux exigences essentielles applicables et aux autres dclarations pertinentes de la directive R&TTE 1999/5/CE. Pour tous dtails complmentaires,

    E-print Network

    Rossi, Vivien

    Ethernet et d'une prise d'alimentation Deux câbles électriques Deux Freeplug #12;4 12 3 INVENTAIRE PRÉPARER. Chaque Freeplug est un bloc d'alimentation qui intègre la technologie de Courant Porteur en Ligne (ou CPL réutiliser ultérieurement. d'un câble électrique ( ) reliant le bloc d'alimentation à une prise électrique

  6. Developpement d'une plateforme de calcul d'equilibres chimiques complexes et adaptation aux problemes electrochimiques et d'equilibres contraints

    NASA Astrophysics Data System (ADS)

    Neron, Alex

    Avec l'arrivée de l'environnement comme enjeu mondial, le secteur de l'efficacité énergétique prend une place de plus en plus importante pour les entreprises autant au niveau économique que pour l'image de la compagnie. Par le fait même, le domaine des technologies de l'énergie est un créneau de recherche dont les projets en cours se multiplient. D'ailleurs, un des problèmes qui peut survenir fréquemment dans certaines entreprises est d'aller mesurer la composition des matériaux dans des conditions difficiles d'accès. C'est le cas par exemple de l'électrolyse de l'aluminium qui se réalise à des températures très élevées. Pour pallier à ce problème, il faut créer et valider des modèles mathématiques qui vont calculer la composition et les propriétés à l'équilibre du système chimique. Ainsi, l'objectif global du projet de recherche est de développer un outil de calcul d'équilibres chimiques complexes (plusieurs réactions et plusieurs phases) et l'adapter aux problèmes électrochimiques et d'équilibres contraints. Plus spécifiquement, la plateforme de calcul doit tenir compte de la variation de température due à un gain ou une perte en énergie du système. Elle doit aussi considérer la limitation de l'équilibre due à un taux de réaction et enfin, résoudre les problèmes d'équilibres électrochimiques. Pour y parvenir, les propriétés thermodynamiques telles que l'énergie libre de Gibbs, la fugacité et l'activité sont tout d'abord étudiées pour mieux comprendre les interactions moléculaires qui régissent les équilibres chimiques. Ensuite, un bilan énergétique est inséré à la plateforme de calcul, ce qui permet de calculer la température à laquelle le système est le plus stable en fonction d'une température initiale et d'une quantité d'énergie échangée. Puis, une contrainte cinétique est ajoutée au système afin de calculer les équilibres pseudo-stationnaires en évolution dans le temps. De plus, la contrainte d'un champ de potentiel électrique est considérée pour l'évaluation des équilibres électrochimiques par des techniques classiques de résolution et fera l'objet de travaux futurs via une technique d'optimisation. Enfin, les résultats obtenus sont comparés avec ceux présents dans la littérature scientifique pour valider le modèle. À terme, le modèle développé devient tin bon moyen de prédire des résultats en éliminant beaucoup de coût en recherche et développement. Les résultats ainsi obtenus sont applicables dans une grande variété de domaines tels que la chimie et l'électrochimie industrielle ainsi que la métallurgie et les matériaux. Ces applications permettraient de réduire la production de gaz à effet de serre en optimisant les procédés et en ayant une meilleure efficacité énergétique. Mots-clés : Systèmes énergétiques avancés, Équilibre thermodynamique, Équilibre contraint, Optimisation, Minimisation de l'énergie libre de Gibbs.

  7. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation.

    PubMed

    Yu, Hong; Soler, Marçal; San Clemente, Hélène; Mila, Isabelle; Paiva, Jorge A P; Myburg, Alexander A; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2015-04-01

    Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition. PMID:25577568

  8. Acquisition de donnees a haute resolution et faible latence dediee aux capteurs avioniques de position

    NASA Astrophysics Data System (ADS)

    Koubaa, Zied

    The communication network and the detection mechanisms are two critical systems in a plane. Their performance has a direct impact on aircrafts. This is of particular interest for avionics designers, who have increasingly invested more and more in the development of these elements. As a part of a project in this domain, we introduce the design and the development of a smart interface for position sensors dedicated to flights (Smart Sensor Interface - SSI). This interface will serve to connect sensors of different technologies (electromagnetic, optical and MEMS) to the new communication network, AFDX. The role of this interface is to generate an appropriate excitation signal for certain types of sensors (R/LVDT), and to treat, demodulate, and digitize their output signals. The proposed interface is thus composed of a Signal Acquisition Path (SAP) and an Excitation Signal Generation (ESG). By adopting the Integrated Modular Avionics architecture (IMA), we can minimize the size of the classic interface, reduce its energy consumption and improve its reliability and its performance. The focus of our design is particularly on the Data Acquisition Path (DAP). An Architecture characterized by a high resolution (14 bits) and a low latency (1.2 ms) of this module is introduced and developed in this prestigious work. This architecture was developed after a wellconducted study of existing solutions found in literature work and a detailed analysis of the problems arise in the design and implementation of this system (DAP). The conversion of the sensor signal into a digital signal is the most important step in acquiring data, as it sets the resolution of the acquired information and generates the majority of its latency. This module can also affect the reliability and stability of the system. Among different models and architectures, the Delta-Sigma analog-to-digital converter (ADC) is preferred for this application (for better resolution). This converter is formed by an analog circuit (modulator) followed by digital filters. The complexity of the implementation, the processing delay and the output resolution are all susceptible to change depending on the architecture of these filters. Thus, the main problem while designing such a system arises in the opposing evolution of the resolution and latency parameters; the improvement or evolution of one, results in the destruction of the other. Therefore, our work aims to provide one or more method to optimize the latency caused by the CAN while maintaining the same resolution of the desired data (14 bits). This optimization takes into account the objective of integrating the DAP in modules of small size and low power consumption. This proposed solution was implemented in order to validate the design of the conception of the interface. We are also interested to achieve the proposed solution and validate our design. The obtained results will be evaluated after following the manufacturing strategy. The data acquisition unit is made up of two electronic components. The first component is an integrated circuit, which uses CMOS 0.13mum IBM technology and contains the analog part of CAN (SigmaDelta modulator). The second component is a Virtex-6 FPGA, which allows one to acquire the necessary digital processing required for the acquisition and conversion of the sensor signal. In the final version of the interface, our analog portion will be integrated with the analog portion of GSE in the same chip. The integrated digital logic in the (FPGA) role will thus provide digital data to the ESG module in order to generate the excitation signal.

  9. Le recours aux modeles dans l'enseignement de la biologie au secondaire : Conceptions d'enseignantes et d'enseignants et modes d'utilisation

    NASA Astrophysics Data System (ADS)

    Varlet, Madeleine

    Le recours aux modeles et a la modelisation est mentionne dans la documentation scientifique comme un moyen de favoriser la mise en oeuvre de pratiques d'enseignement-apprentissage constructivistes pour pallier les difficultes d'apprentissage en sciences. L'etude prealable du rapport des enseignantes et des enseignants aux modeles et a la modelisation est alors pertinente pour comprendre leurs pratiques d'enseignement et identifier des elements dont la prise en compte dans les formations initiale et disciplinaire peut contribuer au developpement d'un enseignement constructiviste des sciences. Plusieurs recherches ont porte sur ces conceptions sans faire de distinction selon les matieres enseignees, telles la physique, la chimie ou la biologie, alors que les modeles ne sont pas forcement utilises ou compris de la meme maniere dans ces differentes disciplines. Notre recherche s'est interessee aux conceptions d'enseignantes et d'enseignants de biologie au secondaire au sujet des modeles scientifiques, de quelques formes de representations de ces modeles ainsi que de leurs modes d'utilisation en classe. Les resultats, que nous avons obtenus au moyen d'une serie d'entrevues semi-dirigees, indiquent que globalement leurs conceptions au sujet des modeles sont compatibles avec celle scientifiquement admise, mais varient quant aux formes de representations des modeles. L'examen de ces conceptions temoigne d'une connaissance limitee des modeles et variable selon la matiere enseignee. Le niveau d'etudes, la formation prealable, l'experience en enseignement et un possible cloisonnement des matieres pourraient expliquer les differentes conceptions identifiees. En outre, des difficultes temporelles, conceptuelles et techniques peuvent freiner leurs tentatives de modelisation avec les eleves. Toutefois, nos resultats accreditent l'hypothese que les conceptions des enseignantes et des enseignants eux-memes au sujet des modeles, de leurs formes de representation et de leur approche constructiviste en enseignement representent les plus grands obstacles a la construction des modeles en classe. Mots-cles : Modeles et modelisation, biologie, conceptions, modes d'utilisation, constructivisme, enseignement, secondaire.

  10. Introduction la theorie des fonctions z^eta et L et `a leur applications.

    E-print Network

    Deglise, Frédéric

    . Carrizosa et X. Roblot) et deux cours sp´ecialis´es (S´eries de Dirichlet et fonctions z^etas `a une ou introduire aux fonctions z^eta, nous expliquons comment montrer la rationalit´e de la fonction z^eta associIntroduction la th´eorie des fonctions z^eta et L et `a leur applications. par F. Brunault, M

  11. Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry

    PubMed Central

    Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs

    2015-01-01

    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103

  12. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozeti?, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radi?, N.; Draži?, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševi?, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petri?, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  13. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1.

    PubMed

    Zhang, Yanxiang; von Behrens, Inga; Zimmermann, Roman; Ludwig, Yvonne; Hey, Stefan; Hochholdinger, Frank

    2015-07-01

    Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway. PMID:25911745

  14. Radiographie par rayons X à haute résolution de défauts topologiques en volume de structures modulées comparée aux neutrons en faisceau blanc

    NASA Astrophysics Data System (ADS)

    Fernandez Palacio, J.; Hamelin, B.; Marmeggi, J. C.

    2004-11-01

    Une émission de rayons X par un générateur à haute tension (plage : 50 - 410 kV) a été développée pour être utilisée avec un diffractomètre à rayons X durs et caractériser en volume des monocristaux. Le fort flux issu d'une installation de radiologie à foyer fin avec un grand pouvoir de pénétration en profondeur autorise l'étude d'échantillons très absorbants. Quelques exemples de l'utilisation de ces propriétés pour des échantillons épais et très absorbants sont présentés ; principalement l'analyse de contraintes et la topographie X projetée 2D dans des matériaux en comparaison avec l'information par la diffraction des neutrons. La diffraction à haute énergie apparaît dans la direction transmise, les angles de Bragg sont petits et ainsi les différentes lignes de réflexions sont réparties autour du faisceau principal. La presse uni-axiale utilisée pour les expériences est optimisée effectivement avec l'absence d'un bruit de fond dû à l'usage de fentes. L'optique des rayons X durs et neutrons appliquée aux échantillons épais donne une information complémentaire dans les expériences sur l'analyse de la densité volumétrique par la diffusion des rayons X et neutrons. On l'applique à des problèmes concernant des cristaux aux structures modulées étudiées sous des charges mécaniques et thermiques.

  15. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1

    PubMed Central

    Zhang, Yanxiang; von Behrens, Inga; Zimmermann, Roman; Ludwig, Yvonne; Hey, Stefan; Hochholdinger, Frank

    2015-01-01

    Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway. PMID:25911745

  16. INTRODUCTION AUX SYSTMES INFORMATIQUES

    E-print Network

    Mignotte, Max

    Institute # IEEE -Institute for Electrical and Electronics En- gineers 3 #12; FORMAT DES DONNÉES CODE . Développé initialement par le American National Stan- dards Institute (ANSI) . Code de 7 bits (128 entrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Format Propriétaire -Standard . . . . . . . . . . . . . . 3 Code Alphanumérique

  17. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. PMID:26217884

  18. Application of electro acoustics for dewatering pharmaceutical sludge

    SciTech Connect

    Golla, P.S.; Johnson, H.W. ) Senthilnathan, P.R. )

    1992-02-01

    Application of electro acoustic principles for dewatering has been developed by Battelle Institute. The Department of Energy, Battelle Institute, and Ashbrook-Simon-Hartley, have jointly developed an Electro Acoustic Dewatering press (EAD press). The EAD press applies a combination of mechanical pressure, electrical current and ultrasonics. This press is utilized after conventional dewatering devices and can remove up to 50% water from filtered sludge cake at a fraction of the cost incurred in existing thermal drying devices. The dominant mechanism of sludge dewatering by EAD press is electro-osmosis due to the application of a direct current field. Electro-osmosis is caused by an electrical double layer of oppositely charged ions formed at the solid liquid interface, which is characterized by zeta potential. The ultrasonic fields help electro-osmosis by consolidation of the filter cake and by release of inaccessible liquid. The EAD press has been tested successfully on a variety of materials including apple pomace, corn gluten, sewage sludge, and coal fines. A three week long full scale trial was conducted successfully at a pharmaceutical industry to determine the application of this technology for dewatering waste activated sludge.

  19. Croissance Par Epitaxie EN Phase Vapeur aux Organo - et Caracterisation des Heterostructures Contraintes a Base de Phosphur de Indium

    NASA Astrophysics Data System (ADS)

    Tran, Chuong Anh

    Trois systemes heteroepitaxiaux a base de InP:InP/Si, InAs/InP et InAsP/InP ont ete fabriques par epitaxie en phase vapeur aux organo-metalliques (EPVOM)conventionelle. En plus l'epitaxie par couches atomiques (ECA) a ete utilisee pour fabriquer des puits quantiques ultra-minces et des superreseaux a courte periode InAs/InP. L'epitaxie de InP sur le silicium pose des problemes lies a un desaccord de maille de 8%. Les resultats indiquent une relaxation totale de la couche de InP a la temperature de croissance. La contrainte residuelle observee par diffraction de rayons X a haute resolution (DRXHR) et photoluminescence s'explique par une difference dans les coefficients de dilatation thermique de InP et due Si. L'incorporation des impuretes ainsi que la diffusion d'atomes de Si du substrat dans la couche epitaxiale de InP dependent fortement des parametres de croissance. Les resultats montrents que le reseau de dislocations dans les couches de InP deposees sur un substrat de Si mesoriente est suffisamment asymetrique pour creer des constraintes locales. Celles-ci peuvent etre analysees par diffraction de rayons X. Par contre le systeme heteroepitaxial InAs/InP, dont le desaccord de maille est 3.2% peut etre realise sans dislocation a condition que l'epaisseur de toute heterostructure soit gardee inferieure a l'epaisseur critique. Des puits quantiques InAsP/InP a la temperature ambiante montre clairement l'inter et technologique du systeme InAs_ {x}P_{1-x}/InP pour la realisation de dispositifs tels que les modulateurs optiques. L'ECA a ete utilisee pour realiser des puits quantiques simples et des superreseaux a courte periode InAs/InP. Nous avons demontre que cette technique permet d'obtenir des interfaces tres abruptes et des epaisseurs bien definies, et de faire des heterostructures que peuvent combiner une large gamme de semiconducteurs de composition et desaccords de maille varies. Finalement nous avons fait une etude approfondie des modes vibratoires dans les puits quantiques simples et superresseaux a courte periode InAs/InP fabriques par l'ECA. Gr ace a la haute qualite structurale de ces heterostructures, les phonons acoustiques replies et les phonons optiques confines ont ete clairement observes pour la premiere fois dans ce systeme. Pour les puits quantiques multiples InAs _{x}P_{1-x }/InP, une combinaison de differentes techniques de caracterisation optique et structurale est necessaire pour pouvoir determiner l'efficacite de la sequence d'interruption a l'interface utilisee pendant la croissance. Nous avons montre que la photoluminescence, qui est une procedure repandue pour evaluer la qualite de l'interface d'une heterostructure n'est pas suffisante pour determiner la qualite de l'interface InAs_{x}P_ {1-x}/InP. Avec une sequence d'interruption non-optimisee, une grande densite d'etats localises peut etre creee. Dans ce cas le mesures d'absorption et de diffraction de rayons X sont complementaires a celles de photoluminescence. Les positions experimentales en energie des modes d'interface peuvent etre predites par le modele du continuum electrostatique. (Abstract shortened by UMI.).

  20. (1) Outils de communication : page web ddie au tournoi de golf, programme de la journe, billet du tournoi, papier lettre et/ou communiqu de presse et affiche des remerciements aux commanditaires.

    E-print Network

    Charette, André

    DANS L'ENCADREMENT DES ÉTUDIANTS-ATHLÈTES Le programme de sport d'excellence des Carabins de l, cheerleading, football, golf, hockey (féminin), natation, rugby, ski alpin, soccer et volleyball. UNE APPROCHE sans contredit que l'approche de l'UdeM, favorisant la combinaison sport et études, peut mener aux plus

  1. Ordered BaAl4- Type Variants in the BaAuxSn4-x System: A Unified View on Their Phase Stabilities versus Valence Electron Counts

    SciTech Connect

    Lin, Qisheng; Miller, Gordon J.; Corbett, John D.

    2014-05-28

    Three ordered structures of the tetragonal BaAl4 type were identified in the Ba–Au–Sn system, from which a unified view of the interplay between the valence electron counts (VECs) and phase stabilities of these three types of derivatives can be developed. The BaNiSn3 (I4mm), ThCr2Si2 (I4/mmm), and CaBe2Ge2 (P4/nmm) type BaAuxSn4–x phases occurred respectively at x = 0.78(1)–1, 1.38(1)–1.47(1), and 1.52(1)–2.17(1), consistent with theoretical atomic “coloring” analyses that reveal an optimal VEC of 14 for the ThCr2Si2 type but larger and smaller values respectively for the BaNiSn3- and CaBe2Ge2-type structures.

  2. Transposition des gros vaisseaux associée aux communications interventriculaire et interauriculaire: à propos d'un cas et revue de la littérature

    PubMed Central

    Mutombo, Augustin Mulangu; Mukuku, Olivier; Lubala, Toni Kasole; Kabuya, Maguy Sangaji; Ilunga, Paul Makinko; Bugeme, Marcellin; Luboya, Oscar Numbi

    2013-01-01

    Nous rapportons une observation d'un nourrisson de 5 mois présentant une transposition des gros vaisseaux associée aux communications interventriculaire et interauriculaire. Il est né à terme sans aucun facteur de risque retrouvé dans les antécédents maternels. Le diagnostic est posé, grâce à une échocardiographie, à 5 mois après sa naissance lors de la survenue d'une cyanose et d'un malaise anoxique. Une prise en charge symptomatique a permis de stabiliser l’état du patient mais suite à l'absence d'un traitement chirurgical, il est décédé à domicile 3 semaines après sa sortie de l'hôpital. Dans les pays en développement, le diagnostic de la transposition des gros vaisseaux est souvent fait en période postnatale et son pronostic reste fatal par manque des centres médico-chirurgicaux spécialisés. PMID:24009800

  3. Prise en charge hospitalière de la malnutrition aigue sévère chez l'enfant avec des préparations locales alternatives aux F-75 et F-100: résultats et défis

    PubMed Central

    Nguefack, Félicitée; Adjahoung, Chritoph Akazong; Keugoung, Basile; Kamgaing, Nelly; Dongmo, Roger

    2015-01-01

    Introduction La mise en œuvre des directives de l'OMS permettrait de réduire significativement la mortalité hospitalière due à la malnutrition sévère. Cependant, elle n'est pas effective et la pénurie en aliments thérapeutiques est l'une des principales causes. L’étude décrit notre expérience sur la prise en charge hospitalière de la malnutrition aigue sévère avec des laits alternatifs aux F75 et F100 composés localement. Méthodes Il s'agissait d'un essai clinique non randomisé. La prise en charge des patients utilisait les laits composés localement et une évaluation quotidienne du gain pondéral était faite. Résultats L’étude a porté sur 41 sujets âgés de 6 à 59 mois. Au total, 73,2% avaient le kwashiorkor-marasmique, 17,0% le kwashiorkor, 9,8% le marasme et 41,5% étaient infectés par le VIH. Nous avons noté une prise progressive du poids d'environ 10 g/kg/jour vers le 7ème jour et de 15 à 20 g/kg/jour en fin d'hospitalisation. Le taux de mortalité était de 21,9% soit une réduction de 8,4% des chiffres antérieurs. Conclusion Malgré les obstacles financiers liés au coût des ingrédients, les préparations lactées alternatives aux standards F75 et F100, sont adaptables dans notre contexte. En l'absence des formules standards de l'OMS et lorsque la référence vers une structure qui en disposent n'est pas possible, les préparations locales permettraient de réhabiliter efficacement les patients. D'autres recherches pointues permettraient de tirer les ingrédients uniquement de notre environnement. Elles contribueraient ainsi à minimiser les couts des préparations et de favoriser la pérennisation des laits thérapeutiques locaux. PMID:26587175

  4. A study of the applicability of nucleation theory to quasi-thermodynamic transitions of second and higher Ehrenfest-order, supplement 3

    NASA Technical Reports Server (NTRS)

    Barker, R. E., Jr.

    1986-01-01

    The work includes an investigation of the applicability of the nucleation theory to second and higher order thermodynamic transitions in the Ehrenfest sense, and a number of significant conclusions relevant to first order transitions, as well. The underlying theoretical method consisted of expanding the Gibbs' free energy in a Maclarin or Taylor series and then using fundamental thermodynamic determinable quantities, and interpreting the results. Work was performed on the existence and interpretation of an interfacial energy between phases in a second order transition in addition to an investigation of the solid-liquid interfacial energy for various polymers. Extensive considerations were devoted to various aspects of a particular polymer, polyvinylidene fluoride (PVDF or PVF2), including an experimetal investigation of the effects of an applied electric field on the morphology of melt crystallization and on the nucleation and growth of polarized domains.

  5. Advanced in situ Spectroscopic Techniques And Their Applications In Environmental Biogeochemistry: Introduction To The Special Section

    EPA Science Inventory

    Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describ...

  6. IEEE Canadian Conference on Electrical and Computer Engineering, Montreal, Quebec, September 5-8, 1995. ATREF: Application des Technologies Robotiques aux Equipements

    E-print Network

    Papadopoulos, Evangelos

    for wood harvesting are diesel-powered hydraulic construction equipment retro#12;tted with special end and pose dierent operator-system interface problems, since the operator doesn't rotate with the manipulator arm as in an ex- cavator. To increase the exibility and eectiveness of these machines, electro-hydraulic

  7. Formalisme rationnel le la méthode de détermination des contraintes résiduelles par diffraction des rayons X: application aux couches minces et multicouches

    NASA Astrophysics Data System (ADS)

    Badawi, K. F.; Kahloun, C.; Grilhé, J.

    1993-06-01

    The use of the rational formalism in the residual stress determination method by X-ray diffraction improves the precision and the mathematical elegance of this method. It eliminates the approximations made in the conventional formalism, and corrects the results by more than 15% in certain case of thin films and multilayers. L'utilisation du formalisme rationnel dans la méthode de détermination des contraintes résiduelles par diffraction des rayons X améliore la rigueur, la précision et l'élégance mathématique de la méthode. Elle permet d'éviter les approximations faites dans le formalisme conventionnel, et apporte des corrections qui dépassent 15?% dans certains cas de couches minces et de multicouches.

  8. Etude de la forme des impulsions par la methode des moments: Application a la propagation dispersive non-lineaire et aux equations maitresses des lasers tout-fibre

    NASA Astrophysics Data System (ADS)

    Burgoyne, Bryan

    This thesis is about the propagation of optical pulses in waveguides, such as optical fibers, as the study of the steady-state optical pulses of all-fiber lasers. Pulse propagation in a nonlinear dispersive medium is analyzed in this thesis by the moment method. A clear representation of the moments is developed which enables a better understanding of the underlying physics of the propagation. Assuming that the pulse has a quadratic time-dependent phase, three invariants were found which lead to an analytical solution based on the second order moments. This solution describes both the asymptotic behavior in the normal dispersion regime as well as the periodic behavior in the anomalous dispersion regime. In both cases, the analytical solution is compared to numerous numerical simulations and shows an excellent agreement in the normal dispersion regime. In the anomalous dispersion regime, the analytical solution describes well the qualitative features of the propagation. Linear expressions are then derived from the analytical solution to approximate the nonlinear propagation over short and long distances. The analytical solution assumes that the pulse shape remains invariant along propagation. Two different approaches are then considered to study the evolution of the pulse shape. The first approach looks at the propagation of a gaussian pulse in the normal dispersion regime. Using the linear expressions derived from the analytical solution and the analytical solution of the purely dispersive and nonlinear propagation, the evolution of the pulse envelope is described analytically. Comparison to numerical simulations shows a very good agreement. To go beyond the propagation of a gaussian pulse in the normal dispersion regime, an other approach is needed. The other approach makes use of higher order moments; either the fourth order moments or the nonlinear second order moments (the third order moments being all zero since the pulse is assumed symmetric). In order to solve the moments equations, a model of the phase that goes beyond the quadratic phase approximation is required. Three such different approximate models are studied as well as an approximate representation of the field amplitude based on the Pearson distribution, which can represent several pulse shapes. These different models are compared, on the one hand, to numerical simulations through different moments and, on the other hand, by direct integration ot the approximated system of equations describing the evolution of the moments. A fixed point analysis is also carried out on the equations describing the evolution of the pulse shape. It arises from these analyses that a proper modeling of the phase must consider a dispersive term and a nonlinear term in order to describe the pulse shape evolution. These models are then applied to the more complex problem of the master equations in all-fiber lasers. In these equations, the effects of the different optical elements in the laser cavity are linearized and represented in their differential form. Then, depending on which optical element is present, particular analytical solutions on the complex envelope must be found, if they exist. By using the moments method, a general approach that transforms the master equation into a set of algebraic equations is obtained and studied. The properties of the steady-state pulses obtained from this method are then compared to the analytical solutions on the complex envelope of the master equation in three cases: the actively mode-locked laser, the passively mode-locked laser and the solitonic laser. The comparison shows that the general approach based on the moments yield the same relations between the pulse parameters and cavity parameters and describes the pulse shape within 5%. This approach is then successfully applied to three other master equations where no analytical solution exists. The analytical method developed in this thesis thus enables us to describe the propagation of pulses in a nonlinear dispersive medium in both dispersion regime. It also allows us to study the evol

  9. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (MACINTOSH A/UX VERSION)

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.

  10. Sigle Dpartement Gr. Titre Enseignant Jour Date Heure Local Nb Rpartition ADM502 Pharmacologie 01 Initiation aux affaires en pharmacologie Beaudoin, Philippe vendredi 02-oct 08h30 11h30 Z7-2005 22

    E-print Network

    Vellend, Mark

    Initiation aux affaires en pharmacologie Beaudoin, Philippe vendredi 02-oct 08h30 à 11h30 Z7-2005 22 BCL102 Biologie 01 Biologie cellulaire Guillemette, Benoît mardi 06-oct 10h30 à 12h30 D7-2016 30 Adam à Chrétien-Rioux BCL102 Biologie 01 Biologie cellulaire Guillemette, Benoît mardi 06-oct 10h30 à 12h30 D7-2017 40

  11. La Fte de la Science, vnement initi par le Ministre de la Recherche, se droule du vendredi 26 septembre au dimanche 19 octobre 2014 dans toute la France. Elle vous permettra d'explorer de nouveaux axes de recherche aux

    E-print Network

    Sart, Remi

    renseignement sur les inscriptions, contactez l'Université Blaise Pascal au 04 73 40 55 30. Pour la thématique IUT, contactez le 04 70 02 20 03. L'Université Blaise Pascal fête la Science #12;En éBULLition autour de recherche aux côtés de nos scientifiques. Ainsi, pour cette 23e édition, l'Université Blaise

  12. Le dpartement d'Etudes Slaves de l'Universit Blaise Pascal propose aux tudiants un parcours complet en tudes russes depuis la premire anne de Licence. Le cursus de russe

    E-print Network

    Sart, Remi

    · Le département d'Etudes Slaves de l'Université Blaise Pascal propose aux étudiants un parcours étudiantes ont toutes deux préparé un Master 1 d'études Russophones toujours à l'Université Blaise Pascal. L toujours à l'Université Blaise Pascal et occupe conjointement un emploi à mi-temps tandis que l

  13. Ampleur et impact des évènements indésirables graves liés aux soins: étude d'incidence dans un hôpital du Centre-Est tunisien

    PubMed Central

    Bouafia, Nabiha; Bougmiza, Iheb; Bahri, Fathi; Letaief, Mondher; Astagneau, Pascal; Njah, Mansour

    2013-01-01

    Introduction La prévention des événements indésirables représente une priorité de santé du fait de leur fréquence et de leur gravité potentielle. Ce travail a été mené afin d'avoir un diagnostic de la situation épidémiologique relative aux événements indésirables survenant dans notre hôpital. Méthodes Une étude prospective a été menée auprès de tous les patients qui ont été hospitalisés au CHU Farhat Hached - Sousse (Tunisie) sur une période d'un mois dans quatorze services de l'hôpital. La détection d'évènement indésirable grave (EIG) était basée sur les critères adoptés dans différentes études. Les tests T et Chi 2 ont été utilisés pour identifier les facteurs contribuant à l'apparition d'évènements indésirables. Résultats Au total, 162 EIG ont été identifiés pendant la période. 45% de ces évènements étaient des infections nosocomiales. Ces EIG ont eu comme conséquences un décès chez 9,2% des patients, la mise en jeu du pronostic vital de 26% des patients et la prolongation de la durée de séjour chez 61,7% d'entre eux. L'admission dans des circonstances particulières et l'exposition à des soins invasifs étaient identifiés comme des facteurs de risque potentiels EIG. Conclusion Le renforcement de la stratégie de gestion des risques sanitaires en ciblant préférentiellement le risque infectieux constitue une étape fondamentale dans l'amélioration de la sécurité des patients au sein de notre établissement de santé. PMID:24711868

  14. Interaction of the Tobacco Mosaic Virus Replicase Protein with the Aux/IAA Protein PAP1/IAA26 Is Associated with Disease Development†

    PubMed Central

    Padmanabhan, Meenu S.; Goregaoker, Sameer P.; Golem, Sheetal; Shiferaw, Haiymanot; Culver, James N.

    2005-01-01

    Virus-infected plants often display developmental abnormalities that include stunting, leaf curling, and the loss of apical dominance. In this study, the helicase domain of the Tobacco mosaic virus (TMV) 126- and/or 183-kDa replicase protein(s) was found to interact with the Arabidopsis Aux/IAA protein PAP1 (also named IAA26), a putative regulator of auxin response genes involved in plant development. To investigate the role of this interaction in the display of symptoms, a TMV mutant defective in the PAP1 interaction was identified. This mutant replicated and moved normally in Arabidopsis but induced attenuated developmental symptoms. Additionally, transgenic plants in which the accumulation of PAP1 mRNA was silenced exhibit symptoms like those of virus-infected plants. In uninfected tissues, ectopically expressed PAP1 accumulated and localized to the nucleus. However, in TMV-infected tissues, PAP1 failed to accumulate to significant levels and did not localize to the nucleus, suggesting that interaction with the TMV replicase protein disrupts PAP1 localization. The consequences of this interaction would affect PAP1's putative function as a transcriptional regulator of auxin response genes. This is supported by gene expression data indicating that ?30% of the Arabidopsis genes displaying transcriptional alterations in response to TMV contain multiple auxin response promoter elements. Combined, these data indicate that the TMV replicase protein interferes with the plant's auxin response system to induce specific disease symptoms. PMID:15681455

  15. Application of the polynomial chaos expansion to multiphase CFD : a study of rising bubbles and slug flow

    E-print Network

    Langewisch, Dustin R

    2014-01-01

    Part I of this thesis considers subcooled nucleate boiling on the microscale, focusing on the analysis of heat transfer near the Three-Phase (solid, liquid, and vapor) contact Line (TPL) region. A detailed derivation of ...

  16. Cartographie de l'elevation de l'interface eau douce-eau salee aux iles-de-la-madeleine par la methode electromagnetique transitoire (TEM)

    NASA Astrophysics Data System (ADS)

    Madani, Abdelhamid

    This research project is dedicated to mapping the elevation of the freshwater-saltwater interface in Magdalen Islands using the transient electromagnetic method (TEM) in order to monitor time-varying quality of groundwater tables. Seventy-three TEM soundings were conducted between May 2010 and June 2011 close to Well regions in Fatima, Étang-du-Nord, Havre-Aux-Maisons, Grande-Entrée and Grosse-Île. TEM soundings were carried out with loops of 50 m x 50 m and 60 m x 40 m x 2 turns except some surveys of 100 m x 100 m. To control water quality and help constrain the interpretation of TEM soundings, conductivity logs were made in four previous exploration wells and fifteen wells drilled in 2009. Results show that saline water is associated with a low resistivity level between 2 and 4 ?.m and its elevation ranges from -40 m at Grand-Entrée and more than -250 m at Havre-Aubert. In Étang-du-Nord east, Fatima east and Grande-Entrée, saline water is shallow near shore and plunges inward as expected by the Ghyben Herzberg relation. These three areas have been identified to achieve the time-lapse monitoring of groundwater because of the risk associated with the proximity of wells in operation and the low elevation of saline water. Fatima center area close to FAT03 and FAT07 soundings and Havre-Aux-Maisons showed inconsistent results with the hydrogeological model, further work is recommended to verify the origin of the conductive areas highlighted. However, the results of the interpretation of areas at Havre-Aubert and Grosse-Île did not show a risk of contamination due to the depth of saline water. Modeling of the transition zone between the freshwater aquifer and the saline groundwater has demonstrated that it was difficult to solve it for thicknesses below 10 m and 30 m to depths of 40 and 130 m respectively. If the resistivity of the transition zone is known, the resolution is improved (5 and 10 m respectively). TEM soundings showed negative responses at late time associated with induced polarization (IP) effects. The inversion results of TEM soundings affected by this effect have shown that this dispersion most likely originates from near-surface layers. Chargeabilities ranging from 0.8 to 0.9 were obtained on the TEM soundings processed. The origin of this chargeability is currently unknown but could be related to the presence of fine material (clay). IP effect has not prevented determination of the saline water to a maximum depth of 250 m. The laboratory tests on core samples were unfortunately not able to determine the relationship between resistivity and water resistivity of saturated red sandstone. Immersion of cores in deionized water failed to eliminate the salt present in it. For time-varying monitoring of groundwater, we recommend performing drilling through the interface between freshwater and saltwater on selected areas, to conduct conductivity logs to fully characterize the level of this interface, to install multiparameter probes (conductivity, temperature, pressure) in monitoring wells located at different levels and to locate sites of TEM soundings in the vicinity that will be used to monitor the groundwater.

  17. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    PubMed

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-01

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices. PMID:25871732

  18. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Nguyen, Nhat Thien; Li, Chi-Wang

    2015-01-01

    Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO4(3-)-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application. PMID:26465299

  19. Water-induced correlation between single ions imaged at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Ricci, Maria; Spijker, Peter; Voïtchovsky, Kislon

    2014-07-01

    When immersed into water, most solids develop a surface charge, which is neutralized by an accumulation of dissolved counterions at the interface. Although the density distribution of counterions perpendicular to the interface obeys well-established theories, little is known about counterions’ lateral organization at the surface of the solid. Here we show, by using atomic force microscopy and computer simulations, that single hydrated metal ions can spontaneously form ordered structures at the surface of homogeneous solids in aqueous solutions. The structures are laterally stabilized only by water molecules with no need for specific interactions between the surface and the ions. The mechanism, studied here for several systems, is controlled by the hydration landscape of both the surface and the adsorbed ions. The existence of discrete ion domains could play an important role in interfacial phenomena such as charge transfer, crystal growth, nanoscale self-assembly and colloidal stability.

  20. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  1. Elucidating the solid, liquid and gaseous products from batch pyrolysis of cotton-gin trash. 

    E-print Network

    Aquino, Froilan Ludana

    2009-05-15

    Cotton-gin trash (CGT) was pyrolyzed at different temperatures and reaction times using an externally-heated batch reactor. The average yields of output products (solid/char, liquid/bio-oil, and gaseous) were determined. ...

  2. Dynamic electrowetting and dewetting of ionic liquids at a hydrophobic solid-liquid interface.

    PubMed

    Li, Hua; Paneru, Mani; Sedev, Rossen; Ralston, John

    2013-02-26

    The dynamic electrowetting and dewetting of ionic liquids are investigated with high-speed video microscopy. Five imidazolium-based ionic liquids ([BMIM]BF(4), [BMIM]PF(6), [BMIM]NTf(2), [HMIM]NTf(2), and [OMIM]BF(4)) are used as probe liquids. Droplets of ionic liquids are first spread on an insulated electrode by applying an external voltage (electrowetting) and then allowed to retract (dewetting) when the voltage is switched off. The base area of the droplet varies exponentially during both the electrowetting and retraction processes. The characteristic time increases with the viscosity of the ionic liquid. The electrowetting and retraction kinetics (dynamic contact angle vs contact line speed) can be described by the hydrodynamic or the molecular-kinetic model. Energy dissipation occurs by viscous and molecular routes with a larger proportion of energy dissipated at the three-phase contact line when the liquid meniscus retracts from the solid surface. The outcomes from this research have implications for the design and control of electro-optical imaging systems, microfluidics, and fuel cells. PMID:23362860

  3. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1997-09-01

    The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translation diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei ({sup 14}N and {sup 15}N) in solution. Our results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 x 10{sup -3} M. Typical values measured for the diffusion coefficient of the ammonium ion are 2 x 10{sup -5} cm{sup 2/s} ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonium is less sensitive to the solution pH, extending the measurement range to pH of 9.5. Diffusion measurements were conducted with solutions of varying viscosity and porosity. The results show that the solution viscosity has a measureable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 mm PMMA resulted in a reduction of {approximately}30% in the diffusion coefficient as a result of hindered diffusion.

  4. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries. Revision 1

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1998-01-01

    The flammability and toxicity of ammonia released from the nuclear waste tanks at Hanford have been the subject of several recent studies. These releases may occur episodically, such as the buoyant plume releases occurring in various double-shell tanks (DSTs); gradually through the surface of the waste; or from the partially saturated saltcakes in the single-shell tanks during salt-well pumping. The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translational diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei in solution. Results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 {times} 10{sup {minus}3} {und M}. Typical values measured for the diffusion coefficient of the ammonium ion are 2 {times} 10{sup {minus}5} cm{sup 2}/s ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonia is less sensitive to the solution pH, extending the measurement range to pH of 9.5. The results show that the solution viscosity has a measurable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 {micro}m PMMA resulted in a reduction of {approximately} 30% in the diffusion coefficient as a result of hindered diffusion.

  5. Solid-liquid separation of dairy manure with PAM and chitosan polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic polymers are useful to increase separation of suspended solids and carbon compounds from liquid swine manure, but experiences with dairy manure are limited. In this experiment, two polymers, a synthetic polyacrylamide (PAM) and a natural chitosan were used to increase separation of suspended...

  6. Quartz Crystal Microbalance Studies of Multilayer Glucagon Fibrillation at the Solid-Liquid Interface

    PubMed Central

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-01-01

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro. PMID:17513349

  7. Direct calculation of the solid-liquid Gibbs free energy difference in a single equilibrium simulation

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.

    2013-09-01

    Computing phase diagrams of model systems is an essential part of computational condensed matter physics. In this paper, we discuss in detail the interface pinning (IP) method for calculation of the Gibbs free energy difference between a solid and a liquid. This is done in a single equilibrium simulation by applying a harmonic field that biases the system towards two-phase configurations. The Gibbs free energy difference between the phases is determined from the average force that the applied field exerts on the system. As a test system, we study the Lennard-Jones model. It is shown that the coexistence line can be computed efficiently to a high precision when the IP method is combined with the Newton-Raphson method for finding roots. Statistical and systematic errors are investigated. Advantages and drawbacks of the IP method are discussed. The high pressure part of the temperature-density coexistence region is outlined by isomorphs.

  8. SESAME 96170, a solid-liquid equation of state for CeO2

    SciTech Connect

    Chisolm, Eric D.

    2014-05-02

    I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO2. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

  9. Phase-field Models for Solidification and Solid/Liquid Interactions 

    E-print Network

    Park, Min Soo

    2011-02-22

    The microstructure resulting from the solidification of alloys can greatly affect their properties, making the prediction of solidification phenomena under arbitrary conditions a very important tool in the field of ...

  10. Multidimensional geometric aspects of the solid-liquid transition in simple substances

    E-print Network

    Stillinger, Frank

    as low as one-fourth the melting temperature. Further, the curvature distribution changes dramatically with respect to temperature at the melting point. We also construct and evaluate a new distributionN) sampled by the equilibrium configurations in the low-temperature solid phase is one of the permutationally

  11. Analytical Investigations of Convective Effects on a Solid-Liquid Interface.

    NASA Astrophysics Data System (ADS)

    Hadji, Layachi

    A thin layer of a single-component Boussinesq fluid, contained between two rigid horizontal plates of low thermal conductivity, is cooled from above and heated from below. In the steady-static state, a heat flux traverses the system so that the temperature attained at the upper boundary of the layer is in the solid phase. An interface is planar in the conductive state, and corrugated in the convective regime. A small amplitude expansion study reveals that the critical Rayleigh number and the critical wavenumber for the onset of the interface deformation increase with the solid layer thickness. A weakly nonlinear stability analysis reveals that there is subcritical instability irrespective of the interface shape. The stable forms of the solidified front are then found. In the case of hexagonal pattern, the fluid motion is shown to be upward at the cells centers. Hexagons are also found to exhibit a higher heat flux than either rolls or squares. The non -planar interface is shown to have a cellular structure identical to the convection patterns which arise in this situation. A long wavelength approximation is used to derive a non-linear evolution equation for the leading order interface pertubation. This evolution equation is found to be ill -posed when the dimensionless thickness of the solid layer A exceeds 0.256. The equation is then solved numerically for A between 0 and 0.256. The curve shifts to the right as A approaches the value 0.256. The linear stability analysis for the binary alloy case is performed. This part complements the work done by Caroli et al. (1985). The critical value for the pulling velocity V at which both the morphological and convective instabilities are excited at the same concentration level is determined numerically.

  12. ADSORPTION OF SURFACTANTS AND POLYMERS AT THE SOLID-LIQUID INTERFACE. (R823301)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Perturbation theory of solid-liquid interfacial free energies of bcc metals

    SciTech Connect

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2012-01-18

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two subwavelength slits, separated by two wavelengths.The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young’s experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  14. Thermal modeling with solid/liquid phase change of the thermal energy storage experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    1991-01-01

    A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.

  15. Teaching Sustainable Development Concepts in the Laboratory: A Solid-Liquid Extraction Experiment

    ERIC Educational Resources Information Center

    Parajo, Juan Carlos; Dominguez, Herminia; Santos, Valentin; Alonso, Jose Luis; Garrote, Gil

    2008-01-01

    One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. For example, phenol and phenol derivatives currently used in the manufacture of wood adhesives can be replaced (at least in part) by biopolymers extracted from biomass. In this work, pine bark (a renewable…

  16. Use of sol-gel systems for solid/liquid separation.

    SciTech Connect

    Chaiko, D. J.; Kopasz, J. P.; Elison, A. J. G.; Chemical Engineering

    1998-01-01

    A unique approach using sol-gel technology is presented for separating and recovering particulates and colloids from caustic waste slurries. The approach involves the addition of an alkali silicate and an organic gelling agent directly to the waste stream to immobilize particulates that range from macro sizes to submicron colloids. The particulates and colloids become trapped within a silica network that remains porous during the early stages of the sol-gel process. The freshly gelled monolith undergoes a process of syneresis, whereby the water and soluble salts are ejected from the monolith as it contracts. The approach has been illustrated by removal of ultrafine particulates from a Hanford Tank Waste simulant. Initial laboratory tests have shown that it is possible to produce silica monoliths in the presence of 4 M hydroxide. Analysis of the mother liquor produced during syneresis indicated quantitative recovery of the particulates within the monolith. The partitioning of ions between the silica gel and the mother liquor during syneresis correlates directly with the lyotropic series. Salt recoveries from the mother liquor in excess of 90% can be achieved. With a capability of recovering >99.999% of all particulates, including colloids, the process is more efficient than membrane filtration. This approach produces a rock-hard silica monolith that can be used directly as a feedstock to a glass melter or can be consolidated to near theoretical density by sintering.

  17. Mathematical Modeling and Numerical Simulation of Liquid-Solid and Solid-Liquid Phase Change

    E-print Network

    Joy, Aaron

    2013-08-31

    the resulting computations remain unconditionally stable during the entire evolution regardless of the choices of h, p, and k and the dimensionless parameters in the mathematical model. Numerical studies are presented in R1 and R2 for liquid-solid and solid...

  18. Solid-liquid mass transfer at gas sparged fixed bed of Rasching rings

    SciTech Connect

    Noseir, S.A.; El-Kayar, A.; Sedahmed, G.H.; Farag, H.A.

    1997-09-01

    Gas sparging is gaining increased importance as a tool for enhancing the rate of liquid-solid mass transfer in industrial reactors. The effect of nitrogen sparging on the rate of liquid-solid mass transfer at fixed beds of Rasching rings was studied by measuring the rate of diffusion-controlled dissolution of a bed or copper Rasching rings in acidified chromate solutions. Variables studied were: ring diameter, nitrogen superficial velocity and physical properties of the solution. The mass transfer data were correlated by the equation, J = 0.04 (Fr.Re){sup {minus}0.15} (d{sub r}/d){sup {minus}0.516}.

  19. Physical Characterization of Solid-Liquid Slurries at High Weight Fractions Using Optical and Ultrasonic Methods

    SciTech Connect

    Burgess, L.W.; Brodsky, A.M.; Panetta P.D.

    2005-12-22

    Remediation of highly radioactive waste is a major technical and programmatic challenge for the DOE. Rapid, on-line physical characterization of highly concentrated slurries is required for the safe and efficient remediation of 90 million gallons of high level radioactive waste (HLW), sodium bearing waste, and mixed waste. The research presented here, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to directly address the need for rapid on-line characterization of the physical properties of HLW slurries during all phases of the remediation process, from in-tank characterization of sediments to monitoring of the concentration, particle size, and degree of agglomeration and gelation of slurries during transport. Near-surface characterization of the slurry flow in the particle size range from nanometer to micrometer is examined using optical low coherence reflectometry. Volumetric characterization at depths in the slurry flow, up to several centimeters in the particle size range from the micrometer to millimeter, is realized by utilizing ultrasonic backscatter and diffuses fields. One of the strengths, the teaming up of significant talents in both experimental and theoretical optics and in ultrasonics, provides a synergistic approach to integrate these complimentary techniques. One of the benefits of this combined approach is the physical characterization of HLW over a concentration and particle size range that is broader than can be achieved with today's technology. This will avoid a costly increase in waste stream volume due to excess dilution, and will lessen chance of plugging pipes that could shut down expensive processing lines.

  20. Melting Temperature of Ice Ih calculated from coexisting solid-liquid phases

    SciTech Connect

    Wang, J.; Yoo, S.; Bai, J.; Morris, James R; Zeng, X.C.

    2005-01-01

    In a previous paper we report the calculated melting temperature of the proton-disordered hexagonal ice I{sub h} using a four-site water model, the TIP4P (Ref. 2) and a five-site model, the TIP5P. In that work, we used a free-energy method. For the TIP4P model, the calculated melting temperature at 1 bar is T{sub m} = 229 {+-} 9 K, whereas for the TIP5P model, T{sub m} = 268 {+-} 6 K. For both models, the long-ranged interactions were truncated at 17 {angstrom}. Interestingly, these values of Tm are very close to T{sub m} = 232 {+-} 5 K and T{sub m} = 273.9 K reported by Sanz et al. and Vega et al. who used a slightly different free-energy method along with Ewald summation technique, although both the TIP4P and TIP5P models were originally developed for use with a truncated Coulomb interaction. The purpose of this paper is twofold: (1) to compute the melting temperature (T{sub m}) of ice I{sub h} with both TIP4P and TIP5P models by using the two-phase coexistence method and to compare with previously obtained T{sub m}; (2) to compute the T{sub m} using recently improved TIP4P and TIP5P models, namely, the TIP4P-Ew (Ref. 6) and TIP5P-Ew (Ref. 7) models. Both models are developed specifically for use with Ewald techniques. The TIP4P-Ew model, in particular, has shown substantial improvement over the original TIP4P model as it can reproduce the density maximum at about 274 K, very close to 277 K of the real water. The original TIP5P model can reproduce the measured T{sub m}. It will be of interest to see whether the improved TIP5P-Ew model can still hold the same level of prediction as far as the T{sub m} is concerned.

  1. Kerr-AdS analogue of tricritical point and solid/liquid/gas phase transition

    E-print Network

    Altamirano, Natacha; Mann, Robert B; Sherkatghanad, Zeinab

    2013-01-01

    We study the thermodynamic behavior of multi-spinning d=6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q=J2/J1, qualitatively different interesting phenomena known from the `every day thermodynamics' of simple substances. For q=0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 00.0985 we observe the `standard liquid/gas behavior' of the Van der Waals fluid.

  2. Bioproduction of the Aroma Compound 2-Phenylethanol in a SolidLiquid Two-Phase

    E-print Network

    Daugulis, Andrew J.

    (2-PE) is an important fragrance and flavor ingredient in the cosmetic and food industry, mainly fragrance and flavor ingredient. Several yeast strains are able to convert L-phenylalanine (L-phe) to 2-PE

  3. Solid-Liquid Phase Transition As a Mechanism of Volcano Eruption

    E-print Network

    Ivanchin, Alexander

    2012-01-01

    This paper considers the formation of the magma volcano chamber and its eruption due to melting of the matter within the earth crust because of heating caused by plastic deformation occurring during tectonic movement. The expansion of matter in the magma chamber which takes place during its heating, leads to elastic stresses in the solid shell surrounding the magma chamber. The elastic energy of such stresses can be as high as 10^17 J per 1 km3 of the melt. The magma flow rate has been assessed according to available data, which agrees well with the observation data. The mechanism of low-frequency vibrations produced by the magma chamber is discussed. The vibrations result from the excess elastic energy formed during melting at the eruption steady stage. The suggested radiation theory allows evaluating the size of the magma chamber according to parameters that can be measured. The obtained theoretical evaluation of the magma chamber size is supported by the available observation data.

  4. Solid-Liquid Phase Transition As a Mechanism of Volcano Eruption

    E-print Network

    Alexander Ivanchin; Alexander Vikulin

    2012-06-25

    This paper considers the formation of the magma volcano chamber and its eruption due to melting of the matter within the earth crust because of heating caused by plastic deformation occurring during tectonic movement. The expansion of matter in the magma chamber which takes place during its heating, leads to elastic stresses in the solid shell surrounding the magma chamber. The elastic energy of such stresses can be as high as 10^17 J per 1 km3 of the melt. The magma flow rate has been assessed according to available data, which agrees well with the observation data. The mechanism of low-frequency vibrations produced by the magma chamber is discussed. The vibrations result from the excess elastic energy formed during melting at the eruption steady stage. The suggested radiation theory allows evaluating the size of the magma chamber according to parameters that can be measured. The obtained theoretical evaluation of the magma chamber size is supported by the available observation data.

  5. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  6. A parallel numerical method for solid-liquid two-phase flows based on Fictitious Domains

    E-print Network

    Politècnica de Catalunya, Universitat

    , are of practical importance in different fields such as chemistry, food industries and geophysical flows, among of parallelization. The projection of the fluid velocity onto rigid motion on the particles is based on a fast

  7. Hydrothermodynamic consideration on the steady-state motion of a solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Mori, Atsushi

    1999-05-01

    We study a solid and a liquid coexisting at a plane interface in the nonequilibrium steady-state (NESS) condition on a hydrothermodynamic level. Both solid and liquid are treated as continuums. From the equations of mass-, momentum-, and energy-conservation we obtain relations for the velocity of the interface, the net mass-flow velocity, and thermodynamic variables such as temperature, pressure, and density. The second law of thermodynamics gives a criterion for the possibility of the NESS processes. It is shown that the NESS interface motion without extraction or addition of latent heat of fusion is possible.

  8. Theory of Brushes Formed by ?-Shaped Macromolecules at Solid-Liquid Interfaces.

    PubMed

    Zhulina, Ekaterina B; Leermakers, Frans A M; Borisov, Oleg V

    2015-06-16

    We present a theoretical analysis targeted to describe the structural properties of brushes formed by ?-shaped macromolecules tethered by terminal segment of stem to planar surface while exposing multiple free branches to the surrounding solution. We use an analytical self-consistent field approach based on the strong stretching approximation, and the assumption of Gaussian elasticity for linear chain fragments of the tethered macromolecules. The effect of weak and strong polydispersity of branches is analyzed. In the case of weakly polydisperse macromolecules, variations in length of branches lead to a more uniform polymer density distribution with slight increase in the brush thickness compared to the case of monodisperse chains with the same degree of polymerization. We demonstrate that in contrast to linear chains, strong polydispersity of ?-shaped macromolecules does not necessarily lead to strong perturbations in polymer density distribution. In particular, mixed brushes of the so-called "mirror" dendrons (in which number of stem monomers in one component coincides with number of monomers in a branch of the other component, and vice versa) give rise to a unified polymer density distribution with shape independent of the brush composition. The predictions of analytical theory are systematically compared to the results of numerical self-consistent field modeling based on the Scheutjens-Fleer approach. PMID:26029884

  9. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    SciTech Connect

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-02

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al{sub 2}O{sub 3} interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al{sub 2}O{sub 3} interfaces. Preferential oxygen segregation to the (0006) Al{sub 2}O{sub 3} plane was verified, and the (101{sup ¯}2) Al{sub 2}O{sub 3} plane was found to contain the lowest amount of segregated species.

  10. Profil comparatif et évolutif des personnes infectées par le virus de l'immunodéficience humaine traitées aux antirétroviraux à Kinshasa, République Démocratique du Congo

    PubMed Central

    Koy, Tshingani; Mukumbi, Henri; Malandala, Ghislain Lubangi Muteba; Donnen, Philippe; Wilmet–Dramaix, Michèle

    2014-01-01

    Introduction A trithérapie (ARV) introduite en R.D.Congo en 1996, a permis l?amélioration substantielle de la qualité de vie des PVVIH et a réduit la morbimortalité liée au sida en R.D. Congo. L'objectif de cette étude est de présenter le profil épidémiologique comparatif, clinique, ainsi que l’évolution anthropométrique des PVVIH sous ARV à Kinshasa. Méthodes Etude de cohorte sur 438 PVVIH, de 18 ans et plus, suivies entre mai 2010 à 2011 à Amo Congo à Kinshasa. Une comparaison a été faite entre les patients suivis pendant un an et ceux perdus de vue. Le Chi carré de Mc Nemar et l'analyse de variance pour mesures répétées ont été appliqués pour étudier l’évolution. Résultats Près 12 mois de suivi, 11,4% de patients ont été perdus de vue. Parmi eux, on observait des proportions significativement plus élevées de personnes de niveau socioéconomique bas, d'indice de masse corporelle (IMC) bas, présentant de l'anorexie, des affections opportunistes. Les proportions de patients aux stades OMS 3 & 4 et naïfs étaient également significativement plus élevées et la durée sous ARV plus courte. Les gains moyens des paramètres anthropométriques au 12ème mois, étaient importants: de 3,6 [3,2 - 4,0] kg pour le poids, 1,8 (1,4 - 2,3) cm pour le périmètre abdominal, 0,9 (0,8 - 1,2) cm pour le périmètre brachial, 1,4 (1,2 - 1,5) kg/m2 pour l'IMC. La proportion de patients avec un IMC <18,5 kg/m2 a significativement plus baissé entre l'admission et le 12ème mois parmi les patients sans stomatite que parmi ceux avec stomatite. L'IMC moyen évoluait significativement différemment entre l'admission et le 12ème mois selon l’âge et la taille de ménage. Conclusion Les facteurs fragilisant la rétention des patients sous antirétroviraux et une évolution progressive de l’état nutritionnel ont été observés. PMID:25995784

  11. Les recommandations thérapeutiques relatives aux effets secondaires extrapyramidaux associés à l’utilisation d’antipsychotiques de deuxième génération chez les enfants et les adolescents

    PubMed Central

    Pringsheim, Tamara; Doja, Asif; Belanger, Stacey; Patten, Scott

    2012-01-01

    HISTORIQUE ET OBJECTIF : L’utilisation d’antipsychotiques augmente chez les enfants. Le présent article visait à orienter les cliniciens quant à la prise en charge clinique des effets secondaires extrapyramidaux des antipsychotiques de deuxième génération. MÉTHODOLOGIE : Les publications, les entrevues avec des informateurs clés et des échanges avec les membres d’un groupe de discussion et les partenaires ont permis de déterminer les principaux secteurs cliniques d’orientation et les préférences quant à la structure des présentes recommandations. Les membres responsables des lignes directrices ont reçu le projet de recommandations, ont évalué l’information recueillie grâce à une analyse bibliographique systématique et ont utilisé un processus de groupe nominal pour parvenir à un consensus quant aux recommandations thérapeutiques. Les lignes directrices contiennent une description des anomalies neurologiques souvent observées avec l’utilisation d’antipsychotiques ainsi que les recommandations sur le moyen d’examiner et de quantifier ces anomalies. Une démarche séquentielle sur la prise en charge des anomalies neurologiques est présentée. RÉSULTATS : On peut observer plusieurs types de symptômes extrapyramidaux attribuables à l’utilisation d’antipsychotiques chez les enfants, y compris la dystonie aiguë, l’akathisie, le parkinsonisme et la dyskinésie tardive, toutes induites par les neuroleptiques, de même que la dystonie tardive, l’akathisie tardive et les dyskinésies de sevrage. La forte majorité des données probantes sur le traitement des troubles du mouvement induits par les antipsychotiques proviennent de patients adultes atteints de schizophrénie. Étant donné le peu de données pédiatriques, les recommandations découlent de publications portant tant sur des adultes que sur des enfants. Compte tenu des limites de généralisation des données provenant de sujets adultes pour des enfants, il faudrait évaluer ces recommandations d’après les avis d’experts plutôt que d’après les données probantes. CONCLUSION : Les cliniciens doivent savoir que les antipsychotiques de deuxième génération ont le potentiel d’induire des effets secondaires neurologiques et devraient faire preuve d’une extrême vigilance lorsqu’ils en prescrivent. PMID:24082814

  12. Developments to a landfill processes model following its application to two landfill modelling challenges.

    PubMed

    White, J K; Beaven, R P

    2013-10-01

    The landfill model LDAT simulates the transport and bio-chemical behaviour of the solid, liquid and gas phases of waste contained in a landfill. LDAT was applied to the LMC1 and LMC2 landfill modelling challenges held in 2009 and 2011. These were blind modelling challenges with the model acting in a predictive mode based on limited early time sections of full datasets. The LMC1 challenge dataset was from a 0.34m deep 0.48m diameter laboratory test cell, and the LMC2 dataset was from a 55m×80m 8m deep landfill test cell which formed part of the Dutch sustainable landfill research programme at Landgraaf in the Netherlands. The paper describes developments in LDAT arising directly from the experience of responding to the two challenges, and discusses the model input and output data obtained from a calibration using the full datasets. The developments include the modularisation of the model into a set of linked sub-models, the strategy for converting conventional waste characteristics into model input parameters, the identification of flexible degradation pathways to control the CO2:CH4 ratio, and the application of a chemical equilibrium model that includes a stage in which the solid waste components dissolve into the leachate. PMID:23318154

  13. Sarar technology for the application of Copper-64 in biology and materials science.

    PubMed

    Smith, S V

    2008-06-01

    This review provides an overview of the synthesis and metal complexation chemistry of the nitrogen and sulphur donor bicyclic ligands or cages, and the key criteria that led to the design of sarar for the application for (64)Cu(II). Aspects of the high yielding synthesis of sarar and strategies for its conjugation to a range of antibodies for targeting colorectal cancer, neuroblastoma and melanoma are described. Free and conjugated to proteins sarar can complex (64)Cu(II) rapidly at room temperature and quantitatively; the latter leading to products of high specific activity and purity. The full occupation of the (64)Cu(II) ions 6 coordination sites by the sarar cage prevents the ready exchange of the (64)Cu(II) from the cage and is the rational for the extraordinary thermodynamic and kinetic stability of (64)Cu(II) labelled sarar and its conjugates. It's in vivo stability is further highlighted by the low uptake and retention of (64)Cu-sarar-conjugated antibodies in the liver. Finally, the prospects for the use of the sarar technology in the materials science arena for probing solid liquid interfaces, in particular, the quantification of functional groups on microspheres and in the engineering of novel materials are discussed. PMID:18174877

  14. Extension of the broadband single-mode integrated optical waveguide technique to the ultraviolet spectral region and its applications.

    PubMed

    Wiederkehr, Rodrigo S; Mendes, Sergio B

    2014-03-21

    We report here the fabrication, characterization, and application of a single-mode integrated optical waveguide (IOW) spectrometer capable of acquiring optical absorbance spectra of surface-immobilized molecules in the visible and ultraviolet spectral region down to 315 nm. The UV-extension of the single-mode IOW technique to shorter wavelengths was made possible by our development of a low-loss single-mode dielectric waveguide in the UV region based on an alumina film grown by atomic layer deposition (ALD) over a high quality fused silica substrate, and by our design/fabrication of a broadband waveguide coupler formed by an integrated diffraction grating combined with a highly anamorphic optical beam of large numerical aperture. As an application of the developed technology, we report here the surface adsorption process of bacteriochlorophyll a on different interfaces using its Soret absorption band centred at 370 nm. The effects of different chemical compositions at the solid-liquid interface on the adsorption and spectral properties of bacteriochlorophyll a were determined from the polarized UV-Vis IOW spectra acquired with the developed instrumentation. The spectral extension of the single-mode IOW technique into the ultraviolet region is an important advance as it enables extremely sensitive studies in key characteristics of surface molecular processes (e.g., protein unfolding and solvation of aromatic amino-acid groups under surface binding) whose spectral features are mainly located at wavelengths below the visible spectrum. PMID:24466569

  15. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals

    USGS Publications Warehouse

    Rosasco, G.J.; Roedder, E.

    1979-01-01

    Rosasco et al. (1975), reported the first successful application of laser-excited Raman spectroscopy for the identification and nondestructive partial analysis of individual solid, liquid, and gaseous phases in selected fluid inclusions. We report here the results of the application of a new instrument, based on back-scattering, that eliminates many of the previous stringent sample limitations and hence greatly expands the range of applicability of Raman spectroscopy to fluid inclusions. Fluid inclusions in many porphyry copper deposits contain 5-10 ??m 'daughter' crystals thought to be anhydrite but too small for identification by the previous Raman technique. Using the new instrument, we have verified that such daughter crystals in quartz from Bingham, Utah, are anhydrite. They may form by leakage of hydrogen causing internal autooxidation of sulfide ion. Daughter crystals were also examined in apatite (Durango, Mexico) and emerald (Muzo, Colombia). Valid analyses of sulfur species in solution in small fluid inclusions from ore deposits would be valuable, but are generally impossible by conventional methods. We present a calibration procedure for analyses for SO42- in such inclusions from Bingham, Utah (12,000 ?? 4000 ppm) and Creede, Colo. (probably < 500 ppm). A fetid Brazilian quartz, originally thought to contain liquid H2S, is shown to contain only HS- in major amounts. ?? 1979.

  16. Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles.

    PubMed

    Borel, T; Sabliov, C M

    2014-01-01

    Food bioactives are known to prevent aging, cancer, and other diseases for an overall improved health of the consumer. Nanodelivery provides a means to control stability, solubility, and bioavailability, and also provides controlled release of food bioactives. There are two main types of nanodelivery systems, liquid and solid. Liquid nanodelivery systems include nanoemulsions, nanoliposomes, and nanopolymersomes. Solid nanodelivery systems include nanocrystals, lipid nanoparticles, and polymeric nanoparticles. Each type of nanodelivery system offers distinct benefits depending on the compatibility of nanoparticle properties with the properties of the bioactive and the desired application. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion (ADME) of nanodelivery systems. The fate of the bioactive depends on its physicochemical properties and the location of its release. The safety of nanodelivery systems for use in food applications is largely unknown. Toxicological studies consisting of a combination of in silico, in vitro, and in vivo studies are needed to reveal the safety of nanodelivery systems for successful applications in food and agriculture. PMID:24387603

  17. X-Rays Compton Detectors For Biomedical Application

    SciTech Connect

    Rossi, Paolo; Fontana, Cristiano Lino; Moschini, Giuliano; Baldazzi, Giuseppe; Navarria, Francesco; Battistella, Andrea; Bello, Michele; Bollini, Dante; Bonvicini, Valter; Rashevsky, Alexander; Zampa, Gianluigi; Zampa, Nicola; Vacchi, Andrea; Gennaro, Gisella; Uzunov, Nikolay

    2011-06-01

    Collimators are usually needed to image sources emitting X-rays that cannot be focused. Alternately, one may employ a Compton Camera (CC) and measure the direction of the incident X-ray by letting it interact with a thin solid, liquid or gaseous material (Tracker) and determine the scattering angle. With respect to collimated cameras, CCs allow higher gamma-ray efficiency in spite of lighter geometry, and may feature comparable spatial resolution. CCs are better when the X-ray energy is high and small setups are required. We review current applications of CCs to Gamma Ray Astronomy and Biomedical systems stressing advantages and drawbacks. As an example, we focus on a particular CC we are developing, which is designed to image small animals administered with marked pharmaceuticals, and assess the bio-distribution and targeting capability of these latter. This camera has to address some requirements: relatively high activity of the imaged objects; detection of gamma-rays of different energies that may range from 140 keV (Tc99m) to 511 keV; presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Silicon Drift Detector as Tracker, and a further downstream position-sensitive system employing scintillating crystals and a multi-anode photo-multiplier (Calorimeter). The choice of crystal, pixel size, and detector geometry has been driven by measurements and simulations with the tracking code GEANT4. Spatial resolution, efficiency and scope are discussed.

  18. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) DATE OF BIRTH individuals you wish to cover. Last name Month Day YearFirst name Birthdate SPOUSE/DOMESTIC PARTNER Gender

  19. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) County APPLICANT'S DATE OF BIRTH Mo. Day Year DATE OF DEATH OF RETIREE/EMPLOYEE Mo. Day Year Date signed Name of deceased retiree/employee First MI Widow(er) Dependent Male Female Dental Insurance A. Name of insurance co

  20. Synthesis and applications of RNAs with position-selective labelling and mosaic composition.

    PubMed

    Liu, Yu; Holmstrom, Erik; Zhang, Jinwei; Yu, Ping; Wang, Jinbu; Dyba, Marzena A; Chen, De; Ying, Jinfa; Lockett, Stephen; Nesbitt, David J; Ferré-D'Amaré, Adrian R; Sousa, Rui; Stagno, Jason R; Wang, Yun-Xing

    2015-06-18

    Knowledge of the structure and dynamics of RNA molecules is critical to understanding their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be dramatically enhanced by methods that enable incorporation of modified or labelled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. Here we develop a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labelling. We demonstrate its use by successfully preparing various isotope- or fluorescently labelled versions of the 71-nucleotide aptamer domain of an adenine riboswitch for nuclear magnetic resonance spectroscopy or single-molecule Förster resonance energy transfer, respectively. Those RNAs include molecules that were selectively isotope-labelled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently labelled in and near kissing loops. These selectively labelled RNAs have the same fold as those transcribed using conventional methods, but they greatly simplify the interpretation of NMR spectra. The single-position isotope- and fluorescently labelled RNA samples reveal multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labelling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection, and disease diagnostics. PMID:25938715

  1. Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of 60Co radionuclide

    NASA Astrophysics Data System (ADS)

    El-Naggar, M. R.

    2014-04-01

    The present work was established to determine the applicability of local Egyptian kaolinite and blast furnace slag (BFS) as raw materials toward the synthesis of geopolymers and subsequent immobilization of cobalt-60, which is one of the most abundant radionuclides generated in radioactive waste streams in Egypt. XRF, XRD, FT-IR, and SEM techniques were used to characterize the local raw materials and their corresponding alkali activated products. Metakaolin (MK) was obtained by thermal treatment of Egyptian Sinai kaolin 750 °C/4 h. MK and five different BFS content (5, 10, 30, 50 and 80%) were used to synthesize geopolymeric matrices using an alkaline activator of Si-modulus = 1.35 at solid/liquid ratios of 0.8. Compressive strength tests were performed indicating that 50% BFS addition gave the highest values of compressive strength. The IAEA standard leaching tests of cobalt-60 from the solidified waste matrices were carried out. The effective diffusion coefficients of cobalt-60 radionuclides from the solidified waste matrices were calculated to be in the order of 10-14 cm2/s. Leaching of radionuclides was examined to be controlled by the wash-off mechanism with very acceptable values. These results gave encouragement that the tested Egyptian raw materials can be conveniently applied for the synthesis of geopolymers that can be used as a low-cost and high-efficiency materials for the immobilization of radioactive waste.

  2. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications.

    PubMed

    Li, Jian-Feng; Rudnev, Alexander; Fu, Yongchun; Bodappa, Nataraju; Wandlowski, Thomas

    2013-10-22

    We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4(-) and SO4(2-) ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces. PMID:24007327

  3. A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis.

    PubMed

    Moreira, Manuela M; Morais, Simone; Barros, Aquiles A; Delerue-Matos, Cristina; Guido, Luís F

    2012-05-01

    This paper reports a novel application of microwave-assisted extraction (MAE) of polyphenols from brewer's spent grains (BSG). A 2(4) orthogonal composite design was used to obtain the optimal conditions of MAE. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the extraction yield of ferulic acid was investigated through response surface methodology. The results showed that the optimal conditions were 15 min extraction time, 100 °C extraction temperature, 20 mL of solvent, and maximum stirring speed. Under these conditions, the yield of ferulic acid was 1.31 ± 0.04% (w/w), which was fivefold higher than that obtained with conventional solid-liquid extraction techniques. The developed new extraction method considerably reduces extraction time, energy and solvent consumption, while generating fewer wastes. HPLC-DAD-MS analysis indicated that other hydroxycinnamic acids and several ferulic acid dehydrodimers, as well as one dehydrotrimer were also present, confirming that BSG is a valuable source of antioxidant compounds. PMID:22274285

  4. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    PubMed

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. PMID:25488284

  5. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications.

    PubMed

    van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick

    2014-08-27

    In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology. PMID:25105260

  6. DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols.

    PubMed

    Sun, Yanhua; Wang, Jun; Li, Wei; Zhang, Jinli; Zhang, Yaodan; Fu, Yan

    2015-12-15

    This paper reports a facile synthesis of bimetallic AuxPty nanozyme using C-rich oligonucleotide as the nucleation template, with high peroxidase-like activity and thiophilicity associated with the ratio of x:y. The efficient Au2Pt1 nanozyme possesses highly peroxidase mimicking activity with the Km value of 0.088 mM toward 3,3',5,5'-tetramethylbenzidine and 196 mM toward hydrogen peroxide. It is the first report to explore colorimetric assays for biothiols with high sensitivity and selectivity against non-thiol-containing amino acids, on the basis of thiol-induced inhibition of peroxidase-like activities of metal nanoparticles. By using Au2Pt1 nanozyme, the limit of detection (LOD) is 3.5 nM for cysteine and 1.6 nM for homocysteine. This DNA-stabilized bimetallic AuxPty nanozyme shows a promising application in quantitative detection of biothiols in biological fluids. PMID:26275713

  7. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) COUNTY Date eligible individuals you wish to cover. Last name Month Day YearFirst name Birthdate SPOUSE Gender MALE FEMALE MALE FEMALE MALE FEMALE 2. 3. 4. 5. 6. 7. Primary Care Physician Name HMO ONLY Primary Care

  8. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) DATE OF BIRTH the form and submit as indicated below. List all eligible individuals you wish to cover. Last name Month Day YearFirst name Birthdate Gender Children NATURAL or ADOPTED STEP OTHER NATURAL or ADOPTED STEP

  9. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) DATE OF BIRTH address) (Include city, state, zip) Name of current/former UGA dental-insured employee Complete & return as indicated below. List all eligible individuals you wish to cover. Last name Month Day Year First name

  10. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) DATE OF BIRTH: http://www.usg.edu/hr/benefits/vision List all eligible individuals you wish to cover. Last name Month Day YearFirst name Birthdate SPOUSE/DOMESTIC PARTNER Gender MALE FEMALE Children NATURAL or ADOPTED

  11. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) County DATE · SURVIVING DEPENDENT Home phone (include area code) Name of deceased retiree/employee HOME ADDRESS (if will not be able to enroll in the future. Name SS# Date Signature Return this form to Employee Benefits A. Name

  12. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) County's email address (optional) First MI Widow(er) Dependent Male Female A. Name of insurance co. (s) B. Effective date(s) of policy(ies) C. Contract number(s) D. Type of contract E. Name of group(s) (employers

  13. Applicant signature APPLICANT'S NAME

    E-print Network

    Arnold, Jonathan

    Applicant signature APPLICANT'S NAME Last BILLING ADDRESS (Include city, state, zip) Date of birth individuals you wish to cover. Last name Month Day YearFirst name Birthdate GenderChildren NATURAL or ADOPTED HR to complete) Name of current/former UGA health-insured employee Employee ID# (81x) of current

  14. A novel application of an anaerobic membrane process in wastewater treatment.

    PubMed

    You, H S; Tseng, C C; Peng, M J; Chang, S H; Chen, Y C; Peng, S H

    2005-01-01

    The applications of membrane processes in anaerobic biological wastewater treatment still have some limitations due to severe membrane scaling and fouling, although they have been proven to achieve superior COD removal and biomass retention. An innovative anaerobic membrane process for wastewater treatment was conducted to control the membrane scaling problems. The process comprises an anaerobic reactor, an aerobic reactor, and a membrane separation tank. Anaerobic sludge from a full-scale UASB reactor treating food wastewater was inoculated to anaerobic and aerobic reactor to purify synthetic wastewater consisting of glucose and sodium acetate. The anaerobic reactor was operated in a sludge bed type without three-phase separator. The aerobic reactor can eliminate residual organics from the anaerobic reactor effluent using facultative microorganisms. To provide solid-liquid separation, hollow fiber ultrafiltration module was submerged in the separation tank. The results clearly show that the anaerobic membrane process combined methanogenic and aerobic COD reduction is a stable system. No fatal scaling was found after two months of operation even without chemical cleaning for the membrane. It was also found that inorganic precipitates formed in the aerobic reactor were reduced due to CO2 stripping in aerobic reactor. Another important finding was that the inorganic precipitates were entrapped into facultative aerobes floc. The ash/SS ratio of aerobes floc increased from 0.17 to 0.55 after 50 days of operation, which confirms this phenomenon. Based on our investigation, the new process can control scaling effectively to extend the membrane application in anaerobic treatment. PMID:16003960

  15. Teeth and bones: applications of surface science to dental materials and related biomaterials

    NASA Astrophysics Data System (ADS)

    Jones, F. H.

    2001-05-01

    Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.

  16. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    NASA Astrophysics Data System (ADS)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES vapor from penetrating the gel. Simultaneously, the RTIL gel actively decontaminated the substrate by reacting CEES with a sacrificial amine. The RTIL gel barrier was able to decontaminate up to 98% of the CEES applied to a painted steel substrate. Two gel barriers are tested: (1) RTIL gel with a LMOG solidifying agent, and (2) RTIL gel with a polymeric cross-linked network solidifying agent. The polymer gel provided a more mechanically robust barrier, however, the LMOG gel decontaminated at a faster rate. These new applications are but two of many possible applications for RTIL gels. Their negligible vapor pressure affords long term application in ambient conditions and their unique chemistry allows them to be tailored for specific applications.

  17. Scaling of three-dimensional interconnect technology incorporating low temperature bonds to pitches of 10 µm for infrared focal plane array applications

    NASA Astrophysics Data System (ADS)

    Temple, Dorota S.; Lueck, Matthew R.; Malta, Dean; Vick, Erik P.

    2015-03-01

    This paper focuses on the application of low temperature bonding to the fabrication of three-dimensional (3D) massively parallel signal processors for high performance infrared imagers. We review two generations of the 3D heterogeneous integration process. The first generation process, compatible with pixel sizes in the 20 to 30 µm range, relies on low temperature epoxy bonding that is followed by the formation of copper-filled through-silicon vias (TSVs). The second generation process, scalable to pixel sizes of 10 µm and smaller, employs solid-liquid diffusion bonding of copper-tin to copper at 250 °C the bonding follows TSV fabrication. To demonstrate the second generation process, we fabricated 3D test vehicles in the form of 640 × 512 arrays of vertical interconnects composed of TSVs and metal-metal bonds on a 10 µm pitch. We characterized electrical conductivity of the interconnects, the isolation resistance between the interconnects, and the operability and yield of the arrays. The successful demonstration of the interconnect technology paves the way to a functional demonstration of 3D signal processors in infrared imagers with 10 µm pixels.

  18. Influence of hydro-climatic conditions, soil type, and application matrix on potential vadose zone export of PPCPs

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Rao, P.; O'Connor, G.

    2013-12-01

    The land-application of biosolids and animal manure to agricultural fields has the potential to negatively impact the quality of nearby surface and subsurface water due to the presence of emerging contaminants in these residuals. We investigated the extent to which the vadose zone acts as a hydrologic and biogeochemical filter of two emerging contaminants, Triclosan (TCS) and estrone (E1) using a coupled source zone and vadose zone modeling approach. Monte Carlo simulations were run for a year following residual applications to explore the following research questions: (1) how does the application matrix (e.g., de-watered solids, liquid lagoon effluent, etc.) affect PPCP mass fluxes?; (2) how do hydro-climatic conditions and soil type affect PPCP mass fluxes?; (3) what role does the presence of macropore pathways play in PPCP export from the vadose zone; and (4) does the long-term, repeated application of residuals affect the ability of the vadose zone to act as an effective biogeochemical filter? The simulations were conducted for a sub-tropical climate with sand (e.g., Florida) and a humid climate with a silty clay loam (e.g., Midwestern United States). Simulation results suggest that the potential mobility of emerging contaminants increases linearly with increasing fraction applied to the mobile phase of the source zone (i.e., higher PPCP mass fraction in the dissolved phase during application). Following a single application, the total amount of PPCP mass exported from the source zone over the course of a year can be as high as 70% in a sub-tropical climate with sand soil. However, these types of soils do not have macropore flow pathways and the annual PPCP mass exported from the vadose zone is less than 1% of the mass applied. The higher organic carbon content in a silty clay loam reduces the amount of PPCP mass released from the source zone to less than 5% of the mass applied. In the presence of macropore pathways, the silty clay loam's vadose zone acts as a less effective biogeochemical filter than the sand's vadose zone. However, following a single application, Monte Carlo simulations suggest that the annual mass exported from the silty clay loam's vadose zone is less than 0.2% of the applied mass. Additionally, simulation results suggest that the mass exported from the vadose zone of the silty clay loam increases with time when fields receive long-term, repeated residual applications. Thus, field studies conducted with single applications likely underestimate mass fluxes exported from fields with a history of applications.

  19. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.

  20. Monte Carlo simulation of liquid bridge rupture: Application to lung physiology Adriano M. Alencar,1

    E-print Network

    Alencar, Adriano Mesquita

    and liquid bridges may form in the small airways blocking the flow of air, impairing gas exchange. During gas model of the liquid bridge rupture. Specifically, we determine the surface free energy interface and the nature of the solid-liquid contact. Liquid bridges are of interest because

  1. Applicants & Families Application Process

    E-print Network

    Anderson, Paul R.

    . Your `Dashboard' shows the recommendations and transcripts requested from you as part of the application process. As you complete and submit each item your `Dashboard' will update automatically. You can manage your forms by clicking on the gear icon. 6. Check your Dashboard. Your `Dashboard' updates in real

  2. The application of Cold Atmospheric Plasma (CAP) for the sterilisation of spacecraft materials

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Barczyk, Simon; Morfill, Gregor; Thomas, Hubertus; Satoshi Shimizu, .; Shimizu, Tetsuji; Klaempfl, Tobias

    2012-07-01

    Plasma, oft called the fourth state of matter after solid, liquid and gas, is defined by its ionized state. Ionization can be induced by different means, such as a strong electromagnetic field applied with a microwave generator. The concentration and composition of reactive atoms and molecules produced in Cold Atmospheric Plasma (CAP) depends on the gases used, the gas flow, the power applied, the humidity level etc.. In medicine, low-temperature plasma is already used for the sterilization of surgical instruments, implants and packaging materials as plasma works at the atomic level and is able to reach all surfaces, even the interior of small hollow items like needles. Its ability to sterilise is due to the generation of biologically active bactericidal agents, such as free radicals and UV radiation. In the project PLASMA-DECON (DLR/BMWi support code 50JR1005) a prototype of a device for sterilising spacecraft material and components was built based on the surface micro-discharge (SMD) plasma technology. The produced plasma species are directed into a closed chamber which contains the parts that need to be sterilised. To test the inactivation efficiency of this new device bacterial spores were used as model organisms because in the COSPAR Planetary Protection Policy all bioburden constraints are defined with respect to the number of spores (and other heat-tolerant aerobic microorganisms). Spores from different Bacillus species and strains, i.e. wildtype strains from culture collections and isolates from spacecraft assembly cleanrooms, were dried on three different spacecraft relevant materials and exposed to CAP. The specificity, linearity, precision, and effective range of the device was investigated. From the results obtained it can be concluded that the application of CAP proved to be a suitable method for bioburden reduction / sterilisation in the frame of planetary protection measures and the design of a larger plasma device is planned in the future.

  3. TESTING OF A ROTARY MICROFILTER TO SUPPORT HANFORD APPLICATIONS

    SciTech Connect

    Poirier, M; David Herman, D; David Stefanko, D; Samuel Fink, S

    2008-06-26

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications at the Savannah River Site (SRS). Because of the success of that work, the Hanford Site is evaluating the use of the rotary microfilter for its Supplemental Pretreatment process. The authors performed rotary filter testing with a full-scale, 25-disk unit with 0.5 {micro} filter media manufactured by Pall Corporation using a Hanford AN-105 simulant at solids loadings of 0.06, 0.29, and 1.29 wt%. The conclusions from this testing are: (1) The filter flux at 0.06 wt% solids reached a near constant value at an average of 0.26 gpm/ft{sup 2} (6.25 gpm total). (2) The filter flux at 0.29 wt% solids reached a near constant value at an average of 0.17 gpm/ft{sup 2} (4 gpm total). (3) The filter flux at 1.29 wt% solids reached a near constant value at an average of 0.10 gpm/ft{sup 2} (2.4 gpm total). (4) Because of differences in solids loadings, a direct comparison between crossflow filter flux and rotary filter flux is not possible. The data show the rotary filter produces a higher flux than the crossflow filter, but the improvement is not as large as seen in previous testing. (5) Filtrate turbidity measured < 4 NTU in all samples collected. (6) During production, the filter should be rinsed with filtrate or dilute caustic and drained prior to an extended shutdown to prevent the formation of a layer of settled solids on top of the filter disks. (7) Inspection of the seal faces after {approx} 140 hours of operation showed an expected amount of initial wear, no passing of process fluid through the seal faces, and very little change in the air channeling grooves on the stationary face. (8) Some polishing was observed at the bottom of the shaft bushing. The authors recommend improving the shaft bushing by holding it in place with a locking ring and incorporated grooves to provide additional cooling. (9) The authors recommend that CH2MHill Hanford test other pore size media to determine the optimum pore size for Hanford waste.

  4. Thermoelectric Properties of Au- Containing Type-I Clathrates Ba8AuxGa16-3xGe30+2x

    SciTech Connect

    Ye, Zuxin; Cho, Jung Young; Tessema, Misle M.; Salvador, James R.; Waldo, Richard A.; Yang, Jihui; Wang, Hsin; Cai, Wei; Kirkham, Melanie J; Yang, Jiong; Zhang, Wenqing

    2014-01-01

    Type I clathrates, with compositions based on Ba8Ga16Ge30, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S2/ where is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution with a thermoelectric figure of merit ZT ~ 0.63 at temperature T = 740 K for the composition Ba8Au5.47Ge39.96. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  5. Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.

  6. Quantitative analysis of liquid penetration kinetics and slaking of aggregates as related to solid-liquid interfacial properties

    NASA Astrophysics Data System (ADS)

    Goebel, Marc-O.; Woche, Susanne K.; Bachmann, Jörg

    2012-06-01

    SummaryAggregate stability is frequently shown to be enhanced by strong soil water repellency, however, there is limited systematic evidence on this effect for moderately (subcritically) water repellent soils. This study aimed to investigate the specific effects of interfacial properties on the liquid penetration kinetics in relation to the stability of subcritically water repellent aggregates (4-6.3 mm) from various arable and forest soils against breakdown by slaking. In contrast to many other studies, where aggregate stability was determined by wet sieving, we here assessed the stability by immersion of air-dry aggregates in water-ethanol solutions with surface tensions ranging from 30 to 70 mN m-1. This approach allowed a highly sensitive discrimination of different stability levels and the determination of breakdown kinetics also for less stable aggregates. Interfacial properties were characterized in terms of contact angle measured on crushed aggregates, ?c, and calculated for intact aggregates, ?i, based on infiltration measurements with water and ethanol. Aggregate stability turned out to be higher in forest soils compared to arable soils with topsoil aggregates generally found to be more stable than subsoil aggregates. For water repellent aggregates, characterized by contact angles >40° and low water infiltration rates (<0.2 mm3 s-0.5), the fraction of disrupted aggregates after 30 s of immersion was generally below 10%, whereas in case of the more wettable aggregates, characterized by contact angles <10° and higher infiltration rates (>0.25 mm3 s-0.5) more than 80% of the aggregates were disrupted. In accordance, we found a close relationship between aggregate stability and wettability with differences between ?c and ?i being generally small. In addition, aggregate stability turned out to be related to organic carbon content. However, correlation analysis revealed that both persistence of aggregate stability and kinetics of aggregate breakdown were more strongly affected by the contact angle, ?c (r = 0.90 and r = -0.83, respectively) and ?i (r = 0.89 and r = -0.76, respectively) than the organic carbon content (r = 0.62 and -0.52, respectively), suggesting that stability was primarily controlled by aggregate interfacial properties. Calculation of liquid penetrativity as a function of surface tension and contact angle clearly demonstrated the importance of both solid and liquid interfacial properties in determining the stability of subcritically water repellent aggregates against slaking.

  7. Solid-liquid extraction, separation, and determination of rare earths with di-(2-ethylhexyl)phosphoric acid

    SciTech Connect

    Jing-Guo Hou; Xin-Zhen Du; Su Zhao; Jing-Wan Kang; Jin-Zhang Gao

    1995-02-01

    The extraction behavior of rare earths has been studied with di-(2-ethylhexyl)phosphoric acid (DEHP) in paraffin, naphthalene, and biphenyl. The group separation of rare earths with DEHP was further examined in paraffin. In the presence of 0.3 mol/L HNO{sub 3} and 2.0 mol/L DEHP, light rare earths can be separated from heavy ones in rare earth ores. Quantitative analysis of the rare earths was then done by spectrophotometry.

  8. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    P. Somasundaran

    2004-11-20

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The results have been compared to that from Light Scattering. Based on the tests, Svedberg and SEDFIT analysis were chosen for further studies.

  9. Transfers of iodine in the soil-plant-air system: Solid-liquid partitioning, migration, plant uptake adn volatilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human exposure to soil iodine depends upon the partitioning of the iodine into the, mobile, liquid and gaseous soil phases. From the liquid phase, iodine can be transported into surface- and ground-waters, plant roots, and, consequently, into the human diet. From the gaseous phase, iodine can be tra...

  10. Solid-liquid phase equilibria in the fullerenol-d-CuCl2-H2O system at 25°C

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Kanterman, I. G.; Charykov, N. A.; Murin, I. V.; Kritchenkov, A. S.

    2014-06-01

    Solubility in the ternary fullerenol-d-CuCl2-H2O system at 25°C is studied by means of isothermal saturation in ampoules. It is established that the diagram consists of two branches corresponding to the crystallization of fullerenol-d crystallohydrate and copper(II) chloride dihydrate and contains a single non-variant eutonic point corresponding to the reciprocal saturation with both solid phases. The salting-in effect on the crystallization branch of CuCl2 · 2H2O and the salting-out effect on the crystallization branch of fullerenol-d is revealed.

  11. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    PubMed

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid. PMID:26050969

  12. The solid–liquid interfacial free energy of close-packed metals: Hard-spheres and the Turnbull coefficient

    E-print Network

    Laird, Brian Bostian

    2001-09-01

    -, and atmospheric sciences. Over 50 years ago, Turnbull observed that the interfacial free energies (scaled by the mean interfacial area per particle) of a variety of metallic elements exhibit a linear correlation with the enthalpy of fusion. This correlation...

  13. A Binary Solid-Liquid Phase Diagram Experiment Including Determination of Purity, Enthalpy of Fusion and True Melting Point.

    ERIC Educational Resources Information Center

    Meyer, Edwin F.; Meyer, Joseph A.

    1980-01-01

    Describes an experiment as an alternative to undergraduate experiments limited to high temperature metal systems or lower temperature systems involving objectionable or unstable materials. Lists six advantages of the experiment. (Author/JN)

  14. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration

    E-print Network

    Laird, Brian Bostian; Davidchack, Ruslan L.; Yang, Yang; Asta, Mark

    2009-09-18

    in physics, chemistry, and materials science, such as crystal nucleation and growth,2–4 dendritic solidification,5,6 liquid-metal embrittlement,7 and wetting.8 Despite its impor- tance, direct experimental measurements, which usually in- volve challenging...

  15. Chemical Engineering Science 55 (2000) 4993}5001 A further study of solid}liquid equilibrium for the

    E-print Network

    Zhang, Luzheng

    2000-01-01

    of the main reasons for studying this system is that it is a subsystem in the manufacturing of soda the process simulation requirement involved in the production of soda. 2000 Elsevier Science Ltd. All rights

  16. Multiple angle of incidence, spectroscopic, plasmon-enhanced, internal reflection ellipsometry for the characterization of solid-liquid interface processes

    NASA Astrophysics Data System (ADS)

    Petrik, P.; Agocs, E.; Kalas, B.; Kozma, P.; Fodor, B.; Nador, J.; Major, C.; Fried, M.

    2015-05-01

    A semi-cylindrical lens in Kretschmann geometry combined with a flow cell was designed for a commercial rotating compensator ellipsometer to perform internal reflection spectroscopic ellipsometry measurements, while allowing the use of multiple angles of incidence. A thin glass slide covered with a gold film was mounted between the half-cylindrical lens and a small-volume flow cell ensuring an improved sensitivity for protein adsorption experiments. The performance of the system was investigated depending on the angle of incidence, wavelength range and thickness of the gold films for surface plasmon resonance enhanced ellipsometric measurements, and a sensitivity increase was revealed compared to ellipsometric measurements with standard flow cells, depending on the measurement parameters and configuration. The sensitivity increase was demonstrated for fibrinogen adsorption.

  17. An approach to improve the separation of solid-liquid suspensions in inclined plate settlers: CFD simulation and experimental validation.

    PubMed

    Salem, A I; Okoth, G; Thöming, J

    2011-05-01

    The most important requirements for achieving effective separation conditions in inclined plate settler (IPS) are its hydraulic performance and the equal distribution of suspensions between settler channels, both of which depend on the inlet configuration. In this study, three different inlet structures were used to explore the effect of feeding a bench scale IPS via a nozzle distributor on its hydraulic performance and separation efficiency. Experimental and Computational Fluid Dynamic (CFD) analyses were carried out to evaluate the hydraulic characteristics of the IPS. Comparing the experimental results with the predicted results by CFD simulation implies that the CFD software can play a useful role in studying the hydraulic performance of the IPS by employing residence time distribution (RTD) curves. The results also show that the use of a nozzle distributor can significantly enhance the hydraulic performance of the IPS, which contributes to the improvement of its separation efficiency. PMID:21546049

  18. A study of the solid-liquid interface in cobalt base alloy (Stellite) coatings deposited by fusion welding (TIG)

    SciTech Connect

    Molleda, F. . E-mail: fmolleda@etsin.upm.es; Mora, J.; Molleda, F.J.; Mora, E.; Carrillo, E.; Mellor, B.G.

    2006-12-15

    Microstructural features present at the interface between a weld deposited Stellite 6 hard facing and an austenitic stainless steel substrate are described. Elemental X-ray maps indicate that diffusion of carbon from the liquid Stellite to the austenitic stainless steel takes place along grain boundaries resulting in the formation of chromium carbide 'arms' that penetrate along the austenite grain boundaries in the interfacial region.

  19. Solid - Liquid Phase Transition in a Gibbs Monolayer of Melissic Acid at the n-Hexane - Water Interface

    E-print Network

    Aleksey M. Tikhonov

    2015-12-02

    A sharp phase transition from a crystalline state with the area per molecule A = (17 +/- 1) Angstrom^2 to a liquid state with A = (23 +/- 1) Angstrom^2 at the n-hexane - water interface in a Gibbs monolayer of melissic acid has been revealed in data of X-ray reflectometry with the use of synchrotron radiation.

  20. Solid-liquid interdiffusion (SLID) bonding in the Au–In system: experimental study and 1D modelling

    NASA Astrophysics Data System (ADS)

    Deillon, Léa; Hessler-Wyser, Aïcha; Hessler, Thierry; Rappaz, Michel

    2015-12-01

    Au–In bonds with a nominal composition of about 60 at.% In were fabricated for use in wafer-level packaging of MEMS. The microstructure of the bonds was studied by scanning electron microscopy. The bond hermeticity was then assessed using oxidation of Cu thin discs predeposited within the sealed packages. The three intermetallic compounds AuIn2, AuIn and Au7In3 were observed. Their thickness evolution during bonding and after subsequent heat treatment was successfully modelled using a finite difference model of diffusion, thermodynamic data and diffusion coefficients calibrated from isothermal diffusion couples. 17% of the packages were hermetic and, although the origin of the leaks could not be clearly identified, it appeared that hermeticity was correlated with the unevenness of the metallisation and/or wafer and the fact that the bonds shrink due to density differences as the relative fractions of the various phases gradually evolve.

  1. Physical Characterization of Solid-Liquid Slurries at High Weight Fractions Using Optical and Ultrasonic Methods, Final Report

    SciTech Connect

    Burgess, Lloyd W.

    2009-09-17

    Remediation of highly radioactive waste is a major technical and programmatic challenge for the DOE. Rapid, on-line physical characterization of highly concentrated slurries is required for the safe and efficient remediation of 90 million gallons of high level radioactive waste (HLW), sodium bearing waste, and mixed waste. The research presented here, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington to directly address the need for rapid on-line characterization of the physical properties of HLW slurries during all phases of the remediation process, from in-tank characterization of sediments to monitoring of the concentration, particle size, and degree of agglomeration and gelation of slurries during transport. Near-surface characterization of the slurry flow in the particle size range from nanometer to micrometer is examined using optical low coherence reflectometry. Volumetric characterization at depths in the slurry flow, up to several centimeters in the particle size range from the micrometer to millimeter, is realized by utilizing ultrasonic backscatter and diffuses fields. One of the strengths, the teaming up of significant talents in both experimental and theoretical optics (University of Washington) and in ultrasonics [Pacific Northwest National Laboratory (PNNL)] provides a synergistic approach to integrate these complimentary techniques. One of the benefits of this combined approach is the physical characterization of HLW over a concentration and particle size range that is broader than can be achieved with today’s technology. This will avoid a costly increase in waste stream volume due to excess dilution, and will lessen chance of plugging pipes that could shut down expensive processing lines.

  2. Complete denture retention. Part I: Physical analysis of the mechanism. Hysteresis of the solid-liquid contact angle.

    PubMed

    Monsénégo, P; Proust, J

    1989-08-01

    Analysis of physical forces involved in the mechanism of denture retention clearly shows that the hysteresis of the liquid-solid contact angle governs the viscoelastic response of the system dislodgment. This result is in contradiction to the most commonly admitted view according to which perfect wettability is necessary to obtain good retention and implies the existence of the high advancing contact angle of saliva on a prosthetic material. PMID:2668514

  3. Second Harmonic Generation as a Probe of Multisite Adsorption at Solid-Liquid Interfaces of Aqueous Colloid Suspensions

    E-print Network

    Borguet, Eric

    and the creation of better paints and cosmetics. Particles in these systems are often characterized by molecular products: more stable paint and cosmetics and more efficient biosensors.1-4 Detailed chemical knowledge

  4. Transformation of Ferulic Acid to Vanillin Using a Fed-Batch SolidLiquid Two-Phase Partitioning Bioreactor

    E-print Network

    Daugulis, Andrew J.

    /products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds of the most widely used flavor chemicals in the food, cosmetics, and pharmaceutical industries

  5. TESTING SOLIDS SETTING APPARATUSES FOR DESIGN AND OPERATION OF WET-WEATHER FLOW SOLIDS-LIQUID SEPARATION PROCESSES

    EPA Science Inventory

    This study was a side-by-side comparison of two settling evaluation methods: one traditional and one new. The project investigated whether these column tests were capable of capturing or representing the rapidly settling particles present in wet-weather flows (WWF). The report r...

  6. Effect of oil droplets and their solid/liquid composition on the phase separation of protein-polysaccharide mixtures.

    PubMed

    Hanazawa, Tomohito; Murray, Brent S

    2013-08-01

    The phase separation of a model system consisting of sodium caseinate + xanthan ± a low fraction (up to 3 wt %) of an oil-in-water emulsion was studied at room temperature (20-25 °C). The composition of the oil phase was either 100 wt % n-tetradecane (TD); 50% TD + 50% eicosane (EC) or 100% EC. The droplets in these three "emulsions" were therefore totally liquid, partially solid, and totally solid, respectively. In the presence of 22 mM CaCl2, the mixed TD+EC droplets were most effective at inhibiting phase separation, while the EC emulsions could not prevent phase separation at all. At 32 mM CaCl2 the emulsions tended to promote phase separation, possibly due to enhanced calcium ion-induced droplet aggregation. The apparent interfacial viscosity (?i) between two macroscopically separated phases was also measured. In the presence of the semisolid mixed droplets ?i = 25 mN s m(-1), significantly higher than ?i with the pure (liquid) TD droplets (15 mN s m(-1)) or with the pure solid EC droplets (12 mN s m(-1)) or in the absence of droplets (<3 mN s m(-1)). Confocal microscopy showed that the microstructure of the phase separating regions also depended upon the composition of the oil droplets, and it is tentatively suggested that the more marked effects of the mixed emulsion droplets were due to them forming a stronger network at the interface via partial coalescence. Control of the extent of interfacial aggregation of droplets is therefore possibly one way to influence the course of phase separation in biopolymer mixtures. PMID:23805874

  7. Dispersive solid-liquid phase microextraction based on nanomagnetic Preyssler heteropolyacid: A novel method for the preconcentration of nortriptyline.

    PubMed

    Es'haghi, Zarrin; Hooshmand, Sara

    2015-05-01

    In this study, a new, simple, rapid, and efficient method combined with ultraviolet visible spectrophotometry and high-performance liquid chromatography analysis was developed for the extraction and determination of nortriptyline. The tendency of the Preyssler tungsten heteropolyacid, H14 [NaP5 W30 O110 ], immobilized on the surface of mesoporous nanomagnetite to adsorb the drug from the solution has been investigated. This method involves the use of an appropriate mixture of nanosorbent that was homogenized in disperser solvent (1.0 mL, ethanol). At first, the mixture containing the nanomagnetic sorbent and disperser solvent was injected into the aqueous sample, and a cloudy solution was formed. Subsequently, separation of the two phases was carried out using a magnet. In the second stage, analyte was desorbed from the sorbent by methanol as the optimal desorption solvent using sonication method. The elution solvent containing enriched analyte was introduced to the instruments for further analysis. Optimization of experimental conditions with respect to the extraction efficiency was investigated. The method was linear in the range of 25-5000, while the detection limit (LOD = 3SB /m) was 7.9 ng/mL and the limit of quantification (LOQ = 10SB /m) was 26.4 ng/mL. The relative standard deviation was 4.66%. The method was successfully applied to human hair samples. PMID:25707462

  8. Modeling the Voltage Dependence of Electrochemical Reactions at Solid-Solid and Solid-Liquid Interfaces in Batteries

    NASA Astrophysics Data System (ADS)

    Leung, Kevin

    2015-03-01

    Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. An MCBJ case study: The influence of ?-conjugation on the single-molecule conductance at a solid/liquid interface

    PubMed Central

    Hong, Wenjing; Valkenier, Hennie; Mészáros, Gábor; Manrique, David Zsolt; Mishchenko, Artem; Putz, Alexander; García, Pavel Moreno; Lambert, Colin J; Hummelen, Jan C

    2011-01-01

    Summary ?-Conjugation plays an important role in charge transport through single molecular junctions. We describe in this paper the construction of a mechanically controlled break-junction setup (MCBJ) equipped with a highly sensitive log I–V converter in order to measure ultralow conductances of molecular rods trapped between two gold leads. The current resolution of the setup reaches down to 10 fA. We report single-molecule conductance measurements of an anthracene-based linearly conjugated molecule (AC), of an anthraquinone-based cross-conjugated molecule (AQ), and of a dihydroanthracene-based molecule (AH) with a broken conjugation. The quantitative analysis of complementary current–distance and current–voltage measurements revealed details of the influence of ?-conjugation on the single-molecule conductance. PMID:22043460

  10. CONTROL ASSAY DEVELOPMENT: METHODOLOGY AND LABORATORY VERIFICATION

    EPA Science Inventory

    The report describes Control Assay Development (CAD), a data acquisition program designed to evaluate the potential applicability of various treatment processes for the control of solid, liquid, and gaseous emissions from coal conversion plants. The CAD program described could be...

  11. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several parameters of Microwave-assisted extraction (MAE) including extraction time, extraction temperature, ethanol concentration and solid-liquid ratio were selected to describe the MAE processing. The silybin content, measured by an UV-Vis spectrophotometry, was considered as the silymarin yield....

  12. APPLICATION INFORMATION

    E-print Network

    Yamamoto, Hirosuke

    SECRET STUDY KNOWLEDGE VIDEO ECONOMIC COMMERCIAL NUMBER JAPAN DESIGN APPLICATION SOCIAL HERE TEXT FOLLOW ECONOMIC TRAINING DATA COMMERCIAL LEAD DESIGN NUMBER FICTION EXPAND JAPAN ENGAGE NETWORK SOCIAL BLOG TEXT VIDEO ECONOMIC COMMERCIAL NUMBER JAPAN DESIGN APPLICATION SOCIAL VIDEO TEXT RIS APPLICATION SPEED

  13. Volunteer Internship Application Application Instructions

    E-print Network

    Chen, Tsuhan

    Volunteer Internship Application Application Instructions: 1. Read and understand the CTL Volunteer Internship Program informational PDF, found at www.ctl.cornell.edu/about/jobs.php, to review the requirements of the internship and to determine your eligibility. 2. Complete all fields in the application below. 3. Either

  14. CHTN Application

    Cancer.gov

    The Principal Investigator (PI) responsible for overseeing the project and controlling the laboratory and personnel who will receive, use and process the requested specimens should complete this application.

  15. Exploration des temps de réflexion aux interfaces

    NASA Astrophysics Data System (ADS)

    Bonnet, C.; Loas, G.; Chauvat, D.; Emile, O.; Le Floch, A.

    2006-10-01

    Le temps à la réflexion, ou délai de Newton-Wigner, est un élément-clé pour caractériser l'interaction de la lumière avec une interface. Nous montrons que l'on peut avoir accès expérimentalement à ce temps pour plusieurs interfaces. Dans le cas de la réflexion sur un réseau métallique, on montre que ce temps n'est pas équivalent au décalage spatial de type Goos-Hänchen auquel il est associé. Dans le cas standard de la réflexion totale où ce temps était jusqu'alors caché, deux temps de réflexion absolus, tel celui qu'avait envisagé Newton, sont isolés et atteignent quelques dizaines de femtosecondes. Des temps de réflexion sont attendus dans d'autres domaines de la physique, pour la réflexion d'ondes, acoustiques ou sismiques par exemple, mais aussi pour la réflexion de particules comme les électrons, les neutrons ou les atomes.

  16. Tracer le potentiel galactique aux petites échelles.

    NASA Astrophysics Data System (ADS)

    Crézé, M.; Bienaymé, O.; Chereul, E.

    Le potentiel gravitationnel reflète la répartition de la densité de masse totale. En l'absence de moyens surs pour obtenir une cartographie fine de cette répartition (problème de la masse cachée), on peut observer la trajectoire d'une particule test dans ce potentiel et en déduire les forces qui agissent sur la particule. Toutefois à l'échelle galactique, l'ordre de grandeur des forces en jeu est tel que les accélérations des étoiles ne sont pas mesurables. En revanche l'observation de la distribution des positions et des vitesses d'un ensemble de particules test fournit la réponse cherchée.

  17. Coupleurs fibres - metasurfaces aux frequences THz

    NASA Astrophysics Data System (ADS)

    Girard, Martin

    Metamaterials are a class of arficial materials where the electromagnetic properties can be tailored during the design process. Currently demonstrated properties are varied, ranging from frequency filters to enhancement of quentum effects such as photon spin Hall effect. While these materials are mastered from a theoretical point of view, their fabrication is much more complicated. It is generally accepted that metamaterial elements must be under the effective medium limit (Lambda < lambda/10). Moreover, assembly of a 3D periodical system becomes much more complicated for small elements. For this reason, metamaterials are usually printed in 2D, on a surface, which are called metasurfaces. Generally, these are produced for the THz frequencies (˜ 1012 Hz) or lower to have a large wavelength and thus easy fabrication. Working at THz frequencies also carries additional problems. Absorption in traditional optical mediums is typically large (for exemple, BK7 glass has losses of 20 dB / cm) and powers supplied by THz sources are generally weak ( 100 muW for a THz-TDS standard source). Metasurfaces can thus play an important role by replacing traditional mediums. Moreover, we can use the resonant properties of metamaterials to produce sensors and other devices. Currently, the metasurfaces are used in conjuction with a free-space beam instead of a typical waveguide, which may be problematic when implementing devices. A simple solution to this problem is to use the metamaterial as a standard coupler by placing a waveguide above the metasurface. As stated before, we generally consider metasurfaces as effective mediums, where the permittivity is insensitive to the angle of the incident beam. However, a large amount of publications on this subject shows that this is not respected. This can have a huge impact on properties of a coupler based on such a material. First, modelisation is not a simple 2D mode calculation with a simple expression for permittivity. Second, contra-directional coupling becomes permitted due to wavevector becoming close to the periodicity. This work shows modelisation of such a fiber-metasurface coupler while taking account of these problems, with two publications on the subject. The first article modelises the coupler using a 400 mum diameter subwavelength step-index fiber coupled to a metasurface made of SRR on a 700 mum thick fused silica substrate. Frequencies are around 300 GHz (lambda = 1000 mum). We obtain some interesting results. First, the system shows a large number of fine resonances (˜ 1.5 GHz) instead of a single large resonance which would be typically seen on such a metasurface. These are constitued of a both a SRR-bound field and a propagative substrate mode. Second, these resonances are strongly influenced by the fiber-metasurface distance. Third, the spectral position can be easily calculated using a band diagram since they are located at Van Hove singularities. The second article treats of a paper sensor based on such a device. The geometry used is the same as in the first article, except for two differences. First, the substrate thickness has been reduced to 320 mum to lower the amount of substrate modes available. Second, a paper layer was added underneath the substrate. Since the resonances are a mixture of SRR-bound and substrate modes, resonance parameters change with paper properties. The spectral position can be related to paper thickness and real part of the permittivity while the reflectance amplitude is related to the imaginary part of the permittivity. A Clausius-Mossotti model is used to link the imaginary part of epsilon to the water content. Assuming negligible losses for the fiber and substrate, we obtain limit of detections of 10 mum of paper thickness change and 0.02 % V/V for the water content.

  18. Commercial applications

    NASA Technical Reports Server (NTRS)

    Togai, Masaki

    1990-01-01

    Viewgraphs on commercial applications of fuzzy logic in Japan are presented. Topics covered include: suitable application area of fuzzy theory; characteristics of fuzzy control; fuzzy closed-loop controller; Mitsubishi heavy air conditioner; predictive fuzzy control; the Sendai subway system; automatic transmission; fuzzy logic-based command system for antilock braking system; fuzzy feed-forward controller; and fuzzy auto-tuning system.

  19. Land Application.

    ERIC Educational Resources Information Center

    Reynolds, James H.

    1978-01-01

    Presents a literature review of wastewater land application, covering publications of 1976-77. This review covers areas such as the history, development, philosophy, design, models, and case studies of land application. A list of 41 references is also presented. (HM)

  20. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    NASA Astrophysics Data System (ADS)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under optimal experimental conditions, the antibacterial activities of these sophisticated surfaces had two distinct mechanisms: 1) reducing bacterial attachment and 2) eradicating adherent bacteria. The excellent antibacterial and anti-biofilm properties of these modified surfaces were initially tested in stationary cultures and later confirmed through a microfluidic cultivation system, which mimicked the in-vivo conditions of implanted catheters. Information gathered, suggests the graft polymerization of negatively charged monomers may be utilized to permanently prevent biofouling on inserted biomaterials, as well as implanted medical devices.

  1. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.

    PubMed

    Maeda, Roberto Nobuyuki; Barcelos, Carolina Araújo; Santa Anna, Lídia Maria Melo; Pereira, Nei

    2013-01-10

    This study aimed to produce a cellulase blend and to evaluate its application in a simultaneous saccharification and fermentation (SSF) process for second generation ethanol production from sugar cane bagasse. The sugar cane bagasse was subjected to pretreatments (diluted acid and alkaline), as for disorganizing the ligocellulosic complex, and making the cellulose component more amenable to enzymatic hydrolysis. The residual solid fraction was named sugar cane bagasse partially delignified cellulignin (PDC), and was used for enzyme production and ethanol fermentation. The enzyme production was performed in a bioreactor with two inoculum concentrations (5 and 10% v/v). The fermentation inoculated with higher inoculum size reduced the time for maximum enzyme production (from 72 to 48). The enzyme extract was concentrated using tangential ultrafiltration in hollow fiber membranes, and the produced cellulase blend was evaluated for its stability at 37 °C, operation temperature of the simultaneous SSF process, and at 50 °C, optimum temperature of cellulase blend activity. The cellulolytic preparation was stable for at least 300 h at both 37 °C and 50 °C. The ethanol production was carried out by PDC fed-batch SSF process, using the onsite cellulase blend. The feeding strategy circumvented the classic problems of diffusion limitations by diminishing the presence of a high solid:liquid ratio at any time, resulting in high ethanol concentration at the end of the process (100 g/L), which corresponded to a fermentation efficiency of 78% of the maximum obtainable theoretically. The experimental results led to the ratio of 380 L of ethanol per ton of sugar cane bagasse PDC. PMID:23123260

  2. Industrial application of surface and colloid science

    SciTech Connect

    Borgarello, E.

    1995-12-01

    Interfacial phenomena are playing a key role in several industrial processes such as oil production and refining, synthesis of chemicals and catalytic reactions. Eniricerche has gained a quite wide experience in applied colloid science in the last fifteen years working together with the Operating Companies of the ENI group. The main areas of interest have been oil production and transportation, fuel formulation, lubrication, bitumen, detergency, reactions in microemulsions, gels for cosmetics, blood substitutes, and photocatalytic degradation of pollutants in colloidal dispersions. The understanding of the interfacial phenomena occurring at the solid-liquid or at the liquid-liquid interface has been a major contribution to the solution of industrial problems. After a short description of Eniricerche activities in applied colloid science, two examples will be described: the hydroformulation of olefines in a microemulsion and the transportation of heavy oil in an oil-in-water emulsion.

  3. Drones de surfaces et Gliders Capacits utiles ,

    E-print Network

    Lherminier, Pascale

    lfremer 1 Drones de surfaces et Gliders Capacités « utiles » , « contraintes opérationnelles » V, ni aux navires de pêches. Réglementation maritime applicable aux drones de surface #12;lfremer 3 escortés est incertaine (syndrome trans- tasmanienne! Drone

  4. Application Engineering

    E-print Network

    Gray, Jeffrey G.

    Application Engineering http://www.cis.uab.edu/liush A Software Product Line Architecture: The advantages of applying component based software engineering and software product lines are preserved for Distributed Real-time and Embedded Systems: A Separation of Concerns Approach A Software Product Line

  5. Shrinkage void formation and its effect on freeze and thaw processes of lithium and lithium-fluoride for space applications

    NASA Technical Reports Server (NTRS)

    Yang, Jae Y.; El-Genk, Mohamed S.

    1991-01-01

    The effects of shrinkage void forming during freezing of lithium and lithium fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  6. UNE INTRODUCTION AUX MOD `ELES ET AUX M ETHODES MATH EMATIQUES EN

    E-print Network

    Hauret, Patrice

    mod`eles 11 2 M´ecanique et thermodynamique de syst`emes discrets 13 2.1 De la m´ecanique du point `a´etisme . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 Equations de Maxwell . . . . . . . . . . . . . . . . . . . . 51 3.1.2 Structure . . . . . . . . . . . . . . . . . . 60 3.2.3 Electromagn´etisme et relativit´e . . . . . . . . . . . . . . . 64 3.3 El´ements de M´ecanique

  7. Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides

    NASA Astrophysics Data System (ADS)

    Qaddouri, Abdessamad

    Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.

  8. Photography applications

    USGS Publications Warehouse

    Cochran, Susan A.

    2013-01-01

    Photographic imaging is the oldest form of remote sensing used in coral reef studies. This chapter briefly explores the history of photography from the 1850s to the present, and delves into its application for coral reef research. The investigation focuses on both photographs collected from low-altitude fixed-wing and rotary aircraft, and those collected from space by astronauts. Different types of classification and analysis techniques are discussed, and several case studies are presented as examples of the broad use of photographs as a tool in coral reef research.

  9. Methodes numeriques avancees pour la finance. --Methodes de splitting --

    E-print Network

    Bidegaray, Brigitte

    Robert Merton et Myron Scholes en 1997, Fischer Black ´etant mort en 1995). En revanche, ce n'est pas le (d´eterministes) de Black et Scholes et de Heston ; Partie 2. Approximation num´erique aux diff 8. Application aux mod`eles de Black et Scholes et de Heston. 1 Les mod`eles d'´equations aux d

  10. Medical Applications

    NASA Astrophysics Data System (ADS)

    Boccara, A. Claude; Mordon, Serge

    2015-10-01

    In re-listening to the lectures of Charles Townes shortly after the invention of the laser (e.g., in the Boston Science Museum), one can already have a realistic vision of the potentialities of this new tool in the field of medical therapy, as evidenced by the use of the laser in ophthalmology to cure retinal detachment in the 1960's. Since then, applications have flourished in the domain of therapy. We will thus illustrate here only some of the main fields of application of medical lasers. On the opposite, the use of lasers in medical imaging is, with one exception in ophthalmology, still at the development level. It is becoming a diagnostic tool in addition to high performance imaging facilities that are often very expensive (such as CT scan, Magnetic Resonance Imaging (MRI) and nuclear imaging). Even if progress is sometimes slow, one can now image with light inside the human body, in spite of the strong scattering of light by tissues, in the same way as a pathologist sees surgical specimens.

  11. Applications NetworkApplication PerformanceAnalysis

    E-print Network

    Riabov, Vladimir V.

    the Data Exchange Chart (DEC), depicting the flow of application traffic between tiers. The DEC you see. The Application Message Chart shows a single message flowing from the FTP Server to the Client. To show the size Chart can display the following: - The Application Chart, which shows the flow of application traffic

  12. Application of optical analyzer technique for measurements of sound velocities in shock-compressed Al-Mn alloy for calibration of recent elastic-viscous-plastic models

    NASA Astrophysics Data System (ADS)

    Kozlov, E. A.; Tarzhanov, V. I.; Pankratov, D. G.; Yakunin, A. K.; Yelkin, V. M.; Mikhailov, V. N.

    2006-08-01

    Registration results of longitudinal CL(?XX) and volume CB(?XX) sound velocities in shock-compressed aluminum alloy are presented. Experimental data were obtained in wide range of longitudinal stress, including the stress, corresponding to solid-liquid shock-induced transformation. By using experimentally measured values of sound velocities, the changes of Poisson ratio and shear modulus were calculated along the shock adiabat. These data are needed for calibration of resent elastic-viscous-plastic models.

  13. Growth of Bulk Single Crystals of Dicyanovinyl-Ansiole and its Derivatives for Nonlinear Optical Applications

    NASA Technical Reports Server (NTRS)

    Gebre, T.; Choi, J.; Wang, W. S.; Metzl, R.; Aggarwal, M. D.; Romero, Melvin; Clark, Ronald D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    Bulk single crystals of a series of thermally stable nonlinear optical organic materials, Dicyanovinyl-anisole (DIVA) and their methoxy derivatives, have been successfully grown using the Bridgman-Stockbarger technique. The growth conditions are chosen to be temperature gradient of 5 to 10 C/cm and lowering rate of 0.1 to 0.3 mm/h. Single crystals of DIVA and its derivatives, of 8 x 8 x 50 cu mm in size, have been grown while maintaining a flat solid-liquid growth interface.

  14. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  15. Determination of cadmium and lead in urine samples after dispersive solid-liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R. M.; Herrero Latorre, C.

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L- 1, respectively, and for Pb these limits were 0.13 and 0.43 ?g L- 1. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96-102% obtained for Cd and 97-101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE-SS-ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained.

  16. Diffraction of horizontally polarized ultrasonic plane waves on a periodically corrugated solid-liquid interface for normal incidence and Brewster angle incidence.

    PubMed

    Declercq, Nico F; Briers, Rudy; Degrieck, Joris; Leroy, Oswald

    2002-11-01

    The theory, and the use at normal incidence, of shear-vertically polarized waves (with polarization vector in the plane containing the incident wave vector and the normal on the interface) using the mode conversion method has been tackled by others. Here we develop the theory for shear-horizontally polarized incident waves (with polarization vector perpendicular to both the normal on the interface and the incoming wave vector). We take into account normal incidence as well as oblique incidence. For normal incidence, we discover the generation of Love waves. If oblique incidence is considered, we discover the existence of a Brewster angle of incidence, comparable with the Brewster angle in optics, in which a diffraction grating can be used as a polarization filter. PMID:12484474

  17. Keto-enol tautomers of 1,2-cyclohexanedione in solid, liquid, vapour and a cold inert gas matrix: Infrared spectroscopy and quantum chemistry calculation

    NASA Astrophysics Data System (ADS)

    Samanta, Amit K.; Pandey, Prasenjit; Bandyopadhyay, Biman; Chakraborty, Tapas

    2010-01-01

    Fourier transform infrared (FTIR) spectroscopy of 1,2-cyclohexanedione (CHD) has been studied with the neat sample, low-pressure vapour, CCl 4 solution and in cold N 2 matrix. The matrix-isolation spectrum has been assigned exclusively in terms of transitions of the enol tautomer, that is stabilized by an intramolecular O⋯H sbnd O hydrogen bond (HB). The vibrational fundamentals of the diketo tautomer appear weakly in the spectra of CCl 4 solution and vapour. On the other hand, the spectrum of the neat sample shows significant population of the diketo tautomer. Thus the intermolecular interactions, which are dominant in the neat sample, stabilize the diketo form. The predictions of electronic structure calculations by B3LYP/6-311++G(d,p) and MP2/cc-pVTZ methods are found to be consistent with the measured tautomeric distribution in the cold inert gas matrix. The larger dipole moment of the diketo tautomer (5.61 D) compared to enol form (3.60 D) is proposed to be responsible for stability of the former in the neat sample. The vibrational fundamentals predicted by anharmonic calculation at B3LYP/6-311++G(d,p) level display excellent agreement with measured frequencies. The proposed assignments are further corroborated by noting the deuterium isotopic shifts of different bands and their predicted shifts by the same theoretical methods.

  18. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1993-12-31

    Very little data is available on the thermodynamic properties of coal model compounds in liquid phase at high pressures. The authors present preliminary compilations of available data. It is anticipated that they will require vapor pressure and saturated liquid density data for coal model compounds in their high pressure liquid equation of state development. These data sets have also been compiled and are presented. They have at this time completed a review of techniques for high pressure density measurements. Some thought is being given to the possibility of building an apparatus to carry out density measurements for selected model compounds. Finally, they reproduce the Thomson et al equation and describe their preliminary procedure to test this equation with available high pressure thermodynamic data. They acknowledge the possibility that a number of modifications of the Thomson equation will be necessary before a reasonably accurate liquid state equation of state for coal model compound emerges.

  19. Unraveling the Solid-Liquid-Vapor Phase Transition Dynamics at the Atomic Level with Ultrafast X-Ray Absorption Near-Edge Spectroscopy

    SciTech Connect

    Dorchies, F.; Goyon, C.; Descamps, D.; Fourment, C.; Harmand, M.; Hulin, S.; Leguay, P. M.; Petit, S.; Peyrusse, O.; Santos, J. J.; Levy, A.; Combis, P.

    2011-12-09

    X-ray absorption near-edge spectroscopy (XANES) is a powerful probe of electronic and atomic structures in various media, ranging from molecules to condensed matter. We show how ultrafast time resolution opens new possibilities to investigate highly nonequilibrium states of matter including phase transitions. Based on a tabletop laser-plasma ultrafast x-ray source, we have performed a time-resolved ({approx}3 ps) XANES experiment that reveals the evolution of an aluminum foil at the atomic level, when undergoing ultrafast laser heating and ablation. X-ray absorption spectra highlight an ultrafast transition from the crystalline solid to the disordered liquid followed by a progressive transition of the delocalized valence electronic structure (metal) down to localized atomic orbitals (nonmetal--vapor), as the average distance between atoms increases.

  20. Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Iraci, Laura T.; Mcneill, Laurie S.; Koehler, Birgit G.; Wilson, Margaret A.; Saastad, Ole W.; Tolbert, Margaret A.; Hanson, David R.

    1993-01-01

    Fourier transform-infrared (FTIR) spectroscopy was used to examine films representative of stratospheric sulfuric acid aerosols. Thin films of sulfuric acid were formed in situ by the condensed phase reaction of SO3 with H2O. FTIR spectra show that the sulfuric acid films absorb water while cooling in the presence of water vapor. Using stratospheric water pressures, the most dilute solutions observed were greater than 40 wt % before simultaneous ice formation and sulfuric acid freezing occurred. FTIR spectra also revealed that the sulfuric acid films crystallized mainly as sulfuric acid tetrahydrate (SAT). Crystallization occurred either when the composition was about 60 wt% H2SO4 or after ice formed on the films at temperatures 1-4 K below the ice frost point. Finally, we determined that the melting point for SAT depended on the background water pressure and was 216-219 K in the presence of 4 x 10(exp -4) Torr H2O. Our results suggest that once frozen, sulfuric acid aerosols in the stratosphere are likely to melt at these temperatures, 30 K colder than previously thought.

  1. Surface charge induced modifications of the structure and dynamics of mixed dipolar liquids at solid-liquid interfaces: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Senapati, Sanjib; Chandra, Amalendu

    2000-11-01

    Molecular dynamics simulations are carried out to investigate the structural and dynamical properties of binary Stockmayer liquids near charged solid surfaces at varying surface charge density. The two solvent components differ widely in their polarity. The dipolar mixtures are formed at varying composition and the properties of the interfacial molecules are calculated in terms of several equilibrium and dynamical quantities such as the number density and polarization profiles, electrostriction at surfaces, linear and angular velocity autocorrelation functions, perpendicular (z) and parallel (x,y) components of translational diffusion tensors and rotational diffusion coefficients. The extent of selective adsorption of one species against the other at the surfaces is investigated as a function of surface charge density and composition and its effects on translational and rotational diffusion of interfacial molecules are discussed. The dynamical properties of the interfaces are also compared with those of the bulk.

  2. Adhesion of hard spheres under the influence of double-layer, van der Waals, and gravitational potentials at a solid/liquid interface.

    PubMed

    Senger, B; Schaaf, P; Bafaluy, F J; Cuisinier, F J; Talbot, J; Voegel, J C

    1994-04-12

    The deposition process of colloidal particles or microorganisms on flat surfaces is analyzed by means of computer simulations. Interparticle interactions (double layer and van der Waals) and weak gravitational forces are taken into account; hydrodynamic interactions, on the other hand, are neglected. In particular, the deposition probability as a function of the deposition location of a particle in the presence of one or two identical fixed particles is discussed. It is shown, in particular, that the ratio of the adhesion probabilities at a given location r, for particles subject to weak gravitation, in the presence and in the absence of the interparticle interaction U(r) follows approximately a Boltzmann law exp[-U(r)/kT], even though the adsorption process is fully irreversible. This result validates, as far as the distribution function of particles on a surface is concerned, Adamczyk's assumption [Adamczyk, Z., Zembala, M., Siwek, B. & Warszynski, P. (1990) J. Colloid Interface Sci. 140, 123-137] that the adhesion process of Brownian particles can be modeled by a random sequential adsorption model with an adsorption probability equal to exp[-U(r)/kT]. PMID:8159695

  3. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  4. Formation of Imploding Plasma Liners for HEDP and MIF Application

    SciTech Connect

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel; Messer, Sarah; Bomgardner, Richard; Phillips, Mike; Wu, Linchun; Elton, Ray

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 ?g of argon or xenon to 50 km/s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding plasma liners. HyperV’s tasks focused on developing the plasma guns and associated pulse power syst

  5. Ruby on Rails Applications

    NASA Technical Reports Server (NTRS)

    Hochstadt, Jake

    2011-01-01

    Ruby on Rails is an open source web application framework for the Ruby programming language. The first application I built was a web application to manage and authenticate other applications. One of the main requirements for this application was a single sign-on service. This allowed authentication to be built in one location and be implemented in many different applications. For example, users would be able to login using their existing credentials, and be able to access other NASA applications without authenticating again. The second application I worked on was an internal qualification plan app. Previously, the viewing of employee qualifications was managed through Excel spread sheets. I built a database driven application to streamline the process of managing qualifications. Employees would be able to login securely to view, edit and update their personal qualifications.

  6. Computer Series, 83. Bits and Pieces, 34.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1987-01-01

    Contains seven articles about computer applications to chemistry instruction. Includes descriptions of a three-dimensional animation of a potential energy surface, numerical solutions of kinetic equations, applications for spectroscopy courses, a computer-controlled experiment on the tin/lead solid/liquid phase diagram, an inexpensive thermistor…

  7. CERFACS Team's Day 21 Janvier 2004

    E-print Network

    climatique (études d'impact et événements extrêmes, risque de changements abrupts et circulation thermohaline · Application des régimes climatiques aux modifications de circulation atmosphérique dues au changement

  8. CYBER 200 Applications Seminar

    NASA Technical Reports Server (NTRS)

    Gary, J. P. (compiler)

    1984-01-01

    Applications suited for the CYBER 200 digital computer are discussed. Various areas of application including meteorology, algorithms, fluid dynamics, monte carlo methods, petroleum, electronic circuit simulation, biochemistry, lattice gauge theory, economics and ray tracing are discussed.

  9. Summer Program Application Process

    Cancer.gov

    You must also apply online through the NIH Research and Training Opportunities Web site. NIH online applications are currently being accepted. The NIH application form allows you to submit keywords describing your research interests (question 7).

  10. Industrial storage applications overview

    NASA Astrophysics Data System (ADS)

    Duscha, R. A.

    1980-03-01

    The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.

  11. Synthese de nanoparticules plasmoniques par laser femtoseconde en milieu liquide pour des applications biomedicales

    NASA Astrophysics Data System (ADS)

    Besner, Sebastien

    The femtosecond laser synthesis of plasmonic nanoparticles (Au, Ag, Cu, AuAg, AuCu) is described. The approach relies on the fs laser ablation of a target immersed in a liquid, followed by the laser-induced fragmentation and growth of nanoparticles in solution. This two-step methodology significantly enhances the production rate, the reproducibility and the size control of nanoparticles in comparison to the direct laser ablation based technique. For gold, the laser-induced growth of nanometric seeds initially formed by laser ablation in the presence of a stabilizing agent allows the synthesis of functionalized nanoparticles with sizes ranging from 3-76 nm and coefficients of variation (COV) varying between 15-30%. In comparison to the direct laser ablation, the size control is much simpler, as it uniquely depends on the gold to stabilizing agent molecular concentration ratio. The approach has been described for dextran and polyethylene glycol (PEG), but can be extended to all stabilizing agents and open new avenues in the formation of various novel bioconjugates. The fs laser ablation and fragmentation also allow the synthesis of stable and low dispersed Au nanoparticles in pure water. These nanoparticles are unique for sensing applications with high sensitivity based on surface enhanced Raman scattering (SERS), since they greatly reduce the noise associated with surface contaminants and byproducts found in solution. The formation of various nanospheres with predetermined size, shape and composition (AuxAg(1-x), AuxCu(1-x) ) is also reported by the use of a fs irradiation of a mixture of two pure metallic ix colloidal solutions in a very simple chemical environment, e.g. water and a stabilizing agent. From a chemical point of view, oxidation of silver nanoparticles is significantly reduced by the incorporation of a small amount of gold and is completely inhibited for a gold atomic fraction larger than 0.4-0.5. The bifunctional nature related to the partial oxidation of the gold nanoparticle surface allows a wide range of stabilization mechanisms. The stabilization by hydrophobic-hydrophobic interaction, by hydrogen bonds formation, by chemisorptions of thiols and by electrostatic interactions is evaluated. A new class of stabilizing agents, biopolymers, is also introduced. The addition of these polymers during the laser ablation, fragmentation or growth process enables in situ surface functionalization and efficient size control. The biocompatibility of these stabilizers also allows the direct introduction of nanoparticles in in vitro or in vivo applications without further purification. Significant efforts have also been undertaken to check the possible degradation of the polymers used during the laser process. These studies demonstrate a low degradation via an oxidation mechanism, involving the production of free radicals and oxidizing species by dissociation of water molecules during the laser process. Finally, the mechanisms of laser ablation in liquids and a growth model for the nanoparticles are proposed based on experimental results from literature and this thesis. The formation of nanoparticles is described by three distinct phases. First, a fast nucleation and condensation of the ejected species occur in the plasma and are caused by extremely high cooling rates, which lead to a strong supersaturation. This short nucleation and condensation phase is followed by a marked growth of the liquid (and still hot) nuclei by coalescence. After solidification, these nuclei should have sizes below 2 nm and be mostly condensed at the liquid-vapor interface of the growing cavitation bubble. Without the presence of stabilizing agent, growth by atomic diffusion and coalescence continue inside the cavitation bubble and should be accelerated following its collapse. Nanoparticles and unreacted monomers are then propelled out of the ablation zone by the secondary shock wave associated with the collapse of the cavitation bubble and further grow in solution. This cycle is repeated for each laser pulse and interaction between species

  12. Child Care Center APPLICATION

    E-print Network

    Harms, Kyle E.

    Child Care Center APPLICATION Child's name:_______________________Date of birth/Expected due date payroll deduction Community #12;Child Care Center Application Process To apply for enrollment at the LSU Child Care Center, this application form must be completed, signed and received with the $45

  13. 76 FR 60836 - Applicants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... From the Federal Register Online via the Government Printing Office FEDERAL MARITIME COMMISSION Ocean Transportation Intermediary License Applicants Notice is hereby given that the following applicants have filed with the Federal Maritime Commission an application for a license as a Non-Vessel-Operating Common Carrier (NVO) and/or Ocean...

  14. Parts application handbook study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for a NASA application handbook for standard electronic parts are determined and defined. This study concentrated on identifying in detail the type of information that designers and parts engineers need and expect in a parts application handbook for the effective application of standard parts on NASA projects.

  15. integration application networkintegration application A Vision for `IAN'

    E-print Network

    Hilderbrand, Robert H.

    application Leadership · Political · Scientific · Community #12;integration application networkintegrationMonitoring Science Community Resource agencies Government #12;integration application networkintegration application Varied communication ­ Community Community Management Monitoring Community Research Community #12

  16. Harrison Undergraduate Research Award Application (2015-16) Application Instructions

    E-print Network

    Zhigilei, Leonid V.

    Excellence 3rd floor of the Harrison Institute/Small Special Collections Library I. PREPARE THE FOLLOWING APPLICATION MATERIALS 1) Completed application form will significantly strengthen your application. II. SAVE YOUR APPLICATION MATERIALS

  17. ERIP application instructions

    SciTech Connect

    Watt, D.M.

    1992-01-02

    This report provides background information and instructions to assist applicants in writing Energy-Related Inventions Program (ERIP) applications. Initial feedback fro usage for the new instructions shows that the best instructions would not be read and followed by all applicants. Applications from more than thirty applicants who have received the new instructions indicated that few had read the instructions. Based on this feedback, the instructions have been further revised to include a title page and table of contents. A warning was also added to advise applicants of the potential penalty of delayed review if these instructions are not followed. This revision was intended to address the possibility that some applicants did not see or bother to follow the instructions which followed the background information about ERIP. Included are two examples of ERIP applications which have been prepared for handout at workshops or mailing to applicants. Writing of example applications was time consuming and more difficult than expected for several reasons: (1) Full disclosures can be lengthy, very detailed, and technical. This contrasts with the desire to prepare examples which are comparatively short and easy for the non-technical person to read. (2) Disclosures contain confidential information which should not be published. (3) It is difficult to imagine that applicants will study examples when they do not bother to read the basic instructions.

  18. Sample Application Alchemi: A .NET Grid Application Framework

    E-print Network

    GRIDBUS Alchemi Sample Application Conclusion Alchemi: A .NET Grid Application Framework Michael R. Head Alchemi: A .NET Grid Application Framework #12;GRIDBUS Alchemi Sample Application Conclusion Outline 1 GRIDBUS 2 Alchemi 3 Sample Application Michael R. Head Alchemi: A .NET Grid Application

  19. SCAMPI Application Platform Teemu Krkkinen

    E-print Network

    Ott, Jörg

    includes an opportunistic router, HTML5 application development framework, and an opportunistic application market for distributing applications. We demonstrate the platform and multiple HTML5 applications, Design, Experimentation Keywords Delay-tolerant Networking; DTN; Opportunistic Networking; HTML5 1

  20. The SED-TOX: Toxicity-directed management tool to assess and rank sediments based on their hazard -- concept and application

    SciTech Connect

    Bombardier, M.; Bermingham, N.

    1999-04-01

    This article introduces the sediment Toxicity (SED-TOX) Index for the assessment and ranking of toxic hazards in sediment. Major features include expression of toxicity responses on a single scale of measurement (dry weight-based toxic units), consideration of multiple routes of exposure (pore water, organic extract, wet sediment, and whole sediment), application of differential treatments to toxicity data depending on the level of response, and use of weighting factors to discriminate sediment exposure phases and effect endpoints on the basis of sensitivity. A battery of seven bioassays with four test species (Vibrio fischeri, Escherichia coli, Lytechinus pictus, and Amphiporeia virginiana) was conducted on 49 marine sediment samples collected from six sites at Anse-a-Beaufils and Cap-aux-Meules, which are in the Gulf of St. Lawrence. The SED-TOX scores were calculated for each sampling station and compared with sediment contaminant concentrations. Results indicate that physico-chemical characterization is not sufficient to assess contaminated-sediment hazard for organisms; furthermore, using several exposure phases and test species belonging to various trophic levels increases the possibility of correctly identifying toxic sediments. The results of this study indicate that the SED-TOX approach is valuable as a toxicity assessment and ranking tool for sediments. It could easily be combined with other measures of ecosystem disturbance to discriminate between polluted and unpolluted sites.