Science.gov

Sample records for solide-liquide application aux

  1. Application of the LCPT model to solid-liquid equilibria for binary compound-forming alloys

    SciTech Connect

    Howell, W.J. ); Alger, M.M. ); Eckert, C.A. )

    1993-09-01

    The linear chemical-physical theory (LCPT) model for liquid metal solution thermodynamics has been extended to the determination of the liquidus curves for binary intermetallic compound-forming systems. The equations developed include corrections to the observed melting point temperature and heat of fusion for compounds that dissociate partially on melting. The primary advantages of the LCPT model for solid-liquid equilibria are the small number of physically realistic parameters required, ease of implementation, and wide applicability. In addition, the model also permits the incorporation of compounds in modeling the liquidus curves that are not necessary for representing the liquid-phase thermodynamic properties. For the seven systems studied, the agreement between calculated and experimentally measured liquidus curves is quite good.

  2. Engineering evaluation of solids/liquids separation processes applicable to sludge treatment project

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study looks at the solids/liquids separation unit operations after the acid dissolution of the K Basin sludge treatment. Unit operations considered were centrifugation, filtration (cartridge, cross flow, and high shear filtration) and gravity settling. The recommended unit operations for the solids/liquids separations are based upon the efficiency, complexity, and off-the-shelf availability and adaptability. The unit operations recommended were a Robatel DPC 900 centrifuge followed by a nuclearized 31WM cartridge filter. The Robatel DPC 900 has been successfully employed in the nuclear industry on a world wide scale. The 31WM cartridge filter has been employed for filtration campaigns in both the government and civilian nuclear arenas.

  3. Application of solid/liquid extraction for the gravimetric determination of lipids in royal jelly.

    PubMed

    Antinelli, Jean-François; Davico, Renée; Rognone, Catherine; Faucon, Jean-Paul; Lizzani-Cuvelier, Louisette

    2002-04-10

    Gravimetric lipid determination is a major parameter for the characterization and the authentication of royal jelly quality. A solid/liquid extraction was compared to the reference method, which is based on liquid/liquid extraction. The amount of royal jelly and the time of the extraction were optimized in comparison to the reference method. Boiling/rinsing ratio and spread of royal jelly onto the extraction thimble were identified as critical parameters, resulting in good accuracy and precision for the alternative method. Comparison of reproducibility and repeatability of both methods associated with gas chromatographic analysis of the composition of the extracted lipids showed no differences between the two methods. As the intra-laboratory validation tests were comparable to the reference method, while offering rapidity and a decrease in amount of solvent used, it was concluded that the proposed method should be used with no modification of quality criteria and norms established for royal jelly characterization. PMID:11929275

  4. Application of immersional calorimetry to investigation of solid-liquid interactions: microcrystalline cellulose-water system.

    PubMed

    Hollenbeck, R G; Peck, G E; Kildsig, D O

    1978-11-01

    A comprehensive characterization of the specific solid-liquid interaction for microcrystalline cellulose and water is presented. The procedure consisted of a conjoint vapor adsorption and immersional wetting experiment. The following information was obtained with respect to the solid. Estimates of the total surface are (138 m2/g) and the external surface (9.2 m2/g) were calculated from the adsorption and immersion data, respectively. Existence of an energetically homogeneous surface was verified by a linear decrease in the heat of immersion of samples containing adsorbed moisture approximately up to monolayer capacity. Integral and differential free energy, enthalpy, and entropy changes accompanying the adsorption process were calculated, and a lack of swelling was substantiated by comparison with a similar study of cellulose fibers. Immersional hysteresis was observed, and its magnitude suggested that sorption hysteresis was of enthalpic as well as entropic origin. The experimental method is potentially valuable for routine characterization of hydrophilic powders. PMID:712599

  5. Application de la combustion catalytique aux turbines à gaz

    NASA Astrophysics Data System (ADS)

    Lebas, E.; Martin, G. H.

    2002-04-01

    La réduction des émissions d'oxydes d'azote sur turbines à gaz est obtenue par diminution de la température au sein de la chambre de combustion. Les techniques possibles comprennent l'injection d'eau ou de vapeur, la combustion pauvre et l'oxydation catalytique. Parmi celles-ci, la dernière est la plus prometteuse en terme de coûts et de performances, avec des émissions de NOx ramenées à un seul chiffre (typiquement inférieures à 3 ppm). L'IFP travaille depuis maintenant 10 ans sur l'adaptation de la combustion catalytique aux turbines à gaz. Les études ont été conduites au travers de projets européen tels que AGATA (Advance Gas Turbine for Automotive Application) et ULECAT (Ultra Low CATalytic combustor for dual fuel gas turbine). Le premier projet était destiné au développement de véhicules hybrides et le second à la combustion stationnaire de biogaz et de combustible Diesel. Les études en cours dans ce domaine portent sur le développement d'une unité de cogénération intégrant une microturbine à combustion catalytique. Les travaux menés à l'IFP concernent la mise au point de catalyseurs répondant aux exigences de la combustion catalytique en turbine à gaz et le développement de chambres de combustion permettant la mise en oeuvre de ces catalyseurs.

  6. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the current state of CRYOCHEM in representing the SVE and SLV of chemical systems at temperatures and pressures relevant to Titan's tropopause and Pluto and the upper crusts of these objects.

  7. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  8. Calculation of multicomponent chemical equilibria in gas-solid- liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens

    USGS Publications Warehouse

    Symonds, R.B.; Reed, M.H.

    1993-01-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. Examples of gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mount St. Helens are shown. -from Authors

  9. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    PubMed

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-01

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. PMID:24411440

  10. Solid-liquid separation via filtration

    SciTech Connect

    Chen, W.

    1997-02-01

    Solid-liquid separation is a truly ubiquitous unit operation. It can be found in all parts of a manufacturing process, from raw material purification, through product separation, all the way to waste management. Yet, common as it is, solid-liquid separation is generally not well understood, partly because of the complex nature of fluid-particle systems. Because of this lack of knowledge, such operations are often the problem area or bottleneck in a plant. Yet, with the growing emphasis on process efficiency and waste management, there is an enormous need for more understanding in this technology. It is the objective of this article to present an overview of common solid-liquid separation operations, so that users are aware of all the available options. This article will cover filtration techniques, in which a septum is used to separate particles from a liquid.

  11. Perturbation theory of solid-liquid interfacial free energies of bcc metals

    SciTech Connect

    Warshavsky, Vadim B.; Song, Xueyu

    2012-09-18

    A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell, hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may have broader applications for other crystal lattices.

  12. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  13. Systems and methods for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  14. A sessile drop setup for the time-resolved synchrotron study of solid-liquid interactions: Application to intermetallic formation in 55%Al-Zn alloys

    SciTech Connect

    Bernier, N. De Bruyn, D.; De Craene, M.; Scheers, J.; Claessens, S.; Vaughan, G. B. M.; Vitoux, H.; Gleyzolle, H.; Gorges, B.

    2014-04-28

    We introduce a dedicated setup for measuring by synchrotron diffraction in-situ crystallographic and chemical information at the solid–liquid interface. This setup mostly consists of a double-heating furnace composed of a resistive heating for the solid surface and an inductive heating to produce a liquid droplet. The available high energy and high flux beams allow the rapid reaction kinetics to be investigated with very good time resolution down to 1 ms. An application of this setup is illustrated for the growth mechanisms of intermetallic phases during the hot-dipping of steel in a 55%Al-Zn bath. Results show that the three η-Al{sub 5}Fe{sub 2}, θ-Al{sub 13}Fe{sub 4}, and α-Al{sub 8}Fe{sub 2}Si phases grow at different times and rates during the dipping process, whereas the face-centered cubic AlFe{sub 3} phase is not formed.

  15. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Technical Reports Server (NTRS)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  16. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Astrophysics Data System (ADS)

    Zeng, X. C.; Stroud, D.

    1989-05-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  17. Etude sur les tendons en materiaux composites et leur application aux ancrages postcontraints

    NASA Astrophysics Data System (ADS)

    Chennouf, Adil

    L'objectif general de la presente these est d'evaluer le comportement a l'arrachement et au fluage d'ancrages injectes constitues de tendons en materiaux composites afin d'etablir des recommandations plus appropriees et realistes pour le dimensionnement et la conception. Quatre types de tendons en materiaux composites, deux a base de fibres d'aramide et deux a base de fibres de carbone, ont ete utilises dans l'etude. Les travaux de recherche de cette these ont porte notamment sur: (I) Une caracterisation physique et mecanique des tendons en materiaux composites utilises dans l'etude. (II) Une etude en laboratoire sur les coulis de scellement. La premiere etape de cette etude a concerne le developpement d'un coulis de scellement performant adapte aux tendons en materiaux composites et a differentes situations d'injection. La seconde etape a traite des essais de caracterisations physique et mecanique du coulis de scellement developpe comparativement a trois coulis de scellement usuels d'un meme rapport E/L de 0,4. (III) Une etude sur des modeles reduits d'ancrages injectes. (IV) Une etude sur des modeles d'ancrages a grande echelle. La synthese de ces etudes a permis d'enoncer les principales conclusions suivantes: (1) Les valeurs moyennes des charges de rupture des tendons en materiaux composites ont ete de 1% a 29% superieures a celles specifiees par les manufacturiers. (2) L'etude sur les coulis de scellement a permis le developpement de coulis de ciment repondant aux criteres fixes, soient une grande stabilite, une bonne fluidite, une legere expansion et de bonnes caracteristiques mecaniques. (3) Les tendons en materiaux composites ont montre des contraintes d'adherence maximum superieures a celles des tendons en acier. (4) Le type de fibre, la configuration et le fini de surface des tendons en materiaux composites gouvernent leur resistance a l'adherence. (5) L'introduction de sable et d'autres ajouts comme les fines de silice et la poudre d'aluminium au coulis de ciment a permis d'ameliorer la resistance a l'adherence. (6) Il existe une relation lineaire entre la charge maximum et la longueur ancree des tendons. Des equations sont proposees. (7) La capacite a l'arrachement des ancrages injectes augmente avec l'augmentation du module d'elasticite du milieu encaissant. (8) Les mono-tendons et multi-tendons en materiaux composites injectes sur 1000 mm ont montre des comportements a l'arrachement acceptables conformement aux codes. (9) Les rigidites apparentes des tendons a base de fibres d'aramide sont de trois a cinq fois inferieures a celles des tendons a base de fibres de carbone. (10) L'amorce de la decohesion en haut de la zone ancree ne semble se produire qu'au-dela d'une charge de 0,35 fpu pour les tendons a base de fibres de carbone alors qu'elle prend naissance des l'application de la charge pour les tendons a base de fibres d'aramide. (11) Le taux de fluage depend du niveau de chargement ainsi que des caracteristiques geometriques et mecaniques de l'ancrage (type de fibres, fini de surface, nombre de tendons, etc.). (12) Des equations regissant le comportement au fluage des tendons en materiaux composites ont ete etablies pour une periode d'essai de 60 mn. (Abstract shortened by UMI.)

  18. Ultrasonic characterization of solid liquid suspensions

    DOEpatents

    Panetta, Paul D.

    2010-06-22

    Using an ultrasonic field, properties of a solid liquid suspension such as through-transmission attenuation, backscattering, and diffuse field are measured. These properties are converted to quantities indicating the strength of different loss mechanisms (such as absorption, single scattering and multiple scattering) among particles in the suspension. Such separation of the loss mechanisms can allow for direct comparison of the attenuating effects of the mechanisms. These comparisons can also indicate a model most likely to accurately characterize the suspension and can aid in determination of properties such as particle size, concentration, and density of the suspension.

  19. Precise AuxPt1-x Alloy Nanoparticle Array of Tunable Composition for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Jahn, Sarah; Lechner, Sebastian J.; Freichels, Helene; Möller, Martin; Spatz, Joachim P.

    2016-02-01

    A 3-dimensional Block Copolymer Micellar nanoLithography (BCML) process was used to prepare AuxPt1-x alloy nanoparticles (NPs) monodisperse in size and composition, strongly anchored onto SiO2-particles (0.2 wt.% AuxPt1-x/SiO2). The particles possess a face-centered cubic (fcc) crystal structure and their size could be varied from 3-12 nm. We demonstrate the uniformity of the Au/Pt composition by analyzing individual NPs by energy-dispersive X-ray spectroscopy. The strongly bound AuxPt1-x NPs catalyzed the oxidation of CO with high activity. Thermal ageing experiments in pure CO2 as well as in ambient atmosphere demonstrated stability of the size distribution for times as long as 22 h.

  20. Redistribution of fluorescent molecules at the solid/liquid interface with total internal reflection illumination.

    PubMed

    Wei, Lin; Ye, Zhongju; Luo, Wenjuan; Chen, Bo; Xiao, Lehui

    2016-08-01

    Many intriguing physical and chemical processes commonly take place at the solid/liquid interface. Total internal reflection illumination, together with single molecule spectroscopy, provides a robust platform for the selective exploration of kinetic processes close the interface. With these techniques, it was observed that the distribution of Rhodamine B molecules close to a solid/liquid interface could be regulated in a photo-induced route. The laser-induced repulsion force at this interface is enough to compromise the Brownian diffusion of single molecules in a range of several hundred nanometers normal to the solid/liquid interface. This observation is fundamentally and practically interesting because moderate laser intensity is enough to initiate this repulsion effect. Therefore, it might display extensive applications in the development of photo-modulation technique with high throughput capability. PMID:27216678

  1. Coarsening in binary solid-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Voorhees, P. W.

    1990-01-01

    A theory of Ostwald ripening has been developed for a solid-liquid mixture cosisting of a low volume fraction array of spherical solid particles in a liquid wherein the coarsening process proceeds via the transport of both heat and mass. It is found that the simultaneous transport of heat and mass during ripening does not alter the exponents of the temporal power laws governing the ripening process from their classical values but does alter the amplitudes of these power laws. The growth rate of the cube of the average particle radius, the rate constant, is found to depend both on the alloy solute concentration and the ratio of the thermal to solutal diffusivities. In most metallic systems, a large decrease in the rate constant can be expected with small additions of solute to a pure metal. Possible extensions of this theory to the analogous problem of ripening in isothermal ternary alloys are also discussed.

  2. An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2014-11-01

    In this work, an immersed boundary-thermal lattice Boltzmann method (IB-TLBM) is proposed to simulate solid-liquid phase change problems. To treat the velocity and temperature boundary conditions on the solid-liquid interface, immersed boundary method (IBM) is adopted, in which the solid-liquid interface is represented as a sharp interface rather than a diffusive interface and is tracked explicitly by Lagrangian grid. The surface forces along the immersed boundary, including the “momentum force” for velocity boundary condition and the “energy force” for temperature boundary condition, are calculated by the direct-forcing scheme. The moving velocity of solid-liquid interface induced by phase change is calculated by the amount of latent heat absorbed or released in a time step directly, with no need to compute temperature gradients in solid and liquid phases separately. The temperature on the solid-liquid interface is specified as the melting temperature, which means phase change happens at a constant temperature. As the solid-liquid interface evolves with time, the identification of phase of Eulerian points and the rearrangement of Lagrangian points are also considered. With regard to the velocity and temperature fields, passive scalar thermal lattice Boltzmann method (TLBM) with multiple-relaxation-time (MRT) collision schemes is adopted. Numerical examples, including conduction-induced melting in a semi-infinite space and melting in a square cavity, are carried out to verify the present method and good results are obtained. As a further application, melting in a circular cylinder with considering the motion of solid phase is simulated successfully by the present method; numerical results show that the motion of solid phase accelerates the melting process obviously.

  3. Computational Investigations of Solid-Liquid Interfaces

    SciTech Connect

    Mark Asta

    2011-08-31

    In a variety of materials synthesis and processing contexts, atomistic processes at heterophase interfaces play a critical role governing defect formation, growth morphologies, and microstructure evolution. Accurate knowledge of interfacial structure, free energies, mobilities and segregation coefficients are critical for predictive modeling of microstructure evolution, yet direct experimental measurement of these fundamental interfacial properties remains elusive in many cases. In this project first-principles calculations were combined with molecular-dynamics (MD) and Monte-Carlo (MC) simulations, to investigate the atomic-scale structural and dynamical properties of heterophase interfaces, and the relationship between these properties and the calculated thermodynamic and kinetic parameters that influence the evolution of phase transformation structures at nanometer to micron length scales. The topics investigated in this project were motivated primarily by phenomena associated with solidification processing of metals and alloys, and the main focus of the work was thus on solid-liquid interfaces and high-temperature grain boundaries. Additional efforts involved first-principles calculations of coherent solid-solid heterophase interfaces, where a close collaboration with researchers at the National Center for Electron Microscopy was undertaken to understand the evolution of novel core-shell precipitate microstructures in aluminum alloys.

  4. Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces.

    PubMed

    Onaizi, Sagheer A; Nasser, M S; Al-Lagtah, Nasir M A

    2016-05-01

    Surfactin, a sustainable and environmentally friendly surface active agent, is used as a model to study the adsorption of biosurfactants at hydrophobic and hydrophilic solid-liquid interfaces as well as the air-liquid interface. Surfactin adsorption was monitored as a function of time and concentration using surface plasmon resonance (SPR) technique in the case of the solid-liquid interfaces or the drop shape analysis (DSA) technique in the case of the air-liquid interface. The results obtained in this study showed that surfactin adsorption at the "hard" hydrophobic (functionalized with octadecanethiol) solid-liquid and the "soft" air-liquid interface were 1.12 ± 0.01 mg m(-2) (area per molecule of 157 ± 2 Å(2)) and 1.11 ± 0.05 mg m(-2) (area per molecule of 159 ± 7 Å(2)), respectively, demonstrating the negligible effect of the interface "hardness" on surfactin adsorption. The adsorption of surfactin at the hydrophilic (functionalized with β-mercaptoethanol) solid-liquid interface was about threefold lower than its adsorption at the hydrophobic-liquid interfaces, revealing the importance of hydrophobic interaction in surfactin adsorption process. The affinity constant of surfactin for the investigated interfaces follows the following order: air > octadecanethiol > β-mercaptoethanol. Biosurfactants, such as surfactin, are expected to replace the conventional fossil-based surfactants in several applications, and therefore the current study is a contribution towards the fundamental understanding of biosurfactant behavior, on a molecular level, at hydrophobic and hydrophilic solid-liquid interfaces in addition to the air-liquid interface. Such understanding might aid further optimization of the utilization of surfactin in a number of industrial applications such as enhanced oil recovery, bioremediation, and detergency. PMID:26649447

  5. An improved technique for modeling initial reservoir hydrocarbon saturation distributions: Applications in Illinois (USA) aux vases oil reservoirs

    USGS Publications Warehouse

    Udegbunam, E.; Amaefule, J.O.

    1998-01-01

    An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, S(wir), P(d), and ??, derived from the Brooks and Corey (1966) model [Brooks, R.H., Corey, A.T., 1966. Hydraulic properties of porous media, Hydrology Papers, Colorado State Univ., Ft. Collins, No. 3, March.], are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, Swir, Pd, and ??, derived from the Brooks and Corey (1966) model, are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.

  6. Application du groupe de renormalisation aux conducteurs organiques quasi-unidimensionnels soumis a un champ magnetique

    NASA Astrophysics Data System (ADS)

    Hubert, Laurent

    Des conducteurs organiques fortement anisotropes presentent, sous l'effet d'un champ magnetique, une etonnante variete de proprietes physiques tel que: l'effet Shubnikov-de Haas, l'effet de Haas-van-Alphen, l'existence de cascades d'ondes de densite de spin apparentees a l'effet Hall quantique, reentrance vers la phase metallique pouvant provenir d'un 'breakdown' magnetique, et tout recemment la possibilite d'un confinement charge induit par le champ magnetique. A cela s'ajoute les nombreuses caracteristiques deja apparues en variant la pression hydrostatique ou la substitution chimique: separation spin-charge, localisation de la charge, transition spin-Peierls, antiferromagnetisme itinerant ou non, supraconductivite, et l'existence d'une frontiere commune entre les phases supraconductrice et antiferromagnetique. En vue de completer la description theorique du diagramme de phase generalise des conducteurs organiques, nous adaptons et elargissons la methode du groupe de renormalisation quantique (GRQ) au cas ou le champ magnetique est non nul. On sait deja que cette methode permet de resoudre le dilemme tout particulier des composes Q-1D, soit leur capacite de produire des transitions de phase malgre leur forte anisotropie et consequemment de leur faible dimensionalite. Cette methode est deja utilisee pour decrire le diagramme de phase temperature versus pression des sels de Bechgaard, de leurs analogues souffres et mixtes. Le GRQ permet aussi de comprendre comment des systemes anisotropes comme les conducteurs organiques peuvent se comporter comme des liquides de Luttinger a haute temperature et comme des liquides de Fermi ou condenses a basse temperature. Nous montrons que l'introduction d'un champ magnetique dans un regime de saut coherent interchai ne a deux particules n'apporte que de simples corrections aux lois d'echelles dans le canal zero son, alors qu'il introduit un mecanisme de brisure de paire dans le canal Cooper. Dans le regime de saut coherent a une particule, la situation est plus complexe puisque la structure de bande et la forme de la surface de Fermi deviennent pertinentes. Sous bon nesting, un champ magnetique le champ magnetique defavorise les phases magnetiques du type habituellement observe en champ nul. Nous obtenons en effet que leur temperature de transition diminue avec le champ magnetique. Sous deviations au nesting suffisant pour detruire l'ordre magnetique a champ nul, nous montrons que le nesting quantifie est compatible avec l'analyse du GRQ pour des champ faibles et intermediaires. Ainsi, le nesting quantifie fournit toujours une excellente base de description des cascades de phases d'onde de densite de spin induite en champ magnetique. D'autre part, l'utilisation du GRQ permet de mettre en evidence l'existence d'un regime de champ fort. Dans ce regime le mouvement coherent des electrons dans la direction transverse aux chai ne est fortement reduit. De cette reduction de la coherence transverse les regles de renormalisation 1D qui persistent a une temperature plus basse que dans les autres regimes. Ceci donne la possibilite d'atteindre grace au champ magnetique des etats de type localisation de charge et spin-Peierls qui sont habituellement observes, en champ nul, dans des composes ayant un caractere unidimensionnel beaucoup plus prononce.

  7. Trends in solids/liquids poisoning suicide rates in Taiwan: a test of the substitution hypothesis

    PubMed Central

    2011-01-01

    Background Several previous studies have illustrated that restricting access to lethal methods can reduce suicide rates. The most often cited example was Kreitman's study, showing a reduction not only in gas-specific suicide rates, but also in the overall suicide rates because of the lack of increase of other methods. However, method substitution is still a major concern in the application of the means restriction strategy to prevent suicide. The aim of the study was to investigate whether the reduction in the solids/liquids poisoning suicide rate in 1983-1993 after the launching of pesticide restriction interventions in Taiwan was accompanied with an increase in the suicide rate using other methods (method substitution). Methods Data on age-, sex- and method-specific suicide rates for 1971-1993 in Taiwan were obtained. Changes in solids/liquids poisoning suicide rates were compared with suicide rates by hanging and other methods between 1983 and 1993. Results No concomitant increase in suicide rates by hanging or other methods was noted from 1983 to 1993, during which the suicide rates by poisoning with solids/liquids (mainly pesticides) decreased markedly and steadily. The phenomenon of method substitution was also not found by sex and age groups. Conclusion In general, no method substitution was found along with the reduction in solids/liquids suicide rates in Taiwan. Our study results have also added the evidence that restricting access to methods maybe a promising strategy in preventing suicide, particularly in those countries where the "target method" has been found to contribute greatly to the suicide rates. PMID:21933432

  8. Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales

    NASA Astrophysics Data System (ADS)

    Asadi, Ebrahim; Asle Zaeem, Mohsen; Nouranian, Sasan; Baskes, Michael I.

    2015-01-01

    In this paper, molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM) and a phase-field crystal (PFC) model are utilized to quantitatively investigate the solid-liquid properties of Fe. A set of second nearest-neighbor MEAM parameters for high-temperature applications are developed for Fe, and the solid-liquid coexisting approach is utilized in MD simulations to accurately calculate the melting point, expansion in melting, latent heat, and solid-liquid interface free energy, and surface anisotropy. The required input properties to determine the PFC model parameters, such as liquid structure factor and fluctuations of atoms in the solid, are also calculated from MD simulations. The PFC parameters are calculated utilizing an iterative procedure from the inputs of MD simulations. The solid-liquid interface free energy and surface anisotropy are calculated using the PFC simulations. Very good agreement is observed between the results of our calculations from MEAM-MD and PFC simulations and the available modeling and experimental results in the literature. As an application of the developed model, the grain boundary free energy of Fe is calculated using the PFC model and the results are compared against experiments.

  9. Precise AuxPt1−x Alloy Nanoparticle Array of Tunable Composition for Catalytic Applications

    PubMed Central

    Jahn, Sarah; Lechner, Sebastian J.; Freichels, Helene; Möller, Martin; Spatz, Joachim P.

    2016-01-01

    A 3-dimensional Block Copolymer Micellar nanoLithography (BCML) process was used to prepare AuxPt1−x alloy nanoparticles (NPs) monodisperse in size and composition, strongly anchored onto SiO2-particles (0.2 wt.% AuxPt1−x/SiO2). The particles possess a face-centered cubic (fcc) crystal structure and their size could be varied from 3–12 nm. We demonstrate the uniformity of the Au/Pt composition by analyzing individual NPs by energy-dispersive X-ray spectroscopy. The strongly bound AuxPt1−x NPs catalyzed the oxidation of CO with high activity. Thermal ageing experiments in pure CO2 as well as in ambient atmosphere demonstrated stability of the size distribution for times as long as 22 h. PMID:26856888

  10. Self-instability of finite sized solid-liquid interfaces

    PubMed Central

    Wu, L.K.; Xu, B.; Li, Q.L.; Liu, W.

    2015-01-01

    In solid-liquid systems, macroscopic solids lose their equilibrium and melt in a manner that results in overall movement of the solid-liquid interface. This phenomenon occurs when they are subjected to temperature gradients or external stress, for example. However, many experiments suggest that the melting of nano- and micro-sized metallic nuclei follows a different process not described by traditional melting theory. In this paper, we demonstrate through simulation that the melting of solid nuclei of these sizes occurs via random breaches at the interfaces. Moreover, this breaching process occurs at the exact solid-liquid equilibrium temperature and in the absence of any external disturbance, which suggests the name “self-instability” for this melting process. We attribute this spontaneous instability to the curvature of the samples; based on the relationship between the sample’s instability and its curvature, we propose a destabilizing model for small systems. This model fits well with experimental results and leads to new insights into the instability behavior of small-sized systems; these insights have broad implications for research topics ranging from dendrite self-fragmentation to nanoparticle instability. PMID:26685800

  11. Solid-liquid interfacial free energy out of equilibrium

    NASA Astrophysics Data System (ADS)

    Cheng, Bingqing; Tribello, Gareth A.; Ceriotti, Michele

    2015-11-01

    The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill defined. Here we draw a connection between the atomistic description of a diffuse solid-liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.

  12. Self-instability of finite sized solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wu, L. K.; Xu, B.; Li, Q. L.; Liu, W.

    2015-12-01

    In solid-liquid systems, macroscopic solids lose their equilibrium and melt in a manner that results in overall movement of the solid-liquid interface. This phenomenon occurs when they are subjected to temperature gradients or external stress, for example. However, many experiments suggest that the melting of nano- and micro-sized metallic nuclei follows a different process not described by traditional melting theory. In this paper, we demonstrate through simulation that the melting of solid nuclei of these sizes occurs via random breaches at the interfaces. Moreover, this breaching process occurs at the exact solid-liquid equilibrium temperature and in the absence of any external disturbance, which suggests the name self-instability for this melting process. We attribute this spontaneous instability to the curvature of the samples; based on the relationship between the samples instability and its curvature, we propose a destabilizing model for small systems. This model fits well with experimental results and leads to new insights into the instability behavior of small-sized systems; these insights have broad implications for research topics ranging from dendrite self-fragmentation to nanoparticle instability.

  13. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G.; Clark, Roger F.; Kary, Tim

    2010-07-20

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.

  14. Bioinspired solid-liquid mixed tunable lens with multilayered structure

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei

    2015-06-01

    A solid-liquid mixed tunable lens with multilayered structure is proposed. The designed lens utilizes a solid-state elastic polymer, optical liquid, and glass as the optical medium, and adjusts the focus by changing the surface curvature of the elastic polymer. The integrated structure of the tunable lens is presented, as well as detailed descriptions of the lens materials, fabrication, and assembling process. Images captured through the tunable lens under different displacement loads are presented, and the relationship among the displacement load, curvature radius, and effective focal length is analyzed. Additionally, the optical property of the tunable lens is simulated using the ZEMAX software. A change in focal length from 14.8 mm to 30 mm is demonstrated within the tiny 0.12 mm variation of the displacement load. Numerical analyses show that the lens distortion is less than 2%, and the modulation transfer function reaches 67 line pairs per mm. The solid-liquid mixed tunable lens shows the potential for developing a compact, low-aberration, and stable optical system.

  15. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method.

    PubMed

    Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F A; Leroy, Frédéric

    2015-12-28

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces. PMID:26723620

  16. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method

    NASA Astrophysics Data System (ADS)

    Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F. A.; Leroy, Frédéric

    2015-12-01

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.

  17. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G.; Clark, Roger F.

    2011-10-04

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).

  18. Solid-liquid coexistence of polydisperse fluids via simulation.

    PubMed

    Wilding, Nigel B

    2009-03-14

    We describe a simulation method for the accurate study of the equilibrium freezing properties of polydisperse fluids under the experimentally relevant condition of fixed polydispersity. The approach is based on the phase switch Monte Carlo method of Wilding and Bruce [Phys. Rev. Lett. 85, 5138 (2000)]. This we have generalized to deal with particle size polydispersity by incorporating updates which alter the diameter sigma of a particle, under the control of a distribution of chemical potential differences mu(sigma). Within the resulting isobaric semi-grand-canonical ensemble, we detail how to adapt mu(sigma) and the applied pressure such as to study coexistence, while ensuring that the ensemble averaged density distribution rho(sigma) matches a fixed functional form. Results are presented for the effects of small degrees of polydispersity on the solid-liquid transition of soft spheres. PMID:19292519

  19. Solid/liquid interfacial free energies in binary systems

    NASA Technical Reports Server (NTRS)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  20. Membrane separations for solid-liquid clarification within lignocellulosic biorefining processes.

    PubMed

    Leberknight, Jennifer; Menkhaus, Todd J

    2013-01-01

    Membrane separations can be integrated into a biorefinery to reduce water and energy consumption. Unfortunately, current membrane materials suffer from severe fouling, which limits their applicability. Here, using analytical characterizations along with fouling models, we correlate membrane properties with performance metrics to provide a framework for optimal membrane selection during solid-liquid clarification of a biomass hydrolysate. Five membranes were evaluated: polyether sulfone, mixed cellulose esters, and three surface modified membranes with weak acid, strong acid, and weak base functionalities. Lignin was the primary component responsible for flux decline, due to physical entrapment and chemical adsorption. The best membrane performance (high and sustained flux, low fouling, and high separation factor) was correlated with higher surface roughness, lower hydrophobicity, neutral or positively charged zeta potential, and a larger number of smaller surface pores. These analyses provide valuable information for designing new materials for biorefining processes to reduce fouling and increase stability. PMID:23813787

  1. Mechanisms of reduced solute diffusivity at nanoconfined solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Mahadevan, T.; Kojic, M.; Ferrari, M.; Ziemys, A.

    2013-06-01

    We report results from molecular simulations that reveal the causes of reduced diffusivity at solid-liquid interfaces in the presence of nanoscale confinement. The diffusion of a 2 M glucose solution was simulated inside a 10 nm silica channel together with the calculated thermodynamic properties of diffusion. A strong energy-entropy compensation mechanism was found at the interface with a free energy minimum of -0.6 kcal/mol. Using the Eyring equation the average jump length was reduced by 15% at interface. The complete loss of solute diffusivity at silica surface was explained by the substantial loss of the probability of productive displacements. The results suggested that glucose molecule diffusivity close to the surface might be related to a stiffer cage of the hydration shell, which affects the probability of cage breaking. These results help in understanding of diffusion mechanisms at interface and predicting mass transport in nanoconfinement for engineering and biomedical applications.

  2. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William K.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    In this paper, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray Transmission Microscope. The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate and the change in shape of the porosity during interaction with an advancing SL interface in pure Al and Al-0.25 wt% Au alloy. In addition, porosity induced solute segregation patterns surrounding a pore were also quantified.

  3. Solid-Liquid Self-Adaptive Polymeric Composite.

    PubMed

    Dong, Pei; Chipara, Alin Cristian; Loya, Phillip; Yang, Yingchao; Ge, Liehui; Lei, Sidong; Li, Bo; Brunetto, Gustavo; Machado, Leonardo D; Hong, Liang; Wang, Qizhong; Yang, Bilan; Guo, Hua; Ringe, Emilie; Galvao, Douglas S; Vajtai, Robert; Chipara, Mircea; Tang, Ming; Lou, Jun; Ajayan, Pulickel M

    2016-01-27

    A solid-liquid self-adaptive composite (SAC) is synthesized using a simple mixing-evaporation protocol, with poly(dimethylsiloxane) (PDMS) and poly(vinylidene fluoride) (PVDF) as active constituents. SAC exists as a porous solid containing a near equivalent distribution of the solid (PVDF)-liquid (PDMS) phases, with the liquid encapsulated and stabilized within a continuous solid network percolating throughout the structure. The pores, liquid, and solid phases form a complex hierarchical structure, which offers both mechanical robustness and a significant structural adaptability under external forces. SAC exhibits attractive self-healing properties during tension, and demonstrates reversible self-stiffening properties under compression with a maximum of 7-fold increase seen in the storage modulus. In a comparison to existing self-healing and self-stiffening materials, SAC offers distinct advantages in the ease of fabrication, high achievable storage modulus, and reversibility. Such materials could provide a new class of adaptive materials system with multifunctionality, tunability, and scale-up potentials. PMID:26720058

  4. Toward a detailed characterization of oil adsorbates as "solid liquids".

    PubMed

    Kutza, Claudia; Metz, Hendrik; Kutza, Johannes; Syrowatka, Frank; Mäder, Karsten

    2013-05-01

    Solid lipid formulation systems are used to overcome oral bioavailability problems of poorly water-soluble drugs. One promising process is the conversion of a liquid lipid system in a free flowing powder by use of adsorbing excipients. The aim of this study was the detailed characterization of solid-liquid interactions in oil adsorbed to Fujicalin and Neusilin which were manufactured by means of dual asymmetric centrifugation or conventional mortar/pestle blending. The adsorption strength of the excipients was investigated by Benchtop-NMR and ESR spectroscopy revealing the highest adsorption power for the Neusilin products. The adsorbate production methods as well as the storage of the excipients impact their adsorption properties. Environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM) show that dual asymmetric centrifugation leads to a smoothing of the particle surface, whereas the mortar/pestle blending results in an uneven surface and particle destruction. The oil distribution at the particles is inhomogeneous for both production methods. The micropolarity of the adsorbed oil was investigated by ESR spectroscopy and multispectral fluorescence imaging. The adsorbing process on Neusilin leads to an increased micropolarity of the oil component. The release of the oil component in aqueous media could be verified by Benchtop-NMR and multispectral fluorescence imaging. PMID:23275113

  5. Gastric emptying of a physiologic mixed solid-liquid meal

    SciTech Connect

    Fisher, R.S.; Malmud, L.S.; Bandini, P.; Rock, E.

    1982-05-01

    The purposes of this study were to use a noninvasive scintigraphic technique to measure gastric emptying of liquids and solids simultaneously, to study the interactions between emptying of the liquid and solid components of meals in normal subjects, and to employ dual isotope gastric scintigraphy to evaluate gastric emptying of liquids and solids in patients with clinical evidence of gastric outlet obstruction. The solid component of the test meal consisted of chicken liver, labeled in vivo with /sup 99m/Tc sulfur colloid, and the liquid component was water mixed with /sup 111/In DTPA. The rates of emptying were quantitated using a gamma camera on line to a digital computer. Twenty normal subjects were studied using this combined solid-liquid meal. Ten of them also ingested a liquid meal alone and ten a solid meal alone. Liquid emptied from the stomach significantly more rapidly than did solids. The emptying curve for liquids was exponential compared to a linear emptying curve for solids. The gastric emptying rate of the liquid component was slowed significantly by simultaneous ingestion of solids, but the emptying rate of solids was not affected by liquids. Several patients with clinical gastric outlet obstruction were evaluated. Both combined and selective abnormalities for gastric emptying of liquids and solids were demonstrated.

  6. Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics

    PubMed Central

    Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Chen, Hui-Yuan; Yang, Szu-Chi; Huang, Yu-Ru; -Ju Chen, I.; Chen, Yun-Wen; Gusev, Vitalyi; Chen, Miin-Jang; Kuo, Jer-Lai; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2014-01-01

    Despite the numerous devoted studies, water at solid interfaces remains puzzling. An ongoing debate concerns the nature of interfacial water at a hydrophilic surface, whether it is more solid-like, ice-like, or liquid-like. To answer this question, a complete picture of the distribution of the water molecule structure and molecular interactions has to be obtained in a non-invasive way and on an ultrafast time scale. We developed a new experimental technique that extends the classical acoustic technique to the molecular level. Using nanoacoustic waves with a femtosecond pulsewidth and an ångström resolution to noninvasively diagnose the hydration structure distribution at ambient solid/water interface, we performed a complete mapping of the viscoelastic properties and of the density in the whole interfacial water region at hydrophilic surfaces. Our results suggest that water in the interfacial region possesses mixed properties and that the different pictures obtained up to now can be unified. Moreover, we discuss the effect of the interfacial water structure on the abnormal thermal transport properties of solid/liquid interfaces. PMID:25176017

  7. Final Report: Thermal Conductance of Solid-Liquid Interfaces

    SciTech Connect

    Cahil, David, G.; Braun, Paul, V.

    2006-05-31

    Research supported by this grant has significantly advanced fundamental understanding of the thermal conductance of solid-liquid interfaces, and the thermal conductivity of nanofluids and nanoscale composite materials. • The thermal conductance of interfaces between carbon nanotubes and a surrounding matrix of organic molecules is exceptionally small and this small value of the interface conductance limits the enhancement in thermal conductivity that can be achieved by loading a fluid or a polymer with nanotubes. • The thermal conductance of interfaces between metal nanoparticles coated with hydrophilic surfactants and water is relatively high and surprisingly independent of the details of the chemical structure of the surfactant. • We extended our experimental methods to enable studies of planar interfaces between surfactant-coated metals and water where the chemical functionalization can be varied between strongly hydrophobic and strongly hydrophilic. The thermal conductance of hydrophobic interfaces establishes an upper-limit of 0.25 nm on the thickness of the vapor-layer that is often proposed to exist at hydrophobic interfaces. • Our high-precision measurements of fluid suspensions show that the thermal conductivity of fluids is not significantly enhanced by loading with a small volume fraction of spherical nanoparticles. These experimental results directly contradict some of the anomalous results in the recent literature and also rule-out proposed mechanisms for the enhanced thermal conductivity of nanofluids that are based on modification of the fluid thermal conductivity by the coupling of fluid motion and the Brownian motion of the nanoparticles.

  8. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  9. Advanced Technology Development: Solid-Liquid Interface Characterization Hardware

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Characterizing the solid-liquid interface during directional solidification is key to understanding and improving material properties. The goal of this Advanced Technology Development (ATD) has been to develop hardware, which will enable real-time characterization of practical materials, such as aluminum (Al) alloys, to unprecedented levels. Required measurements include furnace and sample temperature gradients, undercooling at the growing interface, interface shape, or morphology, and furnace translation and sample growth rates (related). These and other parameters are correlated with each other and time. A major challenge was to design and develop all of the necessary hardware to measure the characteristics, nearly simultaneously, in a smaller integral furnace compatible with existing X-ray Transmission Microscopes, XTMs. Most of the desired goals have been accomplished through three generations of Seebeck furnace brassboards, several varieties of film thermocouple arrays, heaters, thermal modeling of the furnaces, and data acquisition and control (DAC) software. Presentations and publications have resulted from these activities, and proposals to use this hardware for further materials studies have been submitted as sequels to this last year of the ATD.

  10. Solid-Liquid Interface Characterization Hardware: Advanced Technology Development (ATD)

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Sisk, R. C.; Sen, S.; Kaukler, W. F.; Curreri, Peter A.; Wang, F. C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This ATD has the goal of enabling the integration of three separate measurement techniques to characterize the solid-liquid interface of directionally solidified materials in real-time. Arrays of film-based metal thermocouple elements are under development along with compact Seebeck furnaces suitable for interfacing with separately developed X-ray Transmission Microscopes. Results of applying film arrays to furnace profiling are shown, demonstrating their ability to identify a previously undetected hardware flaw in the development of a second-generation compact furnace. Results of real-time furnace profiling also confirmed that the compact furnace design effectively isolates the temperature profiles in two halves of the furnace, a necessary feature. This isolation had only been inferred previously from the characteristics of Seebeck data reported. Results from a 24-thermocouple array successfully monitoring heating and isothermal cooling of a tin sample are shown. The importance of non-intrusion by the arrays, as well as furnace design, on the profiling of temperature gradients is illustrated with example measurements. Further developments underway for effectively combining all three measurements are assessed in terms of improved x-ray transmission, increased magnification, integral arrays with minimum intrusion, integral scales for velocity measurements and other features being incorporated into the third generation Seebeck furnace under construction.

  11. Wastewater Triad Project: Solid-Liquid Separator FY 2000 Deployment

    SciTech Connect

    Walker, J.F.

    2001-01-11

    The Wastewater Triad Project (WTP) consists of three operational units: the cesium removal (CsR) system, the out-of-tank evaporator (OTE) system, and the solid/liquid separation (SLS) system. These systems were designed to reduce the volume and radioactivity of low-level liquid waste (LLLW) stored in the Melton Valley Storage Tanks (MVSTs) and are operated independently or in series in order to accomplish the treatment goals. Each is a modular, skid-mounted system that is self-contained, individually shielded, and designed to be decontaminated and removed once the project has been completed. The CsR and OTE systems are installed inside Building 7877; the SLS system is installed adjacent to the east side of the MVST 7830 vault cover. The CsR, which consists of ion-exchange equipment for removing {sup 137}Cs from LLLW, was demonstrated in 1997. During the Cesium Removal Demonstration, 30,853 gal of radioactive supernate was processed and 1142 Ci of {sup 137}Cs was removed from the supernate and loaded onto 70 gal of a crystalline silicotitanate sorbent manufactured by UOP, Inc. The OTE system is a subatmospheric single-stage evaporator system designed to concentrate LLLW to smaller volumes. It was previously demonstrated in 1996 and was operated in 1998 to process about 80,000 gal of LLLW. The SLS system was designed to filter and remove suspended solids from LLLW in order to minimize further accumulation of sludge in new storage tanks or to prevent fouling of CsR and OTE systems. The SLS was installed and demonstrated in 1999; {approximately}45,000 gal of radioactive supernate was processed during the demonstration.

  12. Élaboration de couches minces de carbone par ablation laser femtoseconde pour application aux biomatériaux implantables

    NASA Astrophysics Data System (ADS)

    Loir, A.-S.; Garrelie, F.; Donnet, C.; Subtil, J.-L.; Belin, M.; Forest, B.; Rogemond, F.; Laporte, P.

    2005-06-01

    Des films de tetrahedral amorphous-Carbon (ta-C) ont été déposés, sous vide poussé, par ablation d'une cible de graphite avec un laser Ti : saphir (durée d'impulsion 170 fs, fréquence de répétition 1 kHz, énergie maximale par impulsion 1,5 mJ, longueur d'onde 800 nm) sur substrats standard et sur biomatériaux (acier AISI 316L, polyéthylène à très haut poids moléculaire). Les propriétés de ces couches (structure, propriétés nanomécaniques et tribologiques) ont été caractérisées, en fonction des conditions d'élaboration, en examinant l'intérêt de l'utilisation d'un laser femtoseconde et leur capacité à satisfaire aux exigences spécifiques du domaine biomédical. Les propriétés d'adhérence des films ont été considérablement améliorées lors du dépôt sur des substrats en acier inoxydable préalablement préparés par décapage ionique in situ sous atmosphère d'argon. La surface hémisphérique d'une tête fémorale, en acier inoxydable, de prothèse de hanche de diamètre 22,2 mm a été revêtue d'un film de DLC adhérent et homogène en épaisseur. La résistance à l'usure de ce revêtement sera quantifiée à l'aide d'un simulateur de marche durant un million de cycles (correspondant à une année d'activité physique d'un être humain).

  13. Tunnel barrier height oscillations at the solid/liquid interface [rapid communication

    NASA Astrophysics Data System (ADS)

    Hugelmann, Martin; Schindler, Werner

    2003-09-01

    The tunneling probability at the solid/liquid interface has been probed in real space at Au(1 1 1) surfaces using high resolution in situ distance tunneling spectroscopy (DTS). The exponential decay of the tunneling current with the gap width is modulated with oscillations of a period of 0.35 nm. This period coincides with the theoretically predicted spacing of the interfacial water layers at the charged solid/liquid interface.

  14. Solid/liquid lubrication of ceramics at elevated temperatures

    SciTech Connect

    Erdemir, A.; Erck, R.A.; Fenske, G.R.; Hong, H.

    1996-04-01

    This study investigates the effect of solid and liquid lubrication on friction and wear performance of silicon nitride (Si{sub 3}N{sub 4}) and cast iron. The solid lubricant was a thin silver film ({approx}2 {mu}m thick) produced on Si{sub 3}N{sub 4} by ion-beam-assisted deposition. A high-temperature polyol-ester-base synthetic oil served as the liquid lubricant. Friction and wear tests were performed with pin-on-disk and oscillating-slider wear test machines at temperatures up to 300{degrees}C. Without the silver films, the friction coefficients of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} test pairs were 0.05 to 0.14, and the average wear rates of Si{sub 3}N{sub 4} pins were {approx}5 x 10{sup -8} mm{sup 3} N{sup -1}. The friction coefficients of Si{sub 3}N{sub 4}/cast iron test pairs ranged from 0.08 to 0.11, depending on test temperature. The average specific wear rates of cast iron pins were {approx}3 x 10{sup -7} mm{sup 3} N{sup -1} m{sup -1}. However, simultaneous use of the solid-lubricant silver and synthetic oil on the sliding surfaces reduced friction coefficients to 0.02 to 0.08. Moreover, the wear of Si{sub 3}N{sub 4} pins and silver-coated Si{sub 3}N{sub 4} disks was so low that it was difficult to assess by a surface profilometer. The wear rates of cast iron pins were {approx}7 x 10{sup -9} mm{sup 3} N{sup -1} m{sup -1} up to 250{degrees}C, but showed a tendency to increase slightly at much higher temperatures. In general, the test results demonstrated that the solid/liquid lubrication of ceramic and/or metallic components is both feasible and effective in controlling friction and wear.

  15. Coarsening in Solid Liquid Systems: A Verification of Fundamental Theory

    NASA Astrophysics Data System (ADS)

    Thompson, John D.

    Coarsening is a process that occurs in nearly all multi-phase materials in which the total energy of a system is reduced through the reduction of total interfacial energy. The theoretical description of this process is of central importance to materials design, yet remains controversial. In order to directly compare experiment to theoretical predictions, low solid volume fraction PbSn alloys were coarsened in a microgravity environment aboard the International Space Station (ISS) as part of the Coarsening in Solid Liquid Mixtures (CSLM) project. PbSn samples with solid volume fractions of 15%, 20% and 30% were characterized in 2D and 3D using mechanical serial sectioning. The systems were observed in the self-similar regime predicted by theory and the particle size and particle density obeyed the temporal power laws predicted by theory. However, the magnitudes of the rate constants governing those temporal laws as well as the forms of the particle size distributions were not described well by theoretical predictions. Additionally, in the 30% solid volume fraction system, the higher volume fraction results in a non-spherical particle shape and a more closely packed spatial distribution. The presence of slow particle motion induced by vibrations on the ISS is presented as an explanation for this discrepancy. To model the effect of this particle motion, the Akaiwa-Voorhees multiparticle diffusion simulations are modified to treat coarsening in the presence of a small convection term, such as that of sedimentation, corresponding to low Peclet numbers. The simulations indicate that the particle size dependent velocity of the sedimentation increases the rate at which the system coarsens. This is due to the larger particles traveling farther than normal, resulting in them encountering more small particles, which favors their growth. Additionally, sedimentation resulted in broader PSDs with a peak located at the average particle size. When the simulations are modified to account for the particle sedimentation, the measurements for the 15% and 20% system are in excellent agreement with the theoretical predictions for both the rate constants and the PSDs. There is good agreement with the 30% system as well, though the simulations are less valid at this volume fraction.

  16. Solid-liquid interface free energy in binary systems: theory and atomistic calculations for the (110) Cu-Ag interface.

    PubMed

    Frolov, T; Mishin, Y

    2009-08-01

    We analyze thermodynamics of solid-liquid interfaces in binary systems when the solid is in a nonhydrostatic state of stress. The difficulty lies in the fact that chemical potential of at least one of the chemical components in a nonhydrostatic solid is an undefined quantity. We show, nevertheless, that the interface free energy gamma can be defined as excess of an appropriate thermodynamic potential that depends on the chemical potentials in the liquid phase. We derive different forms of the adsorption equation for solid-liquid interfaces, with differential coefficients representing excesses of extensive properties. This leads, in particular, to the formulation of interface stress tau(ij) as an appropriate excess over nonhydrostatic bulk stresses. The interface stress is not unique unless the solid is in a hydrostatic state of stress. We also derive Gibbs-Helmholtz type equations that can be applied for thermodynamic integration of gamma. All thermodynamic relations derived here are presented in forms suitable for atomistic simulations. In particular, the excess quantities can be computed without constructing interface profiles. As an application, we perform semigrand canonical Monte Carlo simulations of the (110) solid-liquid interface in the Cu-Ag system. We show that gamma computed by thermodynamic integration along a coexistence path decreases with increasing composition difference between the phases. At the same time, tau(ij) remains negative (i.e., the interface is in a state of compression), drastically increases in magnitude, and becomes highly anisotropic. Some of the interface excess properties are computed by different methods and demonstrate accurate agreement with each other, confirming the correctness of our analysis. PMID:19673580

  17. Atomistic simulations of the solid-liquid transition of 1-ethyl-3-methyl imidazolium bromide ionic liquid

    NASA Astrophysics Data System (ADS)

    Feng, Haijun; Zhou, Jian; Qian, Yu

    2011-10-01

    Achieving melting point around room temperature is important for applications of ionic liquids. In this work, molecular dynamics simulations are carried out to investigate the solid-liquid transition of ionic liquid 1-ethyl-3-methyl imidazolium bromide ([emim]Br) by direct heating, hysteresis, void-nucleation, sandwich, and microcanonical ensemble approaches. Variations of the non-bonded energy, density, diffusion coefficient, and translational order parameter of [emim]Br are analyzed as a function of temperature, and a coexisting solid-liquid system is achieved in the microcanonical ensemble method. The melting points obtained from the first three methods are 547 ± 8 K, 429 ± 8 K, and 370 ± 6 K; while for the sandwich method, the melting points are 403 ± 4 K when merging along the x-axis by anisotropic isothermal-isobaric (NPT) ensemble, 393 ± 4 K when along the y-axis by anisotropic NPT ensemble, and 375 ± 4 K when along the y-axis by isotropic NPT ensemble. For microcanonical ensemble method, when the slabs are merging along different directions (x-axis, y-axis, and z-axis), the melting points are 364 ± 3 K, 365 ± 3 K, and 367 ± 3 K, respectively, the melting points we get by different methods are approximately 55.4%, 21.9%, 5.1%, 14.5%, 11.6%, 6.5%, 3.4%, 3.7%, and 4.3% higher than the experimental value of 352 K. The advantages and disadvantages of each method are discussed. The void-nucleation and microcanonical ensemble methods are most favorable for predicting the solid-liquid transition.

  18. Modeling the solid-liquid phase transition in saturated triglycerides

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman bands in the temperature range of -20 °C≤T ≤90 °C. The experimental results were in accord with the predictions of the h-Y model and support the proposal of Corkery et al. [Langmuir 23, 7241 (2007)] that the liquid state is made up of molecules that are each, on average, in a Y conformation. Finally, we carried out computer simulations of minimal-model TLs in the liquid phase, and concluded that although the individual TL molecules are, on average, Y conformers, long-range discotic order is unlikely to exist.

  19. Determination of pesticides in lettuce using solid-liquid extraction with low temperature partitioning.

    PubMed

    Costa, Anna I G; Queiroz, Maria E L R; Neves, Antônio A; de Sousa, Flaviane A; Zambolim, Laércio

    2015-08-15

    This work describes the optimization and validation of a method employing solid-liquid extraction with low temperature partitioning (SLE/LTP) together with analysis by gas chromatography with electron capture detection (GC/ECD) for the determination of nine pesticides (chlorothalonil, methyl parathion, procymidone, endosulfan, iprodione, λ-cyhalothrin, permethrin, cypermethrin, and deltamethrin) in lettuce. The method was found to be selective, accurate, and precise, with means recovery values in the range of 72.3-103.2%, coefficients of variation ⩽ 12%, and detection limits in the range 0.4-37 μg kg(-1). The matrix components significantly influence the chromatographic response of the analytes (above 10%). The optimized and validated method was applied to determine the residual concentrations of the fungicides iprodione and procymidone that had been applied to field crops of lettuce. The maximum residual concentrations of the pesticides in the lettuce samples were 13.6 ± 0.4 mg kg(-1) (iprodione) and 1.00 ± 0.01 mg kg(-1) (procymidone), on the day after application of the products. PMID:25794722

  20. Characterization of Solid Liquid Suspensions Utilizing Non-Invasive Ultrasonic Measurements

    SciTech Connect

    Panetta, P.D.; Tucker, B.; Ahmed, S.; Pappas, R.A.

    2004-03-31

    Rapid, on-line characterization of the particle size and concentration of moderate to highly concentrated slurries is required for efficient waste remediation at the DOE complexes. This paper discusses the advancements achieved under the Environmental Management Science Program to accurately characterize high-level waste at the high concentrations expected at the DOE complexes. In addition, the results are applicable to efficient process measurement and control in many chemical and pharmaceutical manufacturing processes. Existing methods for determining the particle size and concentration of non-dilute slurries based on ultrasonic attenuation can become inaccurate due to the complex interactions of ultrasonic waves with the constituents of the slurries and the necessity for very careful transducer alignment. Two measurements that help to overcome these difficulties are the ultrasonic backscattering and diffuse field. The backscattering measurement is attractive because viscous, thermal and inertial effects have small contributions to the backscattering. In addition, the backscattering theories are simpler than attenuation theories and lend themselves to more stable inversion processes. Furthermore, the measurements of backscattering measurement do not require long travel distances and can be made with a single transducer thus eliminating alignment problems. We will present ultrasonic measurements and theoretical comparisons on solid liquid suspensions designed to elucidate the particle size and concentration at high concentration relevant to the high level waste at the DOE complexes.

  1. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  2. Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Babu, Jeetu S.; Sathian, Sarith P.

    2012-05-01

    A molecular dynamics (MD) methodology based on Eyring theory of reaction rates is proposed for investigating solid-liquid interfacial properties crucial to the development of many nanotechnology applications. The method involves the calculation of activation energy required for the flow process directly from the MD trajectory information. We have applied this methodology to study the behavior of water in hydrophobic confinement in carbon nanotubes (CNTs) and also between graphene sheets. In the case of confined water molecules in CNTs and between graphene sheets the degree of confinement and curvature effects were found to have more influence on the solid-liquid interfacial friction, with almost negligible friction below a certain characteristic dimension in both the cases. This behavior of confined and unconfined water molecules is explained on the basis of molecular interactions and subsequent changes in the activation energy. Analysis based on this method also revealed that a finite amount of friction does exist at the channel entry and exit region. This could limit the flow of liquid molecules through the nanochannels and hence needs to be taken into account in the design of nanofluidic devices.

  3. Influence of Melt Convection on Solid-Liquid Interface Under Terrestrial and Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1985-01-01

    Solidification and crystal growth processes involve thermal and solutal gradients within a molten phase. In the presence of gravity, such gradients result in convective flows which interact with diffusion fields at the solid-liquid interface. Dendritic growth kinetics was studied in transparent model systems which freeze similarily to most metals. Succinonitrile shows a strong influence of convection at supercoolings below about 1K. Fluid flows adjacent to solid-liquid interfaces and the behavior of shear flows in vertical annular geometries are studied. Novel low-frequency eigenstates were discovered and classified as coupled modes, for their involvement with interfacial deformation coupled to the fluid flow, and are unknown in systems without deformable interfaces. The dependence of coupled convection modes on interfacial geometry, gravity, fluid properties, and transformation characteristics studied for several annual flow arrangements with nominally pure solid-liquid systems.

  4. A joint first principles and ATR-IR study of the vibrational properties of interfacial water at semiconductor-water solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Tecklenburg, Stefanie; Niu, Fang; Erbe, Andreas; Wippermann, Stefan; Gygi, Francois; Galli, Giulia

    Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. We carried out joint ATR-IR spectroscopy measurements and ab initio molecular dynamics simulations of the vibrational properties of interfaces between liquid water and prototypical semiconductor substrates. In particular, the Ge(100)/H2O interface is shown to feature a reversible bias potential dependent surface phase transition. Our study highlights the key role of coupled theory-experimental investigations on well controlled and characterized interfaces, in order to develop robust strategies to interpret experiments and validate theory. The authors wish to thank T. A. Pham for helpful discussions. G. G. and F. G. acknowledge DOE-BES Grant No. DE-SS0008939.

  5. Effect of agglomerate pore structure on efficiency of solid-liquid separation by an agglomeration technique: use of a model system

    SciTech Connect

    Meadus, F.W.; Sparks, B.D.

    1983-04-01

    Solid-liquid separation is often difficult to achieve when the solids are finely divided. When the liquid involved is a hydrocarbon, the economics of any process involving such a separation will often depend on the ease and efficiency of liquid recovery. A process is described in which an enhanced solid-liquid separation is achieved by means of a size enlargement technique requiring agitation with a second immiscible liquid, which preferentially wets the solid surface. Potential applications for such a process include removal of ash particles in coal liquefaction and separation of solids from solvent extracted oil-sands. In this work a model system has been used in an attempt to better understand the process mechanics and the factors which affect the efficiency of liquid separation. 16 figures, 2 tables.

  6. Transport Electronique Dans Les Super Reseaux : Applications Aux Détecteurs Infrarouges à Grandes Longueur D'onde

    NASA Astrophysics Data System (ADS)

    Lhuillier, Emmanuel

    2010-11-01

    The low flux infrared imaging needs performant high wavelength detectors. Quantum Well Infrared Photodetectors (QWIP), thanks to the maturity of GaAs, the possibility to adjust the detected wavelength on a large range and to realize large uniform matrix are good candidate for such applications. In order to validate this interest, we have performed an electro-optic characterization of a 15{μ}m sample. These measurements have been used to simulate the performance of a camera based on this QWIP and used in a low infrared photons flux scenario. We predict that this QWIP would succeed. Nevertheless these simulations also underline the detrimental role of the dark current. Thus we have developed a simulation tool based on a hoping approach between localized states, which provide us a better understanding of the transport in these heterostructures. The code has in particular underlines the role plays by the electron -ionized impurities interaction, which make the dark current very sensitive to the doping profile. Using this tool we have designed new structures, with optimized doping profile, in which the scattering rate has been decreased by a factor two. Moreover we have identified a quantum origin to the plateau shape of the I(V) curve. This code is more generally a useful simulation tool for the transport in hétérostructures. The influence of growth defects (non ideal interface and disorder) has been quantized and we have performed the first evaluation of The R0A in a THz QCD. Finally non local transport effects have been investigated. Saw teeth observation on the I(V) curves have been modeled and their influence on the detectivty estimated.

  7. Direct assessment of solid-liquid interface noise in ion sensing using a differential method

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Must, Indrek; Netzer, Nathan L.; Xu, Xingxing; Solomon, Paul; Zhang, Shi-Li; Zhang, Zhen

    2016-04-01

    This letter presents a microelectrode cell dedicated to direct assessment of the solid-liquid interface noise without recourse to a reference electrode. In the present design, two identical TiN electrodes of various sizes are used for differential measurements in KCl-based electrolytes. Measured noise of the TiN|electrolyte system is found to be of thermal nature. Scaling inversely with electrode area, the noise is concluded to mainly arise from the solid-liquid interface. This noise is comparable to or larger than that of the state-of-the-art MOSFETs. Therefore, its influence cannot be overlooked for the design of future ion sensors.

  8. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    NASA Astrophysics Data System (ADS)

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-10-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  9. Bionic optical imaging system with aspheric solid-liquid mixed variable-focus lens

    NASA Astrophysics Data System (ADS)

    Du, Jia-Wei; Wang, Xuan-Yin; Liang, Dan

    2016-02-01

    A bionic optical imaging system with an aspheric solid-liquid mixed variable-focus lens was designed and fabricated. The entire system mainly consisted of a doublet lens, a solid-liquid mixed variable-focus lens, a connecting part, and a CCD imaging device. To mimic the structure of the crystalline lens, the solid-liquid mixed variable-focus lens consisted of a polydimethylsiloxane (PDMS) lens, a polymethyl methacrylate lens, and the liquid of ethyl silicone oil. By pumping liquid in or out of the cavity using a microinjector, the curvatures of the front and rear surfaces of the PDMS lens were varied, resulting in a change of focal length. The overall structure of the system was presented, as well as a detailed description of the solid-liquid mixed variable-focus lens, material, and fabrication process. Under different injection volumes, the deformation of the PDMS lens was measured and simulated, pictures were captured, and the optical performance was analyzed in simulations and experiments. The focal length of the system ranged from 25.05 to 14.61 mm, and the variation of the diopter was 28.5D, which was larger than that of the human eye.

  10. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The

  11. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…

  12. Abatement of ammonia emissions from swine lagoons using polymer enhanced solid-liquid separation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effects of solid-liquid separation of liquid swine manure on ammonia emissions from lagoons. This determination was done at full-scale in two contiguous swine production units that had similar animal production management. One of these units was maintained as a...

  13. Capillarylike fluctuations of a solid-liquid interface in a noncohesive granular system.

    PubMed

    Luu, Li-Hua; Castillo, Gustavo; Mujica, Nicolás; Soto, Rodrigo

    2013-04-01

    One of the most noticeable collective motion of noncohesive granular matter is clustering under certain conditions. In particular, when a quasi-two-dimensional monolayer of monodispersed noncohesive particles is vertically vibrated, a solid-liquid-like transition occurs when the driving amplitude exceeds a critical value. Here the physical mechanism underlying particle clustering relies on the strong interactions mediated by grain collisions, rather than on grain-grain cohesive forces. In average, the solid cluster resembles a drop, with a striking circular shape. We experimentally investigate the coarse-grained solid-liquid interface fluctuations, which are characterized through the static and dynamic correlation functions in the Fourier space. These fluctuations turn out to be well described by the capillary wave theory, which allows us to measure the solid-liquid interface surface tension and mobility once the granular "thermal" kinetic energy is determined. Despite that the system is strongly out of equilibrium and that the granular temperature is not uniform, there is energy equipartition at the solid-liquid interface, for a relatively large range of angular wave numbers. Furthermore, both surface tension and mobility are consistent with a simple order of magnitude estimation considering the characteristic energy, length, and time scales, which is very similar to what can be done for atomic systems. PMID:23679358

  14. Investigation of solid-liquid interfacial chemistry using nonlinear optical molecular probing method

    NASA Astrophysics Data System (ADS)

    Dong, Ying

    1999-12-01

    Solid-liquid interfacial chemistry studies adsorption and chemical reaction of molecules/ions in a very thin ( ~ 20-50 ) interfacial region. Difficulties arise from the nature of the liquid phase and the equilibrium of solute molecules with the liquid phase and the interface. We overcome the difficulties using nonlinear optical molecular probing (NOMP) method-an innovative method that allows us to determine chemical processes at solid-liquid interfaces under real chemical conditions. Nonlinear optical molecular probes are certain organic molecules that have nonlinear optical response a thousand to million times stronger than those of commonly used small organic molecules such as CH3CN and ions such as Cl- and Na+. Therefore, their presence at a solid-liquid interface can easily be detected using second harmonic generation (SHG). The adsorption parameters of other chemical species present at the interface (e.g., organic molecules serving as corrosion inhibitors) can be extracted by investigating their co-adsorption behavior in the presence of properly chosen nonlinear optical molecular probes. Today, with over 1000 nonlinear optical molecular probes available, one can always find an appropriate molecular probe to suit the chemical requirements of a particular interfacial system. We have investigated several important issues using the NOMP method. These include the competitive adsorption of ions with different charges and sizes, the density distribution of silanol (SiOH) groups at silica surfaces, and the adsorption and reaction mechanism of small organic molecules at solid-liquid interfaces.

  15. Enhanced solid-liquid separation of dairy manure with natural flocculants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural flocculants have potential to replace the use of synthetic flocculants used for enhanced solid-liquid separation of livestock effluents, especially with increased cost of energy and renewed interest on organic farming systems. We conducted a study to determine the effectiveness of natural fl...

  16. Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.

    PubMed

    Kochergin, Vadim; Miller, Keith

    2011-01-01

    Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams. PMID:20607445

  17. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  18. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces. PMID:25923410

  19. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the

  20. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  1. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    NASA Technical Reports Server (NTRS)

    Wang, Jai-Ching

    1994-01-01

    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  2. Thermodynamic and rheological properties of solid-liquid systems in coal processing

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1992-01-01

    In this report we present two data sets that have been compiled to assist in the model developments for solid-liquid equilibria and viscosities of coal derived systems. The first one is on vapor pressures of solid aromatics and the second one consists of viscosities of pure model compounds and some mixtures. These databanks are ready for usage in model development and are summarized in Tables 1 and 2. Literature is being searched to compile similar data for high pressure liquid compressibilities, liquid and solid heat capacities and solid-liquid equilibria for model compound systems. Literature search is also containing to investigate available viscosity models. Once this is completed a few models will be selected for evaluation and consideration as candidates for extension to coal liquids.

  3. [Structure analysis on growth solid-liquid boundary layer of BSO crystal at real time].

    PubMed

    Qiu, Huai-li; Wang, Ai-hua; You, Jing-lin; Chen, Hui; Yin, Shao-tang

    2005-04-01

    The micro Raman spectra of solid-liquid boundary layer, the melts and crystal side, were measured at real time, concerning BSO crystal grown with zone-melting method. The structure characters in boundary layer, melts and crystal were analyzed. The process, of which the growth unit structure changed while they transited from melts through boundary layer to crystal lattice, was analyzed. The results show that, there exists Bi3O4 and [SiO4] bonding structure in the melts of BSO crystal. While in the solid-liquid boundary layer, the Bi3O4 molecular units converge into [BiO7] octahedron monomer of polymer in form, the monomer or the polymer converge with the [SiO4] structure units, then all these converged structure enter into crystal lattice sites. PMID:16097677

  4. Note: Sample cells to investigate solid/liquid interfaces with neutrons

    SciTech Connect

    Rennie, Adrian R. Hellsing, Maja S.; Lindholm, Eric; Olsson, Anders

    2015-01-15

    The design of sample cells to study solid/liquid interfaces by neutron reflection is presented. Use of standardized components and a modular design has allowed a wide range of experiments that include grazing incidence scattering and conventional small-angle scattering. Features that reduce background scattering are emphasized. Various flow arrangements to fill and replenish the liquid in the cell as well as continuous stirring are described.

  5. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.

    1988-01-01

    Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.

  6. Effect of confinement on the solid-liquid coexistence of Lennard-Jones Fluid

    SciTech Connect

    Das, Chandan K.; Singh, Jayant K.

    2013-11-07

    The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wall separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.

  7. Conception, elaboration et mise a l'essai d'un simulateur interactif permettant une approche modelisante: Application aux lois de la genetique mendelienne

    NASA Astrophysics Data System (ADS)

    Lasri, Abdel-Halim

    Dans cette recherche-developpement, nous avons concu, developpe et mis a l'essai un simulateur interactif pour favoriser l'apprentissage des lois probabilistes impliqees dans la genetique mendelienne. Cet environnement informatise devra permettre aux etudiants de mener des experiences simulees, utilisant les statistiques et les probebilites comme outils mathematiques pour modeliser le phenomene de la transmission des caracteres hereditaires. L'approche didactique est essentiellement orientee vers l'utilisation des methodes quantitatives impliquees dans l'experimentation des facteurs hereditaires. En incorporant au simulateur le principe de la "Lunette cognitive" de Nonnon (1986), l'etudiant fut place dans une situation ou il a pu synchroniser la perception de la representation iconique (concrete) et symbolique (abstraite) des lois probabilistes de Mendel. A l'aide de cet environnement, nous avons amene l'etudiant a identifier le(s) caractere(s) hereditaire(s) des parents a croiser, a predire les frequences phenotypiques probables de la descendance issue du croisement, a observer les resultats statistiques et leur fluctuation au niveau de l'histogramme des frequences, a comparer ces resultats aux predictions anticipees, a interpreter les donnees et a selectionner en consequence d'autres experiences a realiser. Les etapes de l'approche inductive sont privilegiees du debut a la fin des activites proposees. L'elaboration, du simulateur et des documents d'accompagnement, a ete concue a partir d'une vingtaine de principes directeurs et d'un modele d'action. Ces principes directeurs et le modele d'action decoulent de considerations theoriques psychologiques, didactiques et technologiques. La recherche decrit la structure des differentes parties composant le simulateur. L'architecture de celui-ci est construite autour d'une unite centrale, la "Principale", dont les liens et les ramifications avec les autres unites confere a l'ensemble du simulateur sa souplesse et sa facilite d'utilisation. Le simulateur "Genetique", a l'etat de prototype, et la documentation qui lui est afferente ont ete soumis a deux mises a l'essai: l'une fonctionnelle, l'autre empirique. La mise a l'essai fonctionnelle, menee aupres d'un groupe d'enseignants experts, a permis d'identifier les lacunes du materiel elabore afin de lui apporter les reajustements qui s'imposaient. La mise a l'essai empirique, conduite par un groupe de onze (11) etudiants de niveau secondaire, avait pour but, d'une part, de tester la facilite d'utilisation du simulateur "Genetique" ainsi que les documents d'accompagnement et, d'autre part, de verifier si les participants retiraient des avantages pedagogiques de cet environnement. Trois techniques furent exploitees pour recolter les donnees de la mise a l'essai empirique. L'analyse des resultats a permis de faire un retour critique sur les productions concretes de cette recherche et d'apporter les modifications necessaires tant au simulateur qu'aux documents d'accompagnement. Cette analyse a permis egalement de conclure que notre simulateur interactif favorise une approche inductive permettant aux etudiants de s'approprier les lois probabilistes de Mendel. Enfin, la conclusion degage des pistes de recherches destinees aux etudes ulterieures, plus particulierement celles qui s'interessent a developper des simulateurs, afin d'integrer a ceux-ci des representations concretes et abstraites presentees en temps reel. Les disquettes du simulateur "Genetique" et les documents d'accompagnement sont annexes a la presente recherche.

  8. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.

  9. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    SciTech Connect

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles based on EIS measurement using a sensor of 8 electrodes are reported. Results have demonstrated the potential as well as revealed the challenge in the use of EIS and EITS for characterisation of particle in suspension.

  10. A model of blind zone for in situ monitoring the solid/liquid interface using ultrasonic wave.

    PubMed

    Peng, Song; Ouyang, Qi; Zhu, Z Z; Zhang, X L

    2015-07-01

    To in situ monitor a solid/liquid interface to control metal qualities, the paper analysis blind models of the ultrasonic propagation in the solidifying molten metal with a solid/liquid interface in the Bridgman type furnace, and a mathematical calculation model of blind zone with different source locations and surface concavities is built. The study points out that the blind zone I is caused by ray bending in the interface edge, and the blind zone II is caused by totally reflection which is related with initial ray angle, critical refraction angle of solid/liquid media. A serial of simulation experiments are operated on the base of the model, and numerical computation results coincide with model calculated results very well. Therefore, receiver should locate beyond these blind zones in the right boundary to obtain time of flight data which is used to reconstruct the solid/liquid interface. PMID:25783779

  11. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu

    2013-01-01

    The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ? two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.

  12. Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method

    NASA Astrophysics Data System (ADS)

    Sun, Xiaosong; Sakai, Mikio; Yamada, Yoshinori

    2013-09-01

    In this paper, we describe a new Lagrangian-Lagrangian algorithm, which is referred to be the DEM-SPH method, for solid-liquid flows involving free surfaces. The DEM solid phase and the SPH liquid phase are coupled using the local averaging technique described by Lagrangian approaches, where both the continuity equation and the interaction force, i.e. drag force, are connected with the local mean voidage. Conservative forms of momentum transformation are derived for the DEM-SPH interaction via a variational approach. By introducing a correction to the SPH approximation with explicit inclusion of boundary information, arbitrary boundaries can be modeled without any extra wall particles, where the boundary is used commonly for both DEM and SPH phases. We deploy level-set distance functions to efficiently construct and evaluate this boundary model. To examine the validity of the present method, we perform three-dimensional simulations of a dynamic flow in a solid-liquid dam break and a quasi-steady flow in a rotating cylindrical tank; and we conduct validation experiments to justify the simulation results. In the dam-break problem, positions of wave fronts during the collapse are computed and compared with experimental measurements; for the circulating tank, some macroscopic aspects of the steady flow, e.g. the shape, dimension and velocity profile of the solid bed, are obtained for validation data. In both cases, the simulation results are in good agreement with those of the experiment. Consequently, the DEM-SPH method is proved to be adequate in modeling solid-liquid flows through this study.

  13. Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth.

    PubMed

    Paulose, Maggie; Varghese, Oomman K; Grimes, Craig A

    2003-08-01

    Nanoscale wires of silicon oxide, and silicon oxide with embedded gold-silicide nanospheres, are synthesized by heating of a gold-coated silicon wafer at temperatures of 1000 degrees C or above, with the resulting wires having diameters ranging from 30 to 150 nm and lengths of approximately 1 mm. This simple fabrication process should make possible economical bulk production of nanowires. Studies indicate that the growth of these gold-silica composite nanowires occurs directly on the silicon wafer by a solid-liquid-solid mechanism. PMID:14598450

  14. The Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows

    PubMed Central

    Alexiadis, Alessio

    2015-01-01

    This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling), flow conditions (confined, free-surface, microscopic), and scales (from microns to meters). Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow. PMID:25961561

  15. Structural Evolution of Silicon Oxide Nanowires via Head-Growth Solid-Liquid-Solid Process

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hang; Chan, Shih-Yu; Chen, Chia-Fu

    2007-11-01

    In this paper, we propose a growth mechanism for silicon oxide nanowires (SiONWs) as a unique solid-liquid-solid process. SiONWs were synthesized in a furnace at 1000 °C and cooled at a high rate. Nickel and gold were introduced as catalysts to dissolve and precipitate the silicon oxide originally prepared by wet oxidation. The ratio of nickel to gold determined the precipitation rate and different “octopus-like” structures were formed. At a specific cooling rate, composition and amount of a catalyst, aligned silicon oxide nanowires with unattached ends were obtained.

  16. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  17. Evaluation and ranking of the tank focus area solid liquid separation needs

    SciTech Connect

    McCabe, D.J.

    1995-08-17

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing.

  18. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  19. A level set method for solid-liquid interface tracking in texturally equilibrated pore networks

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, Soheil; Hesse, Marc; Prodanovic, Masa

    2015-04-01

    The properties of some porous media are determined by their evolution towards textural equilibrium. Melt drainage from temperate glacier ice and the accumulation of hydrocarbons beneath rock salt are two examples in natural systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining dihedral angle, θ, at solid-liquid contact lines. In this work we present the first computations of 3-D texturally equilibrated pore networks using a novel level set method. Interfacial energy minimization is achieved by evolving interface under surface diffusion to constant mean curvature surface. The porosity and dihedral angle constraints are added to the formulation using virtual velocity terms. A domain decomposition scheme is devised to restrict the computational domain and the coupling between the interfaces is achieved on the original computational domain. For the last 30 years, explicit representation of the interfaces limited the computations to highly idealized geometries. The presented model overcomes these limitations and opens the door to the exploration of the physics of these materials in realistic systems. For example, our results show that the fully wetted grain boundaries exist even for θ>0 which reconciles the theory with experimental observations. This work is sponsored by the Statoil Fellows Program at The University of Texas.

  20. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Kim, Jaegil; Farrell, James D.; Wales, David J.; Straub, John E.

    2014-11-01

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  1. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure. PMID:26274309

  2. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  3. Ultrasonic measurement of solid/liquid interface position during solidification and melting of metals

    NASA Astrophysics Data System (ADS)

    Parker, R. L.

    1982-05-01

    The use of pulse-echo ultrasonic flaw detectors to detect the presence and location of cracks, voids, and other discontinuities in metals and non-metal is well known. The solid-liquid interface in a melting or freezing metal can also be considered as a discontinuity, in that there is a measurable difference in both sound velocity and density across the interface. For normal incidence of longitudinal waves in a typical case, about 10% of the pressure amplitude of the incident wave would be expected to be reflected. Thus such a technique, if it worked, could be considered as a method for measurement, feedback, and closed-loop process control in such applications as continuous casting of metals. To examine the feasibility of this technique, the melting and freezing of 99.9 Sn has been studied at NBS using pulse-echo equipment at a nominal frequency of 5MHz. The transducer contacts the cold end of a 5/16? 8? specimen in a graphite mold in a Bridgman gradient furnace (unidirectional melting/solidification). Sharp echoes easily locate the interface position, in both freezing and melting, to 1 mm, over the range of interface velocities tested (up to4mm/min). A literature search showed that similar or related tests have been made by at least 5 other groups in the U. S. and abroad, in a number of materials and geometries. Most of them were also successful in locating the interface. In the relatively difficult case of steel, while interfaces could be located under certain conditions, there were also found some substantial problems involving signal attenuation and poor signal/noise ratios. Some possible causes for this could be poor reflection of the incident beam from the dendritic ?mushy zone? in the case of alloys, as well as bulk attenuation effects due to grain size or other scattering centers. In the case of continuous castings, the coupling of the acoustic energy into hot, rough and scaly surfaces presents additional problems. However, much progress has been made in recent years on the problems of getting acoustic energy into hot steel surfaces, including the use of noncontact Lorentz-force transducers (EMATS). NBS work is focussed o the study of the measurement factors inherent in possible use of the method for process control, as well as possible use for interface characterization. In those cases, such as steel continuous casting,where signal/noise problems may be limiting, appropriate signal processing techniques should make it possible to improve signal/noise ratios. The techniques include corrections for transducer response as well as signal averaging and correlation techniques. To do this, a sampling oscilloscope is used to provide a slowed but shape-preserving output of the received echo, which is then fed to a digitizer and then to a small computer (64 k memory, Z-80 CPU, 8? floppy discs).

  4. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    PubMed Central

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-01-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for ‘accommodating’ guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in ‘sensing’ application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials. PMID:26411980

  5. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    PubMed

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. PMID:26426309

  6. Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step

    NASA Astrophysics Data System (ADS)

    Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon

    2014-11-01

    We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.

  7. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-09-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for ‘accommodating’ guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in ‘sensing’ application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials.

  8. Stir-membrane solid-liquid-liquid microextraction for the determination of parabens in human breast milk samples by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Rodríguez-Gómez, Rocío; Roldán-Pijuán, Mercedes; Lucena, Rafael; Cárdenas, Soledad; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Valcárcel, Miguel

    2014-08-01

    In this article, stir-membrane solid-liquid-liquid microextraction (SM-SLLME) is tailored for the analysis of solid matrices and it has been evaluated for the determination of parabens in l breast milk samples. A three-phase microextraction mode was used for the extraction of the target compounds taking advantage of their acid-base properties. The unit allows the simultaneous extraction of the target compounds from the solid sample to an organic media and the subsequent transference of the analytes to an aqueous acceptor phase. The method includes the identification and quantification of the analytes by ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). All the variables involved in the extraction procedure have been accurately studied and optimized. The analytes were detected and quantified using a triple quadrupole mass spectrometer (QqQ). The selection of two specific fragmentation transitions for each compound allowed simultaneous quantification and identification. The method has been analytically characterized on the basis of its linearity, sensitivity and precision. Limits of detection ranged from 0.1 to 0.2ngmL(-1) with precision better than 8%, (expressed as relative standard deviation). Relative recoveries were in the range from 91 to 106% which demonstrated the applicability of the stir-membrane solid-liquid-liquid microextraction for the proposed analytical problem. Moreover, the method has been satisfactorily applied for the determination of parabens in lyophilized breast milk samples from 10 randomly selected individuals. PMID:24935266

  9. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  10. On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction.

    PubMed

    Riaño, B; García-González, M C

    2014-01-01

    In some regions, intensive pig farming has led to soil and water pollution due to the over-application of manure as an organic fertilizer, thereby necessitating alternative treatment technologies to help manage the large amounts of manure generated. The present study seeks to determine the effectiveness of an on-farm swine manure treatment plant consisting of a solid-liquid separation phase using screw pressing followed by a coagulation-flocculation process, and nitrification-denitrification of the liquid fraction. Each treatment unit was evaluated for its contribution towards reducing the raw manure concentration of solids, organic matter, nutrients (nitrogen and phosphorous), metals, and pathogens. The overall system presented high removal efficiencies of up to 71% of TS (total solids) and 97% of TCOD (total chemical oxygen demand). Approximately 97% TKN (total Kjeldahl nitrogen) and 89% TP (total phosphorous) removal was achieved. Metals (copper and zinc) diminished in the liquid fraction to non-detectable concentrations (<1.0 mg L(-1)). As regards microbial removal, total concentration reductions of 3.6 log10 for Escherichia coli and 1.8 log10 for Salmonella were achieved. Finally, the system was evaluated from a financial standpoint. Results indicate that screw pressing and coagulation-flocculation for solid-liquid separation and nitrification-denitrification of the liquid fraction is a technological alternative for reducing the environmental impact of intensive pig farming in a given area. PMID:24291581

  11. Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling

    2015-11-01

    In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.

  12. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.

  13. New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site

    SciTech Connect

    Bhave, Ramesh R

    2012-01-01

    New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site R. Bhave (Oak Ridge National Laboratory. Oak Ridge, TN) and M. R. Poirier* (Savannah River National Laboratory, Aiken SC) Solid-liquid separation is the limiting step for many waste treatment processes at the Savannah River Site. SRNL researchers have identified the rotary microfilter as a technology to improve the rate of solid-liquid separation processes. SRNL is currently developing the rotary microfilter for radioactive service and plans to deploy the technology as part of the small column ion exchange process. The rotary microfilter can utilize any filter media that is available as a flat sheet. The current baseline membrane is a 0.5 micron (nominal) porous metal filter (Pall PMM050). Previous testing with tubular filters showed that filters composed of a ceramic membrane on top of a stainless steel support produce higher flux than filters composed only of porous metal. The authors are working to develop flat sheet filter media composed of a ceramic membrane and/or ceramic-metal composite on top of a porous stainless steel support that can be used with the rotary microfilter to substantially increase filter flux resulting in a more compact, energy efficient and cost-effective high level radioactive waste treatment system. Composite membranes with precisely controlled pore size distribution were fabricated on porous metal supports. High quality uniform porous metal (316SS) supports were fabricated to achieve high water permeability. Separative layers of several different materials such as ultrafine metal particles and ceramic oxides were used to fabricate composite membranes. The fabrication process involved several high temperature heat treatments followed by characterization of gas and liquid permeability measurements and membrane integrity analysis. The fabricated composite membrane samples were evaluated in a static test cell manufactured by SpinTek. The composite membranes were evaluated on several feed slurries: 1 wt. % strontium carbonate in deionized water, 1 wt. % monosodium titanate in simulated salt solution, and 1 wt. % simulated sludge in simulated salt solution and deionized water. Flux as a function of feed flow rate and transmembrane pressure was measured for each of the above described feed slurries. The authors will discuss the new membrane development efforts, waste slurry filtration performance evaluations and scale-up considerations.

  14. Modélisation du cycle de vie d'un polluant en atmosphère : application aux oxydes d'azote (NO{X})

    NASA Astrophysics Data System (ADS)

    Hamzi, R.; Bourmada, N.; Benamrane, B. T.; Londiche, H.

    2005-05-01

    Les problèmes de l'environnement nécessitent des modélisations particulièrement difficiles, mais d'une grande importance sociale. C'est un domaine récent, où les données sont encore peu nombreuses, mais où les attentes sont considérables, tant auprès du public que des politiques et des industriels. En effet, la modélisation consiste à définir un modèle qui permettra de représenter efficacement le processus étudié. Dans cette optique le comportement modélisé n'est que la manifestation extérieure d'une structure plus profonde. La complexité du système et du problème posé détermine celle du modèle, qui va de la simple représentation qualitative d'un comportement aux formules mathématiques les plus élaborées. Lorsque la modélisation est exprimée mathématiquement, on recourt généralement à un programme de simulation pour calculer le comportement prévisionnel du modèle. La compréhension du cycle de vie d'un polluant en atmosphère, dans notre cas les oxydes d'azote (NOX), nécessite la modélisation de l'évolution des réactifs et des produits en fonction du temps exprimée par des équations différentielles. La réalisation de la simulation à partir de ces modèles, nous permet de connaître l'ensemble des processus ayant lieu lors de l'émission du polluant en atmosphère jusqu'à sa consommation.

  15. Analysis of stability of a planar solid-liquid interface in a dilute binary alloy

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1990-01-01

    This paper reconsiders the question of stability of a planar solid-liquid interface in an undercooled alloy melt without making the restrictive assumption of no heat flow in the solid (i.e., Gs = 0). The results of this analysis indicate that, provided the thermal gradient on the solid side of the interface, Gs, is positive, stability can be achieved in an undercooled alloy melt for growth rates R greater than Ra (where Ra is the absolute stability limit of Mullins and Sekerka, 1964). Thus, the absolute stability criterion for steady-state planar growth in an undercooled alloy melt is the same as derived earlier by Mullins and Sekerka for directional solidification. Relaxing the restrictive assumption of Gs = 0 also reveals that there is a regime of stability for low growth rates and low supercoolings.

  16. Numerical Calculation of the Morphology of a Solid/Liquid Interface Near an Insoluble Particle

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu

    2003-01-01

    A numerical mathematical model capable of accurately describing the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle is presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub P) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. Calculated critical solidification velocities for the pushing/engulfment transition are compared with experimental measurements performed in microgravity conditions.

  17. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  18. Silicon doped boron carbide nanorod growth via a solid-liquid-solid process

    SciTech Connect

    Han Weiqiang

    2006-03-27

    Here we report the synthesis of silicon doped boron carbide (Si-doped B{sub 4}C) nanorods via a solid reaction using activated carbon, boron, and silicon powder as reactants. These nanorods have been studied by high-resolution transmission electron microscopy, scanning electron microscopy, electron energy loss spectroscopy, and energy-dispersive x-ray spectrometry. The diameter of Si-doped B{sub 4}C nanorods ranges from 15 to 70 nm. The length of Si-doped B{sub 4}C nanorods is up to 30 {mu}m. Ni{sub x}Co{sub y}B{sub z} nanoparticles are used as catalysts for the growth of Si-doped B{sub 4}C nanorods. A solid-liquid-solid growth mechanism is proposed.

  19. Local conformational switching of supramolecular networks at the solid/liquid interface.

    PubMed

    Cometto, Fernando P; Kern, Klaus; Lingenfelder, Magalí

    2015-05-26

    We use the electric field in a scanning tunneling microscope to manipulate the transition between open and close packed 2D supramolecular networks of neutral molecules in nonpolar media. We found that while the magnitude of the applied field is not decisive, it is the sign of the polarization that needs to be maintained to select one particular polymorph. Moreover, the switching is independent of the solvent used and fully reversible. We propose that the orientation of the surface dipole determined by the electric field might favor different conformation-depended charge transfer mechanisms of the adsorbates to the surface, inducing open (closed) structures for negative (positive) potentials. Our results show the use of local fields to select the polymorphic outcome of supramolecular assemblies at the solid/liquid interface. The effect has potential to locally control the capture and release of analytes in host-guest systems and the 2D morphology in multicomponent layers. PMID:25857528

  20. Surface Specularity as an Indicator of Shock-induced Solid-liquid Phase Transitions in Tin

    SciTech Connect

    G. D. Stevens, S. S. Lutz, B. R. Marshall, W.D. Turley, et al.

    2007-12-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. Typical of this phenomenon is the loss of signal light in velocity interferometer system for any reflector (VISAR) measurements, which usually occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry, conductivity), that show relatively small (1%-10%) changes, the specularity of reflection provides a more sensitive and definitive (>10x) indication of the solid-liquid phase transition. Data will be presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  1. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management). PMID:26716354

  2. Subpicosecond pulses from a neodymium-glass laser with a solid-liquid phototropic shutter

    NASA Astrophysics Data System (ADS)

    Altshuler, G. B.; Dulneva, E. G.; Karasev, V. B.; Okishev, A. V.; Telegin, L. S.

    1985-02-01

    Subpicosecond, spectrally limited pulses were generated in a mode-locked silicate-Nd-glass laser by means of a phototropic shutter. The shutter featured molecules of an organic dye added to a matrix composed of an isobutyl alcohol-filled quartz micropore glass plate. A coating on the inner surface of one of the cell windows was 0.99 reflective at the lasing wavelength. Single pulses with 0.5-1 psec length were generated, validating the use of a solid-liquid shutter for producing subpicosecond pulses with a Nd-glass laser. Furthermore, the liquid component permitted output powers of up to 5 W/sq cm without eliciting thermooptical effects.

  3. New density functional approach for solid-liquid-vapor transitions in pure materials.

    PubMed

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-17

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories. PMID:25933321

  4. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems. PMID:25431860

  5. Design of a monochromatic ellipsometer for studies at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Pai-Panandiker, R. S.; Dorgan, J. R.

    1995-02-01

    A new design for a monochromatic ellipsometer used for studies at the solid-liquid interface is described. The design of the ellipsometer incorporates two novel features—a special optical glass cell and a thermally controlled sample oven. The ellipsometer design allows for in situ kinetic studies through use of the optical glass cell. Furthermore, the apparatus is modified to allow thermal equilibration over a range of temperatures. The temperature response of the cell assembly is presented and the response time is seen to be approximately 1 h. Data on the adsorption of a diblock copolymer [poly(ethylene oxide)-block-polystyrene] are presented; the analyzed data agree with previous studies on the same system.

  6. Ginzburg-Landau theory for the solid-liquid interface of bcc elements

    NASA Technical Reports Server (NTRS)

    Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.

    1987-01-01

    Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.

  7. A low-cost solid-liquid separation process for enzymatically hydrolyzed corn stover slurries.

    PubMed

    Sievers, David A; Lischeske, James J; Biddy, Mary J; Stickel, Jonathan J

    2015-01-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantly reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter. PMID:25836372

  8. SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486

    SciTech Connect

    Shilova, E.; Viel, P.; Huc, V.

    2013-07-01

    This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

  9. Effects of Solid-Liquid Mixing on Microstructure of Semi-Solid A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Guo, H. M.; Wang, L. J.; Wang, Q.; Yang, X. J.

    2014-08-01

    The desired starting material for semi-solid processing is the semi-solid slurry in which the solid phase is present as fine and globular particles. A modified solid-liquid mixing (SLM) is reported wherein semi-solid slurry can be produced by mixing a solid alloy block into a liquid alloy, and mechanical vibration is utilized to enhance the mixing. Effects such as liquid alloy temperature, mass ratio, and mixing intensity on the microstructure and the cooling curves during SLM were evaluated. 2D and 3D microstructure analysis of treated A356 aluminum alloy shows that microstructure can be refined significantly with a considerable morphology change in primary Al phase. It is critical that the temperature of mixture after mixing is lower than its liquidus temperature to obtain a valid SLM process. Specially, mixing intensity is identified as a primary factor for a favorable microstructure of semi-solid slurry.

  10. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    SciTech Connect

    McDaniel, D.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function at winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)

  11. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid-Liquid Dynamic Extraction

    ERIC Educational Resources Information Center

    Naviglio, Daniele; Montesano, Domenico; Gallo, Monica

    2015-01-01

    Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…

  12. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid-Liquid Dynamic Extraction

    ERIC Educational Resources Information Center

    Naviglio, Daniele; Montesano, Domenico; Gallo, Monica

    2015-01-01

    Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;

  13. Probing the Solid-Liquid Interface using Single-Molecule Dynamics

    NASA Astrophysics Data System (ADS)

    Nelson, Nathaniel

    Molecular interactions with solid-liquid interfaces have long been studied through macroscopic observations. There were, however, only a limited number of ways to observe true molecular phenomena leading to a wide discrepancy between theoretical models and experimental results. The work presented here uses total internal reflection fluorescence (TIRF) microscopy to image individual molecules at the solid-liquid interface as they undergo the dynamic processes of adsorption, diffusion, and desorption. Studying these dynamic behaviors at the single-molecule level allowed great insight into the macroscopically observed hydrophobic effect as well as the Hofmeister effect. The hydrophobic effect was probed by looking at the response of individual molecules to surfaces with varying alkyl chain lengths. These experiments showed that surface residence time increased and mobility decreased with increasing alkyl chain length despite all of the surfaces having the same nominal hydrophobicity. Experiments using the salts NaF and NaSCN dissolved in water along with a fatty acid probe molecule were conducted to examine the Hofmeister effect at the molecular level. These experiments showed a dramatic change in adsorption rate of the hydrophobic probe onto a hydrophobic surface, but minimal change in diffusion or desorption rate. We used the knowledge that molecular probes interact with specific surface chemistries very differently to develop a super-resolution imaging technique called MAPT (mapping using accumulated probe trajectories). MAPT created images of a surface using each molecular behavior (e.g. diffusion) as a contrast mechanism. These images were first used to show variations in hydrophobicity on a photopatterned self-assembled monolayer. MAPT images also allowed us to differentiate between the 2D Brownian motion of a molecule on a surface and intermittent 3D flights through solution. Finally, we developed a technique for identifying surface chemistry using dynamic molecular interactions using an unsupervised Gaussian mixture modeling algorithm. This algorithm identifies regions on a surface that share similar molecular behaviors which can then be compared to the behaviors observed on surfaces of known chemistry. These identifications allow, for the first time, one to create true maps of surface chemistry.

  14. High Frequency Acoustic Reflectometry for Solid/Liquid Interface Characterization: Application to Droplet Evaporation

    NASA Astrophysics Data System (ADS)

    Carlier, Julien; Toubal, Malika; Li, Sizhe; Campistron, Pierre; Callens, Dorothée; Thomy, Vincent; Senez, Vincent; Nongaillard, Bertrand

    Evolution of the local concentration in a 1 μL droplet of ethanol/water mixture during an evaporation process has been followed using high frequency acoustic reflectometry. This method has been developed for wetting characterization on micro/nanostructures and makes it possible to follow concentration evolution in a droplet deposited on a solid surface. This information gives the opportunity to predict wetting depending on surface tension linked to alcohol concentration evolution. The calibration of the method and concentration evolution in 50% and 30% ethanol droplets are presented. The evolution of a pure ethanol droplet composition is tracked so as to follow hydration process.

  15. Observation of gaseous films at solid-liquid interfaces: removal by ultrasonic action.

    PubMed

    Zbik, Marek S; Du, Jianhua; Pushkarova, Rada A; Smart, Roger St C

    2009-08-15

    The critical role of dissolved gas nano-bubbles at solid surfaces in particle association, aggregation, adsorption and flotation has been recognised in the recent literature. The principles of mineral processing, fine particle separation, and water recovery depend upon changing the surface properties at the solid-liquid interface. It has been assumed that the solid surfaces are either in direct contact with the liquid or may have nano-bubbles attached only at hydrophobic surfaces. This paper shows that gaseous layers 50-100 nm thick can be attached surrounding high proportions of solid clay mineral surfaces restricting reagent access, producing buoyancy and aggregation. Ultrasonic treatment before flocculant addition effectively removes these gaseous layers as well as dispersed micro-bubbles. Re-aggregation after brief ultrasonication produces denser (less buoyant) flocs, demonstrated with cryo-SEM statistical analysis, giving more complete access of the flocculant to the aggregate surfaces. In the subsequent flocculant addition, the settling rates of the denser flocs can be increased up to 40%. If ultrasonic action is continued, the bridged flocs are disturbed with some redispersion of smaller flocs and individual platelets and consequent slower settling rates. PMID:19439314

  16. Visual investigation of solid-liquid phase equilibria for nonflammable mixed refrigerant

    NASA Astrophysics Data System (ADS)

    Lee, C.; Yoo, J.; Park, I.; Park, J.; Cha, J.; Jeong, S.

    2015-12-01

    Non-flammable mixed refrigerant (NF-MR) Joule Thomson (J-T) refrigerators have desirable characteristics and wide cooling temperature range compared to those of pure J-T refrigerators. However, the operating challenge due to freezing is a critical issue to construct this refrigerator. In this paper, the solid-liquid phase equilibria (i.e. freezing point) of the NF-MR which is composed of Argon, R14 (CF4), and R218 (C3F8), has been experimentally investigated by a visualized apparatus. Argon, R14 and R218 mixtures are selected to be effectively capable of reaching 100 K in the MR J-T refrigerator system. Freezing points of the mixtures have been measured with the molar compositions from 0.1 to 0.8 for each component. Each test result is simultaneously acquired by a camcorder for visual inspection and temperature measurement during a warming process. Experimental results show that the certain mole fraction of Argon, R14, and R218 mixture can achieve remarkably low freezing temperature even below 77 K. This unusual freezing point depression characteristic of the MR can be a useful information for designing a cryogenic MR J-T refrigerator to reach further down to 77 K.

  17. Solid-liquid interface free energies of pure bcc metals and B2 phases

    SciTech Connect

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic Na potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of Na potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  18. Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.

    2013-01-01

    The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.

  19. Molecular Dynamics Study of Freezing Point and Solid-Liquid Interfacial Free Energy of Stockmayer Fluids

    SciTech Connect

    Wang, J.; Apte, Pankaj; Morris, James R; Zeng, X.C.

    2013-01-01

    Freezing temperatures of Stockmayer fluids with different dipolar strength at zero pressure are estimated and computed using three independent molecular-dynamics (MD) simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature (NPT) two phase coexistence method, and the constant-pressure and constant-enthalpy (NPH) coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with a reduced dipole moment is 0.656 0.001, 0.726 0.002 and 0.835 0.005, respectively. The freezing temperature increases with the dipolar strength. The solid-liquid interfacial free energies of the (111), (110) and (100) interface are calculated for the first time using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, that is, .

  20. Solid-liquid interface free energies of pure bcc metals and B2 phases

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  1. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    NASA Astrophysics Data System (ADS)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  2. Band offsets across solid-liquid interfaces from continuum solvation methods

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Ping, Yuan; Galli, Giulia A.; Goddard, William A., III

    2015-03-01

    The band edge positions of photo-electrodes relative to water redox potentials play an important role in determining the efficiency of the photo-electrochemical cell. Direct theoretical calculations of solid-liquid interfaces are expensive and simplified models are desirable for rapid theoretical screening of new materials. However, traditional solvation models are extensively fit to describe organic solutes and hence extrapolate poorly to highly-polar inorganic surfaces. We develop minimally-empirical continuum solvation models suitable for treating such surfaces and present theoretical predictions of the band positions of rutile TiO2 (110) and WO3 (001) surfaces in water. We obtain non-negligible solvation effects ~ 1-2 eV, in good agreement with experimental results. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  3. DETERMINATION OF SOLID-LIQUID EQUILIBRIA DATA FOR MIXTURES OF HEAVY HYDROCARBONS IN A LIGHT SOLVENT

    SciTech Connect

    F.V. Hanson; J.V. Fletcher; Karthik R.

    2003-06-01

    A methodology was developed using an FT-IR spectroscopic technique to obtain solid-liquid equilibria (SLE) data for mixtures of heavy hydrocarbons in significantly lighter hydrocarbon diluents. SLE was examined in multiple Model Oils that were assembled to simulate waxes. The various Model oils were comprised of C-30 to C-44 hydrocarbons in decane. The FT-IR technique was used to identify the wax precipitation temperature (WPT). The DSC technique was also used in the identification of the onset of the two-phase equilibrium in this work. An additional Model oil made up of C-20 to C-30 hydrocarbons in decane was studied using the DSC experiment. The weight percent solid below the WPT was calculated using the FT-IR experimental results. The WPT and the weight percent solid below the WPT were predicted using an activity coefficient based thermodynamic model. The FT-IR spectroscopy method is found to successfully provide SLE data and also has several advantages over other laboratory-based methods.

  4. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  5. Solid-liquid reactions: The effect of Cu content on Sn-Ag-Cu interconnects

    NASA Astrophysics Data System (ADS)

    Lu, Henry Y.; Balkan, Haluk; Simon, K. Y.

    2005-06-01

    The impact of copper content on the Sn-Ag-y%Cu (Ag=constant=3.5; y=0.0, 0.5, 1.0, and 2.0) interconnects was investigated in this study. The copper content and solid-liquid (S-L) reactions were used as inputs, and the outputs were the interfacial microstructure evolution and joint macro-performance. Surface microetching microscopy, cross-section microscopy, energy-dispersive x-ray analysis, shear test, and differential scanning calorimetry were used in the studies. It was discovered that as-soldered Sn-Ag-y%Cu interconnects could have different interfacial microstructures depending on copper content; no Ag3Sn plates were observed for any alloy groups. After the S-L reactions, Ag3Sn plates occurred for all groups. The magnitude of the Ag3Sn plate growth depended on copper content. This and other effects of copper content on Sn-Ag-Cu interconnects are discussed in this article.

  6. Focused ultrasound solid-liquid extraction for the determination of organic biomarkers in beachrocks.

    PubMed

    Blanco-Zubiaguirre, L; Arrieta, N; Iturregui, A; Martinez-Arkarazo, I; Olivares, M; Castro, K; Olazabal, M A; Madariaga, J M

    2015-11-01

    Beachrocks are consolidated coastal sedimentary formations resulting mainly from the relative rapid cementation of beach sediments by different calcium carbonate polymorphs. Although previous works have already studied the elemental composition and the mineral phases composing these cements, few of them have focused their attention on the organic matter present therein. This work describes an extraction methodology based on focused ultrasound solid-liquid extraction (FUSLE), followed by analysis using large volume injection (LVI) in a programmable temperature vaporizer (PTV) combined with gas chromatography-mass spectrometry (GC-MS) in order to determine organics such as polycyclic aromatic hydrocarbons (PAHs) and biomarkers (hopanes), which can increase and confirm the information obtained so far. This goal has been achieved after the optimization of the main parameters affecting the extraction procedure, such as, extraction solvent, FUSLE variables (amplitude, extraction time and pulse time) and also variables affecting the LVI-PTV (vent time, injection speed and cryo-focusing temperature). The developed method rendered results comparable to traditional extraction methods in terms of accuracy (77-109%) and repeatability (RSD<23%). Finally, the analyses performed over real beachrock samples from the Bay of Biscay (Northern Spain) revealed the presence of the 16 EPA priority PAHs, as well as some organic biomarkers which could increase the knowledge about such beachrock formation. PMID:26186864

  7. Solid-liquid interface free energies of pure bcc metals and B2 phases

    DOE PAGESBeta

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observedmore » in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.« less

  8. Solid-liquid interface free energies of pure bcc metals and B2 phases

    SciTech Connect

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  9. Complex Inclusions at Solid-Liquid Interface of Low-Oxygen Special Steel

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Wang, Xin-Hua; Pak, Jong-Jin; Yuan, Peng

    2014-10-01

    The movements of CaO-MgO-Al2O3-SiO2 inclusions at solid-liquid (S-L) interface during the solidification of low-oxygen special steel were observed in real time by the confocal laser scanning microscope, in an attempt to explore the possible formation mechanism of the D-type and DS-type inclusions. It was found that S-L interfaces showed strong interaction with the inclusions, especially when the inclusions were captured. Collision and agglomeration between inclusion in liquid steel and inclusion captured by the S-L interface were reproducibly observed, followed by an obvious size growth. During this process, inclusions in liquid steel acted as the guest particles, while the S-L interface capture inclusions acted as the host particles. There were also inclusions first moved toward and then later away from the S-L interfaces. To explain the behaviors of inclusion pairs, the forces acted on inclusions were estimated and discussed. Based on the obtained result, it can be cautiously pointed out that collision and agglomeration of inclusions at S-L interface during the casting of steel are probably important reasons for the frequent existence of D-type and DS-type inclusions during the production of low-oxygen special steel despite the high cleanliness. Therefore, minimization of inclusion size is significant except for the reduction of the inclusion numbers.

  10. Visualization of the solid-liquid equilibria for non-flammable mixed refrigerants

    NASA Astrophysics Data System (ADS)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Jeong, Sangkwon

    2016-04-01

    Non-flammable mixed refrigerant (NF-MR) Joule Thomson (J-T) refrigerators have desirable characteristics and wide cooling temperature range compared to those of pure J-T refrigerators. However, the operating challenge due to freezing is a critical issue to realize this type of refrigerator. In this paper, the solid-liquid phase equilibria (i.e. freezing point) of the NF-MR which is composed of Argon (Ar), R14 (CF4), and R218 (C3F8), has been experimentally investigated by a visualized apparatus. The accuracy of the apparatus is experimentally verified with pure refrigerants and selected binary mixed refrigerants. Freezing points of the ternary NF-MRs have been measured with the molar compositions from 0.1 to 0.8 for each component. Each test result is simultaneously acquired by a camcorder for visual inspection and temperature measurement during a warming process. Experimental results reveal that the specific MR, with R14 molar composition higher than 0.4, can achieve remarkably low freezing temperature even below 77 K. These unusual freezing point depression characteristics of the MR can be a useful information for designing a cryogenic MR J-T refrigerator to reach temperatures less than 77 K.

  11. Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire Growth

    SciTech Connect

    Zhang, Jiguang; Liu, Jun; Wang, Donghai; Choi, Daiwon; Fifield, Leonard S.; Wang, Chong M.; Xia, Guanguang; Nie, Zimin; Yang, Zhenguo; Pederson, Larry R.; Graff, Gordon L.

    2010-03-10

    Silicon based nanowires have been grown from commercial silicon powders under conditions of differing oxygen and carbon activities. Nanowires grown in the presence of carbon sources consisted of a crystalline SiC core with an amorphous SiOx shell. The thickness of SiOx shell decreased as the oxygen concentration in the precursor gases was lowered. Nanowires grown in a carbon-free environment consisted of amorphous silicon oxide with a typical composition of SiO1.8. The growth rate of nanowires decreased with decreasing oxygen content in the precursor gases. SiO1.8 nanowires exhibited an initial discharge capacity of ~ 1,300 mAh/g and better stability than those of silicon powders. A Vapor Induced Solid-Liquid-Solid (VI-SLS) mechanism is proposed to explain the nanowire growth (including silicon and other metal based nanowires) from powder sources. In this approach, both a gas source and a solid powder source are required for nanowire growth. This mechanism is consistent with experimental observations and can also be used to guide the design and growth of other nanowires.

  12. A theoretical study of the pipe-flow of turbulent solid-liquid suspensions

    SciTech Connect

    Sen, S.

    1988-01-01

    The aim of this investigation was to establish a theoretical approach to estimate the relevant design variables for hydraulic transport of solids using pipelines. In the first phase of the study a mathematical theory was proposed from first principles to evaluate the total pressure drop in a pipe carrying a solid-liquid suspension under fully turbulent flow. An expression was developed for the excess pressure loss function which for the first time identified the interactions of the various hydrodynamics parameters. This zeroth-order model correlates the experimental data quite well with the help of one adjustable parameter. In the second phase of the study, the equation of motion was solved numerically to yield a realistic velocity profile and pressure drop. This velocity profile reflects the settling tendency of the solids. The prediction of the design parameters using this model is good at higher velocities. Finally, the feasibility of using the transitional flow theory to improve the zeroth-order model was evaluated. This investigation has established a basic methodology for developing a comprehensive simulation technique and identified the areas of future research to adapt similar methods for hydrotransport of industrial slurries.

  13. Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures

    PubMed Central

    dos Santos, Silvia Cristina Cunha; Ouellette, Julianne; Juteau, Pierre; Lépine, François; Déziel, Eric

    2013-01-01

    Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents. PMID:23728808

  14. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations (<800 mg/L). At higher phenols loadings though, Langmuir isotherm was better suited for equilibrium prediction (R(2) > 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. PMID:27031803

  15. Rapid heating of a strongly coupled plasma at the solid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Jensen, M. J.; Hasegawa, T.; Bollinger, J. J.; Dubin, D. H. E.

    2004-11-01

    Between 10^4 and 10^6 ^9Be^+ ions are trapped in a 4.5 Tesla Penning trap and laser-cooled to ˜1 mK, where the ions form a crystalline plasma with an interparticle spacing of ˜20 μm. This system is a realization of a strongly coupled one-component plasma. Using Doppler laser spectroscopy on a single-photon transition, we measured the temperature and heating rate of this plasma when not being laser-cooled. We measured a slow heating rate of ≤ 100 mK/s due to residual gas collisions for the first 100-200 ms after turning off the cooling laser. This slow heating is followed by a rapid heating to 1-2 K in 100 ms as the plasma undergoes the solid-liquid phase transition at T=10 mK (Γ ˜ 170). We will present evidence that this rapid heating is due to a sudden release of energy from weakly cooled degrees of freedom involving the cyclotron motion of trapped impurity ions. We will also discuss the prospects for observing the latent heat associated with the phase transition.

  16. Numerical formulation for the prediction of solid/liquid change of a binary alloy

    NASA Technical Reports Server (NTRS)

    Schneider, G. E.; Tiwari, S. N.

    1990-01-01

    A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems.

  17. Microscopic thin film optical anisotropy imaging at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Miranda, Adelaide; De Beule, Pieter A. A.

    2016-04-01

    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ˜1 cm2 elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective.

  18. Microscopic thin film optical anisotropy imaging at the solid-liquid interface.

    PubMed

    Miranda, Adelaide; De Beule, Pieter A A

    2016-04-01

    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ∼1 cm(2) elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective. PMID:27131681

  19. ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector

    PubMed Central

    2013-01-01

    ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. The self-powered behavior can be well explained by the formation of a space charge layer near the interface of the solid-liquid heterojunction, which results in a built-in potential and makes the solid-liquid heterojunction work in photovoltaic mode. PMID:24103153

  20. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, October 1--December 31, 1994

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1995-10-01

    The objective of this project is to develop a model for solid-liquid equilibria and a model for viscosities of the products of coal liquefaction processes. The same characterization procedure and representation by continuous distributions as used in previous work on vapor-liquid equilibria and excess enthalpies of coal liquids will be used. Models when fully developed will give the solid-liquid phase equilibrium properties and viscosities as factors of temperature and pressure for known molecular weight distribution and structural characterization of the coal liquid. To accomplish this well, the project requires three tasks: (1) Solid-Liquid phase equilibrium model development; (2) Experimental Viscosity Measurements; and (3) Viscosity Model Development. The work on development of a predictive model for saturated liquid volumes of coal model compounds has been completed. A manuscript has been prepared for submission to AIChE Journal. A copy of the manuscript is attached. Work on extending the viscosity model to coal derived liquids is continuing and progress on this work will be included in the next report.

  1. Experimental studies on irreversibility of electrostatic adsorption of silica nanoparticles at solid-liquid interface.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2014-04-15

    Adsorption of colloidal nanoparticles (NPs) at solid-liquid interface is a scientifically interesting and technologically important phenomenon due to its fundamental importance in many industrial, environmental, and biological processes, such as wastewater treatment, printing, coating of surfaces, chromatography, papermaking, or biocompatibility. The process is well understood theoretically by the random sequential adsorption (RSA) model, based on the assumption of irreversible adsorption. Irreversible adsorption is defined as a process in which, once adsorbed, a particle can neither desorb, nor to move laterally on the surface. However, published experimental data that verifies the irreversibility of particle adsorption are very limited. In this study, we demonstrate the irreversibility of electrostatically driven nanoparticle adsorption utilizing a carefully selected set of experiments. A simple method was employed by uniquely introducing Ag@SiO2 core/shell NPs to perform exchange adsorptions experiments. Stöber SiO2 NPs with a diameter of 50-80 nm were initially electrostatically adsorbed onto amino-functionalized silicon wafer substrates followed by the subsequent adsorption of Ag@SiO2 NPs. The Ag@SiO2 NPs have the same surface chemistry as the neat SiO2 NPs. For the second step the adsorption time was varied from 1 min to 1 week so as to get a thorough understanding of the process irreversibility. Surface coverage quantification has shown that the surface coverage of the initially adsorbed SiO2 NPs stays the same independent of the duration of the second step adsorption using the Ag@SiO2 core/shell NPs. This observation directly confirms the irreversibility of electrostatic adsorption of NPs. PMID:24559699

  2. Solid-liquid separation by sonochemistry: a new approach for the separation of mineral suspensions.

    PubMed

    Nakamura, Takashi; Okawa, Hirokazu; Kawamura, Youhei; Sugawara, Katsuyasu

    2011-01-01

    The effect of sonochemistry to acidify solutions was applied for the solid-liquid separation of three kinds of mineral suspensions. At first, the relationship was measured between zeta-potential and pH in these suspensions to find pH levels correspondent to the isoelectric points. Then sonication (200 kHz or 28 kHz) was applied to adjust pH to the isoelectric points and separated particles from solutions by still-standing and spontaneous precipitation. Compared to the conventional methods using filters and chemical agents, the advantage of this sonochemical separation is two-fold. First, it does not require the maintenance of filters. Second, separated particles are easy to use since they are not mixed with pH adjusters and chemical flocculants. Isoelectric zone (ion strength 0.01, concentration 0.001 wt.%) of green tuff, andesite and titanium dioxide suspensions tested in this study were pH 1.1-3.7, 0.8-3.4, 2.7-5.7, respectively. The sonication of green tuff and andesite suspensions at 200 kHz changed the pH to the isoelectric zone despite the pH buffering effect of eluted alkali earth metals, and successfully precipitated the particles. On the contrary, the sonication of these suspensions at 28 kHz failed to adjust pH to the isoelectric zone, and the particles did not precipitate. In addition, the degradation of particles was observed in the SEM photographs of particles sonicated at 28 kHz, whereas no significant change was detected in particles sonicated at 200 kHz. Thus, it is concluded that the optimal frequency is about 200 kHz because its strong chemical effect can easily adjust the pH while its relatively weak physical effect prevents the degradation of particles. PMID:20643570

  3. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    SciTech Connect

    Rogers, S.; Cook, J.; Juratovac, J.; Goodwillie, J.; Burke, T.; Stuart, B., ed.

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities will be used to suggest a design for integration into commercial-scale production.

  4. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    PubMed

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity. PMID:16889266

  5. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    SciTech Connect

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  6. A Bottom-Up Approach to Understanding Protein Layer Formation at Solid-Liquid Interfaces

    PubMed Central

    Kastantin, Mark; Langdon, Blake B.; Schwartz, Daniel K.

    2014-01-01

    A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors. PMID:24484895

  7. Universality and criticality of a second-order granular solid-liquid-like phase transition.

    PubMed

    Castillo, Gustavo; Mujica, Nicolás; Soto, Rodrigo

    2015-01-01

    We experimentally study the critical properties of the nonequilibrium solid-liquid-like transition that takes place in vibrated granular matter. The critical dynamics is characterized by the coupling of the density field with the bond-orientational order parameter Q(4), which measures the degree of local crystallization. Two setups are compared, which present the transition at different critical accelerations as a result of modifying the energy dissipation parameters. In both setups five independent critical exponents are measured, associated to different properties of Q(4): the correlation length, relaxation time, vanishing wavenumber limit (static susceptibility), the hydrodynamic regime of the pair correlation function, and the amplitude of the order parameter. The respective critical exponents agree in both setups and are given by ν(⊥)=1,ν(∥)=2,γ=1,η≈0.6-0.67, and β=1/2, whereas the dynamical critical exponent is z=ν(∥)/ν(⊥)=2. The agreement on five exponents is an exigent test for the universality of the transition. Thus, while dissipation is strictly necessary to form the crystal, the path the system undergoes toward the phase separation is part of a well-defined universality class. In fact, the local order shows critical properties while density does not. Being the later conserved, the appropriate model that couples both is model C in the Hohenberg and Halperin classification. The measured exponents are in accord with the nonequilibrium extension to model C if we assume that α, the exponent associated in equilibrium to the specific heat divergence but with no counterpart in this nonequilibrium experiment, vanishes. PMID:25679604

  8. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  9. Real Time Characterization of Solid/Liquid Interfaces During Directional Solidification

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kaukler, W. K.; Curreri, P. A.; Peters, P.

    1997-01-01

    A X-Ray Transmission Microscope (XTM) has been developed to observe in real time and in-situ solidification phenomenon at the solid/liquid interface. Recent improvements in the horizontal Bridgman furnace design provides real-time magnification (during solidification) up to 12OX. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 3-6 micrometers. Further, morphological transitions from planar to cellular interfaces have also been imaged. Results from recent XTM studies on Al-Bi monotectic system, Al-Au eutectic system and interaction of insoluble particles with s/I interfaces in composite materials will be presented. An important parameter during directional solidification of molten metal is the interfacial undercooling. This parameter controls the morphology and composition at the s/I interface. Conventional probes such as thermocouples, due to their large bead size, do not have sufficient resolution for measuring undercooling at the s/I interface. Further, the intrusive nature of the thermocouples also distorts the thermal field at the s/I interface. To overcome these inherent problems we have recently developed a compact furnace which utilizes a non-intrusive technique (Seebeck) to measure undercooling at the S/I interface. Recent interfacial undercooling measurements obtained for the Pb-Sn system will be presented. The Seebeck measurement furnace in the future will be integrated with the XTM to provide the most comprehensive tool for real time characterization of s/I interfaces during solidification.

  10. Dynamique d'un laser a colorant a pompage synchrone avec cavite couplee et applications aux ondes terahertz breves et intenses

    NASA Astrophysics Data System (ADS)

    Baribault, Robert

    Nous presentons deux methodes de generation de battements de frequences terahertz pouvant servir a illuminer des antennes photoconductrices afin d'obtenir une emission a spectre etroit et une grande plage d'accordabilite dans l'infrarouge lointain (IRL). Nous discutons des differentes applications dans l'IRL, et presentons plusieurs techniques de generation d'IRL. Parmi ces methodes, nous choisissons celle qui depend de l'illumination incidente, basee sur un deplacement de charges dans un semi-conducteur soumis a une tension a ses bornes, l'antenne photoconductrice. Nous etudions l'emission d'ondes terahertz par cette antenne photoconductrice pour quatre types d'illumination, l'impulsion ultrabreve, l'impulsion ultrabreve modelee, le pseudo-battement par decalage d'impulsions avec glissement en frequence, et le battement. Nous presentons des resultats experimentaux d'illumination d'une antenne photoconductrice en silicium sur saphir endommage par radiation (rd-SOS) avec une impulsion breve et un battement. Un accroissement de l'efficacite est demontre pour le battement. Nous simulons la dynamique d'un laser a colorant a pompage synchrone (LACPS) afin de comprendre ses conditions optimales d'utilisation. Deux LACPS, pompes par le meme laser Nd:YAG, sont synchronises temporellement et spatialement et permettent d'obtenir un battement stable par le controle des delais optiques. Les durees a mi-hauteur des impulsions des deux LACPS doivent demeurer identiques en fonction de la longueur d'onde. La section efficace d'emission du milieu de gain est critique dans la dynamique de ce laser. La duree a mi-hauteur de l'impulsion varie peu avec la section efficace d'emission. Pour controler les fluctuations dues a l'emission spontanee, on ajoute une cavite couplee qui minimise l'effet de l'emission spontanee dans la dynamique du LACPS. Nous montrons les battements obtenus avec deux LACPS, de 0.5 THz et 18 THz, dont deux, a 0.85 THz et 9.36 THz sont amplifies jusqu'a une energie d'impulsion de l'ordre du millijoule. En conclusion, nous proposons une modification au systeme de generation de battement qui facilite l'utilisation du montage. Nous presentons une methode alternative de stabiliser la forme temporelle des impulsions du LACPS sans la cavite couplee. Nous presentons egalement une nouvelle approche d'illumination d'une antenne photoconductrice avec un battement avec un glissement en frequence.

  11. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated systems included metal-ceramic particles (pure aluminum - zirconia particles) and transparent organic - non-reactive particles (succinonitrile - polystyrene and biphenyl - glass). This paper will discuss the experimental results obtained in both lg and pg conditions and the influence of the natural convection on V(sub cr). A summary of past mathematical models and our recent theoretical developments will also be presented to explain the experimentally observed particle/SLI interaction.

  12. Solid-liquid phase transitions in 3D systems with the inverse-power and Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Vaulina, O. S.; Koss, X. G.

    2016-03-01

    The melting of face-centered cubic (fcc) and body-centered cubic (bcc) crystal lattices was studied analytically and numerically for the systems of particles interacting via the inverse-power-law and Yukawa potentials. New approach is proposed for determination of the solid-liquid phase transitions in these systems. The suggested approach takes into account a nonlinearity (anharmonicity) of pair interaction forces and allows to correctly predict the conditions of melting of the systems with various isotropic pair interaction potentials. The obtained results are compared with the existing theoretical and numerical data.

  13. Comparison between sample disruption methods and solid-liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves.

    PubMed

    Teixeira, D Martins; Pato, R Ferreira; Coelho, A Varela; da Costa, C Teixeira

    2006-01-20

    Sea sand disruption method (SSDM) and matrix solid phase disruption (MSPD) were compared to solid-liquid extraction (SLE) for extraction of phenolic compounds from the Ficus carica leaves. Statistical treatment, ANOVA-single factor, was used to compare the extraction yields obtained by these methods, and for the majority of the extracted compounds, significantly higher yields were obtained by the solid disruption methods. Both solid disruption methods are faster and ecologically friendly, but the sea sand method was more reproducible (RSD < 5% for most compounds), and was also the least expensive method. Recoveries above 85% were obtained for chlorogenic acid, rutin, and psoralen using the sea sand extraction method. PMID:16343519

  14. Spontaneous mode-selection in the self-propelled motion of a solid/liquid composite driven by interfacial instability

    NASA Astrophysics Data System (ADS)

    Takabatake, Fumi; Magome, Nobuyuki; Ichikawa, Masatoshi; Yoshikawa, Kenichi

    2011-03-01

    Spontaneous motion of a solid/liquid composite induced by a chemical Marangoni effect, where an oil droplet attached to a solid soap is placed on a water phase, was investigated. The composite exhibits various characteristic motions, such as revolution (orbital motion) and translational motion. The results showed that the mode of this spontaneous motion switches with a change in the size of the solid scrap. The essential features of this mode-switching were reproduced by ordinary differential equations by considering nonlinear friction with proper symmetry.

  15. Bubble Induced Disruption of a Planar Solid-Liquid Interface During Controlled Directional Solidification in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2013-01-01

    Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.

  16. Temperature-transforming model for binary solid-liquid phase-change problems; Part 2: Numerical simulation

    SciTech Connect

    Zeng, X.; Faghri, A. . Dept. of Mechanical and Materials Engineering)

    1994-06-01

    The model and numerical scheme developed in Part 1 were first verified with upward freezing experiments of an NH[sub 4]Cl-H[sub 2]O solution on a cold isothermal surface. Then, two-dimensional convection problems with different buoyancy terms in binary solid-liquid phase-change systems were studied. Finally, the model was used to simulate the solidification on an aqueous ammonium chloride solution in a rectangular cavity. The comparison of the results obtained from the present studies with the experimental and numerical results from the literature revealed a good agreement.

  17. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries.

    PubMed

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng

    2015-09-01

    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible. PMID:26305572

  18. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2016-06-01

    A total enthalpy-based lattice Boltzmann (LB) method with adaptive mesh refinement (AMR) is developed in this paper to efficiently simulate solid-liquid phase change problem where variables vary significantly near the phase interface and thus finer grid is required. For the total enthalpy-based LB method, the velocity field is solved by an incompressible LB model with multiple-relaxation-time (MRT) collision scheme, and the temperature field is solved by a total enthalpy-based MRT LB model with the phase interface effects considered and the deviation term eliminated. With a kinetic assumption that the density distribution function for solid phase is at equilibrium state, a volumetric LB scheme is proposed to accurately realize the nonslip velocity condition on the diffusive phase interface and in the solid phase. As compared with the previous schemes, this scheme can avoid nonphysical flow in the solid phase. As for the AMR approach, it is developed based on multiblock grids. An indicator function is introduced to control the adaptive generation of multiblock grids, which can guarantee the existence of overlap area between adjacent blocks for information exchange. Since MRT collision schemes are used, the information exchange is directly carried out in the moment space. Numerical tests are firstly performed to validate the strict satisfaction of the nonslip velocity condition, and then melting problems in a square cavity with different Prandtl numbers and Rayleigh numbers are simulated, which demonstrate that the present method can handle solid-liquid phase change problem with high efficiency and accuracy.

  19. L'Anse Aux Meadows, Newfoundland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    L'Anse aux Meadows is a site on the northernmost tip of the island of Newfoundland, located in the Province of Newfoundland and Labrador, Canada, where the remains of a Viking village were discovered in 1960 by the Norwegians Helge and Anne Ingstad. The only authenticated Viking settlement in North America outside Greenland, it was the site of a multi-year archaeological dig that found dwellings, tools and implements that verified its time frame. The settlement, dating more than five hundred years before Christopher Columbus, contains the earliest European structures in North America. Named a World Heritage site by UNESCO, it is thought by many to be the semi-legendary 'Vinland' settlement of explorer Leif Ericson around AD 1000. The settlement at L'Anse aux Meadows consisted of at least eight buildings, including a forge and smelter, and a lumber yard that supported a shipyard. The largest house measured 28.8 by 15.6 m and consisted of several rooms. Sewing and knitting tools found at the site indicate women were present at L'Anse aux Meadows

    The image was acquired on September 14, 2007, covers an area of 14.2 x 14.6 km, and is located at 51.5 degrees north latitude, 55.6 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  20. Growing TiO2 nanowires by solid-liquid-solid mechanism including two factors (Ti and O)

    NASA Astrophysics Data System (ADS)

    Pishekloo, S. Piri; Dariani, R. S.

    2016-04-01

    Identifying the growth factors of nanowires helps in controlling their structure and morphology and determining their optimal growth conditions. This study investigates the effect of titanium substrate in growing TiO2 nanowires (NWs) with evaporation method. It reveals that the titanium in substrate is indeed the main source of growth. Using the substrate as the only source of growth with regulated amount of accessible oxygen in the furnace, NWs with lengths ranging from 1 to 70 µm were obtained. The results of the experiments show that the nanowires' growth is mainly controlled by diffusion of titanium atoms from the substrate through TiO2 grain boundaries and surface diffusion toward NWs' tips rather than adsorption from vapor phase. The solid-liquid-solid mechanism including two factors (Ti and O) is proposed and discussed for growth of TiO2 NWs.

  1. Resonant anomalous x-ray reflectivity as a probe of ion adsorption at solid-liquid interfaces.

    SciTech Connect

    Fenter, P.; Park, C.; Nagy, K. L.; Sturchio, N. C.; Chemistry; Univ. of Illinois at Chicago

    2007-05-23

    We discuss new opportunities to understand processes at the solid-liquid interface using resonant anomalous X-ray reflectivity (RAXR). This approach is illustrated by determination of element-specific density profiles at mica surfaces in aqueous electrolyte solutions containing Rb{sup +} and Sr{sup 2+}. The total interfacial electron density profile is determined by specular reflectivity (i.e., reflected intensity vs. momentum transfer, q, at an energy, E, far from any characteristic absorption edge). RAXR spectra (i.e., intensity vs. E at fixed q) reveal element-specific ion distributions. Key differences in the interaction of Rb{sup +} and Sr{sup 2+} with mica are observed using resonant anomalous X-ray reflectivity: Rb{sup +} adsorbs in a partially hydrated state, but Sr{sup 2+} adsorbs in both fully and partially hydrated states.

  2. Calculating the role of composition in the anisotropy of solid-liquid interface energy using phase-field-crystal theory

    NASA Astrophysics Data System (ADS)

    Jugdutt, Bernadine A.; Ofori-Opoku, Nana; Provatas, Nikolas

    2015-10-01

    This work uses Ginzburg-Landau theory derived from a recent structural phase-field-crystal model of binary alloys developed by the authors to study the roles of concentration, temperature, and pressure on the interfacial energy anisotropy of a solid-liquid front. It is found that the main contribution to the change in anisotropy with concentration arises from a change in preferred crystallographic orientation controlled by solute-dependent changes in the two-point density correlation function of a binary alloy, a mechanism that leads to such phenomena as solute-induced elastic strain and dislocation-assisted solute clustering. Our results are consistent with experimental observations in recent studies by Rappaz et al. [J. Fife, P. Di Napoli, and M. Rappaz, Metall. Mater. Trans. A 44, 5522 (2013), 10.1007/s11661-013-1912-7]. This is the first PFC work, to our knowledge, to incorporate temperature, pressure, and density into the thermodynamic description of alloys.

  3. Free-Surface Optical Scattering as an Indicator of the Shock-Induced Solid-Liquid Phase Transition in Tin

    SciTech Connect

    Stevens, G. D.; Lutz, S. S.; Marshall, B. R.; Turley, W. D.; Veeser, L. R.; Furlanetto, M. R.; Hixson, R. S.; Holtkamp, D. B.; Jensen, B. J.; Rigg, P. A.; Wilke, M. D.

    2008-07-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. A familiar manifestation of this phenomenon is the loss of signal light in VISAR measurements, which occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry, conductivity) that show relatively small (1%–10%) changes, the specularity of reflection provides a more sensitive and definitive indication of the solid-liquid phase transition. Data will be presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  4. A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals.

    PubMed

    Wilson, S R; Mendelev, M I

    2016-04-14

    We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals). PMID:27083745

  5. Evaluation of Solid-Liquid Separation Technologies to Remove Sludge and Monosodium Titanate from SRS High Level Waste

    SciTech Connect

    Poirier, M.R.

    2000-11-15

    The Salt Disposition Systems Engineering Team selected three cesium removal technologies for further development to replace the In Tank Precipitation (ITP) process: small tank tetraphenyl-borate (TPB) precipitation, crystalline silicotitanate (CST) ion exchange, and caustic solvent extraction. As a pretreatment step for the CST and solvent extraction flowsheets, the incoming salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium and plutonium. The resulting slurry is filtered to remove the sludge and MST. The filtrate is either contacted with CST in an ion exchange column or processed through a solvent extraction system to remove cesium.This report describes the evaluation of alternate solid -liquid separation technologies. The other tasks will be described in separate reports.

  6. Inferences about radionuclide mobility in soils based on the solid/liquid partition coefficients and soil properties.

    PubMed

    Sohlenius, Gustav; Saetre, Peter; Nordén, Sara; Grolander, Sara; Sheppard, Steve

    2013-05-01

    To assist transport modeling in assessments of the radiological impact of a geological repository for radioactive wastes, the mobility of various elements was studied in arable and wetland soils in the Forsmark region, Sweden. Pore water and total element contents were determined for five types of unconsolidated deposits (regolith), spanning a wide range of soil properties with respect to pH and organic matter content. Two soil depths were sampled to capture element mobility in regolith layers affected and unaffected by soil-forming processes. The solid/liquid partition coefficients (K d values) for most elements varied significantly among regolith types. For most elements, the observed variations in K d values could be explained by variations in soil properties. For many elements, mobility increased with decreasing soil pH. The results provide a significant addition of data on radionuclide retention in soils, taking account of soil properties and processes. PMID:23619799

  7. A Diffuse Interface Model for solid-liquid-air dissolution problems based on a porous medium theory

    NASA Astrophysics Data System (ADS)

    Luo, H.; Quintard, M.; Debenest, G.; Laouafa, F.

    2011-12-01

    The underground cavities may be dissolved by the flows of groundwater where the dissolution mainly happens at the liquid-solid interface. In many real cases, the cavities are not occupied only by the water, but also the gas phase, e.g., air, or other gases. In this case, there are solid-liquid-gas three phases. Normally, the air does not participate the dissolution. However, it may influence the dissolution as the position of the solid-liquid interface may gradually lower down with the dissolution process. Simulating the dissolution problems with multi- moving interfaces is a difficult task but rather interesting to study the evolution of the underground cavities. In this paper, we propose a diffuse interface model (DIM) to simulate the three-phase dissolution problem, based on a porous medium theory and a volume averaging theory te{Whitaker1999,Golfier2002,Quintard1994}. The interface is regarded as a continuous layer where the phase indicator (mainly for solid-liquid interface) and phase saturation (mainly for liquid-gas interface) vary rapidly but smoothly. The DIM equations enable us to simulate the moving interface under a fixed mesh system, instead of a deformed or moving mesh. Suppose we have three phases, solid, liquid and gas. The solid phase contains only species A. The gas phase contains only the air. The volume averaging theory is used to upscale the balance equations. The final DIM equations are presented below. The balance equation of solid phase can be written as {partialrho_{s}(1-\\varepsilon_{f})}/{partial t}=-K_{sl} where \\varepsilonf represents the volume fraction of the fluids (liquid+gas) and Ksl refers to the mass exchange between the solid phase and the liquid phase. Ksl cam be expressed as K_{sl}=rho_{l}alpha(omega_{eq}-Omega_{Al}). The balance equations of liquid phase can be written as {partialrho_{l}\\varepsilon_{f}S_{l}}/{partial t}+nabla\\cdot(rho_{l}{V}_{l})= K_{sl}. The balance equation of liquid phase can be written as {partialrho_{g}\\varepsilon_{f}(1-S_{l})}/{partial t}+nabla\\cdot(rho_{g}{V}_{g}) =0. The balance equations of species A can be written as rho_{l}\\varepsilon_{f}S_{l} {partialOmega_{Al}}/{partial t} +rho_{l}{V}_{l}\\cdotnablaOmega_{Al} =nabla\\cdot(rho_{l}{D}_{Al}^{*}nablaOmega_{Al})+K_{sl}. We introduce the multi-phase Darcy's Law to {V}l and {V}g, {V}_{l}=-{{K}k_{rl}}/{mu_{l}}(nabla P_{l}-rho_{l}{g}) {V}_{g}=-{K}k_{rg}}/{mu_{g}}(nabla P_{g}-rho_{g}{g}) Kozeny-Carman equation is introduced to calculate {K}, Capillary pressure theory can be used to calculate krl, krg, and the capillary pressure Pc, as a function of Sl.

  8. The use of hard- and soft-modelling to predict radiostrontium solid-liquid distribution coefficients in soils.

    PubMed

    Gil-García, C J; Rigol, A; Vidal, M

    2011-11-01

    The solid-liquid distribution coefficient (K(d)) is the parameter that governs the incorporation of contaminants in soils. Its estimation allows the prediction of the fate of contaminants in the short- and long-term after a contamination event. Here, the K(d) of radiostrontium (K(d)(Sr)), a radionuclide of significant environmental interest, was predicted by hard models, which are based on knowledge of the mechanisms governing its sorption, and by soft models based on Partial Least Squares (PLS), using a large data set with the main soil parameters. The two approaches were tested and compared for 30 soils in Spain. Correlations between the predicted and experimental values of K(d)(Sr) obtained using hard- and soft-modelling showed slopes close to 1 and regression coefficients higher than 0.95, which confirms that both approaches are able to obtain satisfactory estimates for K(d)(Sr) from soil parameters. PMID:21890173

  9. Calculating the role of composition in the anisotropy of solid-liquid interface energy using phase-field-crystal theory.

    PubMed

    Jugdutt, Bernadine A; Ofori-Opoku, Nana; Provatas, Nikolas

    2015-10-01

    This work uses Ginzburg-Landau theory derived from a recent structural phase-field-crystal model of binary alloys developed by the authors to study the roles of concentration, temperature, and pressure on the interfacial energy anisotropy of a solid-liquid front. It is found that the main contribution to the change in anisotropy with concentration arises from a change in preferred crystallographic orientation controlled by solute-dependent changes in the two-point density correlation function of a binary alloy, a mechanism that leads to such phenomena as solute-induced elastic strain and dislocation-assisted solute clustering. Our results are consistent with experimental observations in recent studies by Rappaz et al. [J. Fife, P. Di Napoli, and M. Rappaz, Metall. Mater. Trans. A 44, 5522 (2013)]. This is the first PFC work, to our knowledge, to incorporate temperature, pressure, and density into the thermodynamic description of alloys. PMID:26565255

  10. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts

    NASA Astrophysics Data System (ADS)

    Busche, Martin R.; Drossel, Thomas; Leichtweiss, Thomas; Weber, Dominik A.; Falk, Mareike; Schneider, Meike; Reich, Maria-Louisa; Sommer, Heino; Adelhelm, Philipp; Janek, Jürgen

    2016-05-01

    The discharging and charging of batteries require ion transfer across phase boundaries. In conventional lithium-ion batteries, Li+ ions have to cross the liquid electrolyte and only need to pass the electrode interfaces. Future high-energy batteries may need to work as hybrids, and so serially combine a liquid electrolyte and a solid electrolyte to suppress unwanted redox shuttles. This adds new interfaces that might significantly decrease the cycling-rate capability. Here we show that the interface between a typical fast-ion-conducting solid electrolyte and a conventional liquid electrolyte is chemically unstable and forms a resistive solid-liquid electrolyte interphase (SLEI). Insights into the kinetics of this new type of interphase are obtained by impedance studies of a two-chamber cell. The chemistry of the SLEI, its growth with time and the influence of water impurities are examined by state-of-the-art surface analysis and depth profiling.

  11. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts.

    PubMed

    Busche, Martin R; Drossel, Thomas; Leichtweiss, Thomas; Weber, Dominik A; Falk, Mareike; Schneider, Meike; Reich, Maria-Louisa; Sommer, Heino; Adelhelm, Philipp; Janek, Jürgen

    2016-05-01

    The discharging and charging of batteries require ion transfer across phase boundaries. In conventional lithium-ion batteries, Li(+) ions have to cross the liquid electrolyte and only need to pass the electrode interfaces. Future high-energy batteries may need to work as hybrids, and so serially combine a liquid electrolyte and a solid electrolyte to suppress unwanted redox shuttles. This adds new interfaces that might significantly decrease the cycling-rate capability. Here we show that the interface between a typical fast-ion-conducting solid electrolyte and a conventional liquid electrolyte is chemically unstable and forms a resistive solid-liquid electrolyte interphase (SLEI). Insights into the kinetics of this new type of interphase are obtained by impedance studies of a two-chamber cell. The chemistry of the SLEI, its growth with time and the influence of water impurities are examined by state-of-the-art surface analysis and depth profiling. PMID:27102676

  12. Solid-liquid boundaries in iron-rich alloys and the age of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Gao, L.

    2006-05-01

    Melting and solidification cause major chemical differentiation in the Earth. As the Earth cools, the liquid core solidifies from the center and the inner core grows at the expense of the outer core. The timing of the onset of core solidification remains poorly constrained. Labrosse et al. (2001) estimated the age of the Earth's inner core based on energy budget considerations. In their analysis, the latent heat and gravitational energy are calculated according to dislocation melting theory. We have conducted melting experiments on pure iron and an iron-sulfur alloy containing 15 at.% sulfur, in order to determine the effect of pressure on the Clapeyron slopes of the solid-liquid boundaries. Our results allow a critical examination of the energy estimates, hence the age of the inner core. The implications for the budget of radioactive elements will be discussed.

  13. Use of complementary neutron techniques in studying the effect of a solid/liquid interface on bulk solution structures

    SciTech Connect

    Butler, P.D.; Hamilton, W.A.; Magid, L.J.

    1996-12-31

    By appropriate combination of neutron scattering techniques, it is possible to obtain structural information at various distances from a solid/liquid interface and thus probe in some detail how the surface structures evolve into bulk structures. We have used neutron reflectometry (NR) with a newly developed shear cell, near surface small angle neutron scattering (NSSANS) again in combination with the new shear cell, and regular small angle neutron scattering (SANS) with a standard Couette shear cell to probe the structures formed in our aqueous surfactant systems and how they react to a flow field, particularly in the near surface region of a solid/liquid interface. We present data for a 20mM aqueous solutions of 70% cetyltrimethylammonium 3,5-dichlorobenzoate (abbreviated CTA3,5ClBz) and 30% CTAB. This system forms a very viscoelastic solution containing long threadlike micelles. NR only probes to a depth of about 0.5 {mu}m from the surface in these systems and clearly indicates that adsorbed onto the surface is, surfactant layer which is insensitive to shear. The depth probed by the NSSANS is on the order of 20-30 {mu}m and is determined by the transmission of the sample, the angle of incidence, and the wavelength. In this region, the rods align under shear into a remarkably well ordered hexagonal crystal. The SANS from the Couette cell averages over the entire sample, so that the signal is dominated by scattering from the bulk. While the near surface hexagonal structure is clearly visible, these data are not consistent with the crystal structure persisting throughout the bulk, leading to the postulate that the bulk structure is a two dimensional (2D) liquid where the rods align with the flow, but do not order in the other two dimensions.

  14. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.

    PubMed

    Warzoha, Ronald J; Fleischer, Amy S

    2014-08-13

    Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications but have limited applicability in state-of-the-art technologies due to their low intrinsic thermal conductivities. Recent efforts to incorporate graphene and multilayer graphene into PCMs have led to the development of thermal energy storage materials with remarkable values of bulk thermal conductivity. However, the full potential of graphene as a filler material for the thermal enhancement of PCMs remains unrealized, largely due to an incomplete understanding of the physical mechanisms that govern thermal transport within graphene-based nanocomposites. In this work, we show that the number of graphene layers (n) within an individual graphene nanoparticle has a significant effect on the bulk thermal conductivity of an organic PCM. Results indicate that the bulk thermal conductivity of PCMs can be tuned by over an order of magnitude simply by adjusting the number of graphene layers (n) from n = 3 to 44. Using scanning electron microscopy in tandem with nanoscale analytical techniques, the physical mechanisms that govern heat flow within a graphene nanocomposite PCM are found to be nearly independent of the intrinsic thermal conductivity of the graphene nanoparticle itself and are instead found to be dependent on the mechanical compliance of the graphene nanoparticles. These findings are critical for the design and development of PCMs that are capable of cooling next-generation electronics and storing heat effectively in medium-to-large-scale energy systems, including solar-thermal power plants and building heating and cooling systems. PMID:24983698

  15. Modulating the self-assembly of rigid "clicked" dendrimers at the solid-liquid interface by tuning non-covalent interactions between side groups.

    PubMed

    Cadeddu, Andrea; Ciesielski, Artur; El Malah, Tamer; Hecht, Stefan; Samorì, Paolo

    2011-10-14

    First generation poly(triazole-phenylene) dendrimers equipped with peripheral alkyl or carboxylic acid groups to engage in van der Waals and hydrogen-bonding interactions, respectively, assemble into distinct two-dimensional nano-structures at the solid-liquid interface as revealed by high resolution STM investigations. PMID:21869953

  16. Pre-Service Primary Science Teachers' Understandings of the Effect of Temperature and Pressure on Solid-Liquid Phase Transition of Water

    ERIC Educational Resources Information Center

    Yalcin, Fatma Aggul

    2012-01-01

    The aim of this study was to explore pre-service primary teachers' understandings of the effect of temperature and pressure on the solid-liquid phase transition of water. In the study a survey approach was used, and the sample consisted of one-hundred and three, third year pre-service primary science teachers. As a tool for data collection, a test…

  17. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  18. USDA-ARS research update: Improved solid-liquid separation using polymers in flushing systems and new technology to recover the ammonia from covered lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Part 1: Improved method for recovery of organic solids from diluted swine manure: Solid-liquid separation of the raw manure increases the capacity of decision making and opportunities for treatment. The high-rate separation up-front using flocculants allows recovery of most of the organic compounds,...

  19. Pre-Service Primary Science Teachers' Understandings of the Effect of Temperature and Pressure on Solid-Liquid Phase Transition of Water

    ERIC Educational Resources Information Center

    Yalcin, Fatma Aggul

    2012-01-01

    The aim of this study was to explore pre-service primary teachers' understandings of the effect of temperature and pressure on the solid-liquid phase transition of water. In the study a survey approach was used, and the sample consisted of one-hundred and three, third year pre-service primary science teachers. As a tool for data collection, a test

  20. Hydrodynamic-induced enantiomeric enrichment of self-assemblies: Role of the solid-liquid interface in chiral nucleation and seeding

    NASA Astrophysics Data System (ADS)

    Raudino, Antonio; Pannuzzo, Martina

    2012-10-01

    A simple hydrodynamic model has been developed to explain the experimentally observed chirality selection in stirred solutions of self-assembling achiral dyes. Selection depends on the stirring direction: the dichroic signal reverses its shape in clockwise or anti-clockwise rotations. Our model investigates the possible role of the liquid-solid interface in nucleating, growing, and transferring to the bulk of chiral seeds. The nucleation step requires a double modulation of the hydrodynamic field exhibiting different velocity along two orthogonal axes. Under a series of restrictions, such a condition is easily met at the solid-liquid interface and it is dictated by the boundary conditions and geometry of stirring. In stagnant conditions, growing helices made-up of self-assembled achiral dyes have no chiral preference forming a racemic mixture that contains identical amount of right-handed (R) and left-handed (L) configurations. The application of a hydrodynamic torque (related to the velocity gradient and width of the helix) breaks down the original symmetry, a further velocity gradient perpendicular to the first one ensures, after averaging, a slightly different population of R and L conformations. The yields of the hydrodynamic-induced chirality excess are extremely tiny, hence the suggested mechanism is significant only if next chirality amplification processes are efficient. Again, hydrodynamics provides a tool for the detachment of weakly bound aggregates once they have reached a critical length. Aggregates are transported in the bulk where the ripening process goes to completion. The efficiency of the surface catalytic effect strongly depends on the aggregate-surface sticking energy, reaching a maximum at intermediate sticking energies (of order of 10 kT). Numerical estimates show that the proposed mechanism is rather efficient, giving rise to entatiomeric excesses near (but smaller than) those experimentally found.

  1. Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.

    SciTech Connect

    Jayaraman, Saivenkataraman

    2010-03-01

    Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We are currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.

  2. Dissolution at Interfaces in Layered Solid-Liquid Thin Films: A Key Step in Joining Process

    NASA Astrophysics Data System (ADS)

    Baras, F.; Turlo, V.; Politano, O.

    2016-03-01

    We have studied the dissolution process of Ni into liquid Al in Ni-Al multilayer nanofilms by means of molecular dynamics simulations. The elemental mechanisms underlying the dissolution process were described and found to be diffusion-limited. The subsequent evolution leading to intermetallic compound formation was analyzed and interpreted on the basis of classical nucleation theory. A better understanding of the microscopic behavior of Ni-Al reactive multilayer foils, which was essential for their use in joining applications, was obtained.

  3. Collaborateurs aux lignes directrices en soins primaires

    PubMed Central

    Allan, G. Michael; Kraut, Roni; Crawshay, Aven; Korownyk, Christina; Vandermeer, Ben; Kolber, Michael R.

    2015-01-01

    Résumé Objectif Déterminer la profession des collaborateurs scientifiques aux lignes directrices, les variables associées aux différences de participation des collaborateurs et si oui ou non les lignes directrices en soins primaires fournissent un énoncé sur les conflits d’intérêts. Type d’étude Analyse rétrospective des lignes directrices en soins primaires affichées sur le site web de l’Association médicale canadienne. Deux extracteurs de données indépendants ont examiné les lignes directrices et ont extrait les données pertinentes. Contexte Canada Principaux paramètres à l’étude Commanditaires des lignes directrices, territoire (national ou provincial) visé par les lignes directrices, profession des collaborateurs scientifiques aux lignes directrices et énoncés de conflits d’intérêts rapportés dans les lignes directrices. Résultats Sur les 296 lignes directrices de pratique clinique trouvées dans la section de la médecine familiale de l’Infobanque AMC, 65 apparaissaient en double et 35 se rapportaient de façon limitée à la médecine familiale. Vingt ne fournissaient aucune information sur les collaborateurs scientifiques, ce qui laissait 176 lignes directrices propices à l’analyse. Au total, il y avait 2495 collaborateurs (auteurs et membres de comité) : 1343 (53,8 %) spécialistes autres que des médecins de famille, 423 (17,0 %) médecins de famille, 141 (5,7 %) infirmières, 75 (3,0 %) pharmaciens, 269 (10,8 %) autres cliniciens, 203 (8,1 %) scientifiques non cliniciens et 41 (1,6 %) collaborateurs de profession inconnue. La proportion des collaborateurs de ces professions différait significativement entre les lignes directrices nationales et provinciales, de même qu’entre les lignes directrices financées par l’industrie et celles qui ne l’étaient pas (p < 0,001 dans les 2 cas). Dans le cas des lignes directrices de pratique clinique provinciales, 30,8 % des collaborateurs étaient des médecins de famille et 37,3 % étaient d’autres spécialistes, comparativement à 13,9 % et à 57,4 %, respectivement, dans le cas des lignes directrices nationales. Parmi les lignes directrices financées par l’industrie, 7,8 % des collaborateurs étaient des médecins de famille et 68,6 % étaient d’autres spécialistes, comparativement à 19,4 % et à 49,9 %, respectivement, parmi les lignes directrices qui n’étaient pas financées par l’industrie. Les conflits d’intérêts n’étaient pas rapportés dans 68,9 % des cas. Lorsqu’ils l’étaient, les énoncés sur les conflits d’intérêts se rapportaient à 48,6 % aux spécialistes autres que les médecins de famille, à 30,0 % aux pharmaciens, à 27,7 % aux médecins de famille et à 10,0 % ou moins aux autres groupes; les différences étaient statistiquement significatives (p < 0,001). Conclusion Les spécialistes autres que les médecins de famille sont plus nombreux que tous les autres fournisseurs de soins de santé et sont plus de 3 fois plus enclins à collaborer aux lignes directrices en soins primaires que ne le sont les médecins de famille. Les énoncés sur les conflits d’intérêts n’apparaissaient que dans une minorité de lignes directrices, et lorsqu’ils apparaissaient, les spécialistes autres que les médecins de famille étaient plus enclins à les rapporter. Les lignes directrices ciblant les médecins de famille devraient compter plus de médecins de famille et de soins primaires et moins de collaborateurs en conflit d’intérêts.

  4. Direct imaging of complex nano- to microscale interfaces involving solid, liquid, and gas phases.

    PubMed

    Rykaczewski, Konrad; Landin, Trevan; Walker, Marlon L; Scott, John Henry J; Varanasi, Kripa K

    2012-10-23

    Surfaces with special wetting properties not only can efficiently repel or attract liquids such as water and oils but also can prevent formation of biofilms, ice, and clathrate hydrates. Predicting the wetting properties of these special surfaces requires detailed knowledge of the composition and geometry of the interfacial region between the droplet and the underlying substrate. In this work we introduce a 3D quantitative method for direct nanoscale visualization of such interfaces. Specifically, we demonstrate direct nano- to microscale imaging of complex fluidic interfaces using cryostabilization in combination with cryogenic focused ion beam milling and SEM imaging. We show that application of this method yields quantitative information about the interfacial geometry of water condensate on superhydrophilic, superhydrophobic, and lubricant-impregnated surfaces with previously unattainable nanoscale resolution. This type of information is crucial to a fundamental understanding as well as the design of surfaces with special wetting properties. PMID:23020195

  5. Green-Kubo relation and hydrodynamic tails of friction at solid/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Szlufarska, Izabela

    2014-03-01

    Understanding boundary conditions at the liquid/solid (L/S) interface has been a subject of many scientific investigations. It also has important implications for design of materials for such applications as micro-/nanofluidics. Design of functionalized surfaces and interfaces with optimized friction and slip properties is hindered by existing challenges in measuring these properties either in experiments or in simulations. Here, we have developed a Green-Kubo (GK) relation that enables accurate calculations of friction at L/S interfaces directly from equilibrium molecular dynamics (EMD) simulations and that provides a pathway to bypass the time scale limitations of typical non-equilibrium molecular dynamics (NEMD) simulations. The theory has been validated for a number of different of interfaces and it is demonstrated that the L/S slip is an intrinsic property of an interface. Because of the high numerical efficiency of our method, it opens up new opportunities for computational design of functionalized surfaces for L/S applications. Details of the friction correlation function also permit a full analysis of the time-dependent and frequency-dependent friction in a dynamic system. At the hydrodynamic time scale, the memory kernel of the friction coefficient exhibits an algebraic decay, which leads to a -3/2 power long time tail in the velocity autocorrelation function of fluid particles near a wall. This behavior differs from the predictions of previous theoretical and simulation results, which employed no-slip boundary conditions. Our findings provide new insights into understanding the dynamics of interfacial colloids and nano-particle flow in liquids.

  6. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Y Wang, H.; Han, W.; Ma, W.; Shen, Z. J.

    2013-12-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance.

  7. Solid-liquid interfacial energy of solid succinonitrile solution in equilibrium with succinonitrile-neopentylglycol eutectic liquid

    NASA Astrophysics Data System (ADS)

    Karadağ, Saadet B.; Altıntas, Yemliha; Öztürk, Esra; Aksöz, Sezen; Keşlioğlu, Kâzım; Maraşlı, Necmettin

    2013-10-01

    The grain boundary groove shapes for solid succinonitrile solution (SCN-5 mole% NPG) in equilibrium with the succinonitrile (SCN)-neopentylglycol (NPG) eutectic liquid (SCN-9.55 mole% NPG) have been directly observed by using a horizontal linear temperature gradient apparatus at 317.1 K equilibrium temperature. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (Г) and solid-liquid interfacial energy (σSL) of solid SCN solution have been determined to be (5.43±0.50)×10-8 K m and (8.09±1.21)×10-3 J m-2, respectively. The grain boundary energy of solid SCN solution has been determined to be (14.22±2.28)×10-3 J m-2 from the observed grain boundary groove shapes. The thermal conductivity for SCN-9.55 mole% NPG eutectic solid phase and the thermal conductivity ratio of eutectic liquid phase to eutectic solid phase at the melting temperature have also been measured with a radial heat flow apparatus and Bridgman type growth apparatus, respectively.

  8. An in situ attenuated total reflection infrared study of a chiral catalytic solid-liquid interface: cinchonidine adsorption on pt.

    PubMed

    Ferri, D; Bürgi, T

    2001-12-01

    An in situ attenuated total reflection study of the chiral solid-liquid interface created by cinchonidine adsorption on a Pt/Al(2)O(3) model catalyst is presented. Experiments were performed in the presence of dissolved hydrogen, that is under conditions used for the heterogeneous enantioselective hydrogenation of alpha-functionalized ketones. Cinchonidine adsorbs via the quinoline moiety. The adsorption mode is coverage dependent and several species coexist on the surface. At low concentration (10(-6)M) a predominantly flat adsorption mode prevails. At increasing coverage two different tilted species, alpha-H abstracted and N lone pair bonded cinchonidine, are observed. The latter is only weakly bound and in a fast dynamic equilibrium with dissolved cinchonidine. At high concentration (10(-4)-10(-3) M) all three species coexist on the Pt surface. A slow transition from an adsorbate layer with a high fraction of alpha-H abstracted cinchonidine to one with a high fraction of N lone pair bonded cinchonidine is observed with the cinchonidine concentration being the driving force for the process. The reverse transition in the absence of dissolved cinchonidine is fast. Cinchonidine competes with solvent decomposition products for adsorption sites on the Pt, which may contribute to the observed solvent dependence of the heterogeneous enantioselective hydrogenation of ketones by cinchonidine-modified Pt. PMID:11724616

  9. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    PubMed

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies. PMID:23808656

  10. Morphology, mineralogy, and solid-liquid phase separation characteristics of Cu and Zn precipitates produced with biogenic sulfide.

    PubMed

    Villa-Gomez, D K; van Hullebusch, E D; Maestro, R; Farges, F; Nikitenko, S; Kramer, H; Gonzalez-Gil, G; Lens, P N L

    2014-01-01

    The morphology, mineralogy, and solid-liquid phase separation of the Cu and Zn precipitates formed with sulfide produced in a sulfate-reducing bioreactor were studied at pH 3, 5, and 7. The precipitates formed at pH 7 display faster settling rates, better dewaterability, and higher concentrations of settleable solids as compared to the precipitates formed at pH 3 and 5. These differences were linked to the agglomeration of the sulfidic precipitates and coprecipitation of the phosphate added to the bioreactor influent. The Cu and Zn quenched the intensity of the dissolved organic matter peaks identified by fluorescence-excitation emission matrix spectroscopy, suggesting a binding mechanism that decreases supersaturation, especially at pH 5. X-ray absorption fine structure spectroscopy analyses confirmed the precipitation of Zn-S as sphalerite and Cu-S as covellite in all samples, but also revealed the presence of Zn sorbed on hydroxyapatite. These analyses further showed that CuS structures remained amorphous regardless of the pH, whereas the ZnS structure was more organized at pH 5 as compared to the ZnS formed at pH 3 and 7, in agreement with the cubic sphalerite-type structures observed through scanning electron microscopy at pH 5. PMID:24164296

  11. Development of an Analytical Method Based on Temperature Controlled Solid-Liquid Extraction Using an Ionic Liquid as Solid Solvent.

    PubMed

    Pan, Zhongwei; Wang, Zhengquan; Zhu, Linna; Zhu, Zhiming; Cai, Jinying; Shen, Xiaoman; Fan, Tingli; Zhang, Yingnan; Chen, Zhixiu

    2015-01-01

    At the present paper, an analytical method based on temperature controlled solid-liquid extraction (TC-SLE) utilizing a synthesized ionic liquid, (N-butylpyridinium hexafluorophosphate, [BPy]PF₆), as solid solvent and phenanthroline (PT) as an extractant was developed to determine micro levels of Fe(2+) in tea by PT spectrophotometry. TC-SLE was carried out in two continuous steps: Fe(2+) can be completely extracted by PT-[BPy]PF₆ or back-extracted at 80 °C and the two phases were separated automatically by cooling to room temperature. Fe(2+), after back-extraction, needs 2 mol/L HNO₃ as stripping agent and the whole process was determined by PT spectrophotometry at room temperature. The extracted species was neutral Fe(PT)mCl₂ (m = 1) according to slope analysis in the Fe(2+)-[BPy]PF₆-PT TC-SLE system. The calibration curve was Y = 0.20856X - 0.000775 (correlation coefficient = 0.99991). The linear calibration range was 0.10-4.50 μg/mL and the limit of detection for Fe(2+) is 7.0 × 10(-2) μg/mL. In this method, the contents of Fe(2+) in Tieguanyin tea were determined with RSDs (n = 5) 3.05% and recoveries in range of 90.6%-108.6%. PMID:26690398

  12. Solid-Liquid Interfacial Energy of Solid Succinonitrile in Equilibrium with Succinonitrile-(D)Camphor-Aminomethylpropanediol Eutectic Liquid

    NASA Astrophysics Data System (ADS)

    Ata, P?nar; Karamaz?, Yasin; Bayram, mit; Aksz, Sezen; Ke?lio?lu, Kaz?m; Mara?l?, Necmettin

    2016-01-01

    The grain boundary groove shapes for equilibrated solid SCN in equilibrium with the eutectic liquid SCN-15.6 mol% DC-2.1 mol% AMPD have been directly observed by using a horizontal linear temperature gradient apparatus. The ratio of the thermal conductivity of the equilibrated liquid to the thermal conductivity of solid SCN has also been determined to be 0.89. From the observed grain boundary groove shapes and measured thermal conductivity ratio, the Gibbs-Thomson coefficient ({{\\varGamma }}), solid-liquid interfacial energy (? _{SL}), and the grain boundary energy (? _{gb}) have been determined to be (5.43 0.54) 10^{-8} K{\\cdot } m, (8.53 1.28) 10^{-3} J {\\cdot } m^{-2}, and (13.36 2.14) 10^{-3} J{\\cdot } m^{-2}, respectively, for equilibrated solid SCN in equilibrium with the eutectic liquid (SCN-15.6 mol% DC-2.1 mol% AMPD).

  13. Arrhenian and Non-Arrhenian Temperature Dependent Relaxation Time Development in the Solid-Liquid Transition Area of Amorphous Bodies

    NASA Astrophysics Data System (ADS)

    Hlaváček, Bořivoj; Drašar, Čestmír; Kalendová, Andréa; Menc, Pavel; Veselý, David

    The temperature-dependent changes of molecular and sub-molecular motions are studied in amorphous substances. The solid and liquid phases of amorphous bodies are characterized at the micro-level by two types of oscillators, linear and non-linear. It is accepted that an amorphous liquid is formed by domains that group the linear oscillators into the form of icebergs. The serial connection of the viscoelastic elements are arranged inside of these icebergs. The size of the linear connection within the domains is characterized by the number "n", which increases during the cooling process. The linear viscoelastic behavior of the individual serial connections is connected to the individual relaxation processes α, β, and γ. Only the "alpha" process exhibits growth of "n" to infinity on cooling. Therefore, the corresponding relaxation time, τα, for the infinite chain of "n" elements (Voigt or Maxwell elements) can also reach infinity as the material transforms to a glassy state. In contrast to the "alpha" process, the β and γ processes are limited in growth for serial connections in a chain structure. Therefore, the relaxation times for the β and γ processes, τβ and τγ, will only follow the temperature dependence of the sample viscosity on cooling, which is, of course, Arrhenian. We discuss the role of non-linear oscillators in the solid-liquid transition in relation to Brownian motion.

  14. Interaction mechanism of in-situ nano-TiN-AlN particles and solid/liquid interface during solidification.

    PubMed

    Cui, Chunxiang; Li, Yanchun; Shen, Yutian; Sun, Jibing; Wang, Ru

    2003-10-01

    This paper deals with the interaction mechanism between in situ nanometer-grade TiN-AlN particles and the solid/liquid (S/L) interface during the solidification of an in situ TiN-AlN/Al composite. According to the setting of a force balance for the particles in front of the S/L interface during solidification, F = F(buoyant) + F(repulsive) + F(viscous). We obtained the relationship between the critical cooling velocity of the liquid composite, Vr, and the size of the ceramic particle, rp. By this relationship formula, we can know that the S/L interface engulfs particles or pushes them to the crystal grain boundary during the solidification of a TiN-AlN/Al composite. It is found that Vr is proportional to the radius of ceramic particles by transmission electron microscope (TEM) observation. The TEM test indicates that the smaller the particle is, the more easily the S/L interface engulfs particles. PMID:14733152

  15. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  16. Discussion of parameters associated with the ultrasonic solid-liquid extraction for elemental analysis (total content) by electrothermal atomic absorption spectrometry. An overview.

    PubMed

    Capelo, J L; Maduro, C; Vilhena, C

    2005-02-01

    Ultrasonic solid-liquid extraction (USLE) of trace metals from biological and environmental samples and its subsequent quantification by electrothermal atomic absorption spectrometry (ET-AAS) is nowadays an emerging methodology in the analytical laboratory. However, this methodology is far from maturity as can be readily demonstrated from the controversial data reported by different workers. In the light of our own experience and a survey of published data, a general approach for USLE-ET-AAS is discussed, taking into account the different variables which affect ultrasonic solid-liquid extraction, namely, the ultrasonic device chosen for ultrasonic extraction (e.g. ultrasonic bath or ultrasonic probe), particle size, acid concentration, sonication time and sonication amplitude, sample mass and analyte-matrix binding. PMID:15491886

  17. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1992-12-31

    In this report we present two data sets that have been compiled to assist in the model developments for solid-liquid equilibria and viscosities of coal derived systems. The first one is on vapor pressures of solid aromatics and the second one consists of viscosities of pure model compounds and some mixtures. These databanks are ready for usage in model development and are summarized in Tables 1 and 2. Literature is being searched to compile similar data for high pressure liquid compressibilities, liquid and solid heat capacities and solid-liquid equilibria for model compound systems. Literature search is also containing to investigate available viscosity models. Once this is completed a few models will be selected for evaluation and consideration as candidates for extension to coal liquids.

  18. Liquid-vapor and solid-liquid-vapor phase equilibria in natural gas systems. Annual report 1 Jan 83-1 Jan 84

    SciTech Connect

    Kidney, A.J.; Sloan, E.D.

    1984-01-01

    Solid-liquid-vapor phase equilibria were measured for the binary systems carbon dioxide plus methane, carbon dioxide plus ethane, and carbon dioxide plus propane over the temperature region 204 to 216 K. Vapor-liquid phase equilibria were measured for carbon dioxide plus methane at 212 K, carbon dioxide plus ethane at 204, 209, and 212 K, and carbon dioxide plus propane at 216 K.

  19. Numerical Calculation of the Drag Force Acting on a Solid Particle Pushed by a Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu

    2000-01-01

    The distribution of insoluble particles in a metal casting depends primarily on the interaction of the particles with the solid/liquid interface (SLI) during the solidification process. The balance of the forces acting on the particle essentially determines whether a particle will be engulfed or pushed by the SLI. An important component of this force balance is the drag force generated by the particle motion in front of the SLI. Previously developed mathematical models for particle/SLI interaction made use of steady-state solutions of this force provided by the lubrication theory. However, our numerical model based on the SLI tracking approach shows that the steady-state approach is inappropriate to model the interaction process and that at steady-state the theoretical solution underestimates the drag force. It was found that regression analysis of steady-state numerical solutions for cylindrical particles moving normal to a flat SLI gives a relationship of the form: Abstract The distribution of insoluble particles in a metal casting depends primarily on the interaction of the particles with the solid/liquid interface (SLI) during the solidification process. The balance of the forces acting on the particle essentially determines whether a particle will be engulfed or pushed by the SLI. An important component of this force balance is the drag force generated by the particle motion in front of the SLI. Previously developed mathematical models for particle/SLI interaction made use of steady-state solutions of this force provided by the lubrication theory. However, our numerical model based on the SLI tracking approach shows that the steady-state approach is inappropriate to model the interaction process and that at steady-state the theoretical solution underestimates the drag force. It was found that regression analysis of steady-state numerical solutions for cylindrical particles moving normal to a flat SLI gives a relationship of the form: F(sub D, sup num) =sqoare root of 3(pi)(eta)V(sub p)(R(sub p)/d)(sup 10(gamma)/3). This is to compared to the solution provided by the lubrication theory: F(sub D), sup theor) = 3 square root of 2(pi)(eta)V(sub p)(R(sub p)/d)(sub 3/2), where F(sub D) is the drag force, eta is the dynamic viscosity of the fluid, V(sub p) is the particle velocity, R(sub p) is the particle radius, gamma is Euler's constant (gamma approx. = 0.577), and d is the width of the gap between the particle and the SLI. The domain on which the equations proposed by the lubrication theory are relevant is clearly identified in the paper. The numerical model was then validated against the classical lubrication theory within the domain of its validity.

  20. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGESBeta

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; et al

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  1. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    PubMed Central

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-01-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry. PMID:25950241

  2. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  3. Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface.

    PubMed

    Axnanda, Stephanus; Crumlin, Ethan J; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G; Edwards, Mårten O M; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-01-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a "dip &pull" method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, "dip &pull" approach, with a "tender" X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt(2+) and Pt(4+) interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of "tender" AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry. PMID:25950241

  4. Thermoelectric Magnetohydrodynamic Flows and Their Induced Change of Solid-Liquid Interface Shape in Static Magnetic Field-Assisted Directional Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Fautrelle, Yves; Nguyen-Thi, Henri; Reinhart, Guillaume; Liao, Hanlin; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-03-01

    Applying static magnetic field can produce flows (thermoelectric magnetohydrodynamic flows, TEMHDF) in the melt by interacting with the thermoelectric currents (TEC) during solidification of metals. A physical model was proposed to interpret how these TEC appear at the solid-liquid interface and verified by a corresponding simulation. The influences of TEMHDF on solidification were investigated through both ex-situ experiments and n situ observations by means of synchrotron X-ray radiography. The 3D numerical simulations of TEMHDF were performed for these two cases, respectively, and suggested that both the change of interface shape with different transverse static magnetic fields demonstrated by the ex-situ experiments and the real time observed interface shape varying under a 0.08 T transverse static magnetic field could attribute to the TEMHDF advanced solid-liquid interface in the static magnetic field-assisted directional solidification. The TEMHDF produced by an axial static magnetic field were also computed along with the interface change predicted based on which is good in line with the published experimental results. This study of TEMHDF and their impacts on the solid-liquid interface shape provides a method to tailor the structure during directional solidification using static magnetic field.

  5. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Oladi, Elham; Mohamadi, Maryam; Shamspur, Tayebeh; Mostafavi, Ali

    2014-11-01

    Melatonin is normally consumed to regulate the body's biological cycle. However it also has therapeutic properties, such as anti-tumor, anti-aging and protects the immune system. There are some reports on the presence of melatonin in edible kernels such as walnuts, but the extraction of melatonin from pistachio kernels is reported here for the first time. For this, the methanolic extract of pistachio kernels was exposed to gas chromatography/mass spectrometry analysis which confirmed the presence of melatonin. A fluorescence-based method was applied for the determination of melatonin in different extracts. When excited at λ = 275 nm, the fluorescence emission intensity of melatonin was measured at λ = 366 nm. Ultrasound-assisted solid-liquid extraction was used for the extraction of melatonin from pistachio kernels prior to fluorimetric determination. To achieve the highest extraction recovery, the main parameters affecting the extraction efficiency such as extracting solvent type and volume, temperature, sonication time and pH were evaluated. Under the optimized conditions, a linear dependence of fluorescence intensity on melatonin concentration was observed in the range of 0.0040-0.160 μg mL-1, with a detection limit of 0.0036 μg mL-1. This method was applied successfully for measuring and comparing the melatonin content in the kernels of four different varieties of Pistacia including Ahmad Aghaei, Akbari, Kalle Qouchi and Fandoghi. In addition, the results obtained were compared with those obtained using GC/MS. A good agreement was observed indicating the reliability of the proposed method.

  6. Optimization of solid-liquid extraction of resveratrol and other phenolic compounds from milled grape canes (Vitis vinifera).

    PubMed

    Karacabey, Erkan; Mazza, Giuseppe

    2008-08-13

    Optimization of the solid-liquid extraction conditions for trans-resveratrol, trans--viniferin, ferulic acid, and total phenolics from milled grape canes has been investigated. The temperature and ethanol concentration were found to be major process variables for all responses, whereas the solvent to solid ratio was found not to be significant for any of the responses studied. The yields of trans-resveratrol, trans--viniferin, and total phenolics increased with increasing temperature. Maximum yields of trans-resveratrol (4.25 mg/g dw), trans--viniferin (2.03 mg/g), and total phenolics (9.28 mg/g dw) were predicted from the combination of a moderate ethanol concentration (50-70%) and the highest temperature (83.6 degrees C), whereas an ethanol concentration of 35% at the lowest temperature studied (16.4 degrees C) was optimal for the extraction of ferulic acid (1.05 mg/g dw). Effective diffusivity values of resveratrol in the solid phase, D eff for different extraction conditions, were calculated by fitting the experimental results to a model derived from the Fick's second law. Effective diffusivity of resveratrol in the solid phase varied from 3.1 x 10 (-13) to 26.6 x 10 (-13) m (2) s (-1) with changing extraction conditions. The increase in effective diffusivity of resveratrol was observed with increasing temperature, and the highest predicted level was obtained when using 54% ethanol/water mixture at 83.6 degrees C. The increase in ethanol concentration exhibited the favorable effect up to 50-55%, thereafter effective diffusivity decreased with a further increase in concentration. PMID:18636680

  7. Solid-liquid separation method governs the in vitro bioaccessibility of metals in contaminated soil-like test materials.

    PubMed

    Laird, Brian D; Weiseth, Blake; Packull-McCormick, Sara R; Peak, Derek; Dodd, Matt; Siciliano, Steven D

    2015-09-01

    An in vitro gastrointestinal model was used to explore the role of solid-liquid separation method on the bioaccessibility of trace elements in a smelter-impacted soil (NIST-2711) from Helena, MT and a mine overburden from an open-pit gold and silver mine in Mount Nansen, YK (YK-OVB). Separation methods studied included centrifugation (5,000 g, 12,000 g), syringe microfiltration (0.45 μm), and ultrafiltration (1,000 kDa, 50 kDa, 30 kDa, 10 kDa, 3 kDa). Results indicated that the use of syringe microfiltration generally yields the same bioaccessibility as the use of centrifugation and that the speed of centrifugation does not typically affect metal bioaccessibility. However, ultrafiltration consistently yields a significantly lower bioaccessibility than the use of centrifugation and syringe microfiltration. There are rarely any differences between bioaccessibility estimates generated using a low-resistance (1,000 kDa) and a high-resistance (3 kDa) ultrafiltration membrane; therefore, under the in vitro gastrointestinal conditions modeled herein, negligible quantities of trace elements are complexed to small molecules between 3 and 1,000 kDa. The primary exceptions to these trends were observed for Pb in NIST-2711 (5,000 g>12,000 g>0.45 μm>ultrafiltration) and for Tl in NIST-2711 and YK-OVB (5000 g∼12,000 g>0.45 μm>ultrafiltration). These results provide valuable information to researchers attempting to expand the use of in vitro bioaccessibility beyond soil Pb and As. PMID:25600322

  8. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect

    Yu, Tang-Qing Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  9. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    PubMed Central

    Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Vanden-Eijnden, Eric; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency. PMID:24907992

  10. Observation of linear to planar structural transition in sulfur-doped gold clusters: AuxS- (x = 2-5)

    NASA Astrophysics Data System (ADS)

    Wen, Hui; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Zhang, Wei-Jun; Huang, Wei; Wang, Lai-Sheng

    2013-05-01

    We report a joint experimental and theoretical study on the structures of a series of gold clusters doped with a sulfur atom, AuxS- (x = 2-5). Well-resolved photoelectron spectra are obtained and compared with theoretical results calculated using several density functional methods to elucidate the structures and bonding of AuxS- (x = 2-5). Au2S- is found to have an asymmetric linear global minimum structure with C∞v symmetry, while the most stable structure of neutral Au2S is bent with C2v symmetry, reminiscent of H2S. Au3S- is found to have an asymmetric bent structure with an Au-S-Au-Au connectivity. Two isomers are observed experimentally to co-exist for Au4S-: a symmetric bent 1D structure (C2v) and a 2D planar low-lying isomer (Cs). The global minimum of Au5S- is found to be a highly stable planar triangular structure (C2v). Thus, a 1D-to-2D structural transition is observed in the AuxS- clusters as a function of x at x = 4. Molecular orbital analyses are carried out to obtain insight into the nature of the chemical bonding in the S-doped gold clusters. Strong covalent bonding between S and Au is found to be responsible for the 1D structures of AuxS- (x = 2-4), whereas delocalized Au-Au interactions favor the 2D planar structure for the larger Au5S- cluster.

  11. Soins Aux Brules Apres Un Accident Nucleaire

    PubMed Central

    Bargues, L.; Donat, N.; Jault, P.; Leclerc, T.

    2010-01-01

    Summary Les lésions radiques sont dues le plus souvent à des radio-isotopes utilisés dans l’industrie. L’explosion d’un réacteur nucléaire, les armes nucléaires ou une attaque terroriste constituent un risque d’afflux massif de victimes brûlées. Les radiations ionisantes occasionnent des brûlures thermiques, des syndromes d’irradiation aiguë avec pancytopénie et des signes cutanés retardés. Après une période de latence, des symptômes cutanés apparaissent et leur profondeur est proportionnelle à la dose reçue. Les protocoles habituels de réanimation des brûlés s’appliquent ici. Les soins aux irradiés nécessitent aussi une mesure de l’irradiation et une décontamination par des personnels entraînés. En cas de catastrophe nucléaire, la priorité est d’optimiser les structures existantes et de préserver les moyens pour les patients ayant la plus forte probabilité de survie. Après un accident nucléaire isolé, les difficultés dans les centres de brûlés sont l’évaluation de la profondeur et les techniques chirurgicales de couverture cutanée. La préparation des moyens médicaux et des centres de brûlés est nécessaire pour faire face à la prise en charge de ces brûlures différentes et complexes. PMID:21991218

  12. Room temperature on-surface synthesis of two-dimensional imine polymers at the solid/liquid interface: concentration takes control.

    PubMed

    Yu, Yanxia; Lin, Jianbin; Wang, Yan; Zeng, Qingdao; Lei, Shengbin

    2016-05-01

    Though moderate heating in a controlled environment is generally considered to be necessary, in this work we show that the most important prerequisite for obtaining high quality 2D imine polymers at the interface is the concentration and molar ratio of building blocks on the surface. With diverse monomers we have demonstrated that the concentration-in-control strategy is a general and powerful way to construct covalent single layer 2D imine polymers with high regularity at the solid/liquid interface. PMID:27111697

  13. Investigating the influence of production conditions on the energy distribution between the solid, liquid and gaseous products of slow pyrolysis

    NASA Astrophysics Data System (ADS)

    Crombie, Kyle; Masek, Ondrej

    2013-04-01

    Slow pyrolysis is a well established technology for converting biomass into a more stable form of carbon (biochar) while also producing energy rich by-products of bio-oil and syngas. Biochar is the porous, carbonaceous material produced by thermo-chemical treatment of organic materials in an oxygen-limited environment. Biochar can be incorporated into soils to improve soil fertility, reduce greenhouse gas emissions as well as provide long term storage of carbon or alternatively it can also provide additional energy to a pyrolysis system through combustion. Biochar production conditions have a significant influence on the yield as well as physiochemical and functional properties of the final pyrolysis products, resulting in a selection process aimed towards either agricultural benefits and carbon mitigation or heat/energy generation. This work aimed to investigate the effect of temperature, residence time and gas flow rate on the product energy distribution as well as the physical, chemical and soil functional properties of biochar, in order to optimise conditions best suited to maximise both energy value and agronomic benefit. Biochar samples were produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650oC), with three residence times (10, 20 and 40 minutes) and three carrier gas flow rates (0, 0.3 and 0.6 L min-1). The energy balance of the system was determined through the calorimetric analysis of biochar and bio-oil, while the higher heating value for the syngas was calculated from the gas composition measured via mass spectroscopy. Biochar was also analysed for the physiochemical properties of proximate analysis and ultimate analysis as well as the functional property of environmentally stable carbon (C) content. As expected the yield of biochar decreased with increasing temperature resulting in elevated yields of liquid and gas fractions. Increased temperature also resulted in higher values of fixed C, total C, stable C and calorific value due to the increased emission of volatiles. The higher heating value for the syngas was also shown to increase with temperature due to greater release of combustible gas species at higher temperatures. The impact of residence time and gas flow rate were not as clear as for temperature but still demonstrated decreasing biochar yields as the respective parameters were increased. However the greatest impact occurred at 350oC and diminished when temperature was increased to 650oC. An understanding of the influence that production conditions have on the long term stability of biochar as well as the energy content of the solid, liquid and gas fractions obtained from pyrolysis is critical towards the development of specifically engineered biochar to deliver a specific function be it for agricultural use, carbon storage, energy generation or combinations of the three.

  14. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. PMID:26512860

  15. Finite element analysis of the effect of a non-planar solid-liquid interface on the lateral solute segregation during unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.

    1982-01-01

    The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.

  16. Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-11-01

    Ultra-long, single crystal, α-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150 °C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the α-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties.

  17. Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties.

    PubMed

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-01-01

    Ultra-long, single crystal, α-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150 °C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the α-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties. PMID:26607395

  18. Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties

    PubMed Central

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Hu, Xiaozhi; Zhang, Shaowei

    2015-01-01

    Ultra-long, single crystal, α-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150 °C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the α-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties. PMID:26607395

  19. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    SciTech Connect

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina; Eriksson, Susanna K.; Åhlund, John; Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  20. Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments.

    PubMed

    Meullemiestre, A; Petitcolas, E; Maache-Rezzoug, Z; Chemat, F; Rezzoug, S A

    2016-01-01

    Maritime pine sawdust, a by-product from industry of wood transformation, has been investigated as a potential source of polyphenols which were extracted by ultrasound-assisted maceration (UAM). UAM was optimized for enhancing extraction efficiency of polyphenols and reducing time-consuming. In a first time, a preliminary study was carried out to optimize the solid/liquid ratio (6g of dry material per mL) and the particle size (0.26 cm(2)) by conventional maceration (CVM). Under these conditions, the optimum conditions for polyphenols extraction by UAM, obtained by response surface methodology, were 0.67 W/cm(2) for the ultrasonic intensity (UI), 40°C for the processing temperature (T) and 43 min for the sonication time (t). UAM was compared with CVM, the results showed that the quantity of polyphenols was improved by 40% (342.4 and 233.5mg of catechin equivalent per 100g of dry basis, respectively for UAM and CVM). A multistage cross-current extraction procedure allowed evaluating the real impact of UAM on the solid-liquid extraction enhancement. The potential industrialization of this procedure was implemented through a transition from a lab sonicated reactor (3 L) to a large scale one with 30 L volume. PMID:26384903

  1. Solid-liquid equilibria in the systems NH3-H2O-LiBr and H2O-LiBr at p=1 atm in the range from -35 to 80°C

    NASA Astrophysics Data System (ADS)

    Peters, R.; Busse, R.; Keller, J. U.

    1993-07-01

    Solid-liquid equilibria at ambient pressure and solid-liquid-vapor equilibria at T=303.15 K have been measured in the system ammonia-water-lithium bromide for various initial concentrations of lithium bromide. Liquid phases have been analyzed using ion selective electrodes. A ternary phase diagram of the system at T=303.15 K is provided showing a triple line and several regions in which solid phases of different kind occur. This will restrict considerably the use of these systems as working fluids in absorption machinery.

  2. Latent Heat storage characteristics of solid-liquid phase change Heat Storage Microcapsule Slurry by Boiling Heat Transfer under a Vacuum Condition

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Haruki, Naoto; Katayama, Masatoshi; Manabe, Ken

    Recently, the new heat transfer medium, which fulfills both functions of heat storage and heat transportation, has been developed in ah eat storage field. Solid-liquid latent heat microcapsule slurry would correspond to the topical medium, so-called functionally thermal fluid. The preset study has clarified the latent heat storage characteristics of microcapsule slurry by making heat transfer enlargement with the help of slurry water pool boiling phenomenon. The paraffin wax at a melting point of 62C was used as a phase change material which was packed into the microcapsule. The heating surface temperature and concentration of paraffin in the microcapsule slurry was selected as experimental parameters. As a result, the non-dimensional correlation equations of heat storage completion time and heat transfer were derived in terms of non-dimensional parameters.

  3. Solid-liquid hybrid assembly for ultrasonic elasticity measurements under hydrostatic conditions of up to 8 GPa in a Kawai-type multianvil apparatus

    NASA Astrophysics Data System (ADS)

    Song, M.; Yoneda, A.; Ito, E.

    2005-03-01

    A solid-liquid hybrid assembly has been designed for ultrasonic elasticity measurements of materials under hydrostatic conditions in a Kawai-type multianvil apparatus. In the assembly, a tungsten-carbide cubic anvil served as the buffer rod for the acoustic signals. The transducer and sample were mounted on two diagonally opposite truncated corners of the buffer-rod anvil. The sample was immersed in a liquid cell filled with a liquid pressure medium, a methanol-ethanol mixture (4:1 in volume), which produced hydrostatic conditions for the sample. The pressure was monitored with a bismuth pressure calibrant inside the liquid cell. Preliminary experiments using single-crystal MgO, polycrystal alumina, and silicate glass samples were successfully conducted up to 8GPa. This assembly is especially useful for precise elasticity measurements of single-crystal samples under hydrostatic compression.

  4. THE PROCESS OF MASS TRANSFER ON THE SOLID-LIQUID BOUNDARY LAYER DURING THE RELEASE OF DICLOFENAC SODIUM AND PAPAVERINE HYDROCHLORIDE FROM TABLETS IN A PADDLE APPARATUS.

    PubMed

    Kasperek, Regina; Zimmer, Lukasz; Poleszak, Ewa

    2016-01-01

    The release study of diclofenac sodium (DIC) and papaverine hydrochloride (PAP) from two formulations of the tablets in the paddle apparatus using different rotation speeds to characterize the process of mass transfer on the solid-liquid boundary layer was carried out. The dissolution process of active substances was described by values of mass transfer coefficients, the diffusion boundary layer thickness and dimensionless numbers (Sh and Re). The values of calculated parameters showed that the release of DIC and PAP from tablets comprising potato starch proceeded faster than from tablets containing HPMC and microcrystalline cellulose. They were obtained by direct dependencies between Sh and Re in the range from 75 rpm to 125 rpm for both substances from all tablets. The description of the dissolution process with the dimensionless numbers make it possible to plan the drug with the required release profile under given in vitro conditions. PMID:27008811

  5. Measurements of solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K

    NASA Astrophysics Data System (ADS)

    Sang, Shihua; Hu, Yongxia; Cui, Ruizhi; Hu, Juanxin; Wang, Yuan

    2015-07-01

    Solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K were measured by the isothermal dissolution equilibrium method. The solubilities of salts and densities of saturated solutions in the ternary system were determined experimentally. The equilibrium solid phases were also determined by chemical analysis and X-ray powder diffraction. Using the experimental data, the phase diagram of the ternary system was obtained, which comprise one univariant curve and one stationary phase in crystallization filed of Na (Cl, Br). The ternary system was solid solution type. Density values in the equilibrium solution increase with an increase of the sodium bromide concentration while decrease with an increase of the sodium chloride concentration. The relationship equation of equilibrium liquid phase and the solid phase composition data were fitted with a regression equation.

  6. The movement of particles in liquid metals under gravity forces and the interaction of particles with advancing solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Weinberg, F.

    1984-01-01

    The problems of shrinkage and gas porosity are discussed. Gravity forces enhance the removal of gas bubbles from a metal melt and contribute to the feeding of shrinkage porosity in castings. Experiments are reviewed which determine how large a density difference is required for metal particles to float or sink in a metal melt and to what extent do factors not considered in Stokes Law influence particle movement in a real system. As to the interaction of particles with an advancing solid-liquid interface, the results indicate that the metal particles are not rejected in a metal melt, and that concentrations of particles in a metal following solidification are due to other factors.

  7. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    PubMed

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. PMID:24995879

  8. Simultaneous determination of sulfonamides and metabolites in manure samples by one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction and liquid chromatography-mass spectrometry.

    PubMed

    Wu, Hui-zhen; Qian, Ming-rong; Wang, Jian-mei; Zhang, Hu; Ma, Jun-wei; Li, Zu-guang; Lee, Maw-rong

    2015-05-01

    An in-line matrix cleanup method was used for the simultaneous extraction of 15 sulfonamides and two metabolites from manure samples. The ultrasound/microwave-assisted extraction (UMAE) combined with solid-liquid-solid dispersive extraction (SLSDE) procedure provides a simple sample preparation approach for the processing of manure samples, in which the extraction and cleanup are integrated into one step. Ultrasonic irradiation power, extraction temperature, extraction time, and extraction solvent, which could influence the UMAE efficiency, were investigated. C18 was used as the adsorbent to reduce the effects of interfering components during the extraction procedure. The extracts were concentrated, and the analytes were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) without any further cleanup. The isotopically labeled compounds sulfamethoxazole-d 4, sulfamethazine-d 4, sulfamonomethoxine-d 4, and sulfadimethoxine-d 6 were selected as internal standards to minimize the matrix effect in this method. The recoveries of the antibiotics tested ranged from 71 to 118 % at the three spiking levels examined (20, 200, and 500 μg · kg(-1)). The limits of detections were 1.2-3.6 μg · kg(-1) and the limits of quantification were 4.0-12.3 μg · kg(-1) for the sulfonamides and their metabolites. The applicability of the method was demonstrated by analyzing 30 commercial manure samples. The results indicated that UMAE-SLSDE combined with LC-MS/MS is a simple, rapid, and environmentally friendly method for the analysis of sulfonamides and their metabolites in manure, and it could provide the basis for a risk assessment of the antibiotics in agricultural environments. PMID:25732092

  9. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Cheng, X. R.; Li, R. N.; Gao, Y.; Guo, W. L.

    2013-12-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value.

  10. Microstructure and Mechanical Properties of ɛ-Phase-Reinforced ZnAl4Y Matrix Composite Prepared by Mixed Solid-Liquid Casting

    NASA Astrophysics Data System (ADS)

    Tu, Hao; Huang, Jianfeng; Su, Xuping; Li, Tao; Jiang, Lingling; Wang, Jianhua

    2014-03-01

    ɛ-Phase-reinforced ZnAl4Y matrix composite has been fabricated by mixed solid-liquid casting method. The results show that the size of primary η-Zn phase in the composite decreases remarkably with the increase of adding amount of Cu-10wt.%Al powders till it reaches 6.0 wt.% in ZnAl4Y alloy. Besides, a large amount of small ɛ-phase particles form in ZnAl4Y matrix when the adding amount of Cu-10wt.%Al powders is in the range of 4.0-6.0 wt.% in ZnAl4Y alloy. Coarse ɛ-phase particles forms when the adding amount of Cu-10wt.%Al powders exceeds 8.0 wt.% in ZnAl4Y alloy. Compared with ZnAl4Y alloy, the composite could obtain optimal mechanical properties when the added amount of Cu-10wt.%Al powders is 6.0 wt.%.

  11. High quality, giant crystalline-Ge stripes on insulating substrate by rapid-thermal-annealing of Sn-doped amorphous-Ge in solid-liquid coexisting region

    NASA Astrophysics Data System (ADS)

    Matsumura, Ryo; Kai, Yuki; Chikita, Hironori; Sadoh, Taizoh; Miyao, Masanobu

    2015-06-01

    Formation of large-grain (≥30 μm) Ge crystals on insulating substrates is strongly desired to achieve high-speed thin-film transistors. For this purpose, we propose the methods of Sn-doping into amorphous-Ge combined with rapid-thermal-annealing (RTA) in the solid-liquid coexisting temperature region for the Ge-Sn alloy system. The densities of micro-crystal-nuclei formed in this temperature region become low by tuning the RTA temperature close to the liquidus curve, which enhances the lateral growth of GeSn. Thanks to the very small segregation coefficient of Sn, almost all Sn atoms segregate toward edges of the stripes during growth. Agglomeration of GeSn degrades the surface morphologies; however, it is significantly improved by lowering the initial Sn concentration. As a result, pure Ge with large crystal grains (˜40 μm) with smooth surface are obtained by optimizing the initial Sn concentration as low as 3 ˜ 5%. Lateral growth lengths are further increased through decreasing the number of nuclei in stripes by narrowing stripe width. In this way, high-crystallinity giant Ge crystals (˜200 μm) are obtained for the stripe width of 3 μm. This "Si-seed free" technique for formation of large-grain pure Ge crystals is very useful to realize high-performance thin-film devices on insulator.

  12. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    PubMed Central

    Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  13. Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid-liquid extraction followed by high performance liquid chromatography.

    PubMed

    Valdivielso, Izaskun; Bustamante, Mara ngeles; Ruiz de Gordoa, Juan Carlos; Njera, Ana Isabel; de Renobales, Mertxe; Barron, Luis Javier R

    2015-04-15

    Carotenoids and tocopherols from botanical species abundant in Atlantic mountain grasslands were simultaneously extracted using one-step solid-liquid phase. A single n-hexane/2-propanol extract containing both types of compounds was injected twice under two different sets of HPLC conditions to separate the tocopherols by normal-phase chromatography and carotenoids by reverse-phase mode. The method allowed reproducible quantification in plant samples of very low amounts of ?-, ?-, ?- and ?-tocopherols (LOD from 0.0379 to 0.0720 ?g g(-1) DM) and over 15 different xanthophylls and carotene isomers. The simplified one-step extraction without saponification significantly increased the recovery of tocopherols and carotenoids, thereby enabling the determination of ?-tocopherol acetate in plant samples. The two different sets of chromatographic analysis provided near baseline separation of individual compounds without interference from other lipid compounds extracted from plants, and a very sensitive and accurate detection of tocopherols and carotenoids. The detection of minor individual components in botanical species from grasslands is nowadays of high interest in searching for biomarkers for foods derived from grazing animals. PMID:25466080

  14. Numerical Modeling and In-Situ Observations of the Dynamics of the Solid/Liquid Interface Morphology During Directional Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Curreri, Peter A.; Kaukler, W. F.

    1999-01-01

    The departure from interface planarity and the subsequent evolution to a periodic array of cells or dendrites is a fundamental process that characterizes most microstructures in solidified alloys. The growing demand for high quality alloys and semiconductor crystals requires a precise methodology to predict and subsequently control both the interface morphology and the distribution of impurities, additives, and phases in the grown crystal. Apart from its practical significance, the study of morphological evolution has also been viewed as a means to unearth a general paradigm for pattern formation in nature. A previously developed 2D numerical model for the solid/liquid interface tracking has been further refined and used to simulate the time-evolution of the perturbations on the interface. The dynamics of the local growth velocity, interface undercooling and solute concentration at the interface has been theoretically predicted by means of the numerical model for Al-Cu and Pb-Sn alloys. The model shows that perturbations with a wavelengths, lambda greater than a critical wavelength lambda(sub c) continue to grow in time whereas perturbations with lambda < lambda(sub c) cease to propagate. The model further predicts that under certain conditions perturbation can also propagate along the interface. Comparison of these predictions with existing theories of pattern formation and experimental results will be discussed.

  15. Vortex-assisted matrix solid-liquid dispersive microextraction for the analysis of triazole fungicides in cotton seed and honeysuckle by gas chromatography.

    PubMed

    Xue, Jiaying; Li, Huichen; Liu, Fengmao; Jiang, Wenqing; Hou, Fan

    2016-04-01

    A one-step analytical method termed vortex-assisted matrix solid-liquid dispersive microextraction (VA-MSLDME) was developed for the determination of seven triazole fungicides from cotton seed and honeysuckle prior to gas chromatography with electron capture detection. The VA-MSLDME was performed by mixing the matrix, primary secondary amine, acetonitrile, toluene, and water in one single system. The target fungicides in the sample were extracted, cleaned up and preconcentrated simultaneously in the matrix/acetonitrile/water/toluene system. Meanwhile, the interferences were adsorbed by the cleanup adsorbent. The extraction recoveries of the fungicides from the samples varied from 82.9% to 97.8% with relative standard deviations of 4.4-8.5%. The enrichment factors of the analytes ranged from 22 to 47, and the limits of detection were in the range of 0.05-20 μg/kg. The results demonstrated the significant predominance of VA-MSLDME in the analysis of pesticide residues in cotton seed and honeysuckle samples. PMID:26593567

  16. Effects of tilt angle of mirror-lamp system on shape of solid-liquid interface of silicon melt during floating zone growth using infrared convergent heating

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Mukter; Watauchi, Satoshi; Nagao, Masanori; Tanaka, Isao

    2016-01-01

    The tilt effects of the mirror-lamp (M-L) system on the shape of the interface of the silicon molten zone formed during growth using the infrared convergent heating floating zone method were studied at various positions of the M-L system. The stability and the interfaces of the molten zone formed in the tilted condition were compared with those in the no tilt condition. The molten zone appeared to be more stabilized in the tilted condition than in the no tilt condition. However, the conventional parameters characterizing the interface shape such as convexities (h/r), gap and zone length (L) were almost independent of the tilt angle (θ) of the M-L system and insufficient to discuss the tilting effects on the molten zone shape. The curvature of the solid-liquid interface was affected by the θ. New characterizing parameters such as the growth interface and triple point angles (δ and TPA, respectively) were effective to quantitatively describe the tilting effects on the interface shape. With increase of the θ, the δ was decreased and the TPA was increased in both the feed and crystal sides. A silicon crystal of 45 mm in diameter was grown successfully in the tilted condition.

  17. On the use, and reuse, of polymers for the treatment of hydrocarbon contaminated water via a solid-liquid partitioning bioreactor.

    PubMed

    Prpich, George P; Rehmann, Lars; Daugulis, Andrew J

    2008-01-01

    Aqueous environments contaminated with diesel components pose a threat to the native biota due to the intrinsically toxic nature of the many hydrocarbon compounds present. In the event of diesel being released into an aqueous environment it is imperative that the contaminant is recovered in a rapid manner to ensure the safety of aquatic organisms as well as to maintain desired water quality. The research presented in this study investigates the potential of polymeric sorbents to recover diesel from a contaminated aqueous source. Thermoplastic materials, such as styrene butadiene derived polymers, were shown to substantially reduce diesel levels in excess of 98% with 90% of this recoverable fraction being removed in less than 30 min. Recyclable materials, such as used automobile tires, were shown to obtain similar results with added potential benefit including lower cost and reuse of a waste material. The polymeric sorbents were also biologically regenerated and this was accomplished in a solid-liquid two-phase partitioning bioreactor, in which 65% of the initial diesel contamination was degraded within a 9 day period. The result of this work was the demonstration of a low cost, reusable remediation technology for the recovery, and destruction of diesel from aqueous environments. PMID:19194895

  18. Nanopatterning of Surfaces with Monometallic and Heterobimetallic 1D Coordination Polymers: A Molecular Tectonics Approach at the Solid/Liquid Interface.

    PubMed

    El Garah, Mohamed; Marets, Nicolas; Mauro, Matteo; Aliprandi, Alessandro; Bonacchi, Sara; De Cola, Luisa; Ciesielski, Artur; Bulach, Véronique; Hosseini, Mir Wais; Samorì, Paolo

    2015-07-01

    The self-assembly of multiple molecular components into complex supramolecular architectures is ubiquitous in nature and constitutes one of the most powerful strategies to fabricate multifunctional nanomaterials making use of the bottom-up approach. When spatial confinement in two dimensions on a solid substrate is employed, this approach can be exploited to generate periodically ordered structures from suitably designed molecular tectons. In this study we demonstrate that physisorbed directional periodic arrays of monometallic or heterobimetallic coordination polymers can be generated on a highly oriented pyrolitic graphite surface by combinations of a suitably designed directional organic tecton or metallatecton based on a porphyrin or nickel(II) metalloporphyrin backbone bearing both a pyridyl unit and a terpyridyl unit acting as coordinating sites for CoCl2. The periodic architectures were visualized at the solid/liquid interface with a submolecular resolution by scanning tunneling microscopy and corroborated by combined density functional and time-dependent density functional theory calculations. The capacity to nanopattern the surface for the first time with two distinct metallic centers exhibiting different electronic and optical properties is a key step toward the bottom-up construction of robust multicomponent and, thus, multifunctional molecular nanostructures and nanodevices. PMID:26076095

  19. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    SciTech Connect

    Hoffer, Saskia

    2002-08-19

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  20. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples.

    PubMed

    Es'haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2014-11-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol-gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05-500 ng mL(-1) for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL(-1) and 0.012 ng mL(-1), respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  1. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  2. Controlled self-assembly and photovoltaic characteristics of porphyrin derivatives on a silicon surface at solid-liquid interfaces.

    PubMed

    Cai, Jinhua; Chen, Haihui; Huang, Jiangen; Wang, Jingxia; Tian, Dongliang; Dong, Huanli; Jiang, Lei

    2014-04-21

    Two meso-tetraphenylporphyrin (H2TPP) derivatives with different central metal ions, namely ZnTPP, CuTPP, were synthesized, and characterized by a series of spectroscopic methods. Their self-assembly behaviors in mixed solvents without surfactant were systematically investigated. The morphology of the thus produced nanoarchitectures could be efficiently controlled. Nanoslices can be manufactured when a volume of cyclohexane is involved, octahedrons can be produced when a mixed solvent of chloroform and isopropanol is employed, while four-leaf clover-shaped structures can be produced with a large volume of methanol injected. The nanostructures have been characterized by electronic absorption, scanning electron microscopy (SEM) and photoelectric conversion techniques. The internal structures of the nanostructures are well described by XRD. The nanostructures exhibit a power conversion under illumination intensity of 2.3 mW cm(-2). The present result appears to represent an effort toward controlling the morphology of self-assembled nanostructures of porphyrin derivatives via synthesis through introduction of metal-ligand and solvent interaction. Nevertheless, the fundamental study will be helpful to understand photoinduced energy/charge transport in an organic interface and this might also serve as promising building blocks for nanoscale power sources for potential application in solar energy technologies and organic electronics and optoelectronics. PMID:24647426

  3. Reliability study of Au-in solid-liquid interdiffusion bonding for GaN-based vertical LED packaging

    NASA Astrophysics Data System (ADS)

    Sung, Ho-Kun; Wang, Cong; Kim, Nam-Young

    2015-12-01

    An In-rich Au-In bonding system has been developed to transfer vertical light-emitting diodes (VLEDs) from a sapphire to a graphite substrate and enable them to survive under n-ohmic contact treatment at 350 °C. The bonding temperature is 210 °C, and three intermetallic compounds are detected: AuIn, AuIn2, and γ phase. As a result, the remelting temperature increases beyond the theoretical value of 450 °C according to the Au-In binary phase diagram. In fact, reliability testing showed that joints obtained by rapid thermal annealing at 400 °C for 1 min survived whereas those obtained at 500 °C for 1 min failed. Finally, a GaN-based blue VLED was transferred to the graphite substrate by means of the proposed bonding method, and its average light output power was measured to be 386.6 mW (@350 mA) after n-ohmic contact treatment. This wafer-level bonding technique also shows excellent potential for high-temperature packing applications.

  4. Mass transfer properties of nanoconfined fluids at solid-liquid interfaces: from atomistic simulations to continuum models

    NASA Astrophysics Data System (ADS)

    Morciano, Matteo; Fasano, Matteo; Nold, Andreas; Correia Braga, Carlos; Yatsyshin, Petr; Sibley, David; Goddard, Benjamin; Chiavazzo, Eliodoro; Asinari, Pietro; Kalliadasis, Serafim; multi-Scale ModeLing Laboratory Team; Complex Multiphase Systems Team

    2015-11-01

    At the nanoscale, traditional continuum models are not sufficient to describe fluid flow. For example, the no-slip assumption may not be valid for nanoscale flows, where interface effects dominate transport phenomena. Hence, classic boundary conditions should take into account possible interplays between fluid velocity, shear stress, surface chemistry and roughness. Unlike hydrodynamics, in molecular dynamics (MD), the boundary conditions are not specified a priori but arise naturally from computations. Here, mass transfer properties for a Lennard-Jones fluid confined in a nanochannel are studied by MD. Density, stress and velocity profiles within the fluid are evaluated with different nanoconfined conditions, shear rates and surface hydrophilicity. Our results show a strong anisotropic behavior of fluid properties along the channel section. Shear rates and velocity profiles allow calculating the spatial distribution of viscosity along the channel. We also observe that hydrophilic surfaces lead to increased viscosity. Our findings may have a potential impact on the design of nanofluidic devices for either engineering or biomedical applications.

  5. Adjoint-based shape optimization of fin geometry for enhanced solid/liquid phase-change process

    NASA Astrophysics Data System (ADS)

    Morimoto, Kenichi; Suzuki, Yuji

    2015-11-01

    In recent years, the control of heat transfer processes, which play a critical role in various engineering devices/systems, has gained renewed attention. The present study aims to establish an adjoint-based shape optimization method for high-performance heat transfer processes involving phase-change phenomena. A possible example includes the application to the thermal management technique using phase-change material. Adjoint-based shape optimization scheme is useful to optimal shape design and optimal control of systems, for which the base function of the solution is unknown and the solution includes an infinite number of degrees of freedom. Here we formulate the shape-optimization scheme based on adjoint heat conduction analyses, focusing on the shape optimization of fin geometry. In the computation of the developed scheme, a meshless local Petrov-Galerkin (MLPG) method that is suited for dealing with complex boundary geometry is employed, and the enthalpy method is adopted for analyzing the motion of the phase-change interface. We examine in detail the effect of the initial geometry and the node distribution in the MLPG analysis upon the final solution of the shape optimization. Also, we present a new strategy for the computation using bubble mesh.

  6. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  7. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-09-30

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass distribution in mixed systems. Such information will in future be used to identify optimum surfactant.

  8. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    PubMed

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. PMID:26292776

  9. Determination of caffeoylquinic acids in feed and related products by focused ultrasound solid-liquid extraction and ultra-high performance liquid chromatography-mass spectrometry.

    PubMed

    Tena, M T; Martínez-Moral, M P; Cardozo, P W

    2015-06-26

    A method to determine caffeoylquinic acids (CQAs) in three sources (herbal extract, feed additive and finished feed) using for the first time focused ultrasound solid-liquid extraction (FUSLE) followed by ultra-high performance liquid chromatography (UPLC) coupled to quadrupole-time of flight mass spectrometry is presented. Pressurized liquid extraction (PLE) was also tested as extraction technique but it was discarded because cynarin was not stable under temperature values used in PLE. The separation of the CQAs isomers was carried out in only seven minutes. FUSLE variables such as extraction solvent, power and time were optimized by a central composite design. Under optimal conditions, FUSLE extraction was performed with 8mL of an 83:17 methanol-water mixture for 30s at a power of 60%. Only two extraction steps were found necessary to recover analytes quantitatively. Sensitivity, linearity, accuracy and precision were established. Matrix effect was studied for each type of sample. It was not detected for mono-CQAs, whereas the cynarin signal was strongly decreased due to ionization suppression in presence of matrix components; so the quantification by standard addition was mandatory for the determination of di-caffeoylquinic acids. Finally, the method was applied to the analysis of herbal extracts, feed additives and finished feed. In all samples, chlorogenic acid was the predominant CQA, followed by criptochlorogenic acid, neochlorogenic acid and cynarin. The method allows an efficient determination of chlorogenic acid with good recovery rates. Therefore, it may be used for screening of raw material and for process and quality control in feed manufacture. PMID:25981290

  10. Membrane filtration of the liquid fraction from a solid-liquid separator for swine manure using a cationic polymer as flocculating agent.

    PubMed

    Masse, L; Mondor, M; Dubreuil, J

    2013-01-01

    The liquid fraction from a solid-liquid separator for swine manure, which used a cationic polymer to promote particle flocculation, was processed by one nanofiltration and two reverse osmosis spiral-wound membranes. Eight different liquid fraction batches (750 to 1750 L) were concentrated at volumetric concentration ratios (VCRs, initial to final volumes) ranging from 2.3 to 4.2. Membrane fouling intensity was highly variable, as water flux recovery after concentration cycles ranged from 13% to 88%. The most severe fouling was caused by a liquid fraction that had relatively low suspended solids (SS) (774 mg/L) and was concentrated at a low VCR of 2.6. Raw manure collected the same day also contained low SS, suggesting that fewer sites were available for polymer adsorption and thus more polymer remained in the liquid. However, because of the high opacity of the samples, residual polymer could not be detected in any feed or concentrate samples. Fouling was not totally irreversible as over 97% of membrane flux could be recovered by cleaning with acidic and alkaline solutions. Further tests with spiked liquid fractions indicated that fouling due to residual polymer in solution started to occur at a polymer concentration of 3 and 11 mg/L in initial and concentrated effluents, respectively. If a cationic polymer is used to pretreat manure, the amount of added polymer would have to be closely related to SS content as opposed to manure volume, in order to leave very little residual polymer in solution. PMID:23837317

  11. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  12. Multi-component analysis of bile acids in natural Calculus bovis and its substitutes by ultrasound-assisted solid-liquid extraction and UPLC-ELSD.

    PubMed

    Kong, Wei-Jun; Xing, Xiao-Yan; Xiao, Xiao-He; Wang, Jia-Bo; Zhao, Yan-Ling; Yang, Mei-Hua

    2012-12-21

    An ultrasound-assisted solid-liquid extraction (USLE) coupled to ultra-performance liquid chromatography-evaporative light scattering detection (UPLC-ELSD) method has been developed for the simultaneous extraction and determination of six bile acids (BAs) in natural Calculus bovis and its substitutes, collected from different origins. The USLE conditions, UPLC chromatographic and ELSD conditions for BAs were optimized. Under optimum conditions, the six target analytes were efficiently extracted and baseline separated within 10 min. The limits of detection (LODs) and quantification (LOQs) for six BAs were less than 7 ng and 22 ng, respectively. Average recoveries were within the range of 98.8-100.7% with relative standard deviations (RSDs) <2% for the six analytes. This method, due to its convenience, high selectivity, fast analysis efficiency and good reproducibility can be employed for analyzing the content differences of six BAs in 40 batches of natural C. bovis and its existing substitutes. The differences of the content of each BA in natural C. bovis and its substitutes were significant, and the total contents of six BAs in 13 batches of natural C. bovis were in the range of 7.96-160.17 mg g(-1), in 20 natural C. bovis of 0-245.89 mg g(-1), in 2 artificial cultivated C. bovis of 178.48-194.22 mg g(-1), in 3 cultured C. bovis of 41.01-107.3 mg g(-1), and in 2 counterfeit C. bovis of 144.9-340.25 mg g(-1). The significant differences of multi-component contents reflected the various inherent qualities of these samples, so, the use of these substitutes as the replacers of natural source in clinic should be paid more attention. Some substitutes could not be used as the replacers. PMID:23099565

  13. Strong magnetic field effects on solid-liquid and particle-particle interactions during the processing of a conducting liquid containing non-conducting particles.

    PubMed

    Sun, Z H I; Zhang, X; Guo, M; Pandelaers, L; Vleugels, J; Van der Biest, O; Van Reusel, K; Blanpain, B

    2012-06-01

    The behavior of micrometer-sized weak magnetic insulating particles migrating in a conductive liquid metal is of broad interest during strong magnetic field processing of materials. In the present paper, we develop a numerical method to investigate the solid-liquid and particle-particle interactions by using a computational fluid dynamics (CFDs) modeling. By applying a strong magnetic field, for example, 10 Tesla, the drag forces of a single spherical particle can be increased up to around 15% at a creeping flow limit. However, magnetic field effects are reduced when the Reynolds number becomes higher. For two identical particles migrating along their centerline in a conductive liquid, both the drag forces and the magnetic interaction will be influenced. Factors such as interparticle distance, Reynolds number and magnetic flux density are investigated. Shielding effects are found from the leading particle, which will subsequently induce a hydrodynamic interaction between two particles. Strong magnetic fields however do not appear to have a significant influence on the shielding effects. In addition, the magnetic interaction forces of magnetic dipole-dipole interaction and induced magneto-hydrodynamic interaction are considered. It can be found that the induced magneto-hydrodynamic interaction force highly depends on the flow field and magnetic flux density. Therefore, the interaction between insulating particles can be controlled by applying a strong magnetic field and modifying the flow field. The present research provides a better understanding of the magnetic field induced interaction during liquid metal processing, and a method of non-metallic particles manipulation for metal/ceramic based materials preparation may be proposed. PMID:22443967

  14. Influence of solid/liquid interfaces on the microstructure and stress-rupture life of the single-crystal nickel-base superalloy NASAIR 100

    SciTech Connect

    Guo, X.; Fu, H.; Sun, J.

    1997-04-01

    The [001] oriented single crystals of nickel-base superalloy NASAIR 100 with the planar, cellular, coarse-dendritic, and fine-dendritic solid/liquid (S/L) interfaces were prepared, respectively, and their microstructure and stress-rupture behavior at 1,050 C were investigated in both as-cast and solution heat-treated conditions. It was found that in as-cast single crystals of NASAIR 100, microsegregation and {gamma}/{gamma}{prime} eutectic produced in the solidification process increased, {gamma}{prime} size decreased, and {gamma}{prime} shape tended progressively to be cuboidal, with the successive transition of the S/L interface from planar to cellular, then to coarse-dendritic, and finally to fine-dendritic morphology. Furthermore, the solution temperature required to dissolve all as-cast {gamma}{prime} and most of the {gamma}/{gamma}{prime} eutectic increased with the aforementioned successive transition of S/L interfaces. The reprecipitated {gamma}{prime}, after solution heat treatment (SHT), was usually fine and cuboidal. However, some W-rich phase was present in the heat-treated dendritic single crystals. Both the planar and the cellular single crystals of NASAIR 100 exhibited no superiority in stress-rupture life, irrespective of the heat-treatment conditions. Instead, the single crystals with dendritic morphology possessed excellent stress-rupture lives, after heat treatment of 1,320 C for 4 hours, followed by air cooling (AC). Perfect {gamma}{prime} rafts with high-average aspect ratios formed during the stress-rupture tests of dendritic single crystals; in contrast, irregularly coarsening structures appeared in both the planar and cellular single crystals. The microstructure and solution behavior were illustrated in detail. Furthermore, the microstructural factors to affect the high-temperature stress-rupture life of the single crystals of NASAIR 100 were also analyzed.

  15. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    NASA Astrophysics Data System (ADS)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  16. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2015-09-15

    Fluid drag of micro/nano fluidic systems has inspired wide scientific interest. Surface charge and boundary slip at the solid-liquid interface are believed to affect fluid drag. This review summarizes the recent studies on the coupling of surface charge and slip, and their combined effect on fluid drag at micro/nano scale. The effect of pH on surface charge of borosilicate glass and silica surfaces in deionized (DI) water and saline solution is discussed using a method based on colloidal probe atomic force microscopy (AFM). The boundary slip of various oil-solid interfaces are discussed for samples with different degrees of oleophobicity prepared by nanoparticle-binder system. By changing the pH of solution or applying an electric field, effect of surface charge on slip of a smooth hydrophobic octadecyltrichlorosilane (OTS) in DI water and saline solution is studied. A theoretical model incorporating the coupling relationship between surface charge and slip is used to discuss the combined effect of surface charge-induced electric double layer (EDL) and slip on fluid drag of pressure-driven flow in a one-dimensional parallel-plates microchannel. A theoretical method is used to reduce the fluid drag. The studies show that the increasing magnitude of surface charge density leads to a decrease in slip length. The surface charge results in a larger fluid drag, and the coupling of surface charge and slip can further increase the fluid drag. Surface charge-induced EDLs with asymmetric zeta potentials can effectively reduce the fluid drag. PMID:26021432

  17. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.

    PubMed

    Rodrigues, Ana Cristina; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, Miguel

    2015-11-01

    The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic(®) CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes - cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and β-glucosidase - of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied. The efficiency of hydrolysis with an enzyme load of 10 FPU/g cellulose reached >98% using Cellic(®) CTec2, while for Celluclast a conversion of 52% and 81%, was observed without and with β-glucosidase supplementation, respectively. The decrease of Cellic(®) CTec2 activity observed along the process was related to deactivation of Cel7A rather than of Cel7B and β-glucosidase. The adsorption/desorption profiles during hydrolysis/fermentation revealed that a large fraction of active enzymes remained adsorbed to the solid residue throughout the process. Surprisingly, this was the case of Cel7A and β-glucosidase from Cellic, which remained adsorbed to the solid fraction along the entire process. Alkaline washing was used to recover the enzymes from the solid residue. This method allowed efficient recovery of Celluclast enzymes; however, this may be achieved only when minor amounts of cellulose remain present. Regarding the Cellic formulation, neither the presence of cellulose nor lignin restricted an efficient desorption of the enzymes at alkaline pH. This work shows that the recycling strategy must be customized for each particular formulation, since the enzymes found e.g. in Cellic and Celluclast bear quite different behaviour regarding the solid-liquid distribution, stability and cellulose and lignin affinity. PMID:26320717

  18. Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection.

    PubMed

    Kong, Wei-Jun; Liu, Shu-Yu; Qiu, Feng; Xiao, Xiao-He; Yang, Mei-Hua

    2013-05-01

    A simple and sensitive analytical method based on ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with high performance liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection (USLE-IAC-HPLC-PCD-FLD) has been developed for simultaneous multi-mycotoxin determination of aflatoxins B1, B2, G1, G2 (AFB1, AFB2, AFG1, AFG2) and ochratoxin A (OTA) in 13 edible and medicinal nutmeg samples marketed in China. AFs and OTA were extracted from nutmeg samples by ultrasonication using a methanol : water (80 : 20, v/v) solution, followed by an IAC clean-up step. Different USL extraction conditions, pre-processing ways for nutmeg sample and clean-up columns for mycotoxins, as well as HPLC-PCD-FLD parameters (mobile phase, column temperature, elution procedure, excitation and emission wavelengths) were optimized. This method, which was appraised for analyzing nutmeg samples, showed satisfactory results with reference to limits of detection (LODs) (from 0.02 to 0.25 μg kg(-1)), limits of quantification (LOQs) (from 0.06 to 0.8 μg kg(-1)), linear ranges (up to 30 ng mL(-1) for AFB1, AFG1 and OTA and 9 ng mL(-1) for AFB2 and AFG2), intra- and inter-day variability (all <2%) and average recoveries (from 79.6 to 90.8% for AFs and from 93.6 to 97.3% for OTA, respectively). The results of the application of developed method in nutmeg samples have elucidated that four samples were detected with contamination of AFs and one with OTA. AFB1 was the most frequently found mycotoxin in 30.8% of nutmeg samples at contamination levels of 0.73-16.31 μg kg(-1). At least two different mycotoxins were co-occurred in three samples, and three AFs were simultaneously detected in one sample. PMID:23486692

  19. Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1W?

    PubMed Central

    Swarup, Ranjan; Kargul, Joanna; Marchant, Alan; Zadik, Daniel; Rahman, Abidur; Mills, Rebecca; Yemm, Anthony; May, Sean; Williams, Lorraine; Millner, Paul; Tsurumi, Seiji; Moore, Ian; Napier, Richard; Kerr, Ian D.; Bennett, Malcolm J.

    2004-01-01

    We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalized with plasma membrane (PM) markers. Because of its PM localization, we were able to take advantage of the steep pH gradient that exists across the plant cell PM to investigate AUX1 topology using YFP as a pH-sensitive probe. The YFP-coding sequence was inserted in selected AUX1 hydrophilic loops to orient surface domains on either apoplastic or cytoplasmic faces of the PM based on the absence or presence of YFP fluorescence, respectively. We were able to demonstrate in conjunction with helix prediction programs that AUX1 represents a polytopic membrane protein composed of 11 transmembrane spanning domains. In parallel, a large aux1 allelic series containing null, partial-loss-of-function, and conditional mutations was characterized to identify the functionally important domains and amino acid residues within the AUX1 polypeptide. Whereas almost all partial-loss-of-function and null alleles cluster in the core permease region, the sole conditional allele aux1-7 modifies the function of the external C-terminal domain. PMID:15486104

  20. Maladies reliées aux loisirs aquatiques

    PubMed Central

    Sanborn, Margaret; Takaro, Tim

    2013-01-01

    Résumé Objectif Passer en revue les facteurs de risque, la prise en charge et la prévention des maladies reliées aux loisirs aquatiques en pratique familiale. Sources des données Des articles originaux et de synthèse entre janvier 1998 et février 2012 ont été identifiés à l’aide de PubMed et des expressions de recherche en anglais water-related illness, recreational water illness et swimmer illness. Message principal Il y a un risque de 3 % à 8 % de maladies gastrointestinales (MGI) après la baignade. Les groupes à risque élevé de MGI sont les enfants de moins de 5 ans, surtout s’ils n’ont pas été vaccinés contre le rotavirus, les personnes âgées et les patients immunodéficients. Les enfants sont à plus grand risque parce qu’ils avalent plus d’eau quand ils nagent, restent dans l’eau plus longtemps et jouent dans l’eau peu profonde et le sable qui sont plus contaminés. Les adeptes des sports dans lesquels le contact avec l’eau est abondant comme le triathlon et le surf cerf-volant sont aussi à risque élevé et même ceux qui s’adonnent à des activités impliquant un contact partiel avec l’eau comme la navigation de plaisance et la pêche ont un risque de 40 % à 50 % fois plus grand de MGI par rapport à ceux qui ne pratiquent pas de sports aquatiques. Il y a lieu de faire une culture des selles quand on soupçonne une maladie reliée aux loisirs aquatiques et l’échelle clinique de la déshydratation est utile pour l’évaluation des besoins de traitement chez les enfants affectés. Conclusion Les maladies reliées aux loisirs aquatiques est la principale cause de MGI durant la saison des baignades. La reconnaissance que la baignade est une source importante de maladies peut aider à prévenir les cas récurrents et secondaires. On recommande fortement le vaccin contre le rotavirus chez les enfants qui se baignent souvent.

  1. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).

    PubMed

    Zhao, Heming; Ma, Tengfei; Wang, Xin; Deng, Yingtian; Ma, Haoli; Zhang, Rongsheng; Zhao, Jie

    2015-11-01

    Polar auxin transport, mediated by influx and efflux transporters, controls many aspects of plant growth and development. The auxin influx carriers in Arabidopsis have been shown to control lateral root development and gravitropism, but little is known about these proteins in rice. This paper reports on the functional characterization of OsAUX1. Three OsAUX1 T-DNA insertion mutants and RNAi knockdown transgenic plants reduced lateral root initiation compared with wild-type (WT) plants. OsAUX1 overexpression plants exhibited increased lateral root initiation and OsAUX1 was highly expressed in lateral roots and lateral root primordia. Similarly, the auxin reporter, DR5-GUS, was expressed at lower levels in osaux1 than in the WT plants, which indicated that the auxin levels in the mutant roots had decreased. Exogenous 1-naphthylacetic acid (NAA) treatment rescued the defective phenotype in osaux1-1 plants, whereas indole-3-acetic acid (IAA) and 2,4-D could not, which suggested that OsAUX1 was a putative auxin influx carrier. The transcript levels of several auxin signalling genes and cell cycle genes significantly declined in osaux1, hinting that the regulatory role of OsAUX1 may be mediated by auxin signalling and cell cycle genes. Overall, our results indicated that OsAUX1 was involved in polar auxin transport and functioned to control auxin-mediated lateral root initiation in rice. PMID:25311360

  2. A simple and rapid technique for recovery of 99mTc from low specific activity (n,gamma)99Mo based on solid-liquid extraction and column chromatography methodologies.

    PubMed

    Chattopadhyay, Sankha; Das, Sujata Saha; Barua, Luna

    2010-01-01

    A simple and inexpensive method has been developed for the separation of (99m)Tc from (99)Mo produced from the neutron activation of (98)Mo by (98)Mo(n,gamma)(99)Mo nuclear reaction. The recovery of (99m)Tc was performed by solid-liquid extraction based on alumina column chromatography. The overall radiochemical yield for the complete separation of (99m)Tc was 85-97% (n=5). The separated Na[(99m)Tc]TcO(4) was of high radionuclidic, radiochemical and chemical purities. The method can be adopted for routine processing and use of (99m)Tc in radiopharmacy operations. PMID:20122663

  3. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect

    Cole, R.D. )

    1991-03-01

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  4. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis

    PubMed Central

    Piya, Sarbottam; Shrestha, Sandesh K.; Binder, Brad; Stewart, C. Neal; Hewezi, Tarek

    2014-01-01

    The phytohormone auxin regulates nearly all aspects of plant growth and development. Based on the current model in Arabidopsis thaliana, Auxin/indole-3-acetic acid (Aux/IAA) proteins repress auxin-inducible genes by inhibiting auxin response transcription factors (ARFs). Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are related to their unique biological functions. The objective of this study was to generate the Aux/IAA-ARF protein-protein interaction map using full length sequences and locate the interacting protein pairs to specific gene co-expression networks in order to define tissue-specific responses of the Aux/IAA-ARF interactome. Pairwise interactions between 19 ARFs and 29 Aux/IAAs resulted in the identification of 213 specific interactions of which 79 interactions were previously unknown. The incorporation of co-expression profiles with protein-protein interaction data revealed a strong correlation of gene co-expression for 70% of the ARF-Aux/IAA interacting pairs in at least one tissue/organ, indicative of the biological significance of these interactions. Importantly, ARF4-8 and 19, which were found to interact with almost all Aux-Aux/IAA showed broad co-expression relationships with Aux/IAA genes, thus, formed the central hubs of the co-expression network. Our analyses provide new insights into the biological significance of ARF-Aux/IAA associations in the morphogenesis and development of various plant tissues and organs. PMID:25566309

  5. Extraction and preconcentration of tylosin from milk samples through functionalized TiO₂ nanoparticles reinforced with a hollow fiber membrane as a novel solid/liquid-phase microextraction technique.

    PubMed

    Sehati, Negar; Dalali, Nasser; Soltanpour, Shahla; Dorraji, Mir Saeed Seyed

    2014-08-01

    The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so-called functionalized TiO2 hollow fiber solid/liquid-phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2 O2 and a mild acidic ambient under UV irradiation. This novel extraction method showed excellent extraction efficiency and a high enrichment factor (540.2) in comparison with conventional hollow fiber liquid-phase microextraction. All the experiments were monitored at λmax = 284 nm using a simple double beam UV-visible spectrophotometer. A Taguchi orthogonal array experimental design with an OA16 (4(5) ) matrix was employed to optimize the factors affecting the efficiency of hollow fiber solid/liquid-phase microextraction such as pH, stirring rate, salt addition, extraction time, and the volume of donor phase. This developed method was successfully applied for the separation and determination of tylosin in milk samples with a linear concentration range of 0.51-7000 μg/L (r(2) = 0.991) and 0.21 μg/L as the limit of detection. PMID:24890459

  6. Symetries et integrabilite des equations aux differences finies

    NASA Astrophysics Data System (ADS)

    Lafortune, Stephane

    2000-09-01

    La présente thèse porte sur l'étude des symétries et des propriétés d'intégrabilité des équations aux différences finies. Dans le chapitre 1, le groupe de symétrie ponctuelle d'un système couplé à deux équations différentielles aux différences est étudié. On montre que dans certains cas, la dimension du groupe peut être infinie. Les équations peuvent décrire l'interaction de deux longues chaînes moléculaires, chacune étant composée d'atomes d'un même type. Dans le chapitre 2, une classe de théories de champs avec interaction exponentielle est introduite. L'interaction dépend de deux matrices de ``couplage'' et est suffisamment générale pour inclure toutes les théories de champs de Toda existant dans la littérature. Les symétries de Lie ponctuelles sont obtenues pour les cas où l'on a un nombre fini, infini ou semi-infini de champs. Une attention spéciale est accordée à la présence de l'invariance conforme. Dans le chapitre 3, nous procédons à la classification et à l'étude d'équations linéarisables. Nous examinons tout d'abord l'équation de Gambier continue qui contient, comme réductions, toutes les équations de deuxième ordre intégrables par linéarisation. Nous introduisons par la suite la forme discrète de cette équation et obtenons les conditions d'intégrabilité à l'aide du confinement des singularités. Nous étudions aussi les différentes réductions du cas discret. De plus, nous obtenons des transformations de Schlesinger pour les équations de Gambier discrète et continue. Dans la dernière partie du chapitre, nous étudions une famille d'équations discrètes du deuxième ordre incluant des équations résolubles par linéarisation. Plusieurs cas intégrables sont obtenus. Dans le cas discret, l'étude de l'intégrabilité est faite à l'aide du confinement des singularités. Dans le chapitre 4, nous étudions un autre critère d'intégrabilité: l'entropie algébrique. Nous montrons que les résultats obtenus avec ce critère pour les équations linéarisables sont les mêmes que ceux obtenus avec le confinement des singularités. Nous obtenons de plus une méthode algorithmique pour la détection de la linéarisabilité. Le chapitre 5 est consacré à l'étude d'équations du troisième ordre. Nous obtenons des équations intégrables par des couplages d'équations du premier et du deuxième ordre. Les équations continues sont étudiées à l'aide de l'analyse de Painlevé et le confinement des singularités est utilisé dans le cas discret.

  7. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17

    PubMed Central

    Han, Mookyoung; Park, Yangshin; Kim, Iktae; Kim, Eun-Hee; Yu, Tae-Kyung; Rhee, Sangkee; Suh, Jeong-Yong

    2014-01-01

    Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III−IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III−IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact β-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 μM and 0.87 μM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼10- to ∼100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes. PMID:25512488

  8. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17.

    PubMed

    Han, Mookyoung; Park, Yangshin; Kim, Iktae; Kim, Eun-Hee; Yu, Tae-Kyung; Rhee, Sangkee; Suh, Jeong-Yong

    2014-12-30

    Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III-IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III-IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact β-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 μM and 0.87 μM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼ 10- to ∼ 100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes. PMID:25512488

  9. A water-soluble gadolinium metallofullerenol: facile preparation, magnetic properties and magnetic resonance imaging application.

    PubMed

    Li, Jie; Wang, Taishan; Feng, Yongqiang; Zhang, Ying; Zhen, Mingming; Shu, Chunying; Jiang, Li; Wang, Yuqing; Wang, Chunru

    2016-06-01

    A new water-soluble gadolinium metallofullerenol was prepared through a solid-liquid reaction. It was characterized to have an enhanced effective magnetic moment, and improved T1-weighted relaxivity and magnetic resonance imaging performance in the liver. This material prepared by a facile method has wide application as a contrast agent and biological medicine. PMID:27064096

  10. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints.

    PubMed

    Rendu, William; Beauval, Cédric; Crevecoeur, Isabelle; Bayle, Priscilla; Balzeau, Antoine; Bismuth, Thierry; Bourguignon, Laurence; Delfour, Géraldine; Faivre, Jean-Philippe; Lacrampe-Cuyaubère, François; Tavormina, Carlotta; Todisco, Dominique; Turq, Alain; Maureille, Bruno

    2014-01-01

    The bouffia Bonneval at La Chapelle-aux-Saints is well known for the discovery of the first secure Neandertal burial in the early 20th century. However, the intentionality of the burial remains an issue of some debate. Here, we present the results of a 12-y fieldwork project, along with a taphonomic analysis of the human remains, designed to assess the funerary context of the La Chapelle-aux-Saints Neandertal. We have established the anthropogenic nature of the burial pit and underlined the taphonomic evidence of a rapid burial of the body. These multiple lines of evidence support the hypothesis of an intentional burial. Finally, the discovery of skeletal elements belonging to the original La Chapelle aux Saints 1 individual, two additional young individuals, and a second adult in the bouffia Bonneval highlights a more complex site-formation history than previously proposed. PMID:24344286

  11. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints

    PubMed Central

    Rendu, William; Beauval, Cédric; Crevecoeur, Isabelle; Bayle, Priscilla; Balzeau, Antoine; Bismuth, Thierry; Bourguignon, Laurence; Delfour, Géraldine; Faivre, Jean-Philippe; Lacrampe-Cuyaubère, François; Tavormina, Carlotta; Todisco, Dominique; Turq, Alain; Maureille, Bruno

    2014-01-01

    The bouffia Bonneval at La Chapelle-aux-Saints is well known for the discovery of the first secure Neandertal burial in the early 20th century. However, the intentionality of the burial remains an issue of some debate. Here, we present the results of a 12-y fieldwork project, along with a taphonomic analysis of the human remains, designed to assess the funerary context of the La Chapelle-aux-Saints Neandertal. We have established the anthropogenic nature of the burial pit and underlined the taphonomic evidence of a rapid burial of the body. These multiple lines of evidence support the hypothesis of an intentional burial. Finally, the discovery of skeletal elements belonging to the original La Chapelle aux Saints 1 individual, two additional young individuals, and a second adult in the bouffia Bonneval highlights a more complex site-formation history than previously proposed. PMID:24344286

  12. Determination of brilliant green from fish pond water using carbon nanotube assisted pseudo-stir bar solid/liquid microextraction combined with UV-vis spectroscopy-diode array detection

    NASA Astrophysics Data System (ADS)

    Es'haghi, Zarrin; Khooni, Maliheh Ahmadi-Kalateh; Heidari, Tahereh

    2011-08-01

    This paper describes the development of a new design of hollow fiber solid/liquid phase microextraction (HF-SLPME) for determination of brilliant green (BG) residues in water fish ponds. This method consists of an aqueous donor phase and carbon nanotube reinforced organic solvent (acceptor phase) operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores and lumen of a porous polypropylene hollow fiber. It is in contact directly with the aqueous donor phase. In this method the solid/liquid extractor phase is supported using a polypropylene hollow fiber membrane. Both ends of the hollow fiber segment are sealed with magnetic stoppers. This device is placed inside the donor solution and plays the rule of a pseudo-stir bar. It is disposable, so single use of the fiber reduces the risk of carry-over problems. Brilliant green (BG) after extraction from the aqueous samples with mentioned HF-SLPME device was determined by ultraviolet-visible spectroscopy with diode array detection (UV-vis/DAD). The absorption wavelength was set to 625 nm ( λmax). The effect of different variables on the extraction was evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. The calibration curve was linear in the range of 1.00-10,000 μg L -1 of BG in the initial solution with R2 = 0.979. Detection limit, based on three times the standard deviation of the blank, was 0.55 μg L -1. All experiments were carried out at room temperature (25 ± 0.5 °C).

  13. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa

    PubMed Central

    Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA—BrIAA) and 36 cross species (BrIAA—AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID:27049520

  14. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID:27049520

  15. Diagenesis and reservoir quality of the Upper Mississippian Aux Vases Sandstone, Illinois Basin

    USGS Publications Warehouse

    Pitman, Janet K.; Henry, Mitchell E.; Leetaru, Hannes E.

    1999-01-01

    Conventional reservoir quality data for more than 300 wells provided by the Illinois and Indiana state geological surveys were analyzed to determine the factors governing porosity and permeability in the Upper Mississippian Aux Vases Sandstone, an important hydrocarbon-producing unit in the Illinois Basin. In addition, approximately 150 samples of the Aux Vases Sandstone were collected for mineralogical and geochemical analysis to reconstruct the burial and diagenetic history and to establish the timing of diagenesis relative to the entrapment of hydrocarbons. One aspect of the study involved linking inorganic and organic diagenesis to late Paleozoic tectonism and hydrothermal fluid-flow events in the region.

  16. Subcellular Trafficking of the Arabidopsis Auxin Influx Carrier AUX1 Uses a Novel Pathway Distinct from PIN1[W

    PubMed Central

    Kleine-Vehn, Jürgen; Dhonukshe, Pankaj; Swarup, Ranjan; Bennett, Malcolm; Friml, Jiří

    2006-01-01

    The directional flow of the plant hormone auxin mediates multiple developmental processes, including patterning and tropisms. Apical and basal plasma membrane localization of AUXIN-RESISTANT1 (AUX1) and PIN-FORMED1 (PIN1) auxin transport components underpins the directionality of intercellular auxin flow in Arabidopsis thaliana roots. Here, we examined the mechanism of polar trafficking of AUX1. Real-time live cell analysis along with subcellular markers revealed that AUX1 resides at the apical plasma membrane of protophloem cells and at highly dynamic subpopulations of Golgi apparatus and endosomes in all cell types. Plasma membrane and intracellular pools of AUX1 are interconnected by actin-dependent constitutive trafficking, which is not sensitive to the vesicle trafficking inhibitor brefeldin A. AUX1 subcellular dynamics are not influenced by the auxin influx inhibitor NOA but are blocked by the auxin efflux inhibitors TIBA and PBA. Furthermore, auxin transport inhibitors and interference with the sterol composition of membranes disrupt polar AUX1 distribution at the plasma membrane. Compared with PIN1 trafficking, AUX1 dynamics display different sensitivities to trafficking inhibitors and are independent of the endosomal trafficking regulator ARF GEF GNOM. Hence, AUX1 uses a novel trafficking pathway in plants that is distinct from PIN trafficking, providing an additional mechanism for the fine regulation of auxin transport. PMID:17114355

  17. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the auxin/indole-3-acetic acid (Aux/IAA) gene family encode proteins to mediate the responses of auxin gene expression and to regulate various aspects of plant morphological development. In this paper, we report the identification of nine cDNAs that contain complete open reading frame (OR...

  18. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-09-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1-S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein's folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential.

  19. AUX/LAX Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during Arabidopsis Development[C][W

    PubMed Central

    Péret, Benjamin; Swarup, Kamal; Ferguson, Alison; Seth, Malvika; Yang, Yaodong; Dhondt, Stijn; James, Nicholas; Casimiro, Ilda; Perry, Paula; Syed, Adnan; Yang, Haibing; Reemmer, Jesica; Venison, Edward; Howells, Caroline; Perez-Amador, Miguel A.; Yun, Jeonga; Alonso, Jose; Beemster, Gerrit T.S.; Laplaze, Laurent; Murphy, Angus; Bennett, Malcolm J.; Nielsen, Erik; Swarup, Ranjan

    2012-01-01

    Auxin transport, which is mediated by specialized influx and efflux carriers, plays a major role in many aspects of plant growth and development. AUXIN1 (AUX1) has been demonstrated to encode a high-affinity auxin influx carrier. In Arabidopsis thaliana, AUX1 belongs to a small multigene family comprising four highly conserved genes (i.e., AUX1 and LIKE AUX1 [LAX] genes LAX1, LAX2, and LAX3). We report that all four members of this AUX/LAX family display auxin uptake functions. Despite the conservation of their biochemical function, AUX1, LAX1, and LAX3 have been described to regulate distinct auxin-dependent developmental processes. Here, we report that LAX2 regulates vascular patterning in cotyledons. We also describe how regulatory and coding sequences of AUX/LAX genes have undergone subfunctionalization based on their distinct patterns of spatial expression and the inability of LAX sequences to rescue aux1 mutant phenotypes, respectively. Despite their high sequence similarity at the protein level, transgenic studies reveal that LAX proteins are not correctly targeted in the AUX1 expression domain. Domain swapping studies suggest that the N-terminal half of AUX1 is essential for correct LAX localization. We conclude that Arabidopsis AUX/LAX genes encode a family of auxin influx transporters that perform distinct developmental functions and have evolved distinct regulatory mechanisms. PMID:22773749

  20. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    PubMed

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance. PMID:26154990

  1. Solid-liquid two-phase partitioning bioreactors (TPPBs) operated with waste polymers. Case study: 2,4-dichlorophenol biodegradation with used automobile tires as the partitioning phase.

    PubMed

    Tomei, M Concetta; Annesini, M Cristina; Daugulis, Andrew J

    2012-11-01

    Used automobile tire pieces were tested for their suitability as the sequestering phase in a two-phase partitioning bioreactor to treat 2,4-dichlorophenol (DCP). Abiotic sorption tests and equilibrium partitioning tests confirmed that tire "crumble" possesses very favourable properties for this application with DCP diffusivity (4.8 × 10(-8) cm(2)/s) and partition coefficient (31) values comparable to those of commercially available polymers. Biodegradation tests further validated the effectiveness of using waste tires to detoxify a DCP solution, and allow for enhanced biodegradation compared to conventional single-phase operation. These results establish the potential of using a low-cost waste material to assist in the bioremediation of a toxic aqueous contaminant. PMID:22829285

  2. Ultrasound/microwave-assisted solid-liquid-solid dispersive extraction with high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of neonicotinoid insecticides in Dendrobium officinale.

    PubMed

    Zheng, Shuilian; Wu, Huizhen; Li, Zuguang; Wang, Jianmei; Zhang, Hu; Qian, Mingrong

    2015-01-01

    A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs. PMID:25348589

  3. Micro-focused ultrasonic solid-liquid extraction (muFUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: optimization and linking with the analytical minimalism concept.

    PubMed

    Capelo, J L; Galesio, M M; Felisberto, G M; Vaz, C; Pessoa, J Costa

    2005-06-15

    Analytical minimalism is a concept that deals with the optimization of all stages of an analytical procedure so that it becomes less time, cost, sample, reagent and energy consuming. The guide-lines provided in the USEPA extraction method 3550B recommend the use of focused ultrasound (FU), i.e., probe sonication, for the solid-liquid extraction of Polycyclic Aromatic Hydrocarbons, PAHs, but ignore the principle of analytical minimalism. The problems related with the dead sonication zones, often present when high volumes are sonicated with probe, are also not addressed. In this work, we demonstrate that successful extraction and quantification of PAHs from sediments can be done with low sample mass (0.125g), low reagent volume (4ml), short sonication time (3min) and low sonication amplitude (40%). Two variables are here particularly taken into account for total extraction: (i) the design of the extraction vessel and (ii) the solvent used to carry out the extraction. Results showed PAHs recoveries (EPA priority list) ranged between 77 and 101%, accounting for more than 95% for most of the PAHs here studied, as compared with the values obtained after soxhlet extraction. Taking into account the results reported in this work we recommend a revision of the EPA guidelines for PAHs extraction from solid matrices with focused ultrasound, so that these match the analytical minimalism concept. PMID:18970118

  4. [PMIM]Br@TiO2 nanocomposite reinforced hollow fiber solid/liquid phase microextraction: an effective extraction technique for measurement of benzodiazepines in hair, urine and wastewater samples combined with high-performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Nezhadali, Azizollah; Bahar, Shahriyar; Bohlooli, Shahab; Banaei, Alireza

    2015-02-01

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of benzodiazepines (BZPs) in hair, urine and wastewater. The membrane extraction with 1-pentyl-3-methylimidazolium bromide coated titanium dioxide ([PMIM]Br@TiO2) sorbent used in this research is a two-phase supported membrane extraction consisting of an aqueous (donor phase), and n-octanol/nano [PMIM]Br@TiO2 (acceptor phase) system operated in direct immersion sampling mode. The 1-pentyl-3-methylimidazolium bromide (ionic liquid) coated nano TiO2 dispersed in the organic solvent (n-octanol) is held into a porous membrane supported by capillary forces and sonification. It is in contact with the feed phase, which is the aqueous sample. The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of BZPs into one single extract. In order to obtain high extraction efficiency of the analytes using this novel sorbent, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.05-6000ngmL(-1)), low limits of detection (0.08-0.5ngmL(-1)) and good enrichment (533-1190). PMID:25589255

  5. Separation-preconcentration of nickel and lead in food samples by a combination of solid-liquid-solid dispersive extraction using SiO2 nanoparticles, ionic liquid-based dispersive liquid-liquid micro-extraction.

    PubMed

    Jalbani, Nusrat; Soylak, Mustafa

    2015-01-01

    A microextraction method for the determination of nickel and lead using solid-liquid-solid dispersive extraction followed by ionic liquid-based dispersive liquid-liquid microextraction (SLSDE-ILDLLME) was presented. It was applied to the extraction of nickel and lead from food samples. Ammonium pyrrolidine dithiocarbamate (APDC) as complexing agent, [C4MIM][PF6] as ionic liquid, SiO2 as nanoparticles and 2 mol L(-1) HNO3 as eluent were used. Several important parameters such as amount of IL, extraction time, pH and volume of the complexing agent were investigated. The quantitative recoveries were obtained at pH 7.0 for analytes. Under the optimum conditions, the limits of detection (LODs) calculated using 3(Sd)blank/m were 0.17 for Ni(II) and 0.79 µg L(-1) for Pb(II) for aqueous solutions with 125 enrichment factor (EF). The limit of detections of the analyte ions (3(Sd)blank/m) for solid samples were 0.09 µg g(-1) (Ni) and 0.40 µg g(-1) (Pb). The accuracy of the proposed method was confirmed by the analysis of standard reference material (1577c bovine liver) and spiked recovery test. The proposed method was applied to determine nickel and lead levels in chicken, fish and meat samples. PMID:25281115

  6. Adsorption of mixtures of nonionic sugar-based surfactants with other surfactants at solid/liquid interfaces II. Adsorption of n-dodecyl-beta-D-maltoside with a cationic surfactant and a nonionic ethoxylated surfactant on solids.

    PubMed

    Zhang, Lei; Zhang, Rui; Somasundaran, P

    2006-10-01

    Synergy and antagonism between sugar-based surfactants, a group of environmentally benign surfactants, and cationic surfactants and nonionic ethoxylated surfactants have been investigated in this study with solids which adsorbs only one or other when presented alone. Sugar-based n-dodecyl-beta-D-maltoside (DM) does not adsorb on silica by itself. However, in mixtures with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic nonylphenol ethoxylated decyl ether (NP-10), DM adsorbs on silica through hydrophobic interactions. In contrast, although DM does adsorb on alumina, the presence of NP-10 reduces the adsorption of DM as well as that of the total surfactant adsorption. Such synergistic/antagonistic effects of sugar-based n-dodecyl-beta-D-maltoside (DM) in mixtures with other surfactants at solid/liquid interfaces were systematically investigated and some general rules on synergy/antagonism in mixed surfactant systems are identified. These results have implications for designing surfactant combinations for controlled adsorption or prevention of adsorption. PMID:16890947

  7. Determination of perfluorinated alkyl acids in corn, popcorn and popcorn bags before and after cooking by focused ultrasound solid-liquid extraction, liquid chromatography and quadrupole-time of flight mass spectrometry.

    PubMed

    Moreta, Cristina; Tena, Mara Teresa

    2014-08-15

    An analytical method is proposed to determine ten perfluorinated alkyl acids (PFAAs) [nine perfluorocarboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS)] in corn, popcorn and microwave popcorn packaging by focused ultrasound solid-liquid extraction (FUSLE) and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-time of flight mass spectrometry (QTOF-MS/MS). Selected PFAAs were extracted efficiently in only one 10-s cycle by FUSLE, a simple, safe and inexpensive technique. The developed method was validated for microwave popcorn bags matrix as well as corn and popcorn matrices in terms of linearity, matrix effect error, detection and quantification limits, repeatability and recovery values. The method showed good accuracy with recovery values around 100% except for the lowest chain length PFAAs, satisfactory reproducibility with RSDs under 16%, and sensitivity with limits of detection in the order of hundreds picograms per gram of sample (between 0.2 and 0.7ng/g). This method was also applied to the analysis of six microwave popcorn bags and the popcorn inside before and after cooking. PFCAs contents between 3.50ng/g and 750ng/g were found in bags, being PFHxA (perfluorohexanoic acid) the most abundant of them. However, no PFAAs were detected either corn or popcorn, therefore no migration was assumed. PMID:24986069

  8. A Mn-54 Radiotracer Study of Mn Isotope Solid-Liquid Exchange during Reductive Transformation of Vernadite (δ-MnO₂) by Aqueous Mn(II)

    SciTech Connect

    Elzinga, Evert J.; Kustka, Adam B.

    2015-04-09

    We employed Mn-54 radiotracers to characterize the extent and dynamics of Mn atom exchange between aqueous Mn(II) and vernadite (δ-Mn(IV)O2) at pH 7.5 under anoxic conditions. Exchange of Mn atoms between the solid and liquid phase is rapid, reaching dynamic equilibrium in 2–4 days. We propose that during the initial stages of reaction, Mn atom exchange occurs through consecutive comproportionation-disproportionation reactions where interfacial electron transfer from adsorbed Mn(II) to lattice Mn(IV) generates labile Mn(III) cations that rapidly disproportionate to reform aqueous Mn(II) and solid-phase Mn(IV). Following nucleation of Mn(III)OOH phases, additional exchange likely occurs through electron transfer from aqueous Mn(II) to solid-phase Mn(III). Our results provide evidence for the fast and extensive production of transient Mn(III) species at the vernadite surface upon contact of this substrate with dissolved Mn(II). We further show that HEPES buffer is a reductant of lattice Mn(IV) in the vernadite structure in our experiments. The methods and results presented here introduce application of Mn-54 tracers as a facile tool to further investigate the formation kinetics of labile Mn(III) surface species and their impacts on Mn-oxide structure and reactivity over a range of environmentally relevant geochemical conditions.

  9. Solid-liquid transfer of biophenols from olive leaves for the enrichment of edible oils by a dynamic ultrasound-assisted approach.

    PubMed

    Japón-Luján, Rafael; Janeiro, Patricia; Luque de Castro, María Dolores

    2008-08-27

    A continuous approach assisted by ultrasound for direct enrichment of edible oils (olive, sunflower, and soya) with the main phenols in olive leaves (i.e., oleuropein, verbascoside, apigenin-7-glucoside, and luteolin-7-glucoside) has been developed. Multivariate methodology was used to carry out a detailed optimization of the enrichment, and quantitation of the transferred compounds was based on LC-MS-MS in multiple reaction monitoring optimizing the most sensitive transition for each biophenol. Under the optimal working conditions, only 20 min is necessary to enrich the edible oils with 14.45-9.92 microg/mL oleuropein, 2.29-2.12 microg/mL verbascoside, 1.91-1.51 microg/mL apigenin-7-glucoside, and 1.60-1.42 microg/mL luteolin-7-glucoside. The enrichment method is carried out at room temperature and is organic-solvent-free; thus, the healthy properties of the edible oils improve as does their quality. Also, the low acquisition and maintenance costs of an ultrasound source and its application in a dynamic system make advisable the industrial implementation of the proposed method. PMID:18656923

  10. A gas-diffusion flow injection method coupled with online solid-liquid extraction for the determination of ammonium in solid samples.

    PubMed

    Timofeeva, Irina I; Bulatov, Andrey V; Moskvin, Aleksey L; Kolev, Spas D

    2015-09-01

    A simple, rapid and reliable gas-diffusion flow injection (GD-FI) method for ammonium determination in building materials has been developed. It is based on leaching ammonium from a ground solid sample into an alkaline solution with subsequent ammonia gas generation. Ammonia is then transported in a nitrogen stream to the GD cell of the FI system where it is absorbed into its acceptor solution containing a mixture of the acid-base indicators cresol red and thymol blue. The maximum increase in the absorbance of the acceptor solution at 580 nm is related to the ammonium concentration in the solid sample. The proposed method is characterized by a linear concentration range of 0.1-5.0 mg NH4(+) kg(-1), a limit of detection of 8 μg NH4(+) kg(-1) and a sample throughput of 10h(-1). A successful application of this method for the determination of ammonium in building materials such as concrete, cement and sand is reported. PMID:26003703

  11. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  12. Decommissioning of the Nuclear Licensed Facilities at the Fontenay aux Roses CEA Center

    SciTech Connect

    Jeanjacques, Michel; Piketty, Laurence; Mandard, Lionel; Pedron, Guy; Boissonneau, Jean Francois; Fouquereau, Alain; Pichereau, Eric; Lethuaire, Nathalie; Estivie, David; Binet, Cedric; Meden, Igor

    2008-01-15

    This is a summary of the program for the decommissioning of all the CEA's facilities in Fontenay aux Roses. The particularity of this center is that it is located in a built-up area. Taking into account the particularities of the various buildings and the levels of radioactivity in them, it was possible to devise a coherent, optimized program for the CEA-FAR licensed nuclear facility decommissioning operations.

  13. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean

    PubMed Central

    Singh, Vikash K.; Jain, Mukesh

    2015-01-01

    Auxin plays a central role in many aspects of plant growth and development. Auxin/Indole-3-Acetic Acid (Aux/IAA) genes cooperate with several other components in the perception and signaling of plant hormone auxin. An investigation of chickpea and soybean genomes revealed 22 and 63 putative Aux/IAA genes, respectively. These genes were classified into six subfamilies on the basis of phylogenetic analysis. Among 63 soybean Aux/IAA genes, 57 (90.5%) were found to be duplicated via whole genome duplication (WGD)/segmental events. Transposed duplication played a significant role in tandem arrangements between the members of different subfamilies. Analysis of Ka/Ks ratio of duplicated Aux/IAA genes revealed purifying selection pressure with restricted functional divergence. Promoter sequence analysis revealed several cis-regulatory elements related to auxin, abscisic acid, desiccation, salt, seed, and endosperm, indicating their role in development and stress responses. Expression analysis of chickpea and soybean Aux/IAA genes in various tissues and stages of development demonstrated tissue/stage specific differential expression. In soybean, at least 16 paralog pairs, duplicated via WGD/segmental events, showed almost indistinguishable expression pattern, but eight pairs exhibited significantly diverse expression patterns. Under abiotic stress conditions, such as desiccation, salinity and/or cold, many Aux/IAA genes of chickpea and soybean revealed differential expression. qRT-PCR analysis confirmed the differential expression patterns of selected Aux/IAA genes in chickpea. The analyses presented here provide insights on putative roles of chickpea and soybean Aux/IAA genes and will facilitate elucidation of their precise functions during development and abiotic stress responses. PMID:26579165

  14. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    PubMed Central

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2009-01-01

    Background Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure leads to more compact solids, which may affect subsequent processing steps. This study was carried out to investigate the influence of pressing the biomass, in combination with the effects of not washing the material, on the sugar yield obtained from two-step dilute acid hydrolysis, with and without subsequent enzymatic digestion of the solids. Results Washing the material between the two acid hydrolysis steps, followed by enzymatic digestion, resulted in recovery of 96% of the mannose and 81% of the glucose (% of the theoretical) in the liquid fraction, regardless of the choice of dewatering method (pressing or vacuum filtration). Not washing the solids between the two acid hydrolysis steps led to elevated acidity of the remaining solids during the second hydrolysis step, which resulted in lower yields of mannose, 85% and 74% of the theoretical, for the pressed and vacuum-filtered slurry, respectively, due to sugar degradation. However, this increase in acidity resulted in a higher glucose yield (94.2%) from pressed slurry than from filtered slurry (77.6%). Conclusion Pressing the washed material between the two acid hydrolysis steps had no significant negative effect on the sugar yields of the second acid hydrolysis step or on enzymatic hydrolysis. Not washing the material resulted in a harsher second acid hydrolysis step, which caused greater degradation of the sugars during subsequent acid hydrolysis of the solids, particularly in case of the vacuum-filtered solids. However, pressing in combination with not washing the material between the two steps enhanced the sugar yield of the enzymatic digestion step. Hence, it is suggested that the unwashed slurry be pressed to as high a dry matter content as possible between the two acid hydrolysis stages in order to achieve high final sugar yields. PMID:19291286

  15. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    SciTech Connect

    Phillips, D.C.

    2006-05-16

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures ({alpha}-helix and {beta}-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  16. Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe by solid-liquid-coexisting annealing of a-GeSn/c-Si structures

    NASA Astrophysics Data System (ADS)

    Sadoh, Taizoh; Chikita, Hironori; Matsumura, Ryo; Miyao, Masanobu

    2015-09-01

    Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%-26%) and annealing conditions (300-1000 °C, 1 s-48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (˜80%) SiGe layers with Sn concentrations of ˜2% are realized by ultra-low temperature annealing (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.

  17. Simultaneous determination of four trace estrogens in feces, leachate, tap and groundwater using solid-liquid extraction/auto solid-phase extraction and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Liu, Na; Shi, Yue-e; Li, Mengyan; Zhang, Ting-di; Gao, Song

    2015-10-01

    A simple and selective high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α-ethynyl estradiol) in environmental matrices. For feces samples, solid-liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid-phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed-phase C18 column gradient-eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10(-2) (estrone), 4.11 × 10(-4) (estradiol), 5.2 × 10(-3) (estriol) and 7.18 × 10(-3) μg/L (17α-ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2-105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area. PMID:26248873

  18. Loi constitutive chimioplastique pour le beton expose aux hautes temperatures

    NASA Astrophysics Data System (ADS)

    Hammoud, Rabah

    Concrete is the most widely used construction material in the world. Even though it has been used for several centuries, its behavior to high temperature remains to be understood. In the light of recent extreme events, including accidents, and arson, special attention has been focused on the performance of concrete in the fire safety assessment of buildings and tunnels. Fire represents one of the most severe conditions encountered during the life-time of a structure. Concrete exposed to high temperature can significantly jeopardize the structural integrity and load bearing capacity of the structure. Spalling of concrete remains one of the main issues to be addressed in the case of fire in buildings and tunnels. Successful modeling of this phenomenon depends not only on the accurate prediction of the temperature distribution through structural concrete but also on its mechanical response to the heating and boundaries restrains conditions and the migration of moisture and associated pore pressures. Therefore, it is necessary to develop a reliable formulation of concrete with all required information to understand its behavior during and after exposure to elevated temperature. It is also necessary to properly assess the effects of thermal degradation in order to develop predictive tools and validate design codes. Many structural problems can be adequately worthy by an elastoplastic model. The ultimate goal of this study is the development of a new constitutive model under a chemoplastic framework. To do this, an experimental program is carried out. The purpose of this program is twofold. First, it is essential to calibrate the proposed constitutive law that will be developed, and, second, for defining an inverse a problem. Usually, uniaxial and triaxial tests, conducted with confining pressure varied between 1.3 and 24 MPa and a temperature up to 700°C, allow us to identify the constitutive law parameters. This law reproduces the reduced field strength due to degradation of exothermic origin. This experimental program puts emphasis on the fragile nature of the preheated concrete and demonstrates the non-applicability of two failure criteria often used in engineering calculation. An alternative is proposed and well-tested. Indeed, exposing the concrete to high temperature results in irreversible loss of stiffness as well as a loss of decohesion strength. These losses are, typically, expressed through semi-empirical relationships of the mechanical properties with temperature. Unfortunately, these relationships are inadequate because the direct impact of this degradation, on the macroscopic scale, can result in a dependency relationship between the elastic properties and the hydrates mass. Therefore, unlike traditional methods using conventional elasto-plastic models and adjusting certain parameters with local temperature, the proposed constitutive law that incorporates a function of dehydration similar to the softening index in chemo-plastics gives good results. An Etse and Willam similar criterion is used and modified for the occasion. Hardening and softening mechanisms are then needed to expand and contract the loading surface for defining the strength of the concrete on a wide range of dehydration processes. The direction and magnitude of a permanent deformation, core of the inelastic domain, are defined through the development of non-associated chemoplastic potential and new curve of ductility. The influence of hydrostatic pressure (dilatancy) and dehydration on the concrete behavior are taken into account in our model. The model is implemented in the Matlab(c) code. Strains and stresses generated in the concrete are now accurately predicted. To illustrate the capabilities of the developed model to predict the complex behavior of concrete exposed to high temperature, simulations are performed through numerical loading paths scenarios. The model is able to accurately reproduce all the experimental data.

  19. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission. PMID:25982744

  20. Groupes quantiques associes aux courbes rationnelles et elliptiques et leurs applications

    NASA Astrophysics Data System (ADS)

    Silantyev, A.

    2009-01-01

    The thesis was defended by the author in University of Angers (France). It consists of four parts. The fist part (in French) is introductory and is devoted to relation between quantum groups, integrable systems and statistical models. In the second part (in English) the transition function of the periodic Toda chain is interpreted in terms of the formalism of rational Lax operators. In the third part (in French) one compares two elliptic quantum groups and one conclude that they belong to two different bialgebra categories. The fourth part (in English) contains a construction of the partition function of the SOS model in terms of the projections of an elliptic quantum group.

  1. Comportement dynamique d'alliages a memoire de forme et application aux composites-AMF

    NASA Astrophysics Data System (ADS)

    de Santis, Silvio

    Meeting current industrial, governmental and international standards regarding vibration and noise levels is a challenging task facing many engineers. These specifications are present in just about all fields of engineering, from aerospace to marine transportation, from automotive to railway transportation, from computer equipment to industrial working environments. An appropriate use of the remarkable properties of high damping metals (HIDAMETS) and shape memory alloy (SMA) reinforced composites emerges as a possible solution to these problems. Among many obstacles to overcome in developing such a technology, the implementation of reliable and adequate characterization techniques to determine dynamic properties of these materials appears to be of prime importance. The research efforts presented in this thesis are aimed at developing advanced techniques to characterize the dynamic behavior of HIDAMETS and SMA reinforced composites. These characterization results lead to the enhancement of numerical (finite element) and/or analytical methods for the simulation of dynamic responses of structures made of these materials. In particular, the research work has focused on three themes: the numerical and experimental validation of applying a characterization procedure developed for traditional composites to SMA reinforced composites; the development of a test bench for uniaxial hysteresis characterization of HIDAMETS in the medium frequency range; the hysteresis characterization and modeling of manganese copper (MnCu) and nickel titanium samples. The results obtained in the course of these efforts show that the characterization technique developed for traditional composites at the University of Brussels is sufficiently precise to successfully predict natural frequencies of complex SMA reinforced composite structures. Using the characterization to predict structural damping ratios, we observe a bias error in the prediction with respect to experimental results although the relative values between modes are consistent. Regarding the development of the test bench for uniaxial hysteresis characterization of HIDAMETS, results suggest that with the introduction of a few minor enhancements and with particular experimental precautions, the test bench can play an important role in characterizing HIDAMETS dynamic properties at various frequencies and strain amplitudes and in understanding micro mechanical mechanisms responsible for energy dissipation. Finally, uniaxial hysteresis loops and related parameters have been obtained with MnCu and NiTi samples. A material model based on dual kriging interpolation that expresses the tangent stiffness along these hysteresis loops as a function of strain and strain amplitude has also been developed.

  2. Vaincre la réticence à l’instauration d’un nouveau schéma à base d’enfuvirtide grâce aux soins aux patients et aux mesures de soutien

    PubMed Central

    Trottier, Benoît

    2007-01-01

    Les patients peuvent être réticents à l’idée de commencer un traitement par l’enfuvirtide en raison de préoccupations relatives à l’auto-injection et à d’autres questions connexes. Étant donné que l’introduction d’une nouvelle classe de médicaments peut améliorer considérablement l’efficacité d’un schéma antirétroviral, appuyer le patient dans l’instauration de l’enfuvirtide, un agent sûr et efficace appartenant à une nouvelle classe, offre des bienfaits thérapeutiques. Dans le cas du présent patient, qui affichait une résistance aux trois grandes classes d’antirétroviraux, l’enfuvirtide a été ajouté avec succès au traitement grâce à un groupe d’aide par les pairs et à une assistance clinique. L’acceptation du patient a augmenté grâce à l’utilisation d’un système d’injection sans aiguilles (Biojector), avec des effets secondaires minimes et une amélioration significative du contrôle virologique et immunologique.

  3. Simultaneous determination of a variety of endocrine disrupting compounds in carrot, lettuce and amended soil by means of focused ultrasonic solid-liquid extraction and dispersive solid-phase extraction as simplified clean-up strategy.

    PubMed

    Mijangos, L; Bizkarguenaga, E; Prieto, A; Fernández, L A; Zuloaga, O

    2015-04-10

    The present study is focused on the development of an analytical method based on focused ultrasonic solid-liquid extraction (FUSLE) followed by dispersive solid-phase extraction (dSPE) clean-up and liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) optimised for the simultaneous analysis of certain endocrine disrupting compounds (EDCs), including alkylphenols (APs), bisphenol A (BPA), triclosan (TCS) and several hormones and sterols in vegetables (lettuce and carrot) and amended soil samples. Different variables affecting the chromatographic separation, the electrospray ionisation and mass spectrometric detection were optimised in order to improve the sensitivity of the separation and detection steps. Under the optimised extraction conditions (sonication of 5min at 33% of power with pulse times on of 0.8s and pulse times off of 0.2s in 10mL of n-hexane:acetone (30:70, v:v) mixture using an ice bath), different dSPE clean-up sorbents, such as Florisil, Envi-Carb, primary-secondary amine bonded silica (PSA) and C18, or combinations of them were evaluated for FUSLE extracts before LC-MS/MS. Apparent recoveries and precision in terms of relative standard deviation (RSDs %) of the method were determined at two different fortification levels (according to the matrix and the analyte) and values in the 70-130% and 2-27% ranges, respectively, were obtained for most of the target analytes and matrices. Matrix-matched calibration approach and the use of labelled standards as surrogates were needed for the properly quantification of most analytes and matrices. Method detection limits (MDLs), estimated with fortified samples, in the ranges of 0.1-100ng/g for carrot, 0.2-152ng/g for lettuce and 0.9-31ng/g for amended soil were obtained. The developed methodology was applied to the analysis of 11 EDCs in both real vegetable bought in a local market and in compost (from a local wastewater treatment plant, WWTP) amended soil samples. PMID:25746759

  4. Exposition précoce aux aliments et allergies alimentaires chez les enfants

    PubMed Central

    Chin, Benetta; Chan, Edmond S.; Goldman, Ran D.

    2014-01-01

    Résumé Question J’étais sous l’impression qu’on devrait éviter de donner aux nourrissons des aliments potentiellement allergènes comme des noix, du lait de vache et des œufs pour prévenir le développement de réactions allergiques. Quels conseils devrait-on donner aux parents concernant l’introduction des aliments durant la petite enfance et le développement des allergies alimentaires? Réponse Il n’y a pas de données probantes indiquant que retarder l’introduction d’aliments particuliers après l’âge de 6 mois aide à prévenir les allergies. Une récente déclaration de la Société canadienne de pédiatrie ne recommande aucun délai quant à l’introduction d’aliments durant la petite enfance. De récentes études de recherche semblent aussi faire valoir que l’introduction précoce (entre 4 et 6 mois) d’aliments possiblement allergènes procure une forme de protection et contribue à prévenir les allergies, mais il faudrait plus de recherche à ce sujet.

  5. Diversity of Stability, Localization, Interaction and Control of Downstream Gene Activity in the Maize Aux/IAA Protein Family

    PubMed Central

    Ludwig, Yvonne; Berendzen, Kenneth W.; Xu, Changzheng; Piepho, Hans-Peter; Hochholdinger, Frank

    2014-01-01

    AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are central regulators of auxin signal transduction. They control many aspects of plant development, share a conserved domain structure and are localized in the nucleus. In the present study, five maize Aux/IAA proteins (ZmIAA2, ZmIAA11, ZmIAA15, ZmIAA20 and ZmIAA33) representing the evolutionary, phylogenetic and expression diversity of this gene family were characterized. Subcellular localization studies revealed that ZmIAA2, ZmIAA11 and ZmIAA15 are confined to the nucleus while ZmIAA20 and ZmIAA33 are localized in both the nucleus and the cytoplasm. Introduction of specific point mutations in the degron sequence (VGWPPV) of domain II by substituting the first proline by serine or the second proline by leucine stabilized the Aux/IAA proteins. While protein half-life times between ?11 min (ZmIAA2) to ?120 min (ZmIAA15) were observed in wild-type proteins, the mutated forms of all five proteins were almost as stable as GFP control proteins. Moreover, all five maize Aux/IAA proteins repressed downstream gene expression in luciferase assays to different degrees. In addition, bimolecular fluorescence complementation (BiFC) analyses demonstrated interaction of all five Aux/IAA proteins with RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1, ZmIAA10) while only ZmIAA15 and ZmIAA33 interacted with the RUM1 paralog RUL1 (RUM-LIKE 1, ZmIAA29). Moreover, ZmIAA11, ZmIAA15 ZmIAA33 displayed homotypic interaction. Hence, despite their conserved domain structure, maize Aux/IAA proteins display a significant variability in their molecular characteristics which is likely associated with the wide spectrum of their developmental functions. PMID:25203637

  6. Des furoncles résistants aux antibiotiques: penser à la myiase !!

    PubMed Central

    Ajili, Faida; Abid, Rim; Bousseta, Najeh; Mrabet, Ali; Karoui, Ghazi; Louzir, Bassem; Battikh, Riadh; Othmani, Salah

    2013-01-01

    Les myiases sont des infections parasitaires par des larves de mouches. La localisation cutanée doit être évoquée de retour d'un pays tropical devant une évolution inhabituelle de lésions cutanées. Nous rapportons une observation d'un militaire tunisien, ayant séjourné en République Démocratique du Congo. Il était atteint de myiase cutanée simulatrice d'une furonculose résistante aux antibiotiques. L'intérêt de cette observation est de souligner l'importance d’évoquer la myiase dont le traitement est simple et rapide chez un patient de retour de zone d'endémie. PMID:24106569

  7. Soins primaires aux adultes ayant une déficience développementale

    PubMed Central

    Sullivan, William F.; Berg, Joseph M.; Bradley, Elspeth; Cheetham, Tom; Denton, Richard; Heng, John; Hennen, Brian; Joyce, David; Kelly, Maureen; Korossy, Marika; Lunsky, Yona; McMillan, Shirley

    2011-01-01

    Résumé Objectif Mettre à jour les lignes directrices canadiennes de 2006 sur les soins primaires aux adultes ayant une déficience développementale (DD) et présenter des recommandations pratiques fondées sur les connaissances actuelles pour traiter des problèmes de santé particuliers chez des adultes ayant une DD. Qualité des preuves Des professionnels de la santé expérimentés participant à un colloque et un groupe de travail subséquent ont discuté et convenu des révisions aux lignes directrices de 2006 en se fondant sur une recherche documentaire exhaustive, la rétroaction obtenue des utilisateurs du guide de pratique et les expériences cliniques personnelles. La plupart des preuves disponibles dans ce domaine viennent de l’opinion d’experts ou de déclarations consensuelles publiées (niveau III). Message principal Les adultes ayant une DD ont des problèmes de santé complexes, dont plusieurs diffèrent de ceux de la population en général. De bons soins primaires permettent d’identifier les problèmes de santé particuliers dont souffrent les adultes ayant une DD pour améliorer leur qualité de vie et leur accès aux soins de santé et prévenir la morbidité et le décès prématuré. Ces lignes directrices résument les problèmes de santé générale, physique, comportementale et mentale des adultes ayant une DD que devraient connaître les professionnels des soins primaires et présentent des recommandations pour le dépistage et la prise en charge en se basant sur les connaissances actuelles que les cliniciens peuvent mettre en pratique. En raison de l’interaction des facteurs biologiques, psychoaffectifs et sociaux qui contribuent à la santé et au bien-être des adultes ayant une DD, ces lignes directrices insistent sur la participation des aidants, l’adaptation des interventions, au besoin, et la consultation auprès de divers professionnels de la santé quand ils sont accessibles. Elles mettent aussi en évidence la nature éthique des soins. Les lignes directrices sont formulées dans le contexte d’un cadre éthique qui tient compte des questions comme le consentement éclairé et l’évaluation des bienfaits pour la santé par rapport aux risques de préjudice. Conclusion La mise en œuvre des lignes directrices proposées ici améliorerait la santé des adultes ayant une DD et minimiserait les disparités sur les plans de la santé et des soins de santé entre les adultes ayant une DD et la population en général.

  8. Adenosine diphosphate ribosylation factor-GTPase-activating protein stimulates the transport of AUX1 endosome, which relies on actin cytoskeletal organization in rice root development.

    PubMed

    Du, Cheng; Xu, Yunyuan; Wang, Yingdian; Chong, Kang

    2011-09-01

    Polar auxin transport, which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers, mediates various processes of plant growth and development. Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein, GNOM. However, the mediation of auxin influx carrier recycling is poorly understood. Here, we report that overexpression of OsAGAP, an ARF-GTPase-activating protein in rice, stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1. AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption. Furthermore, OsAGAP is involved in actin cytoskeletal organization, and its overexpression tends to reduce the thickness and bundling of actin filaments. Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells, and was only slightly promoted when the actin filaments were completely disrupted by Lat B. Thus, we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption. PMID:21631728

  9. Conséquences comportementales de la violence faite aux enfants

    PubMed Central

    Al Odhayani, Abdulaziz; Watson, William J.; Watson, Lindsay

    2013-01-01

    Résumé Objectif Discuter des répercussions de la violence sur le développement comportemental durant l’enfance, mettre en évidence certains signes comportementaux susceptibles d’alerter les médecins à la présence d’une maltraitance continue d’un enfant et explorer le rôle précis du médecin de famille dans une telle situation clinique. Sources des données Une recension systématique a servi à examiner la recherche pertinente, les articles de révision clinique et les sites web des organismes de protection de la jeunesse. Message principal Le comportement d’un enfant est une manifestation extériorisée de sa stabilité et de sa sécurité intérieures. C’est une lentille au travers de laquelle le médecin de famille peut observer le développement de l’enfant pendant toute sa vie. Tous les genres de violence sont dommageables pour les enfants, qu’elle soit physique, affective ou psychologique, et peuvent causer des problèmes à long terme dans le développement du comportement et de la santé mentale. Les médecins de famille doivent connaître les indices de maltraitance et de négligence envers les enfants et être aux aguets de ces derniers afin d’entreprendre les interventions appropriées et améliorer les résultats pour ces enfants. Conclusion La violence faite aux enfants peut causer un développement psychologique désordonné et des problèmes de comportement. Les médecins de famille exercent un rôle important dans la reconnaissance des signes comportementaux laissant présager une maltraitance, ainsi que pour offrir de l’aide afin de protéger les enfants.

  10. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2

    PubMed Central

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T.

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism. PMID:25738325

  11. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism. PMID:25738325

  12. Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4](-) (X = F, CI, Br, I, At, Uus)

    SciTech Connect

    Li, Wan-Lu; Li, Yong; Xu, Congqiao; Wang, Xue B.; Vorpagel, Erich R.; Li, Jun

    2015-12-07

    Systematic theoretical and experimental investigations have been performed to understand the periodicity and electronic structures of trivalent-gold halides using gold tetrahalides [AuX4]⁻ anions (X = F, Cl, Br, I, At, Uus). The [AuX4]⁻ (X = Cl, Br, I) anions were produced in gas phase and their negative-ion photoelectron spectra were obtained, which exhibited rich and well-resolved spectral peaks. We calculated the adiabatic as well as vertical electron detachment energies using density functional methods with scalar and spin-orbit coupling relativistic effects. The simulated photoelectron spectra based on these calculations are in good agreement with the experimental spectra. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) is preferred when the halides become heavier along the Period Table. This trend reveals that the oxidation state of metals in complexes can be manipulated through ligand design

  13. Isolation of PsPIN2 and PsAUX1 from etiolated pea epicotyls and their expression on a three-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Hoshino, Tomoki; Hitotsubashi, Reiko; Miyamoto, Kensuke; Tanimoto, Eiichi; Ueda, Junichi

    We isolated novel cDNAs containing the complete open reading frames of a putative auxin influx carrier, PsAUX1, and a putative auxin efflux carrier, PsPIN2, from etiolated pea epicotyls. High levels of homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (Accession No. AY222857) and AtPINs. Phylogenetic analyses based on deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 and AtPIN7, while PsPIN1 belonged to the same clade as AtPIN1. The results were similar for PsAUX1 and AtAUX1, where PsAUX1 belongs to the same subclade as AtAUX1 and CS-AUX1. Expression of PsPIN1, PsPIN2 and PsAUX1 in pea epicotyl segments was promoted upon incubation of the segments with auxin (indole-3-acetic acid). In 3.5-d-old etiolated pea seedlings, relatively high expression of PsPIN1 and PsAUX1 was observed in the hook region, growing epicotyls and root tips as compared with those in mature regions of epicotyls and roots. Expression of PsPIN2 in roots was less than that in shoots. Simulated microgravity conditions on a three-dimensional clinostat remarkably increased gene expression of PsPIN1 and PsAUX1 in the hook and the internodes of pea epicotyls, but the increase in PsPIN2 was less. In contrast, polar auxin transport of pea epicotyls was substantially suppressed under simulated microgravity conditions on a 3D clinostat, similar to data from a space experiment on STS-95. These results suggest that PsPINs and PsAUX1 are auxin-inducible genes, and that the expression of PsPINs and PsAUX1 genes is sensitive to gravistimulation.

  14. Xe{sup +} formation following photolysis of Au-Xe: A velocity map imaging study

    SciTech Connect

    Hopkins, W. Scott; Woodham, Alex P.; Mackenzie, Stuart R.; Plowright, Richard J.; Wright, Timothy G.

    2011-03-07

    The photodissociation dynamics of Au-Xe leading to Xe{sup +} formation via the {Xi}{sub 1/2}-X{sup 2}{Sigma}{sup +} (v{sup '}, 0) band system (41 500-41 800 cm{sup -1}) have been investigated by velocity map imaging. Five product channels have been indentified, which can be assigned to photoinduced charge transfer followed by photodissociation in either the neutral or the [Au-Xe]{sup +} species. For the neutral species, charge transfer occurs via a superexcited Rydberg state prior to dissociative ionization, while single-photon excitation of the gold atom in Au{sup +}-Xe accesses an (Au{sup +})*-Xe excited state that couples to a dissociative continuum in Au-Xe{sup +}. Mechanisms by which charge transfer occurs are proposed, and branching ratios for Xe{sup +} formation via the superexcited Rydberg state are reported. The bond dissociation energy for the first excited state of Au{sup +}-Xe is determined to be {approx}9720 {+-} 110 cm{sup -1}.

  15. Coring Performance to Characterise the Geology in the ``Cran aux Iguanodons'' of Bernissart (Belgium)

    NASA Astrophysics Data System (ADS)

    Tshibangu, Jean-Pierre; Dagrain, Fabrice; Legrain, Hughes; Deschamps, Benoît

    The Cran aux iguanodons of Bernissart is a sinkhole (or chimney caving) with a valuable paleontological deposit due to the exceptional quantity and diversity of fossils found during the excavation conducted from 1878 to 1881. In fact, bones have been discovered in a clayey geological formation when digging à mine gallery at the -322 m level. A subsequent extraction gave an overall production of 29 iguanodons skeletons. Referring to the available data at the Natural Sciences Museum of Brussels where the found skeletons are exhibited, one does not know the degree of depletion of the deposit after the extraction. A feasibility study (Tshibangu and Dagrain 1998) showed then the need to drill 4 exploration wells of 400 m depth with different objectives: to evaluate the chance of finding more fossils, understanding how and when the geological formations moved down, and testing a seismic geophysical technique for ground imaging. The typical geological formations concerned are: chalk, limestone, conglomerate, clays, and layers of silex nodules. In October 2002 the workings started with a completely cored well (the Number 3) using the PQ wireline technique. During operations, different parameters have been recorded: rate of penetration, core recovery and a brief core description. Some problems have been encountered when crossing silex stones contained in a clayey matrix; and this paper gives some interpretations in terms of the relationship between the lithology and the drilling performances.

  16. Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4]- (X = F, Cl, Br, I, At, Uus).

    PubMed

    Li, Wan-Lu; Li, Yong; Xu, Cong-Qiao; Wang, Xue-Bin; Vorpagel, Erich; Li, Jun

    2015-12-01

    Systematic theoretical and experimental investigations have been performed to understand the periodicity, electronic structures, and bonding of gold halides using tetrahalide [AuX4](-) anions (X = F, Cl, Br, I, At, Uus). The [AuX4](-) (X = Cl, Br, I) anions were experimentally produced in the gas phase, and their negative-ion photoelectron spectra were obtained, exhibiting rich and well-resolved spectral peaks. As expected, Au-X bonds in such series contain generally increasing covalency when halogen ligands become heavier. We calculated the adiabatic electron detachment energies as well as vertical electron detachment energies using density functional theory methods with scalar relativistic and spin-orbit coupling effects. The computationally simulated photoelectron spectra are in good agreement with the experimental ones. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) tends to be preferred when the halides become heavier along the Periodic Table. This series of molecules provides an example for manipulating the oxidation state of metals in complexes through ligand design. PMID:26550845

  17. Tectonic conditions of hydrothermal polymetallic vein-type mineralization, Sainte Marie-aux-Mines, France

    NASA Astrophysics Data System (ADS)

    Hafeznia, Y.; Bourlange, S.; Ohnenstetter, M.

    2012-04-01

    The Sainte-Marie-aux-Mines (SMM) mines host one of the most famous and oldest silver deposits in Europe. The SMM district is located in the central part of the Vosges mountains, France, within gneiss and granites of the Moldanubian zone. The SMM district includes the Neuenberg E-W vein-type Cu-Ag-As/Pb-Zn deposit and the Altenberg N-S vein-type Pb-Zn-Ag deposit. Deposition of the SMM hydrothermal mineralization occurred under a brittle tectonic regime that might be connected to neo-Variscan and/or post-Variscan tectonics, in a similar way as the polymetallic vein deposits of the Black Forest, Germany. A structural study was done in the Neuenberg area, in the vicinity of the Saint-Jacques vein, and within the Gabe Gottes mine, considering the orientation, extent, chronology and density of faults as well as the nature of the infilling minerals. In the Gabe-Gottes mine, the Saint-Jacques vein comprises multiple successive, sub-parallel subvertical veinlets with gangue minerals, mostly carbonates and quartz, and metal-bearing phases, sulfides and sulfosalts. The veinlets are 2 to 50 cm thick and strike N80° to N110°, the earlier veins slightly dipping towards the north, and the latest one, to the south. Seven systems of faults were identified, which may be classified into three major groups formed respectively before, during and after the main stage of ore deposition: a) Pre-mineralization faults - These consist of sinistral NE-SW strike-slip faults, and NW-SE and NE-SW steeply dipping normal faults. These could be related to Carboniferous events considering their relationships with the granitoid intrusives present in the mine area (Brézouard leucogranite ~329 Ma), and the extensional tectonics developed during exhumation processes. b) Faults associated with the main ore-deposition - These faults could be related to late-Hercynian processes from compressional to extensional tectonic regimes. Mineralization controlling faults consist of dextral and sinistral E-W strike-slip faults. Early strike-slip movements are assessed by the presence of striated iron oxides, the crystallization of which is considered to be early during the ore deposition process. Mineralizing fluids were probably fluorine-rich as F-bearing minerals, sericite, chlorite and apatite are present in the chlorite zone associated with early sulphide-rich ores. The E-W mineralized faults are only easily compatible with the tectonics known in Permian times. c) Late-stage faults - These could be related to the numerous changes in plate configuration which occur during the Mesozoic and Cenozoic times, in accordance with the creation of the Paris basin, the opening of Atlantic ocean and Rhine Graben, as well as with the Tethys closure. For example, the vertical lineation superposed on an horizontal lineation observed on mineralized rocks indicate reactivation of the former E-W mineralized veins under a normal movement. The latter may correspond to an extensive regime known during Oligocene times. On the other hand, one of the major late-stage faults strikes N-S and is related to a dextral strike-slip system, which could be considered as Miocene. It is expected that fluid remobilization occurred during fault reactivation, a process which could have led to successive ore deposition following the emplacement of the major E-W mineralized veins. A fluid inclusion study in the gangue minerals of the Gabe Gottes is now under investigation. This together with isotopic studies will help to determine the source of the mineralizing fluids, as well as the conditions of ore deposition. Keywords: Faults, polymetallic mineralization, variscan orogeny, Gabe-Gottes, Sainte-Marie-aux-Mines, Vosges, F-rich fluids.

  18. Réactions immunoallergiques graves aux antibacillaires: à propos de 10 cas

    PubMed Central

    Alami, Sabah El Machichi; Hammi, Sanae; Bourkadi, Jamal Eddine

    2014-01-01

    L'hypersensibilité aux antituberculeux est l'un des effets secondaires imprévisibles qui apparait chez 4 à 5 % de la population exposée et s’élève à 25% chez les sujets VIH positifs. Dans notre étude parmi 39 patients ayant présenté des réactions immunoallergiques, 10 avaient des formes graves. Le délai moyen d'apparition des signes était de 23 jours. Les réactions immunoallergiques observées étaient 5 cas de toxidermie généralisée fébrile, un cas de Dress syndrome, un cas de neutropénie, un cas de pancitopénie et 2 cas de thrombopénie. Tous nos patients avaient bien évolué cliniquement et bactériologiquement après l'adoption d'un régime thérapeutique excluant le ou les médicaments incriminés. En pratique, si l'effet indésirable imputé à un antituberculeux est grave, il est impératif de l'arrêter, de traiter l'incident et d'associer une autre molécule chez certains cas. Notre étude a montré une fréquence significative des complications graves probablement sous-estimée, surtout dans les pays fortement touchés par l'infection HIV.

  19. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.

    PubMed

    Balcerowicz, Martin; Ranjan, Aashish; Rupprecht, Laura; Fiene, Gabriele; Hoecker, Ute

    2014-08-01

    Stomatal development is tightly regulated through internal and external factors that are integrated by a complex signalling network. Light represents an external factor that strongly promotes stomata formation. Here, we show that auxin-resistant aux/iaa mutants, e.g. axr3-1, exhibit a de-repression of stomata differentiation in dark-grown seedlings. The higher stomatal index in dark-grown axr3-1 mutants when compared with the wild type is due to increased cell division in the stomatal lineage. Excessive stomata in dark-grown seedlings were also observed in mutants defective in auxin biosynthesis or auxin perception and in seedlings treated with the polar auxin transport inhibitor NPA. Consistent with these findings, exogenous auxin repressed stomata formation in light-grown seedlings. Taken together, these results indicate that auxin is a negative regulator of stomatal development in dark-grown seedlings. Epistasis analysis revealed that axr3-1 acts genetically upstream of the bHLH transcription factors SPCH, MUTE and FAMA, as well as the YDA MAP kinase cascade, but in parallel with the repressor of photomorphogenesis COP1 and the receptor-like protein TMM. The effect of exogenous auxin required the ER family of leucine-rich repeat receptor-like kinases, suggesting that auxin acts at least in part through the ER family. Expression of axr3-1 in the stomatal lineage was insufficient to alter the stomatal index, implying that cell-cell communication is necessary to mediate the effect of auxin. In summary, our results show that auxin signalling contributes to the suppression of stomatal differentiation observed in dark-grown seedlings. PMID:25063454

  20. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families.

    PubMed

    Pattison, Richard J; Catalá, Carmen

    2012-05-01

    The temporal and spatial control of auxin distribution has a key role in the regulation of plant growth and development, and much has been learnt about the mechanisms that influence auxin pools and gradients in vegetative tissues, particularly in Arabidopsis. For example polar auxin transport, mediated by PIN and AUX/LAX proteins, is central to the control of auxin distribution. In contrast, very little information is known about the dynamics of auxin distribution and the molecular basis of its transport within and between fruit tissues, despite the fact that auxin regulates many aspects of fruit development, which include fruit formation, expansion, ripening and abscission. In addition, functional information regarding the key regulators of auxin fluxes during both vegetative and reproductive development in species other than Arabidopsis is scarce. To address these issues, we have investigated the spatiotemporal distribution of auxin during tomato (Solanum lycopersicum) fruit development and the function of the PIN and AUX/LAX gene families. Differential concentrations of auxin become apparent during early fruit growth, with auxin levels being higher in internal tissues than in the fruit pericarp and the pattern of auxin accumulation depended on polar transport. Ten tomato PIN (SlPIN1 to 10) and five AUX/LAX (SlLAX1 to 5) genes were identified and found to display heterogeneous expression patterns, with tissue and developmental-stage specificity. RNAi-mediated co-silencing of SlPIN4 and SlPIN3 did not affect fruit development, which suggested functional redundancy of PIN proteins, but did lead to a vegetative phenotype, and revealed a role for these genes in the regulation of tomato shoot architecture. PMID:22211518

  1. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): Identification, expression analysis, and evaluation of their roles in tuber development.

    PubMed

    Gao, Junpeng; Cao, Xiaoli; Shi, Shandang; Ma, Yuling; Wang, Kai; Liu, Shengjie; Chen, Dan; Chen, Qin; Ma, Haoli

    2016-03-01

    The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes. PMID:26869512

  2. Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Puppulin, Leonardo; La Rosa, Angelo; Boffelli, Marco; Zhu, Wenliang; McEntire, Bryan J.; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori

    2015-12-01

    The effect of hydrogen carbonate (HCO3-) and cations (Na+, K+) solvated in water were revisited according to high spectrally resolved Raman measurements. Water solutions with different bicarbonate concentrations or added with increasing amounts of monovalent cations were examined with respect to their Raman spectra both in the bulk state and at the solid/liquid interface with a silicon nitride (Si3N4) bioceramic. Spectroscopic calibrations confirmed that the Raman emission from OH-stretching in water is sensitive to molarity variations (in the order of tens of mM). The concentration gradient developed at the solid/liquid interface in cation-added solutions interacting with a Si3N4 surface was measured and found to be peculiar to individual cations. Local variation in pH was detected in ionic solutions interacting with Si3N4 samples, which might represent a useful property for Si3N4 in a number of biomedical applications.

  3. Approche aux soins en milieu communautaire à des adultes ayant une déficience développementale

    PubMed Central

    Osmun, W.E.; Chan, Nelson; Solomon, Robert

    2015-01-01

    Résumé Objectif Passer en revue les obligations d’ordre médical, éthique et juridique dans les soins aux adultes ayant une déficience développementale (DD) qui vivent dans la communauté. Sources des données Des recherches ont été faites dans Google et MEDLINE à l’aide des mots disabled, disability, vulnerable et community. Les lois pertinentes ont fait l’objet d’un examen. Message principal Le traitement d’un patient ayant une DD varie en fonction de facteurs comme la pathogenèse du problème actuel du patient, ses affections concomitantes, la gravité de ses déficiences et ses soutiens sociaux habituels. Bien que l’on s’entende sur les bienfaits du transfert des soins institutionnels vers des soins communautaires pour les patients ayant une DD, il s’est révélé difficile de leur dispenser des soins de grande qualité en milieu communautaire. Par ailleurs, il existe peu de travaux de recherche sur les façons d’offrir efficacement des soins aux adultes ayant une DD. En tant que professionnels des soins primaires, les médecins de famille sont souvent le premier point de contact pour les patients et sont à la fois responsables de la coordination et de la continuité des soins. Compte tenu de l’importance accrue accordée aux soins préventifs et à la détection précoce des maladies, la participation active du patient revêt aussi une grande importance. Les valeurs et les objectifs du patient sont des éléments essentiels à prendre en compte, même s’ils vont à l’encontre de la bonne santé du patient ou des propres valeurs du clinicien. Les lois s’appliquant aux personnes vulnérables varient d’une province à l’autre. Par conséquent, l’obligation de signaler des mauvais traitements suspectés pourrait différer selon que la personne vulnérable habite dans un centre de soins ou la communauté, que la personne qui soupçonne le comportement abusif est un fournisseur de services ou un professionnel de la santé ou encore que les circonstances spécifiques répondent à la définition légale de mauvais traitement ou de négligence. Conclusion Les professionnels des soins primaires doivent dispenser aux adultes ayant une DD des soins empreints de compassion qui respectent les souhaits du patient.

  4. Cinetique de la nucleation binaire non-isotherme et de la condensation binaire aux conditions dynamiques

    NASA Astrophysics Data System (ADS)

    Djikaev, Yuri

    La présente thèse est consacrée à la théorie de la condensation binaire. Premièrement, nous considérons la thermodynamique de la nucléation binaire, en nous concentrant sur l'énergie libre de formation d'une goutte et la distribution d'équilibre des gouttes, qui est essentielle pour la vitesse théorique de nucléation et dont le choix n'est toutefois pas unique. Une nouvelle distribution d'équilibre est proposée. Deuxièmement, nous développons la théorie cinétique de la nucléation binaire non-isotherme. Cette théorie traite de l'influence des effets thermiques sur la condensation binaire qui sont causés par la chaleur de condensation. Les molécules du mélange de vapeurs absorbées par une goutte de solution binaire lui transmettent de la chaleur de condensation, tandis que les molécules émises par la goutte lui enlèvent une telle chaleur. La température moyenne de la goutte s'accroît au fur et à mesure qu'elle grandit. Cet échauffement des gouttes croissantes diminue la vitesse de nucléation et influence d'autres caractéristiques du processus. Dans le cas où les chaleurs de condensation sont très petites par rapport à la fluctuation efficace de l'énergie d'une goutte l'équation cinétique peut être réduite à celle de Fokker et Planck. L'analyse de l'équation cinétique permet de déterminer la hiérarchie des échelles de temps de la nucléation binaire non-isotherme. Cela rend possible de séparer et décrire analytiquement l'étape de relaxation thermique pendant laquelle la distribution des gouttes selon la température s'approche d'une gaussienne, alors que leur distribution selon les nombres de molécules ne change guère. Finalement, nous étudions la condensation binaire isotherme aux conditions dynamiques. Dans ce cas la formation et la croissance des gouttes se passent en même temps que la métastabilité du mélange de vapeurs croît graduellement, atteint son maximum et décroît. C'est ainsi que la condensation binaire se passe le plus souvent dans la nature. Nous développons la théorie cinétique de ces processus pour les systèmes ouverts ainsi que pour les systèmes fermés (du point de vue de l'échange de matière entre le système où la condensation se passe et son environnement). Les deux sursaturations idéales que les vapeurs du mélange auraient eues en absence d'absorption de la substance par les gouttes sont déterminées par les conditions extérieures: la dépendance temporelle des sursaturations idéales est considérée comme donnée. De même, cette méthode permet de trouver la dépendance temporelle des sursaturations réelles des deux vapeurs et le nombre total de gouttes. (Abstract shortened by UMI.)

  5. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2014-09-01

    Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls. PMID:24938853

  6. Optimisation de dispositifs en guide d'onde avec coupleur a réseau : application aux commutateurs optiques

    NASA Astrophysics Data System (ADS)

    Bertrand, F.; Paraire, N.; Dansas, P.; Moresmau, N.

    1994-07-01

    Numerous devices used in the field of photonics and optronics are made of semiconductor multilayered structures including a nonlinear waveguide and a grating coupler. Optimization of such devices depends on the optical thicknesses of the various layers and on the grating characteristics. For a given sample, the layer parameters are usually known as a first approximation, but a good accuracy is necessary to define the operating wavelength and the coupler characteristics. In a particular case — a InP/InGaAsP/InP sample which operates for optical switching in the transmission mode — we have first defined an optimized structure. Then, we have built an experimental set-up able to measure reflection and transmission coefficients versus polarization, wavelength and incidence angle. From transmission measurements performed with this apparatus, we have deduced both real and imaginary parts of the layers refractive indices. These calculated values allowed us to reoptimize the structure and to determine the operating wavelength. De nombreux dispositifs utilisés en photonique et optoélectronique sont constitués de structures multicouches en semi-conducteurs comportant un guide d'onde non linéaire et d'un coupleur à réseau. Leurs performances dépendent, en particulier, des épaisseurs optiques des différentes couches constituantes et des caractéristiques du réseau de diffraction. Pour un échantillon, les paramètres nominaux des différentes couches sont connus en première approximation, mais il est nécessaire de les préciser pour définir les conditions de fonctionnement et les caractéristiques optimales du coupleur. Dans un cas particulier — échantillon de InP/InGaAsP/InP qui doit fonctionner en commutateur optique par transmission — nous avons défini une structure optimale, puis nous avons mis au point un montage expérimental permettant de mesurer les coefficients de réflexion et de transmission en fonction de la polarisation, de la longueur d'onde et de l'angle d'incidence. Nous avons déduit de ces mesures les parties réelle et imaginaire des indices. Ces résultats nous ont permis de réoptimiser la structure (définie a priori) et de déterminer sa longueur d'onde de fonctionnement.

  7. Solid-liquid equilibria of Mg(OH) 2(cr) and Mg 2(OH) 3Cl·4H 2O(cr) in the system Mg-Na-H-OH-Cl-H 2O at 25°C

    NASA Astrophysics Data System (ADS)

    Altmaier, M.; Metz, V.; Neck, V.; Müller, R.; Fanghänel, Th.

    2003-10-01

    The solubility of crystalline Mg(OH) 2(cr) was determined by measuring the equilibrium H + concentration in water, 0.01-2.7 m MgCl 2, 0.1-5.6 m NaCl, and in mixtures of 0.5 and 5.0 m NaCl containing 0.01-0.05 m MgCl 2. In MgCl 2 solutions above 2 molal, magnesium hydroxide converted into hydrated magnesium oxychloride. The solid-liquid equilibrium of Mg 2(OH) 3Cl·4H 2O(cr) was studied in 2.1-5.2 m MgCl 2. Using known ion interaction Pitzer coefficients for the system Mg-Na-H-OH-Cl-H 2O (25°C), the following equilibrium constants at I = 0 are calculated: Mg(OH) 2(cr) + 2 H + ⇔ Mg 2+ + 2 H 2O log K° s = 17.1 ± 0.2 Mg 2(OH) 3Cl·4H 2O(cr) + 3 H + ⇔ 2 Mg 2+ + Cl - + 7 H 2O log K° s = 26.0 ± 0.2 The experimental results are discussed with regard to discrepancies in frequently used databases and computer codes for geochemical modeling, such as EQ3/6, Geochemist's Workbench and CHESS.

  8. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth.

    PubMed

    Jung, Harin; Lee, Dong-Keun; Choi, Yang Do; Kim, Ju-Kon

    2015-07-01

    Auxin signaling is a fundamental part of many plant growth processes and stress responses and operates through Aux/IAA protein degradation and the transmission of the signal via auxin response factors (ARFs). A total of 31 Aux/IAA genes have been identified in rice (Oryza sativa), some of which are induced by drought stress. However, the mechanistic link between Aux/IAA expression and drought responses is not well understood. In this study we found that the rice Aux/IAA gene OsIAA6 is highly induced by drought stress and that its overexpression in transgenic rice improved drought tolerance, likely via the regulation of auxin biosynthesis genes. We observed that OsIAA6 was specifically expressed in the axillary meristem of the basal stem, which is the tissue that gives rise to tillers. A knock-down mutant of OsIAA6 showed abnormal tiller outgrowth, apparently due to the regulation of the auxin transporter OsPIN1 and the rice tillering inhibitor OsTB1. Our results confirm that the OsIAA6 gene is involved in drought stress responses and the control of tiller outgrowth. PMID:26025543

  9. Applications

    NASA Astrophysics Data System (ADS)

    Stern, Arthur M.

    1986-07-01

    Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.

  10. Probing the structures of gold-aluminum alloy clusters AuxAly-: a joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Khetrapal, Navneet Singh; Jian, Tian; Pal, Rhitankar; Lopez, Gary V.; Pande, Seema; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2016-05-01

    Besides the size and structure, compositions can also dramatically affect the properties of alloy nanoclusters. Due to the added degrees of freedom, determination of the global minimum structures for multi-component nanoclusters poses even greater challenges, both experimentally and theoretically. Here we report a systematic and joint experimental/theoretical study of a series of gold-aluminum alloy clusters, AuxAly- (x + y = 7,8), with various compositions (x = 1-3 y = 4-7). Well-resolved photoelectron spectra have been obtained for these clusters at different photon energies. Basin-hopping global searches, coupled with density functional theory calculations, are used to identify low-lying structures of the bimetallic clusters. By comparing computed electronic densities of states of the low-lying isomers with the experimental photoelectron spectra, the global minima are determined. It is found that for y >= 6 there is a strong tendency to form the magic-number square bi-pyramid motif of Al6- in the AuxAly- clusters, suggesting that the Al-Al interaction dominates the Au-Au interaction in the mixed clusters. A closely related trend is that for x > 1, the gold atoms tend to be separated by Al atoms unless only the magic-number Al6- square bi-pyramid motif is present, suggesting that in the small-sized mixed clusters, Al and Au components do not completely mix with one another. Overall, the Al component appears to play a more dominant role due to the high robustness of the magic-number Al6- square bi-pyramid motif, whereas the Au component tends to be either ``adsorbed'' onto the Al6- square bi-pyramid motif if y >= 6, or stays away from one another if x < y < 6.Besides the size and structure, compositions can also dramatically affect the properties of alloy nanoclusters. Due to the added degrees of freedom, determination of the global minimum structures for multi-component nanoclusters poses even greater challenges, both experimentally and theoretically. Here we report a systematic and joint experimental/theoretical study of a series of gold-aluminum alloy clusters, AuxAly- (x + y = 7,8), with various compositions (x = 1-3 y = 4-7). Well-resolved photoelectron spectra have been obtained for these clusters at different photon energies. Basin-hopping global searches, coupled with density functional theory calculations, are used to identify low-lying structures of the bimetallic clusters. By comparing computed electronic densities of states of the low-lying isomers with the experimental photoelectron spectra, the global minima are determined. It is found that for y >= 6 there is a strong tendency to form the magic-number square bi-pyramid motif of Al6- in the AuxAly- clusters, suggesting that the Al-Al interaction dominates the Au-Au interaction in the mixed clusters. A closely related trend is that for x > 1, the gold atoms tend to be separated by Al atoms unless only the magic-number Al6- square bi-pyramid motif is present, suggesting that in the small-sized mixed clusters, Al and Au components do not completely mix with one another. Overall, the Al component appears to play a more dominant role due to the high robustness of the magic-number Al6- square bi-pyramid motif, whereas the Au component tends to be either ``adsorbed'' onto the Al6- square bi-pyramid motif if y >= 6, or stays away from one another if x < y < 6. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01506a

  11. Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus

    PubMed Central

    Carraro, Nicola; Tisdale-Orr, Tracy Eizabeth; Clouse, Ronald Matthew; Knller, Anne Sophie; Spicer, Rachel

    2012-01-01

    Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization. PMID:22645571

  12. Probing the structures of gold-aluminum alloy clusters AuxAly(-): a joint experimental and theoretical study.

    PubMed

    Khetrapal, Navneet Singh; Jian, Tian; Pal, Rhitankar; Lopez, Gary V; Pande, Seema; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2016-05-01

    Besides the size and structure, compositions can also dramatically affect the properties of alloy nanoclusters. Due to the added degrees of freedom, determination of the global minimum structures for multi-component nanoclusters poses even greater challenges, both experimentally and theoretically. Here we report a systematic and joint experimental/theoretical study of a series of gold-aluminum alloy clusters, AuxAly(-) (x + y = 7,8), with various compositions (x = 1-3; y = 4-7). Well-resolved photoelectron spectra have been obtained for these clusters at different photon energies. Basin-hopping global searches, coupled with density functional theory calculations, are used to identify low-lying structures of the bimetallic clusters. By comparing computed electronic densities of states of the low-lying isomers with the experimental photoelectron spectra, the global minima are determined. It is found that for y ≥ 6 there is a strong tendency to form the magic-number square bi-pyramid motif of Al6(-) in the AuxAly(-) clusters, suggesting that the Al-Al interaction dominates the Au-Au interaction in the mixed clusters. A closely related trend is that for x > 1, the gold atoms tend to be separated by Al atoms unless only the magic-number Al6(-) square bi-pyramid motif is present, suggesting that in the small-sized mixed clusters, Al and Au components do not completely mix with one another. Overall, the Al component appears to play a more dominant role due to the high robustness of the magic-number Al6(-) square bi-pyramid motif, whereas the Au component tends to be either "adsorbed" onto the Al6(-) square bi-pyramid motif if y ≥ 6, or stays away from one another if x < y < 6. PMID:27119726

  13. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.).

    PubMed

    Yu, ChenLiang; Sun, ChenDong; Shen, Chenjia; Wang, Suikang; Liu, Fang; Liu, Yan; Chen, YunLong; Li, Chuanyou; Qian, Qian; Aryal, Bibek; Geisler, Markus; Jiang, De An; Qi, YanHua

    2015-09-01

    Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress. PMID:26140668

  14. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers

    PubMed Central

    Della Rovere, F.; Fattorini, L.; D’Angeli, S.; Veloccia, A.; Del Duca, S.; Cai, G.; Falasca, G.; Altamura, M. M.

    2015-01-01

    Background and Aims Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Methods Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. Key Results AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. Conclusions AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1. Pericycle activity is central for the equilibrium between xylary development and AR formation in the hypocotyl, with a role for AUX1 in switching between, and balancing of, the two developmental programmes. PMID:25617411

  15. Continuous or catastrophic solid-liquid transition in jammed systems

    NASA Astrophysics Data System (ADS)

    Coussot, P.; Roussel, N.; Jarny, S.; Chanson, H.

    2005-01-01

    Pasty materials encountered in industry and in earth science are intermediate between solids and liquids either in terms of their internal structure (disordered but jammed) or from a mechanical point of view. Our results indicate that the apparent behavior of a particulate system (soils, suspensions, clays, etc.) can range from liquid-like to soil or solid-like depending on the relative importance of the energy supplied to it and its "state of jamming" which evolves in time, and the transition from one state to another may appear either continuous or catastrophic.

  16. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  17. Supersonic air flow due to solid-liquid impact.

    PubMed

    Gekle, Stephan; Peters, Ivo R; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2010-01-15

    A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1 m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle-with the key difference that here the "nozzle" is a liquid cavity shrinking rapidly in time. PMID:20366598

  18. Atomic Resolution Images of Solid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Giambattista, Brian; McNairy, W. W.; Slough, C. G.; Johnson, A.; Bell, L. D.; Coleman, R. V.; Schneir, J.; Sonnenfeld, R.; Drake, B.; Hansma, P. K.

    1987-07-01

    A scanning tunneling microscope (STM) can provide atomic-resolution images of solids covered with a variety of liquids, including cryogenic fluids, both polar and nonpolar solvents, conductive aqueous solutions, oils, and even greases. This short overview includes images of solids covered with liquid nitrogen, liquid helium, paraffin oil, silicone oil, microscope immersion oil, silicone vacuum grease, fluorocarbon grease, glycerol, and salt water. These images show atoms, charge-density waves, grains in an evaporated metal film, and even corrosion processes as they occur in real time. The future includes not only basic research in surface science but also applied research in lithography, lubrication, catalysis, corrosion, electrochemistry, and perhaps even biology.

  19. Manifold to uniformly distribute a solid-liquid slurry

    DOEpatents

    Kern, Kenneth C.

    1983-01-01

    This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.

  20. Solid-liquid iron partitioning in Earth's deep mantle.

    PubMed

    Andrault, Denis; Petitgirard, Sylvain; Lo Nigro, Giacomo; Devidal, Jean-Luc; Veronesi, Giulia; Garbarino, Gaston; Mezouar, Mohamed

    2012-07-19

    Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii. They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth. Melt production in the shallow mantle is quite well understood, but deeper melting near the core-mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanism or production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO(3) perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously. Calculated solid and melt density contrasts suggest that melt generated at the core-mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements. PMID:22810700

  1. Atomic resolution images of solid-liquid interfaces

    PubMed Central

    Giambattista, Brian; McNairy, W. W.; Slough, C. G.; Johnson, A.; Bell, L. D.; Coleman, R. V.; Schneir, J.; Sonnenfeld, R.; Drake, B.; Hansma, P. K.

    1987-01-01

    A scanning tunneling microscope (STM) can provide atomic-resolution images of solids covered with a variety of liquids, including cryogenic fluids, both polar and nonpolar solvents, conductive aqueous solutions, oils, and even greases. This short overview includes images of solids covered with liquid nitrogen, liquid helium, paraffin oil, silicone oil, microscope immersion oil, silicone vacuum grease, fluorocarbon grease, glycerol, and salt water. These images show atoms, charge-density waves, grains in an evaporated metal film, and even corrosion processes as they occur in real time. The future includes not only basic research in surface science but also applied research in lithography, lubrication, catalysis, corrosion, electrochemistry, and perhaps even biology. Images

  2. The French Tsunami warning center for the Mediterranean and North-East Atlantic (CENtre d'ALerte aux Tsunamis, CENALT)

    NASA Astrophysics Data System (ADS)

    Schindelé, F.; Bossu, R.; Alabrune, N.; Arnoul, P.; Duperray, P.; Gailler, A.; Guilbert, J.; Hébert, H.; Hernandez, B.; Loevenbruck, A.; Roudil, P.

    2012-04-01

    The CENALT (CENtre d'Alerte aux Tsunamis) is responsible for the French NTWC (National Tsunami Warning Center). This center was established through a project that was requested by the French Ministry of Interior and the Ministry of Sustainable Development. It is implemented by the Commissariat à l'énergie atomique et aux énergies alternatives (CEA), the French Hydrographic and Oceanographic Service (SHOM) and the Centre National de la Recherche Scientifique (CNRS), and is based in Bruyères-le-Châtel (30 km from Paris). This center is based on three main components: seismic network data, sea level network data, dissemination system and processing and analyzing softwares and is operating on a 24/7 basis. The CENALT has established scientific cooperation with 8 institutions and implemented and funded private leased lines to exchange data with institutions from 5 different European countries (Germany, Italy, Portugal, Spain, Tunisia). The seismic data are processed with the Seiscomp 3 software. SHOM is working on making all French tide-gauge stations operated and available in real-time in 2012, and they installed 5 new tide gage stations. The tide gage data will be processed with a customized version of the Guitar (Gempa) software allowing the detection of tsunami signals, complemented by other softwares developed by the CEA. Historical tsunami databases (sources and observations) and earthquake databases, mostly based on available international databases, have been synthetized by CEA to produce information maps in real time, used to guide operators of permanence. Precomputed tsunami scenarios are implemented to build in real time maps of the highest tsunami impact expected in deep water. Along with an optimized tsunami modeling tool, these softwares help to define the areas where the tsunami may be observed and cause damage. The CENALT has been operating since early January 2012 as a pre-operational service and will be fully operational in July 2012. It is also ready to act as Candidate Watch Provider covering Western Mediterranean by July 2012.

  3. Observation of linear to planar structural transition in sulfur-doped gold clusters: Au(x)S- (x = 2-5).

    PubMed

    Wen, Hui; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Zhang, Wei-Jun; Huang, Wei; Wang, Lai-Sheng

    2013-05-01

    We report a joint experimental and theoretical study on the structures of a series of gold clusters doped with a sulfur atom, Au(x)S(-) (x = 2-5). Well-resolved photoelectron spectra are obtained and compared with theoretical results calculated using several density functional methods to elucidate the structures and bonding of Au(x)S(-) (x = 2-5). Au2S(-) is found to have an asymmetric linear global minimum structure with C(∞v) symmetry, while the most stable structure of neutral Au2S is bent with C(2v) symmetry, reminiscent of H2S. Au3S(-) is found to have an asymmetric bent structure with an Au-S-Au-Au connectivity. Two isomers are observed experimentally to co-exist for Au4S(-): a symmetric bent 1D structure (C(2v)) and a 2D planar low-lying isomer (C(s)). The global minimum of Au5S(-) is found to be a highly stable planar triangular structure (C(2v)). Thus, a 1D-to-2D structural transition is observed in the Au(x)S(-) clusters as a function of x at x = 4. Molecular orbital analyses are carried out to obtain insight into the nature of the chemical bonding in the S-doped gold clusters. Strong covalent bonding between S and Au is found to be responsible for the 1D structures of Au(x)S(-) (x = 2-4), whereas delocalized Au-Au interactions favor the 2D planar structure for the larger Au5S(-) cluster. PMID:23656130

  4. Anisotropy of the magnetic susceptibility of CeCu6-xAux near the quantum phase transition

    NASA Astrophysics Data System (ADS)

    Tomanic, T.; Hamann, A.; Löhneysen, H. v.

    2008-04-01

    We report on the low-temperature dc magnetic susceptibility of CeCu6-xAux(x=0.1) in very small fields B=100 μT and 1 mT. For x=0.1, i.e. for the quantum critical concentration, we confirm the anomalous exponent α of the susceptibility along the easy c-direction, χc-1∼θ+Tα with α=0.8 observed previously in moderate fields B=100 mT (see, A. Schröder, et al., Nature 407 (2000) 351). However, below 240 mK we see a clear additional contribution to χc. At the lowest measuring temperature T=40 mK, the ratio χc:χa:χb=4:1.5:1 of the susceptibility anisotropy is weaker than at higher T where the ratio is 10:2:1. This is caused by a steeper increase of χa and χb as compared to χc.

  5. Le système opioïde endogène et l’addiction aux drogues1

    PubMed Central

    Maldonado, Rafael

    2010-01-01

    Résumé L’addiction aux drogues est une maladie psychiatrique chronique qui conduit à d’importantes altérations adaptatives dans les circuits de récompense du cerveau. Plusieurs systèmes de neurotransmission sont impliqués dans ces modifications. Cependant, un des systèmes neurochimiques qui joue un rôle essentiel dans l’addiction est le système opioïde endogène. Les récepteurs opioïdes et les peptides opioïdes endogènes sont très largement présents dans les structures cérébrales qui contrôlent les phénomènes de récompense, en particulier le système mésolimbique. Ces récepteurs et peptides opioïdes participent d’une manière sélective à plusieurs aspects des processus addictifs induits par les opiacés, les cannabinoïdes, les psychostimulants, l’alcool et la nicotine. Cette revue rend compte de l’état actuel des connaissances sur la participation de chaque composante du système opioïde endogène dans les propriétés addictives des différentes drogues. PMID:20176158

  6. The PB1 Domain in Auxin Response Factor and Aux/IAA Proteins: A Versatile Protein Interaction Module in the Auxin Response[OPEN

    PubMed Central

    2015-01-01

    An integral part of auxin-regulated gene expression involves the interplay of two types of transcription factors, the DNA binding auxin response factor (ARF) activators and the interacting auxin/indole acetic acid (Aux/IAA) repressors. Insight into the mechanism of how these transcription factors interact with one another has recently been revealed from crystallographic information on ARF5 and ARF7 C-terminal domains (i.e., a protein-protein interaction domain referred to as domain III/IV that is related to domain III/IV in Aux/IAA proteins). Three-dimensional structures showed that this domain in ARF5 and ARF7 conforms to a well-known PB1 (Phox and Bem1) domain that confers protein-protein interactions with other PB1 domain proteins through electrostatic contacts. Experiments verifying the importance of charged amino acids in conferring ARF and Aux/IAA interactions have confirmed the PB1 domain structure. Some in planta experiments designed to test the validity of PB1 interactions in the auxin response have led to updated models for auxin-regulated gene expression and raised many questions that will require further investigation. In addition to the PB1 domain, a second protein interaction module that functions in ARF-ARF dimerization and facilitates DNA binding has recently been revealed from crystallography studies on the ARF1 and ARF5 DNA binding domains. PMID:25604444

  7. Gestion des ressources hydriques adaptee aux changements climatiques pour la production optimale d'hydroelectricite. Etude de cas: Bassin versant de la riviere Manicouagan

    NASA Astrophysics Data System (ADS)

    Haguma, Didier

    Il est dorenavant etabli que les changements climatiques auront des repercussions sur les ressources en eau. La situation est preoccupante pour le secteur de production d'energie hydroelectrique, car l'eau constitue le moteur pour generer cette forme d'energie. Il sera important d'adapter les regles de gestion et/ou les installations des systemes hydriques, afin de minimiser les impacts negatifs et/ou pour capitaliser sur les retombees positives que les changements climatiques pourront apporter. Les travaux de la presente recherche s'interessent au developpement d'une methode de gestion des systemes hydriques qui tient compte des projections climatiques pour mieux anticiper les impacts de l'evolution du climat sur la production d'hydroelectricite et d'etablir des strategies d'adaptation aux changements climatiques. Le domaine d'etude est le bassin versant de la riviere Manicouagan situe dans la partie centrale du Quebec. Une nouvelle approche d'optimisation des ressources hydriques dans le contexte des changements climatiques est proposee. L'approche traite le probleme de la saisonnalite et de la non-stationnarite du climat d'une maniere explicite pour representer l'incertitude rattachee a un ensemble des projections climatiques. Cette approche permet d'integrer les projections climatiques dans le probleme d'optimisation des ressources en eau pour une gestion a long terme des systemes hydriques et de developper des strategies d'adaptation de ces systemes aux changements climatiques. Les resultats montrent que les impacts des changements climatiques sur le regime hydrologique du bassin de la riviere Manicouagan seraient le devancement et l'attenuation de la crue printaniere et l'augmentation du volume annuel d'apports. L'adaptation des regles de gestion du systeme hydrique engendrerait une hausse de la production hydroelectrique. Neanmoins, une perte de la performance des installations existantes du systeme hydrique serait observee a cause de l'augmentation des deversements non productibles dans le climat futur. Des strategies d'adaptation structurale ont ete analysees pour augmenter la capacite de production et la capacite d'ecoulement de certaines centrales hydroelectriques afin d'ameliorer la performance du systeme. Une analyse economique a permis de choisir les meilleures mesures d'adaptation et de determiner le moment opportun pour la mise en oeuvre de ces mesures. Les resultats de la recherche offrent aux gestionnaires des systemes hydriques un outil qui permet de mieux anticiper les consequences des changements climatiques sur la production hydroelectrique, incluant le rendement de centrales, les deversements non productibles et le moment le plus opportun pour inclure des modifications aux systemes hydriques. Mots-cles : systemes hydriques, adaptation aux changements climatiques, riviere Manicouagan

  8. Prediction de l'ornierage lie aux deformations permanentes des enrobes bitumineux

    NASA Astrophysics Data System (ADS)

    Meunier, Mathieu

    The objective of this thesis is to develop a tool to predict the behavior of flexible pavements vis-a-vis the rutting phenomenon. Through a literature review, we have come to modify the model according to the validation of the time-temperature superposition principle. The application of this principle leads to a simplification of the methodology for characterizing asphalt mixtures by reducing the minimum number of test from 9 to 6. Work methodology centered around the ESSO model allow the development of a predictive tool, the OPECC© tool (Outil de Prédiction de l'Évolution du Comportement de la Chaussée). This tool allows the user to predict the behavior of a pavement structure vis-a-vis rutting and fatigue cracking while integrating different modules that change the mix properties depending on temperature and stress frequency, and as a function of traffic patterns and road structure. This tool, through various simulations and fine-tuned according to measured results on existing roadways, proves its potential to highlight the differences attributed to various stress and design conditions which are part of roadway dimensioning.

  9. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  10. Acquisition de donnees a haute resolution et faible latence dediee aux capteurs avioniques de position

    NASA Astrophysics Data System (ADS)

    Koubaa, Zied

    The communication network and the detection mechanisms are two critical systems in a plane. Their performance has a direct impact on aircrafts. This is of particular interest for avionics designers, who have increasingly invested more and more in the development of these elements. As a part of a project in this domain, we introduce the design and the development of a smart interface for position sensors dedicated to flights (Smart Sensor Interface - SSI). This interface will serve to connect sensors of different technologies (electromagnetic, optical and MEMS) to the new communication network, AFDX. The role of this interface is to generate an appropriate excitation signal for certain types of sensors (R/LVDT), and to treat, demodulate, and digitize their output signals. The proposed interface is thus composed of a Signal Acquisition Path (SAP) and an Excitation Signal Generation (ESG). By adopting the Integrated Modular Avionics architecture (IMA), we can minimize the size of the classic interface, reduce its energy consumption and improve its reliability and its performance. The focus of our design is particularly on the Data Acquisition Path (DAP). An Architecture characterized by a high resolution (14 bits) and a low latency (1.2 ms) of this module is introduced and developed in this prestigious work. This architecture was developed after a wellconducted study of existing solutions found in literature work and a detailed analysis of the problems arise in the design and implementation of this system (DAP). The conversion of the sensor signal into a digital signal is the most important step in acquiring data, as it sets the resolution of the acquired information and generates the majority of its latency. This module can also affect the reliability and stability of the system. Among different models and architectures, the Delta-Sigma analog-to-digital converter (ADC) is preferred for this application (for better resolution). This converter is formed by an analog circuit (modulator) followed by digital filters. The complexity of the implementation, the processing delay and the output resolution are all susceptible to change depending on the architecture of these filters. Thus, the main problem while designing such a system arises in the opposing evolution of the resolution and latency parameters; the improvement or evolution of one, results in the destruction of the other. Therefore, our work aims to provide one or more method to optimize the latency caused by the CAN while maintaining the same resolution of the desired data (14 bits). This optimization takes into account the objective of integrating the DAP in modules of small size and low power consumption. This proposed solution was implemented in order to validate the design of the conception of the interface. We are also interested to achieve the proposed solution and validate our design. The obtained results will be evaluated after following the manufacturing strategy. The data acquisition unit is made up of two electronic components. The first component is an integrated circuit, which uses CMOS 0.13mum IBM technology and contains the analog part of CAN (SigmaDelta modulator). The second component is a Virtex-6 FPGA, which allows one to acquire the necessary digital processing required for the acquisition and conversion of the sensor signal. In the final version of the interface, our analog portion will be integrated with the analog portion of GSE in the same chip. The integrated digital logic in the (FPGA) role will thus provide digital data to the ESG module in order to generate the excitation signal.

  11. Methode des elements finis hybride appliquee aux vibrations des coques spheriques

    NASA Astrophysics Data System (ADS)

    Menaa, Mohamed

    The analysis of spherical shells filled with fluid and subjected to supersonic flow has been the subject of few research. Most of these studies treat the dynamic behaviour of empty shells. Few works have investigated spherical shells filled with fluid or subjected to supersonic flutter. In this thesis, we propose to develop a model to analyse the vibratory behaviour of both empty spherical shells and partially filled with fluid. This model is also applicable to study of the dynamic stability of spherical shells subjected to supersonic flow. The model developed is a combination of finite element method, thin shell theory, potential fluid theory and aerodynamic fluid theory. Different parameters are considered here in this study. In the first part of this study, free vibration analysis of spherical shell is carried out. The structural model is based on a combination of thin shell theory and the classical finite element method. Free vibration equations using the hybrid finite element formulation are derived and solved numerically. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for spherical shells of different geometries, boundary conditions and radius to thickness ratios. This proposed hybrid finite element method can be used efficiently for design and analysis of spherical shells employed in high speed aircraft structures. In the second part of the present study, a hybrid finite element method is applied to investigate the free vibration of spherical shell filled with fluid. The structural model is based on a combination of thin shell theory and the classical finite element method. It is assumed that the fluid is incompressible and has no free-surface effect. Fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacement at the fluid-structure interface. Numerical simulation is done and vibration frequencies for different filling ratios are obtained and compared with existing experimental and theoretical results. The dynamic behavior for different shell geometries, filling ratios and boundary conditions with different radius to thickness ratios is summarized. This proposed hybrid finite element method can be used efficiently for analyzing the dynamic behavior of aerospace structures at less computational cost than other commercial FEM software. In this study, aeroelastic analysis of a spherical shell subjected to the external supersonic airflow is carried out. The structural model is based on a combination of linear spherical shell theory and the classic finite element method. In this hybrid method, the nodal displacements are found from the exact solution of shell governing equations rather than approximated by polynomial functions. Linearized first-order potential (piston) theory with the curvature correction term is coupled with the structural model to account for pressure loading. Linear mass, stiffness and damping matrices are found using the hybrid finite element formulation. Aeroelastic equations are derived and solved numerically. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for spherical shells of different boundary conditions, geometries, flow parameters and radius to thickness ratios. Results show that the spherical shell loses its stability through coupled-mode flutter. This proposed hybrid finite element method can be used efficiently for design and analysis of spherical shells employed in high speed aircraft structures.

  12. Niveau socioéconomique et processus du recours aux soins par les familles de patients souffrant de troubles psychiques au Burkina Faso

    PubMed Central

    Yaogo, Ahmed; Sommer, Alain; Moulaï, Pierre; Chebili, Saïd; Abaoub-Germain, Agnès

    2014-01-01

    Introduction Le Burkina Faso a connu une amélioration constante depuis deux décennies de l'offre de soins en psychiatrie. De même, le taux d'alphabétisation sans cesse croissant s'accompagne d'une profonde modification des conceptions et des comportements. La présente étude visait à déterminer l′impact des déterminants socioéconomiques sur le processus du recours aux soins par les familles. Méthodes Il s'est agi d'une enquête transversale portant sur 200 familles, menée dans le service de psychiatrie du Centre Hospitalier Universitaire Yalgado Ouédraogo de Ouagadougou. Variable à expliquer: premier recours aux soins par les familles (guérisseur traditionnel ou prières religieuses vs. consultations psychiatrique ou médicale). Variable explicative: catégorie socioprofessionnelle classée en suivant la nomenclature des professions et catégories socioprofessionnelles; niveau d’études. L'analyse statistique a été effectuée à l'aide du logiciel SAS version 9.2. Le test du Khi deux a été utilisé. Résultats Il existait une association entre le choix du premier recours et la Profession et la catégorie socioprofessionnelledu « décideur » (p = 0.0006) ainsi que leniveau d’études du « décideur » (p = 0.0001). Conclusion La Profession et Catégorie Sociale et le niveau d'instruction scolaire pourraient être un marqueur important dans les politiques visant à optimiser les processus de recours aux soins des patients dans le circuit de soins. PMID:25161751

  13. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation.

    PubMed

    Yu, Hong; Soler, Marçal; San Clemente, Hélène; Mila, Isabelle; Paiva, Jorge A P; Myburg, Alexander A; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2015-04-01

    Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition. PMID:25577568

  14. Le recours aux modeles dans l'enseignement de la biologie au secondaire : Conceptions d'enseignantes et d'enseignants et modes d'utilisation

    NASA Astrophysics Data System (ADS)

    Varlet, Madeleine

    Le recours aux modeles et a la modelisation est mentionne dans la documentation scientifique comme un moyen de favoriser la mise en oeuvre de pratiques d'enseignement-apprentissage constructivistes pour pallier les difficultes d'apprentissage en sciences. L'etude prealable du rapport des enseignantes et des enseignants aux modeles et a la modelisation est alors pertinente pour comprendre leurs pratiques d'enseignement et identifier des elements dont la prise en compte dans les formations initiale et disciplinaire peut contribuer au developpement d'un enseignement constructiviste des sciences. Plusieurs recherches ont porte sur ces conceptions sans faire de distinction selon les matieres enseignees, telles la physique, la chimie ou la biologie, alors que les modeles ne sont pas forcement utilises ou compris de la meme maniere dans ces differentes disciplines. Notre recherche s'est interessee aux conceptions d'enseignantes et d'enseignants de biologie au secondaire au sujet des modeles scientifiques, de quelques formes de representations de ces modeles ainsi que de leurs modes d'utilisation en classe. Les resultats, que nous avons obtenus au moyen d'une serie d'entrevues semi-dirigees, indiquent que globalement leurs conceptions au sujet des modeles sont compatibles avec celle scientifiquement admise, mais varient quant aux formes de representations des modeles. L'examen de ces conceptions temoigne d'une connaissance limitee des modeles et variable selon la matiere enseignee. Le niveau d'etudes, la formation prealable, l'experience en enseignement et un possible cloisonnement des matieres pourraient expliquer les differentes conceptions identifiees. En outre, des difficultes temporelles, conceptuelles et techniques peuvent freiner leurs tentatives de modelisation avec les eleves. Toutefois, nos resultats accreditent l'hypothese que les conceptions des enseignantes et des enseignants eux-memes au sujet des modeles, de leurs formes de representation et de leur approche constructiviste en enseignement representent les plus grands obstacles a la construction des modeles en classe. Mots-cles : Modeles et modelisation, biologie, conceptions, modes d'utilisation, constructivisme, enseignement, secondaire.

  15. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  16. Croissance Par Epitaxie EN Phase Vapeur aux Organo - et Caracterisation des Heterostructures Contraintes a Base de Phosphur de Indium

    NASA Astrophysics Data System (ADS)

    Tran, Chuong Anh

    Trois systemes heteroepitaxiaux a base de InP:InP/Si, InAs/InP et InAsP/InP ont ete fabriques par epitaxie en phase vapeur aux organo-metalliques (EPVOM)conventionelle. En plus l'epitaxie par couches atomiques (ECA) a ete utilisee pour fabriquer des puits quantiques ultra-minces et des superreseaux a courte periode InAs/InP. L'epitaxie de InP sur le silicium pose des problemes lies a un desaccord de maille de 8%. Les resultats indiquent une relaxation totale de la couche de InP a la temperature de croissance. La contrainte residuelle observee par diffraction de rayons X a haute resolution (DRXHR) et photoluminescence s'explique par une difference dans les coefficients de dilatation thermique de InP et due Si. L'incorporation des impuretes ainsi que la diffusion d'atomes de Si du substrat dans la couche epitaxiale de InP dependent fortement des parametres de croissance. Les resultats montrents que le reseau de dislocations dans les couches de InP deposees sur un substrat de Si mesoriente est suffisamment asymetrique pour creer des constraintes locales. Celles-ci peuvent etre analysees par diffraction de rayons X. Par contre le systeme heteroepitaxial InAs/InP, dont le desaccord de maille est 3.2% peut etre realise sans dislocation a condition que l'epaisseur de toute heterostructure soit gardee inferieure a l'epaisseur critique. Des puits quantiques InAsP/InP a la temperature ambiante montre clairement l'inter et technologique du systeme InAs_ {x}P_{1-x}/InP pour la realisation de dispositifs tels que les modulateurs optiques. L'ECA a ete utilisee pour realiser des puits quantiques simples et des superreseaux a courte periode InAs/InP. Nous avons demontre que cette technique permet d'obtenir des interfaces tres abruptes et des epaisseurs bien definies, et de faire des heterostructures que peuvent combiner une large gamme de semiconducteurs de composition et desaccords de maille varies. Finalement nous avons fait une etude approfondie des modes vibratoires dans les puits quantiques simples et superresseaux a courte periode InAs/InP fabriques par l'ECA. Gr ace a la haute qualite structurale de ces heterostructures, les phonons acoustiques replies et les phonons optiques confines ont ete clairement observes pour la premiere fois dans ce systeme. Pour les puits quantiques multiples InAs _{x}P_{1-x }/InP, une combinaison de differentes techniques de caracterisation optique et structurale est necessaire pour pouvoir determiner l'efficacite de la sequence d'interruption a l'interface utilisee pendant la croissance. Nous avons montre que la photoluminescence, qui est une procedure repandue pour evaluer la qualite de l'interface d'une heterostructure n'est pas suffisante pour determiner la qualite de l'interface InAs_{x}P_ {1-x}/InP. Avec une sequence d'interruption non-optimisee, une grande densite d'etats localises peut etre creee. Dans ce cas le mesures d'absorption et de diffraction de rayons X sont complementaires a celles de photoluminescence. Les positions experimentales en energie des modes d'interface peuvent etre predites par le modele du continuum electrostatique. (Abstract shortened by UMI.).

  17. Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces.

    PubMed

    Edel, Joshua B; Kornyshev, Alexei A; Kucernak, Anthony R; Urbakh, Michael

    2016-03-14

    This tutorial review will introduce and explore fundamental and applied aspects of electrolytic interfaces incorporating nanoscale building blocks for use in novel applications such as sensors and tunable optics. In order to do this, it is important to understand the principles behind even the simplest of immiscible interfaces such as those of the liquid|liquid and solid|liquid. Qualitatively, the picture is simple however the complexity is easily compounded by the addition of electrolyte, and further compounded by the addition of more complex entities such as nanoparticles. Nevertheless combining all these components surprisingly results in an elegant solution, where the nanoparticles have the ability to self-assemble at the interface with a high level of control. Importantly, this opens up the door to the development of new types of materials with a range of applications which have only recently been exploited. Initially we begin with a description of the fundamentals related to liquid|liquid and solid|liquid interfaces both with and without electrolyte. The discussion then shifts to a description of biasing the interface by the application of an electric field. This is followed by an exploration of nanoparticle assembly and disassembly at the interface by controlling parameters such as ligand composition, charge, pH, and electric field. Finally a description of the state-of-the-art is given in terms of current applications and possible future directions. It is perhaps fair to say that these new frontiers have caused great excitement within the sensing community not only due to the simplicity of the technique but also due to the unprecedented levels of sensitivity and control. PMID:26806599

  18. Developpement d'une plateforme de calcul d'equilibres chimiques complexes et adaptation aux problemes electrochimiques et d'equilibres contraints

    NASA Astrophysics Data System (ADS)

    Neron, Alex

    Avec l'arrivée de l'environnement comme enjeu mondial, le secteur de l'efficacité énergétique prend une place de plus en plus importante pour les entreprises autant au niveau économique que pour l'image de la compagnie. Par le fait même, le domaine des technologies de l'énergie est un créneau de recherche dont les projets en cours se multiplient. D'ailleurs, un des problèmes qui peut survenir fréquemment dans certaines entreprises est d'aller mesurer la composition des matériaux dans des conditions difficiles d'accès. C'est le cas par exemple de l'électrolyse de l'aluminium qui se réalise à des températures très élevées. Pour pallier à ce problème, il faut créer et valider des modèles mathématiques qui vont calculer la composition et les propriétés à l'équilibre du système chimique. Ainsi, l'objectif global du projet de recherche est de développer un outil de calcul d'équilibres chimiques complexes (plusieurs réactions et plusieurs phases) et l'adapter aux problèmes électrochimiques et d'équilibres contraints. Plus spécifiquement, la plateforme de calcul doit tenir compte de la variation de température due à un gain ou une perte en énergie du système. Elle doit aussi considérer la limitation de l'équilibre due à un taux de réaction et enfin, résoudre les problèmes d'équilibres électrochimiques. Pour y parvenir, les propriétés thermodynamiques telles que l'énergie libre de Gibbs, la fugacité et l'activité sont tout d'abord étudiées pour mieux comprendre les interactions moléculaires qui régissent les équilibres chimiques. Ensuite, un bilan énergétique est inséré à la plateforme de calcul, ce qui permet de calculer la température à laquelle le système est le plus stable en fonction d'une température initiale et d'une quantité d'énergie échangée. Puis, une contrainte cinétique est ajoutée au système afin de calculer les équilibres pseudo-stationnaires en évolution dans le temps. De plus, la contrainte d'un champ de potentiel électrique est considérée pour l'évaluation des équilibres électrochimiques par des techniques classiques de résolution et fera l'objet de travaux futurs via une technique d'optimisation. Enfin, les résultats obtenus sont comparés avec ceux présents dans la littérature scientifique pour valider le modèle. À terme, le modèle développé devient tin bon moyen de prédire des résultats en éliminant beaucoup de coût en recherche et développement. Les résultats ainsi obtenus sont applicables dans une grande variété de domaines tels que la chimie et l'électrochimie industrielle ainsi que la métallurgie et les matériaux. Ces applications permettraient de réduire la production de gaz à effet de serre en optimisant les procédés et en ayant une meilleure efficacité énergétique. Mots-clés : Systèmes énergétiques avancés, Équilibre thermodynamique, Équilibre contraint, Optimisation, Minimisation de l'énergie libre de Gibbs.

  19. Le syndrome d'insensibilité complète aux androgènes: à propos de deux cas et revue de la literature

    PubMed Central

    Lachiri, Boutaina; Hakimi, Ihssane; Boudhas, Adil; Guelzim, Khalid; Kouach, Jaouad; Oukabli, Mohamed; Rahali, Driss Moussaoui; Dehayni, Mohamed

    2015-01-01

    Le syndrome d'insensibilité complète aux androgènes (SICA) est une entité rare qui correspond à la forme complète des pseudohermaphrodismes androgynoïdes. Son incidence est en fait très variable, allant, selon les auteurs de 1/20000 à 1/60000 naissances. Il est caractérisé par la coexistence chez le même sujet d'un caryotype masculin (46 XY), avec des gonades males, et d'une morphologie féminine normale. Les auteurs rapportent deux observations de deux jeunes filles présentant le SICA ayant consulté pour aménorrhée primaire, illustrant les particularités cliniques, anatomopathologiques et biologiques du syndrome avec certaines particularités. PMID:26301004

  20. Paternité des articles et intérêts concurrents : une analyse des recommandations aux auteurs des journaux traitant de pratique pharmaceutique

    PubMed Central

    Courbon, Ève; Tanguay, Cynthia; Lebel, Denis; Bussières, Jean-François

    2014-01-01

    RÉSUMÉ Contexte : La présence d’auteurs honorifiques et fantômes ainsi que les intérêts concurrents représentent des difficultés bien documentées, liées à la publication d’articles scientifiques. Il existe des lignes directrices encadrant la rédaction et la publication de manuscrits scientifiques, notamment celles de l’International Committee of Medical Journal Editors (ICMJE). Objectifs : L’objectif principal de cette étude descriptive et transversale visait à recenser les instructions portant sur la paternité des articles et les intérêts concurrents provenant des recommandations aux auteurs des journaux traitant de pratique pharmaceutique. L’objectif secondaire visait à déterminer des mesures correctrices pour une paternité des articles plus transparente. Méthode : La recherche a débuté par l’identification des journaux traitant de pratique pharmaceutique. La consultation des instructions aux auteurs des journaux a permis ensuite de recenser les recommandations destinées à éviter les problèmes de paternité des articles et d’intérêts concurrents. Finalement, les membres de l’équipe de recherche se sont consultés afin de définir des mesures correctrices possibles à l’intention des chercheurs. Résultats : Des 232 journaux traitant de pharmacie, 33 ont été définis comme traitant de pratique pharmaceutique. Un total de 24 (73 %) journaux mentionnaient suivre la politique de l’ICMJE, 14 (42 %) demandaient aux auteurs de remplir un formulaire de déclaration d’intérêts concurrents au moment de la soumission de l’article, 17 (52 %) présentaient une définition de la qualité d’auteur et 5 (15 %) demandaient de détailler les contributions de chaque auteur. Une grille de 40 critères a été élaborée pour définir l’attribution du statut d’auteur. Conclusion : Moins de la moitié des journaux demandait aux auteurs de transmettre un formulaire de déclaration des intérêts concurrents au moment de la soumission d’un article et seulement la moitié des journaux avait donné une définition de la qualité d’auteur. La publication scientifique de travaux sur les pratiques pharmaceutiques n’est pas à l’abri des manques de transparence liés à la publication. L’utilisation d’une grille décrivant la contribution de chaque auteur et la publication en ligne des travaux peuvent contribuer à limiter ces risques. PMID:24970938

  1. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress.

    PubMed

    Shen, ChenJia; Bai, YouHuang; Wang, SuiKang; Zhang, SaiNa; Wu, YunRong; Chen, Ming; Jiang, DeAn; Qi, YanHua

    2010-07-01

    Auxin is transported by the influx carriers auxin resistant 1/like aux1 (AUX/LAX), and the efflux carriers pin-formed (PIN) and P-glycoprotein (PGP), which play a major role in polar auxin transport. Several auxin transporter genes have been characterized in dicotyledonous Arabidopsis, but most are unknown in monocotyledons, especially in sorghum. Here, we analyze the chromosome distribution, gene duplication and intron/exon of SbPIN, SbLAX and SbPGP gene families, and examine their phylogenic relationships in Arabidopsis, rice and sorghum. Real-time PCR analysis demonstrated that most of these genes were differently expressed in the organs of sorghum. SbPIN3 and SbPIN9 were highly expressed in flowers, SbLAX2 and SbPGP17 were mainly expressed in stems, and SbPGP7 was strongly expressed in roots. This suggests that individual genes might participate in specific organ development. The expression profiles of these gene families were analyzed after treatment with: (a) the phytohormones indole-3-acetic acid and brassinosteroid; (b) the polar auxin transport inhibitors 1-naphthoxyacetic acids, 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid; and (c) abscissic acid and the abiotic stresses of high salinity and drought. Most of the auxin transporter genes were strongly induced by indole-3-acetic acid and brassinosteroid, providing new evidence for the synergism of these phytohormones. Interestingly, most genes showed similar trends in expression under polar auxin transport inhibitors and each also responded to abscissic acid, salt and drought. This study provides new insights into the auxin transporters of sorghum. PMID:20528920

  2. Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1

    PubMed Central

    Zhang, Yanxiang; Marcon, Caroline; Tai, Huanhuan; von Behrens, Inga; Ludwig, Yvonne; Hey, Stefan; Berendzen, Kenneth W.; Hochholdinger, Frank

    2016-01-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1) is a key regulator of lateral and seminal root formation. An ancient maize genome duplication resulted in the emergence of its homeolog rum1-like1 (rul1), which displays 92% amino acid sequence identity with RUM1. Both, RUL1 and RUM1 exhibit the canonical four domain structure of Aux/IAA proteins. Moreover, both are localized to the nucleus, are instable and have similar short half-lives of ~23min. Moreover, RUL1 and RUM1 can be stabilized by specific mutations in the five amino acid degron sequence of domain II. In addition, proteins encoded by both genes interact in vivo with auxin response factors (ARFs) such as ZmARF25 and ZmARF34 in protoplasts. Although it was demonstrated that RUL1 and RUM1 can homo and heterodimerize in vivo, rul1 expression is independent of rum1. Moreover, on average rul1 expression is ~84-fold higher than rum1 in the 12 tested tissues and developmental stages, although the relative expression levels in different root tissues are very similar. While RUM1 and RUL1 display conserved biochemical properties, yeast-two-hybrid in combination with BiFC experiments identified a RUM1-associated protein 1 (RAP1) that specifically interacts with RUM1 but not with RUL1. This suggests that RUM1 and RUL1 are at least in part interwoven into different molecular networks. PMID:26672614

  3. Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1.

    PubMed

    Zhang, Yanxiang; Marcon, Caroline; Tai, Huanhuan; von Behrens, Inga; Ludwig, Yvonne; Hey, Stefan; Berendzen, Kenneth W; Hochholdinger, Frank

    2016-02-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1) is a key regulator of lateral and seminal root formation. An ancient maize genome duplication resulted in the emergence of its homeolog rum1-like1 (rul1), which displays 92% amino acid sequence identity with RUM1. Both, RUL1 and RUM1 exhibit the canonical four domain structure of Aux/IAA proteins. Moreover, both are localized to the nucleus, are instable and have similar short half-lives of ~23min. Moreover, RUL1 and RUM1 can be stabilized by specific mutations in the five amino acid degron sequence of domain II. In addition, proteins encoded by both genes interact in vivo with auxin response factors (ARFs) such as ZmARF25 and ZmARF34 in protoplasts. Although it was demonstrated that RUL1 and RUM1 can homo and heterodimerize in vivo, rul1 expression is independent of rum1. Moreover, on average rul1 expression is ~84-fold higher than rum1 in the 12 tested tissues and developmental stages, although the relative expression levels in different root tissues are very similar. While RUM1 and RUL1 display conserved biochemical properties, yeast-two-hybrid in combination with BiFC experiments identified a RUM1-associated protein 1 (RAP1) that specifically interacts with RUM1 but not with RUL1. This suggests that RUM1 and RUL1 are at least in part interwoven into different molecular networks. PMID:26672614

  4. Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS.

    PubMed

    Herud, Ole; Weijers, Dolf; Lau, Steffen; Jürgens, Gerd

    2016-01-01

    Primary root formation in early embryogenesis of Arabidopsis thaliana is initiated with the specification of a single cell called hypophysis. This initial step requires the auxin-dependent release of the transcription factor MONOPTEROS (MP, also known as ARF5) from its inhibition by the Aux/IAA protein BODENLOS (BDL, also known as IAA12). Auxin-insensitive bdl mutant embryos and mp loss-of-function embryos fail to specify the hypophysis, giving rise to rootless seedlings. A suppressor screen of rootless bdl mutant seedlings yielded a mutation in the nuclear import receptor IMPORTIN-ALPHA 6 (IMPα6) that promoted primary root formation through rescue of the embryonic hypophysis defects, without causing additional phenotypic changes. Aux/IAA proteins are continually synthesized and degraded, which is essential for rapid transcriptional responses to changing auxin concentrations. Nuclear translocation of bdl:3×GFP was slowed down in impα6 mutants as measured by fluorescence recovery after photobleaching (FRAP) analysis, which correlated with the reduced inhibition of MP by bdl in transient expression assays in impα6 knock-down protoplasts. The MP-BDL module acts like an auxin-triggered genetic switch because MP activates its own expression as well as the expression of its inhibitor BDL. Using an established simulation model, we determined that the reduced nuclear translocation rate of BDL in impα6 mutant embryos rendered the auxin-triggered switch unstable, impairing the fast response to changes in auxin concentration. Our results suggest that the instability of the inhibitor BDL necessitates a fast nuclear uptake in order to reach the critical threshold level required for auxin responsiveness of the MP-BDL module in primary root initiation. PMID:26714008

  5. Statut phospho-calcique en hémodialyse chronique dans l’Oriental Marocain: évaluation de l’adhésion aux recommandations K/DOQI et KDIGO

    PubMed Central

    Benabdellah, Nawal; Karimi, Ilham; Bentata, Yassamine; Yacoubi, Hicham; Haddiya, Intissar

    2013-01-01

    Les troubles phosphocalciques sont fréquents en hémodialyse chronique. Leurs conséquences justifient une prévention et un traitement adaptés aux recommandations des sociétés savantes. L’objectif de notre étude était de déterminer le statut phosphocalcique de nos patients hémodialysés chroniques (HDC) et l’évaluation des taux de conformité des indicateurs aux recommandations K/DOQI et KDIGO. Ainsi, nous avons réalisé une étude transversale incluant les 83 patients HDC du centre d’hémodialyse de l’hôpital Al Farabi d’Oujda. L’âge moyen de nos patients était de 49.8± 15.6 ans. Une prédominance masculine a été notée. La conformité des indicateurs du bilan phosphocalcique chez nos patients hémodialysés chroniques par rapport aux recommandations KDIGO était de l’ordre de 21.6%. Le pourcentage des patients ayant des données phosphocalciques conformes aux cibles recommandées par les K/DOQI était Les patients répondants simultanément aux quatres critères recommandés par les K/DOQI n’étaient que 8.4%. PMID:24570784

  6. Subnanometer-Resolution Frequency Modulation Atomic Force Microscopy in Liquid for Biological Applications

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi

    2009-08-01

    The spatial resolution and force sensitivity of frequency modulation atomic force microscopy (FM-AFM) in liquid have been dramatically improved in the last a few years. It is now possible to image individual atoms and molecules at a solid/liquid interface with a subnanometer-scale resolution and a piconewton-order loading force. This capability enabled the direct visualization of hydration layers and mobile ions on a lipid bilayer and β-strands constituting an amyloid fibril. These striking results highlighted the significant potential of FM-AFM in biological research. Here, I summarize the technological innovation that brought about this progress and review biological applications of FM-AFM in liquid.

  7. Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry

    PubMed Central

    Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs

    2015-01-01

    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103

  8. Application of PTR-MS for measuring odorant emissions from soil application of manure slurry.

    PubMed

    Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs

    2015-01-01

    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103

  9. Cartographie de parametres forestiers par fusion evidentielle de donnees geospatiales multi-sources: Application aux peuplements forestiers en regeneration et feuillus matures du Sud du Quebec

    NASA Astrophysics Data System (ADS)

    Mora, Brice

    2009-10-01

    Foresters are faced with difficulties to obtain sub-polygon information with the mapping methods available nowadays. The main objective of this work consisted in the development of new methods able to improve the map accuracy of regenerating forest stands and mature forest stands in the South of Quebec, Canada. The Dempster-Shafer Theory (DST) and the Dezert-Smarandache Theory (DSmT) showed their ability to integrate multiple heterogenous data sources to go further than the classical classification procedures like the maximum likelihood or the spectral unmixing, in terms of map accuracy. Improvement on the ability to map regenerating stands, passed from 82.7% with the maximum likelihood method to 91.1% with the Free DSm model with a total transfer of the mass of the "Union" class to the "Intersection" class (+ 8.4%). For the mature stands, the improvement passed from 63.8% with the K nearest neighbour to 79.5% with the DST according to a classical belief structuration and the hybrid decision rule for which the conflict threshold was fixed at 10% (+ 15.7%). Our results with DST and a bayesian belief structuration showed the difficulty to model the uncertainty in the fusion process. This is probably due to the lack of scientific knowledge about the influence of the biophysical and climatic parameters on the mapped forest stands and to the necessity to model specifically the uncertainty for each source. Our work showed concrete improvement when mapping forest stands with DST which is encouraging to continue explorating the fundamental principle of the proposed hybrid decision rule. This means a particular focus on the difference between the fused masses of each potential class after the fusion, to choose the best hypothesis. Keywords. forest mapping, Quebec, deciduous stands, regenerating stands, mature stands, data fusion, Dempster-Shafer Theory, Dezert-Smarandache Theory, hybrid decision rule

  10. Approche micromécanique de l'inclusion enrobée et applications aux matériaux composites

    NASA Astrophysics Data System (ADS)

    Cherkaoui, M.; Sabar, H.; Berveiller, M.

    1994-04-01

    A micromechanical model using Green functions techniques and interfaces operators is proposed in order to solve the elastically inhomogeneous coated inclusion problem. For a composite material made of a non dilute concentration of coated inclusions and an homogeneous matrix, the interaction between the reinforcements are solved by a self consistent scheme. The theoretical results for a composite of hollow spheres of glass in a polyester matrix are in good agreement with experimental measurements of Huang and Gibson. Le travail présente une étude micromécanique des contraintes et déformations dans le cas d'une inclusion enrobée hétérogène, l'enrobage étant considéré comme une couche mince dont les propriétés élastiques sont différentes de celles de l'inclusion et de la matrice. La résolution de ce problème s'appuie simultanément sur les fonctions de Green et les opérateurs interfaciaux de la mécanique des solides. On utilise les résultats de cette étude pour déterminer les propriétés effectives d'un composite à partir d'une approche autocohérente prenant en compte les interactions entre inclusions enrobées. Les résultats théoriques appliqués au cas d'un composite constitué d'une matrice polyester et de billes de verre creuses sont en bon accord avec les mesures experimentales de Huang et Gibson.

  11. Modèle multi-échelle du transport de fluide dans un milieu poreux chargé avec échanges cationiques : application aux tissus osseux

    NASA Astrophysics Data System (ADS)

    Kaiser, Joanna; Lemaire, Thibault; Naili, Salah; Sansalone, Vittorio

    2009-11-01

    To better understand the bone diseases, many models of porous cortical bone have been developed to simulate its in vivo behaviour. Thus we proposed multiscale models including multiphysical phenomena governing the hydraulic response of bone. However, all these models neglected the possible ionic exchanges at the cellular level. Since such chemical reactions directly change the physico-chemical properties of the tissue, the interstitial flow is also modified. The aim of this study is so to include these ionic exchanges in the bone fluid transport description by deriving their consequences at the macroscale. To cite this article: J. Kaiser et al., C. R. Mecanique 337 (2009).

  12. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  13. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (MACINTOSH A/UX VERSION)

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.

  14. Aspects épidémiologiques des accidents vasculaires cérébraux (AVC) aux urgences de l'institut de cardiologie d'Abidjan (ICA)

    PubMed Central

    N'goran, Yves N'da Kouakou; Traore, Fatou; Tano, Micesse; Kramoh, Kouadio Euloge; Kakou, Jean-Baptiste Anzouan; Konin, Christophe; Kakou, Maurice Guikahue

    2015-01-01

    Introduction L'objectif de notre étude était de décrire les caractéristiques sociodémographiques et les Facteurs de Risque cardio-Vasculaires (FRV) des patients admis pour accidents vasculaires cérébraux (AVC) dans un service autre que celui de la neurologie. Méthodes Étude transversale rétrospective sur une période de 2 ans (janv. 2010 et déc. 2011), réalisée aux urgences de l'institut de cardiologie d'Abidjan. Résultats Il s'agissait de 176 adultes avec un âge moyen de 60 ans, une prédominance féminine. Les facteurs de risque majeurs retrouvés étaient l'hypertension artérielle dans 86,4% des cas, le diabète dans 11,4% des cas, le tabagisme dans 2,2% des cas. Les motifs de consultation étaient la perte de connaissance dans 36,4% des cas, l'hémiplégie dans 31,8% des cas, les céphalées dans 17,4% des cas, les vertiges dans 10,9% et les palpitations dans 2,2% des cas. La tension artérielle systolique moyenne était à 174 mmHg, la tension artérielle diastolique moyenne était à 105 mmHg et la pression pulsée moyenne était à 70 mmHg. Les AVC étaient associés à une arythmie complète par fibrillation auriculaire dans 11,4% des cas. Les AVC ischémiques représentaient 84,1%. L’évolution aux urgences a été marquée par un décès dans 17% (30) des cas. Conclusion Les AVC constituent un problème majeur de santé publique. Malgré sa prédominance féminine, ils (AVC) touchaient 44% des hommes dans notre étude lorsqu'on sait qu'en Afrique l'activité sociale repose sur les hommes. Ils restent une pathologie grave par la forte létalité. PMID:26327997

  15. Application of electro acoustics for dewatering pharmaceutical sludge

    SciTech Connect

    Golla, P.S.; Johnson, H.W. ) Senthilnathan, P.R. )

    1992-02-01

    Application of electro acoustic principles for dewatering has been developed by Battelle Institute. The Department of Energy, Battelle Institute, and Ashbrook-Simon-Hartley, have jointly developed an Electro Acoustic Dewatering press (EAD press). The EAD press applies a combination of mechanical pressure, electrical current and ultrasonics. This press is utilized after conventional dewatering devices and can remove up to 50% water from filtered sludge cake at a fraction of the cost incurred in existing thermal drying devices. The dominant mechanism of sludge dewatering by EAD press is electro-osmosis due to the application of a direct current field. Electro-osmosis is caused by an electrical double layer of oppositely charged ions formed at the solid liquid interface, which is characterized by zeta potential. The ultrasonic fields help electro-osmosis by consolidation of the filter cake and by release of inaccessible liquid. The EAD press has been tested successfully on a variety of materials including apple pomace, corn gluten, sewage sludge, and coal fines. A three week long full scale trial was conducted successfully at a pharmaceutical industry to determine the application of this technology for dewatering waste activated sludge.

  16. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. PMID:26217884

  17. Cartographie de l'elevation de l'interface eau douce-eau salee aux iles-de-la-madeleine par la methode electromagnetique transitoire (TEM)

    NASA Astrophysics Data System (ADS)

    Madani, Abdelhamid

    This research project is dedicated to mapping the elevation of the freshwater-saltwater interface in Magdalen Islands using the transient electromagnetic method (TEM) in order to monitor time-varying quality of groundwater tables. Seventy-three TEM soundings were conducted between May 2010 and June 2011 close to Well regions in Fatima, Étang-du-Nord, Havre-Aux-Maisons, Grande-Entrée and Grosse-Île. TEM soundings were carried out with loops of 50 m x 50 m and 60 m x 40 m x 2 turns except some surveys of 100 m x 100 m. To control water quality and help constrain the interpretation of TEM soundings, conductivity logs were made in four previous exploration wells and fifteen wells drilled in 2009. Results show that saline water is associated with a low resistivity level between 2 and 4 Ω.m and its elevation ranges from -40 m at Grand-Entrée and more than -250 m at Havre-Aubert. In Étang-du-Nord east, Fatima east and Grande-Entrée, saline water is shallow near shore and plunges inward as expected by the Ghyben Herzberg relation. These three areas have been identified to achieve the time-lapse monitoring of groundwater because of the risk associated with the proximity of wells in operation and the low elevation of saline water. Fatima center area close to FAT03 and FAT07 soundings and Havre-Aux-Maisons showed inconsistent results with the hydrogeological model, further work is recommended to verify the origin of the conductive areas highlighted. However, the results of the interpretation of areas at Havre-Aubert and Grosse-Île did not show a risk of contamination due to the depth of saline water. Modeling of the transition zone between the freshwater aquifer and the saline groundwater has demonstrated that it was difficult to solve it for thicknesses below 10 m and 30 m to depths of 40 and 130 m respectively. If the resistivity of the transition zone is known, the resolution is improved (5 and 10 m respectively). TEM soundings showed negative responses at late time associated with induced polarization (IP) effects. The inversion results of TEM soundings affected by this effect have shown that this dispersion most likely originates from near-surface layers. Chargeabilities ranging from 0.8 to 0.9 were obtained on the TEM soundings processed. The origin of this chargeability is currently unknown but could be related to the presence of fine material (clay). IP effect has not prevented determination of the saline water to a maximum depth of 250 m. The laboratory tests on core samples were unfortunately not able to determine the relationship between resistivity and water resistivity of saturated red sandstone. Immersion of cores in deionized water failed to eliminate the salt present in it. For time-varying monitoring of groundwater, we recommend performing drilling through the interface between freshwater and saltwater on selected areas, to conduct conductivity logs to fully characterize the level of this interface, to install multiparameter probes (conductivity, temperature, pressure) in monitoring wells located at different levels and to locate sites of TEM soundings in the vicinity that will be used to monitor the groundwater.

  18. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    PubMed

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. PMID:24928984

  19. Estimation of the strength of particle aggregates in solid-liquid-gas and solid-liquid-liquid systems in engineering calculations

    SciTech Connect

    Moskvina, G.A.; Babenko, S.A.; Vityugin, V.M.

    1985-09-01

    The approach described in this paper can be used for estimating in engineering calculations, the influence of certain observed parameters on the strength characteristics of particle aggregates of coal. A figure shows the forces of particle cohesion in three-phase systems. Cited literature includes Theoretical Principles of Coal Dewatering, and Coal Preparation and Utilization.

  20. Predictions with UNIFAC of liquid-solid phase diagrams: application to water-sucrose-glucose, water-sucrose-fructose and water-xylose-mannose

    NASA Astrophysics Data System (ADS)

    Gabas, N.; Laguérie, C.

    1993-03-01

    The objective of this study is to develop a prediction model of solid-liquid equilibria based on the UNIFAC method which is applicable to sugar systems. Three new groups, X, F and G, representing respectively the cyclic structure of D-xylose, D-fructose and D-glucose are introduced and new interaction parameters for these groups are calculated. The use of groups X, F and G permits the identification of mannose as composed of X, OH and CH2 and of sucrose as composed of G, F and -O-. The model is tested on three ternary systems: water-sucrose-D-glucose; water-sucrose-D-fructose; water-D-xylose-D-mannose. The results compare favourably with the experimental data except in the invariant point region, corresponding to saturation with both solutes. A similar technique could be applied in the prediction of the behaviour of other sugar systems containing these basic rings.

  1. Advanced in situ Spectroscopic Techniques And Their Applications In Environmental Biogeochemistry: Introduction To The Special Section

    EPA Science Inventory

    Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describ...

  2. High-power laser applications in Nippon Steel Corporation

    NASA Astrophysics Data System (ADS)

    Minamida, Katsuhiro

    2000-02-01

    The laser, which was invented in 1960, has been developed using various substances of solids, liquids, gases and semiconductors as laser active media. Applications of laser utilizing the coherent properties of laser light and the high power density light abound in many industries and in heavy industries respectively. The full-scale use of lasers in the steel industry began nearly 23 years ago with their applications as controllable light sources. Its contribution to the increase in efficiency and quality of the steel making process has been important and brought us the saving of the energy, the resource and the labor. Laser applications in the steel making process generally require high input energy, so it is essential to consider the interaction between the laser beam and the irradiated material. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes with low energy losses. We have developed plenty of new laser systems for the steel making process with their considerations in mind. A review of the following high-power-laser applications is given in the present paper: (1) Use of plasma as a secondary heat source in CO2 laser welding for connecting steel sheets of various grades. (2) Laser-assisted electric resistance welding of pipes. (3) New type all-laser-welded honeycomb panels for high-speed transport. (4) Laser flying welder for continuous hot rolling mill using two 45 kW CO2 lasers.

  3. Spatially controlled electro-stimulated DNA adsorption and desorption for biochip applications.

    PubMed

    Hook, Andrew L; Thissen, Helmut; Hayes, Jason P; Voelcker, Nicolas H

    2006-05-15

    The manipulation of biomolecules at solid/liquid interfaces is important for the enhanced performance of a number of biomedical devices, including biochips. This study focuses on the spatial control of surface interactions of DNA as well as the electro-stimulated adsorption and desorption of DNA by appropriate surface modification of highly doped p-type silicon. Surface modification by plasma polymerisation of allylamine resulted in a surface that supported DNA adsorption and sustained cell attachment. Subsequent high-density grafting of poly(ethylene oxide) formed a low fouling layer resistant to biomolecule adsorption and cell attachment. Spatially controlled excimer laser ablation of the surface produced patterns of re-exposed plasma polymer with high-resolution. On patterned surfaces, preferential electro-stimulated adsorption of DNA to the allylamine plasma polymer surface and subsequent desorption by the application of a negative bias was observed. Furthermore, the concept presented here was investigated for use in transfection chips. Cell culture experiments with human embryonic kidney cells, using the expression of green fluorescent protein as a reporter, demonstrated efficient and controlled transfection of cells. Electro-stimulated desorption of DNA was shown to yield significantly enhanced solid phase transfection efficiencies to values of up to 30%. The ability to spatially control DNA adsorption combined with the ability to control the binding and release of DNA by application of a controlled voltage enables an advanced level of control over DNA bioactivity on solid substrates and lends itself to biochip applications. PMID:16303297

  4. Chain relaxation dynamics of DNA adsorbing at a solid-liquid interface.

    PubMed

    Vanderlinden, Willem; De Feyter, Steven

    2013-03-21

    We have used scanning force microscopy (SFM) to elucidate the dynamic behavior of open (torsionally unconstrained) circular and long linear DNA molecules during the relaxation process following adsorption onto mica. We find that bending stress and excluded volume effects drive the conformational equilibration via segmental out-of-plane dynamics. PMID:23407892

  5. Chain relaxation dynamics of DNA adsorbing at a solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Willem; de Feyter, Steven

    2013-02-01

    We have used scanning force microscopy (SFM) to elucidate the dynamic behavior of open (torsionally unconstrained) circular and long linear DNA molecules during the relaxation process following adsorption onto mica. We find that bending stress and excluded volume effects drive the conformational equilibration via segmental out-of-plane dynamics.We have used scanning force microscopy (SFM) to elucidate the dynamic behavior of open (torsionally unconstrained) circular and long linear DNA molecules during the relaxation process following adsorption onto mica. We find that bending stress and excluded volume effects drive the conformational equilibration via segmental out-of-plane dynamics. Electronic supplementary information (ESI) available: Intra-molecular chain crossings after kinetic trapping and surface equilibration; out-of-plane dynamics of small equilibrated DNA circles; evaluation of tip-sample forces. See DOI: 10.1039/c3nr34231j

  6. Use of sol-gel systems for solid/liquid separation.

    SciTech Connect

    Chaiko, D. J.; Kopasz, J. P.; Elison, A. J. G.; Chemical Engineering

    1998-01-01

    A unique approach using sol-gel technology is presented for separating and recovering particulates and colloids from caustic waste slurries. The approach involves the addition of an alkali silicate and an organic gelling agent directly to the waste stream to immobilize particulates that range from macro sizes to submicron colloids. The particulates and colloids become trapped within a silica network that remains porous during the early stages of the sol-gel process. The freshly gelled monolith undergoes a process of syneresis, whereby the water and soluble salts are ejected from the monolith as it contracts. The approach has been illustrated by removal of ultrafine particulates from a Hanford Tank Waste simulant. Initial laboratory tests have shown that it is possible to produce silica monoliths in the presence of 4 M hydroxide. Analysis of the mother liquor produced during syneresis indicated quantitative recovery of the particulates within the monolith. The partitioning of ions between the silica gel and the mother liquor during syneresis correlates directly with the lyotropic series. Salt recoveries from the mother liquor in excess of 90% can be achieved. With a capability of recovering >99.999% of all particulates, including colloids, the process is more efficient than membrane filtration. This approach produces a rock-hard silica monolith that can be used directly as a feedstock to a glass melter or can be consolidated to near theoretical density by sintering.

  7. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states

  8. Analysis of alternative solid/liquid separation techniques in non-beverage fermentation ethanol production

    SciTech Connect

    Not Available

    1982-06-01

    The biochemical and process design implications of separation alternatives were analyzed. Standard batches of corn mash were prepared and the solids and liquids were separated according to three alternative sequences: (1) prior to fermentation; (2) after fermentation; and (3) after distillation. Separation methods, such as screening, filtration, and centrifugation were also examined. Biochemical tests on the supernatants and precipitates identified the effects on total precipitate, carbohydrate, protein, reducing sugars, digestible nutrients, fiber, fat, ash, nitrogen free extract, Kjeldehl nitrogen, calcium, phosphorus, potassium, pH, BOD, specific gravity, viscosity, yeast cell number, starch, dissolved oxygen, percent alcohol, percent moisture and ethanol yield. The biochemical tests demonstrate that, depending on the effectiveness of additional product recovery steps, significant variances in ethanol yields may occur as a result of separation sequence and methodology. Highest ethanol yields without additional product recovery steps were obtained using the after distillation separation sequence.

  9. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    SciTech Connect

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-02

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al{sub 2}O{sub 3} interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al{sub 2}O{sub 3} interfaces. Preferential oxygen segregation to the (0006) Al{sub 2}O{sub 3} plane was verified, and the (101{sup ¯}2) Al{sub 2}O{sub 3} plane was found to contain the lowest amount of segregated species.

  10. Study on effect of microparticle's size on cavitation erosion in solid-liquid system

    NASA Astrophysics Data System (ADS)

    Chen, Haosheng; Liu, Shihan; Wang, Jiadao; Chen, Darong

    2007-05-01

    Five different solutions containing microparticles in different sizes were tested in a vibration cavitation erosion experiment. After the experiment, the number of erosion pits on sample surfaces, free radicals HO in solutions, and mass loss all show that the cavitation erosion strength is strongly related to the particle size, and 500nm particles cause more severe cavitation erosion than other smaller or larger particles do. A model is presented to explain such result considering both nucleation and bubble-particle collision effects. Particle of a proper size will increase the number of heterogeneous nucleation and at the same time reduce the number of bubble-particle combinations, which results in more free bubbles in the solution to generate stronger cavitation erosion.

  11. Solid-liquid separation of dairy manure with PAM and chitosan polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic polymers are useful to increase separation of suspended solids and carbon compounds from liquid swine manure, but experiences with dairy manure are limited. In this experiment, two polymers, a synthetic polyacrylamide (PAM) and a natural chitosan were used to increase separation of suspended...

  12. Dynamic cross-flow filtration: enhanced continuous small-scale solid-liquid separation.

    PubMed

    Gursch, Johannes; Hohl, Roland; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2016-06-01

    In a previous study, a small-scale dynamic filtration device (SFD) was analyzed and the basic mechanisms governing the filtration process were characterized. The present work aims at improving the device's performance in terms of actual production. Various operation modes were tested in order to increase permeate flow and concentration factors (CF), while maintaining a fully continuous production mode. Both, a vacuum-enhanced and a pulsating operation mode, proved to be superior to the currently implemented open-operation mode. For example, for lactose, an increase of the CF could be achieved from 1.7 in open mode to 7.6 in pulsating operation mode. The investigated operation strategy enables process control systems to rapidly react to fluctuating feeds that may occur due to changes in upstream manufacturing steps. As a result, not only filtration performance in terms of permeate rate but also process flexibility can be significantly increased. Overall, vacuum-enhanced operation was shown to be most promising for integration into an industrial environment. The option to elevate achievable concentration factors, ease of flow monitoring as well as the ability to react to changes in the feed conditions allow for effective and efficient continuous small-scale filtration. PMID:26489453

  13. Solid-liquid mass transfer at gas sparged fixed bed of Rasching rings

    SciTech Connect

    Noseir, S.A.; El-Kayar, A.; Sedahmed, G.H.; Farag, H.A.

    1997-09-01

    Gas sparging is gaining increased importance as a tool for enhancing the rate of liquid-solid mass transfer in industrial reactors. The effect of nitrogen sparging on the rate of liquid-solid mass transfer at fixed beds of Rasching rings was studied by measuring the rate of diffusion-controlled dissolution of a bed or copper Rasching rings in acidified chromate solutions. Variables studied were: ring diameter, nitrogen superficial velocity and physical properties of the solution. The mass transfer data were correlated by the equation, J = 0.04 (Fr.Re){sup {minus}0.15} (d{sub r}/d){sup {minus}0.516}.

  14. ADSORPTION OF SURFACTANTS AND POLYMERS AT THE SOLID-LIQUID INTERFACE. (R823301)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Using Peltier cells to study solid liquid vapour transitions and supercooling

    NASA Astrophysics Data System (ADS)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-05-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid solid and liquid vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat.

  16. Physical Characterization of Solid-Liquid Slurries at High Weight Fractions Utilizing Optical and Ultrasonic Methods

    SciTech Connect

    Burgess, Lloyd W.

    2005-06-01

    The goal of this proposed work is to directly address the need for rapid on-line characterization of the physical properties of HLW slurries during all phases of the remediation process, from in-tank characterization of sediments to monitoring of the concentration, particle size, and degree of agglomeration and gelation of slurries during transport. There are three tasks: (1) develop new optical and acoustic scattering measurements to provide the fundamental science needed for successful device development and implementation, (2) develop theories that describe the interrelationship between wave propagation and the physical properties of the slurry, and (3) perform inversions of the theories and compare them with the experimental measurements to non-intrusively characterize slurries.

  17. Theory for Relative Strengths of Trapping of He+ Ions in Solid, Liquid and Gaseous Hydrogen

    NASA Astrophysics Data System (ADS)

    Scheicher, R. H.; Roy, A. N. U.; Das, T. P.; Ishida, K.; Matsuzaki, T.; Nakamura, S. N.; Kawamura, N.; Nagamine, K.

    2001-12-01

    The study of trapping of He+ ion in solid hydrogen is important both as a problem in solid state physics and also as an applied physics problem in the field of muon catalyzed fusion (μCF). In μCF, He+ ion acts as a trap for μ-, interrupting the chain reaction aspect of the catalytic role of μ- in producing fusion of deuteron and triton and of triton and triton in solid hydrogen composed of 2H 3H and 3H 3H molecules, respectively. Using the Hartree Fock procedure, combined with procedures for including many-body effects, as well as relaxation effects associated with the He+ H2 distances and the adjustment of the H H separation, we have investigated the trapping of He+ in gaseous and solid state environments. For the former, the environment of He+ is simulated by a single hydrogen molecule and for the solid by clusters appropriately chosen to represent the hexagonal close-packed structure. Our results for the gaseous state indicate that the trapping is rather strong with a binding energy of 8.5 eV, with almost equal binding energy in the linear and triangular configurations with respect to the H H direction. For the solid, both the likely sites for He+ trapping, namely the tetrahedral and octahedral interstitial sites, are also found to provide deep traps (8.6 eV) of almost equal strength, independent of the orientations of the neighboring molecules, showing that the trapping is not influenced by the orientational disorder in the surrounding hydrogen molecules. Further, the influence of next nearest neighbor hydrogen molecules is found to enhance the trapping energy for He+ substantially, by 0.6 eV, with the incorporation of the third nearest neighbors having a much smaller added effect, demonstrating the convergence of our results with respect to the size of the cluster chosen to simulate the solid. The substantial influence on the He+ trapping energy found for the neighbors beyond the nearest ones provides an explanation of the greater accumulation of helium in the solid state of hydrogen in μCF experiments as compared to the liquid. Suggestions are made regarding the possible reasons for the almost negligible accumulation of helium in the liquid state.

  18. Thermal modeling with solid/liquid phase change of the thermal energy storage experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    1991-01-01

    A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.

  19. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1997-09-01

    The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translation diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei ({sup 14}N and {sup 15}N) in solution. Our results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 x 10{sup -3} M. Typical values measured for the diffusion coefficient of the ammonium ion are 2 x 10{sup -5} cm{sup 2/s} ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonium is less sensitive to the solution pH, extending the measurement range to pH of 9.5. Diffusion measurements were conducted with solutions of varying viscosity and porosity. The results show that the solution viscosity has a measureable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 mm PMMA resulted in a reduction of {approximately}30% in the diffusion coefficient as a result of hindered diffusion.

  20. Adsorption of enzymes at the solid-liquid interface. I. Trypsin on polystyrene latex.

    PubMed

    Lewis, D; Whateley, T L

    1988-01-01

    The enzyme, trypsin, has been used to study conformational changes which occur when protein adsorption onto well-characterized, emulsifier-free, polystyrene latex surface takes place. The adsorption isotherm is of the high affinity, Langmuirian type with plateau adsorption of trypsin of 2.8 mg m-2. The enzymic activity of adsorbed trypsin to low molecular weight substrate is found to decrease as the surface coverage decreases indicating that 'spreading' or unfolding of the native protein conformation, with consequent loss of enzymic activity, occurs. On the close packed surface such 'spreading' is inhibited by steric factors. The view that protein adsorption onto hydrophobic surfaces is dominated by the entropy gain due to protein unfolding to maximize hydrophobic interactions is thus supported. PMID:3349124

  1. SESAME 96170, a solid-liquid equation of state for CeO2

    SciTech Connect

    Chisolm, Eric D.

    2014-05-02

    I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO2. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

  2. Thermodynamic and rheological properties of solid-liquid systems in coal processing

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1992-01-01

    None of the models available in the literature are known to work very well for aromatic compounds such as the ones that occur in coal derived materials. Two models - one by Van Velzen et al. (Ind Eng. Chem. Fundam. Vol 11, 1972, pp. 20-25) using a group contribution method and the other by Hwang et al (Ind. Eng. Chem. Process Des. Dev., Vol. 21, 1982, pp. 127-134) using a corresponding states method - were tested for some typical compounds that occur in coal liquids. These methods give errors ranging from 10 to 50% for viscosities of such compounds. These errors are too high and considering further errors in extension of these models to coal liquids, these models were considered unacceptable in our work. We have therefore set out to develop a new model for viscosities of aromatic compounds. We plan to base the model on the procedure similar to that of Van Velzen, however developed for just aromatic compounds. Our model, once developed will therefore be a group contribution method centered around the benzene ring structure.

  3. Protein adsorption, desorption, and aggregation mediated by solid-liquid interfaces.

    PubMed

    Perevozchikova, Tatiana; Nanda, Hirsh; Nesta, Douglas P; Roberts, Christopher J

    2015-06-01

    Adsorption of proteins to solid-fluid interfaces is often empirically found to promote formation of soluble aggregates and larger, subvisible, and visible particles, but key stages in this process are often difficult to probe directly. Aggregation mediated by adsorption to water-silicon oxide (SiOx) interfaces, akin to hydrated glass surfaces, was characterized as a function of pH and ionic strength for alpha-chymotrypsinogen (aCgn) and for a monoclonal antibody (IgG1). A flow cell permitted neutron reflectivity for protein layers adsorbed to clean SiOx surfaces, as well as after successive "rinse" steps. Aggregates recovered in solution after gently "rinsing" the surface were characterized by neutron scattering, microscopy, and fluorescence spectroscopy. IgG1 molecules oriented primarily "flat" against the SiOx surface, with the primary protein layer desorbed to a minimal extent, whereas a diffuse overlayer was easily rinsed off. aCgn molecules were resistant to desorption when they appeared to be unfolded at the interface, but were otherwise easily removed. For cases where strong binding occurred, protein that did desorb was a mixture of monomer and small amounts of HMW aggregates (for aCgn) or subvisible particles (for IgG1). Changes in adsorption and/or unfolding with pH indicated that electrostatic interactions were important in all cases. PMID:25846460

  4. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-01

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al2O3 interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al2O3 interfaces. Preferential oxygen segregation to the (0006) Al2O3 plane was verified, and the ( 10 1 ¯ 2 ) Al2O3 plane was found to contain the lowest amount of segregated species.

  5. Parallel gastric emptying of nonhydrolyzable fat and water after a solid-liquid meal in humans

    SciTech Connect

    Cortot, A.; Phillips, S.F.; Malagelada, J.R.

    1982-05-01

    Our aim was to examine the control of gastric emptying of the oil phase of a mixed solid and liquid meal. Previous studies had shown that liquid dietary fats normally leave the stomach at a slower rate than does water. We wished to determine whether the slower emptying of fats was due to the physical characteristics of food (lower density and greater viscosity than water), to retardation by duodenal feedback mechanisms, or whether both factors contributed. Thus, we quantified the emptying rates of water and sucrose polyester (a nonabsorbable analog of dietary fat) ingested by healthy volunteers as a mixed solid and liquid meal. Gastric emptying was quantified by an intubation-perfusion method incorporating an occlusive jejunal balloon to facilitate recovery. Four phase-specific, nonabsorbable markers were used. (14C(Sucrose octaoleate and polyethylene glycol were incorporated in the meal and traced the lipid and water phases, respectively; (3H)glycerol triether and phenolsulfonphthalein were used as duodenal recovery markers. Sucrose polyester (substituting for dietary fat) was emptied very rapidly, and at about the same rate as was water, in contrast to natural fat, which empties very slowly. Emptying of water was rapid and comparable to that observed after mixed meals containing natural fat. These results imply that gastric emptying of the oil phase is controlled by receptors sensitive to the hydrolytic products of fat digestion and that the slow emptying of dietary fat is not simply due to its lower density.

  6. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  7. Physical Characterization of Solid-Liquid Slurries at High Weight Fractions Using Optical and Ultrasonic Methods

    SciTech Connect

    Burgess, L.W.; Brodsky, A.M.; Panetta P.D.

    2005-12-22

    Remediation of highly radioactive waste is a major technical and programmatic challenge for the DOE. Rapid, on-line physical characterization of highly concentrated slurries is required for the safe and efficient remediation of 90 million gallons of high level radioactive waste (HLW), sodium bearing waste, and mixed waste. The research presented here, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to directly address the need for rapid on-line characterization of the physical properties of HLW slurries during all phases of the remediation process, from in-tank characterization of sediments to monitoring of the concentration, particle size, and degree of agglomeration and gelation of slurries during transport. Near-surface characterization of the slurry flow in the particle size range from nanometer to micrometer is examined using optical low coherence reflectometry. Volumetric characterization at depths in the slurry flow, up to several centimeters in the particle size range from the micrometer to millimeter, is realized by utilizing ultrasonic backscatter and diffuses fields. One of the strengths, the teaming up of significant talents in both experimental and theoretical optics and in ultrasonics, provides a synergistic approach to integrate these complimentary techniques. One of the benefits of this combined approach is the physical characterization of HLW over a concentration and particle size range that is broader than can be achieved with today's technology. This will avoid a costly increase in waste stream volume due to excess dilution, and will lessen chance of plugging pipes that could shut down expensive processing lines.

  8. Correction for radon distribution in solid/liquid and air phases in gamma-ray spectrometry.

    PubMed

    Carconi, P; Cardellini, F; Cozzella, M L; De Felice, P; Fazio, A

    2012-09-01

    The effect of radon diffusion and distribution between a (226)Ra matrix and the top air gap inside sample containers for gamma-ray spectrometry was studied. Containers filled at almost 100% or just 70% of total capacity yielded correction factors of about 7% and 20% respectively. Applying these correction factors allowed activity values calculated from (226)Ra or radon decay products to agree within 2%. PMID:22476014

  9. Quartz Crystal Microbalance Studies of Multilayer Glucagon Fibrillation at the Solid-Liquid Interface

    PubMed Central

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-01-01

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro. PMID:17513349

  10. Solid-liquid adsorption of calcium phosphate on TiO{sub 2}

    SciTech Connect

    Chusuei, C.C.; Goodman, D.W.; Stipdonk, M.J. van; Justes, D.R.; Loh, K.H.; Schweikert, E.A.

    1999-10-12

    Calcium phosphate (CP) in aqueous solution was exposed to thin-film TiO{sub 2} surfaces at predetermined times ranging from 10 min to 20 h using a liquid reaction apparatus (LRA). Surface analysis was then performed using X-ray photoelectron (XPS) and Auger electron (AES) spectroscopies and time-of-flight secondary ion mass spectromemtry (ToF-SIMS) with polyatomic primary ions. XPS revealed that CP nucleated and grew on the TiO{sub 2} surface, with phosphate groups growing on top of an initial 2-dimensional (2D) Ca-rich layer. AES depth profiling of a 4-h solution exposure complemented this finding and gave additional evidence for 3-dimensional (3D) phosphate islands forming on top of the calcium. ToF-SIMS analysis of CP adsorbed on the surface indicated that the predominant phase on the surface was brushite, CaHPO{sub 4}{sm{underscore}bullet}2H{sub 2}O. A model for Ca{sup 2+} cation bridging at the oxide interface is proposed.

  11. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  12. Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids.

    PubMed

    Jung, Erica Eunjung; Erickson, David

    2012-07-21

    Optofluidics offers a number of potentially transformative advantages for photonic systems. At present however there are a number of technological roadblocks that prevent the practical integration of liquid-state elements into traditional high-speed solid-state photonic systems. Two of the most important of these are the need for continuous resupply of liquids and the difficulty in shuttling light between the liquid- and solid-states. In this paper we present an integrated system that solves both these problems. For the first time we demonstrate direct evanescent and end-fire coupling between liquid- and solid-state waveguides and an on-chip fluid core/cladding separation and recirculation system that reduces the consumption of liquids more than 200 fold over the state of the art. The device is operated continuously for over 20 h without performance degradation or requiring the replenishment of liquids. We believe that our system represents an important step towards the development of practical optofluidically enabled photonic systems. PMID:22588315

  13. Teaching Sustainable Development Concepts in the Laboratory: A Solid-Liquid Extraction Experiment

    ERIC Educational Resources Information Center

    Parajo, Juan Carlos; Dominguez, Herminia; Santos, Valentin; Alonso, Jose Luis; Garrote, Gil

    2008-01-01

    One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. For example, phenol and phenol derivatives currently used in the manufacture of wood adhesives can be replaced (at least in part) by biopolymers extracted from biomass. In this work, pine bark (a renewable

  14. Perturbation theory of solid-liquid interfacial free energies of bcc metals

    SciTech Connect

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2012-01-18

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two subwavelength slits, separated by two wavelengths.The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young’s experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  15. Toxicity testing of marine, terrestrial, solid, liquid, clear, and turbid samples

    SciTech Connect

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L.

    1994-12-31

    A novel, patented toxicity testing procedure that compares the light generated by the naturally bioluminescent marine dinoflagellate alga, Pyrocystis lunula, in the presence of toxins, to light from a non-toxic control, is sensitive in parts per billion to all substances considered toxic to which it has been subjected: chemical warfare agents, metals, detergents, pesticides, herbicides, anticancer drugs, oil-well drilling fluids and produced waters, marine antifouling paints, and others. Preparation and testing time is less than eight hours. Variability is 10% or less. Solids and turbid or darkly colored samples can be tested without correction. Small sample substrates (10 to 50{mu}l) in the buffered 3ml test medium do not significantly affect pH or salinity, which permits testing of marine or terrestrial samples without special preparation. Also, the organism is insensitive to selected solvents for lipophyllic test substances. EC{sub 50} of sodium lauryl (dodecyl) sulphate is 3.7 ppm, and correlation with the Mysid LC{sub 50} EPA 30,000 ppm toxicity limit is 63% light inhibition.

  16. Teaching Sustainable Development Concepts in the Laboratory: A Solid-Liquid Extraction Experiment

    ERIC Educational Resources Information Center

    Parajo, Juan Carlos; Dominguez, Herminia; Santos, Valentin; Alonso, Jose Luis; Garrote, Gil

    2008-01-01

    One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. For example, phenol and phenol derivatives currently used in the manufacture of wood adhesives can be replaced (at least in part) by biopolymers extracted from biomass. In this work, pine bark (a renewable…

  17. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries. Revision 1

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1998-01-01

    The flammability and toxicity of ammonia released from the nuclear waste tanks at Hanford have been the subject of several recent studies. These releases may occur episodically, such as the buoyant plume releases occurring in various double-shell tanks (DSTs); gradually through the surface of the waste; or from the partially saturated saltcakes in the single-shell tanks during salt-well pumping. The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translational diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei in solution. Results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 {times} 10{sup {minus}3} {und M}. Typical values measured for the diffusion coefficient of the ammonium ion are 2 {times} 10{sup {minus}5} cm{sup 2}/s ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonia is less sensitive to the solution pH, extending the measurement range to pH of 9.5. The results show that the solution viscosity has a measurable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 {micro}m PMMA resulted in a reduction of {approximately} 30% in the diffusion coefficient as a result of hindered diffusion.

  18. A Laboratory Experiment for Measuring Solid-Liquid Mass Transfer Parameters

    ERIC Educational Resources Information Center

    Dapia, Sonia; Vila, Carlos; Dominguez, Herminia; Parajo, Juan Carlos

    2004-01-01

    The lab experiment described starts from the principles developed by Sensel and Myers, but the experimental procedure are modified to provide a more reliable experiment assessment. The mass transfer equation is solved and all the involved parameters are calculated by a simple, numerical method.

  19. Molecular Structure and Equilibrium Forces of Bovine Submaxillary Mucin Adsorbed at a Solid-Liquid Interface.

    PubMed

    Zappone, Bruno; Patil, Navinkumar J; Madsen, Jan B; Pakkanen, Kirsi I; Lee, Seunghwan

    2015-04-21

    By combining dynamic light scattering, circular dichroism spectroscopy, atomic force microscopy, and surface force apparatus, the conformation of bovine submaxillary mucin in dilute solution and nanomechanical properties of mucin layers adsorbed on mica have been investigated. The samples were prepared by additional chromatographic purification of commercially available products. The mucin molecule was found to have a z-average hydrodynamic diameter of ca. 35 nm in phosphate buffered solution, without any particular secondary or tertiary structure. The contour length of the mucin is larger than, yet of the same order of magnitude as the diameter, indicating that the molecule can be modeled as a relatively rigid polymeric chain due to the large persistence length of the central glycosylated domain. Mucin molecules adsorbed abundantly onto mica from saline buffer, generating polymer-like, long-ranged, repulsive, and nonhysteretic forces upon compression of the adsorbed layers. Detailed analysis of such forces suggests that adsorbed mucins had an elongated conformation favored by the stiffness of the central domain. Acidification of aqueous media was chosen as means to reduce mucin-mucin and mucin-substrate electrostatic interactions. The hydrodynamic diameter in solution did not significantly change when the pH was lowered, showing that the large persistence length of the mucin molecule is due to steric hindrance between sugar chains, rather than electrostatic interactions. Remarkably, the force generated by an adsorbed layer with a fixed surface coverage also remained unaltered upon acidification. This observation can be linked to the surface-protective, pH-resistant role of bovine submaxillary mucin in the variable environmental conditions of the oral cavity. PMID:25806669

  20. Theory of Brushes Formed by Ψ-Shaped Macromolecules at Solid-Liquid Interfaces.

    PubMed

    Zhulina, Ekaterina B; Leermakers, Frans A M; Borisov, Oleg V

    2015-06-16

    We present a theoretical analysis targeted to describe the structural properties of brushes formed by Ψ-shaped macromolecules tethered by terminal segment of stem to planar surface while exposing multiple free branches to the surrounding solution. We use an analytical self-consistent field approach based on the strong stretching approximation, and the assumption of Gaussian elasticity for linear chain fragments of the tethered macromolecules. The effect of weak and strong polydispersity of branches is analyzed. In the case of weakly polydisperse macromolecules, variations in length of branches lead to a more uniform polymer density distribution with slight increase in the brush thickness compared to the case of monodisperse chains with the same degree of polymerization. We demonstrate that in contrast to linear chains, strong polydispersity of Ψ-shaped macromolecules does not necessarily lead to strong perturbations in polymer density distribution. In particular, mixed brushes of the so-called "mirror" dendrons (in which number of stem monomers in one component coincides with number of monomers in a branch of the other component, and vice versa) give rise to a unified polymer density distribution with shape independent of the brush composition. The predictions of analytical theory are systematically compared to the results of numerical self-consistent field modeling based on the Scheutjens-Fleer approach. PMID:26029884

  1. Solids-liquid separation of swine manure with polymer treatment and sand filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small particles typical of liquid swine manure often clog sand filter beds and fine filters. We evaluated the effectiveness of polymer flocculants to improve drainage and filtration performance of sand filter beds by increasing the effective particle size. A pilot unit was evaluated at the Swine U...

  2. Effect of thermosolutal convection on the solid-liquid interface in Pb-Au alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Chopra, M. A.

    1990-01-01

    Liquid-solid interface distortion in the region of primary dendrite tips has been investigated in directionally solidified Pb-8 wt pct Au alloy. The distortions are caused by thermosolutal convection despite choice of growth conditions which should have been thermally and solutally stabilizing. The convection produces clustering of primary dendrites on a plane perpendicular to the growth direction. It produces a mushy zone, where the primary dendrites do not protrude with a uniform length, across the specimen cross section, resulting in large macrosegregation in the transverse direction. However, little macrosegregation is observed along the growth direction. The mushy zone, with uneven dendrite lengths, forms in the beginning of directional solidification. Its shape and dendrite distribution do not show much change during subsequent solidification. Tip morphologies of primary dendrites, within the dendrite clusters, appear to follow the morphological stability relationship.

  3. High-precision measurements of molecular slip at a solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Pye, Justin; Wood, Clay; Burton, Justin

    As fluidic devices get smaller and measurements become more precise and stringent, the need to fully understand the dynamics at interfaces becomes more important. It is now clear that slip near an interface is common at the nanoscale in Newtonian liquids. In simple systems, there is a general trend to larger slip lengths for non-wetting liquid/solid combinations, but many conflicting measurements and interpretations remain. We have developed a novel differential technique using a quartz crystal microbalance (QCM) to measure slip lengths on various substrates. A drop of one liquid is grown on the QCM in the presence of a second, ambient liquid. By choosing the two liquids such that their bulk effects on the QCM frequency and dissipation are identical in the presence of no-slip, we are able to isolate anomalous boundary effects due to interfacial slip. Our data for water on gold (in undecane) are consistent with a slip length of 5nm (for water). A glass surface, wetted by both gold and undecane has also shown strongly anomalous results for the water-undecane pair. In addition to investigating other liquid pairs, future work will include extending this technique to surfaces with independently controllable chemistry and roughness, both of which are known to strongly affect interfacial hydrodynamics.

  4. Evolution de la résistance aux antibiotiques des entérobactéries isolées à l'Hôpital Général de Douala de 2005 à 2012

    PubMed Central

    Ebongue, Cécile Okalla; Tsiazok, Martial Dongmo; Mefo'o, Jean Pierre Nda; Ngaba, Guy Pascal; Beyiha, Gérard; Adiogo, Dieudonné

    2015-01-01

    Introduction Cette étude vise à déterminer le profil de résistance aux antibiotiques des entérobactéries isolées à l'Hôpital Général de Douala (Cameroun) et analyser leur évolution dans le temps. Méthodes Etude rétrospective, sur une période de huit ans (2005 - 2012), portant sur l'ensemble des souches d'entérobactéries isolées chez les malades ambulatoires et hospitalisés. Les prélèvements ont été analysés au laboratoire de bactériologie de l'Hôpital Général de Douala. Résultats Les entérobactéries étaient les germes les plus fréquents sur l'ensemble des souches isolées. Nous avons noté une prédominance d’Escherichia coli (48,5%) et de Klebsiella pneumoniae (32,8%). Pendant la période d’étude, nous avons observé des taux de résistance élevés aux principales classes d'antibiotiques, et une augmentation entre 2005 et 2012 de 29,1% à 51,6% pour les céphalosporines de troisième génération, de 29,2% à 44% pour la ciprofloxacine. L'imipénème, l'amikacine et la fosfomycine étaient les molécules les plus actives avec respectivement 1,3%, 12,9% et 13,4% des souches d'entérobactéries résistantes. Conclusion L’évolution des résistances des entérobactéries aux antibiotiques est un phénomène réel dans la ville de Douala. Il expose à des difficultés de prise en charge thérapeutique des infections. Lamaitrise actuelle de ce phénomène est une véritable urgence et nécessite une implication des pouvoirs publics. Des tests spécifiques de recherche des bétalactamases à spectre élargi (BLSE) et AmpC doivent être mis en place dans nos laboratoires afin de mettre en évidence les différents phénotypes de résistances. PMID:26140070

  5. Differential Effects of NAA and 2,4-D in Reducing Floret Abscission in Cestrum (Cestrum elegans) Cut Flowers are Associated with their Differential Activation of Aux/IAA Homologous Genes

    PubMed Central

    Abebie, Bekele; Lers, Amnon; Philosoph-Hadas, Sonia; Goren, Raphael; Riov, Joseph; Meir, Shimon

    2008-01-01

    Background and Aims A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). Methods cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. Key Results Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. Conclusions The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission. PMID:17591611

  6. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    PubMed

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-01

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices. PMID:25871732

  7. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Nguyen, Nhat Thien; Li, Chi-Wang

    2015-01-01

    Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO4(3-)-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application. PMID:26465299

  8. Admission Requirements to Canadian Faculties of Medicine and Their Selection Policies = Conditions d'Admission aux Facultes de Medecine Canadiennes et Leurs Politiques de Selection.

    ERIC Educational Resources Information Center

    Association of Canadian Medical Colleges, Ottawa (Ontario).

    Information is presented to help applicants to Canadian medical colleges realistically assess their chances for gaining admission. The guide is also intended for career counselors in high schools and higher education. One section provides statistics on the following characteristics that are associated with being selected: sex, age, Medical College…

  9. Sarar technology for the application of Copper-64 in biology and materials science.

    PubMed

    Smith, S V

    2008-06-01

    This review provides an overview of the synthesis and metal complexation chemistry of the nitrogen and sulphur donor bicyclic ligands or cages, and the key criteria that led to the design of sarar for the application for (64)Cu(II). Aspects of the high yielding synthesis of sarar and strategies for its conjugation to a range of antibodies for targeting colorectal cancer, neuroblastoma and melanoma are described. Free and conjugated to proteins sarar can complex (64)Cu(II) rapidly at room temperature and quantitatively; the latter leading to products of high specific activity and purity. The full occupation of the (64)Cu(II) ions 6 coordination sites by the sarar cage prevents the ready exchange of the (64)Cu(II) from the cage and is the rational for the extraordinary thermodynamic and kinetic stability of (64)Cu(II) labelled sarar and its conjugates. It's in vivo stability is further highlighted by the low uptake and retention of (64)Cu-sarar-conjugated antibodies in the liver. Finally, the prospects for the use of the sarar technology in the materials science arena for probing solid liquid interfaces, in particular, the quantification of functional groups on microspheres and in the engineering of novel materials are discussed. PMID:18174877

  10. Developments to a landfill processes model following its application to two landfill modelling challenges.

    PubMed

    White, J K; Beaven, R P

    2013-10-01

    The landfill model LDAT simulates the transport and bio-chemical behaviour of the solid, liquid and gas phases of waste contained in a landfill. LDAT was applied to the LMC1 and LMC2 landfill modelling challenges held in 2009 and 2011. These were blind modelling challenges with the model acting in a predictive mode based on limited early time sections of full datasets. The LMC1 challenge dataset was from a 0.34m deep 0.48m diameter laboratory test cell, and the LMC2 dataset was from a 55m×80m 8m deep landfill test cell which formed part of the Dutch sustainable landfill research programme at Landgraaf in the Netherlands. The paper describes developments in LDAT arising directly from the experience of responding to the two challenges, and discusses the model input and output data obtained from a calibration using the full datasets. The developments include the modularisation of the model into a set of linked sub-models, the strategy for converting conventional waste characteristics into model input parameters, the identification of flexible degradation pathways to control the CO2:CH4 ratio, and the application of a chemical equilibrium model that includes a stage in which the solid waste components dissolve into the leachate. PMID:23318154

  11. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    PubMed

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence. PMID:21533560

  12. Extension of the broadband single-mode integrated optical waveguide technique to the ultraviolet spectral region and its applications.

    PubMed

    Wiederkehr, Rodrigo S; Mendes, Sergio B

    2014-03-21

    We report here the fabrication, characterization, and application of a single-mode integrated optical waveguide (IOW) spectrometer capable of acquiring optical absorbance spectra of surface-immobilized molecules in the visible and ultraviolet spectral region down to 315 nm. The UV-extension of the single-mode IOW technique to shorter wavelengths was made possible by our development of a low-loss single-mode dielectric waveguide in the UV region based on an alumina film grown by atomic layer deposition (ALD) over a high quality fused silica substrate, and by our design/fabrication of a broadband waveguide coupler formed by an integrated diffraction grating combined with a highly anamorphic optical beam of large numerical aperture. As an application of the developed technology, we report here the surface adsorption process of bacteriochlorophyll a on different interfaces using its Soret absorption band centred at 370 nm. The effects of different chemical compositions at the solid-liquid interface on the adsorption and spectral properties of bacteriochlorophyll a were determined from the polarized UV-Vis IOW spectra acquired with the developed instrumentation. The spectral extension of the single-mode IOW technique into the ultraviolet region is an important advance as it enables extremely sensitive studies in key characteristics of surface molecular processes (e.g., protein unfolding and solvation of aromatic amino-acid groups under surface binding) whose spectral features are mainly located at wavelengths below the visible spectrum. PMID:24466569

  13. Séroprévalence et facteurs associés au VIH et aux hépatites virales B et C dans la ville de Bafoussam au Cameroun

    PubMed Central

    Mbopi-Keou, Francois-Xavier; Nkala, Isabelle Vanessa Monthe; Kalla, Ginette Claude Mireille; Nguefack-Tsague, Georges; Kamga, Hortense Gonsu; Noubom, Michel; Mvogo, Côme Ebana; Sosso, Maurice Aurelien

    2015-01-01

    Introduction L'objectif de ce travail était de déterminer la séroprévalence et les facteurs associés au VIH et aux hépatites virales B et C dans la ville de Bafoussam au Cameroun. Méthodes Il s'agissait d'une étude descriptive et analytique réalisée de février 2012 à Juin 2012 dans la ville de Bafoussam au Cameroun. Pour cette étude, nous avons obtenu une clairance éthique. Résultats Au total, 982 personnes ont été dépistées pour le VIH et les hépatites virales B et C. Les femmes représentaient 56,3% des personnes dépistées. La tranche d’âge la plus représentée était celle des 20 à 24 ans. L’âge médian était de 34,5 ans. Les prévalences du VIH, de l'AgHBs, et de l'Ac anti HCV étaient respectivement de 6,0%, 4,1%, et 0,4%. La prévalence du VIH était 2 fois plus élevée parmi les femmes que les hommes avec 8,1% contre 3,5% (p=0,01). Les prévalences les plus élevées ont été observées chez les personnes de 30 à 34 ans, 40 à 44 ans avec 15,0% et 11,5% (p=0,01), les personnes sans emploi avec 11,1% (p<0,001) et les personnes en union libre avec 17,9% (p=0,000). La prévalence du VIH n’était pas directement liée aux comportements et pratiques sexuels de la population de l’étude. On enregistrait une prévalence élevée de 29,3% chez les individus ayant déclaré avoir au moins une infection sexuellement transmissible (p=0,000). Conclusion Il apparait urgent de mettre en place des stratégies de prévention contre le VIH, les hépatites virales et les facteurs associés au Cameroun. PMID:26113899

  14. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals

    USGS Publications Warehouse

    Rosasco, G.J.; Roedder, E.

    1979-01-01

    Rosasco et al. (1975), reported the first successful application of laser-excited Raman spectroscopy for the identification and nondestructive partial analysis of individual solid, liquid, and gaseous phases in selected fluid inclusions. We report here the results of the application of a new instrument, based on back-scattering, that eliminates many of the previous stringent sample limitations and hence greatly expands the range of applicability of Raman spectroscopy to fluid inclusions. Fluid inclusions in many porphyry copper deposits contain 5-10 ??m 'daughter' crystals thought to be anhydrite but too small for identification by the previous Raman technique. Using the new instrument, we have verified that such daughter crystals in quartz from Bingham, Utah, are anhydrite. They may form by leakage of hydrogen causing internal autooxidation of sulfide ion. Daughter crystals were also examined in apatite (Durango, Mexico) and emerald (Muzo, Colombia). Valid analyses of sulfur species in solution in small fluid inclusions from ore deposits would be valuable, but are generally impossible by conventional methods. We present a calibration procedure for analyses for SO42- in such inclusions from Bingham, Utah (12,000 ?? 4000 ppm) and Creede, Colo. (probably < 500 ppm). A fetid Brazilian quartz, originally thought to contain liquid H2S, is shown to contain only HS- in major amounts. ?? 1979.

  15. Radiation applications research and facilities in AECL research company

    NASA Astrophysics Data System (ADS)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described.

  16. Synthesis and applications of RNAs with position-selective labeling and mosaic composition

    PubMed Central

    Liu, Yu; Holmstrom, Erik; Zhang, Jinwei; Yu, Ping; Wang, Jinbu; Dyba, Marzena A.; Chen, De; Ying, Jinfa; Lockett, Stephen; Nesbitt, David J.; Ferré-D'Amaré, Adrian R.; Sousa, Rui; Stagno, Jason R.; Wang, Yun-Xing

    2015-01-01

    Knowledge of the structure and dynamics of RNA molecules is critical to understand their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be significantly enhanced by methods that enable incorporation of modified or labeled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. We have developed a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labeling. We demonstrate its utility by successfully preparing various isotope- or fluorescently-labeled versions of the 71-nucleotide aptamer domain of an adenine riboswitch1 for nuclear magnetic resonance (NMR) spectroscopy or single molecule Förster resonance-energy transfer (smFRET), respectively. Those RNAs include molecules that were selectively isotope-labeled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently-labeled in and near kissing loops. These selectively labeled RNAs have the same fold as those transcribed using conventional methods, but greatly simplified the interpretation of NMR spectra. The single-position isotope-labeled and fluorescently-labeled RNA samples revealed multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labeling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection2 and disease diagnostics3,4. PMID:25938715

  17. Synthesis and applications of RNAs with position-selective labelling and mosaic composition.

    PubMed

    Liu, Yu; Holmstrom, Erik; Zhang, Jinwei; Yu, Ping; Wang, Jinbu; Dyba, Marzena A; Chen, De; Ying, Jinfa; Lockett, Stephen; Nesbitt, David J; Ferré-D'Amaré, Adrian R; Sousa, Rui; Stagno, Jason R; Wang, Yun-Xing

    2015-06-18

    Knowledge of the structure and dynamics of RNA molecules is critical to understanding their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be dramatically enhanced by methods that enable incorporation of modified or labelled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. Here we develop a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labelling. We demonstrate its use by successfully preparing various isotope- or fluorescently labelled versions of the 71-nucleotide aptamer domain of an adenine riboswitch for nuclear magnetic resonance spectroscopy or single-molecule Förster resonance energy transfer, respectively. Those RNAs include molecules that were selectively isotope-labelled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently labelled in and near kissing loops. These selectively labelled RNAs have the same fold as those transcribed using conventional methods, but they greatly simplify the interpretation of NMR spectra. The single-position isotope- and fluorescently labelled RNA samples reveal multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labelling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection, and disease diagnostics. PMID:25938715

  18. Thermoelectric Properties of Au- Containing Type-I Clathrates Ba8AuxGa16-3xGe30+2x

    SciTech Connect

    Ye, Zuxin; Cho, Jung Young; Tessema, Misle M.; Salvador, James R.; Waldo, Richard A.; Yang, Jihui; Wang, Hsin; Cai, Wei; Kirkham, Melanie J; Yang, Jiong; Zhang, Wenqing

    2014-01-01

    Type I clathrates, with compositions based on Ba8Ga16Ge30, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S2/ where is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution with a thermoelectric figure of merit ZT ~ 0.63 at temperature T = 740 K for the composition Ba8Au5.47Ge39.96. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  19. L'application de l'appareil Suvaglingua de correction phonetique a l'enseignement de l'espagnol aux francophones (The Use of the Suvaglingua Synthesizer for Phonetic Correction in Spanish Courses for French Speakers)

    ERIC Educational Resources Information Center

    Sarmiento, Jose; And Others

    1974-01-01

    Describes the use of the verbo-tonal method of phonetic correction and the Suvaglingua synthesizer in Spanish courses at the International School of Interpreters at Mons, France. (Text is in French.) (PMP)

  20. Application des modèles de Langmuir et Freundlich aux isothermes d'adsorption des métaux lourds par l'argile purifiée

    NASA Astrophysics Data System (ADS)

    Ayari, F.; Srasra, E.; Trabelsi-Ayadi, M.

    2004-12-01

    Bentonite, which consist essentially of clay minerals belonging to the smectite group, have a wide range of chemical and industrial uses. The structure chemical composition, exchangeable-ion type and small crystal size of smectite are responsible for several properties, including a large chemically active surface area, a high cation-exchange capacity and interlamellar surface having usual hydratation characteristics. A sample collected from Zaghouan (North East Tunisia, North Africa) is studied through some physico-chemical methods. Results from X-ray diffraction, chemical analysis, infrared spectroscopy, thermogravimetric analysis (TGA) and differential thermal analysis (DTA), cation exchange capacities, specific and total surfaces, confirm the general smectite character of the sample. The adsorption capacity of this clay was tested out using three metallic ions (Pb2+, Zn2+, Ni2+). The results showed that, in all cases, adsorption can be illustrated by Freundlich or Langmuir isotherms. However, for 10-3M Pb2+ the low value of the correlation coefficient (R2) indicated that the experimental data for the adsorption didn't fit to any linear form of the Langmuir equation. Metal adsorbed onto Zaghouan clay varied in the decreasing order PbPb2+ > Zn2+ > Ni2+ and fitted in satisfactorily with the uptake capacity. For Pb2+ the amount of adsorbed ions remained higher than the CEC (cation exchange capacity) of the clay fraction. This result may be due to adsorption of hydroxy lead complex in addition to sorption of bivalent lead form which explains the high amount of Pb2+ removed from aqueous solution.

  1. Utilisation de la teledetection, des SIG et de l'intelligence artificielle pour determiner le niveau de susceptibilite aux mouvements de terrain: Application dans les Andes de la Bolivie

    NASA Astrophysics Data System (ADS)

    Peloquin, Stephane

    1999-11-01

    The socio-economic impact of mass movements for our society is getting more and more serious. The loss of lives and economic losses are now ten times greater than they were at the beginning of the decade. In the hope of reducing these impacts, it is essential to adopt a preventive policy that will encourage mapping of mass movement susceptibility level (MMSL) in critical zones. However, this task is complex and only experts using present techniques can provide satisfactory results. To make possible the production of these maps by a larger number of individuals, we have developed an expert system called EXPERIM that uses remote sensing data and geographic information systems to facilitate the complex tasks without requiring the user to be highly competent in this field of study. This thesis presents the results obtained from a complete strategy developed for a region surrounding Cochabamba, Bolivia. The operational expert system prototype will soon be integrated within the watershed management program directed by the local executing organisation PROMIC. The knowledge acquisition and its expression in concrete terms constitute the principal axis of this research, while the results obtained are the heart of the EXPERIM expert system. These strategic steps aim to establish a knowledge base of data and rules that describe field conditions for each MMSL. We have been able to extract this information by using binary discriminant analysis of a MMSL map produced by an expert for a pilot zone called Cuenca Taquina, which is geoecologically representative of the 38 neighbouring watersheds. Using this technique, we were able to establish a sensitivity model that recreates the expert's map with a success rate of 89% and 78% when two or three MMS levels are used. Based on a detailed analysis of the susceptibility model it was evident that stability conditions are the result of the topographic, geologic and geomorphologic environments. The level of susceptibility was found to be independent of the vegetation condition. In order to apply the model to the surrounding watersheds, we integrated remotely sensed data within the spatial database to map the presence/absence of five essential geoecological units required by the susceptibility model. This was done using a hierarchical classification method. Three sensors were evaluated: Landsat, SPOT and RADARSAT. In the elaboration of this specific step, we evaluated the most efficient spectral band combinations within each image and between images for each of the five geoecological units. For each of the land cover types, the analysis shows that LANDSAT constitutes the most powerful sensor to map these units and that image fusion does not provide significantly better results when compared to the extra amount of work that this requires. Using remote sensing data instead of field data or airphotograph interpretation in watersheds where only topographic data are available decreases the level of accuracy by less than 10%.

  2. Vers une méthode de réglage expérimentale des commandes PID floues : application aux systèmes électromécaniques

    NASA Astrophysics Data System (ADS)

    Maussion, P.; Hissel, D.

    1998-08-01

    Electrical and electromechanical systems have to satisfy to more and more constrained specifications. Therefore, non-linear control structures must be spread out. Among them, fuzzy logic control can be one interessant and performant alternative. The main handicap of this kind of stucture resides in the fact that the tuning parameters are very numerous. In this paper, we first propose an on-site tuning strategy of this set of parameters in the case of a fuzzy proportionnal-integrative controller based on the experimental designs methodology and on a limited number of pre-defined closed-loop experiments. Then, a complete set of predetermined parameters for a fuzzy proportionnal-integrative-derivative controller will be given. These parameters have been optimized on a specified benchmark according to an IAE criterion. They are calculated like the Ziegler-Nichols or Broïda methodology on conventional controllers; that is, using a single open-loop step response to obtain a model of a first-order plus delay transfert function. Validity limits for this method are provided. Les systèmes électriques ou électromécaniques doivent satisfaire à des spécifications de plus en plus contraignantes qui nécessitent la mise au point de structures de commande non linéaires. Parmi celles-ci, la commande par logique floue constitue une alternative intéressante et performante. Son principal handicap réside dans le nombre très important de paramètres à régler. Dans cet article, nous nous proposons de systématiser ces réglages dans deux cas de figure. Tout d'abord nous utiliserons la méthodologie des plans d'expérimentations pour effectuer un réglage sur site d'un contrôleur flou de type proportionnel-intégral. Ce réglage sera obtenu en ne réalisant qu'un nombre limité d'essais expérimentaux en boucle fermée avec des combinaisons prédéfinies des paramètres à régler. La combinaison optimale de ces paramètres au sens d'un critère de type IAE (Intégrale de la valeur Absolue de l'Erreur) sera déduite de l'exploitation des résultats des essais. Dans un deuxième temps, nous proposerons des réglages prédéfinis et optimisés (au sens du même critère) d'un contrôleur flou de type proportionnel-intégral-dérivé. Ces réglages préétablis ne nécessiteront qu'un seul essai d'identification du système à contrôler en boucle ouverte et peuvent donc se rapprocher des méthodologies classiques et éprouvées de réglage sur site que constituent les réglages de Ziegler-Nichols ou de Broïda pour des contrôleurs conventionnels. Dans cet article, les jeux de paramètres préétablis que nous fournirons seront valables pour des systèmes dont la réponse indicielle en boucle ouverte est modélisable sous la forme d'une fonction de transfert du premier ordre plus un retard pur. Les limites de validité de cette méthode seront précisées.

  3. A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis.

    PubMed

    Moreira, Manuela M; Morais, Simone; Barros, Aquiles A; Delerue-Matos, Cristina; Guido, Luís F

    2012-05-01

    This paper reports a novel application of microwave-assisted extraction (MAE) of polyphenols from brewer's spent grains (BSG). A 2(4) orthogonal composite design was used to obtain the optimal conditions of MAE. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the extraction yield of ferulic acid was investigated through response surface methodology. The results showed that the optimal conditions were 15 min extraction time, 100 °C extraction temperature, 20 mL of solvent, and maximum stirring speed. Under these conditions, the yield of ferulic acid was 1.31 ± 0.04% (w/w), which was fivefold higher than that obtained with conventional solid-liquid extraction techniques. The developed new extraction method considerably reduces extraction time, energy and solvent consumption, while generating fewer wastes. HPLC-DAD-MS analysis indicated that other hydroxycinnamic acids and several ferulic acid dehydrodimers, as well as one dehydrotrimer were also present, confirming that BSG is a valuable source of antioxidant compounds. PMID:22274285

  4. Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of 60Co radionuclide

    NASA Astrophysics Data System (ADS)

    El-Naggar, M. R.

    2014-04-01

    The present work was established to determine the applicability of local Egyptian kaolinite and blast furnace slag (BFS) as raw materials toward the synthesis of geopolymers and subsequent immobilization of cobalt-60, which is one of the most abundant radionuclides generated in radioactive waste streams in Egypt. XRF, XRD, FT-IR, and SEM techniques were used to characterize the local raw materials and their corresponding alkali activated products. Metakaolin (MK) was obtained by thermal treatment of Egyptian Sinai kaolin 750 °C/4 h. MK and five different BFS content (5, 10, 30, 50 and 80%) were used to synthesize geopolymeric matrices using an alkaline activator of Si-modulus = 1.35 at solid/liquid ratios of 0.8. Compressive strength tests were performed indicating that 50% BFS addition gave the highest values of compressive strength. The IAEA standard leaching tests of cobalt-60 from the solidified waste matrices were carried out. The effective diffusion coefficients of cobalt-60 radionuclides from the solidified waste matrices were calculated to be in the order of 10-14 cm2/s. Leaching of radionuclides was examined to be controlled by the wash-off mechanism with very acceptable values. These results gave encouragement that the tested Egyptian raw materials can be conveniently applied for the synthesis of geopolymers that can be used as a low-cost and high-efficiency materials for the immobilization of radioactive waste.

  5. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications.

    PubMed

    Li, Jian-Feng; Rudnev, Alexander; Fu, Yongchun; Bodappa, Nataraju; Wandlowski, Thomas

    2013-10-22

    We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4(-) and SO4(2-) ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces. PMID:24007327

  6. Remote sensing in environmental police investigations: aerial platforms and an innovative application of thermography to detect several illegal activities.

    PubMed

    Lega, M; Ferrara, C; Persechino, G; Bishop, P

    2014-12-01

    Being able to identify the environmental crimes and the guilty parties is central to police investigations, and new technologies enable the authorities to do this faster and more accurately than ever before. In recent years, our research team has introduced the use of a range of aerial platforms and an innovative application of thermography to detect several illegal activities; for example, illegal sanitary sewer and storm-drain connections, illicit wastewater discharges, and other "anomalies" on surface waters can be easily identified using their thermal infrared signatures. It can also be used to detect illegal solid/liquid waste dumps or illicit air discharges. This paper introduces first results of a Thermal Pattern and Thermal Tracking approach that can be used to identify different phenomena and several pollutants. The aims of this paper were to introduce a fingerprint paradigm for environmental police investigations, defining several specific signatures (patterns) that permit the identification of an illicit/anomalous activity, and establish a procedure to use this information to find the correlation (tracking) between the crime and the culprit or the source and the target. PMID:25154683

  7. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications.

    PubMed

    van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick

    2014-08-27

    In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology. PMID:25105260

  8. Teeth and bones: applications of surface science to dental materials and related biomaterials

    NASA Astrophysics Data System (ADS)

    Jones, F. H.

    2001-05-01

    Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.

  9. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    NASA Astrophysics Data System (ADS)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES vapor from penetrating the gel. Simultaneously, the RTIL gel actively decontaminated the substrate by reacting CEES with a sacrificial amine. The RTIL gel barrier was able to decontaminate up to 98% of the CEES applied to a painted steel substrate. Two gel barriers are tested: (1) RTIL gel with a LMOG solidifying agent, and (2) RTIL gel with a polymeric cross-linked network solidifying agent. The polymer gel provided a more mechanically robust barrier, however, the LMOG gel decontaminated at a faster rate. These new applications are but two of many possible applications for RTIL gels. Their negligible vapor pressure affords long term application in ambient conditions and their unique chemistry allows them to be tailored for specific applications.

  10. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.

  11. L'hlium polaris : mthodes et applications

    NASA Astrophysics Data System (ADS)

    Betts, D. S.; Leduc, M.

    Optical pumping is a method for creating large polarizations of electronic and nuclear spins in a gas of helium 4 and of helium 3. Recently some progress was made in this field with tunable infrared lasers. Nuclear polarizations over 50 % were thus obtained in helium 3 at room temperature. These techniques, combined with low temperature ones, allow polarizing to 50 % a relatively dense gas of helium 3 (n 10^18 cm-3) at 4 K. These results give a renewed interest to the applications of polarized helium, several of which are discussed in this article : helium magnetometers, NMR gyroscopes, beams of polarized particles extracted from the helium discharges (ions, electrons, metastable atoms, etc...), targets of polarized helium 3 for nuclear physics, helium 3 fuel for controlled fusion reactors and at last potential use of solid metastable helium for energy storage. Le pompage optique est une mthode qui permet d'atteindre de fortes polarisations de spin lectronique et nuclaire dans un gaz d'hxA9lium 4 ou d'hlium 3. Rcemment des progrs ont t raliss dans ce domaine grce aux lasers infrarouges accordables. Des polarisations nuclaires de 50 % et plus ont ainsi t observes dans l'hlium 3 temprature ambiante. Ces techniques, combines avec celle des basses tempratures, permettent d'obtenir des polarisations d'environ 50 % dans un gaz d'hlium 3 relativement dense (n 10^18 cm-3) 4 K. Ces rsultats ouvrent des perspectives en ce qui concerne les applications de l'hlium polaris, dont plusieurs sont discutes dans cet article : magntomtres hlium, gyroscopes RMN, faisceaux de particules polarises extraits de l'hlium pomp (ions, lectrons, mtastables, etc...), cibles d'hlium 3 polaris pour la physique nuclaire, combustible d'hlium 3 pour les racteurs de fusion contrle et enfin utilisation ventuelle de l'hlium solide mtastable pour le stockage de l'nergie.

  12. Ampleur et impact des évènements indésirables graves liés aux soins: étude d'incidence dans un hôpital du Centre-Est tunisien

    PubMed Central

    Bouafia, Nabiha; Bougmiza, Iheb; Bahri, Fathi; Letaief, Mondher; Astagneau, Pascal; Njah, Mansour

    2013-01-01

    Introduction La prévention des événements indésirables représente une priorité de santé du fait de leur fréquence et de leur gravité potentielle. Ce travail a été mené afin d'avoir un diagnostic de la situation épidémiologique relative aux événements indésirables survenant dans notre hôpital. Méthodes Une étude prospective a été menée auprès de tous les patients qui ont été hospitalisés au CHU Farhat Hached - Sousse (Tunisie) sur une période d'un mois dans quatorze services de l'hôpital. La détection d'évènement indésirable grave (EIG) était basée sur les critères adoptés dans différentes études. Les tests T et Chi 2 ont été utilisés pour identifier les facteurs contribuant à l'apparition d'évènements indésirables. Résultats Au total, 162 EIG ont été identifiés pendant la période. 45% de ces évènements étaient des infections nosocomiales. Ces EIG ont eu comme conséquences un décès chez 9,2% des patients, la mise en jeu du pronostic vital de 26% des patients et la prolongation de la durée de séjour chez 61,7% d'entre eux. L'admission dans des circonstances particulières et l'exposition à des soins invasifs étaient identifiés comme des facteurs de risque potentiels EIG. Conclusion Le renforcement de la stratégie de gestion des risques sanitaires en ciblant préférentiellement le risque infectieux constitue une étape fondamentale dans l'amélioration de la sécurité des patients au sein de notre établissement de santé. PMID:24711868

  13. Coupleurs fibres - metasurfaces aux frequences THz

    NASA Astrophysics Data System (ADS)

    Girard, Martin

    Metamaterials are a class of arficial materials where the electromagnetic properties can be tailored during the design process. Currently demonstrated properties are varied, ranging from frequency filters to enhancement of quentum effects such as photon spin Hall effect. While these materials are mastered from a theoretical point of view, their fabrication is much more complicated. It is generally accepted that metamaterial elements must be under the effective medium limit (Lambda < lambda/10). Moreover, assembly of a 3D periodical system becomes much more complicated for small elements. For this reason, metamaterials are usually printed in 2D, on a surface, which are called metasurfaces. Generally, these are produced for the THz frequencies (˜ 1012 Hz) or lower to have a large wavelength and thus easy fabrication. Working at THz frequencies also carries additional problems. Absorption in traditional optical mediums is typically large (for exemple, BK7 glass has losses of 20 dB / cm) and powers supplied by THz sources are generally weak ( 100 muW for a THz-TDS standard source). Metasurfaces can thus play an important role by replacing traditional mediums. Moreover, we can use the resonant properties of metamaterials to produce sensors and other devices. Currently, the metasurfaces are used in conjuction with a free-space beam instead of a typical waveguide, which may be problematic when implementing devices. A simple solution to this problem is to use the metamaterial as a standard coupler by placing a waveguide above the metasurface. As stated before, we generally consider metasurfaces as effective mediums, where the permittivity is insensitive to the angle of the incident beam. However, a large amount of publications on this subject shows that this is not respected. This can have a huge impact on properties of a coupler based on such a material. First, modelisation is not a simple 2D mode calculation with a simple expression for permittivity. Second, contra-directional coupling becomes permitted due to wavevector becoming close to the periodicity. This work shows modelisation of such a fiber-metasurface coupler while taking account of these problems, with two publications on the subject. The first article modelises the coupler using a 400 mum diameter subwavelength step-index fiber coupled to a metasurface made of SRR on a 700 mum thick fused silica substrate. Frequencies are around 300 GHz (lambda = 1000 mum). We obtain some interesting results. First, the system shows a large number of fine resonances (˜ 1.5 GHz) instead of a single large resonance which would be typically seen on such a metasurface. These are constitued of a both a SRR-bound field and a propagative substrate mode. Second, these resonances are strongly influenced by the fiber-metasurface distance. Third, the spectral position can be easily calculated using a band diagram since they are located at Van Hove singularities. The second article treats of a paper sensor based on such a device. The geometry used is the same as in the first article, except for two differences. First, the substrate thickness has been reduced to 320 mum to lower the amount of substrate modes available. Second, a paper layer was added underneath the substrate. Since the resonances are a mixture of SRR-bound and substrate modes, resonance parameters change with paper properties. The spectral position can be related to paper thickness and real part of the permittivity while the reflectance amplitude is related to the imaginary part of the permittivity. A Clausius-Mossotti model is used to link the imaginary part of epsilon to the water content. Assuming negligible losses for the fiber and substrate, we obtain limit of detections of 10 mum of paper thickness change and 0.02 % V/V for the water content.

  14. Scaling of three-dimensional interconnect technology incorporating low temperature bonds to pitches of 10 µm for infrared focal plane array applications

    NASA Astrophysics Data System (ADS)

    Temple, Dorota S.; Lueck, Matthew R.; Malta, Dean; Vick, Erik P.

    2015-03-01

    This paper focuses on the application of low temperature bonding to the fabrication of three-dimensional (3D) massively parallel signal processors for high performance infrared imagers. We review two generations of the 3D heterogeneous integration process. The first generation process, compatible with pixel sizes in the 20 to 30 µm range, relies on low temperature epoxy bonding that is followed by the formation of copper-filled through-silicon vias (TSVs). The second generation process, scalable to pixel sizes of 10 µm and smaller, employs solid-liquid diffusion bonding of copper-tin to copper at 250 °C the bonding follows TSV fabrication. To demonstrate the second generation process, we fabricated 3D test vehicles in the form of 640 × 512 arrays of vertical interconnects composed of TSVs and metal-metal bonds on a 10 µm pitch. We characterized electrical conductivity of the interconnects, the isolation resistance between the interconnects, and the operability and yield of the arrays. The successful demonstration of the interconnect technology paves the way to a functional demonstration of 3D signal processors in infrared imagers with 10 µm pixels.

  15. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    PubMed

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. PMID:25488284

  16. Surface-immobilized PAMAM-dendrimers modified with cationic or anionic terminal functions: physicochemical surface properties and conformational changes after application of liquid interface stress.

    PubMed

    Katzur, Verena; Eichler, Mirjam; Deigele, Erika; Stage, Christiane; Karageorgiev, Peter; Geis-Gerstorfer, Jürgen; Schmalz, Gottfried; Ruhl, Stefan; Rupp, Frank; Müller, Rainer

    2012-01-15

    Functionalization of surfaces with highly branched dendrimer molecules has gained attractiveness for various applications because the number of functional groups exceeds those of surfaces functionalized with self-assembled monolayers. So far, little is known about the physicochemical properties of dendrimer functionalized surfaces, especially if the flexibility of dendrimer structure remains after covalent immobilization. Therefore, the purpose of this study was to covalently immobilize polyamidoamine (PAMAM) dendrimer molecules exhibiting terminal amine and carboxyl groups to silicon model surfaces and to explore their properties and structure at the solid-air and solid-liquid interface. Our results show that the surface free energy is higher for PAMAM coatings than for analogously terminated SAMs and also higher for carboxyl than amine functionalized coatings. Furthermore, several findings suggest that conformational freedom of the dendrimers was preserved after surface immobilization. Wet compared to dry PAMAMNH(2) surfaces show reduced hydrophilicity and increased contact angle hysteresis, whereas PAMAMCOOH surfaces become more hydrophilic and showed decreased hysteresis. Streaming current measurements showed an unexpected behavior for PAMAMCOOH surfaces in that they reveal a net positive surface charge over a wide pH range in spite of the carboxylated periphery. All of these results indicate a certain degree of masking, burrowing, back-folding and unfolding of functional groups upon environmental changes. PMID:21999956

  17. Influence of hydro-climatic conditions, soil type, and application matrix on potential vadose zone export of PPCPs

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Rao, P.; O'Connor, G.

    2013-12-01

    The land-application of biosolids and animal manure to agricultural fields has the potential to negatively impact the quality of nearby surface and subsurface water due to the presence of emerging contaminants in these residuals. We investigated the extent to which the vadose zone acts as a hydrologic and biogeochemical filter of two emerging contaminants, Triclosan (TCS) and estrone (E1) using a coupled source zone and vadose zone modeling approach. Monte Carlo simulations were run for a year following residual applications to explore the following research questions: (1) how does the application matrix (e.g., de-watered solids, liquid lagoon effluent, etc.) affect PPCP mass fluxes?; (2) how do hydro-climatic conditions and soil type affect PPCP mass fluxes?; (3) what role does the presence of macropore pathways play in PPCP export from the vadose zone; and (4) does the long-term, repeated application of residuals affect the ability of the vadose zone to act as an effective biogeochemical filter? The simulations were conducted for a sub-tropical climate with sand (e.g., Florida) and a humid climate with a silty clay loam (e.g., Midwestern United States). Simulation results suggest that the potential mobility of emerging contaminants increases linearly with increasing fraction applied to the mobile phase of the source zone (i.e., higher PPCP mass fraction in the dissolved phase during application). Following a single application, the total amount of PPCP mass exported from the source zone over the course of a year can be as high as 70% in a sub-tropical climate with sand soil. However, these types of soils do not have macropore flow pathways and the annual PPCP mass exported from the vadose zone is less than 1% of the mass applied. The higher organic carbon content in a silty clay loam reduces the amount of PPCP mass released from the source zone to less than 5% of the mass applied. In the presence of macropore pathways, the silty clay loam's vadose zone acts as a less effective biogeochemical filter than the sand's vadose zone. However, following a single application, Monte Carlo simulations suggest that the annual mass exported from the silty clay loam's vadose zone is less than 0.2% of the applied mass. Additionally, simulation results suggest that the mass exported from the vadose zone of the silty clay loam increases with time when fields receive long-term, repeated residual applications. Thus, field studies conducted with single applications likely underestimate mass fluxes exported from fields with a history of applications.

  18. The application of Cold Atmospheric Plasma (CAP) for the sterilisation of spacecraft materials

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Barczyk, Simon; Morfill, Gregor; Thomas, Hubertus; Satoshi Shimizu, .; Shimizu, Tetsuji; Klaempfl, Tobias

    2012-07-01

    Plasma, oft called the fourth state of matter after solid, liquid and gas, is defined by its ionized state. Ionization can be induced by different means, such as a strong electromagnetic field applied with a microwave generator. The concentration and composition of reactive atoms and molecules produced in Cold Atmospheric Plasma (CAP) depends on the gases used, the gas flow, the power applied, the humidity level etc.. In medicine, low-temperature plasma is already used for the sterilization of surgical instruments, implants and packaging materials as plasma works at the atomic level and is able to reach all surfaces, even the interior of small hollow items like needles. Its ability to sterilise is due to the generation of biologically active bactericidal agents, such as free radicals and UV radiation. In the project PLASMA-DECON (DLR/BMWi support code 50JR1005) a prototype of a device for sterilising spacecraft material and components was built based on the surface micro-discharge (SMD) plasma technology. The produced plasma species are directed into a closed chamber which contains the parts that need to be sterilised. To test the inactivation efficiency of this new device bacterial spores were used as model organisms because in the COSPAR Planetary Protection Policy all bioburden constraints are defined with respect to the number of spores (and other heat-tolerant aerobic microorganisms). Spores from different Bacillus species and strains, i.e. wildtype strains from culture collections and isolates from spacecraft assembly cleanrooms, were dried on three different spacecraft relevant materials and exposed to CAP. The specificity, linearity, precision, and effective range of the device was investigated. From the results obtained it can be concluded that the application of CAP proved to be a suitable method for bioburden reduction / sterilisation in the frame of planetary protection measures and the design of a larger plasma device is planned in the future.

  19. Solid/liquid phase change heat transfer in porous media (Effects of fins on the solidification process)

    SciTech Connect

    Sasaguchi, Kengo . Dept. of Mechanical Engineering); Kusano, Koji ); Nishimizu, Nobumi )

    1994-03-01

    Numerical calculations on the solidification process in a porous medium surrounded by a finned surface were performed using a simple quasi-steady model as well as an accurate finite-difference method, and their results were compared with experimental data. Calculations for the case without fins were also performed for comparison. In addition, the effects of important parameters appearing the governing equations on the solidification process were systematically examined using the finite-difference method. As a result, the finite-difference solutions were in excellent agreement with the experimental ones over a wide range of conditions. The quasi-steady model gives fairly accurate solutions for the case without fins, but the solutions were not sufficiently accurate for the case with fins, especially under conditions for which the solidification rate was large. Among parameters appearing in the governing equations, both the porosity of the porous medium and the ratio of the thermal conductivity of the porous particles to that of ice did not largely affect the solidification process and the fin effectiveness. They were largely affected by changes in the Stefan number and the aspect ratio of the considered region.

  20. Direct observation of ionic structure at solid-liquid interfaces: a deep look into the Stern Layer

    PubMed Central

    Siretanu, Igor; Ebeling, Daniel; Andersson, Martin P.; Stipp, S. L. Svane; Philipse, Albert; Stuart, Martien Cohen; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    The distribution of ions and charge at solid-water interfaces plays an essential role in a wide range of processes in biology, geology and technology. While theoretical models of the solid-electrolyte interface date back to the early 20th century, a detailed picture of the structure of the electric double layer has remained elusive, largely because of experimental techniques have not allowed direct observation of the behaviour of ions, i.e. with subnanometer resolution. We have made use of recent advances in high-resolution Atomic Force Microscopy to reveal, with atomic level precision, the ordered adsorption of the mono- and divalent ions that are common in natural environments to heterogeneous gibbsite/silica surfaces in contact with aqueous electrolytes. Complemented by density functional theory, our experiments produce a detailed picture of the formation of surface phases by templated adsorption of cations, anions and water, stabilized by hydrogen bonding. PMID:24850566

  1. An MCBJ case study: The influence of ?-conjugation on the single-molecule conductance at a solid/liquid interface

    PubMed Central

    Hong, Wenjing; Valkenier, Hennie; Mszros, Gbor; Manrique, David Zsolt; Mishchenko, Artem; Putz, Alexander; Garca, Pavel Moreno; Lambert, Colin J; Hummelen, Jan C

    2011-01-01

    Summary ?-Conjugation plays an important role in charge transport through single molecular junctions. We describe in this paper the construction of a mechanically controlled break-junction setup (MCBJ) equipped with a highly sensitive log IV converter in order to measure ultralow conductances of molecular rods trapped between two gold leads. The current resolution of the setup reaches down to 10 fA. We report single-molecule conductance measurements of an anthracene-based linearly conjugated molecule (AC), of an anthraquinone-based cross-conjugated molecule (AQ), and of a dihydroanthracene-based molecule (AH) with a broken conjugation. The quantitative analysis of complementary currentdistance and currentvoltage measurements revealed details of the influence of ?-conjugation on the single-molecule conductance. PMID:22043460

  2. Multiple angle of incidence, spectroscopic, plasmon-enhanced, internal reflection ellipsometry for the characterization of solid-liquid interface processes

    NASA Astrophysics Data System (ADS)

    Petrik, P.; Agocs, E.; Kalas, B.; Kozma, P.; Fodor, B.; Nador, J.; Major, C.; Fried, M.

    2015-05-01

    A semi-cylindrical lens in Kretschmann geometry combined with a flow cell was designed for a commercial rotating compensator ellipsometer to perform internal reflection spectroscopic ellipsometry measurements, while allowing the use of multiple angles of incidence. A thin glass slide covered with a gold film was mounted between the half-cylindrical lens and a small-volume flow cell ensuring an improved sensitivity for protein adsorption experiments. The performance of the system was investigated depending on the angle of incidence, wavelength range and thickness of the gold films for surface plasmon resonance enhanced ellipsometric measurements, and a sensitivity increase was revealed compared to ellipsometric measurements with standard flow cells, depending on the measurement parameters and configuration. The sensitivity increase was demonstrated for fibrinogen adsorption.

  3. Large-Scale Experimental Study of a Phase Change Material: Shape Identification for the Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Kadri, Soumaya; Dhifaoui, Belgacem; Dutil, Yvan; Jabrallah, Sadok Ben; Rousse, Daniel R.

    2015-11-01

    This study describes the development of an experimental setup that tracks the evolution of the melting and freezing fronts of a Phase Change Material (PCM), in this case paraffin. The results obtained enable the examination of the shape and movement of the melting front of the PCM. Two modes of heat transfer were identified during the melting process: conduction when melting began and natural convection, which becomes dominant in the remainder of the cycle. Monitoring of the melt over time shows that the melt fraction, expressed as the ratio of the molten volume and solid volume, is proportional to the difference between the imposed temperature and the melting temperature. Experimental results confirm the linearity proposed by other researchers.

  4. Effect of oil droplets and their solid/liquid composition on the phase separation of protein-polysaccharide mixtures.

    PubMed

    Hanazawa, Tomohito; Murray, Brent S

    2013-08-01

    The phase separation of a model system consisting of sodium caseinate + xanthan ± a low fraction (up to 3 wt %) of an oil-in-water emulsion was studied at room temperature (20-25 °C). The composition of the oil phase was either 100 wt % n-tetradecane (TD); 50% TD + 50% eicosane (EC) or 100% EC. The droplets in these three "emulsions" were therefore totally liquid, partially solid, and totally solid, respectively. In the presence of 22 mM CaCl2, the mixed TD+EC droplets were most effective at inhibiting phase separation, while the EC emulsions could not prevent phase separation at all. At 32 mM CaCl2 the emulsions tended to promote phase separation, possibly due to enhanced calcium ion-induced droplet aggregation. The apparent interfacial viscosity (ηi) between two macroscopically separated phases was also measured. In the presence of the semisolid mixed droplets ηi = 25 mN s m(-1), significantly higher than ηi with the pure (liquid) TD droplets (15 mN s m(-1)) or with the pure solid EC droplets (12 mN s m(-1)) or in the absence of droplets (<3 mN s m(-1)). Confocal microscopy showed that the microstructure of the phase separating regions also depended upon the composition of the oil droplets, and it is tentatively suggested that the more marked effects of the mixed emulsion droplets were due to them forming a stronger network at the interface via partial coalescence. Control of the extent of interfacial aggregation of droplets is therefore possibly one way to influence the course of phase separation in biopolymer mixtures. PMID:23805874

  5. A Binary Solid-Liquid Phase Diagram Experiment Including Determination of Purity, Enthalpy of Fusion and True Melting Point.

    ERIC Educational Resources Information Center

    Meyer, Edwin F.; Meyer, Joseph A.

    1980-01-01

    Describes an experiment as an alternative to undergraduate experiments limited to high temperature metal systems or lower temperature systems involving objectionable or unstable materials. Lists six advantages of the experiment. (Author/JN)

  6. Effect of surfactants on the rate of solid-liquid mass transfer with gas generation at the interface.

    PubMed

    Taha, A A

    2004-07-01

    The effect of Triton X-100 (nonionic surfactant) and cetyltrimethylammonium bromide (CTAB), cationic surfactant, on the mass transfer coefficient of the cathodic reduction of ferricyanide ions and anodic oxidation of ferrocyanide ions at hydrogen- and oxygen-evolving electrodes, respectively, was studied. It was found that the limiting current decreases by amounts ranging from 26.67 to 54.67% for Triton X-100 and from 20 to 46.0% for CTAB in the case of cathodic reduction of ferricyanide ions under natural convection at H2-evolving electrodes and from 23.81 to 51.43% for Triton X-100 and from 18.10 to 40.95% for CTAB in the case of anodic oxidation of ferrocyanide ions under natural convection at O2-evolving electrodes, depending on the concentration of surfactant. Also the effects of Triton X-100 and CTAB on the gas hold-up and cell voltage were studied. The presence of surfactant in electrolytes was found to decrease the mass transfer coefficient by an amount ranging from 5.37 to 95.9%, depending on the operating conditions. Gas hold-up, cell voltage, and power consumption were found to increase in the presence of surfactant. PMID:15158404

  7. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2003-03-31

    The aim of the project is to develop a knowledge base to help with the design of enhanced process for mobilizing and extracting untrapped oil. We emphasize on evaluating novel surfactant mixtures and on obtaining optimum combinations of the surfactants in chemical flooding EOR process. An understanding of the micellar shape and size is crucial since these physical properties directly determine the crude oil removal efficiency. Analytical ultracentrifugation experiments were used to test the multi-micelle model proposed earlier and formulate the relationships between mixed micelle formation and the surfactant structure. Information on partial specific volume of surfactants and their mixtures is required to treat analytical ultracentrifuge data. In the last report, it was noted that the partial specific volumes of the sugar-based surfactants obtained experimentally did not agree with those from theoretical calculations. A scrutiny of partial specific volumes of the four sugar-based surfactants revealed that conformational changes upon micelle formation are responsible for the large deviation. From sedimentation equilibrium experiments, two types of micelles were identified for the nonionic polyethylene surfactant and its mixtures with the sugar-based surfactant, dodecyl maltoside. The average aggregation numbers of n-dodecyl-{beta}-D-maltoside and nonyl phenol ethoxylated decyl ether agreed with those reported in literature using other techniques. Our study displayed, for the first time, that small micelles might coexist with large micelles at high concentrations due to unique structures of the surfactant although classical thermodynamic theory supports only one type of micelle. Initial dynamic light scattering results support the results for the same mixed surfactant system from analytical ultracentrifuge equilibrium technique. The implication of this finding lies in the fact that efficiency of oil recovery will be improved due to the large micellar size, its polymer-like fluidity and possible reduced adsorption on solids.

  8. Solid-liquid interdiffusion (SLID) bonding in the Au-In system: experimental study and 1D modelling

    NASA Astrophysics Data System (ADS)

    Deillon, Léa; Hessler-Wyser, Aïcha; Hessler, Thierry; Rappaz, Michel

    2015-12-01

    Au-In bonds with a nominal composition of about 60 at.% In were fabricated for use in wafer-level packaging of MEMS. The microstructure of the bonds was studied by scanning electron microscopy. The bond hermeticity was then assessed using oxidation of Cu thin discs predeposited within the sealed packages. The three intermetallic compounds AuIn2, AuIn and Au7In3 were observed. Their thickness evolution during bonding and after subsequent heat treatment was successfully modelled using a finite difference model of diffusion, thermodynamic data and diffusion coefficients calibrated from isothermal diffusion couples. 17% of the packages were hermetic and, although the origin of the leaks could not be clearly identified, it appeared that hermeticity was correlated with the unevenness of the metallisation and/or wafer and the fact that the bonds shrink due to density differences as the relative fractions of the various phases gradually evolve.

  9. Physical Characterization of Solid-Liquid Slurries at High Weight Fractions Using Optical and Ultrasonic Methods, Final Report

    SciTech Connect

    Burgess, Lloyd W.

    2009-09-17

    Remediation of highly radioactive waste is a major technical and programmatic challenge for the DOE. Rapid, on-line physical characterization of highly concentrated slurries is required for the safe and efficient remediation of 90 million gallons of high level radioactive waste (HLW), sodium bearing waste, and mixed waste. The research presented here, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington to directly address the need for rapid on-line characterization of the physical properties of HLW slurries during all phases of the remediation process, from in-tank characterization of sediments to monitoring of the concentration, particle size, and degree of agglomeration and gelation of slurries during transport. Near-surface characterization of the slurry flow in the particle size range from nanometer to micrometer is examined using optical low coherence reflectometry. Volumetric characterization at depths in the slurry flow, up to several centimeters in the particle size range from the micrometer to millimeter, is realized by utilizing ultrasonic backscatter and diffuses fields. One of the strengths, the teaming up of significant talents in both experimental and theoretical optics (University of Washington) and in ultrasonics [Pacific Northwest National Laboratory (PNNL)] provides a synergistic approach to integrate these complimentary techniques. One of the benefits of this combined approach is the physical characterization of HLW over a concentration and particle size range that is broader than can be achieved with today’s technology. This will avoid a costly increase in waste stream volume due to excess dilution, and will lessen chance of plugging pipes that could shut down expensive processing lines.

  10. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    PubMed

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid. PMID:26050969

  11. Superhydrophobic Photosensitizers. Mechanistic Studies of 1O2 Generation in the Plastron and Solid/Liquid Droplet Interface

    PubMed Central

    Aebisher, David; Bartusik, Dorota; Liu, Yang; Zhao, Yuanyuan; Barahman, Mark; Xu, QianFeng; Lyons, Alan M.; Greer, Alexander

    2014-01-01

    We describe here a physical-organic study of the first triphasic superhydrophobic sensitizer for photooxidations in water droplets. Control of synthetic parameters enables the mechanistic study of “borderline” two- and three-phase superhydrophobic sensitizer surfaces where 1O2 is generated in compartments that are wetted, partially wetted, or remain dry in the plastron (i.e., air layer beneath the droplet). The superhydrophobic surface is synthesized by partially embedding silicon phthalocyanine (Pc) sensitizing particles to specific locations on polydimethylsiloxane (PDMS) posts printed in a square array (1 mm tall posts on 0.5 mm pitch). In the presence of red light and oxygen, singlet oxygen is formed on the superhydrophobic surface and reacts with 9,10-anthracene dipropionate dianion (1) within a freestanding water droplet to produce an endoperoxide in 54–72% yields. Control of the 1O2 chemistry was achieved by the synthesis of superhydrophobic surfaces enriched with Pc particles either at the PDMS end-tips or at PDMS post bases. Much of the 1O2 that reacts with anthracene 1 in the droplets was generated by the sensitizer “wetted” at the Pc particle/water droplet interface and gave the highest endoperoxide yields. About 20% of the 1O2 can be introduced into the droplet from the plastron. The results indicate that the superhydrophobic sensitizer surface offers a unique system to study 1O2 transfer routes where a balance of gas and liquid contributions of 1O2 is tunable within the same superhydrophobic surface. PMID:24295210

  12. Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor.

    PubMed

    Prpich, George P; Daugulis, Andrew J

    2005-08-01

    Two phase partitioning bioreactors (TPPBs) operate by partitioning toxic substrates to or from an aqueous, cell-containing phase by means of second immiscible phase. Uptake of toxic substrates by the second phase effectively reduces their concentration within the aqueous phase to sub-inhibitory levels, and transfer of molecules between the phases to maintain equilibrium results in the continual feeding of substrate based on the metabolic demand of the microorganisms. Conventionally, a single pure species of microorganism, and a pure organic solvent, have been used in TPPBs. The present work has demonstrated the benefits of using a mixed microbial population for the degradation of phenol in a TPPB that uses solid polymer beads (comprised of ethylene vinyl acetate, or EVA) as the second phase. Polymer modification via an increase in vinyl acetate concentration was also shown to increase phenol uptake. Microbial consortia were isolated from three biological sources and, based on an evaluation of their kinetic performance, a superior consortium was chosen that offered improved degradation when compared to a pure strain of Pseudomonas putida ATCC 11172. The new microbial consortium used within a TPPB was capable of degrading high concentrations of phenol (approximately 2000 mg l(-1)), with decreased lag time (10 h) and increased specific rate of phenol degradation (0.71 g phenol g(1) cell h). Investigation of the four-member consortium showed that it consisted of two Pseudomonas sp., and two Acinetobacter sp., and tests conducted upon the individual isolates, as well as paired organisms, confirmed the synergistic benefit of their existence within the consortium. The enhanced effects of the use of a microbial consortium now offer improved degradation of phenol, and open the possibility of the degradation of multiple toxic substrates via a polymer-mediated TPPB system. PMID:15865338

  13. TESTING SOLIDS SETTING APPARATUSES FOR DESIGN AND OPERATION OF WET-WEATHER FLOW SOLIDS-LIQUID SEPARATION PROCESSES

    EPA Science Inventory

    This study was a side-by-side comparison of two settling evaluation methods: one traditional and one new. The project investigated whether these column tests were capable of capturing or representing the rapidly settling particles present in wet-weather flows (WWF). The report r...