Science.gov

Sample records for solving large-scale stochastic

  1. Planning under uncertainty solving large-scale stochastic linear programs

    SciTech Connect

    Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  2. ARPACK: Solving large scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Lehoucq, Rich; Maschhoff, Kristi; Sorensen, Danny; Yang, Chao

    2013-11-01

    ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w

  3. Solving large scale traveling salesman problems by chaotic neurodynamics.

    PubMed

    Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki

    2002-03-01

    We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches. PMID:12022514

  4. Solving Large-scale Eigenvalue Problems in SciDACApplications

    SciTech Connect

    Yang, Chao

    2005-06-29

    Large-scale eigenvalue problems arise in a number of DOE applications. This paper provides an overview of the recent development of eigenvalue computation in the context of two SciDAC applications. We emphasize the importance of Krylov subspace methods, and point out its limitations. We discuss the value of alternative approaches that are more amenable to the use of preconditioners, and report the progression using the multi-level algebraic sub-structuring techniques to speed up eigenvalue calculation. In addition to methods for linear eigenvalue problems, we also examine new approaches to solving two types of non-linear eigenvalue problems arising from SciDAC applications.

  5. Solving large scale structure in ten easy steps with COLA

    SciTech Connect

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J. E-mail: matiasz@ias.edu

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  6. Solving large scale structure in ten easy steps with COLA

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J.

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 109Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 1011Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  7. Topology of large-scale engineering problem-solving networks

    NASA Astrophysics Data System (ADS)

    Braha, Dan; Bar-Yam, Yaneer

    2004-01-01

    The last few years have led to a series of discoveries that uncovered statistical properties that are common to a variety of diverse real-world social, information, biological, and technological networks. The goal of the present paper is to investigate the statistical properties of networks of people engaged in distributed problem solving and discuss their significance. We show that problem-solving networks have properties (sparseness, small world, scaling regimes) that are like those displayed by information, biological, and technological networks. More importantly, we demonstrate a previously unreported difference between the distribution of incoming and outgoing links of directed networks. Specifically, the incoming link distributions have sharp cutoffs that are substantially lower than those of the outgoing link distributions (sometimes the outgoing cutoffs are not even present). This asymmetry can be explained by considering the dynamical interactions that take place in distributed problem solving and may be related to differences between each actor’s capacity to process information provided by others and the actor’s capacity to transmit information over the network. We conjecture that the asymmetric link distribution is likely to hold for other human or nonhuman directed networks when nodes represent information processing and using elements.

  8. A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem.

    PubMed

    He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi

    2015-11-01

    A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. PMID:26474934

  9. Tensor-Krylov methods for solving large-scale systems of nonlinear equations.

    SciTech Connect

    Bader, Brett William

    2004-08-01

    This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor methods to large-scale problems by developing three tensor-Krylov methods that base each iteration upon a linear model augmented with a limited second-order term, which provides information lacking in a (nearly) singular Jacobian. The advantage of the new tensor-Krylov methods over existing large-scale tensor methods is their ability to solve the local tensor model to a specified accuracy, which produces a more accurate tensor step. The performance of these methods in comparison to Newton-GMRES and tensor-GMRES is explored on three Navier-Stokes fluid flow problems. The numerical results provide evidence that tensor-Krylov methods are generally more robust and more efficient than Newton-GMRES on some important and difficult problems. In addition, the results show that the new tensor-Krylov methods and tensor- GMRES each perform better in certain situations.

  10. Analysis of some large-scale nonlinear stochastic dynamic systems with subspace-EPC method

    NASA Astrophysics Data System (ADS)

    Er, GuoKang; Iu, VaiPan

    2011-09-01

    The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-EPC) method. The space of the state variables of the large-scale nonlinear stochastic dynamic system excited by Gaussian white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system are then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in the other subspace is formulated. Therefore, the FPK equations in low dimensions are obtained from the original FPK equation in high dimensions and the FPK equations in low dimensions are solvable with the exponential polynomial closure method. Examples about multi-degree-offreedom NSD systems with various polynomial types of nonlinearities in displacements are given to show the effectiveness of the subspace-EPC method in these cases.

  11. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    SciTech Connect

    Liao, Ben-Shan; Bai, Zhaojun; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  12. a Stochastic Approach to Multiobjective Optimization of Large-Scale Water Reservoir Networks

    NASA Astrophysics Data System (ADS)

    Bottacin-Busolin, A.; Worman, A. L.

    2013-12-01

    A main challenge for the planning and management of water resources is the development of multiobjective strategies for operation of large-scale water reservoir networks. The optimal sequence of water releases from multiple reservoirs depends on the stochastic variability of correlated hydrologic inflows and on various processes that affect water demand and energy prices. Although several methods have been suggested, large-scale optimization problems arising in water resources management are still plagued by the high dimensional state space and by the stochastic nature of the hydrologic inflows. In this work, the optimization of reservoir operation is approached using approximate dynamic programming (ADP) with policy iteration and function approximators. The method is based on an off-line learning process in which operating policies are evaluated for a number of stochastic inflow scenarios, and the resulting value functions are used to design new, improved policies until convergence is attained. A case study is presented of a multi-reservoir system in the Dalälven River, Sweden, which includes 13 interconnected reservoirs and 36 power stations. Depending on the late spring and summer peak discharges, the lowlands adjacent to Dalälven can often be flooded during the summer period, and the presence of stagnating floodwater during the hottest months of the year is the cause of a large proliferation of mosquitos, which is a major problem for the people living in the surroundings. Chemical pesticides are currently being used as a preventive countermeasure, which do not provide an effective solution to the problem and have adverse environmental impacts. In this study, ADP was used to analyze the feasibility of alternative operating policies for reducing the flood risk at a reasonable economic cost for the hydropower companies. To this end, mid-term operating policies were derived by combining flood risk reduction with hydropower production objectives. The performance

  13. Quantifying the colour-dependent stochasticity of large-scale structure

    NASA Astrophysics Data System (ADS)

    Patej, Anna; Eisenstein, Daniel

    2016-08-01

    We address the question of whether massive red and blue galaxies trace the same large-scale structure at z ˜ 0.6 using the CMASS sample of galaxies from Data Release 12 of the Sloan Digital Sky Survey III. After splitting the catalogue into subsamples of red and blue galaxies using a simple colour cut, we measure the clustering of both subsamples and construct the correlation coefficient, r, using two statistics. The correlation coefficient quantifies the stochasticity between the two subsamples, which we examine over intermediate scales (20 ≲ R ≲ 100 h-1 Mpc). We find that on these intermediate scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95 taking into account both statistics and r > 0.974 using the favoured statistic.

  14. Quantifying the Colour-Dependent Stochasticity of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Patej, Anna; Eisenstein, Daniel

    2016-03-01

    We address the question of whether massive red and blue galaxies trace the same large-scale structure at z ˜ 0.6 using the CMASS sample of galaxies from Data Release 12 of the Sloan Digital Sky Survey III. After splitting the catalog into subsamples of red and blue galaxies using a simple colour cut, we measure the clustering of both subsamples and construct the correlation coefficient, r, using two statistics. The correlation coefficient quantifies the stochasticity between the two subsamples, which we examine over intermediate scales (20 ≲ R ≲ 100 h-1Mpc). We find that on these intermediate scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95 taking into account both statistics and r > 0.974 using the favored statistic.

  15. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect

    Lenormand, R.; Thiele, M.R.

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  16. Three-Stage Tabu Search for Solving Large-Scale Flow Shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Xu, Yuedong; Tian, Yajie; Sannomiya, Nobuo

    Tabu search is a meta-heuristic approach designed skillfully for finding a suboptimal solution of combinatorial optimization problems. In this paper the tabu search with three stages is proposed for solving large-scale flow shop scheduling problems. In order to obtain a better suboptimal solution in a short computation time, three different candidate lists are used to determine the incumbent solution in the respective search stages. The candidate lists are constructed by restricting the moving of each job. Test problems with four kinds of job data are examined. Based on analyzing the relationship between the candidate list and the suboptimal solution for each job data, a common parameter is given to construct the candidate list during the search process. Comparison of the computation result is made with the genetic algorithm and the basic tabu search, from which it is shown that the proposed tabu search outperforms two others.

  17. From Self-consistency to SOAR: Solving Large Scale NonlinearEigenvalue Problems

    SciTech Connect

    Bai, Zhaojun; Yang, Chao

    2006-02-01

    What is common among electronic structure calculation, design of MEMS devices, vibrational analysis of high speed railways, and simulation of the electromagnetic field of a particle accelerator? The answer: they all require solving large scale nonlinear eigenvalue problems. In fact, these are just a handful of examples in which solving nonlinear eigenvalue problems accurately and efficiently is becoming increasingly important. Recognizing the importance of this class of problems, an invited minisymposium dedicated to nonlinear eigenvalue problems was held at the 2005 SIAM Annual Meeting. The purpose of the minisymposium was to bring together numerical analysts and application scientists to showcase some of the cutting edge results from both communities and to discuss the challenges they are still facing. The minisymposium consisted of eight talks divided into two sessions. The first three talks focused on a type of nonlinear eigenvalue problem arising from electronic structure calculations. In this type of problem, the matrix Hamiltonian H depends, in a non-trivial way, on the set of eigenvectors X to be computed. The invariant subspace spanned by these eigenvectors also minimizes a total energy function that is highly nonlinear with respect to X on a manifold defined by a set of orthonormality constraints. In other applications, the nonlinearity of the matrix eigenvalue problem is restricted to the dependency of the matrix on the eigenvalues to be computed. These problems are often called polynomial or rational eigenvalue problems In the second session, Christian Mehl from Technical University of Berlin described numerical techniques for solving a special type of polynomial eigenvalue problem arising from vibration analysis of rail tracks excited by high-speed trains.

  18. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.

  19. Towards large scale stochastic rainfall models for flood risk assessment in trans-national basins

    NASA Astrophysics Data System (ADS)

    Serinaldi, F.; Kilsby, C. G.

    2012-04-01

    While extensive research has been devoted to rainfall-runoff modelling for risk assessment in small and medium size watersheds, less attention has been paid, so far, to large scale trans-national basins, where flood events have severe societal and economic impacts with magnitudes quantified in billions of Euros. As an example, in the April 2006 flood events along the Danube basin at least 10 people lost their lives and up to 30 000 people were displaced, with overall damages estimated at more than half a billion Euros. In this context, refined analytical methods are fundamental to improve the risk assessment and, then, the design of structural and non structural measures of protection, such as hydraulic works and insurance/reinsurance policies. Since flood events are mainly driven by exceptional rainfall events, suitable characterization and modelling of space-time properties of rainfall fields is a key issue to perform a reliable flood risk analysis based on alternative precipitation scenarios to be fed in a new generation of large scale rainfall-runoff models. Ultimately, this approach should be extended to a global flood risk model. However, as the need of rainfall models able to account for and simulate spatio-temporal properties of rainfall fields over large areas is rather new, the development of new rainfall simulation frameworks is a challenging task involving that faces with the problem of overcoming the drawbacks of the existing modelling schemes (devised for smaller spatial scales), but keeping the desirable properties. In this study, we critically summarize the most widely used approaches for rainfall simulation. Focusing on stochastic approaches, we stress the importance of introducing suitable climate forcings in these simulation schemes in order to account for the physical coherence of rainfall fields over wide areas. Based on preliminary considerations, we suggest a modelling framework relying on the Generalized Additive Models for Location, Scale

  20. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

    NASA Astrophysics Data System (ADS)

    Noor-E-Alam, Md.; Doucette, John

    2015-08-01

    Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

  1. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators

  2. Solving stochastic epidemiological models using computer algebra

    NASA Astrophysics Data System (ADS)

    Hincapie, Doracelly; Ospina, Juan

    2011-06-01

    Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.

  3. A HIERARCHIAL STOCHASTIC MODEL OF LARGE SCALE ATMOSPHERIC CIRCULATION PATTERNS AND MULTIPLE STATION DAILY PRECIPITATION

    EPA Science Inventory

    A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...

  4. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    SciTech Connect

    Gene Golub; Kwok Ko

    2009-03-30

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  5. On large-scale nonlinear programming techniques for solving optimal control problems

    SciTech Connect

    Faco, J.L.D.

    1994-12-31

    The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.

  6. Solving Large-Scale Computational Problems Using Insights from Statistical Physics

    SciTech Connect

    Selman, Bart

    2012-02-29

    Many challenging problems in computer science and related fields can be formulated as constraint satisfaction problems. Such problems consist of a set of discrete variables and a set of constraints between those variables, and represent a general class of so-called NP-complete problems. The goal is to find a value assignment to the variables that satisfies all constraints, generally requiring a search through and exponentially large space of variable-value assignments. Models for disordered systems, as studied in statistical physics, can provide important new insights into the nature of constraint satisfaction problems. Recently, work in this area has resulted in the discovery of a new method for solving such problems, called the survey propagation (SP) method. With SP, we can solve problems with millions of variables and constraints, an improvement of two orders of magnitude over previous methods.

  7. Solving large-scale real-world telecommunication problems using a grid-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Luna, Francisco; Nebro, Antonio; Alba, Enrique; Durillo, Juan

    2008-11-01

    This article analyses the use of a grid-based genetic algorithm (GrEA) to solve a real-world instance of a problem from the telecommunication domain. The problem, known as automatic frequency planning (AFP), is used in a global system for mobile communications (GSM) networks to assign a number of fixed frequencies to a set of GSM transceivers located in the antennae of a cellular phone network. Real data instances of the AFP are very difficult to solve owing to the NP-hard nature of the problem, so combining grid computing and metaheuristics turns out to be a way to provide satisfactory solutions in a reasonable amount of time. GrEA has been deployed on a grid with up to 300 processors to solve an AFP instance of 2612 transceivers. The results not only show that significant running time reductions are achieved, but that the search capability of GrEA clearly outperforms that of the equivalent non-grid algorithm.

  8. On stochastic control system design methods for weakly coupled large scale linear systems.

    NASA Technical Reports Server (NTRS)

    Kwong, R.; Chong, C.-Y.; Athans, M.

    1972-01-01

    This paper considers the problem of decentralized control of two weakly coupled linear stochastic systems, using quadratic performance indices. The basic idea is to have each controller control independently his own system, based upon noisy measurements of his own output. To compensate for the effects of weak coupling upon the resultant performance, fake white plant noise is introduced to each system. The appropriate intensity of the fake plant noise is obtained through the solution of an off-line deterministic matrix optimal control problem. The effects of this design method upon the overall coupled system performance are analyzed as a function of the degree of intersystem coupling.

  9. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Girolami, M.

    2014-11-01

    We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint

  10. A modified priority list-based MILP method for solving large-scale unit commitment problems

    SciTech Connect

    Ke, Xinda; Lu, Ning; Wu, Di; Kintner-Meyer, Michael CW

    2015-07-26

    This paper studies the typical pattern of unit commitment (UC) results in terms of generator’s cost and capacity. A method is then proposed to combine a modified priority list technique with mixed integer linear programming (MILP) for UC problem. The proposed method consists of two steps. At the first step, a portion of generators are predetermined to be online or offline within a look-ahead period (e.g., a week), based on the demand curve and generator priority order. For the generators whose on/off status is predetermined, at the second step, the corresponding binary variables are removed from the UC MILP problem over the operational planning horizon (e.g., 24 hours). With a number of binary variables removed, the resulted problem can be solved much faster using the off-the-shelf MILP solvers, based on the branch-and-bound algorithm. In the modified priority list method, scale factors are designed to adjust the tradeoff between solution speed and level of optimality. It is found that the proposed method can significantly speed up the UC problem with minor compromise in optimality by selecting appropriate scale factors.

  11. Solving Man-Induced Large-Scale Conservation Problems: The Spanish Imperial Eagle and Power Lines

    PubMed Central

    López-López, Pascual; Ferrer, Miguel; Madero, Agustín; Casado, Eva; McGrady, Michael

    2011-01-01

    Background Man-induced mortality of birds caused by electrocution with poorly-designed pylons and power lines has been reported to be an important mortality factor that could become a major cause of population decline of one of the world rarest raptors, the Spanish imperial eagle (Aquila adalberti). Consequently it has resulted in an increasing awareness of this problem amongst land managers and the public at large, as well as increased research into the distribution of electrocution events and likely mitigation measures. Methodology/Principal Findings We provide information of how mitigation measures implemented on a regional level under the conservation program of the Spanish imperial eagle have resulted in a positive shift of demographic trends in Spain. A 35 years temporal data set (1974–2009) on mortality of Spanish imperial eagle was recorded, including population censuses, and data on electrocution and non-electrocution of birds. Additional information was obtained from 32 radio-tracked young eagles and specific field surveys. Data were divided into two periods, before and after the approval of a regional regulation of power line design in 1990 which established mandatory rules aimed at minimizing or eliminating the negative impacts of power lines facilities on avian populations. Our results show how population size and the average annual percentage of population change have increased between the two periods, whereas the number of electrocuted birds has been reduced in spite of the continuous growing of the wiring network. Conclusions Our results demonstrate that solving bird electrocution is an affordable problem if political interest is shown and financial investment is made. The combination of an adequate spatial planning with a sustainable development of human infrastructures will contribute positively to the conservation of the Spanish imperial eagle and may underpin population growth and range expansion, with positive side effects on other endangered

  12. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: Large-scale behavior of the turbulent transport coefficient

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander V.

    2001-04-01

    The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 112 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given.

  13. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.

    PubMed

    Milovanov, A V

    2001-04-01

    The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 11 / 2 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given. PMID:11308983

  14. Solving large-scale dynamic systems using band Lanczos method in Rockwell NASTRAN on CRAY X-MP

    NASA Technical Reports Server (NTRS)

    Gupta, V. K.; Zillmer, S. D.; Allison, R. E.

    1986-01-01

    The improved cost effectiveness using better models, more accurate and faster algorithms and large scale computing offers more representative dynamic analyses. The band Lanczos eigen-solution method was implemented in Rockwell's version of 1984 COSMIC-released NASTRAN finite element structural analysis computer program to effectively solve for structural vibration modes including those of large complex systems exceeding 10,000 degrees of freedom. The Lanczos vectors were re-orthogonalized locally using the Lanczos Method and globally using the modified Gram-Schmidt method for sweeping rigid-body modes and previously generated modes and Lanczos vectors. The truncated band matrix was solved for vibration frequencies and mode shapes using Givens rotations. Numerical examples are included to demonstrate the cost effectiveness and accuracy of the method as implemented in ROCKWELL NASTRAN. The CRAY version is based on RPK's COSMIC/NASTRAN. The band Lanczos method was more reliable and accurate and converged faster than the single vector Lanczos Method. The band Lanczos method was comparable to the subspace iteration method which was a block version of the inverse power method. However, the subspace matrix tended to be fully populated in the case of subspace iteration and not as sparse as a band matrix.

  15. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    DOE PAGESBeta

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

  16. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    SciTech Connect

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.

  17. Locally weighted histogram analysis and stochastic solution for large-scale multi-state free energy estimation

    NASA Astrophysics Data System (ADS)

    Tan, Zhiqiang; Xia, Junchao; Zhang, Bin W.; Levy, Ronald M.

    2016-01-01

    The weighted histogram analysis method (WHAM) including its binless extension has been developed independently in several different contexts, and widely used in chemistry, physics, and statistics, for computing free energies and expectations from multiple ensembles. However, this method, while statistically efficient, is computationally costly or even infeasible when a large number, hundreds or more, of distributions are studied. We develop a locally WHAM (local WHAM) from the perspective of simulations of simulations (SOS), using generalized serial tempering (GST) to resample simulated data from multiple ensembles. The local WHAM equations based on one jump attempt per GST cycle can be solved by optimization algorithms orders of magnitude faster than standard implementations of global WHAM, but yield similarly accurate estimates of free energies to global WHAM estimates. Moreover, we propose an adaptive SOS procedure for solving local WHAM equations stochastically when multiple jump attempts are performed per GST cycle. Such a stochastic procedure can lead to more accurate estimates of equilibrium distributions than local WHAM with one jump attempt per cycle. The proposed methods are broadly applicable when the original data to be "WHAMMED" are obtained properly by any sampling algorithm including serial tempering and parallel tempering (replica exchange). To illustrate the methods, we estimated absolute binding free energies and binding energy distributions using the binding energy distribution analysis method from one and two dimensional replica exchange molecular dynamics simulations for the beta-cyclodextrin-heptanoate host-guest system. In addition to the computational advantage of handling large datasets, our two dimensional WHAM analysis also demonstrates that accurate results similar to those from well-converged data can be obtained from simulations for which sampling is limited and not fully equilibrated.

  18. Comparative study of large scale simulation of underground explosions inalluvium and in fractured granite using stochastic characterization

    NASA Astrophysics Data System (ADS)

    Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.

    2014-12-01

    This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.

  19. Modelling large-scale spatial variability of soil properties with sequential stochastic simulation conditioned by universal kriging in a Hungarian study site

    NASA Astrophysics Data System (ADS)

    Szatmári, Gábor; Barta, Károly; Pásztor, László

    2015-04-01

    Modelling of large-scale spatial variability of soil properties is a promising subject in soil science, as well as in general environmental research, since the resulted model(s) can be applied to solve various problems. In addition to "purely" map an environmental element, the spatial uncertainty of the map product can deduced, specific areas could be identified and/or delineated (contaminated or endangered regions, plots for fertilization, etc.). Geostatistics, which can be regarded as a subset of statistics specialized in analysis and interpretation of geographically referenced data, offer a huge amount of tools to solve these tasks. Numerous spatial modeling methods have been developed in the past decades based on the regionalized variable theory. One of these techniques is sequential stochastic simulation, which can be conditioned with universal kriging (also referred to as regression kriging). As opposed to universal kriging (UK), sequential simulation conditioned with universal kriging (SSUK) provides not just one but several alternative and equally probable "maps", i.e. realizations. The realizations reproduce the global statistics (e.g. sample histogram, variogram), i.e. they reflect/model the reality in a certain global (and not local!) sense. In this paper we present and test SSUK developed in R-code and its utilizations in a water erosion affected study area. Furthermore, we compare the results from UK and SSUK. For this purpose, two soil variables were selected: soil organic matter (SOM) content and rooting depth (RD). SSUK approach is illustrated with a legacy soil dataset from a study area endangered by water erosion in Central Hungary. Legacy soil data was collected in the end of the 1980s in the framework of the National Land Evaluation Programme. Spatially exhaustive covariates were derived from a digital elevation model and from the land-use-map of the study area. SSUK was built upon a UK prediction system for both variables and 200 realizations

  20. A stochastic thermostat algorithm for coarse-grained thermomechanical modeling of large-scale soft matters: Theory and application to microfilaments

    SciTech Connect

    Li, Tong; Gu, YuanTong

    2014-04-15

    As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.

  1. Large-Scale Studies on the Transferability of General Problem-Solving Skills and the Pedagogic Potential of Physics

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, Vijay A.

    2013-01-01

    Research suggests that problem-solving skills are transferable across domains. This claim, however, needs further empirical substantiation. We suggest correlation studies as a methodology for making preliminary inferences about transfer. The correlation of the physics performance of students with their performance in chemistry and mathematics in…

  2. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer.

    PubMed

    Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas

    2016-04-01

    Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper . PMID:27122320

  3. Numerical solution of nonlinear algebraic equations in stiff ODE solving (1986--89)---Quasi-Newton updating for large scale nonlinear systems (1989--90)

    SciTech Connect

    Walker, H.F.

    1990-01-01

    During the 1986--1989 project period, two major areas of research developed into which most of the work fell: matrix-free'' methods for solving linear systems, by which we mean iterative methods that require only the action of the coefficient matrix on vectors and not the coefficient matrix itself, and Newton-like methods for underdetermined nonlinear systems. In the 1990 project period of the renewal grant, a third major area of research developed: inexact Newton and Newton iterative methods and their applications to large-scale nonlinear systems, especially those arising in discretized problems. An inexact Newton method is any method in which each step reduces the norm of the local linear model of the function of interest. A Newton iterative method is any implementation of Newton's method in which the linear systems that characterize Newton steps (the Newton equations'') are solved only approximately using an iterative linear solver. Newton iterative methods are properly considered special cases of inexact Newton methods. We describe the work in these areas and in other areas in this paper.

  4. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  5. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    SciTech Connect

    Heydari, M.H.; Hooshmandasl, M.R.; Cattani, C.; Maalek Ghaini, F.M.

    2015-02-15

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.

  6. Solving the Langevin equation with stochastic algebraically correlated noise

    NASA Astrophysics Data System (ADS)

    Płoszajczak, M.; Srokowski, T.

    1997-05-01

    The long time tail in the velocity and force autocorrelation function has been found recently in molecular dynamics simulations of peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. In this paper we propose a Markovian process, the multidimensional kangaroo process, which permits the description of various algebraically correlated stochastic processes.

  7. A wavelet-based computational method for solving stochastic Itô–Volterra integral equations

    SciTech Connect

    Mohammadi, Fakhrodin

    2015-10-01

    This paper presents a computational method based on the Chebyshev wavelets for solving stochastic Itô–Volterra integral equations. First, a stochastic operational matrix for the Chebyshev wavelets is presented and a general procedure for forming this matrix is given. Then, the Chebyshev wavelets basis along with this stochastic operational matrix are applied for solving stochastic Itô–Volterra integral equations. Convergence and error analysis of the Chebyshev wavelets basis are investigated. To reveal the accuracy and efficiency of the proposed method some numerical examples are included.

  8. Stochastic causality, criticality, and non-locality in brain networks. Comment on "Foundational perspectives on causality in large-scale brain networks" by M. Mannino and S.L. Bressler

    NASA Astrophysics Data System (ADS)

    Kozma, Robert; Hu, Sanqing

    2015-12-01

    For millennia, causality served as a powerful guiding principle to our understanding of natural processes, including the functioning of our body, mind, and brain. The target paper presents an impressive vista of the field of causality in brain networks, starting from philosophical issues, expanding on neuroscience effects, and addressing broad engineering and societal aspects as well. The authors conclude that the concept of stochastic causality is more suited to characterize the experimentally observed complex dynamical processes in large-scale brain networks, rather than the more traditional view of deterministic causality. We strongly support this conclusion and provide two additional examples that may enhance and complement this review: (i) a generalization of the Wiener-Granger Causality (WGC) to fit better the complexity of brain networks; (ii) employment of criticality as a key concept highly relevant to interpreting causality and non-locality in large-scale brain networks.

  9. Stochastic emergence of inflaton fluctuations in a SdS primordial universe with large-scale repulsive gravity from a 5D vacuum

    NASA Astrophysics Data System (ADS)

    Reyes, L. M.; Madriz Aguilar, J. E.; Bellini, M.

    2011-06-01

    We develop a stochastic approach to study scalar-field fluctuations of the inflaton field in an early inflationary universe with a black hole (BH), which is described by an effective 4D Schwarzschild-de Sitter (SdS) metric. This effective 4D metric is the induced metric on a 4D hypersurface, here representing our universe, which is obtained from a 5D Ricci-flat SdS static metric, after implementing a planar coordinate transformation. On this background, we found that at the end of the inflation, the squared fluctuations of the inflaton field are not exactly scale independent and result sensitive to the mass of the BH.

  10. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  11. Solving Parker's transport equation with stochastic differential equations on GPUs

    NASA Astrophysics Data System (ADS)

    Dunzlaff, P.; Strauss, R. D.; Potgieter, M. S.

    2015-07-01

    The numerical solution of transport equations for energetic charged particles in space is generally very costly in terms of time. Besides the use of multi-core CPUs and computer clusters in order to decrease the computation times, high performance calculations on graphics processing units (GPUs) have become available during the last years. In this work we introduce and describe a GPU-accelerated implementation of Parker's equation using Stochastic Differential Equations (SDEs) for the simulation of the transport of energetic charged particles with the CUDA toolkit, which is the focus of this work. We briefly discuss the set of SDEs arising from Parker's transport equation and their application to boundary value problems such as that of the Jovian magnetosphere. We compare the runtimes of the GPU code with a CPU version of the same algorithm. Compared to the CPU implementation (using OpenMP and eight threads) we find a performance increase of about a factor of 10-60, depending on the assumed set of parameters. Furthermore, we benchmark our simulation using the results of an existing SDE implementation of Parker's transport equation.

  12. Large Scale Computing

    NASA Astrophysics Data System (ADS)

    Capiluppi, Paolo

    2005-04-01

    Large Scale Computing is acquiring an important role in the field of data analysis and treatment for many Sciences and also for some Social activities. The present paper discusses the characteristics of Computing when it becomes "Large Scale" and the current state of the art for some particular application needing such a large distributed resources and organization. High Energy Particle Physics (HEP) Experiments are discussed in this respect; in particular the Large Hadron Collider (LHC) Experiments are analyzed. The Computing Models of LHC Experiments represent the current prototype implementation of Large Scale Computing and describe the level of maturity of the possible deployment solutions. Some of the most recent results on the measurements of the performances and functionalities of the LHC Experiments' testing are discussed.

  13. PySP : modeling and solving stochastic mixed-integer programs in Python.

    SciTech Connect

    Woodruff, David L.; Watson, Jean-Paul

    2010-08-01

    Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.

  14. On combination of strict Bayesian principles with model reduction technique or how stochastic model calibration can become feasible for large-scale applications

    NASA Astrophysics Data System (ADS)

    Oladyshkin, S.; Schroeder, P.; Class, H.; Nowak, W.

    2013-12-01

    Predicting underground carbon dioxide (CO2) storage represents a challenging problem in a complex dynamic system. Due to lacking information about reservoir parameters, quantification of uncertainties may become the dominant question in risk assessment. Calibration on past observed data from pilot-scale test injection can improve the predictive power of the involved geological, flow, and transport models. The current work performs history matching to pressure time series from a pilot storage site operated in Europe, maintained during an injection period. Simulation of compressible two-phase flow and transport (CO2/brine) in the considered site is computationally very demanding, requiring about 12 days of CPU time for an individual model run. For that reason, brute-force approaches for calibration are not feasible. In the current work, we explore an advanced framework for history matching based on the arbitrary polynomial chaos expansion (aPC) and strict Bayesian principles. The aPC [1] offers a drastic but accurate stochastic model reduction. Unlike many previous chaos expansions, it can handle arbitrary probability distribution shapes of uncertain parameters, and can therefore handle directly the statistical information appearing during the matching procedure. We capture the dependence of model output on these multipliers with the expansion-based reduced model. In our study we keep the spatial heterogeneity suggested by geophysical methods, but consider uncertainty in the magnitude of permeability trough zone-wise permeability multipliers. Next combined the aPC with Bootstrap filtering (a brute-force but fully accurate Bayesian updating mechanism) in order to perform the matching. In comparison to (Ensemble) Kalman Filters, our method accounts for higher-order statistical moments and for the non-linearity of both the forward model and the inversion, and thus allows a rigorous quantification of calibrated model uncertainty. The usually high computational costs of

  15. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  16. Stochastic pattern transitions in large scale swarms

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira; Lindley, Brandon; Mier-Y-Teran, Luis

    2013-03-01

    We study the effects of time dependent noise and discrete, randomly distributed time delays on the dynamics of a large coupled system of self-propelling particles. Bifurcation analysis on a mean field approximation of the system reveals that the system possesses patterns with certain universal characteristics that depend on distinguished moments of the time delay distribution. We show both theoretically and numerically that although bifurcations of simple patterns, such as translations, change stability only as a function of the first moment of the time delay distribution, more complex bifurcating patterns depend on all of the moments of the delay distribution. In addition, we show that for sufficiently large values of the coupling strength and/or the mean time delay, there is a noise intensity threshold, dependent on the delay distribution width, that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent. Research supported by the Office of Naval Research

  17. Numerical solution of nonlinear algebraic equations in stiff ODE solving (1986--89)---Quasi-Newton updating for large scale nonlinear systems (1989--90). Final report, 1986--1990

    SciTech Connect

    Walker, H.F.

    1990-12-31

    During the 1986--1989 project period, two major areas of research developed into which most of the work fell: ``matrix-free`` methods for solving linear systems, by which we mean iterative methods that require only the action of the coefficient matrix on vectors and not the coefficient matrix itself, and Newton-like methods for underdetermined nonlinear systems. In the 1990 project period of the renewal grant, a third major area of research developed: inexact Newton and Newton iterative methods and their applications to large-scale nonlinear systems, especially those arising in discretized problems. An inexact Newton method is any method in which each step reduces the norm of the local linear model of the function of interest. A Newton iterative method is any implementation of Newton`s method in which the linear systems that characterize Newton steps (the ``Newton equations``) are solved only approximately using an iterative linear solver. Newton iterative methods are properly considered special cases of inexact Newton methods. We describe the work in these areas and in other areas in this paper.

  18. Large scale tracking algorithms.

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  19. Large scale traffic simulations

    SciTech Connect

    Nagel, K.; Barrett, C.L.; Rickert, M.

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  20. Very Large Scale Optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)

    2002-01-01

    The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.

  1. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  2. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Duboscq, Romain

    2015-08-01

    GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

  3. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    SciTech Connect

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-12-10

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  4. Using genetic algorithm to solve a new multi-period stochastic optimization model

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Li; Zhang, Ke-Cun

    2009-09-01

    This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren't considered in that paper. In this paper, we improve Hibiki's model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.

  5. Challenges for Large Scale Simulations

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2010-03-01

    With computational approaches becoming ubiquitous the growing impact of large scale computing on research influences both theoretical and experimental work. I will review a few examples in condensed matter physics and quantum optics, including the impact of computer simulations in the search for supersolidity, thermometry in ultracold quantum gases, and the challenging search for novel phases in strongly correlated electron systems. While only a decade ago such simulations needed the fastest supercomputers, many simulations can now be performed on small workstation clusters or even a laptop: what was previously restricted to a few experts can now potentially be used by many. Only part of the gain in computational capabilities is due to Moore's law and improvement in hardware. Equally impressive is the performance gain due to new algorithms - as I will illustrate using some recently developed algorithms. At the same time modern peta-scale supercomputers offer unprecedented computational power and allow us to tackle new problems and address questions that were impossible to solve numerically only a few years ago. While there is a roadmap for future hardware developments to exascale and beyond, the main challenges are on the algorithmic and software infrastructure side. Among the problems that face the computational physicist are: the development of new algorithms that scale to thousands of cores and beyond, a software infrastructure that lifts code development to a higher level and speeds up the development of new simulation programs for large scale computing machines, tools to analyze the large volume of data obtained from such simulations, and as an emerging field provenance-aware software that aims for reproducibility of the complete computational workflow from model parameters to the final figures. Interdisciplinary collaborations and collective efforts will be required, in contrast to the cottage-industry culture currently present in many areas of computational

  6. A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions

    SciTech Connect

    Heydari, M.H.; Hooshmandasl, M.R.; Maalek Ghaini, F.M.; Cattani, C.

    2014-08-01

    In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show the accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.

  7. Fractals and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale structure can be fit with a 'limited' fractal with dimension D of about 1.2. This is not a 'pure' fractal out to the horizon: the distribution shifts from power law to random behavior at some large scale. If the observed patterns and structures are formed through an aggregation growth process, the fractal dimension D can serve as an interesting constraint on the properties of the stochastic motion responsible for limiting the fractal structure. In particular, it is found that the observed fractal should have grown from two-dimensional sheetlike objects such as pancakes, domain walls, or string wakes. This result is generic and does not depend on the details of the growth process.

  8. Solving Stochastic Flexible Flow Shop Scheduling Problems with a Decomposition-Based Approach

    NASA Astrophysics Data System (ADS)

    Wang, K.; Choi, S. H.

    2010-06-01

    Real manufacturing is dynamic and tends to suffer a lot of uncertainties. Research on production scheduling under uncertainty has recently received much attention. Although various approaches have been developed for scheduling under uncertainty, this problem is still difficult to tackle by any single approach, because of its inherent difficulties. This chapter describes a decomposition-based approach (DBA) for makespan minimisation of a flexible flow shop (FFS) scheduling problem with stochastic processing times. The DBA decomposes an FFS into several machine clusters which can be solved more easily by different approaches. A neighbouring K-means clustering algorithm is developed to firstly group the machines of an FFS into an appropriate number of machine clusters, based on a weighted cluster validity index. A back propagation network (BPN) is then adopted to assign either the Shortest Processing Time (SPT) Algorithm or the Genetic Algorithm (GA) to generate a sub-schedule for each machine cluster. After machine grouping and approach assignment, an overall schedule is generated by integrating the sub-schedules of the machine clusters. Computation results reveal that the DBA is superior to SPT and GA alone for FFS scheduling under stochastic processing times, and that it can be easily adapted to schedule FFS under other uncertainties.

  9. Galaxy clustering on large scales.

    PubMed

    Efstathiou, G

    1993-06-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  10. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  11. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  12. Microfluidic large-scale integration.

    PubMed

    Thorsen, Todd; Maerkl, Sebastian J; Quake, Stephen R

    2002-10-18

    We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. We used these integrated microfluidic networks to construct the microfluidic analog of a comparator array and a microfluidic memory storage device whose behavior resembles random-access memory. PMID:12351675

  13. Survey of decentralized control methods. [for large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.

  14. Solving difficult problems creatively: a role for energy optimised deterministic/stochastic hybrid computing

    PubMed Central

    Palmer, Tim N.; O’Shea, Michael

    2015-01-01

    How is the brain configured for creativity? What is the computational substrate for ‘eureka’ moments of insight? Here we argue that creative thinking arises ultimately from a synergy between low-energy stochastic and energy-intensive deterministic processing, and is a by-product of a nervous system whose signal-processing capability per unit of available energy has become highly energy optimised. We suggest that the stochastic component has its origin in thermal (ultimately quantum decoherent) noise affecting the activity of neurons. Without this component, deterministic computational models of the brain are incomplete. PMID:26528173

  15. Large scale topography of Io

    NASA Technical Reports Server (NTRS)

    Gaskell, R. W.; Synnott, S. P.

    1987-01-01

    To investigate the large scale topography of the Jovian satellite Io, both limb observations and stereographic techniques applied to landmarks are used. The raw data for this study consists of Voyager 1 images of Io, 800x800 arrays of picture elements each of which can take on 256 possible brightness values. In analyzing this data it was necessary to identify and locate landmarks and limb points on the raw images, remove the image distortions caused by the camera electronics and translate the corrected locations into positions relative to a reference geoid. Minimizing the uncertainty in the corrected locations is crucial to the success of this project. In the highest resolution frames, an error of a tenth of a pixel in image space location can lead to a 300 m error in true location. In the lowest resolution frames, the same error can lead to an uncertainty of several km.

  16. The ESPAT tool: a general-purpose DSS shell for solving stochastic optimization problems in complex river-aquifer systems

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Tilmant, Amaury

    2015-04-01

    Stochastic programming methods are better suited to deal with the inherent uncertainty of inflow time series in water resource management. However, one of the most important hurdles in their use in practical implementations is the lack of generalized Decision Support System (DSS) shells, usually based on a deterministic approach. The purpose of this contribution is to present a general-purpose DSS shell, named Explicit Stochastic Programming Advanced Tool (ESPAT), able to build and solve stochastic programming problems for most water resource systems. It implements a hydro-economic approach, optimizing the total system benefits as the sum of the benefits obtained by each user. It has been coded using GAMS, and implements a Microsoft Excel interface with a GAMS-Excel link that allows the user to introduce the required data and recover the results. Therefore, no GAMS skills are required to run the program. The tool is divided into four modules according to its capabilities: 1) the ESPATR module, which performs stochastic optimization procedures in surface water systems using a Stochastic Dual Dynamic Programming (SDDP) approach; 2) the ESPAT_RA module, which optimizes coupled surface-groundwater systems using a modified SDDP approach; 3) the ESPAT_SDP module, capable of performing stochastic optimization procedures in small-size surface systems using a standard SDP approach; and 4) the ESPAT_DET module, which implements a deterministic programming procedure using non-linear programming, able to solve deterministic optimization problems in complex surface-groundwater river basins. The case study of the Mijares river basin (Spain) is used to illustrate the method. It consists in two reservoirs in series, one aquifer and four agricultural demand sites currently managed using historical (XIV century) rights, which give priority to the most traditional irrigation district over the XX century agricultural developments. Its size makes it possible to use either the SDP or

  17. Large Scale Homing in Honeybees

    PubMed Central

    Pahl, Mario; Zhu, Hong; Tautz, Jürgen; Zhang, Shaowu

    2011-01-01

    Honeybee foragers frequently fly several kilometres to and from vital resources, and communicate those locations to their nest mates by a symbolic dance language. Research has shown that they achieve this feat by memorizing landmarks and the skyline panorama, using the sun and polarized skylight as compasses and by integrating their outbound flight paths. In order to investigate the capacity of the honeybees' homing abilities, we artificially displaced foragers to novel release spots at various distances up to 13 km in the four cardinal directions. Returning bees were individually registered by a radio frequency identification (RFID) system at the hive entrance. We found that homing rate, homing speed and the maximum homing distance depend on the release direction. Bees released in the east were more likely to find their way back home, and returned faster than bees released in any other direction, due to the familiarity of global landmarks seen from the hive. Our findings suggest that such large scale homing is facilitated by global landmarks acting as beacons, and possibly the entire skyline panorama. PMID:21602920

  18. Enhanced decomposition algorithm for multistage stochastic hydroelectric scheduling. Technical report

    SciTech Connect

    Morton, D.P.

    1994-01-01

    Handling uncertainty in natural inflow is an important part of a hydroelectric scheduling model. In a stochastic programming formulation, natural inflow may be modeled as a random vector with known distribution, but the size of the resulting mathematical program can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We develop an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of stochastic hydroelectric scheduling problems. Stochastic programming, Hydroelectric scheduling, Large-scale Systems.

  19. Solving the problem of imaging resolution: stochastic multi-scale image fusion

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Mallants, Dirk; Gilyazetdinova, Dina; Gerke, Kiril

    2016-04-01

    Structural features of porous materials define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, gas exchange between biologically active soil root zone and atmosphere, etc.) and solute transport. To characterize soil and rock microstructure X-ray microtomography is extremely useful. However, as any other imaging technique, this one also has a significant drawback - a trade-off between sample size and resolution. The latter is a significant problem for multi-scale complex structures, especially such as soils and carbonates. Other imaging techniques, for example, SEM/FIB-SEM or X-ray macrotomography can be helpful in obtaining higher resolution or wider field of view. The ultimate goal is to create a single dataset containing information from all scales or to characterize such multi-scale structure. In this contribution we demonstrate a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images representing macro, micro and nanoscale spatial information on porous media structure. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Potential practical applications of this method are abundant in soil science, hydrology and petroleum engineering, as well as other geosciences. This work was partially supported by RSF grant 14-17-00658 (X-ray microtomography study of shale

  20. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  1. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  2. A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Chen, Xianshun; Feng, Liang; Ong, Yew Soon

    2012-07-01

    In this article, we proposed a self-adaptive memeplex robust search (SAMRS) for finding robust and reliable solutions that are less sensitive to stochastic behaviours of customer demands and have low probability of route failures, respectively, in vehicle routing problem with stochastic demands (VRPSD). In particular, the contribution of this article is three-fold. First, the proposed SAMRS employs the robust solution search scheme (RS 3) as an approximation of the computationally intensive Monte Carlo simulation, thus reducing the computation cost of fitness evaluation in VRPSD, while directing the search towards robust and reliable solutions. Furthermore, a self-adaptive individual learning based on the conceptual modelling of memeplex is introduced in the SAMRS. Finally, SAMRS incorporates a gene-meme co-evolution model with genetic and memetic representation to effectively manage the search for solutions in VRPSD. Extensive experimental results are then presented for benchmark problems to demonstrate that the proposed SAMRS serves as an efficable means of generating high-quality robust and reliable solutions in VRPSD.

  3. Reinforcement Learning in Large Scale Systems Using State Generalization and Multi-Agent Techniques

    NASA Astrophysics Data System (ADS)

    Kimura, Hajime; Aoki, Kei; Kobayashi, Shigenobu

    This paper introduces several problems in reinforcement learning of industrial applications, and shows some techniques to overcome it. Reinforcement learning is known as on-line learning of an input-output mapping through a process of trial and error interactions with its uncertain environment, however, the trial and error will cause fatal damages in real applications. We introduce a planning method, based on reinforcement learning in the simulator. It can be seen as a stochastic approximation of dynamic programming in Markov decision processes. But in large problems, simple grid-tiling to quantize state space for tabular Q-learning is still infeasible. We introduce a generalization technique to approximate value functions in continuous state space, and a multiagent architecture to solve large scale problems. The efficiency of these techniques are shown through experiments in a sewage water-flow control system.

  4. On the decentralized control of large-scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chong, C.

    1973-01-01

    The decentralized control of stochastic large scale systems was considered. Particular emphasis was given to control strategies which utilize decentralized information and can be computed in a decentralized manner. The deterministic constrained optimization problem is generalized to the stochastic case when each decision variable depends on different information and the constraint is only required to be satisfied on the average. For problems with a particular structure, a hierarchical decomposition is obtained. For the stochastic control of dynamic systems with different information sets, a new kind of optimality is proposed which exploits the coupled nature of the dynamic system. The subsystems are assumed to be uncoupled and then certain constraints are required to be satisfied, either in a off-line or on-line fashion. For off-line coordination, a hierarchical approach of solving the problem is obtained. The lower level problems are all uncoupled. For on-line coordination, distinction is made between open loop feedback optimal coordination and closed loop optimal coordination.

  5. Turbulent large-scale structure effects on wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Y.-A.; Masson, C.; Aubrun, S.

    2015-06-01

    This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is

  6. Stochastic Set-Based Particle Swarm Optimization Based on Local Exploration for Solving the Carpool Service Problem.

    PubMed

    Chou, Sheng-Kai; Jiau, Ming-Kai; Huang, Shih-Chia

    2016-08-01

    The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP. PMID:26890944

  7. Solving the chemical master equation by a fast adaptive finite state projection based on the stochastic simulation algorithm.

    PubMed

    Sidje, R B; Vo, H D

    2015-11-01

    The mathematical framework of the chemical master equation (CME) uses a Markov chain to model the biochemical reactions that are taking place within a biological cell. Computing the transient probability distribution of this Markov chain allows us to track the composition of molecules inside the cell over time, with important practical applications in a number of areas such as molecular biology or medicine. However the CME is typically difficult to solve, since the state space involved can be very large or even countably infinite. We present a novel way of using the stochastic simulation algorithm (SSA) to reduce the size of the finite state projection (FSP) method. Numerical experiments that demonstrate the effectiveness of the reduction are included. PMID:26319118

  8. Quantum Noise in Large-Scale Coherent Nonlinear Photonic Circuits

    NASA Astrophysics Data System (ADS)

    Santori, Charles; Pelc, Jason S.; Beausoleil, Raymond G.; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-06-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasiprobability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total and functions as a four-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important property for scalability.

  9. Large-Scale Reform Comes of Age

    ERIC Educational Resources Information Center

    Fullan, Michael

    2009-01-01

    This article reviews the history of large-scale education reform and makes the case that large-scale or whole system reform policies and strategies are becoming increasingly evident. The review briefly addresses the pre 1997 period concluding that while the pressure for reform was mounting that there were very few examples of deliberate or…

  10. Large-scale infrared scene projectors

    NASA Astrophysics Data System (ADS)

    Murray, Darin A.

    1999-07-01

    Large-scale infrared scene projectors, typically have unique opto-mechanical characteristics associated to their application. This paper outlines two large-scale zoom lens assemblies with different environmental and package constraints. Various challenges and their respective solutions are discussed and presented.

  11. Scaling and Criticality in Large-Scale Neuronal Activity

    NASA Astrophysics Data System (ADS)

    Linkenkaer-Hansen, K.

    The human brain during wakeful rest spontaneously generates large-scale neuronal network oscillations at around 10 and 20 Hz that can be measured non-invasively using magnetoencephalography (MEG) or electroencephalography (EEG). In this chapter, spontaneous oscillations are viewed as the outcome of a self-organizing stochastic process. The aim is to introduce the general prerequisites for stochastic systems to evolve to the critical state and to explain their neurophysiological equivalents. I review the recent evidence that the theory of self-organized criticality (SOC) may provide a unifying explanation for the large variability in amplitude, duration, and recurrence of spontaneous network oscillations, as well as the high susceptibility to perturbations and the long-range power-law temporal correlations in their amplitude envelope.

  12. Sensitivity technologies for large scale simulation.

    SciTech Connect

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  13. Synthesis of small and large scale dynamos

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy

    Using a closure model for the evolution of magnetic correlations, we uncover an interesting plausible saturated state of the small-scale fluctuation dynamo (SSD) and a novel analogy between quantum mechanical tunnelling and the generation of large-scale fields. Large scale fields develop via the α-effect, but as magnetic helicity can only change on a resistive timescale, the time it takes to organize the field into large scales increases with magnetic Reynolds number. This is very similar to the results which obtain from simulations using the full MHD equations.

  14. Relic vector field and CMB large scale anomalies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  15. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  16. Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs

    SciTech Connect

    Infanger, G.

    1993-11-01

    The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.

  17. THE LOSS OF ACCURACY OF STOCHASTIC COLLOCATION METHOD IN SOLVING NONLINEAR DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA

    SciTech Connect

    Webster, Clayton G; Tran, Hoang A; Trenchea, Catalin S

    2013-01-01

    n this paper we show how stochastic collocation method (SCM) could fail to con- verge for nonlinear differential equations with random coefficients. First, we consider Navier-Stokes equation with uncertain viscosity and derive error estimates for stochastic collocation discretization. Our analysis gives some indicators on how the nonlinearity negatively affects the accuracy of the method. The stochastic collocation method is then applied to noisy Lorenz system. Simulation re- sults demonstrate that the solution of a nonlinear equation could be highly irregular on the random data and in such cases, stochastic collocation method cannot capture the correct solution.

  18. Decomposition and coordination of large-scale operations optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Ruoyu

    Nowadays, highly integrated manufacturing has resulted in more and more large-scale industrial operations. As one of the most effective strategies to ensure high-level operations in modern industry, large-scale engineering optimization has garnered a great amount of interest from academic scholars and industrial practitioners. Large-scale optimization problems frequently occur in industrial applications, and many of them naturally present special structure or can be transformed to taking special structure. Some decomposition and coordination methods have the potential to solve these problems at a reasonable speed. This thesis focuses on three classes of large-scale optimization problems: linear programming, quadratic programming, and mixed-integer programming problems. The main contributions include the design of structural complexity analysis for investigating scaling behavior and computational efficiency of decomposition strategies, novel coordination techniques and algorithms to improve the convergence behavior of decomposition and coordination methods, as well as the development of a decentralized optimization framework which embeds the decomposition strategies in a distributed computing environment. The complexity study can provide fundamental guidelines to practical applications of the decomposition and coordination methods. In this thesis, several case studies imply the viability of the proposed decentralized optimization techniques for real industrial applications. A pulp mill benchmark problem is used to investigate the applicability of the LP/QP decentralized optimization strategies, while a truck allocation problem in the decision support of mining operations is used to study the MILP decentralized optimization strategies.

  19. Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their

  20. Robust large-scale parallel nonlinear solvers for simulations.

    SciTech Connect

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write

  1. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  2. Large-scale inhomogeneities and galaxy statistics

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1984-01-01

    The density fluctuations associated with the formation of large-scale cosmic pancake-like and filamentary structures are evaluated using the Zel'dovich approximation for the evolution of nonlinear inhomogeneities in the expanding universe. It is shown that the large-scale nonlinear density fluctuations in the galaxy distribution due to pancakes modify the standard scale-invariant correlation function xi(r) at scales comparable to the coherence length of adiabatic fluctuations. The typical contribution of pancakes and filaments to the J3 integral, and more generally to the moments of galaxy counts in a volume of approximately (15-40 per h Mpc)exp 3, provides a statistical test for the existence of large scale inhomogeneities. An application to several recent three dimensional data sets shows that despite large observational uncertainties over the relevant scales characteristic features may be present that can be attributed to pancakes in most, but not all, of the various galaxy samples.

  3. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  4. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  5. A Large Scale Computer Terminal Output Controller.

    ERIC Educational Resources Information Center

    Tucker, Paul Thomas

    This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…

  6. Large Scale Commodity Clusters for Lattice QCD

    SciTech Connect

    A. Pochinsky; W. Akers; R. Brower; J. Chen; P. Dreher; R. Edwards; S. Gottlieb; D. Holmgren; P. Mackenzie; J. Negele; D. Richards; J. Simone; W. Watson

    2002-06-01

    We describe the construction of large scale clusters for lattice QCD computing being developed under the umbrella of the U.S. DoE SciDAC initiative. We discuss the study of floating point and network performance that drove the design of the cluster, and present our plans for future multi-Terascale facilities.

  7. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  8. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-07-01

    The Jacksonville Electric Authority's large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy's Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process in included.

  9. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-04-01

    The Jacksonville Electric Authority`s large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy`s Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process is included.

  10. Foundational perspectives on causality in large-scale brain networks.

    PubMed

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain. PMID:26429630

  11. Foundational perspectives on causality in large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain.

  12. Novel algorithm of large-scale simultaneous linear equations.

    PubMed

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-02-24

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented. PMID:21386384

  13. Population generation for large-scale simulation

    NASA Astrophysics Data System (ADS)

    Hannon, Andrew C.; King, Gary; Morrison, Clayton; Galstyan, Aram; Cohen, Paul

    2005-05-01

    Computer simulation is used to research phenomena ranging from the structure of the space-time continuum to population genetics and future combat.1-3 Multi-agent simulations in particular are now commonplace in many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain. In multi-agent simulation, this means that the modeling must include both the agents and their relationships. Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale, intelligence and so forth). Though these can interact - for example, agent height is related to agent weight - they are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity, and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the role and proper use of these techniques, however, remains the subject of ongoing research. We recently encountered these complexities while building large scale social simulations.9-11 One of these, the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a "society in a box" consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look just like benign hats but act like terrorists. Population structure can make covert hat identification significantly more

  14. New methods for large scale local and global optimization

    NASA Astrophysics Data System (ADS)

    Byrd, Richard; Schnabel, Robert

    1994-07-01

    We have pursued all three topics described in the proposal during this research period. A large amount of effort has gone into the development of large scale global optimization methods for molecular configuration problems. We have developed new general purpose methods that combine efficient stochastic global optimization techniques with several new, more deterministic techniques that account for most of the computational effort, and the success, of the methods. We have applied our methods to Lennard-Jones problems with up to 75 atoms, to water clusters with up to 31, molecules, and polymers with up to 58 amino acids. The results appear to be the best so far by general purpose optimization methods, and appear to be leading to some interesting chemistry issues. Our research on the second topic, tensor methods, has addressed several areas. We have designed and implemented tensor methods for large sparse systems of nonlinear equations and nonlinear least squares, and have obtained excellent test results on a wide range of problems. We have also developed new tensor methods for nonlinearly constrained optimization problem, and have obtained promising theoretical and preliminary computational results. Finally, on the third topic, limited memory methods for large scale optimization, we have developed and implemented new, extremely efficient limited memory methods for bound constrained problems, and new limited memory trust regions methods, both using our-recently developed compact representations for quasi-Newton matrices. Computational test results for both methods are promising.

  15. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  16. Large-scale extraction of proteins.

    PubMed

    Cunha, Teresa; Aires-Barros, Raquel

    2002-01-01

    The production of foreign proteins using selected host with the necessary posttranslational modifications is one of the key successes in modern biotechnology. This methodology allows the industrial production of proteins that otherwise are produced in small quantities. However, the separation and purification of these proteins from the fermentation media constitutes a major bottleneck for the widespread commercialization of recombinant proteins. The major production costs (50-90%) for typical biological product resides in the purification strategy. There is a need for efficient, effective, and economic large-scale bioseparation techniques, to achieve high purity and high recovery, while maintaining the biological activity of the molecule. Aqueous two-phase systems (ATPS) allow process integration as simultaneously separation and concentration of the target protein is achieved, with posterior removal and recycle of the polymer. The ease of scale-up combined with the high partition coefficients obtained allow its potential application in large-scale downstream processing of proteins produced by fermentation. The equipment and the methodology for aqueous two-phase extraction of proteins on a large scale using mixer-settlerand column contractors are described. The operation of the columns, either stagewise or differential, are summarized. A brief description of the methods used to account for mass transfer coefficients, hydrodynamics parameters of hold-up, drop size, and velocity, back mixing in the phases, and flooding performance, required for column design, is also provided. PMID:11876297

  17. Large scale processes in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    Most proposed chondrule formation mechanisms involve processes occurring inside the solar nebula, so the large scale (roughly 1 to 10 AU) structure of the nebula is of general interest for any chrondrule-forming mechanism. Chondrules and Ca, Al-rich inclusions (CAIs) might also have been formed as a direct result of the large scale structure of the nebula, such as passage of material through high temperature regions. While recent nebula models do predict the existence of relatively hot regions, the maximum temperatures in the inner planet region may not be high enough to account for chondrule or CAI thermal processing, unless the disk mass is considerably greater than the minimum mass necessary to restore the planets to solar composition. Furthermore, it does not seem to be possible to achieve both rapid heating and rapid cooling of grain assemblages in such a large scale furnace. However, if the accretion flow onto the nebula surface is clumpy, as suggested by observations of variability in young stars, then clump-disk impacts might be energetic enough to launch shock waves which could propagate through the nebula to the midplane, thermally processing any grain aggregates they encounter, and leaving behind a trail of chondrules.

  18. Colloquium: Large scale simulations on GPU clusters

    NASA Astrophysics Data System (ADS)

    Bernaschi, Massimo; Bisson, Mauro; Fatica, Massimiliano

    2015-06-01

    Graphics processing units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied also to other problems like the solution of Partial Differential Equations.

  19. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  20. Nonthermal Components in the Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2004-12-01

    I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to γ-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of γ-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

  1. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  2. Large-scale planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  3. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  4. Large scale phononic metamaterials for seismic isolation

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  5. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  6. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  7. Large-scale Globally Propagating Coronal Waves

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2015-09-01

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  8. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  9. Large-Scale Organization of Glycosylation Networks

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Lee, Dong-Yup; Jeong, Hawoong

    2009-03-01

    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are frequently attached to proteins and lipids. Glycans participate in fundamental biological processes including molecular trafficking and clearance, cell proliferation and apoptosis, developmental biology, immune response, and pathogenesis. N-linked glycans found on proteins are formed by sequential attachments of monosaccharides with the help of a relatively small number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thus generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigate the large-scale organization of such N-glycosylation pathways in a mammalian cell. The uncovered results give the experimentally-testable predictions for glycosylation process, and can be applied to the engineering of therapeutic glycoproteins.

  10. Large-scale databases of proper names.

    PubMed

    Conley, P; Burgess, C; Hage, D

    1999-05-01

    Few tools for research in proper names have been available--specifically, there is no large-scale corpus of proper names. Two corpora of proper names were constructed, one based on U.S. phone book listings, the other derived from a database of Usenet text. Name frequencies from both corpora were compared with human subjects' reaction times (RTs) to the proper names in a naming task. Regression analysis showed that the Usenet frequencies contributed to predictions of human RT, whereas phone book frequencies did not. In addition, semantic neighborhood density measures derived from the HAL corpus were compared with the subjects' RTs and found to be a better predictor of RT than was frequency in either corpus. These new corpora are freely available on line for download. Potentials for these corpora range from using the names as stimuli in experiments to using the corpus data in software applications. PMID:10495803

  11. Estimation of large-scale dimension densities.

    PubMed

    Raab, C; Kurths, J

    2001-07-01

    We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-temporal systems and low-dimensional systems from only a few data points, where known methods usually have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This straightforward approach is based on rather general assumptions. So even weak coherent structures obtained from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent maps, the Lorenz attractor, and the Roessler attractor. PMID:11461376

  12. The challenge of large-scale structure

    NASA Astrophysics Data System (ADS)

    Gregory, S. A.

    1996-03-01

    The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.

  13. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  14. Batteries for Large Scale Energy Storage

    SciTech Connect

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  15. Large scale water lens for solar concentration.

    PubMed

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation. PMID:26072893

  16. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05

  17. Large-scale simulations of reionization

    SciTech Connect

    Kohler, Katharina; Gnedin, Nickolay Y.; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  18. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  19. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  20. Large-Scale Astrophysical Visualization on Smartphones

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  1. Estimation of large-scale dimension densities

    NASA Astrophysics Data System (ADS)

    Raab, Corinna; Kurths, Jürgen

    2001-07-01

    We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-temporal systems and low-dimensional systems from only a few data points, where known methods usually have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This straightforward approach is based on rather general assumptions. So even weak coherent structures obtained from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent maps, the Lorenz attractor, and the Roessler attractor.

  2. Supporting large-scale computational science

    SciTech Connect

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  3. Supporting large-scale computational science

    SciTech Connect

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  4. Large-scale sequential quadratic programming algorithms

    SciTech Connect

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  5. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  6. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-02-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  7. A competitive swarm optimizer for large scale optimization.

    PubMed

    Cheng, Ran; Jin, Yaochu

    2015-02-01

    In this paper, a novel competitive swarm optimizer (CSO) for large scale optimization is proposed. The algorithm is fundamentally inspired by the particle swarm optimization but is conceptually very different. In the proposed CSO, neither the personal best position of each particle nor the global best position (or neighborhood best positions) is involved in updating the particles. Instead, a pairwise competition mechanism is introduced, where the particle that loses the competition will update its position by learning from the winner. To understand the search behavior of the proposed CSO, a theoretical proof of convergence is provided, together with empirical analysis of its exploration and exploitation abilities showing that the proposed CSO achieves a good balance between exploration and exploitation. Despite its algorithmic simplicity, our empirical results demonstrate that the proposed CSO exhibits a better overall performance than five state-of-the-art metaheuristic algorithms on a set of widely used large scale optimization problems and is able to effectively solve problems of dimensionality up to 5000. PMID:24860047

  8. Efficient multiobjective optimization scheme for large scale structures

    NASA Astrophysics Data System (ADS)

    Grandhi, Ramana V.; Bharatram, Geetha; Venkayya, V. B.

    1992-09-01

    This paper presents a multiobjective optimization algorithm for an efficient design of large scale structures. The algorithm is based on generalized compound scaling techniques to reach the intersection of multiple functions. Multiple objective functions are treated similar to behavior constraints. Thus, any number of objectives can be handled in the formulation. Pseudo targets on objectives are generated at each iteration in computing the scale factors. The algorithm develops a partial Pareto set. This method is computationally efficient due to the fact that it does not solve many single objective optimization problems in reaching the Pareto set. The computational efficiency is compared with other multiobjective optimization methods, such as the weighting method and the global criterion method. Trusses, plate, and wing structure design cases with stress and frequency considerations are presented to demonstrate the effectiveness of the method.

  9. Engineering large-scale agent-based systems with consensus

    NASA Technical Reports Server (NTRS)

    Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.

    1994-01-01

    The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.

  10. Radially dependent large-scale dynamos in global cylindrical shear flows and the local cartesian limit

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Blackman, E. G.

    2016-06-01

    For cylindrical differentially rotating plasmas, we study large-scale magnetic field generation from finite amplitude non-axisymmetric perturbations by comparing numerical simulations with quasi-linear analytic theory. When initiated with a vertical magnetic field of either zero or finite net flux, our global cylindrical simulations exhibit the magnetorotational instability (MRI) and large-scale dynamo growth of radially alternating mean fields, averaged over height and azimuth. This dynamo growth is explained by our analytic calculations of a non-axisymmetric fluctuation-induced electromotive force that is sustained by azimuthal shear of the fluctuating fields. The standard `Ω effect' (shear of the mean field by differential rotation) is unimportant. For the MRI case, we express the large-scale dynamo field as a function of differential rotation. The resulting radially alternating large-scale fields may have implications for angular momentum transport in discs and corona. To connect with previous work on large-scale dynamos with local linear shear and identify the minimum conditions needed for large-scale field growth, we also solve our equations in local Cartesian coordinates. We find that large-scale dynamo growth in a linear shear flow without rotation can be sustained by shear plus non-axisymmetric fluctuations - even if not helical, a seemingly previously unidentified distinction. The linear shear flow dynamo emerges as a more restricted version of our more general new global cylindrical calculations.

  11. Gravity and large-scale nonlocal bias

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Scoccimarro, Román; Sheth, Ravi K.

    2012-04-01

    For Gaussian primordial fluctuations the relationship between galaxy and matter overdensities, bias, is most often assumed to be local at the time of observation in the large-scale limit. This hypothesis is however unstable under time evolution, we provide proofs under several (increasingly more realistic) sets of assumptions. In the simplest toy model galaxies are created locally and linearly biased at a single formation time, and subsequently move with the dark matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably nonlocal and nonlinear at large scales. We identify the nonlocal gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons), the main signature of which is a quadrupole field in second-order perturbation theory. In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear; these are related to the breaking of Galilean invariance of the bias relation, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed dark matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the nonlocal gravitationally induced fields identified by our formalism, suggesting that the halo distribution at the present time is indeed more closely related to the mass distribution at an earlier rather than present time. However, the nonlocality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. The effects on nonlocal bias seen in the simulations are most important for the most biased halos, as expected from our predictions. Accounting for these

  12. Large-Scale Statistics for Cu Electromigration

    NASA Astrophysics Data System (ADS)

    Hauschildt, M.; Gall, M.; Hernandez, R.

    2009-06-01

    Even after the successful introduction of Cu-based metallization, the electromigration failure risk has remained one of the important reliability concerns for advanced process technologies. The observation of strong bimodality for the electron up-flow direction in dual-inlaid Cu interconnects has added complexity, but is now widely accepted. The failure voids can occur both within the via ("early" mode) or within the trench ("late" mode). More recently, bimodality has been reported also in down-flow electromigration, leading to very short lifetimes due to small, slit-shaped voids under vias. For a more thorough investigation of these early failure phenomena, specific test structures were designed based on the Wheatstone Bridge technique. The use of these structures enabled an increase of the tested sample size close to 675000, allowing a direct analysis of electromigration failure mechanisms at the single-digit ppm regime. Results indicate that down-flow electromigration exhibits bimodality at very small percentage levels, not readily identifiable with standard testing methods. The activation energy for the down-flow early failure mechanism was determined to be 0.83±0.02 eV. Within the small error bounds of this large-scale statistical experiment, this value is deemed to be significantly lower than the usually reported activation energy of 0.90 eV for electromigration-induced diffusion along Cu/SiCN interfaces. Due to the advantages of the Wheatstone Bridge technique, we were also able to expand the experimental temperature range down to 150° C, coming quite close to typical operating conditions up to 125° C. As a result of the lowered activation energy, we conclude that the down-flow early failure mode may control the chip lifetime at operating conditions. The slit-like character of the early failure void morphology also raises concerns about the validity of the Blech-effect for this mechanism. A very small amount of Cu depletion may cause failure even before a

  13. Large Scale Computer Simulation of Erthocyte Membranes

    NASA Astrophysics Data System (ADS)

    Harvey, Cameron; Revalee, Joel; Laradji, Mohamed

    2007-11-01

    The cell membrane is crucial to the life of the cell. Apart from partitioning the inner and outer environment of the cell, they also act as a support of complex and specialized molecular machinery, important for both the mechanical integrity of the cell, and its multitude of physiological functions. Due to its relative simplicity, the red blood cell has been a favorite experimental prototype for investigations of the structural and functional properties of the cell membrane. The erythrocyte membrane is a composite quasi two-dimensional structure composed essentially of a self-assembled fluid lipid bilayer and a polymerized protein meshwork, referred to as the cytoskeleton or membrane skeleton. In the case of the erythrocyte, the polymer meshwork is mainly composed of spectrin, anchored to the bilayer through specialized proteins. Using a coarse-grained model, recently developed by us, of self-assembled lipid membranes with implicit solvent and using soft-core potentials, we simulated large scale red-blood-cells bilayers with dimensions ˜ 10-1 μm^2, with explicit cytoskeleton. Our aim is to investigate the renormalization of the elastic properties of the bilayer due to the underlying spectrin meshwork.

  14. Large-scale carbon fiber tests

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.

  15. Curvature constraints from large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  16. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  17. Food appropriation through large scale land acquisitions

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  18. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  19. Large-scale wind turbine structures

    NASA Astrophysics Data System (ADS)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  20. On the dynamics underlying the emergence of large scale structures in barotropic beta-plane turbulence

    NASA Astrophysics Data System (ADS)

    Bakas, Nikolaos; Constantinou, Navid; Ioannou, Petros

    2016-04-01

    Planetary turbulent flows are observed to self-organize into large scale structures such as zonal jets and coherent vortices. In this work, the eddy-mean flow dynamics underlying the formation of both zonal and nonzonal coherent structures in a barotropic turbulent flow is investigated within the statistical framework of stochastic structural stability theory (S3T). Previous studies have shown that the coherent structures emerge due to the instability of the homogeneous turbulent flow in the statistical dynamical S3T system and that the statistical predictions of S3T are reflected in direct numerical simulations. In this work, the dynamics underlying this S3T statistical instability are studied. It is shown that, for weak planetary vorticity gradient beta, both zonal jets and non-zonal large-scale structures form from upgradient momentum fluxes due to shearing of the eddies by the emerging flow. For large beta, the dynamics of the S3T instability differs for zonal and non-zonal flows. Shearing of the eddies by the mean flow continues to be the mechanism for the emergence of zonal jets while non-zonal large-scale flows emerge from resonant and near-resonant triad interactions between the large-scale flow and the stochastically forced eddies.

  1. Large-Scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2001-01-01

    The paper discusses the following: 1. The Brewer-Dobson circulation: tropical upwelling. 2. Mixing into polar vortices. 3. The latitudinal structure of "age" in the stratosphere. 4. The subtropical "tracer edges". 5. Transport in the lower troposphere. 6. Tracer modeling during SOLVE. 7. 3D modeling of "mean age". 8. Models and measurements II.

  2. Detectability of Large-Scale Solar Subsurface Flows

    NASA Astrophysics Data System (ADS)

    Woodard, M.

    2014-04-01

    The accuracy of helioseismic measurement is limited by the stochastic nature of solar oscillations. In this article I use a Gaussian statistical model of the global seismic wave field of the Sun to investigate the noise limitations of direct-modeling analysis of convection-zone-scale flows. The theoretical analysis of noise is based on hypothetical data that cover the entire photosphere, including the portions invisible from the Earth. Noise estimates are derived for measurements of the flow-dependent couplings of global-oscillation modes and for combinations of coupling measurements that isolate vector-spherical-harmonic components of the flow velocity. For current helioseismic observations, which sample only a fraction of the photosphere, the inferred detection limits are best regarded as optimistic limits. The flow-velocity fields considered in this work are assumed to be decomposable into vector-spherical-harmonic functions of degree less than five. The problem of measuring the general velocity field is shown to be similar enough to the well-studied problem of measuring differential rotation to permit rough estimates of flow-detection thresholds to be gleaned from past helioseismic analysis. I estimate that, with existing and anticipated helioseismic datasets, large-scale flow-velocity amplitudes of a few tens of should be detectable near the base of the convection zone.

  3. An informal paper on large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Ho, Y. C.

    1975-01-01

    Large scale systems are defined as systems requiring more than one decision maker to control the system. Decentralized control and decomposition are discussed for large scale dynamic systems. Information and many-person decision problems are analyzed.

  4. International space station. Large scale integration approach

    NASA Astrophysics Data System (ADS)

    Cohen, Brad

    The International Space Station is the most complex large scale integration program in development today. The approach developed for specification, subsystem development, and verification lay a firm basis on which future programs of this nature can be based. International Space Station is composed of many critical items, hardware and software, built by numerous International Partners, NASA Institutions, and U.S. Contractors and is launched over a period of five years. Each launch creates a unique configuration that must be safe, survivable, operable, and support ongoing assembly (assemblable) to arrive at the assembly complete configuration in 2003. The approaches to integrating each of the modules into a viable spacecraft and continue the assembly is a challenge in itself. Added to this challenge are the severe schedule constraints and lack of an "Iron Bird", which prevents assembly and checkout of each on-orbit configuration prior to launch. This paper will focus on the following areas: 1) Specification development process explaining how the requirements and specifications were derived using a modular concept driven by launch vehicle capability. Each module is composed of components of subsystems versus completed subsystems. 2) Approach to stage (each stage consists of the launched module added to the current on-orbit spacecraft) specifications. Specifically, how each launched module and stage ensures support of the current and future elements of the assembly. 3) Verification approach, due to the schedule constraints, is primarily analysis supported by testing. Specifically, how are the interfaces ensured to mate and function on-orbit when they cannot be mated before launch. 4) Lessons learned. Where can we improve this complex system design and integration task?

  5. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  6. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  7. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.

    PubMed

    Hunana, P; Zank, G P; Shaikh, D

    2006-08-01

    incompressible equations for higher order fluctuation components are derived and it is shown that they converge to the usual homogeneous nearly incompressible equations in the limit of no large-scale background. We use a time and length scale separation procedure to obtain wave equations for the acoustic pressure and velocity perturbations propagating on fast-time-short-wavelength scales. On these scales, the pseudosound relation, used to relate density and pressure fluctuations, is also obtained. In both cases, the speed of propagation (sound speed) depends on background variables and therefore varies spatially. For slow-time scales, a simple pseudosound relation cannot be obtained and density and pressure fluctuations are implicitly related through a relation which can be solved only numerically. Subject to some simplifications, a generalized inhomogeneous pseudosound relation is derived. With this paper, we extend the theory of nearly incompressible hydrodynamics to flows, including the solar wind, which include large-scale inhomogeneities (in this case radially symmetric and in equilibrium). PMID:17025534

  8. Simulation and Optimization of Large Scale Subsurface Environmental Impacts; Investigations, Remedial Design and Long Term Monitoring

    SciTech Connect

    Deschaine, L.M.

    2008-07-01

    The global impact to human health and the environment from large scale chemical / radionuclide releases is well documented. Examples are the wide spread release of radionuclides from the Chernobyl nuclear reactors, the mobilization of arsenic in Bangladesh, the formation of Environmental Protection Agencies in the United States, Canada and Europe, and the like. The fiscal costs of addressing and remediating these issues on a global scale are astronomical, but then so are the fiscal and human health costs of ignoring them. An integrated methodology for optimizing the response(s) to these issues is needed. This work addresses development of optimal policy design for large scale, complex, environmental issues. It discusses the development, capabilities, and application of a hybrid system of algorithms that optimizes the environmental response. It is important to note that 'optimization' does not singularly refer to cost minimization, but to the effective and efficient balance of cost, performance, risk, management, and societal priorities along with uncertainty analysis. This tool integrates all of these elements into a single decision framework. It provides a consistent approach to designing optimal solutions that are tractable, traceable, and defensible. The system is modular and scalable. It can be applied either as individual components or in total. By developing the approach in a complex systems framework, a solution methodology represents a significant improvement over the non-optimal 'trial and error' approach to environmental response(s). Subsurface environmental processes are represented by linear and non-linear, elliptic and parabolic equations. The state equations solved using numerical methods include multi-phase flow (water, soil gas, NAPL), and multicomponent transport (radionuclides, heavy metals, volatile organics, explosives, etc.). Genetic programming is used to generate the simulators either when simulation models do not exist, or to extend the

  9. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  10. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  11. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  12. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  13. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  14. Multitree Algorithms for Large-Scale Astrostatistics

    NASA Astrophysics Data System (ADS)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    this number every week, resulting in billions of objects. At such scales, even linear-time analysis operations present challenges, particularly since statistical analyses are inherently interactive processes, requiring that computations complete within some reasonable human attention span. The quadratic (or worse) runtimes of straightforward implementations become quickly unbearable. Examples of applications. These analysis subroutines occur ubiquitously in astrostatistical work. We list just a few examples. The need to cross-match objects across different catalogs has led to various algorithms, which at some point perform an AllNN computation. 2-point and higher-order spatial correlations for the basis of spatial statistics, and are utilized in astronomy to compare the spatial structures of two datasets, such as an observed sample and a theoretical sample, for example, forming the basis for two-sample hypothesis testing. Friends-of-friends clustering is often used to identify halos in data from astrophysical simulations. Minimum spanning tree properties have also been proposed as statistics of large-scale structure. Comparison of the distributions of different kinds of objects requires accurate density estimation, for which KDE is the overall statistical method of choice. The prediction of redshifts from optical data requires accurate regression, for which kernel regression is a powerful method. The identification of objects of various types in astronomy, such as stars versus galaxies, requires accurate classification, for which KDA is a powerful method. Overview. In this chapter, we will briefly sketch the main ideas behind recent fast algorithms which achieve, for example, linear runtimes for pairwise-distance problems, or similarly dramatic reductions in computational growth. In some cases, the runtime orders for these algorithms are mathematically provable statements, while in others we have only conjectures backed by experimental observations for the time being

  15. Probes of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Suto, Yasushi; Gorski, Krzysztof; Juszkiewicz, Roman; Silk, Joseph

    1988-01-01

    A general formalism is developed which shows that the gravitational instability theory for the origin of the large-scale structure of the universe is now capable of critically confronting observational results on cosmic background radiation angular anisotropies, large-scale bulk motions, and large-scale clumpiness in the galaxy counts. The results indicate that presently advocated cosmological models will have considerable difficulty in simultaneously explaining the observational results.

  16. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  17. Large-scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2003-01-01

    The PI has undertaken a theoretical analysis of the existence and nature of compact tracer-tracer relationships of the kind observed in the stratosphere, augmented with three-dimensional model simulations of stratospheric tracers (the latter being an extension of modeling work the group did during the SOLVE experiment). This work achieves a rigorous theoretical basis for the existence and shape of these relationships, as well as a quantitative theory of their width and evolution, in terms of the joint tracer-tracer PDF distribution. A paper on this work is almost complete and will soon be submitted to Rev. Geophys. We have analyzed lower stratospheric water in simulations with an isentropic-coordinate version of the MATCH transport model which we recently helped to develop. The three-dimensional structure of lower stratospheric water, in particular, attracted our attention: dry air is, below about 400K potential temperature, localized in the regions of the west Pacific and equatorial South America. We have been analyzing air trajectories to determine how air passes through the tropopause cold trap. This work is now being completed, and a paper will be submitted to Geophys. Res. Lett. before the end of summer. We are continuing to perform experiments with the 'MATCH' CTM, in both sigma- and entropy-coordinate forms. We earlier found (in collaboration with Dr Natalie Mahowald, and as part of an NSF-funded project) that switching to isentropic coordinates made a substantial improvement to the simulation of the age of stratospheric air. We are now running experiments with near-tropopause sources in both versions of the model, to see if and to what extent the simulation of stratosphere-troposphere transport is dependent on the model coordinate. Personnel Research is supervised by the PI, Prof. Alan Plumb. Mr William Heres conducts the tracer modeling work and performs other modeling tasks. Two graduate students, Ms Irene Lee and Mr Michael Ring, have been participating

  18. Implicit solvers for large-scale nonlinear problems

    SciTech Connect

    Keyes, D E; Reynolds, D; Woodward, C S

    2006-07-13

    Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications.

  19. Importance-truncated large-scale shell model

    NASA Astrophysics Data System (ADS)

    Stumpf, Christina; Braun, Jonas; Roth, Robert

    2016-02-01

    We propose an importance-truncation scheme for the large-scale nuclear shell model that extends its range of applicability to larger valence spaces and midshell nuclei. It is based on a perturbative measure for the importance of individual basis states that acts as an additional truncation for the many-body model space in which the eigenvalue problem of the Hamiltonian is solved numerically. Through a posteriori extrapolations of all observables to vanishing importance threshold, the full shell-model results can be recovered. In addition to simple threshold extrapolations, we explore extrapolations based on the energy variance. We apply the importance-truncated shell model for the study of 56Ni in the p f valence space and of 60Zn and 64Ge in the p f g9 /2 space. We demonstrate the efficiency and accuracy of the approach, which pave the way for future applications of valence-space interactions derived in ab initio approaches in larger valence spaces.

  20. HTS cables open the window for large-scale renewables

    NASA Astrophysics Data System (ADS)

    Geschiere, A.; Willén, D.; Piga, E.; Barendregt, P.

    2008-02-01

    In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome.

  1. Parallel block schemes for large scale least squares computations

    SciTech Connect

    Golub, G.H.; Plemmons, R.J.; Sameh, A.

    1986-04-01

    Large scale least squares computations arise in a variety of scientific and engineering problems, including geodetic adjustments and surveys, medical image analysis, molecular structures, partial differential equations and substructuring methods in structural engineering. In each of these problems, matrices often arise which possess a block structure which reflects the local connection nature of the underlying physical problem. For example, such super-large nonlinear least squares computations arise in geodesy. Here the coordinates of positions are calculated by iteratively solving overdetermined systems of nonlinear equations by the Gauss-Newton method. The US National Geodetic Survey will complete this year (1986) the readjustment of the North American Datum, a problem which involves over 540 thousand unknowns and over 6.5 million observations (equations). The observation matrix for these least squares computations has a block angular form with 161 diagnonal blocks, each containing 3 to 4 thousand unknowns. In this paper parallel schemes are suggested for the orthogonal factorization of matrices in block angular form and for the associated backsubstitution phase of the least squares computations. In addition, a parallel scheme for the calculation of certain elements of the covariance matrix for such problems is described. It is shown that these algorithms are ideally suited for multiprocessors with three levels of parallelism such as the Cedar system at the University of Illinois. 20 refs., 7 figs.

  2. Large-scale magnetic fields, dark energy, and QCD

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2010-08-15

    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavoring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1){sub A} problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: {rho}{sub EM{approx_equal}}B{sup 2{approx_equal}}(({alpha}/4{pi})){sup 2{rho}}{sub DE}, {rho}{sub DE} hence acting as a source for the magnetic energy {rho}{sub EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the Universe; the presence of parity violation on the enormous scales 1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.

  3. Scalable pattern recognition for large-scale scientific data mining

    SciTech Connect

    Kamath, C.; Musick, R.

    1998-03-23

    Our ability to generate data far outstrips our ability to explore and understand it. The true value of this data lies not in its final size or complexity, but rather in our ability to exploit the data to achieve scientific goals. The data generated by programs such as ASCI have such a large scale that it is impractical to manually analyze, explore, and understand it. As a result, useful information is overlooked, and the potential benefits of increased computational and data gathering capabilities are only partially realized. The difficulties that will be faced by ASCI applications in the near future are foreshadowed by the challenges currently facing astrophysicists in making full use of the data they have collected over the years. For example, among other difficulties, astrophysicists have expressed concern that the sheer size of their data restricts them to looking at very small, narrow portions at any one time. This narrow focus has resulted in the loss of ``serendipitous`` discoveries which have been so vital to progress in the area in the past. To solve this problem, a new generation of computational tools and techniques is needed to help automate the exploration and management of large scientific data. This whitepaper proposes applying and extending ideas from the area of data mining, in particular pattern recognition, to improve the way in which scientists interact with large, multi-dimensional, time-varying data.

  4. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    NASA Astrophysics Data System (ADS)

    Diwadkar, Amit; Vaidya, Umesh

    2016-04-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies.

  5. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    PubMed Central

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  6. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links.

    PubMed

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  7. Performance modeling and analysis of consumer classes in large scale systems

    NASA Astrophysics Data System (ADS)

    Al-Shukri, Sh.; Lenin, R. B.; Ramaswamy, S.; Anand, A.; Narasimhan, V. L.; Abraham, J.; Varadan, Vijay

    2009-03-01

    Peer-to-Peer (P2P) networks have been used efficiently as building blocks as overlay networks for large-scale distributed network applications with Internet Protocol (IP) based bottom layer networks. With large scale Wireless Sensor Networks (WSNs) becoming increasingly realistic, it is important to overlay networks with WSNs in the bottom layer. The suitable mathematical (stochastic) model that can model the overlay network over WSNs is Queuing Networks with Multi-Class customers. In this paper, we discuss how these mathematical network models can be simulated using the object oriented simulation package OMNeT++. We discuss the Graphical User Interface (GUI) which is developed to accept the input parameter files and execute the simulation using this interface. We compare the simulation results with analytical formulas available in the literature for these mathematical models.

  8. INTERNATIONAL WORKSHOP ON LARGE-SCALE REFORESTATION: PROCEEDINGS

    EPA Science Inventory

    The purpose of the workshop was to identify major operational and ecological considerations needed to successfully conduct large-scale reforestation projects throughout the forested regions of the world. Large-scale" for this workshop means projects where, by human effort, approx...

  9. Using Large-Scale Assessment Scores to Determine Student Grades

    ERIC Educational Resources Information Center

    Miller, Tess

    2013-01-01

    Many Canadian provinces provide guidelines for teachers to determine students' final grades by combining a percentage of students' scores from provincial large-scale assessments with their term scores. This practice is thought to hold students accountable by motivating them to put effort into completing the large-scale assessment, thereby…

  10. The Challenge of Large-Scale Literacy Improvement

    ERIC Educational Resources Information Center

    Levin, Ben

    2010-01-01

    This paper discusses the challenge of making large-scale improvements in literacy in schools across an entire education system. Despite growing interest and rhetoric, there are very few examples of sustained, large-scale change efforts around school-age literacy. The paper reviews 2 instances of such efforts, in England and Ontario. After…

  11. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a

  12. Large-Scale Weather Generator for Downscaling Precipitation

    NASA Astrophysics Data System (ADS)

    Thober, Stephan; Samaniego, Luis; Bardossy, Andras

    2013-04-01

    Well parametrized distributed precipitation-runoff models are able to correctly quantify hydrological state variables (e.g. streamflow, soil moisture, among others) for the past decades. In order to estimate future risks associated with hydrometeorological extremes, it is necessary to incorporate information about the future weather and climate. A common approach is to downscale Regional Climate Model (RCM) projections. Therefore, various statistical downscaling schemes, utilizing diverse mathematical methods, have been developed. One kind of statistical downscaling technique is the so called Weather Generator (WG). These algorithms provide meteorological time series as the realization of a stochastic process. First, single- and multi-site models were developed. Recently, however WG at sub-daily scales and on gridded spatial resolution have captured the interest because of the new development in distributed hydrological modelling. A standard approach for a multi-site WG is to sample a multivariate normal process for all locations. Doing so, it is necessary to calculate the Cholesky factor of the cross-covariance matrix to guarantee a spatially consistent sampling. In general, gridded WGs are an extension of multi-site WGs to larger domains (i.e. >10000 grid cells). On these large grids, it is not possible to accurately determine the Cholesky factor and further enhancements are required. In this work, a framework for a WG is proposed, which provides meteorological time-series on a large scale grid, e.g. 4 km grid of Germany. It employs a sequential Gaussian simulation method, conditioning the value of a grid cell only on a neighborhood, not on the whole field. This methodology is incorporated into a multi-scale downscaling scheme, which is able to provide precipitation data sets at different spatial and temporal resolutions, ranging from 4 km to 32 km, and from days to months, respectively. This framework uses a copula approach for spatial downscaling, exploiting

  13. Distribution probability of large-scale landslides in central Nepal

    NASA Astrophysics Data System (ADS)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  14. Numerical Technology for Large-Scale Computational Electromagnetics

    SciTech Connect

    Sharpe, R; Champagne, N; White, D; Stowell, M; Adams, R

    2003-01-30

    The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems are solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.

  15. Multi-period natural gas market modeling Applications, stochastic extensions and solution approaches

    NASA Astrophysics Data System (ADS)

    Egging, Rudolf Gerardus

    This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. 1 The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in

  16. Needs, opportunities, and options for large scale systems research

    SciTech Connect

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  17. Large scale suppression of scalar power on a spatial condensation

    NASA Astrophysics Data System (ADS)

    Kouwn, Seyen; Kwon, O.-Kab; Oh, Phillial

    2015-03-01

    We consider a deformed single-field inflation model in terms of three SO(3) symmetric moduli fields. We find that spatially linear solutions for the moduli fields induce a phase transition during the early stage of the inflation and the suppression of scalar power spectrum at large scales. This suppression can be an origin of anomalies for large-scale perturbation modes in the cosmological observation.

  18. Interpretation of large-scale deviations from the Hubble flow

    NASA Astrophysics Data System (ADS)

    Grinstein, B.; Politzer, H. David; Rey, S.-J.; Wise, Mark B.

    1987-03-01

    The theoretical expectation for large-scale streaming velocities relative to the Hubble flow is expressed in terms of statistical correlation functions. Only for objects that trace the mass would these velocities have a simple cosmological interpretation. If some biasing effects the objects' formation, then nonlinear gravitational evolution is essential to predicting the expected large-scale velocities, which also depend on the nature of the biasing.

  19. Iterative methods for large scale static analysis of structures on a scalable multiprocessor supercomputer

    NASA Technical Reports Server (NTRS)

    Sobh, Nahil Atef

    1992-01-01

    A parallel Preconditioned Conjugate Gradient (PCG) iterative solver has been developed and implemented on the iPSC-860 scalable hypercube. This new implementation makes use of the Parallel Automated Runtime Toolkit at ICASE (PARTI) primitives to efficiently program irregular communications patterns that exist in general sparse matrices and in particular in the finite element sparse stiffness matrices. The iterative PCG has been used to solve the finite element equations that result from discretizing large scale aerospace structures. In particular, the static response of the High Speed Civil Transport (HSCT) finite element model is solved on the iPSC-860.

  20. Accelerated Block Preconditioned Gradient method for large scale wave functions calculations in Density Functional Theory

    SciTech Connect

    Fattebert, J.-L.

    2010-01-20

    An Accelerated Block Preconditioned Gradient (ABPG) method is proposed to solve electronic structure problems in Density Functional Theory. This iterative algorithm is designed to solve directly the non-linear Kohn-Sham equations for accurate discretization schemes involving a large number of degrees of freedom. It makes use of an acceleration scheme similar to what is known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of convergence for large scale applications using a finite difference discretization and multigrid preconditioning.

  1. Large-scale motions in a plane wall jet

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer; Jonathan, Latim; Shibani, Bhatt

    2015-11-01

    The dynamic significance of large-scale motions in turbulent boundary layers have been the focus of several recent studies, primarily focussing on canonical flows - zero pressure gradient boundary layers, flows within pipes and channels. This work presents an investigation into the large-scale motions in a boundary layer that is used as the prototypical flow field for flows with large-scale mixing and reactions, the plane wall jet. An experimental investigation is carried out in a plane wall jet facility designed to operate at friction Reynolds numbers Reτ > 1000 , which allows for the development of a significant logarithmic region. The streamwise turbulent intensity across the boundary layer is decomposed into small-scale (less than one integral length-scale δ) and large-scale components. The small-scale energy has a peak in the near-wall region associated with the near-wall turbulent cycle as in canonical boundary layers. However, eddies of large-scales are the dominating eddies having significantly higher energy, than the small-scales across almost the entire boundary layer even at the low to moderate Reynolds numbers under consideration. The large-scales also appear to amplitude and frequency modulate the smaller scales across the entire boundary layer.

  2. Towards a self-consistent halo model for the nonlinear large-scale structure

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian

    2016-03-01

    The halo model is a theoretically and empirically well-motivated framework for predicting the statistics of the nonlinear matter distribution in the Universe. However, current incarnations of the halo model suffer from two major deficiencies: (i) they do not enforce the stress-energy conservation of matter; (ii) they are not guaranteed to recover exact perturbation theory results on large scales. Here, we provide a formulation of the halo model (EHM) that remedies both drawbacks in a consistent way, while attempting to maintain the predictivity of the approach. In the formulation presented here, mass and momentum conservation are guaranteed on large scales, and results of the perturbation theory and the effective field theory can, in principle, be matched to any desired order on large scales. We find that a key ingredient in the halo model power spectrum is the halo stochasticity covariance, which has been studied to a much lesser extent than other ingredients such as mass function, bias, and profiles of halos. As written here, this approach still does not describe the transition regime between perturbation theory and halo scales realistically, which is left as an open problem. We also show explicitly that, when implemented consistently, halo model predictions do not depend on any properties of low-mass halos that are smaller than the scales of interest.

  3. Large-scale pattern formation in active particles suspensions: from interacting microtubules to swimming bacteria

    NASA Astrophysics Data System (ADS)

    Aranson, Igor

    2006-03-01

    We consider two biological systems of active particles exhibiting large-scale collective behavior: microtubules interacting with molecular motors and hydrodynamically entrained swimming bacteria. Starting from a generic stochastic microscopic model of inelastically colliding polar rods with an anisotropic interaction kernel, we derive set of equations for the local rods concentration and orientation. Above certain critical density of rods the model exhibits orientational instability and onset of large-scale coherence. For the microtubules and molecular motors system we demonstrate that the orientational instability leads to the formation of vortices and asters seen in recent experiments. Similar approach is applied to colonies of swimming bacteria Bacillus subtilis confined in thin fluid film. The model is formulated in term of two-dimensional equations for local density and orientation of bacteria coupled to the low Reynolds number Navier-Stokes equation for the fluid flow velocity. The collective swimming of bacteria is represented by additional source term in the Navier-Stokes equation. We demonstrate that this system exhibits formation of dynamic large-scale patterns with the typical scale determined by the density of bacteria.

  4. The large-scale landslide risk classification in catchment scale

    NASA Astrophysics Data System (ADS)

    Liu, Che-Hsin; Wu, Tingyeh; Chen, Lien-Kuang; Lin, Sheng-Chi

    2013-04-01

    The landslide disasters caused heavy casualties during Typhoon Morakot, 2009. This disaster is defined as largescale landslide due to the casualty numbers. This event also reflects the survey on large-scale landslide potential is so far insufficient and significant. The large-scale landslide potential analysis provides information about where should be focused on even though it is very difficult to distinguish. Accordingly, the authors intend to investigate the methods used by different countries, such as Hong Kong, Italy, Japan and Switzerland to clarify the assessment methodology. The objects include the place with susceptibility of rock slide and dip slope and the major landslide areas defined from historical records. Three different levels of scales are confirmed necessarily from country to slopeland, which are basin, catchment, and slope scales. Totally ten spots were classified with high large-scale landslide potential in the basin scale. The authors therefore focused on the catchment scale and employ risk matrix to classify the potential in this paper. The protected objects and large-scale landslide susceptibility ratio are two main indexes to classify the large-scale landslide risk. The protected objects are the constructions and transportation facilities. The large-scale landslide susceptibility ratio is based on the data of major landslide area and dip slope and rock slide areas. Totally 1,040 catchments are concerned and are classified into three levels, which are high, medium, and low levels. The proportions of high, medium, and low levels are 11%, 51%, and 38%, individually. This result represents the catchments with high proportion of protected objects or large-scale landslide susceptibility. The conclusion is made and it be the base material for the slopeland authorities when considering slopeland management and the further investigation.

  5. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect

    Ghattas, Omar

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  6. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  7. Sparse LSSVM in Primal Using Cholesky Factorization for Large-Scale Problems.

    PubMed

    Zhou, Shuisheng

    2016-04-01

    For support vector machine (SVM) learning, least squares SVM (LSSVM), derived by duality LSSVM (D-LSSVM), is a widely used model, because it has an explicit solution. One obvious limitation of the model is that the solution lacks sparseness, which limits it from training large-scale problems efficiently. In this paper, we derive an equivalent LSSVM model in primal space LSSVM (P-LSSVM) by the representer theorem and prove that P-LSSVM can be solved exactly at some sparse solutions for problems with low-rank kernel matrices. Two algorithms are proposed for finding the sparse (approximate) solution of P-LSSVM by Cholesky factorization. One is based on the decomposition of the kernel matrix K as P P(T) with the best low-rank matrix P approximately by pivoting Cholesky factorization. The other is based on solving P-LSSVM by approximating the Cholesky factorization of the Hessian matrix with rank-one update scheme. For linear learning problems, theoretical analysis and experimental results support that P-LSSVM can give the sparsest solutions in all SVM learners. Experimental results on some large-scale nonlinear training problems show that our algorithms, based on P-LSSVM, can converge to acceptable test accuracies at very sparse solutions with a sparsity level <1%, and even as little as 0.01%. Hence, our algorithms are a better choice for large-scale training problems. PMID:25966482

  8. Classification of large-scale stellar spectra based on the non-linearly assembling learning machine

    NASA Astrophysics Data System (ADS)

    Liu, Zhongbao; Song, Lipeng; Zhao, Wenjuan

    2016-02-01

    An important problem to be solved of traditional classification methods is they cannot deal with large-scale classification because of very high time complexity. In order to solve above problem, inspired by the thinking of collaborative management, the non-linearly assembling learning machine (NALM) is proposed and used in the large-scale stellar spectral classification. In NALM, the large-scale dataset is firstly divided into several subsets, and then the traditional classifiers such as support vector machine (SVM) runs on the subset, finally, the classification results on each subset are assembled and the overall classification decision is obtained. In comparative experiments, we investigate the performance of NALM in the stellar spectral subclasses classification compared with SVM. We apply SVM and NALM respectively to classify the four subclasses of K-type spectra, three subclasses of F-type spectra and three subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS). The comparative experiment results show that the performance of NALM is much better than SVM in view of the classification accuracy and the computation time.

  9. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  10. Unsaturated Hydraulic Conductivity for Evaporation in Large scale Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhu, J.

    2014-12-01

    In this study we aim to provide some practical guidelines of how the commonly used simple averaging schemes (arithmetic, geometric, or harmonic mean) perform in simulating large scale evaporation in a large scale heterogeneous landscape. Previous studies on hydraulic property upscaling focusing on steady state flux exchanges illustrated that an effective hydraulic property is usually more difficult to define for evaporation. This study focuses on upscaling hydraulic properties of large scale transient evaporation dynamics using the idea of the stream tube approach. Specifically, the two main objectives are: (1) if the three simple averaging schemes (i.e., arithmetic, geometric and harmonic means) of hydraulic parameters are appropriate in representing large scale evaporation processes, and (2) how the applicability of these simple averaging schemes depends on the time scale of evaporation processes in heterogeneous soils. Multiple realizations of local evaporation processes are carried out using HYDRUS-1D computational code (Simunek et al, 1998). The three averaging schemes of soil hydraulic parameters were used to simulate the cumulative flux exchange, which is then compared with the large scale average cumulative flux. The sensitivity of the relative errors to the time frame of evaporation processes is also discussed.

  11. Do Large-Scale Topological Features Correlate with Flare Properties?

    NASA Astrophysics Data System (ADS)

    DeRosa, Marc L.; Barnes, Graham

    2016-05-01

    In this study, we aim to identify whether the presence or absence of particular topological features in the large-scale coronal magnetic field are correlated with whether a flare is confined or eruptive. To this end, we first determine the locations of null points, spine lines, and separatrix surfaces within the potential fields associated with the locations of several strong flares from the current and previous sunspot cycles. We then validate the topological skeletons against large-scale features in observations, such as the locations of streamers and pseudostreamers in coronagraph images. Finally, we characterize the topological environment in the vicinity of the flaring active regions and identify the trends involving their large-scale topologies and the properties of the associated flares.

  12. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  13. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect

    Boehm, Swen; Elwasif, Wael R; Naughton, III, Thomas J; Vallee, Geoffroy R

    2014-01-01

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  14. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  15. Coupling between convection and large-scale circulation

    NASA Astrophysics Data System (ADS)

    Becker, T.; Stevens, B. B.; Hohenegger, C.

    2014-12-01

    The ultimate drivers of convection - radiation, tropospheric humidity and surface fluxes - are altered both by the large-scale circulation and by convection itself. A quantity to which all drivers of convection contribute is moist static energy, or gross moist stability, respectively. Therefore, a variance analysis of the moist static energy budget in radiative-convective equilibrium helps understanding the interaction of precipitating convection and the large-scale environment. In addition, this method provides insights concerning the impact of convective aggregation on this coupling. As a starting point, the interaction is analyzed with a general circulation model, but a model intercomparison study using a hierarchy of models is planned. Effective coupling parameters will be derived from cloud resolving models and these will in turn be related to assumptions used to parameterize convection in large-scale models.

  16. Large-scale current systems in the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.; Brace, L. H.

    1981-01-01

    The occasional observation of large-scale horizontal magnetic fields within the dayside ionosphere of Venus by the flux gate magnetometer on the Pioneer Venus orbiter suggests the presence of large-scale current systems. Using the measured altitude profiles of the magnetic field and the electron density and temperature, together with the previously reported neutral atmosphere density and composition, it is found that the local ionosphere can be described at these times by a simple steady state model which treats the unobserved quantities, such as the electric field, as parameters. When the model is appropriate, the altitude profiles of the ion and electron velocities and the currents along the satellite trajectory can be inferred. These results elucidate the configurations and sources of the ionospheric current systems which produce the observed large-scale magnetic fields, and in particular illustrate the effect of ion-neutral coupling in the determination of the current system at low altitudes.

  17. A survey on routing protocols for large-scale wireless sensor networks.

    PubMed

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. "Large-scale" means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and

  18. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  19. The evolution of large-scale magnetic fields in the ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Shinagawa, H.; Nagy, A. F.

    1984-03-01

    Large-scale magnetic fields are often observed in the ionosphere of Venus by the magnetometer on the Pioneer Venus Orbiter, especially near the subsolar point or when the solar wind dynamic pressure is high. An equation for the time evolution of the magnetic field is derived which includes both a term representing the time rate of change of the field due to the convection of magnetic flux by plasma motions, and a magnetic diffusion/dissipation term. The ionospheric plasma velocities required by these equations were obtained by numerically solving the momentum equation. Numerical solutions to the magnetic field equation indicate that large-scale magnetic fields, which are not being actively maintained, decay with time scales ranging from tens of minutes to several hours. The vertical convection of magnetic flux enables magnetic field structures deep within the ionosphere to persist longer than would otherwise be expected. This vertical convection also explains the shape of these structures.

  20. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  1. Clearing and Labeling Techniques for Large-Scale Biological Tissues

    PubMed Central

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-01-01

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  2. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  3. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  4. Large-scale ER-damper for seismic protection

    NASA Astrophysics Data System (ADS)

    McMahon, Scott; Makris, Nicos

    1997-05-01

    A large scale electrorheological (ER) damper has been designed, constructed, and tested. The damper consists of a main cylinder and a piston rod that pushes an ER-fluid through a number of stationary annular ducts. This damper is a scaled- up version of a prototype ER-damper which has been developed and extensively studied in the past. In this paper, results from comprehensive testing of the large-scale damper are presented, and the proposed theory developed for predicting the damper response is validated.

  5. Clearing and Labeling Techniques for Large-Scale Biological Tissues.

    PubMed

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-06-30

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  6. Contribution of peculiar shear motions to large-scale structure

    NASA Technical Reports Server (NTRS)

    Mueler, Hans-Reinhard; Treumann, Rudolf A.

    1994-01-01

    Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.

  7. Large-scale liquid scintillation detectors for solar neutrinos

    NASA Astrophysics Data System (ADS)

    Benziger, Jay B.; Calaprice, Frank P.

    2016-04-01

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed.

  8. Supercomputer optimizations for stochastic optimal control applications

    NASA Technical Reports Server (NTRS)

    Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang

    1991-01-01

    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.

  9. Robust stochastic optimization for reservoir operation

    NASA Astrophysics Data System (ADS)

    Pan, Limeng; Housh, Mashor; Liu, Pan; Cai, Ximing; Chen, Xin

    2015-01-01

    Optimal reservoir operation under uncertainty is a challenging engineering problem. Application of classic stochastic optimization methods to large-scale problems is limited due to computational difficulty. Moreover, classic stochastic methods assume that the estimated distribution function or the sample inflow data accurately represents the true probability distribution, which may be invalid and the performance of the algorithms may be undermined. In this study, we introduce a robust optimization (RO) approach, Iterative Linear Decision Rule (ILDR), so as to provide a tractable approximation for a multiperiod hydropower generation problem. The proposed approach extends the existing LDR method by accommodating nonlinear objective functions. It also provides users with the flexibility of choosing the accuracy of ILDR approximations by assigning a desired number of piecewise linear segments to each uncertainty. The performance of the ILDR is compared with benchmark policies including the sampling stochastic dynamic programming (SSDP) policy derived from historical data. The ILDR solves both the single and multireservoir systems efficiently. The single reservoir case study results show that the RO method is as good as SSDP when implemented on the original historical inflows and it outperforms SSDP policy when tested on generated inflows with the same mean and covariance matrix as those in history. For the multireservoir case study, which considers water supply in addition to power generation, numerical results show that the proposed approach performs as well as in the single reservoir case study in terms of optimal value and distributional robustness.

  10. A bibliographical surveys of large-scale systems

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1970-01-01

    A limited, partly annotated bibliography was prepared on the subject of large-scale system control. Approximately 400 references are divided into thirteen application areas, such as large societal systems and large communication systems. A first-author index is provided.

  11. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  12. Individual Skill Differences and Large-Scale Environmental Learning

    ERIC Educational Resources Information Center

    Fields, Alexa W.; Shelton, Amy L.

    2006-01-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited…

  13. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  14. Large-scale drift and Rossby wave turbulence

    NASA Astrophysics Data System (ADS)

    Harper, K. L.; Nazarenko, S. V.

    2016-08-01

    We study drift/Rossby wave turbulence described by the large-scale limit of the Charney–Hasegawa–Mima equation. We define the zonal and meridional regions as Z:= \\{{k} :| {k}y| \\gt \\sqrt{3}{k}x\\} and M:= \\{{k} :| {k}y| \\lt \\sqrt{3}{k}x\\} respectively, where {k}=({k}x,{k}y) is in a plane perpendicular to the magnetic field such that k x is along the isopycnals and k y is along the plasma density gradient. We prove that the only types of resonant triads allowed are M≤ftrightarrow M+Z and Z≤ftrightarrow Z+Z. Therefore, if the spectrum of weak large-scale drift/Rossby turbulence is initially in Z it will remain in Z indefinitely. We present a generalised Fjørtoft’s argument to find transfer directions for the quadratic invariants in the two-dimensional {k}-space. Using direct numerical simulations, we test and confirm our theoretical predictions for weak large-scale drift/Rossby turbulence, and establish qualitative differences with cases when turbulence is strong. We demonstrate that the qualitative features of the large-scale limit survive when the typical turbulent scale is only moderately greater than the Larmor/Rossby radius.

  15. Large Scale Field Campaign Contributions to Soil Moisture Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale field experiments have been an essential component of soil moisture remote sensing for over two decades. They have provided test beds for both the technology and science necessary to develop and refine satellite mission concepts. The high degree of spatial variability of soil moisture an...

  16. Large-scale V/STOL testing. [in wind tunnels

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Aiken, T. N.; Aoyagi, K.; Falarski, M. D.

    1977-01-01

    Several facets of large-scale testing of V/STOL aircraft configurations are discussed with particular emphasis on test experience in the Ames 40- by 80-foot wind tunnel. Examples of powered-lift test programs are presented in order to illustrate tradeoffs confronting the planner of V/STOL test programs. It is indicated that large-scale V/STOL wind-tunnel testing can sometimes compete with small-scale testing in the effort required (overall test time) and program costs because of the possibility of conducting a number of different tests with a single large-scale model where several small-scale models would be required. The benefits of both high- and full-scale Reynolds numbers, more detailed configuration simulation, and number and type of onboard measurements increase rapidly with scale. Planning must be more detailed at large scale in order to balance the trade-offs between the increased costs, as number of measurements and model configuration variables increase and the benefits of larger amounts of information coming out of one test.

  17. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  18. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  19. Considerations for Managing Large-Scale Clinical Trials.

    ERIC Educational Resources Information Center

    Tuttle, Waneta C.; And Others

    1989-01-01

    Research management strategies used effectively in a large-scale clinical trial to determine the health effects of exposure to Agent Orange in Vietnam are discussed, including pre-project planning, organization according to strategy, attention to scheduling, a team approach, emphasis on guest relations, cross-training of personnel, and preparing…

  20. Ecosystem resilience despite large-scale altered hydro climatic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  1. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  2. Probabilistic Cuing in Large-Scale Environmental Search

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Gilchrist, Iain D.

    2010-01-01

    Finding an object in our environment is an important human ability that also represents a critical component of human foraging behavior. One type of information that aids efficient large-scale search is the likelihood of the object being in one location over another. In this study we investigated the conditions under which individuals respond to…

  3. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  4. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  5. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  6. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  7. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  8. Assuring Quality in Large-Scale Online Course Development

    ERIC Educational Resources Information Center

    Parscal, Tina; Riemer, Deborah

    2010-01-01

    Student demand for online education requires colleges and universities to rapidly expand the number of courses and programs offered online while maintaining high quality. This paper outlines two universities respective processes to assure quality in large-scale online programs that integrate instructional design, eBook custom publishing, Quality…

  9. Large-scale search for dark-matter axions

    SciTech Connect

    Hagmann, C.A., LLNL; Kinion, D.; Stoeffl, W.; Van Bibber, K.; Daw, E.J.; McBride, J.; Peng, H.; Rosenberg, L.J.; Xin, H.; Laveigne, J.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Moltz, D.M.; Powell, J.; Clarke, J.; Nezrick, F.A.; Turner, M.S.; Golubev, N.A.; Kravchuk, L.V.

    1998-01-01

    Early results from a large-scale search for dark matter axions are presented. In this experiment, axions constituting our dark-matter halo may be resonantly converted to monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. Sensitivity at the level of one important axion model (KSVZ) has been demonstrated.

  10. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...