#### Sample records for solving three-dimensional potential

1. Comparing precorrected-FFT and fast multipole algorithms for solving three-dimensional potential integral equations

SciTech Connect

White, J.; Phillips, J.R.; Korsmeyer, T.

1994-12-31

Mixed first- and second-kind surface integral equations with (1/r) and {partial_derivative}/{partial_derivative} (1/r) kernels are generated by a variety of three-dimensional engineering problems. For such problems, Nystroem type algorithms can not be used directly, but an expansion for the unknown, rather than for the entire integrand, can be assumed and the product of the singular kernal and the unknown integrated analytically. Combining such an approach with a Galerkin or collocation scheme for computing the expansion coefficients is a general approach, but generates dense matrix problems. Recently developed fast algorithms for solving these dense matrix problems have been based on multipole-accelerated iterative methods, in which the fast multipole algorithm is used to rapidly compute the matrix-vector products in a Krylov-subspace based iterative method. Another approach to rapidly computing the dense matrix-vector products associated with discretized integral equations follows more along the lines of a multigrid algorithm, and involves projecting the surface unknowns onto a regular grid, then computing using the grid, and finally interpolating the results from the regular grid back to the surfaces. Here, the authors describe a precorrectted-FFT approach which can replace the fast multipole algorithm for accelerating the dense matrix-vector product associated with discretized potential integral equations. The precorrected-FFT method, described below, is an order n log(n) algorithm, and is asymptotically slower than the order n fast multipole algorithm. However, initial experimental results indicate the method may have a significant constant factor advantage for a variety of engineering problems.

2. Three-dimensional potential flow over hills and oval mounds

NASA Technical Reports Server (NTRS)

Siegel, R.

1976-01-01

An analysis was made of the potential flow behavior for an initially uniform flow passing over a single axisymmetric hill, an oval mound, and a combination of two hills. Small perturbation theory was used, and the resulting Laplace equation for the perturbation velocity potential was solved by using either a product solution or a Green's function. The three dimensional solution is of interest in calculating the pressure distribution around obstacles, the flow of pollutants carried by the wind, and the augmentation of wind velocity for windmill siting. The augmentation in velocity at the top of a hill was found to be proportional to the hill height relative to a characteristic width dimension of the hill. An axisymmetric hill produced about 20 percent less velocity increase than a two dimensional ridge having the same cross-sectional profile.

3. Potential Flows From Three-Dimensional Complex Variables

NASA Technical Reports Server (NTRS)

Martin, E. Dale; Kelly, Patrick H.; Panton, Ronald L.

1992-01-01

Report presents investigation of several functions of three-dimensional complex variable, with emphasis on potential-flow fields computed from these functions. Part of continuing research on generalization of well-established two-dimensional complex analysis to three and more dimensions.

4. From the Cover: Using three-dimensional microfluidic networks for solving computationally hard problems

Chiu, Daniel T.; Pezzoli, Elena; Wu, Hongkai; Stroock, Abraham D.; Whitesides, George M.

2001-03-01

This paper describes the design of a parallel algorithm that uses moving fluids in a three-dimensional microfluidic system to solve a nondeterministically polynomial complete problem (the maximal clique problem) in polynomial time. This algorithm relies on (i) parallel fabrication of the microfluidic system, (ii) parallel searching of all potential solutions by using fluid flow, and (iii) parallel optical readout of all solutions. This algorithm was implemented to solve the maximal clique problem for a simple graph with six vertices. The successful implementation of this algorithm to compute solutions for small-size graphs with fluids in microchannels is not useful, per se, but does suggest broader application for microfluidics in computation and control.

5. Three-dimensional potential energy surface of Ar–CO

SciTech Connect

Sumiyoshi, Yoshihiro; Endo, Yasuki

2015-01-14

A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

6. Nonisentropic unsteady three dimensional small disturbance potential theory

NASA Technical Reports Server (NTRS)

Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.

1986-01-01

Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.

7. Measuring three-dimensional interaction potentials using optical interference.

PubMed

2013-04-22

We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution. PMID:23609648

8. Accurate complex scaling of three dimensional numerical potentials

SciTech Connect

Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan; Deutsch, Thierry

2013-05-28

The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scaling of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.

9. WIND: Computer program for calculation of three dimensional potential compressible flow about wind turbine rotor blades

NASA Technical Reports Server (NTRS)

Dulikravich, D. S.

1980-01-01

A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.

10. Hypersingular meshless method using double-layer potentials for three-dimensional exterior acoustic problems.

PubMed

Young, D L; Chen, K H; Liu, T Y; Wu, C S

2016-01-01

Three-dimensional exterior acoustic problems with irregular domains are solved using a hypersingular meshless method. In particular, the method of fundamental solutions (MFS) is used to formulate and analyze such acoustic problems. It is well known that source points for MFS cannot be located on the real boundary due to the singularity of the kernel functions. Thus, the diagonal terms of the influence matrices are unobtainable when source points are located on the boundary. An efficient approach is proposed to overcome such difficulties, when the MFS is used for three-dimensional exterior acoustic problems. This work is an extension of previous research on two-dimensional problems. The solution of the problem is expressed in terms of a double-layer potential representation on the physical boundary. Three examples are presented in which the proposed method is compared to the MFS and boundary element method. Good numerical performance is demonstrated by the proposed hypersingular meshless method. PMID:26827046

11. A numerical method for solving the three-dimensional parabolized Navier-Stokes equations

NASA Technical Reports Server (NTRS)

Dambrosio, Domenic; Marsilio, Robert

1995-01-01

A numerical technique that solves the parabolized form of the Navier-Stokes equations is presented. Such a method makes it possible to obtain very detailed descriptions of the flowfield in a relatively modest CPU time. The present approach is based on a space-marching technique, uses a finite volume discretization and an upwind flux-difference splitting scheme for the evaluation of the inviscid fluxes. Second order accuracy is achieved following the guidelines of the the ENO schemes. The methodology is used to investigate three-dimensional supersonic viscous flows over symmetric corners. Primary and secondary streamwise vortical structures embedded in the boundary layer and originated by the interaction with shock waves are detected and studied. For purpose of validation, results are compared with experimental data extracted from literature. The agreement is found to be satisfactory. In conclusion, the numerical method proposed seems to be promising as it permits, at a reasonable computational expense, investigation of complex three-dimensional flowfields in great detail.

12. Determination of aerodynamic sensitivity coefficients based on the three-dimensional full potential equation

NASA Technical Reports Server (NTRS)

Elbanna, Hesham M.; Carlson, Leland A.

1992-01-01

The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.

13. Nonisentropic unsteady three dimensional small disturbance potential theory

NASA Technical Reports Server (NTRS)

Gibbons, M. D.; Williams, M. H.; Whitlow, W., Jr.

1986-01-01

Nonisentropic modifications to the three-dimensional transonic small disturbance (TSD) theory, which allows for more accurate modeling of transonic flow fields, are described. The modified flux equation and entropy corrections are presented; the Engquist-Osher differencing (1980) is added to the solution algorithm in order to eliminate the velocity overshoots upstream of shocks. The modified theory is tested in the XTRAN3S finite difference computer code. Steady flows over a rectangular NACA 0012 wing with an aspect ratio of 12 are calculated and compared to Euler equation solutions; good correlation is observed between the data and the modified TSD theory provides more accurate data, particularly for the lift curve slope. The nonisentropic theory is evaluated on an RAE tailplane model for steady and unsteady flows and the modified theory results agree well with the experimental data.

14. PAKAL: A THREE-DIMENSIONAL MODEL TO SOLVE THE RADIATIVE TRANSFER EQUATION

SciTech Connect

De la Luz, Victor; Lara, Alejandro; Mendoza-Torres, J. E.; Selhorst, Caius L.

2010-06-15

We present a new numerical model called 'Pakal' intended to solve the radiative transfer equation in a three-dimensional (3D) geometry, using the approximation for a locally plane-parallel atmosphere. Pakal uses pre-calculated radial profiles of density and temperature (based on hydrostatic, hydrodynamic, or MHD models) to compute the emission from 3D source structures with high spatial resolution. Then, Pakal solves the radiative transfer equation in a set of (3D) ray paths, going from the source to the observer. Pakal uses a new algorithm to compute the radiative transfer equation by using an intelligent system consisting of three structures: a cellular automaton; an expert system; and a program coordinator. The code outputs can be either two-dimensional maps or one-dimensional profiles, which reproduce the observations with high accuracy, giving detailed physical information about the environment where the radiation was generated and/or transmitted. We present the model applied to a 3D solar radial geometry, assuming a locally plane-parallel atmosphere, and thermal free-free radio emission from hydrogen-helium gas in thermodynamic equilibrium. We also present the convergence test of the code. We computed the synthetic spectrum of the centimetric-millimetric solar emission and found better agreement with observations (up to 10{sup 4} K at 20 GHz) than previous models reported in the literature. The stability and convergence test show the high accuracy of the code. Finally, Pakal can improve the integration time by up to an order of magnitude compared against linear integration codes.

15. Understanding Young Children's Three-Dimensional Creative Potential in Art Making

ERIC Educational Resources Information Center

Pavlou, Victoria

2009-01-01

This article explores aspects of young children's three-dimensional development in art making. Understanding young children's three-dimensional awareness and development is often a neglected area of early childhood educators' education and practice and often children's creative potential is not fully realised. The present article is based on a…

16. Three-Dimensional Profiles Using a Spherical Cutting Bit: Problem Solving in Practice

ERIC Educational Resources Information Center

Ollerton, Richard L.; Iskov, Grant H.; Shannon, Anthony G.

2002-01-01

An engineering problem concerned with relating the coordinates of the centre of a spherical cutting tool to the actual cutting surface leads to a potentially rich example of problem-solving techniques. Basic calculus, Lagrange multipliers and vector calculus techniques are employed to produce solutions that may be compared to better understand…

17. Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation

NASA Technical Reports Server (NTRS)

Chang, I. C.

1985-01-01

A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.

18. WIND- THREE DIMENSIONAL POTENTIAL COMPRESSIBLE FLOW ABOUT WIND TURBINE ROTOR BLADES

NASA Technical Reports Server (NTRS)

Dulikravich, D. S.

1994-01-01

This computer program, WIND, was developed to numerically solve the exact, full-potential equation for three-dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three-dimensional, boundary-conforming grid and iteratively solves the full-potential equation while fully accounting for both the rotating and Coriolis effects. WIND is capable of numerically analyzing the flow field about a given blade shape of the horizontal-axis type wind turbine. The rotor hub is assumed representable by a doubly infinite circular cylinder. An arbitrary number of blades may be attached to the hub and these blades may have arbitrary spanwise distributions of taper and of the twist, sweep, and dihedral angles. An arbitrary number of different airfoil section shapes may be used along the span as long as the spanwise variation of all the geometeric parameters is reasonably smooth. The numerical techniques employed in WIND involve rotated, type-dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, WIND is cabable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. Along with the three-dimensional results, WIND provides the results of the two-dimensional calculations to aid the user in locating areas of possible improvement in the aerodynamic design of the blade. Output from WIND includes the chordwise distribution of the coefficient of pressure, the Mach number, the density, and the relative velocity components at spanwise stations along the blade. In addition, the results specify local values of the lift coefficient and the tangent and axial aerodynamic force components. These are also given in integrated form expressing the total torque and the total axial

19. Three-dimensional guidance system for implant insertion: Part II. Dual axes table--problem solving.

PubMed

Weinberg, L A; Kruger, B

1999-01-01

The three-dimensional guidance system for implant insertion is a technique for placing a radiopaque vertical orientation pin over the crest of the alveolar ridge on the stone cast during fabrication of the radiographic guide. The cross-sectional and panoramic reformatted images were reproduced on a Polaroid or 35-mm print. The true vertical orientation pin facilitates (1) identification and the exact planned location of each implant in the reformatted images of the CT scan, (2) establishment of the internal starting point for the osteotomy on a photographic print, (3) optimum implant orientation, and (4) measurement of the angulation between the true vertical orientation line and optimum implant orientation. With the aid of a newly developed dual-axes base and transfer of the internal starting point of each implant to the stone cast, the buccolingual and mesiodistal implant inclinations for each implant were transferred to a surgical guide in the form of surgical steel drill guide tubes. The resulting pilot osteotomy transfers to the alveolar bone the exact starting point and the buccolingual and mesiodistal inclination for each implant. The technique provides a three-dimensional guidance system for implant insertion that is extremely accurate and yet practical. PMID:10709472

20. General design method for three-dimensional potential flow fields. 1: Theory

NASA Technical Reports Server (NTRS)

Stanitz, J. D.

1980-01-01

A general design method was developed for steady, three dimensional, potential, incompressible or subsonic-compressible flow. In this design method, the flow field, including the shape of its boundary, was determined for arbitrarily specified, continuous distributions of velocity as a function of arc length along the boundary streamlines. The method applied to the design of both internal and external flow fields, including, in both cases, fields with planar symmetry. The analytic problems associated with stagnation points, closure of bodies in external flow fields, and prediction of turning angles in three dimensional ducts were reviewed.

1. Three-Dimensional High-Order Spectral Volume Method for Solving Maxwell's Equations on Unstructured Grids

NASA Technical Reports Server (NTRS)

Liu, Yen; Vinokur, Marcel; Wang, Z. J.

2004-01-01

A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of

2. Three-dimensional potential flows from functions of a 3D complex variable

NASA Technical Reports Server (NTRS)

Kelly, Patrick; Panton, Ronald L.; Martin, E. D.

1990-01-01

Potential, or ideal, flow velocities can be found from the gradient of an harmonic function. An ordinary complex valued analytic function can be written as the sum of two real valued functions, both of which are harmonic. Thus, 2D complex valued functions serve as a source of functions that describe two-dimensional potential flows. However, this use of complex variables has been limited to two-dimensions. Recently, a new system of three-dimensional complex variables has been developed at the NASA Ames Research Center. As a step toward application of this theory to the analysis of 3D potential flow, several functions of a three-dimensional complex variable have been investigated. The results for two such functions, the 3D exponential and 3D logarithm, are presented in this paper. Potential flows found from these functions are investigated. Important characteristics of these flows fields are noted.

3. Use of edge-based finite elements for solving three dimensional scattering problems

NASA Technical Reports Server (NTRS)

Chatterjee, A.; Jin, J. M.; Volakis, John L.

1991-01-01

Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.

4. Potential-based methodology for active sound control in three dimensional settings.

PubMed

Lim, H; Utyuzhnikov, S V; Lam, Y W; Kelly, L

2014-09-01

This paper extends a potential-based approach to active noise shielding with preservation of wanted sound in three-dimensional settings. The approach, which was described in a previous publication [Lim et al., J. Acoust. Soc. Am. 129(2), 717-725 (2011)], provides several significant advantages over conventional noise control methods. Most significantly, the methodology does not require any information including the characterization of sources, impedance boundary conditions and surrounding medium, and that the methodology automatically differentiates between the wanted and unwanted sound components. The previous publication proved the concept in one-dimensional conditions. In this paper, the approach for more realistic conditions is studied by numerical simulation and experimental validation in three-dimensional cases. The results provide a guideline to the implementation of the active shielding method with practical three-dimensional conditions. Through numerical simulation it is demonstrated that while leaving the wanted sound unchanged, the developed approach offers selective volumetric noise cancellation within a targeted domain. In addition, the method is implemented in a three-dimensional experiment with a white noise source in a semi-anechoic chamber. The experimental study identifies practical difficulties and limitations in the use of the approach for real applications. PMID:25190385

5. Detection and analysis of coherent groups in three-dimensional fully-nonlinear potential wave fields

Sanina, E. V.; Suslov, S. A.; Chalikov, D.; Babanin, A. V.

2016-07-01

We investigate the emergence of coherent groups in three-dimensional fully-nonlinear potential deep water waves whose initial spectrum is assumed to be of the JONSWAP type with directional distribution given by cos nθ, where n is the integer varying from 1 to 16. The analysis is based on the results of long-term wave simulations performed using a numerical solution of a three-dimensional Laplace equation for the velocity potential subject to nonlinear kinematic and dynamic boundary conditions at the free surface. The main characteristics of wave groups such as their average velocity, maximum group wave height, lifetime and length are analysed. The statistics of extreme waves occurring in the detected groups are discussed. Spatial and temporal scale characteristics of wave groups are compared to the previous results.

6. QSONIC- FULL POTENTIAL TRANSONIC, QUASI-THREE DIMENSIONAL FLOW THROUGH A ROTATING TURBOMACHINERY BLADE ROW

NASA Technical Reports Server (NTRS)

Farrell, C. A.

1994-01-01

7. Effect of Cardiac Tissue Anisotropy on Three-Dimensional Electrical Action Potential Propagation

He, Zhi Zhu; Liu, Jing

A three-dimensional (3D) electrical action potential propagation model is developed to characterize the integrated effect of cardiac tissue structure using a homogenous function with a spatial inhomogeneity. This method may be more effective for bridging the gap between computational models and experimental data for cardiac tissue anisotropy. A generalized 3D eikonal relation considering anisotropy and a self-similar evolution solution of such a relation are derived to identify the effect of anisotropy and predict the anisotropy-induced electrical wave propagation instabilities. Furthermore, the phase field equation is introduced to obtain the complex three-dimensional numerical solution of the new correlation. The present results are expected to be valuable for better understanding the physiological behavior of cardiac tissues.

8. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

ERIC Educational Resources Information Center

Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

2012-01-01

Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

9. Transport signatures of surface potentials on three-dimensional topological insulators

2016-02-01

The spin-momentum-locked nature of the robust surface states of three-dimensional topological insulators (3D TIs) makes them promising candidates for spintronics applications. Surface potentials which respect time-reversal symmetry can exist at the surface between a 3D TI and the trivial vacuum. These potentials can distort the spin texture of the surface states while retaining their gapless nature. In this work, the effect of all such surface potentials on the spin textures is studied. Since a tunnel magnetoresistance signal carries the information of the spin texture, it is proposed that spin-polarized tunneling of electrons to a 3D TI surface can be used to uniquely identify the surface potentials and quantitatively characterize them.

10. Phase diagram of the three-dimensional Anderson model for short-range speckle potentials

Pasek, M.; Zhao, Z.; Delande, D.; Orso, G.

2015-11-01

We investigate the localization properties of atoms moving in a three-dimensional optical lattice in the presence of a disorder potential having the same probability distribution P (V ) as laser speckles, and a spatial correlation length much shorter than the lattice spacing. We find that the disorder-averaged (single-particle) Green's function, calculated via the coherent-potential approximation, is in very good agreement with exact numerics. Using the transfer-matrix method, we compute the phase diagram in the energy-disorder plane and show that its peculiar shape can be understood from the self-consistent theory of localization. In particular, we recover the large asymmetry in the position of the mobility edge for blue and red speckles, which was recently observed numerically for spatially correlated speckle potentials.

11. Three-dimensional transonic potential flow about complex 3-dimensional configurations

NASA Technical Reports Server (NTRS)

Reyhner, T. A.

1984-01-01

An analysis has been developed and a computer code written to predict three-dimensional subsonic or transonic potential flow fields about lifting or nonlifting configurations. Possible condfigurations include inlets, nacelles, nacelles with ground planes, S-ducts, turboprop nacelles, wings, and wing-pylon-nacelle combinations. The solution of the full partial differential equation for compressible potential flow written in terms of a velocity potential is obtained using finite differences, line relaxation, and multigrid. The analysis uses either a cylindrical or Cartesian coordinate system. The computational mesh is not body fitted. The analysis has been programmed in FORTRAN for both the CDC CYBER 203 and the CRAY-1 computers. Comparisons of computed results with experimental measurement are presented. Descriptions of the program input and output formats are included.

12. Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries

Zhang, Yong; Ma, Yu; Yi, Hong-Liang; Tan, He-Ping

2013-11-01

A meshless method called as the natural element method (NEM) is developed for solving radiative heat transfer problem in 3D complex enclosures filled with an absorbing, emitting and scattering medium. The boundary surfaces are supposed to be opaque, diffuse as well as gray. The shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The NEM solutions dealing with the radiative heat transfer with or without conduction are validated by comparison with some cases reported by the literature. Furthermore, the radiative heat transfer in cubic enclosures with or without an inner hollow sphere, cylinder and elliptical cylinder is also examined to demonstrate the applicability of the present method towards various three-dimensional geometries. For pure radiative transfer, both the cases of radiative non-equilibrium and radiative equilibrium are investigated. For combined conduction and radiation heat transfer, effects of various parameters such as the conduction-radiation parameter, the scattering albedo, the extinction coefficient, and the boundary emissivity are analyzed on the temperature distributions.

13. [Algorithm study on the three-dimensional cardiac tissue based on the model of ventricular action potential].

PubMed

Zhang, Hong; Ming, Lequn; Jin, Yinbin; Li, Mingjun; Zhang, Zhenxi; Lin, Yang

2010-02-01

Cardiac reentry is one of the important factors to induce arrhythmias. It could lead to ventricular tachycardia (VT) or even fibrillation (VF), resulting in sudden cardiac death. With the wide use of computer in the quantitative study of electrophysiology, the three-dimensional virtual heart for simulations needs to be developed imminently in computer. In this paper, numerical algorithm of the model was studied. The three-dimensional model was constructed by integrating Luo-Rudy 1991 ventricular cell model and diffusion equation. The operator splitting method was employed to solve the model. The alternate direction iterative (ADI) format and seven-point centered difference method were used for the partial differential equation. And the discrete format with second-order accuracy was taken for the boundary conditions. The results showed that the ADI format and seven-point centered difference method both could successfully figure out the membrane potential and electrical activities with good numerical stability. However, computing consumption could be greatly reduced with the ADI format, implying that the ADI method with large time step was more powerful in numerical simulations. PMID:20337013

14. A three-dimensional potential-flow program with a geometry package for input data generation

NASA Technical Reports Server (NTRS)

Halsey, N. D.

1978-01-01

Information needed to run a computer program for the calculation of the potential flow about arbitrary three dimensional lifting configurations is presented. The program contains a geometry package which greatly reduces the task of preparing the input data. Starting from a very sparse set of coordinate data, the program automatically augments and redistributes the coordinates, calculates curves of intersection between components, and redistributes coordinates in the regions adjacent to the intersection curves in a suitable manner for use in the potential flow calculations. A brief summary of the program capabilities and options is given, as well as detailed instructions for the data input, a suggested structure for the program overlay, and the output for two test cases.

15. Three dimensional potential and current distributions in a Hall generator with assumed velocity profiles

NASA Technical Reports Server (NTRS)

Stankiewicz, N.; Palmer, R. W.

1972-01-01

Three-dimensional potential and current distributions in a Faraday segmented MHD generator operating in the Hall mode are computed. Constant conductivity and a Hall parameter of 1.0 is assumed. The electric fields and currents are assumed to be coperiodic with the electrode structure. The flow is assumed to be fully developed and a family of power-law velocity profiles, ranging from parabolic to turbulent, is used to show the effect of the fullness of the velocity profile. Calculation of the square of the current density shows that nonequilibrium heating is not likely to occur along the boundaries. This seems to discount the idea that the generator insulating walls are regions of high conductivity and are therefore responsible for boundary-layer shorting, unless the shorting is a surface phenomenon on the insulating material.

16. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

ERIC Educational Resources Information Center

Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

2009-01-01

Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

17. Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three-Dimensional Culture.

PubMed

Follin, Bjarke; Juhl, Morten; Cohen, Smadar; Perdersen, Anders Elm; Kastrup, Jens; Ekblond, Annette

2016-08-01

Mesenchymal stromal/stem cells (MSCs) have been investigated extensively through the past years, proving to have great clinical therapeutic potential. In vitro cultivation of MSCs in three-dimensional (3D) culture systems, such as scaffolds, hydrogels, or spheroids, have recently gained attention for tissue engineering applications. Studies on MSC spheroids demonstrated that such cultivation increased the paracrine immunomodulatory potential of the MSCs, accompanied by phenotypic alterations. In this review, we gather results from recent experimental studies on the immunomodulatory abilities of MSCs when cultured as spheroids or in biomaterials like scaffolds or hydrogels compared to regular two-dimensional (2D) culture and show that alterations occurring to MSCs in spheroids also occur in MSCs in biomaterials. We provide a brief description of known mechanisms of MSC immunomodulatory capacity and how they are altered in the two 3D culture systems, together with phenotypic cellular changes. Based on the present knowledge, we highlight vital areas in need of further investigation. The impact of 3D environments on immunomodulation has great potential for tissue engineering and cellular therapy, and this is the first review to gather this knowledge with a comparison across different 3D environments. PMID:26861485

18. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential.

PubMed

Baker, Erin L; Lu, Jing; Yu, Dihua; Bonnecaze, Roger T; Zaman, Muhammad H

2010-10-01

While significant advances have been made toward revealing the molecular mechanisms that influence breast cancer progression, much less is known about the associated cellular mechanical properties. To this end, we use particle-tracking microrheology to investigate the interplay among intracellular mechanics, three-dimensional matrix stiffness, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well-characterized model system where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3ζ, or both ErbB2 and 14-3-3ζ, with empty vector as a control. Our results show that MECs possessing ErbB2 transforming potential stiffen in response to elevated matrix stiffness, whereas non-transformed MECs or those overexpressing only 14-3-3ζ do no exhibit this response. We further observe that overexpression of ErbB2 alone is associated with the highest degree of intracellular sensitivity to matrix stiffness, and that the effect of transforming potential on intracellular stiffness is matrix-stiffness-dependent. Moreover, our intracellular stiffness measurements parallel cell migration behavior that has been previously reported for these MEC sublines. Given the current knowledge base of breast cancer mechanobiology, these findings suggest that there may be a positive relationship among intracellular stiffness sensitivity, cell motility, and perturbed mechanotransduction in breast cancer. PMID:20923638

19. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays

PubMed Central

Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

2014-01-01

Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz–10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology. PMID:24785307

20. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays

Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

2014-05-01

Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz-10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology.

1. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays.

PubMed

Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

2014-01-01

Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz-10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology. PMID:24785307

2. Effective solving of three-dimensional gas dynamics problems with the Runge-Kutta discontinuous Galerkin method

Korneev, B. A.; Levchenko, V. D.

2016-03-01

In this paper we present the Runge-Kutta discontinuous Galerkin method (RKDG method) for the numerical solution of the Euler equations of gas dynamics. The method is being tested on a series of Riemann problems in the one-dimensional case. For the implementation of the method in the three-dimensional case, a DiamondTorre algorithm is proposed. It belongs to the class of the locally recursive non-locally asynchronous algorithms (LRnLA). With the help of this algorithm a significant increase of speed of calculations is achieved. As an example of the three-dimensional computing, a problem of the interaction of a bubble with a shock wave is considered.

3. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate: Computer program description and users manual

NASA Technical Reports Server (NTRS)

Jumper, S. J.

1979-01-01

A method was developed for predicting the potential flow velocity field at the plane of a propeller operating under the influence of a wing-fuselage-cowl or nacelle combination. A computer program was written which predicts the three dimensional potential flow field. The contents of the program, its input data, and its output results are described.

4. Lattice Boltzmann implementation of the three-dimensional Ben-Naim potential for water-like fluids

Moradi, Nasrollah; Greiner, Andreas; Rao, Francesco; Succi, Sauro

2013-03-01

We develop a three-dimensional lattice Boltzmann (LB) model accounting for directional interactions between water-like molecules, based on the so-called Ben-Naim (BN) potential [A. Ben-Naim, Molecular Theory of Water and Aqueous Solutions: Part I: Understanding Water (World Scientific Publishing Company, 2010); A. Ben-Naim, "Statistical mechanics of waterlike' particles in two dimensions. I. Physical model and application of the Percus-Yevick equation," J. Chem. Phys. 54, 3682 (1971)], 10.1063/1.1675414. The water-like molecules are represented by rigid tetrahedra, with two donors and two acceptors at the corners and interacting with neighboring tetrahedra, sitting on the nodes of a regular lattice. The tetrahedra are free to rotate about their centers under the drive of the torque arising from the interparticle potential. The orientations of the water molecules are evolved in time via an overdamped Langevin dynamics for the torque, which is solved by means of a quaternion technique. The resulting advection-diffusion-reaction equation for the quaternion components is solved by a LB method, acting as a dynamic minimizer for the global energy of the fluid. By adding thermal fluctuations to the torque equation, the model is shown to reproduce some microscopic features of real water, such as an average number of hydrogen bonds per molecules (HBs) between 3 and 4, in a qualitative agreement with microscopic water models. Albeit slower than a standard LB solver for ordinary fluids, the present scheme opens up potentially far-reaching scenarios for multiscale applications based on a coarse-grained representation of the water solvent.

5. Lattice Boltzmann implementation of the three-dimensional Ben-Naim potential for water-like fluids.

PubMed

Moradi, Nasrollah; Greiner, Andreas; Rao, Francesco; Succi, Sauro

2013-03-28

We develop a three-dimensional lattice Boltzmann (LB) model accounting for directional interactions between water-like molecules, based on the so-called Ben-Naim (BN) potential [A. Ben-Naim, Molecular Theory of Water and Aqueous Solutions: Part I: Understanding Water (World Scientific Publishing Company, 2010); "Statistical mechanics of 'waterlike' particles in two dimensions. I. Physical model and application of the Percus-Yevick equation," J. Chem. Phys. 54, 3682 (1971)]. The water-like molecules are represented by rigid tetrahedra, with two donors and two acceptors at the corners and interacting with neighboring tetrahedra, sitting on the nodes of a regular lattice. The tetrahedra are free to rotate about their centers under the drive of the torque arising from the interparticle potential. The orientations of the water molecules are evolved in time via an overdamped Langevin dynamics for the torque, which is solved by means of a quaternion technique. The resulting advection-diffusion-reaction equation for the quaternion components is solved by a LB method, acting as a dynamic minimizer for the global energy of the fluid. By adding thermal fluctuations to the torque equation, the model is shown to reproduce some microscopic features of real water, such as an average number of hydrogen bonds per molecules (HBs) between 3 and 4, in a qualitative agreement with microscopic water models. Albeit slower than a standard LB solver for ordinary fluids, the present scheme opens up potentially far-reaching scenarios for multiscale applications based on a coarse-grained representation of the water solvent. PMID:23556707

6. Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing.

PubMed

Rabin, J; Switkes, E; Crognale, M; Schneck, M E; Adams, A J

1994-10-01

Visual evoked potentials (VEPs) were measured for sinusoidal gratings with spatio-chromatic modulation defined in a three-dimensional color space. The spatio-chromatic modulation of the gratings can be decomposed into contributions from an achromatic luminance varying component, an isoluminant component which modulates only the activities of L cones and M cones, and an isoluminant component corresponding to modulation of only S-cone activity. The emphasis of this report is the nature of VEPs resulting from isoluminant spatio-chromatic modulation. The VEP response was characterized along a number of spatial, temporal, and chromatic stimulus dimensions: contrast, spatial frequency, chromaticity in the isoluminant plane, chrominance/luminance ratio, orientation, and temporal frequency. Isoluminant VEPs resulting from stimuli modulating L and M cones are compared with those from S-cone modulation. When appropriate spatiotemporal conditions are employed, both types produce robust VEPs; however, the S-pathway VEPs show considerably longer latencies than do those from LM-pathway activation. The VEP results are compared to psychophysical and single unit electrophysiological observations. VEP latencies exhibit the lowpass character of psychophysical chromatic contrast sensitivity functions but VEP amplitudes show bandpass tuning along both the S and LM axes. An oblique effect, i.e. shorter latencies for horizontal and vertical gratings than for diagonal, is observed in the isoluminant VEP. S-pathway VEPs are used to demonstrate an electophysiological correlate of transient tritanopia. Normative amplitude and latency data for VEPs from selectivity stimulated chromatic mechanisms provide a baseline for clinical electrodiagnostic applications. PMID:7975303

7. Three-Dimensional Media Technologies: Potentials for Study in Visual Literacy.

ERIC Educational Resources Information Center

Thwaites, Hal

This paper presents an overview of three-dimensional media technologies (3Dmt). Many of the new 3Dmt are the direct result of interactions of computing, communications, and imaging technologies. Computer graphics are particularly well suited to the creation of 3D images due to the high resolution and programmable nature of the current displays.…

8. Comparison of computational results of a few representative three-dimensional transonic potential flow analysis programs

NASA Technical Reports Server (NTRS)

Tanaka, K.; Hirose, H.

1986-01-01

The development of transonic aerodynamic computation methods and specific examples, as well as examples of three-dimensional transonic computation in design, are discussed. The case of the transonic transport and the case of the small transport are analyzed. Requirements for programs of the future are itemized.

9. Full potential solution of transonic quasi-three-dimensional flow through a cascade using artificial compressibility

SciTech Connect

1982-01-01

A reliable method is presented for calculating the flowfield about a cascade of arbitrary two-dimensional airfoils. The method approximates the three-dimensional flow in a turbomachinery blade row by correcting for streamtube convergence and radius change in the throughflow direction. 12 refs.

10. A three-dimensional coupled Nitsche and level set method for electrohydrodynamic potential flows in moving domains

Johansson, A.; Garzon, M.; Sethian, J. A.

2016-03-01

In this paper we present a new algorithm for computing three-dimensional electrohydrodynamic flow in moving domains which can undergo topological changes. We consider a non-viscous, irrotational, perfect conducting fluid and introduce a way to model the electrically charged flow with an embedded potential approach. To numerically solve the resulting system, we combine a level set method to track both the free boundary and the surface velocity potential with a Nitsche finite element method for solving the Laplace equations. This results in an algorithmic framework that does not require body-conforming meshes, works in three dimensions, and seamlessly tracks topological change. Assembling this coupled system requires care: while convergence and stability properties of Nitsche's methods have been well studied for static problems, they have rarely been considered for moving domains or for obtaining the gradients of the solution on the embedded boundary. We therefore investigate the performance of the symmetric and non-symmetric Nitsche formulations, as well as two different stabilization techniques. The global algorithm and in particular the coupling between the Nitsche solver and the level set method are also analyzed in detail. Finally we present numerical results for several time-dependent problems, each one designed to achieve a specific objective: (a) The oscillation of a perturbed sphere, which is used for convergence studies and the examination of the Nitsche methods; (b) The break-up of a two lobe droplet with axial symmetry, which tests the capability of the algorithm to go past flow singularities such as topological changes and preservation of an axi-symmetric flow, and compares results to previous axi-symmetric calculations; (c) The electrohydrodynamical deformation of a thin film and subsequent jet ejection, which will account for the presence of electrical forces in a non-axi-symmetric geometry.

11. A high-resolution hybrid scheme for solving three dimensional euler equations of high speed inlet flows

Wang, Bao-Guo; Liu, Qiu-Sheng; Bian, Yin-Gui

1996-07-01

A new and efficient three-dimensional implicit hybrid scheme for Euler equations is presented. The basic scheme is the coupling of the Jameson and Turkel’s LU decompositions and Prof. Zhang Hanxin’s NND concept. The improved LU decompositions are applied to discretize the implicit part of the Euler Equations and Zhang’s modified flux function to calculate the right hand side operators of the hybrid scheme. Numerical calculations were made of supersonic inlet flows with mixed external-internal compressions. Some of the computed results were compared with available wind tunnel data.

12. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays

PubMed Central

Kopanitsa, Maksym V; Afinowi, Nurudeen O; Grant, Seth GN

2006-01-01

Background Multi-electrode arrays (MEAs) have become popular tools for recording spontaneous and evoked electrical activity of excitable tissues. The majority of previous studies of synaptic transmission in brain slices employed MEAs with planar electrodes that had limited ability to detect signals coming from deeper, healthier layers of the slice. To overcome this limitation, we used three-dimensional (3D) MEAs with tip-shaped electrodes to probe plasticity of field excitatory synaptic potentials (fEPSPs) in the CA1 area of hippocampal slices of 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice. Results Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of synaptic responses in the CA1 area recorded following excitation of Schäffer collateral/commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5× of the baseline stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels detected in proximal apical dendrites of pyramidal neurones. No significant differences in the manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice with the three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate (NMDA) receptors. Conclusion Principal features of LTP (magnitude, pathway specificity, NMDA receptor dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in conventional glass electrode experiments. Advantages of using MEAs are the ability to record from different regions of the slice and the ease of conducting

13. [The potential of three-dimensional tumor models and cell culturing in cancer research and diagnostics].

PubMed

Alföldi, Róbert; Szebeni, János Gábor; Puskás, László G

2015-12-01

In vitro testing of antitumor agents on human cancer cell lines has become essential in pharmaceutical research and in clinical practice. Although the most widely used technique is the two-dimensional cell growing protocol (in tissue culture plates), the new three-dimensional methods are becoming more and more popular as their structure and complexity is more similar to the microenvironment of the real tumor. The aim of the present study is to describe the most widely used in vitro three-dimensional tumor models and to compare a RAFT(TM) three dimensional in vitro tumor model with the traditional two-dimensional tumor cell cultures. In the study, the viability and the enzyme activity of cultured A549 non-small cell lung cancer (NSCLC) cells under different conditions were compared. The results show that while the number of necrotic cells increased significantly (20-fold; 2D/A549 T75 conventional tissue culture flask 1.6%; 2D/A549-collagen coated T75 tissue culture flask 1.45%, RAFT(TM) 22.11%) during long culturing period in the RAFT(TM) three-dimensional in vitro tumor model, there was no significant difference during the conventional antitumor screening period (3-5 day) compared to the traditional two-dimensional cell cultures. The structure of the tumor cell islets grown with RAFT(TM) is much more complex than that of the traditional two-dimensional cultures. Thus, similarly to the in vivo tumor microenvironment, there is also a collagen matrix in the extracellular space which can have significant effect on the diffusion of the antitumor agents to cells. In conclusion, it can be stated that testing of antitumor agents on tumor cells cultured in three-dimensional systems can be an important complementary method to the traditional two-dimensional in vitro analyses. The results of the new three-dimensional method can be more easily applied in the in vivo analysis and translated into clinical practice. PMID:26665190

14. Effects of spacecraft potential on three-dimensional electron measurements in the solar wind

SciTech Connect

Scime, E.E.; Phillips, J.L.; Bame, S.J.

1994-08-01

Using the three-dimensional, low-energy electron spectrometer aboard the Ulysses spacecraft, the authors have measured the gyrotropicity of electron distributions in the solar wind. In order to make these observations, they have developed a new technique for correcting spacecraft charging effects in three-dimensional, low-energy particle measurements. Comparisons of ion and electron number and current densities, and the alignment of electron temperature anisotropies with the local magnetic field, are presented as evidence of the improvement in the accuracy of the electron moments resulting from the spacecraft charging corrections. The implications of these charging correction technique go beyond simple scalar corrections to the Ulysses measurements. They discuss the effects of their charging correction upon the measurements of temporal and radial gradients in a plasma environment and for two-dimensionally obtained low-energy particle data. 17 refs., 12 figs.

15. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

NASA Technical Reports Server (NTRS)

Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

1987-01-01

A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

16. Nested multigrid vector and scalar potential finite element method for three-dimensional time-harmonic electromagnetic analysis

Zhu, Yu; Cangellaris, Andreas C.

2002-05-01

A new finite element methodology is presented for fast and robust numerical simulation of three-dimensional electromagnetic wave phenomena. The new methodology combines nested multigrid techniques with the ungauged vector and scalar potential formulation of the finite element method. The finite element modeling is performed on nested meshes over the computational domain of interest. The iterative solution of the finite element matrix on the finest mesh is performed using the conjugate gradient method, while the nested multigrid vector and scalar potential algorithm acts as the preconditioner for the iterative solver. Numerical experiments from the application of the new methodology to three-dimensional electromagnetic scattering are used to demonstrate its superior numerical convergence and efficient memory usage.

17. NASA-Ames three-dimensional potential flow analysis system (POTFAN) equation solver code (SOLN) version 1

NASA Technical Reports Server (NTRS)

Davis, J. E.; Bonnett, W. S.; Medan, R. T.

1976-01-01

A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.

18. Hydrophobicity within the three-dimensional Mercedes-Benz model: potential of mean force.

PubMed

Dias, Cristiano L; Hynninen, Teemu; Ala-Nissila, Tapio; Foster, Adam S; Karttunen, Mikko

2011-02-14

We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model. PMID:21322739

19. Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force

Dias, Cristiano L.; Hynninen, Teemu; Ala-Nissila, Tapio; Foster, Adam S.; Karttunen, Mikko

2011-02-01

We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model.

20. Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential

Vanecek, Milan; Babchenko, Oleg; Purkrt, Adam; Holovsky, Jakub; Neykova, Neda; Poruba, Ales; Remes, Zdenek; Meier, Johannes; Kroll, Ulrich

2011-04-01

We report on the experimental realization of amorphous/microcrystalline silicon tandem solar cells (Micromorph) based on our three-dimensional design. An enhancement is reached in the short-circuit current by 40%, with an excellent open-circuit voltage of 1.41V and a fill factor of 72%. We have used nanoholes or microholes dry etched into the ZnO front contact layer. Monte Carlo optical modeling shows that stable efficiency of amorphous silicon p-i-n solar cells in over 12% range is possible. For the Micromorph cells, efficiency over 15% with the thickness of amorphous Si below 200 nm and of microcrystalline Si around 500 nm is possible.

1. Three-dimensional speckle-tracking echocardiography: methodological aspects and clinical potential.

PubMed

Urbano-Moral, Jose A; Patel, Ayan R; Maron, Martin S; Arias-Godinez, Jose A; Pandian, Natesa G

2012-09-01

Speckle-tracking echocardiography (STE) is an advanced echocardiographic technique that allows a novel approach to the assessment of cardiac physiology through the study of myocardial mechanics. In its three-dimensional (3D) modality, it overcomes the drawbacks inherent to other echocardiographic techniques, namely two-dimensional echocardiography and tissue Doppler imaging. Several research studies and software improvements have led 3D-STE to become a promising tool for accurate evaluation of global and regional cardiac function. This article addresses the image acquisition, analytical methods, and parameters of myocardial mechanics that could be derived from 3D-STE. This systematic guidance may help to establish its usefulness in the global and regional evaluation of cardiac function, and to facilitate its clinical application. PMID:22783969

2. The Anisotropic Aphid: Three-Dimensional Induction Modeling of Electrical Texture with Mixed Potentials

Weiss, C. J.

2014-12-01

At the macroscopic scale, where the e-folding distance of low-frequency electromagnetic fields in conductive geomaterials is much larger than the size of organized heterogeneities such as fracture sets or laminations that constitute the geologic texture therein, electrical properties can be conveniently approximated by a generalized 3x3 tensor σ. Less convenient, however, are the algorithmic consequences of this approximation in electromagnetic modeling of 3D induction methods for geophysical exploration. Previous efforts at modelling generalized anisotropy with finite differences on a staggered Cartesian grid (e.g. Weiss and Newman, 2002; Wang and Fang, 2001) are posed in terms of the electric field with its governing "curl-curl" equation and well-documented null-space issues at low induction numbers. In contrast, Weiss (2013) proposed an alternate full-physics formulation in terms of Lorenz-gauged magentic vector A and electric scalar Φ potentials (Project APhiD) that eliminates the troublesome curl-curl operator, with ultrabroadband examples drawn from geologies with scalar, isotropic conductivity over the frequency range 10-2-1010 Hz. Here, the anisotropic theory presented in Weiss (2013) is implemented with finite differences on a Cartesian grid. Briefly stated, in this theoretical approach the conductivity tensor σ is split in terms of a rotationally-invariant isotropic conductivity σ* = ⅓ Tr(σ) and the residual σ - σ*I. This splitting decomposes the resulting finite difference coefficient matrix K into the sum Kiso + Kaniso, where the Kiso term is the coefficient matrix for the isotropic medium σ*, thus enabling reuse of the various routines previously developed for computing matrix coefficients in the isotropic case. Treatment of anisotropy is algorithmically therefore restricted to computing the coefficients in the sparse matrix Kaniso consisting of simple inner products of (σ - σ*I) · (A-∇Φ) and their divergence. In keeping with the

3. Potential clinical impact of three-dimensional visualization for fluorescent in situ hybridization image analysis

Li, Zheng; Li, Shibo; Bin, Zheng; Zhang, Roy; Li, Yuhua; Tian, Huimin; Chen, Wei; Liu, Hong

2012-05-01

Chromosomal translocation is strong indication of cancers. Fluorescent in situ hybridization (FISH) can effectively detect this translocation and achieve high accuracy in disease diagnosis and prognosis assessment. For this purpose, whole chromosome paint probes are utilized to image the configuration of DNA fragments. Although two-dimensional (2-D) microscopic images are typically used in FISH signal analysis, we present a case where the translocation occurs in the depth direction where two probed FISH signals are overlapped in the projected image plane. Thus, the translocation cannot be identified. However, when imaging the whole specimen with a confocal microscope at 27 focal planes with 0.5-μm step interval, the translocation can be clearly identified due to the free rotation capability by the three-dimensional (3-D) visualization. Such a translocation detection error of using 2-D images might be critical in detecting and diagnosing early or subtle disease cases where detecting a small number of abnormal cells can make diagnostic difference. Hence, the underlying implication of this report suggests that utilizing 3-D visualization may improve the overall accuracy of FISH analysis for some clinical cases. However, the clinical efficiency and cost of using 3-D versus 2-D imaging methods are also to be assessed carefully.

4. Three-dimensional inviscid turbomachinery flow simulations obtained by solving the Euler equations on an O-H type grid

Krouthen, Bjoern

1986-12-01

A computer code for calculating the steady inviscid flow in a rotating system (turbomachinery) by solving the 3-dimensional Euler equations on an O-H type grid is developed. The numerical method is an explicit, centered finite-volume scheme. The method includes an artificial viscosity model and a local time step technique. The explicit time integration scheme is a one-step, three-stage Runge-Kutta method. The generation of the grid is done by transfinite interpolation. The grid used has an O-H type structure which gives good resolution at the leading and trailing edges. Different geometries were used under different flow conditions. Results for three different turbine blades are presented. Comparisons between experimental data and other Euler solvers show the accuracy of the code.

5. Extracting Surface Activation Time from the Optically Recorded Action Potential in Three-Dimensional Myocardium

PubMed Central

Walton, Richard D.; Smith, Rebecca M.; Mitrea, Bogdan G.; White, Edward; Bernus, Olivier; Pertsov, Arkady M.

2012-01-01

Optical mapping has become an indispensible tool for studying cardiac electrical activity. However, due to the three-dimensional nature of the optical signal, the optical upstroke is significantly longer than the electrical upstroke. This raises the issue of how to accurately determine the activation time on the epicardial surface. The purpose of this study was to establish a link between the optical upstroke and exact surface activation time using computer simulations, with subsequent validation by a combination of microelectrode recordings and optical mapping experiments. To simulate wave propagation and associated optical signals, we used a hybrid electro-optical model. We found that the time of the surface electrical activation (tE) within the accuracy of our simulations coincided with the maximal slope of the optical upstroke (tF∗) for a broad range of optical attenuation lengths. This was not the case when the activation time was determined at 50% amplitude (tF50) of the optical upstroke. The validation experiments were conducted in isolated Langendorff-perfused rat hearts and coronary-perfused pig left ventricles stained with either di-4-ANEPPS or the near-infrared dye di-4-ANBDQBS. We found that tF∗ was a more accurate measure of tE than was tF50 in all experimental settings tested (P = 0.0002). Using tF∗ instead of tF50 produced the most significant improvement in measurements of the conduction anisotropy and the transmural conduction time in pig ventricles. PMID:22225795

6. A geometry package for generation of input data for a three-dimensional potential-flow program

NASA Technical Reports Server (NTRS)

Halsey, N. D.; Hess, J. L.

1978-01-01

The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.

7. A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems

Kapahi, A.; Sambasivan, S.; Udaykumar, H. S.

2013-05-01

This work presents a three-dimensional, Eulerian, sharp interface, Cartesian grid technique for simulating the response of elasto-plastic solid materials to hypervelocity impact, shocks and detonations. The mass, momentum and energy equations are solved along with evolution equations for deviatoric stress and plastic strain using a third-order finite difference scheme. Material deformation occurs with accompanying nonlinear stress wave propagation; in the Eulerian framework the boundaries of the deforming material are tracked in a sharp fashion using level-sets and the conditions on the immersed boundaries are applied by suitable modifications of a ghost fluid approach. The dilatational response of the material is modeled using the Mie-Gruneisen equation of state and the Johnson-Cook model is employed to characterize the material response due to rate-dependent plastic deformation. Details are provided on the treatment of the deviatoric stress ghost state so that physically correct boundary conditions can be applied at the material interfaces. An efficient parallel algorithm is used to handle computationally intensive three-dimensional problems. The results demonstrate the ability of the method to simulate high-speed impact, penetration and fragmentation phenomena in three dimensions.

8. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications.

PubMed

Ehrlich, H; Steck, E; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E; Richter, W

2010-08-01

In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts. PMID:20478334

9. Multiple grid method for the calculation of potential flow around three dimensional bodies

Wolff, H.

1982-01-01

The classical approach of representation of the solution by means of a doublet distribution on the boundary of the domain is considered. From the boundary condition, a Fredholm integral equation for the doublet distribution, mu, is obtained. By a piecewise constant function, mu is approximated. This numerical method results in a nonsparse system that is solved by a multiple grid iterative process. The convergence rate of this process is discussed and its performance is compared with the Jacobi iterative process. For flow around an ellipsoid, the multiple grid process turns out to be much more efficient than the Jacobi iterative process.

10. Demonstration of a Controllable Three-Dimensional Brownian Motor in Symmetric Potentials

SciTech Connect

Sjoelund, P.; Petra, S.J.H.; Dion, C.M.; Jonsell, S.; Nylen, M.; Kastberg, A.; Sanchez-Palencia, L.

2006-05-19

We demonstrate a Brownian motor, based on cold atoms in optical lattices, where isotropic random fluctuations are rectified in order to induce controlled atomic motion in arbitrary directions. In contrast to earlier demonstrations of ratchet effects, our Brownian motor operates in potentials that are spatially and temporally symmetric, but where spatiotemporal symmetry is broken by a phase shift between the potentials and asymmetric transfer rates between them. The Brownian motor is demonstrated in three dimensions and the noise-induced drift is controllable in our system.

11. The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential

SciTech Connect

2011-07-15

The classical generalized Kepler-Coulomb potential, introduced by Verrier and Evans, corresponds to a quantum superintegrable system, with quadratic and quartic integrals of motion. In this paper we show that the algebra of the integrals is a quadratic ternary algebra, i.e a quadratic extension of a Lie triple system.

12. Finite volume calculation of three-dimensional potential flow around a propeller

NASA Technical Reports Server (NTRS)

Jou, W.-H.

1982-01-01

The finite volume scheme of Jameson (1977) is used to calculate potential flow around a propeller rotating at high speed. An H-type mesh is generated and used successfully in the calculations. A test calculation with a thick blade cross section shows that the present code is capable of computing the propeller flow at the advance Mach number 0.8. The possible physical mechanisms which may play an important role in the propeller aerodynamics are discussed.

13. Three-Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery.

PubMed

Fahmy, Mina D; Jazayeri, Hossein E; Razavi, Mehdi; Masri, Radi; Tayebi, Lobat

2016-06-01

Current methods in handling maxillofacial defects are not robust and are highly dependent on the surgeon's skills and the inherent potential in the patients' bodies for regenerating lost tissues. Employing custom-designed 3D printed scaffolds that securely and effectively reconstruct the defects by using tissue engineering and regenerative medicine techniques can revolutionize preprosthetic surgeries. Various polymers, ceramics, natural and synthetic bioplastics, proteins, biomolecules, living cells, and growth factors as well as their hybrid structures can be used in 3D printing of scaffolds, which are still under development by scientists. These scaffolds not only are beneficial due to their patient-specific design, but also may be able to prevent micromobility, make tension free soft tissue closure, and improve vascularity. In this manuscript, a review of materials employed in 3D bioprinting including bioceramics, biopolymers, composites, and metals is conducted. A discussion of the relevance of 3D bioprinting using these materials for craniofacial interventions is included as well as their potential to create analogs to craniofacial tissues, their benefits, limitations, and their application. PMID:26855004

14. Performance of preconditioned iterative and multigrid solvers in solving the three-dimensional magnetotelluric modeling problem using the staggered finite-difference method: a comparative study

Li, Gang; Zhang, Lili; Hao, Tianyao

2016-02-01

An effective solver for the large complex system of linear equations is critical for improving the accuracy of numerical solutions in three-dimensional (3D) magnetotelluric (MT) modeling using the staggered finite-difference (SFD) method. In electromagnetic modeling, the formed system of linear equations is commonly solved using preconditioned iterative relaxation methods. We present 3D MT modeling using the SFD method, based on former work. The multigrid solver and three solvers preconditioned by incomplete Cholesky decomposition—the minimum residual method, the generalized product bi-conjugate gradient method and the bi-conjugate gradient stabilized method—are used to solve the formed system of linear equations. Divergence correction for the magnetic field is applied. We also present a comparison of the stability and convergence of these iterative solvers if divergence correction is used. Model tests show that divergence correction improves the convergence of iterative solvers and the accuracy of numerical results. Divergence correction can also decrease the number of iterations for fast convergence without changing the stability of linear solvers. For consideration of the computation time and memory requirements, the multigrid solver combined with divergence correction is preferred for 3D MT field simulation.

15. Zero-dimensional to three-dimensional nanojoining: current status and potential applications

DOE PAGESBeta

Ma, Ying; Li, Hong; Bridges, Denzel; Peng, Peng; Lawrie, Benjamin; Feng, Zhili; Hu, Anming

2016-08-01

We report that the continuing miniaturization of microelectronics is pushing advanced manufacturing into nanomanufacturing. Nanojoining is a bottom-up assembly technique that enables functional nanodevice fabrication with dissimilar nanoscopic building blocks and/or molecular components. Various conventional joining techniques have been modified and re-invented for joining nanomaterials. Our review surveys recent progress in nanojoining methods, as compared to conventional joining processes. Examples of nanojoining are given and classified by the dimensionality of the joining materials. At each classification, nanojoining is reviewed and discussed according to materials specialties, low dimensional processing features, energy input mechanisms and potential applications. The preparation of new intermetallicmore » materials by reactive nanoscale multilayer foils based on self-propagating high-temperature synthesis is highlighted. This review will provide insight into nanojoining fundamentals and innovative applications in power electronics packaging, plasmonic devices, nanosoldering for printable electronics, 3D printing and space manufacturing.« less

16. Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy.

PubMed

Clement, Omoshile O; Freeman, Clive M; Hartmann, Rolf W; Handratta, Venkatesh D; Vasaitis, Tadas S; Brodie, Angela M H; Njar, Vincent C O

2003-06-01

We report here a molecular modeling investigation of steroidal and nonsteroidal inhibitors of human cytochrome P450 17alpha-hydroxylase-17,20-lyase (CYP17). Using the pharmacophore perception technique, we have generated common-feature pharmacophore model(s) to explain the putative binding requirements for two classes of human CYP17 inhibitors. Common chemical features in the steroid and nonsteroid human CYP17 enzyme inhibitors, as deduced by the Catalyst/HipHop program, are one to two hydrogen bond acceptors (HBAs) and three hydrophobic groups. For azole-steroidal ligands, the 3beta-OH group of ring A and the N-3 of the azole ring attached to ring D at C-17 act as hydrogen bond acceptors. A model that permits hydrogen bond interaction between the azole functionality on ring D and the enzyme is consistent with experimental deductions for type II CYP17 inhibitors where a sixth ligating atom interacts with Fe(II) of heme. In general, pharmacophore models derived for steroid and nonsteroidal compounds bear striking similarities to all azole sites mapping the HBA functionality and to three hydrophobic features describing the hydrophobic interactions between the ligands and the enzyme. Using the pharmacophore model derived for azole-steroidal inhibitors as a 3D search query against several 3D multiconformational Catalyst formatted databases, we identified several steroidal compounds with potential inhibition of this enzyme. Biological testing of some of these compounds show low to high inhibitory potency against the human CYP17 enzyme. This shows the potential of our pharmacophore model in identifying new and potent CYP17 inhibitors. Further refinement of the model is in progress with a view to identifying and optimizing new leads. PMID:12773039

17. Calculation of Water Drop Trajectories to and About Arbitrary Three-Dimensional Bodies in Potential Airflow

NASA Technical Reports Server (NTRS)

Norment, H. G.

1980-01-01

Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

18. On the effects of grid ill-conditioning in three dimensional finite element vector potential magnetostatic field computations

NASA Technical Reports Server (NTRS)

Wang, R.; Demerdash, N. A.

1990-01-01

The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.

19. Computer program for calculating full potential transonic, quasi-three-dimensional flow through a rotating turbomachinery blade row

NASA Technical Reports Server (NTRS)

Farrell, C. A.

1982-01-01

A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.

20. A preconditioned dual–primal finite element tearing and interconnecting method for solving three-dimensional time-harmonic Maxwell's equations

SciTech Connect

Xue, Ming-Feng; Jin, Jian-Ming

2014-10-01

A new preconditioned dual–primal nonoverlapping domain decomposition method is proposed for the finite element solution of three-dimensional large-scale electromagnetic problems. With the aid of two Lagrange multipliers, the new method converts the original volumetric problem to a surface problem by using a higher-order transmission condition at the subdomain interfaces to significantly improve the convergence of the iterative solution of the global interface equation. Similar to the previous version, a global coarse problem related to the degrees of freedom at the subdomain corner edges is formulated to propagate the residual error to the whole computational domain at each iteration, which further increases the rate of convergence. In addition, a fully algebraic preconditioner based on matrix splitting is constructed to make the proposed domain decomposition method even more robust and scalable. Perfectly matched layers (PMLs) are considered for the boundary truncation when solving open-region problems. The influence of the PML truncation on the convergence performance is investigated by examining the convergence of the transmission condition for an interface inside the PML. Numerical examples including wave propagation and antenna radiation problems truncated with PMLs are presented to demonstrate the validity and the capability of this method.

1. Three-dimensional modeling of HCFC-123 in the atmosphere: assessing its potential environmental impacts and rationale for continued use.

PubMed

Wuebbles, Donald J; Patten, Kenneth O

2009-05-01

HCFC-123 (C2HCl2F3) is used in large refrigeration systems and as a fire suppression agent blend. Like other hydrochlorofluorocarbons, production and consumption of HCFC-123 is limited under the Montreal Protocol on Substances that Deplete the Ozone Layer. The purpose of this study is to update the understanding of the current and projected impacts of HCFC-123 on stratospheric ozone and on climate and to discuss the potential environmental effects from continued use of this chemical for specific applications. For the first time, the Ozone Depletion Potential (ODP) of a HCFC is determined using a three-dimensional model (MOZART-3) of atmospheric physics and chemistry. All previous studies have relied on results from two-dimensional models. The derived HCFC-123 ODP of 0.0098 is smaller than previous values. Analysis of the projected uses and emissions of HCFC-123, assuming reasonable levels of projected growth and use in centrifugal chiller and fire suppressant applications, suggests an extremely small impact on the environment due to its short atmospheric lifetime, low ODP, low Global Warming Potential (GWP), and the small production and emission of its limited applications. The current contribution of HCFC-123 to stratospheric reactive chlorine is too small to be measurable. PMID:19534136

2. Analysis of three-dimensional transonic compressors

NASA Technical Reports Server (NTRS)

1984-01-01

A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

3. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

PubMed

Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

2016-10-01

A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair. PMID:27424216

4. Analytical solitonlike solutions and the dynamics of ultracold Fermi gases in a time-dependent three-dimensional harmonic potential

Wang, Ying; Luo, Guosen; Zhou, Yu; Hang, Chao

2015-09-01

We present a theoretical study of solitonlike solutions and their dynamics of ultracold superfluid Fermi gases trapped in a time-dependent three-dimensional (3D) harmonic potential with gain or loss. The 3D analytical solitonlike solutions are obtained without introducing any additional integrability constraints used elsewhere. The propagation of both bright- and dark-soliton-like solutions is investigated. We show that the amplitudes of dark-soliton-like solutions exhibit periodic oscillation, whereas those of the bright-soliton-like ones do not show such behavior. Moreover, we highlight that the oscillation periods of dark-soliton-like solutions predicted by our approach are matched very well with those observed in a recent experiment carried out by Yefsah et al. [T. Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk, W. Ji, W. S. Bakr, and M. W. Zwierlein, Nature (London) 499, 426 (2013), 10.1038/nature12338] in both Bose-Einstein condensation and unitarity regimes.

5. Analytical solitonlike solutions and the dynamics of ultracold Fermi gases in a time-dependent three-dimensional harmonic potential.

PubMed

Wang, Ying; Luo, Guosen; Zhou, Yu; Hang, Chao

2015-09-01

We present a theoretical study of solitonlike solutions and their dynamics of ultracold superfluid Fermi gases trapped in a time-dependent three-dimensional (3D) harmonic potential with gain or loss. The 3D analytical solitonlike solutions are obtained without introducing any additional integrability constraints used elsewhere. The propagation of both bright- and dark-soliton-like solutions is investigated. We show that the amplitudes of dark-soliton-like solutions exhibit periodic oscillation, whereas those of the bright-soliton-like ones do not show such behavior. Moreover, we highlight that the oscillation periods of dark-soliton-like solutions predicted by our approach are matched very well with those observed in a recent experiment carried out by Yefsah et al. [T. Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk, W. Ji, W. S. Bakr, and M. W. Zwierlein, Nature (London) 499, 426 (2013)NATUAS0028-083610.1038/nature12338] in both Bose-Einstein condensation and unitarity regimes. PMID:26465543

6. Rotational (de-)excitation of HNS by He: three-dimensional potential energy surface and collision rate coefficients

Ajili, Y.; Abdallah, D. Ben; Al-Mogren, M. Mogren; Francisco, J. S.; Hochlaf, M.

2016-05-01

Three-dimensional potential energy surface (3D-PES) of the HNS-He interacting system in Jacobi coordinates is mapped using high-level ab initio theory. These computations are performed at the explicitly correlated coupled cluster method with single, double and perturbative triple excitations (CCSD(T)-F12) in conjunction with the augmented correlation-consistent aug-cc-pVTZ basis set. The 3D-PES is incorporated into quantum dynamical computations to treat the nuclear motions, where HNS is considered as a rigid rotator colliding with He. Cross-sections for transitions among the first twenty nine rotational levels of HNS (up to jKaKc = 92,8) are calculated using the quantum exact close-coupling method for total energies <1000 cm-1 and using the coupled state approximation for higher energies. Collisional rate constants for temperatures ranging from 5 to 200 K are deduced. A clear propensity rule in favour of Δj = -2 rotational transitions is observed. These rate coefficients are of great importance for the detection of HNS in interstellar medium.

7. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels.

PubMed

Smeriglio, Piera; Lai, Janice H; Dhulipala, Lakshmi; Behn, Anthony W; Goodman, Stuart B; Smith, Robert L; Maloney, William J; Yang, Fan; Bhutani, Nidhi

2015-01-01

Regeneration of human articular cartilage is inherently limited and extensive efforts have focused on engineering the cartilage tissue. Various cellular sources have been studied for cartilage tissue engineering including adult chondrocytes, and embryonic or adult stem cells. Juvenile chondrocytes (from donors below 13 years of age) have recently been reported to be a promising cell source for cartilage regeneration. Previous studies have compared the potential of adult and juvenile chondrocytes or adult and osteoarthritic (OA) chondrocytes. To comprehensively characterize the comparative potential of young, old, and diseased chondrocytes, here we examined cartilage formation by juvenile, adult, and OA chondrocytes in three-dimensional (3D) biomimetic hydrogels composed of poly(ethylene glycol) and chondroitin sulfate. All three human articular chondrocytes were encapsulated in the 3D biomimetic hydrogels and cultured for 3 or 6 weeks to allow maturation and extracellular matrix formation. Outcomes were analyzed using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. After 3 and 6 weeks, juvenile chondrocytes showed a greater upregulation of chondrogenic gene expression than adult chondrocytes, while OA chondrocytes showed a downregulation. Aggrecan and type II collagen deposition and glycosaminoglycan accumulation were high for juvenile and adult chondrocytes but not for OA chondrocytes. Similar trend was observed in the compressive moduli of the cartilage constructs generated by the three different chondrocytes. In conclusion, the juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogels. The 3D culture model described here may also provide a useful tool to further study the molecular differences among chondrocytes from different stages, which can help elucidate the mechanisms for age-related decline in the intrinsic capacity for cartilage repair. PMID:25054343

8. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

PubMed

Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

2016-08-01

Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. PMID:27396674

9. Three-dimensional marginal separation

NASA Technical Reports Server (NTRS)

Duck, Peter W.

1988-01-01

The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

10. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues

PubMed Central

Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M.

2013-01-01

Summary Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly

11. Boundary Integral Solutions to Three-Dimensional Unconfined Darcy's Flow

Lennon, Gerard P.; Liu, Philip L.-F.; Liggett, James A.

1980-08-01

The boundary integral equation method (BIEM) is used to solve three-dimensional potential flow problems in porous media. The problems considered here are time dependent and have a nonlinear boundary condition on the free surface. The entire boundary, including the moving free surface, discretized into linear finite elements for the purpose of evaluating the boundary integrals. The technique allows transient, three-dimensional problems to be solved with reasonable computational costs. Numerical examples include recharge through rectangular and circular areas and seepage flow from a surface pond. The examples are used to illustrate the method and show the nonlinear effects.

12. An experience in mesh generation for three-dimensional calculation of potential flow around a rotating propeller

NASA Technical Reports Server (NTRS)

Jou, W.-H.

1982-01-01

An attempt is made to develop a three-dimensional, finite volume computational code for highly swept, twisted, small aspect ratio propeller blades with supersonic tip speeds, in a way that accounts for cascade effects, hub-induced flow, and nonlinear transonic effects. Attention is presently given to the generation of a computational mesh for such a complex propeller configuration, with the aim of sharing developmental process experience. The problem treated is unique, in that blade chord, blade length, hub length and blade-to-blade distance represent several characteristic length scales among which there is considerable disparity. An ad hoc mesh-generation scheme is accordingly developed.

13. Creating Three-Dimensional Scenes

ERIC Educational Resources Information Center

Krumpe, Norm

2005-01-01

Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

14. Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor.

PubMed

Xu, Rongqing; Lu, Yunqing; Jiang, Chunhui; Chen, Jing; Mao, Peng; Gao, Guanghua; Zhang, Labao; Wu, Shan

2014-08-27

A three-dimensional (3D) graphene foam (GF)/poly(dimethylsiloxane) (PDMS) composite was fabricated by infiltrating PDMS into 3D GF, which was synthesized by chemical vapor deposition (CVD) with nickel foam as template. The electrical properties of the GF/PDMS composite under bending stress were investigated, indicating the resistance of the GF/PDMS composite was increased with the bending curvature. To improve the bending sensitivity of the GF/PDMS composite, a thin layer of poly(ethylene terephthalate) (PET) was introduced as substrate to form double-layer GF/PDMS-PET composite, whose measurements showed that the resistance of the GF/PDMS-PET composite was still increased when bended to the side of PET, whereas its resistance would be decreased when bended to the side of GF. For both cases, the absolute value of the relative variation of electrical resistance was increased with the bending curvature. More importantly, the relative variation of electrical resistance for double-layer GF/PDMS-PET composite can be up to six times higher than single-layer GF/PDMS composite for the same bending curvature. These observations were further supported by the principle of mechanics of material. The 3D GF/PDMS-PET composite also has higher flexibility and environment stability and can be utilized as a strain sensor with high sensitivity, which can find important applications in real-time monitoring of buildings, such as a bridge, dam, and high-speed railway. PMID:25070179

15. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate. M.S. Thesis

NASA Technical Reports Server (NTRS)

Jumper, S. J.

1982-01-01

A computer program was developed to calculate the three dimensional, steady, incompressible, inviscid, irrotational flow field at the propeller plane (propeller removed) located upstream of an arbitrary airframe geometry. The program uses a horseshoe vortex of known strength to model the wing. All other airframe surfaces are modeled by a network source panels of unknown strength which is exposed to a uniform free stream and the wing-induced velocity field. By satisfying boundary conditions on each panel (the Neumann problem), relaxed boundary conditions being used on certain panels to simulate inlet inflow, the source strengths are determined. From the known source and wing vortex strengths, the resulting velocity fields on the airframe surface and at the propeller plane are obtained. All program equations are derived in detail, and a brief description of the program structure is presented. A user's manual which fully documents the program is cited. Computer predictions of the flow on the surface of a sphere and at a propeller plane upstream of the sphere are compared with the exact mathematical solutions. Agreement is good, and correct program operation is verified.

16. Three dimensional quantum mechanical studies of D+H2→HD+H reactive scattering. III. On the ab initio potential energy surface

Yung, Y. Y.; Choi, B. H.; Tang, K. T.

1980-01-01

Three dimensional quantum mechanical calculations are carried out for the reactive scattering of D+H2→DH+H on the ab initio potential energy surface calculated by Liu and Siegbahn and fitted by Truhlar and Horowitz. The differential and total cross sections as well as the S matrix elements are obtained from the adiabatic distorted wave method. Threshold energy, cross sections and product distributions over final states are all in good agreement with experimental measurements. Results are also compared with the corresponding ones obtained on the Porter-Karplus and the Yates-Lester semi-empirical surfaces.

17. Design and analysis of a transverse flux permanent-magnet machine using three-dimensional scalar magnetic potential finite element method

Wang, Jiankuan; Chau, K. T.; Jiang, J. Z.; Yu, Chuang

2008-04-01

In this paper, a new transverse flux permanent-magnet machine is proposed and implemented. It features a unique configuration that it is composed of assembled stators and flux-concentrating rotor, hence offering low manufacturing cost while retaining high torque density and low cogging torque. Because of its unique configuration, the proposed machine is analyzed by a newly developed three-dimensional scalar magnetic potential finite element method. Both calculated and experimental results are given to support the validity of the proposed design and analysis.

18. Three-dimensional sonoembryology.

PubMed

Benoit, Bernard; Hafner, Tomislav; Kurjak, Asim; Kupesić, Sanja; Bekavac, Ivanka; Bozek, Tomislav

2002-01-01

Three-dimensional (3D) ultrasound plays an important role in obstetrics, predominantly for assessing fetal anatomy. Presenting volume data in a standard anatomic orientation valuably assists both ultrasonographers and pregnant patients to recognize the anatomy more readily. Three-dimensional ultrasound is advantageous in studying normal embryonic and/or fetal development, as well as providing information for families at risk for specific congenital anomalies by confirming normality. This method offers advantages in assessing the embryo in the first trimester due to its ability to obtain multiplanar images through endovaginal volume acquisition. Rotation allows the systematic review of anatomic structures and early detection of fetal anomalies. Three-dimensional ultrasound imaging in vivo compliments pathologic and histologic evaluation of the developing embryo, giving rise to a new term: 3D sonoembryology. Rapid technological development will allow real-time 3D ultrasound to provide improved and expanded patient care on the one side, and increased knowledge of developmental anatomy on the other. PMID:11933658

19. On Approximate Factorization Schemes for Solving the Full Potential Equation

NASA Technical Reports Server (NTRS)

Holst, Terry L.

1997-01-01

An approximate factorization scheme based on the AF2 algorithm is presented for solving the three-dimensional full potential equation for the transonic flow about isolated wings. Two spatial discretization variations are presented, one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The present algorithm utilizes a C-H grid topology to map the flow field about the wing. One version of the AF2 iteration scheme is used on the upper wing surface and another slightly modified version is used on the lower surface. These two algorithm variations are then connected at the wing leading edge using a local iteration technique. The resulting scheme has improved linear stability characteristics and improved time-like damping characteristics relative to previous implementations of the AF2 algorithm. The presentation is highlighted with a grid refinement study and a number of numerical results.

20. Shannon information entropies for the three-dimensional Klein-Gordon problem with the Poschl-Teller potential

2016-06-01

The Shannon information entropies for the Klein-Gordon equations are evaluated for the Poschl-Teller potential, and the position-space information entropies for the ground and the excited states are calculated.

1. Three-Dimensional Structures of the Spatiotemporal Nonlinear Schrödinger Equation with Power-Law Nonlinearity in PT-Symmetric Potentials

PubMed Central

Dai, Chao-Qing; Wang, Yan

2014-01-01

The spatiotemporal nonlinear Schrödinger equation with power-law nonlinearity in -symmetric potentials is investigated, and two families of analytical three-dimensional spatiotemporal structure solutions are obtained. The stability of these solutions is tested by the linear stability analysis and the direct numerical simulation. Results indicate that solutions are stable below some thresholds for the imaginary part of -symmetric potentials in the self-focusing medium, while they are always unstable for all parameters in the self-defocusing medium. Moreover, some dynamical properties of these solutions are discussed, such as the phase switch, power and transverse power-flow density. The span of phase switch gradually enlarges with the decrease of the competing parameter k in -symmetric potentials. The power and power-flow density are all positive, which implies that the power flow and exchange from the gain toward the loss domains in the cell. PMID:24983624

2. Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires

Wolf, D.; Lichte, H.; Pozzi, G.; Prete, P.; Lovergine, N.

2011-06-01

Electron holographic tomography (EHT), the combination of off-axis electron holography with electron tomography, is a technique, which can be applied to the quantitative 3-dimensional (3D) mapping of electrostatic potential at the nanoscale. Here, we show the results obtained in the EHT investigation of GaAs and GaAs-AlGaAs core-shell nanowires grown by Au-catalysed metalorganic vapor phase epitaxy. The unique ability of EHT of disentangling the materials mean inner potential (MIP) from the specimen projected thickness allows reconstruction of the nanowire 3D morphology and inner compositional structure as well as the measurement of the MIP.

3. Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires

SciTech Connect

Wolf, D.; Lichte, H.; Pozzi, G.; Lovergine, N.

2011-06-27

Electron holographic tomography (EHT), the combination of off-axis electron holography with electron tomography, is a technique, which can be applied to the quantitative 3-dimensional (3D) mapping of electrostatic potential at the nanoscale. Here, we show the results obtained in the EHT investigation of GaAs and GaAs-AlGaAs core-shell nanowires grown by Au-catalysed metalorganic vapor phase epitaxy. The unique ability of EHT of disentangling the materials mean inner potential (MIP) from the specimen projected thickness allows reconstruction of the nanowire 3D morphology and inner compositional structure as well as the measurement of the MIP.

4. Evolution of singularities of potential flows in collisionfree media and the metamorphosis of caustics in three dimensional space

SciTech Connect

Arnol'd, V.I.

1986-02-10

The authors describe the critical values of the maps at time''t'' and their evolution as ''t'' changes for potential initial velocity fields in general position under the assumption that the force field is potential. The paper is concerned with the structure and evolution of caustics of a general one-parameter family of Lagrangian maps of manifolds of dimension not exceeding three. For each type of evolution, the authors give a detailed geometric description of the structure of the singularity. The investigation required new algebraic information about the manifold of polynomials with multiple roots; these are given in the paper.

5. Three-dimensional metamaterials

DOEpatents

Burckel, David Bruce

2012-06-12

A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

6. Rotational spectra of the Ne-N2 complex based on a new three-dimensional potential energy surface using neural networks

Fu, Hong; Zheng, Rui; Zheng, Limin

2016-01-01

A new three-dimensional potential energy surface (PES) of the Ne-N2 van der Waals complex was constructed using the neural networks method based on ab initio data points at the CCSD(T) level. The aug-cc-pVQZ basis set was employed for all atoms, supplemented by midbond functions. The vibrationally averaged PES V00 is characterized by a global T-shaped minimum which occurs at R = 3.385 Å, θ = 90.0° with a well depth of -49.202 cm-1. Based on our three-dimensional PES, bound state calculations were performed for four isotopologues, i.e. 20Ne-14N2, 22Ne-14N2, 20Ne-15N2, 22Ne-15N2, and several intermolecular vibrational states were assigned by analyzing the wavefunctions. Moreover, the averaged structural parameters were determined and the pure rotational transition frequencies with J = 0-5 are predicted. The spectroscopic constants were determined by fitting the rotational energy levels. The theoretical results are in good agreement with experimental data and this work gives more accurate results than those determined previously for the Ne-N2 complex.

7. Preparation of a Binder-Free Three-Dimensional Carbon Foam/Silicon Composite as Potential Material for Lithium Ion Battery Anodes.

PubMed

Roy, Amit K; Zhong, Mingjie; Schwab, Matthias Georg; Binder, Axel; Venkataraman, Shyam S; Tomović, Željko

2016-03-23

We report a novel three-dimensional nitrogen containing carbon foam/silicon (CFS) composite as potential material for lithium ion battery anodes. Carbon foams were prepared by direct carbonization of low cost, commercially available melamine formaldehyde (MF, Basotect) foam precursors. The carbon foams thus obtained display a three-dimensional interconnected macroporous network structure with good electrical conductivity (0.07 S/cm). Binder free CFS composites used for electrodes were prepared by immersing the as-fabricated carbon foam into silicon nanoparticles dispersed in ethanol followed by solvent evaporation and secondary pyrolysis. In order to substantiate this new approach, preliminary electrochemical testing has been done. The first results on CFS electrodes demonstrated initial capacity of 1668 mAh/g with 75% capacity retention after 30 cycles of subsequent charging and discharging. In order to further enhance the electrochemical performance, silicon nanoparticles were additionally coated with a nitrogen containing carbon layer derived from codeposited poly(acrylonitrile). These carbon coated CFS electrodes demonstrated even higher performance with an initial capacity of 2100 mAh/g with 92% capacity retention after 30 cycles of subsequent charging and discharging. PMID:26909748

8. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

NASA Technical Reports Server (NTRS)

Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

2001-01-01

In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

9. Three Dimensional Dirac Semimetals

2014-03-01

Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

10. Application of a transonic potential flow code to the static aeroelastic analysis of three-dimensional wings

NASA Technical Reports Server (NTRS)

Whitlow, W., Jr.; Bennett, R. M.

1982-01-01

Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted.

11. Mesenchymal stromal cells from human umbilical cords display poor chondrogenic potential in scaffold-free three dimensional cultures.

PubMed

Islam, A; Hansen, A K; Mennan, C; Martinez-Zubiaurre, I

2016-01-01

Many researchers world over are currently investigating the suitability of stromal cells harvested from foetal tissues for allogeneic cell transplantation therapies or for tissue engineering purposes. In this study, we have investigated the chondrogenic potential of mesenchymal stromal cells (MSCs) isolated from whole sections of human umbilical cord or mixed cord (UCSCs-MC), and compared them with cells isolated from synovial membrane (SMSCs), Hoffa's fat pad (HFPSCs) and cartilage. All MSCs were positive for surface markers including CD73, CD90, CD105, CD44, CD146 and CD166, but negative for CD11b, CD19, CD34, CD45 and HLA-DR in addition to CD106 and CD271. Chondrogenic potential of all cell sources was studied using 3D pellet cultures incubated in the presence of different combinations of anabolic substances such as dexamethasone, IGF-1, TGF-β1, TGF-β3, BMP-2 and BMP-7. BMP-2 and dexamethasone in combination with TGF-β1 or TGF-β3 excelled at inducing chondrogenesis on SMSCs, HFPSCs and chondrocytes, as measured by glycosaminoglycans and collagen type II staining of pellets, quantitative glycosaminoglycan expression, quantitative PCR of cartilage signature genes and electron microscopy. In contrast, none of the tested growth factor combinations was sufficient to induce chondrogenesis on UCSCs-MC. Moreover, incubation of UCSCs-MC spheroids in the presence of cartilage pieces or synovial cells in co-cultures did not aid chondrogenic induction. In summary, we show that in comparison with MSCs harvested from adult joint tissues, UCSCs-MC display poor chondrogenic abilities. This observation should alert researchers at the time of considering UCSCs-MC as cartilage forming cells in tissue engineering or repair strategies. PMID:27232667

12. Three-dimensional needle-tip localization by electric field potential and camera hybridization for needle electromyography exam robotic simulator.

PubMed

He, Siyu; Gomez-Tames, Jose; Yu, Wenwei

2016-01-01

As one of neurological tests, needle electromygraphy exam (NEE) plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. PMID:27382339

13. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

NASA Technical Reports Server (NTRS)

Norment, H. G.

1985-01-01

Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

14. Three-dimensional needle-tip localization by electric field potential and camera hybridization for needle electromyography exam robotic simulator

PubMed Central

He, Siyu; Gomez-Tames, Jose; Yu, Wenwei

2016-01-01

As one of neurological tests, needle electromygraphy exam (NEE) plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. PMID:27382339

15. Stationary solutions for the nonlinear Schrödinger equation modeling three-dimensional spherical Bose-Einstein condensates in general potentials.

PubMed

Mallory, Kristina; Van Gorder, Robert A

2015-07-01

Stationary solutions for the cubic nonlinear Schrödinger equation modeling Bose-Einstein condensates (BECs) confined in three spatial dimensions by general forms of a potential are studied through a perturbation method and also numerically. Note that we study both repulsive and attractive BECs under similar frameworks in order to deduce the effects of the potentials in each case. After outlining the general framework, solutions for a collection of specific confining potentials of physical relevance to experiments on BECs are provided in order to demonstrate the approach. We make several observations regarding the influence of the particular potentials on the behavior of the BECs in these cases, comparing and contrasting the qualitative behavior of the attractive and repulsive BECs for potentials of various strengths and forms. Finally, we consider the nonperturbative where the potential or the amplitude of the solutions is large, obtaining various qualitative results. When the kinetic energy term is small (relative to the nonlinearity and the confining potential), we recover the expected Thomas-Fermi approximation for the stationary solutions. Naturally, this also occurs in the large mass limit. Through all of these results, we are able to understand the qualitative behavior of spherical three-dimensional BECs in weak, intermediate, or strong confining potentials. PMID:26274295

16. Three dimensional interactive display

NASA Technical Reports Server (NTRS)

Vranish, John M. (Inventor)

2005-01-01

A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

17. Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems

NASA Technical Reports Server (NTRS)

Holst, Terry L.; Kwak, Dochan (Technical Monitor)

1997-01-01

A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.

18. LiMn{sub 2}O{sub 4} nanorod arrays: A potential three-dimensional cathode for lithium-ion microbatteries

SciTech Connect

Tang, Xiao; Lin, Binghui; Ge, Yong; Ge, Yao; Lu, Changjie; Savilov, Serguei V.; Aldoshin, Serguei M.; Xia, Hui

2015-09-15

Highlights: • Self-supported LiMn{sub 2}O{sub 4} nanorod arrays are prepared on the Pt substrates. • LiMn{sub 2}O{sub 4} nanorod array cathode exhibits a large areal capacity of 0.25 mAh cm{sup −2}. • LiMn{sub 2}O{sub 4} nanorod array cathode exhibits good cycle performance and rate capability. • LiMn{sub 2}O{sub 4} nanorod arrays are potential cathodes for 3D microbatteries. - Abstract: Although three-dimensional (3D) microbatteries represent great advantage compared to their two-dimensional counterparts, the fabrication of 3D cathode is still a challenge, which holds back the further development of 3D microbatteries. In this work, we present a novel approach for fabrication of LiMn{sub 2}O{sub 4} nanorod arrays as 3D cathode for microbatteries. α-MnO{sub 2} nanotube arrays are firstly grown on the Pt substrate as the template, and LiMn{sub 2}O{sub 4} nanorod arrays are then prepared by lithiation of α-MnO{sub 2} nanotube arrays in molten salt followed by 800 °C annealing in air. In the half cell test, the 3D LiMn{sub 2}O{sub 4} nanorod arrays exhibit both high gravimetric capacity (∼130 mAh g{sup −1}) and areal capacity (∼0.25 mAh cm{sup −2}), while maintaining good cycling stability and rate capability. The facile synthesis and superior electrochemical performance of the three-dimensional LiMn{sub 2}O{sub 4} cathode make it promising for application in microbatteries.

19. Explicitly correlated three-dimensional potential-energy surface of the thiazyl-hydride-helium weakly bound system and implications for HSN detection

Ajili, Y.; Ben Abdallah, D.; Mogren Al-Mogren, M.; Lique, F.; Francisco, J. S.; Hochlaf, M.

2016-07-01

The intermonomer three-dimensional potential-energy surface (3D PES) of the thiazyl-hydride-helium (HSN-He) weakly bound molecular system is generated using the explicitly correlated coupled-cluster method with single, double, and perturbative triple excitations. The 3D PES is mapped in Jacobi coordinates. This potential-energy surface shows a unique potential well at planar configurations. The depth of this potential is 74.4 c m-1 . This 3D PES is incorporated into a close-coupling and coupled-states quantum dynamical treatment of nuclear motions to deduce the rotational (de-)excitation of HSN by He for energies up to 1400 c m-1 . After averaging over a Maxwell-Boltzmann distribution, the collisional rate coefficients are derived for temperatures ranging from 5 to 200 K. These data are essential for the identification of HSN molecules in astrophysical media. A comparison between thionitrosyl-hydride—He and HSN-He is performed.

20. Metamorphism in potential function while maintaining upright posture during exposure to a three-dimensional movie on an head-mounted display.

PubMed

Takada, Hiroki; Fujikake, Kazuhiro; Miyao, Masaru

2009-01-01

We propose a new index, sparse density (SPD), of stationary stabilograms for detecting the metamorphism in the (temporally averaged) potential function of stochastic differential equations, which occurs when a human attempts to maintain an upright posture. It is known that a mathematical model of the body sway can be developed by a stochastic process. The authors have succeeded in finding the nonlinearity in the potential function. In this study, subjects in a standing position were stimulated by three-dimensional (3-D) movies on an head-mounted display (HMD). We also measured the degree of determinism in the dynamics of the sway of the center of gravity of the subjects. The Double-Wayland algorithm was used as a novel method. As a result, the dynamics of the body sway in the presence of the stimulus as well as in its absence were considered to be stochastic. The metamorphism in the potential function during exposure to the conventional 3-D images could be detected by using the SPD. PMID:19963636

1. High-resolution, three-dimensional modeling of human leukocyte antigen class I structure and surface electrostatic potential reveals the molecular basis for alloantibody binding epitopes.

PubMed

Kosmoliaptsis, Vasilis; Dafforn, Timothy R; Chaudhry, Afzal N; Halsall, David J; Bradley, J Andrew; Taylor, Craig J

2011-11-01

The potential of human leukocyte antigens (HLA) to stimulate humoral alloimmunity depends on the orientation, accessibility and physiochemical properties of polymorphic amino acids. We have generated high-resolution structural and physiochemical models of all common HLA class I alleles and analyzed the impact of amino acid polymorphisms on surface electrostatic potential. Atomic resolution three-dimensional structural models of HLA class I molecules were generated using the MODELLER computer algorithm. The molecular surface electrostatic potential was calculated using the DelPhi program. To confirm that electrostatic surface topography reflects known HLA B cell epitopes, we examined Bw4 and Bw6 and ascertained the impact of amino acid polymorphisms on their tertiary and physiochemical composition. The HLA protein structures generated performed well when subjected to stereochemical and energy-based testing for structural integrity. The electrostatic pattern and conformation of Bw4 and Bw6 epitopes are maintained among HLA molecules even when expressed in a different structural context. Importantly, variation in epitope amino acid composition does not always translate into a different electrostatic motif, providing an explanation for serologic cross-reactivity. Mutations of critical amino acids that abrogate antibody binding also induce distinct changes in epitope electrostatic properties. In conclusion, high-resolution structural modeling provides a physiochemical explanation for serologic patterns of antibody binding and provides novel insights into HLA immunogenicity. PMID:21840357

2. Evaluation of Osteogenic and Cementogenic Potential of Periodontal Ligament Fibroblast Spheroids Using a Three-Dimensional In Vitro Model of Periodontium

PubMed Central

2015-01-01

The aim of this study was to develop a three-dimensional in vitro model of periodontium to investigate the osteogenic and cementogenic differentiation potential of the periodontal ligament fibroblast (PDLF) spheroids within a dentin-membrane complex. PDLFs were cultured in both spheroid forms and monolayers and were seeded onto two biological collagen-based and synthetic membranes. Cell-membrane composites were then transferred onto dentin slices with fibroblasts facing the dentin surface and further cultured for 20 days. The composites were then processed for histology and immunohistochemical analyses for osteocalcin, Runx2, periostin, and cementum attachment protein (CAP). Both membranes seeded with PDLF-derived cells adhered to dentin and fibroblasts were present at the dentin interface and spread within both membranes. All membrane-cell-dentine composites showed positive staining for osteocalcin, Runx2, and periostin. However, CAP was not expressed by any of the tissue composites. It can be concluded that PDLFs exhibited some osteogenic potential when cultured in a 3D matrix in the presence of dentin as shown by the expression of osteocalcin. However the interaction of cells and dentin in this study was unable to stimulate cementum formation. The type of membrane did not have a significant effect upon differentiation, but fibroblast seeded-PGA membrane demonstrated better attachment to dentin than the collagen membrane. PMID:26633971

3. Three dimensional Dirac semimetals

We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

4. A polymerized C60 coating enhancing interfacial stability at three-dimensional LiCoO2 in high-potential regime

Hudaya, Chairul; Halim, Martin; Pröll, Johannes; Besser, Heino; Choi, Wonchang; Pfleging, Wilhelm; Seifert, Hans Jürgen; Lee, Joong Kee

2015-12-01

The interfacial instabilities, including side reactions due to electrolyte decompositions and Cobalt (Co) dissolutions, are the main detrimental processes at LiCoO2 cathode when a high-voltage window (>4.2 V) is applied. Nevertheless, cycling the cathode with a voltage above 4.2 V would deliver an increased gravimetric capacity, which is desired for high power battery operation. To address these drawbacks, we demonstrate a synergistic approach by manufacturing the three-dimensional high-temperature LiCoO2 electrodes (3D HT-LCO) using laser-microstructuring, laser-annealing and subsequent coating with polymerized C60 thin films (C60@3D HT-LCO) by plasma-assisted thermal evaporation. The C60@3D HT-LCO cathode delivers higher initial discharge capacity compared to its theoretical value, i.e. 175 mA h g-1 at 0.1 C with cut-off voltage of 3.0-4.5 V. This cathode combines the advantages of the 3D electrode architecture and an advanced C60 coating/passivation concept leading to an improved electrochemical performance, due to an increased active surface area, a decreased charge transfer resistance, a prevented Co dissolution into the electrolyte and a suppressed side reaction and electrolyte decomposition. This work provides a novel solution for other cathode materials having similar concerns in high potential regimes for application in lithium-ion microbatteries.

5. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages.

PubMed

Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P; Yuan, Fangping; Ye, Fei; Kowalski, William J; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K; Keller, Bradley B

2016-01-01

Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

6. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages

PubMed Central

Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P.; Yuan, Fangping; Ye, Fei; Kowalski, William J.; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K.; Keller, Bradley B.

2016-01-01

Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

7. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

Roy Choudhury, Aditya N.; Venkataraman, V.

2016-01-01

We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

8. Use of three-dimensional excitation and emission matrix fluorescence spectroscopy for predicting the disinfection by-product formation potential of reclaimed water.

PubMed

Hao, Ruixia; Ren, Huiqin; Li, Jianbing; Ma, Zhongzhi; Wan, Hongwen; Zheng, Xiaoying; Cheng, Shuiyuan

2012-11-01

This study was undertaken to demonstrate the feasibility of using three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy for the determination of chlorination disinfection by-product (DBP) precursors and the disinfection by-product formation potential (DBPFP) of reclaimed water samples. Two major DBP precursors were examined in this study, including humic acid (HA) and fulvic acid (FA). The 3DEEM fluorescence results obtained from various reclaimed water samples indicated that the reclaimed water samples were rich in fulvic acid-like substances that were associated with two main peaks (Ex/Em = 235-245/420-440 nm, and Ex/Em = 330-340/410-430 nm) in the fluorescence spectrum. The results also illustrated that the wavelength location of peak fluorescence intensity of a reclaimed water sample was independent of the influent water quality and the wastewater treatment process used in the reclamation plant. As a result, the peak fluorescence intensity and the wavelength location of the peak were used to identify the species of DBP precursors and their concentrations in the reclaimed water sample. Four regression models were then developed to relate the peak fluorescence intensity of the water sample to its DBPFP, including the formation potential of trihalomethane (THMFP) and the formation potential of haloacetic acid (HAAFP). The regression models were verified using the measured DBPFP results of a series of reclaimed water samples. It was found that the regression modeling results matched the measured DBPFP values well, with prediction errors below 10%. Therefore, the use of 3DEEM fluorescence spectroscopy together with the developed regression models in this study can provide a reliable and rapid tool for monitoring the quality of reclaimed water. Using this method, water quality could be monitored online, without utilizing the lengthy conventional DBPFP measurement. PMID:22925392

9. The architecture of Norway spruce ectomycorrhizae: three-dimensional models of cortical cells, fungal biomass, and interface for potential nutrient exchange.

PubMed

Stögmann, Bernhard; Marth, Andreas; Pernfuß, Barbara; Pöder, Reinhold

2013-08-01

Gathering realistic data on actual fungal biomass in ectomycorrhized fine root systems is still a matter of concern. Thus far, observations on architecture of ectomycorrhizae (ECMs) have been limited to analyses of two-dimensional (2-D) images of tissue sections. This unavoidably causes stereometrical problems that lead to inadequate assumptions about actual size of cells and their arrangement within ECM's functional compartments. Based on extensive morphological investigations of field samples, we modeled the architectural components of an average-sized Norway spruce ECM. In addition to our comprehensive and detailed quantitative data on cell sizes, we studied actual shape and size, in vivo arrangement, and potential nutrient exchange area of plant cortical cells (CCs) using computer-aided three-dimensional (3-D) reconstructions based on semithin serial sections. We extrapolated a factual fungal biomass in ECMs (Hartig net (HN) included) of 1.71 t ha(-1) FW (0.36 t ha(-1) DW) for the top 5 cm of soil for an autochthonous, montane, optimum Norway spruce stand in the Tyrolean Alps. The corresponding potential nutrient exchange area in ECMs including main axes of ECM systems, which is defined as the sum of interfaces between plant CCs and the HN, amounts to at least 3.2 × 10(5) m(2) ha(-1). This is the first study that determines the contribution of the HN to the total fungal biomass in ECMs as well as the quantification of its contact area. Our results may stimulate future research on fungal below-ground processes and their impact on the global carbon cycle. PMID:23435714

10. Noninvasive Three-dimensional Cardiac Activation Imaging from Body Surface Potential Maps: A Computational and Experimental Study on a Rabbit Model

PubMed Central

Han, Chengzong; Liu, Zhongming; Zhang, Xin; Pogwizd, Steven; He, Bin

2009-01-01

Three-dimensional (3-D) cardiac activation imaging (3-DCAI) is a recently developed technique that aims at imaging the activation sequence throughout the 3-D volume of myocardium. 3-DCAI entails the modeling and estimation of the cardiac equivalent current density (ECD) distribution from which the local activation time within myocardium is determined as the time point with the peak amplitude of local ECD estimates. In this paper, we report, for the first time, an experimental study of the performance and applicability of 3-DCAI as judged by measured 3-D cardiac activation sequence using 3-D intra-cardiac mapping, in a group of 4 healthy rabbits during ventricular pacing. During the experiments, the body surface potentials and the intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition to allow for a rigorous evaluation of the noninvasive 3-DCAI algorithm using the intra-cardiac mapping. The ventricular activation sequence non-invasively imaged from the body surface measurements by using 3-DCAI was generally in agreement with that obtained from the invasive intra-cardiac recordings. The overall difference between them, quantified as the root mean square (RMS) error, was 7.42±0.61 ms, and the normalized difference, quantified as the relative error (RE), was 0.24±0.03. The distance from the reconstructed site of initial activation to the actual pacing site, defined as the localization error (LE), was 5.47±1.57 mm. In addition, computer simulations were conducted to provide additional assessment of the performance of the 3-DCAI algorithm using a realistic-geometry rabbit heart-torso model. Averaged over 9 pacing sites, the RE and LE were 0.20±0.07 and 4.56±1.12 mm, respectively, for single-pacing, when 20 μV Gaussian white noise was added to the body surface potentials at 53 body surface locations. Averaged over 8 pairs of dual pacing, the RE was 0.25±0.06 for 20 μV additive noise. The present results obtained through

11. Three-dimensional simulation of vortex breakdown

NASA Technical Reports Server (NTRS)

Kuruvila, G.; Salas, M. D.

1990-01-01

The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

12. Coupled three-dimensional conduction and natural convection heat transfer

1987-09-01

A numerical and experimental investigation of three-dimensional natural convection heat transfer coupled with conduction was performed. This general problem is of great importance because of its widespread applicability in areas such as compact natural convection heat exchangers, cooling of electronic equipment, and porous media flows. The determination of flow patterns and heat transfer coefficients in such situations is necessary because of its practical use in various industries. A vectorized finite difference code was developed for the Cray-2 supercomputer which has the capability of simulating a wide class of three-dimensional coupled conduction-convection problems. This program numerically solves the transient form of the complete laminar Navier-Stokes equations of motion using the vorticity-vector potential methods. Using this program, numerical solutions were obtained for 3-D natural convection from a horizontal isothermal heat exchanger tube with an attached circular cooling fin array. Experiments were performed to measure three-dimensional temperature fields using Mach-Zehnder interferometry. Software was developed to digitize and process fringe patterns and inversion algorithms used to compute the 3-D temperature field.

13. Three-Dimensional Printing Surgical Applications

PubMed Central

Griffin, Michelle F.; Butler, Peter E.

2015-01-01

Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002

14. Three-dimensional silicon micromachining

Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.

2012-11-01

A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.

15. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential.

PubMed

Burns, Jorge S; Rasmussen, Pernille L; Larsen, Kenneth H; Schrøder, Henrik Daa; Kassem, Moustapha

2010-07-01

Osteoblastic differentiation of human mesenchymal stem cells (hMSC) in monolayer culture is artefactual, lacking an organized bone-like matrix. We present a highly reproducible microwell protocol generating three-dimensional ex vivo multicellular aggregates of telomerized hMSC (hMSC-telomerase reverse transcriptase (TERT)) with improved mimicry of in vivo tissue-engineered bone. In osteogenic induction medium the hMSC were transitioned with time-dependent specification toward the osteoblastic lineage characterized by production of alkaline phosphatase, type I collagen, osteonectin, and osteocalcin. Introducing a 1-2 mm(3) crystalline hydroxyapatite/beta-tricalcium phosphate scaffold generated osteospheroids with upregulated gene expression of transcription factors RUNX2/CBFA1, Msx-2, and Dlx-5. An organized lamellar bone-like collagen matrix, evident by birefringence of polarized light, was deposited in the scaffold concavities. Here, mature osteoblasts stained positively for differentiated osteoblast markers TAZ, biglycan, osteocalcin, and phospho-AKT. Quantification of collagen birefringence and relatively high expression of genes for matrix proteins, including type I collagen, biglycan, decorin, lumican, elastin, microfibrillar-associated proteins (MFAP2 and MFAP5), periostin, and tetranectin, in vitro correlated predictively with in vivo bone formation. The three-dimensional hMSC-TERT/hydroxyapatite-tricalcium phosphate osteospheroid cultures in osteogenic induction medium recapitulated many characteristics of in vivo bone formation, providing a highly reproducible and resourceful platform for improved in vitro modeling of osteogenesis and refinement of bone tissue engineering. PMID:20196644

16. Three-Dimensional Messages for Interstellar Communication

Vakoch, Douglas A.

One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

17. Three dimensional colorimetric assay assemblies

SciTech Connect

Charych, D.; Reichart, A.

2000-06-27

A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

18. Three-dimensional stellarator codes

PubMed Central

Garabedian, P. R.

2002-01-01

Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

19. Three dimensional colorimetric assay assemblies

DOEpatents

Charych, Deborah; Reichart, Anke

2000-01-01

A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

20. Three-Dimensional Lissajous Figures.

ERIC Educational Resources Information Center

D'Mura, John M.

1989-01-01

Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

1. Comment on Exact three-dimensional wave function and the on-shell t matrix for the sharply cut-off Coulomb potential: Failure of the standard renormalization factor''

Kouzakov, Konstantin A.; Popov, Yuri V.; Shablov, Vladimir L.

2010-01-01

The solutions analytically derived by W. Glöckle, J. Golak, R. Skibiński, and H. Witala [Phys. Rev. C 79, 044003 (2009)] for the three-dimensional wave function and on-shell t matrix in the case of scattering on a sharply cut-off Coulomb potential appear to be fallacious if finite values of a cut-off radius are concerned. And the analysis carried out for an infinite cut-off radius limit is incomplete.

2. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

NASA Technical Reports Server (NTRS)

Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

1991-01-01

Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

3. Numerical investigations in three-dimensional internal flows

NASA Technical Reports Server (NTRS)

Rose, William C.

1993-01-01

In the present reporting period, the 3D STUFF code was used to solve the underbody flow for the waverider configuration vehicle. In order to start the space-marched version of the code, the time-marched version (TUFF) was used to solve the forward portion of the underside of the forebody flowfield. A grid was generated which went from the tip of the nose to the location of the cowl lip. This includes all of the inlet ramp system. Previous indications were that three-dimensional effects could be expected on the ramps of such an aircraft. For purposes of the present study, no sidewalls were assumed. The sidewalls were eliminated to simplify the calculations and to show the potential effects of three-dimensional flow in the absence of a full sidewall. Further, this flow was also analyzed using the newly released OVERFLOW code and comparisons between the two codes were made. In addition to these 3D calculations, 2D calculations using the OVERFLOW code were also obtained for the Mach 5 inlet model in this reporting period. Comparisons between the experimental data, previous computational fluid dynamics (CFD) results and those from OVERFLOW were made.

4. Three-dimensional fault drawing

SciTech Connect

Dongan, L. )

1992-01-01

In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.

5. Three-dimensional obstetric ultrasound.

PubMed

Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H

2008-04-01

Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140

6. Three-dimensional coronary angiography

Suurmond, Rolf; Wink, Onno; Chen, James; Carroll, John

2005-04-01

Three-Dimensional Coronary Angiography (3D-CA) is a novel tool that allows clinicians to view and analyze coronary arteries in three-dimensional format. This will help to find accurate length estimates and to find the optimal viewing angles of a lesion based on the three-dimensional vessel orientation. Various advanced algorithms are incorporated in this 3D processing utility including 3D-RA calibration, ECG phase selection, 2D vessel extraction, and 3D vessel modeling into a utility with optimized workflow and ease-of-use features, which is fully integrated in the environment of the x-ray catheterization lab. After the 3D processing, the 3D vessels can be viewed and manipulated interactively inside the operating room. The TrueView map provides a quick overview of gantry angles with optimal visualization of a single or bifurcation lesion. Vessel length measurements can be performed without risk of underestimating a vessel segment due to foreshortening. Vessel cross sectional diameters can also be measured. Unlike traditional, projection-based quantitative coronary analysis, the additional process of catheter calibration is not needed for diameter measurements. Validation studies show a high reproducibility of the measurements, with little user dependency.

7. Three-dimensional rail-current distribution near the armature of simple, square-bore, two-rail railguns

SciTech Connect

Beno, J.H. )

1991-01-01

In this paper vector potential is solved as a three dimensional, boundary value problem for a conductor geometry consisting of square-bore railgun rails and a stationary armature. Conductors are infinitely conducting and perfect contact is assumed between rails and the armature. From the vector potential solution, surface current distribution is inferred.

8. Use of three-dimensional photoelasticity in fracture mechanics

NASA Technical Reports Server (NTRS)

Smith, C. W.

1973-01-01

The philosophy of fracture mechanics is reviewed and utilized to formulate a simplified approach to the determination of the stress-intensity factor photoelastically for three-dimensional problems. The method involves a Taylor Series correction for the maximum in-plane shear stress (TSCM) and does not involve stress separation. The results are illustrated by applying the TSCM to surface flaws in bending fields. Other three-dimensional problems solved by the TSCM are cited.

9. Numerical investigations in three-dimensional internal flows

NASA Technical Reports Server (NTRS)

Rose, William C.

1991-01-01

The present study is a preliminary investigation into the behavior of the flow within a 28 degree total geometric turning angle hypothetical Mach 10 inlet as calculated with the full three-dimensional Navier-Stokes equations. Comparison between the two-dimensional and three-dimensional solutions have been made. The overall compression is not significantly different between the two-dimensional and center plane three dimensional solutions. Approximately one-half to two-thirds of the inlet flow at the exit of the inlet behave nominally two-dimensionally. On the other hand, flow field non-uniformities in the three-dimensional solution indicate the potential significance of the sidewall boundary layer flows ingested into the inlet. The tailoring of the geometry at the inlet shoulder and on the cowl obtained in the two-dimensional parametric design study have also proved to be effective at controlling the boundary layer behavior in the three-dimensional code. The three-dimensional inlet solution remained started indicating that the two-dimensional design had a sufficient margin to allow for three-dimensional flow field effects. Although confidence is being gained in the use of SCRAM3D (three-dimensional full Navier-Stokes code) as applied to similar flow fields, the actual effects of the three-dimensional flow fields associated with sidewalls and wind tunnel installations can require verification with ground-based experiments.

10. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.

PubMed

Nakayama, Yu

2016-04-01

Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries. PMID:27104697

11. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space

Nakayama, Yu

2016-04-01

Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.

12. Using a Three-Dimensional Hydrogeologic Framework to Investigate Potential Sources of Water Springs in the Death Valley Regional Groundwater Flow System

Hill, M. C.; Belcher, W. R.; Sweetkind, D. S.; Faunt, C.

2014-12-01

The Death Valley regional groundwater flow system encompasses a proposed site for a high-level nuclear waste repository of the United States of America, the Nevada National Security Site (NNSS), where nuclear weapons were tested, and National Park and BLM properties, and provides water for local communities. The model was constructed using a three-dimensional hydrogeologic framework and has been used as a resource planning mechanism by the many stakeholders involved, including four United States (U.S) federal agencies (U.S. Department of Energy, National Park Service, Bureau of Land Management, and U.S. Fish and Wildlife Service) and local counties, towns, and residents. One of the issues in recent model development is simulation of insufficient water to regional discharge areas which form springs in valleys near the center of the system. Given what seems to be likely rock characteristics and geometries at depth, insufficient water is simulated to reach the discharge areas. This "surprise" thus challenges preconceived notions about the system. Here we use the hydrogeologic model to hypothesize alternatives able to produce the observed flow and use the groundwater simulation to test the hypotheses with other available data. Results suggest that the transmissivity measurements need to be used carefully because wells in this system are never fully penetrating, that multiple alternatives are able to produce the springflow, and that one most likely alternative cannot be identified given available data. Consequences of the alternatives are discussed.

13. Three-dimensional cultures of normal human osteoblasts: proliferation and differentiation potential in vitro and upon ectopic implantation in nude mice.

PubMed

Ferrera, D; Poggi, S; Biassoni, C; Dickson, G R; Astigiano, S; Barbieri, O; Favre, A; Franzi, A T; Strangio, A; Federici, A; Manduca, P

2002-05-01

We report the establishment in vitro of three-dimensional (3D) cultures of human osteoblasts (hOB) derived from normal adults and supported uniquely by the extracellular matrix (ECM) they deposit. Osteoblasts were cultured in 3D cultures in vitro for up to 120 days. The 3D cultures, examined at 25, 31, and 48 days, expressed protein markers of osteoblastic cells, namely osteonectin, collagen type I, fibronectin, osteopontin, bone sialoprotein, biglycan, and decorin. Sequentially, alkaline phosphatase (AP) and then Ca incorporation, mineralization of matrix (monitored by histochemistry and transmission electron microscopy), and finally osteocalcin expression, were detected in the 3D cultures. Ultrastructurally, morphology progressed from early to mature osteoblast and to osteocyte-like. Cells were embedded in a matrix with organized collagen type I fibers containing, increasingly with time of culture, needle-shaped crystals, often associated with matrix vesicles, characteristic of those in bone. During the culture (up to 120 days) there was an outgrowth of proliferating osteogenic cells from the 3D structure. Subcutaneous implantation in nude mice for 20 days of osteoblasts cultured in 3D culture for different lengths of time in vitro, showed progression of mineralization from the inner region of the implant outward, with peripheral cells being embedded in nonmineralized, collagen-rich matrix. The 3D implants were invaded by vessels derived from the host. PMID:11996910

14. Three-dimensional bio-printing.

PubMed

Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

2015-05-01

Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944

15. Three-dimensional Camera Phone

Iizuka, Keigo

2004-12-01

An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

16. Three-dimensional visual stimulator

Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki

1995-02-01

We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.

17. A three-dimensional biophysical model of Karenia brevis dynamics on the west Florida shelf: A look at physical transport and potential zooplankton grazing controls

Milroy, Scott P.; Dieterle, Dwight A.; He, Ruoying; Kirkpatrick, Gary J.; Lester, Kristen M.; Steidinger, Karen A.; Vargo, Gabriel A.; Walsh, John J.; Weisberg, Robert H.

2008-01-01

The development of accurate predictive models of toxic dinoflagellate blooms is of great ecological importance, particularly in regions that are most susceptible to their detrimental effects. This is especially true along the west Florida shelf (WFS) and coast, where episodic bloom events of the toxic dinoflagellate Karenia brevis often wreak havoc on the valuable commercial fisheries and tourism industries of west Florida. In an effort to explain the dynamics at work within the maintenance and termination phases of a red tide, a simple three-dimensional coupled biophysical model was used in the analysis of the October 1999 red tide offshore Sarasota, Florida. Results of the numerical experiments indicate that: (1) measured and modeled flowfields were capable of transporting the observed offshore inoculum of K. brevis to within 16 km of the coastal boundary; (2) background concentrations (1000 cells L -1) of K. brevis could grow to a red tide of over 2×10 6 cells L -1 in little more than a month, assuming an estuarine initiation site with negligible offshore advection, no grazing losses, negligible competition from other phytoplankton groups, and no nutrient limitation; (3) maximal grazing pressure could not prevent the initiation of a red tide or cause its termination, assuming no other losses to algal biomass and a zooplankton community ingestion rate similar to that of Acartia tonsa; and (4) the light-cued ascent behavior of K. brevis served as an aggregational mechanism, concentrating K. brevis at the 55 μE m -2 s -1 isolume when mean concentrations of K. brevis exceeded 100,000 cells L -1. Further improvements in model fidelity will be accomplished by the future inclusion of phytoplankton competitors, disparate nutrient availability and limitation schemes, a more realistic rendering of the spectral light field and the attendant effects of photo-inhibition and compensation, and a mixed community of vertically-migrating proto- and metazoan grazers. These model

18. Numerical simulation of three-dimensional boattail afterbody flow fields

NASA Technical Reports Server (NTRS)

Deiwert, G. S.

1980-01-01

The thin shear layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic flow over axisymmetric boattail bodies at moderate angles of attack. The plume is modeled by a solid body configuration identical to those used in experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC IV computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flow fields with moderate separation. The computed results compare favorably with three different sets of experimental data reported by Reubush, Shrewsbury, and Benek, respectively

19. Three-dimensional viscous rotor flow calculations using a viscous-inviscid interaction approach

NASA Technical Reports Server (NTRS)

Chen, Ching S.; Bridgeman, John O.

1990-01-01

A three-dimensional viscous-inviscid interaction analysis was developed to predict the performance of rotors in hover and in forward flight at subsonic and transonic tip speeds. The analysis solves the full-potential and boundary-layer equations by finite-difference numerical procedures. Calculations were made for several different model rotor configurations. The results were compared with predictions from a two-dimensional integral method and with experimental data. The comparisons show good agreement between predictions and test data.

20. Input description for Jameson's three-dimensional transonic airfoil analysis program

NASA Technical Reports Server (NTRS)

Newman, P. A.; Davis, R. M.

1974-01-01

The input parameters are presented for a computer program which performs calculations for inviscid isentropic transonic flow over three dimensional airfoils with straight leading edges. The free stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where they occur in the flow. The finite difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane.

1. Three-dimensional coil inductor

DOEpatents

Bernhardt, Anthony F.; Malba, Vincent

2002-01-01

A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

2. Femtosecond laser internal manufacturing of three-dimensional microstructure devices

Zheng, Chong; Hu, Anming; Chen, Tao; Oakes, Ken D.; Liu, Shibing

2015-10-01

Potential applications for three-dimensional microstructure devices developed rapidly across numerous fields including microoptics, microfluidics, microelectromechanical systems, and biomedical devices. Benefiting from many unique fabricating advantages, internal manufacturing methods have become the dominant process for three-dimensional microstructure device manufacturing. This paper provides a brief review of the most common techniques of femtosecond laser three-dimensional internal manufacturing (3DIM). The physical mechanisms and representative experimental results of 3D manufacturing technologies based on multiphoton polymerization, laser modification, microexplosion and continuous hollow structure internal manufacturing are provided in details. The important progress in emerging applications based on the 3DIM technologies is introduced as well.

3. Three dimensional magnetic abacus memory

Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

2014-08-01

Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

4. Three dimensional magnetic abacus memory

Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

2015-03-01

Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

5. Three dimensional magnetic abacus memory.

PubMed

Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

2014-01-01

Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338

6. Dynamic Three-Dimensional Echocardiography

Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro

2000-08-01

Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.

7. Three-dimensional display technologies

PubMed Central

Geng, Jason

2014-01-01

The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

8. Three-dimensional laser microvision.

PubMed

Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

2001-04-10

A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177

9. Three-Dimensional Schlieren Measurements

Sutherland, Bruce; Cochrane, Andrea

2004-11-01

Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.

10. True three-dimensional camera

Kornreich, Philipp; Farell, Bart

2013-01-01

An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

11. Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices

PubMed Central

Vargas-Irwin, Carlos E.; Truccolo, Wilson; Donoghue, John P.

2011-01-01

A prominent feature of motor cortex field potentials during movement is a distinctive low-frequency local field potential (lf-LFP) (<4 Hz), referred to as the movement event-related potential (mEP). The lf-LFP appears to be a global signal related to regional synaptic input, but its relationship to nearby output signaled by single unit spiking activity (SUA) or to movement remains to be established. Previous studies comparing information in primary motor cortex (MI) lf-LFPs and SUA in the context of planar reaching tasks concluded that lf-LFPs have more information than spikes about movement. However, the relative performance of these signals was based on a small number of simultaneously recorded channels and units, or for data averaged across sessions, which could miss information of larger-scale spiking populations. Here, we simultaneously recorded LFPs and SUA from two 96-microelectrode arrays implanted in two major motor cortical areas, MI and ventral premotor (PMv), while monkeys freely reached for and grasped objects swinging in front of them. We compared arm end point and grip aperture kinematics′ decoding accuracy for lf-LFP and SUA ensembles. The results show that lf-LFPs provide enough information to reconstruct kinematics in both areas with little difference in decoding performance between MI and PMv. Individual lf-LFP channels often provided more accurate decoding of single kinematic variables than any one single unit. However, the decoding performance of the best single unit among the large population usually exceeded that of the best single lf-LFP channel. Furthermore, ensembles of SUA outperformed the pool of lf-LFP channels, in disagreement with the previously reported superiority of lf-LFP decoding. Decoding results suggest that information in lf-LFPs recorded from intracortical arrays may allow the reconstruction of reach and grasp for real-time neuroprosthetic applications, thus potentially supplementing the ability to decode these same

12. Quantum field between moving mirrors: A three dimensional example

NASA Technical Reports Server (NTRS)

Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

1995-01-01

The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

13. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

NASA Technical Reports Server (NTRS)

Demerdash, N. A.; Wang, R.; Secunde, R.

1992-01-01

A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

14. Potential utility of three-dimensional temperature and salinity fields estimated from satellite altimetry and Argo data for improving mesoscale reproducibility in regional ocean modeling

Kanki, R.; Uchiyama, Y.; Miyazaki, D.; Takano, A.; Miyazawa, Y.; Yamazaki, H.

2014-12-01

Mesoscale oceanic structure and variability are required to be reproduced as accurately as possible in realistic regional ocean modeling. Uchiyama et al. (2012) demonstrated with a submesoscale eddy-resolving JCOPE2-ROMS downscaling oceanic modeling system that the mesoscale reproducibility of the Kuroshio meandering along Japan is significantly improved by introducing a simple restoration to data which we call "TS nudging" (a.k.a. robust diagnosis) where the prognostic temperature and salinity fields are weakly nudged four-dimensionally towards the assimilative JCOPE2 reanalysis (Miyazawa et al., 2009). However, there is not always a reliable reanalysis for oceanic downscaling in an arbitrary region and at an arbitrary time, and therefore alternative dataset should be prepared. Takano et al. (2009) proposed an empirical method to estimate mesoscale 3-D thermal structure from the near real-time AVISO altimetry data along with the ARGO float data based on the two-layer model of Goni et al. (1996). In the present study, we consider the TS data derived from this method as a candidate. We thus conduct a synoptic forward modeling of the Kuroshio using the JCOPE2-ROMS downscaling system to explore potential utility of this empirical TS dataset (hereinafter TUM-TS) by carrying out two runs with the T-S nudging towards 1) the JCOPE2-TS and 2) TUM-TS fields.　An example of the comparison between the two ROMS test runs is shown in the attached figure showing the annually averaged surface EKE. Both of TUM-TS and JCOPE2-TS are found to help reproducing the mesoscale variance of the Koroshio and its extension as well as its mean paths, surface KE and EKE reasonably well. Therefore, the AVISO-ARGO derived empirical 3-D TS estimation is potentially exploitable for the dataset to conduct the T-S nudging to reproduce mesoscale oceanic structure.

15. In-lab three-dimensional printing

PubMed Central

Partridge, Roland; Conlisk, Noel; Davies, Jamie A.

2012-01-01

The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907

16. Three-dimensional flow in Kupffer's Vesicle.

PubMed

Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S

2016-09-01

Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus. PMID:26825450

17. Three-dimensional analysis of partially open butterfly valve flows

SciTech Connect

Huang, C.; Kim, R.H.

1996-09-01

A numerical simulation of butterfly valve flows is a useful technique to investigate the physical phenomena of the flow field. A three-dimensional numerical analysis was carried out on incompressible fluid flows in a butterfly valve by using FLUENT, which solves difference equations. Characteristics of the butterfly valve flows at different valve disk angles with a uniform incoming velocity were investigated. Comparisons of FLUENT results with other results, i.e., experimental results, were made to determine the accuracy of the employed method. Results of the three-dimensional analysis may be useful in the valve design.

18. Novel strategy for three-dimensional fragment-based lead discovery.

PubMed

Yuan, Haoliang; Lu, Tao; Ran, Ting; Liu, Haichun; Lu, Shuai; Tai, Wenting; Leng, Ying; Zhang, Weiwei; Wang, Jian; Chen, Yadong

2011-04-25

Fragment-based drug design (FBDD) is considered a promising approach in lead discovery. However, for a practical application of this approach, problems remain to be solved. Hence, a novel practical strategy for three-dimensional lead discovery is presented in this work. Diverse fragments with spatial positions and orientations retained in separately adjacent regions were generated by deconstructing well-aligned known inhibitors in the same target active site. These three-dimensional fragments retained their original binding modes in the process of new molecule construction by fragment linking and merging. Root-mean-square deviation (rmsd) values were used to evaluate the conformational changes of the component fragments in the final compounds and to identify the potential leads as the main criteria. Furthermore, the successful validation of our strategy is presented on the basis of two relevant tumor targets (CDK2 and c-Met), demonstrating the potential of our strategy to facilitate lead discovery against some drug targets. PMID:21438547

19. Three-dimensional boundary layers approaching separation

NASA Technical Reports Server (NTRS)

Williams, J. C., III

1976-01-01

The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

20. Numerical simulation of three-dimensional tuft corona and electrohydrodynamics

SciTech Connect

Yamamoto, T.; Sparks, L.E.

1986-01-01

The numerical simulation of three-dimensional tuft corona and electrohydrodynamics (EHD) is discussed. The importance of high-voltage and low-current operation in the wire-duct precipitator has focused attention on collecting high-resistivity dust. The local current density of individual tufts is considerably higher even at a low average current level and, therefore, could contribute to both the formation of back corona in the collected-dust layer and the generation of the secondary flow. Numerical simulation for three-dimensional tuft corona is successfully solved. The electrical characteristics of tuft corona are investigated, and the structure and role of the three-dimensional secondary flow and EHD in relation to transport of the fine particles are described.

1. Three dimensional echocardiography in congenital heart defects

PubMed Central

Shirali, Girish S.

2008-01-01

Three dimensional echocardiography (3DE) is a new, rapidly evolving modality for cardiac imaging. Important technological advances have heralded an era where practical 3DE scanning is becoming a mainstream modality. We review the modes of 3DE that can be used. The literature has been reviewed for articles that examine the applicability of 3DE to congenital heart defects to visualize anatomy in a spectrum of defects ranging from atrioventricular septal defects to mitral valve abnormalities and Ebstein's anomaly. The use of 3DE color flow to obtain echocardiographic angiograms is illustrated. The state of the science in quantitating right and left ventricular volumetrics is reviewed. Examples of novel applications including 3DE transesophageal echocardiography and image-guided interventions are provided. We also list the limitations of the technique, and discuss potential future developments in the field. PMID:20300232

2. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

3. Three-dimensional vortex structures in a rotating dipolar Bose–Einstein condensate

Kishor Kumar, Ramavarmaraja; Sriraman, Thangarasu; Fabrelli, Henrique; Muruganandam, Paulsamy; Gammal, Arnaldo

2016-08-01

We study three-dimensional vortex lattice structures in purely dipolar Bose–Einstein condensate (BEC). By using the mean-field approximation, we obtain a stability diagram for the vortex states in purely dipolar BECs as a function of harmonic trap aspect ratio (λ) and dipole–dipole interaction strength (D) under rotation. Rotating the condensate within the unstable region leads to collapse while in the stable region furnishes stable vortex lattices of dipolar BECs. We analyse stable vortex lattice structures by solving the three-dimensional time-dependent Gross–Pitaevskii equation in imaginary time. Further, the stability of vortex states is examined by evolution in real-time. We also investigate the distribution of vortices in a fully anisotropic trap by increasing eccentricity of the external trapping potential. We observe the breaking up of the condensate in two parts with an equal number of vortices on each when the trap is sufficiently weak, and the rotation frequency is high.

4. Siegert pseudostate formulation of scattering theory: General three-dimensional case

Krainov, Lev O.; Batishchev, Pavel A.; Tolstikhin, Oleg I.

2016-04-01

This paper generalizes the Siegert pseudostate (SPS) formulation of scattering theory to arbitrary finite-range potentials without any symmetry in the three-dimensional (3D) case. The orthogonality and completeness properties of 3D SPSs are established. The SPS expansions for scattering states, outgoing-wave Green's function, scattering matrix, and scattering amplitude, that is, all major objects of scattering theory, are derived. The theory is illustrated by calculations for several model potentials. The results enable one to apply 3D SPSs as a purely discrete basis capable of representing both discrete and continuous spectra in solving various stationary and time-dependent quantum-mechanical problems.

5. Primary and Secondary Three Dimensional Microbatteries

Cirigliano, Nicolas

Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick

6. Electromagnetic scattering from three dimensional periodic structures

Barnes, Andrew L.

We have developed a numerical method for solving electromagnetic scattering problems from arbitrary, smooth, three dimensional structures that are periodic in two directions and of finite thickness in the third direction. We solve Maxwell's equations via an integral equation that was first formulated by Claus Muller. The Muller integral equation is Fredholm of the second kind, so it is a well-posed problem. The original Muller formulation was for compact scatterers and it used a free space Green's function for the Helmholtz equation. We solve a periodic problem with a periodic Helmholtz Green's function. This Green's function has the same degree of singularity as the free space Helmholtz Green's function, but it is an infinite sum that converges very slowly. We use a resummation technique (due to P. P. Ewald) to perform an efficient calculation of the periodic Green's function. We solve the integral equation by a Galerkin method and use RWG vector basis functions to discretize surface currents on the scatterer. We perform a careful extraction of all singularities from the integrals that we compute. We use a triangular Gaussian quadrature method for calculation of the non-singular parts of the integrals. We analytically compute the remaining singular and nearly singular integrals. We also perform an acceleration technique that treats several frequencies simultaneously and leads to decreased computational times. In addition to the numerical code, we present an alternative way of looking at electromagnetic scattering in terms of Calderon projection operators. We have validated our computer code by comparing the numerical results with results from two separate cases. The first case is that of a flat dielectric slab of finite thickness, for which exact formulae are available. The second case is a periodic array of a row of infinite cylinders. In this case, we compare our results with those obtainedv from a two dimensional code developed by S. P. Shipman, S. Venakides

7. Three-dimensional imaging through scattering media using three-dimensionally coded pattern projection.

PubMed

Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

2015-08-20

We propose a method for visualizing three-dimensional objects in scattering media. Our method is based on active illumination using three-dimensionally coded patterns and a numerical algorithm employing a sparsity constraint. We experimentally demonstrated the proposed imaging method for test charts located three-dimensionally at different depths in the space behind a translucent sheet. PMID:26368767

8. Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility

ERIC Educational Resources Information Center

Szállassy, Noémi; Gánóczy, Anita; Kriska, György

2009-01-01

The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…

9. A system of three-dimensional complex variables

NASA Technical Reports Server (NTRS)

Martin, E. Dale

1986-01-01

Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

10. Three-dimensional structure of Erwinia carotovora L-asparaginase

SciTech Connect

Kislitsyn, Yu. A. Kravchenko, O. V.; Nikonov, S. V. Kuranova, I. P.

2006-10-15

Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement method using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)

11. A Flow Solver for Three-Dimensional DRAGON Grids

NASA Technical Reports Server (NTRS)

Liou, Meng-Sing; Zheng, Yao

2002-01-01

DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.

12. Study of three-dimensional effects on vortex breakdown

NASA Technical Reports Server (NTRS)

Salas, M. D.; Kuruvila, G.

1988-01-01

The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

13. Multigrid calculation of three-dimensional turbomachinery flows

NASA Technical Reports Server (NTRS)

Caughey, David A.

1989-01-01

Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.

14. Three dimensional optic tissue culture and process

NASA Technical Reports Server (NTRS)

Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

1994-01-01

A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

15. Three Dimensional Optic Tissue Culture and Process

NASA Technical Reports Server (NTRS)

OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

1999-01-01

A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

16. Three-dimensional stellarator equilibria by iteration

SciTech Connect

Boozer, A.H.

1983-02-01

The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

17. THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS

EPA Science Inventory

Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...

18. Device fabrication: Three-dimensional printed electronics

Lewis, Jennifer A.; Ahn, Bok Y.

2015-02-01

Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.

19. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

Je, U. K.; Lee, M. S.; Cho, H. S.; Hong, D. K.; Park, Y. O.; Park, C. K.; Cho, H. M.; Choi, S. I.; Woo, T. H.

2015-06-01

In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (<360°) views would enable fast scanning with reduced imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

20. Three-Dimensional Icosahedral Phase Field Quasicrystal

Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.

2016-08-01

We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.

1. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

SciTech Connect

Goluoglu, S.; Bentley, C.; Demeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H. L.

1998-01-14

A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems.

2. A deterministic method for transient, three-dimensional neutron transport

SciTech Connect

Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.

1998-05-01

A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.

3. Three-dimensional continued fractions and Kloosterman sums

Ustinov, A. V.

2015-06-01

This survey is devoted to results related to metric properties of classical continued fractions and Voronoi-Minkowski three-dimensional continued fractions. The main focus is on applications of analytic methods based on estimates of Kloosterman sums. An apparatus is developed for solving problems about three-dimensional lattices. The approach is based on reduction to the preceding dimension, an idea used earlier by Linnik and Skubenko in the study of integer solutions of the determinant equation \\det X=P, where X is a 3× 3 matrix with independent coefficients and P is an increasing parameter. The proposed method is used for studying statistical properties of Voronoi-Minkowski three-dimensional continued fractions in lattices with a fixed determinant. In particular, an asymptotic formula with polynomial lowering in the remainder term is proved for the average number of Minkowski bases. This result can be regarded as a three-dimensional analogue of Porter's theorem on the average length of finite continued fractions. Bibliography: 127 titles.

4. Extension of a three-dimensional viscous wing flow analysis user's manual: VISTA 3-D code

NASA Technical Reports Server (NTRS)

Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.

1990-01-01

Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about three-dimensional (swept and tapered) supercritical wings. A computational procedure for calculating such flow field was developed. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving three-dimensional viscous flow problems. In order to demonstrate the viability of this method, two- and three-dimensional problems are computed. These include the flow over a two-dimensional NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, three-dimensional flow on a flat plate. Although actual three-dimensional flows over wings were not obtained, the ground work was laid for considering such flows. In this report a description of the computer code is given.

5. How to Solve Schroedinger Problems by Approximating the Potential Function

SciTech Connect

Ledoux, Veerle; Van Daele, Marnix

2010-09-30

We give a survey over the efforts in the direction of solving the Schroedinger equation by using piecewise approximations of the potential function. Two types of approximating potentials have been considered in the literature, that is piecewise constant and piecewise linear functions. For polynomials of higher degree the approximating problem is not so easy to integrate analytically. This obstacle can be circumvented by using a perturbative approach to construct the solution of the approximating problem, leading to the so-called piecewise perturbation methods (PPM). We discuss the construction of a PPM in its most convenient form for applications and show that different PPM versions (CPM,LPM) are in fact equivalent.

6. Dynamic stability of a doubly quantized vortex in a three-dimensional condensate

Lundh, Emil; Nilsen, Halvor M.

2006-12-01

The Bogoliubov equations are solved for a three-dimensional Bose-Einstein condensate containing a doubly quantized vortex, trapped in a harmonic potential. Complex frequencies, signifying dynamical instability, are found for certain ranges of parameter values. The existence of alternating windows of stability and instability, respectively, is explained qualitatively and quantitatively using variational calculus and direct numerical solutions. It is seen that the windows of stability disappear in the limit of a cigar-shaped condensate, which is consistent with recent experimental results on the lifetime of a doubly quantized vortex in that regime.

7. Dynamic stability of a doubly quantized vortex in a three-dimensional condensate

SciTech Connect

Lundh, Emil; Nilsen, Halvor M.

2006-12-15

The Bogoliubov equations are solved for a three-dimensional Bose-Einstein condensate containing a doubly quantized vortex, trapped in a harmonic potential. Complex frequencies, signifying dynamical instability, are found for certain ranges of parameter values. The existence of alternating windows of stability and instability, respectively, is explained qualitatively and quantitatively using variational calculus and direct numerical solutions. It is seen that the windows of stability disappear in the limit of a cigar-shaped condensate, which is consistent with recent experimental results on the lifetime of a doubly quantized vortex in that regime.

8. Numerical calculation of the three dimensional transonic flow over a yawed wing.

NASA Technical Reports Server (NTRS)

Jameson, A.

1973-01-01

Results are presented of calculations of the three dimensional steady transonic flow over a finite yawed wing. The full potential flow equation is solved in a transformed coordinate system which permits the boundary conditions to be satisfied exactly. The correct differential properties are enforced by rotating the difference scheme to conform with the flow direction, and fast convergence is assured by simulating a time dependent equation designed to settle quickly to a steady state. Computed lift drag ratios are consistent with the results of wind tunnel tests of a yawed wing conducted by R. T. Jones (1972).-

9. Three-dimensional viscous rotor flow calculations using boundary-layer equations

NASA Technical Reports Server (NTRS)

Chen, Ching S.; Bridgeman, John O.

1989-01-01

A three-dimensional viscous-inviscid interaction analysis has been developed to predict the performance of rotors in hover and forward flight at subsonic and transonic tip speeds. The analysis solves the full-potential and boundary-layer equations by finite-difference numerical procedures. Calculations were made for several different model rotor configurations in hover and forward flight at subsonic and transonic tip speeds. The results were compared with predictions from a two-dimensional integral method and with experimental data. The comparisons show good agreement between test data and predictions.

10. Two and three dimensional magnetotelluric inversion

SciTech Connect

Booker, J.

1993-01-01

Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

11. Three dimensional characterization and archiving system

SciTech Connect

Sebastian, R.L.; Clark, R.; Gallman, P.

1996-04-01

The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.

12. Three-dimensional urban GIS for Atlanta

Bhaumik, Dharmajyoti; Faust, Nickolas L.; Estrada, Diana; Linares, Jairo

1997-07-01

Georgia Tech has developed a prototype system for the demonstration of the concepts of a virtual 3D geographic information system (GIS) in an urban environment. The virtual GIS integrates the technologies of GIS, remote sensing, and visualization to provide an interactive tool for the exploration of spatial data. A high density urban environment with terrain elevation, imagery, GIS layers, and three dimensional natural and manmade features is a stressing test for the integration potential of such a virtual 3D GIS. In preparation for the 1996 Olympic Games, Georgia Tech developed two highly detailed 3D databases over parts of Atlanta. A 2.5 meter database was used to depict the downtown Atlanta area with much higher resolution imagery being used for photo- texture of individual Atlanta buildings. Less than 1 meter imagery data was used to show a very accurate map of Georgia Tech, the 1996 Olympic Village. Georgia Tech developed visualization software was integrated via message passing with a traditional GIS package so that all commonly used GIS query and analysis functions could be applied within the 3D environment. This project demonstrates the versatility and productivity that can be accomplished by operating GIS functions within a virtual GIS and multi-media framework.

13. Two and three dimensional magnetotelluric inversion

SciTech Connect

Booker, J.R.

1994-07-01

Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

14. Three dimensional characterization and archiving system

SciTech Connect

Sebastian, R.L.; Clark, R.; Gallman, P.

1995-10-01

The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

NASA Technical Reports Server (NTRS)

Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

2010-01-01

A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

16. COMOC: Three dimensional boundary region variant, programmer's manual

NASA Technical Reports Server (NTRS)

Orzechowski, J. A.; Baker, A. J.

1974-01-01

The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

17. Vision in our three-dimensional world.

PubMed

Parker, Andrew J

2016-06-19

Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269595

18. Three-dimensional microbubble streaming flows

Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

2014-11-01

Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

19. Topology of three-dimensional separated flows

NASA Technical Reports Server (NTRS)

Tobak, M.; Peake, D. J.

1981-01-01

Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

20. Three dimensional responsive structure of tough hydrogels

Yang, Xuxu; Ma, Chunxin; Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Jin, Yongbin; Zhu, Ziqi; Liu, Junjie; Li, Tiefeng

2015-04-01

Three dimensional responsive structures have high value for the application of responsive hydrogels in various fields such as micro fluid control, tissue engineering and micro robot. Whereas various hydrogels with stimuli-responsive behaviors have been developed, designing and fabricating of the three dimensional responsive structures remain challenging. We develop a temperature responsive double network hydrogel with novel fabrication methods to assemble the complex three dimensional responsive structures. The shape changing behavior of the structures can be significantly increased by building blocks with various responsiveness. Mechanical instability is built into the structure with the proper design and enhance the performance of the structure. Finite element simulation are conducted to guide the design and investigate the responsive behavior of the hydrogel structures

1. Vision in our three-dimensional world

PubMed Central

2016-01-01

Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595

2. Three-dimensional separation and reattachment

NASA Technical Reports Server (NTRS)

Peake, D. J.; Tobak, M.

1982-01-01

The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

3. Three-dimensional separation and reattachment

NASA Technical Reports Server (NTRS)

Peake, D. J.; Tobak, M.

1982-01-01

The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

4. Three-Dimensional Robotic Vision System

NASA Technical Reports Server (NTRS)

Nguyen, Thinh V.

1989-01-01

Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.

5. Three-dimensional magnetic bubble memory system

NASA Technical Reports Server (NTRS)

Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

1994-01-01

A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

6. Three-Dimensional Extended Bargmann Supergravity.

PubMed

Bergshoeff, Eric; Rosseel, Jan

2016-06-24

We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712

7. Three-Dimensional Extended Bargmann Supergravity

Bergshoeff, Eric; Rosseel, Jan

2016-06-01

We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques.

8. Remote Dynamic Three-Dimensional Scene Reconstruction

PubMed Central

Yang, You; Liu, Qiong; Ji, Rongrong; Gao, Yue

2013-01-01

Remote dynamic three-dimensional (3D) scene reconstruction renders the motion structure of a 3D scene remotely by means of both the color video and the corresponding depth maps. It has shown a great potential for telepresence applications like remote monitoring and remote medical imaging. Under this circumstance, video-rate and high resolution are two crucial characteristics for building a good depth map, which however mutually contradict during the depth sensor capturing. Therefore, recent works prefer to only transmit the high-resolution color video to the terminal side, and subsequently the scene depth is reconstructed by estimating the motion vectors from the video, typically using the propagation based methods towards a video-rate depth reconstruction. However, in most of the remote transmission systems, only the compressed color video stream is available. As a result, color video restored from the streams has quality losses, and thus the extracted motion vectors are inaccurate for depth reconstruction. In this paper, we propose a precise and robust scheme for dynamic 3D scene reconstruction by using the compressed color video stream and their inaccurate motion vectors. Our method rectifies the inaccurate motion vectors by analyzing and compensating their quality losses, motion vector absence in spatial prediction, and dislocation in near-boundary region. This rectification ensures the depth maps can be compensated in both video-rate and high resolution at the terminal side towards reducing the system consumption on both the compression and transmission. Our experiments validate that the proposed scheme is robust for depth map and dynamic scene reconstruction on long propagation distance, even with high compression ratio, outperforming the benchmark approaches with at least 3.3950 dB quality gains for remote applications. PMID:23667417

9. Growing Three-Dimensional Cocultures Of Cells

NASA Technical Reports Server (NTRS)

Wolf, David A.; Goodwin, Thomas J.

1995-01-01

Laboratory process provides environmental conditions favoring simultaneous growth of cocultures of mammalian cells of more than one type. Cultures become three-dimensional tissuelike assemblies serving as organoid models of differentiation of cells. Process used, for example, to study growth of human colon cancers, starting from mixtures of normal colonic fibroblasts and partially differentiated colon adenocarcinoma cells.

10. Three-dimensional colorimetric assay assemblies

DOEpatents

Charych, Deborah; Reichert, Anke

2001-01-01

A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

11. Three-Dimensional Visualization of Particle Tracks.

ERIC Educational Resources Information Center

Julian, Glenn M.

1993-01-01

Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)

12. Three-dimensional rf structure calculations

SciTech Connect

Cooper, R.K.; Browman, M.J.; Weiland, T.

1988-01-01

The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.

13. Three-dimensional RF structure calculations

Cooper, R. K.; Browman, M. J.; Weiland, T.

1989-04-01

The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.

14. Three-Dimensional Pointers for Stereoscopic Projection.

ERIC Educational Resources Information Center

Hayman, H. J. G.

1984-01-01

Because class size often limits student opportunity to handle individual models, teachers use stereoscopic projections to demonstrate structural features. Describes three-dimensional pointers for use with different projection systems so teachers can indicate a particular atom or bond to entire classes, avoiding the perspective problems inherent in…

15. Cohomology of real three-dimensional triquadrics

Krasnov, Vyacheslav A.

2012-02-01

We consider non-singular intersections of three real five-dimensional quadrics. They are referred to for brevity as real three-dimensional triquadrics. We calculate the dimensions of the cohomology spaces of triquadrics with coefficients in the field of two elements.

16. Three-dimensional magnetic recording using ferromagnetic resonance

Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie

2016-07-01

To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.

17. The development of a three-dimensional partially elliptic flow computer program for combustor research

NASA Technical Reports Server (NTRS)

Pan, Y. S.

1978-01-01

A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

18. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis.

PubMed

Boonyasit, Yuwadee; Chailapakul, Orawon; Laiwattanapaisal, Wanida

2016-09-14

A novel three-dimensional paper-based electrochemical impedance device (3D-PEID) is first introduced for measuring multiple diabetes markers. Herein, a simple 3D-PEID composed of a dual screen-printed electrode on wax-patterned paper coupled with a multilayer of magnetic paper was fabricated for label-free electrochemical detection. The results clearly demonstrated in a step-wise manner that the haptoglobin (Hp)-modified and 3-aminophenylboronic acid (APBA)-modified eggshell membranes (ESMs) were highly responsive to a clinically relevant range of total (0.5-20 g dL(-1); r(2) = 0.989) and glycated haemoglobin (HbA1c) (2.3%-14%; r(2) = 0.997) levels with detection limits (S/N = 3) of 0.08 g dL(-1) and 0.21%, respectively. The optimal binding frequencies of total haemoglobin and HbA1c to their specific recognition elements were 5.18 Hz and 9.99 Hz, respectively. The within-run coefficients of variation (CV) were 1.84%, 2.18%, 1.72%, and 2.01%, whereas the run-to-run CVs were 2.11%, 2.41%, 2.08%, and 2.21%, when assaying two levels of haemoglobin and HbA1c, respectively. The CVs for the haemoglobin and HbA1c levels measured on ten independently fabricated paper-based sheets were 1.96% and 2.10%, respectively. These results demonstrated that our proposed system achieved excellent precision for the simultaneous detection of total haemoglobin and HbA1c, with an acceptable reproducibility of fabrication. The long-term stability of the Hp-modified eggshell membrane (ESM) was 98.84% over a shelf-life of 4 weeks, enabling the possibility of storage or long-distance transport to remote regions, particularly in resource-limited settings; however, for the APBA-modified ESM, the stability was 92.35% over a one-week period. Compared with the commercial automated method, the results demonstrated excellent agreement between the techniques (p-value < 0.05), thus permitting the potential application of 3D-PEID for the monitoring of the glycaemic status in diabetic

19. Three-dimensional analysis of MHD generators and diffusers

SciTech Connect

Vanka, S P; Ahluwalia, R K; Doss, E D

1982-03-01

The three-dimensional flow and heat transfer phenomena in MHD channels and diffusers are analyzed by solving the governing partial differential equations for flow and electrical fields. The equation set consists of the mass continuity equation, the three momentum equations, the equations for enthalpy, turbulence kinetic energy and its dissipation rate, and the Maxwell equations. This set of coupled equations is solved by the use of a finite-difference calculation procedure. The turbulence is represented by a two-equation model of turbulence in which partial differential equations are solved for the turbulence kinetic energy and its dissipation rate. Calculations have been performed for Faraday and diagonally-connected channels. Specifically, the AEDC (Faraday) and the UTSI (diagonal) channels have been analyzed, and the results are compared with experimental data. The agreement is fairly good for all the measured quantities. The effects of channel loading on the three-dimensional flow characteristics of Faraday and diagonally-connected generators have been also analyzed. A simple argument is presented to show qualitatively the role of MHD body forces in generating axial vorticity and hence secondary flows in the cross-stream. Calculations have also been made to study the flow evolution in MHD diffusers. The calculations show that the velocity overshoots and secondary flows decay along the diffusers length. Plots of velocity, skin friction and pressure recovery are presented to illustrate the flow development in MHD diffusers.

20. Three-dimensional illumination procedure for photodynamic therapy of dermatology

Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

2014-09-01

Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

1. Three-dimensional asymptotically flat Einstein-Maxwell theory

Barnich, Glenn; Lambert, Pierre-Henry; Mao, Pujian

2015-12-01

Three-dimensional Einstein-Maxwell theory with non-trivial asymptotics at null infinity is solved. The symmetry algebra is a Virasoro-Kac-Moody type algebra that extends the bms3 algebra of the purely gravitational case. Solution space involves logarithms and provides a tractable example of a polyhomogeneous solution space. The associated surface charges are non-integrable and non-conserved due to the presence of electromagnetic news. As in the four-dimensional purely gravitational case, their algebra involves a field-dependent central charge.

2. The application of three-dimensional photoelasticity to impact problems

SciTech Connect

Kostin, I.C.; Fedorov, A.V.

1995-12-31

A method is proposed for the solution of three-dimensional dynamic problems in geometrically complex structural configurations under impact. The methodology developed employs the generation of photoelastically observable stress wave propagation in a birefringent material applied to the external surfaces of a structure. This work demonstrated the extension of this technique to impact loading. Problems of practical engineering application, such as the gluing of birefringent material to test models were examined experimentally. Pulsed magnetic fields generated by capacitor discharge were employed on typical complex engineering models to demonstrate that the methodology is adequate for solving practical impact problems.

3. Heat pulse propagation in chaotic three-dimensional magnetic fields

SciTech Connect

Del-Castillo-Negrete, Diego; Blazevski, Daniel

2014-06-01

Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ε), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

4. Optical Security Card by Three-dimensional Random Phase Distribution

Matoba, Osamu; Nitta, Kouichi

2007-10-01

An optical security card based on a three-dimensional (3D) phase object is presented. This card enables us to develop a personal authentification system and secure data storage in a highly scattering medium. The authentification is implemented by the correlation between a speckle pattern of the 3D phase object and stored speckle patterns. For secure data storage, absorption distribution is involved in a scattering volume medium. Appropriate user can only reconstruct the absorption distribution by solving inverse problem. Experimental and numerical results are presented to show the effectiveness of the proposed system.

5. Green's function evaluation for three-dimensional exponentially graded elasticity

SciTech Connect

2008-01-01

The numerical implementation of the Green's function for an isotropic exponentially graded three dimensional elastic solid is reported. The formulas for the nonsingular {\\lq}grading term{\\rq} in this Green's function, originally deduced by Martin et al., \\emph{Proc. R. Soc. Lond. A, 458, 1931-1947, 2000}, are quite complicated, and a small error in one of the formulas is corrected. The evaluation of the fundamental solution is tested by employing indirect boundary integral formulation using a Galerkin approximation to solve several problems having analytic solutions. The numerical results indicate that the Green's function formulas, and their evaluation, are correct.

6. Low-frequency three-dimensional ultrasonic tomography

Goncharsky, A. V.; Romanov, S. Yu.; Seryozhnikov, S. Yu.

2016-05-01

The possibility of making ultrasonic 3D tomographs for medical diagnostics of soft tissues was established. The choice of frequencies of ultrasonic pulses of 300-500 kHz was due to low absorption in soft tissues within this range. The reverse problems of ultrasonic tomography, which are three-dimensional and nonlinear, have been considered in a model that takes into account both wave effects and absorption. The effectiveness of algorithms to solve the reverse problems that were developed has been illustrated by model calculations. The velocity configuration has been shown to be recovered better than the function that describes absorption in soft tissues.

7. Numerical simulation of three-dimensional supersonic inlet flow fields

NASA Technical Reports Server (NTRS)

Kawamura, T.; Chyu, W. J.; Bencze, D. P.

1987-01-01

Supersonic inlet flows with mixed external-internal compressions of an axisymmetric inlet model were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows typically found in supersonic inlets such as shock-wave intersections, flow spillage around the cowl lip, shock-wave/boundary-layer interactions, control of shock-induced flow separation by means of boundary layer bleed, internal normal (terminal) shocks, and the effects of flow incidence. Computed results were compared with available wind tunnel data.

8. [Some technical problems in three-dimensional cephalometrics].

PubMed

Liu, Y

2016-06-01

Two-dimensional(2D)cephalometrics is an important diagnostic technique in dentistry. Three-dimensional(3D)cephalometrics is becoming a hot point along with the popularity of cone-beam CT(CBCT). However, the 3D cephalometric technique, like 2D cephalometric technique, there are many technical problems needed to be solved. In this article, several topics, including multi-source of 3D cephalometrics, the head position in 3D cephalometrics, the difficulty of landmark indication, norms for 3D cephalometrics and superimposition in 3D imaging, are discussed. PMID:27256525

9. Three-dimensional shape optimization using the boundary element method

Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

1994-06-01

A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity in a cube and a connecting rod.

10. Three-dimensional shape optimization using boundary element method

Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

1993-04-01

A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then, the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity shape in a cube and a connecting rod.

11. Multilevel elliptic smoothing of large three-dimensional grids

NASA Technical Reports Server (NTRS)

Mastin, C. Wayne

1995-01-01

Elliptic grid generation methods have been used for many years to smooth and improve grids generated by algebraic interpolation schemes. However, the elliptic system that must be solved is nonlinear and convergence is generally very slow for large grids. In an attempt to make elliptic methods practical for large three-dimensional grids, a two-stage implementation is developed where the overall grid point locations are set using a coarse grid generated by the elliptic system. The coarse grid is then interpolated to generate a finer grid which is smoothed using only a few iterations of the elliptic system.

12. Three-dimensional structure of human serum albumin

NASA Technical Reports Server (NTRS)

Carter, Daniel C.; He, Xiao-Min; Munson, Sibyl H.; Twigg, Pamela D.; Gernert, Kim M.; Broom, M. Beth; Miller, Teresa Y.

1989-01-01

The three-dimensional structure of human serum albumin has been solved at 6.0 A resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 and diffracted X-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.

13. The three-dimensional crystal structure of cholera toxin

SciTech Connect

Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D.; Scott, D.L.; Westbrook, E.M.

1996-02-01

The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.

14. Code System for Three-Dimensional Hydraulic Reactor Core Analysis.

Energy Science and Technology Software Center (ESTSC)

2001-03-05

Version 00 SCORE-EVET was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code contains a one-dimensional steady state solution scheme to initialize the flow field,more » steady state and transient fuel rod conduction models, and comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions, such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage. The basic volume-averaged transient three-dimensional equations for flow in porous media are solved in their general form with constitutive relationships and boundary conditions tailored to define the porous medium as a matrix of fuel rods. By retaining generality in the form of the conservation equations, a wide range of fluid flow problem configurations, from computational regions representing a single fuel rod subchannel to multichannels, or even regions without a fuel rod, can be modeled without restrictive assumptions. The completeness of the conservation equations has allowed SCORE-EVET to be used, with modification to the constitutive relationships, to calculate three-dimensional laminar boundary layer development, flow fields in large bodies of water, and, with the addition of a turbulence model, turbulent flow in pipe expansions and tees.« less

15. A Computer Program for the Calculation of Three-Dimensional Transonic Nacelle/Inlet Flowfields

NASA Technical Reports Server (NTRS)

1983-01-01

A highly efficient computer analysis was developed for predicting transonic nacelle/inlet flowfields. This algorithm can compute the three dimensional transonic flowfield about axisymmetric (or asymmetric) nacelle/inlet configurations at zero or nonzero incidence. The flowfield is determined by solving the full-potential equation in conservative form on a body-fitted curvilinear computational mesh. The difference equations are solved using the AF2 approximate factorization scheme. This report presents a discussion of the computational methods used to both generate the body-fitted curvilinear mesh and to obtain the inviscid flow solution. Computed results and correlations with existing methods and experiment are presented. Also presented are discussions on the organization of the grid generation (NGRIDA) computer program and the flow solution (NACELLE) computer program, descriptions of the respective subroutines, definitions of the required input parameters for both algorithms, a brief discussion on interpretation of the output, and sample cases to illustrate application of the analysis.

16. THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS

SciTech Connect

Rauscher, Emily; Menou, Kristen

2010-05-10

We present a three-dimensional hot Jupiter model, extending from 200 bar to 1 mbar, using the Intermediate General Circulation Model from the University of Reading. Our horizontal spectral resolution is T31 (equivalent to a grid of 48 x 96), with 33 logarithmically spaced vertical levels. A simplified (Newtonian) scheme is employed for the radiative forcing. We adopt a physical setup nearly identical to the model of HD 209458b by Cooper and Showman to facilitate a direct model inter-comparison. Our results are broadly consistent with theirs but significant differences also emerge. The atmospheric flow is characterized by a super-rotating equatorial jet, transonic wind speeds, and eastward advection of heat away from the dayside. We identify a dynamically induced temperature inversion ('stratosphere') on the planetary dayside and find that temperatures at the planetary limb differ systematically from local radiative equilibrium values, a potential source of bias for transit spectroscopic interpretations. While our model atmosphere is quasi-identical to that of Cooper and Showman and we solve the same meteorological equations, we use different algorithmic methods, spectral-implicit versus grid-explicit, which are known to yield fully consistent results in the Earth modeling context. The model discrepancies identified here indicate that one or both numerical methods do not faithfully capture all of the atmospheric dynamics at work in the hot Jupiter context. We highlight the emergence of a shock-like feature in our model, much like that reported recently by Showman et al., and suggest that improved representations of energy conservation may be needed in hot Jupiter atmospheric models, as emphasized by Goodman.

17. Three-dimensional curvilinear device reconstruction from two fluoroscopic views

Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge

2015-03-01

In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.

18. Transformation equation in three-dimensional photoelasticity.

PubMed

Ainola, Leo; Aben, Hillar

2006-03-01

Optical phenomena that occur when polarized light passes through an inhomogeneous birefringent medium are complicated, especially when the principal directions of the dielectric tensor rotate on the light ray. This case is typical in three-dimensional photoelasticity, in particular in integrated photoelasticity by stress analysis on the basis of measured polarization transformations. Analysis of polarization transformations in integrated photoelasticity has been based primarily on a system of two first-order differential equations. Using a transformed coordinate in the direction of light propagation, we have derived a single fourth-order differential equation of three-dimensional photoelasticity. For the case of uniform rotation of the principal directions we have obtained an analytical solution. PMID:16539073

19. Three-dimensional visualization of a qutrit

2016-06-01

We present a surprisingly simple three-dimensional Bloch sphere representation of a qutrit, i.e., a single three-level quantum system. We start with a symmetric state of a two-qubit system and relate it to the spin-1 representation. Using this representation we associate each qutrit state with a three-dimensional vector a and a metric tensor Γ ̂ which satisfy a .Γ ̂.a ≤1 . This resembles the well known condition for qubit Bloch vectors in which case Γ ̂=1 . In our case the vector a corresponds to spin-1 polarization, whereas the tensor Γ ̂ is a function of polarization uncertainties. Alternatively, a is a local Bloch vector of a symmetric two-qubit state and Γ ̂ is a function of the corresponding correlation tensor.

20. Three dimensional fabrication at small size scales

PubMed Central

Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

2010-01-01

Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

1. Simulation of complex three-dimensional flows

NASA Technical Reports Server (NTRS)

Diewert, G. S.; Rothmund, H. J.; Nakahashi, K.

1985-01-01

The concept of splitting is used extensively to simulate complex three dimensional flows on modern computer architectures. Used in all aspects, from initial grid generation to the determination of the final converged solution, splitting is used to enhance code vectorization, to permit solution driven grid adaption and grid enrichment, to permit the use of concurrent processing, and to enhance data flow through hierarchal memory systems. Three examples are used to illustrate these concepts to complex three dimensional flow fields: (1) interactive flow over a bump; (2) supersonic flow past a blunt based conical afterbody at incidence to a free stream and containing a centered propulsive jet; and (3) supersonic flow past a sharp leading edge delta wing at incidence to the free stream.

2. Three-Dimensional Images For Robot Vision

McFarland, William D.

1983-12-01

Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.

3. Real time three dimensional sensing system

DOEpatents

Gordon, Steven J.

1996-01-01

The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.

4. Real time three dimensional sensing system

DOEpatents

Gordon, S.J.

1996-12-31

The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.

5. Three-dimensional imaging modalities in endodontics

PubMed Central

Mao, Teresa

2014-01-01

Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

6. Three-Dimensional Array for 40Ca+ Ion Trapping

Wan, Jin-Yin; Liu, Liang

2009-04-01

We present a three-dimensional scalable linear ion trap scheme for ion trapping and discuss its applications for the optical frequency standard and scalable quantum information processing with its parallel strings of trapped 40Ca+ ions. The geometry here contains nine equal-distance parallel rods driven by rf, which form trapping potentials for radial confinement and two end ring electrodes biased at a few volts for axial confinement. Its feasibility is calculated by using the finite element analysis method.

7. Multiplex Holography For The Display Of Three-Dimensional Information

Drinkwater, John; Hart, Stephen

1987-10-01

A system based on multiplex holography has been developed for the display and storage of three-dimensional information. Volume ('stack') multiplex holograms have been produced for viewing on a novel white light display device based on dispersion compensation. The image processing and holographic techniques developed to optimise these results are described. The demonstration of potential applications of the displays for data from medical imaging, analytical techniques such as electron microscopy and scientific data analysis is detailed.

8. Three-dimensional adjustment of trilateration data

NASA Technical Reports Server (NTRS)

Sung, L.-Y.; Jackson, D. D.

1985-01-01

The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.

9. Three-dimensional Lorentz-violating action

Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.

2014-03-01

We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.

10. Three-dimensional display of document set

DOEpatents

Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy

2009-06-30

A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

11. Three-dimensional display of document set

DOEpatents

Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

2006-09-26

A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

12. Three-dimensional display of document set

DOEpatents

Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA

2001-10-02

A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

13. Three-Dimensional Dispaly Of Document Set

DOEpatents

Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

2003-06-24

A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

14. Stress tensor correlators in three dimensional gravity

Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout

2016-03-01

We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.

15. Three-dimensional ballistocardiography in weightlessness

NASA Technical Reports Server (NTRS)

Scano, A.

1981-01-01

An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.

16. Three-dimensional motor schema based navigation

NASA Technical Reports Server (NTRS)

Arkin, Ronald C.

1989-01-01

Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

17. Generating Three-Dimensional Grids About Anything

NASA Technical Reports Server (NTRS)

Sorenson, Reese L.

1991-01-01

Three-Dimensional Grids About Anything by Poisson's Equation (3DGRAPE) computer program designed to make computational grids in or about almost any shape. Generated by solution of Poisson's differential equations in three dimensions. Program automatically finds its own values for inhomogeneous terms giving near-orthogonality and controlled grid-cell height at boundaries. Grids generated applied to both viscous and inviscid aerodynamic problems, and to problems in other areas of fluid dynamics. Written in 100 percent FORTRAN 77.

18. Mineralized three-dimensional bone constructs

NASA Technical Reports Server (NTRS)

Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

2011-01-01

The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

19. Mineralized Three-Dimensional Bone Constructs

NASA Technical Reports Server (NTRS)

Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

2013-01-01

The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

20. The first three-dimensional vanadium hypophosphite.

PubMed

Maouel, Hind A; Alonzo, Véronique; Roisnel, Thierry; Rebbah, Houria; Le Fur, Eric

2009-07-01

The title synthesized hypophosphite has the formula V(H(2)PO(2))(3). Its structure is based on VO(6) octahedra and (H(2)PO(2))(-) pseudo-tetrahedra. The asymmetric unit contains two crystallographically distinct V atoms and six independent (H(2)PO(2))(-) groups. The connection of the polyhedra generates [VPO(6)H(2)](6-) chains extended along a, b and c, leading to the first three-dimensional network of an anhydrous transition metal hypophosphite. PMID:19578249

1. Multiparallel Three-Dimensional Optical Microscopy

NASA Technical Reports Server (NTRS)

Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

2010-01-01

Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

2. Teaching and Assessing Three-Dimensional M

Bateman, Robert C., Jr.; Booth, Deborah; Sirochman, Rudy; Richardson, Jane; Richardson, David

2002-05-01

Structural concepts such as the exact arrangement of a protein in three dimensions are crucial to almost every aspect of biology and chemistry, yet most of us have not been educated in three-dimensional literacy and all of us need a great deal of help in order to perceive and to communicate structural information successfully. It is in the undergraduate biochemistry course where students learn most concepts of molecular structure pertinent to living systems. We are addressing the issue of three-dimensional structural literacy by having undergraduate students construct kinemages, which are plain text scripts derived from Protein Data Bank coordinate files that can be viewed with the program MAGE. These annotated, interactive, three-dimensional illustrations are designed to develop a molecular story and allow exploration in the world of that story. In the process, students become familiar with the structure-based scientific literature and the Protein Data Bank. Our assessment to date has shown that students perceive kinemage authorship to be more helpful in understanding protein structure than simply viewing prepared kinemages. In addition, students perceived kinemage authorship as being beneficial to their career and a significant motivation to learn biochemistry.

3. Three-dimensional deformation of orthodontic brackets

PubMed Central

Melenka, Garrett W; Nobes, David S; Major, Paul W

2013-01-01

Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

4. Three-dimensional printing of the retina

PubMed Central

Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.

2016-01-01

Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545

5. Three-Dimensional Imaging. Chapter 10

NASA Technical Reports Server (NTRS)

Kelso, R. M.; Delo, C.

1999-01-01

This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.

6. Three-Dimensional Audio Client Library

NASA Technical Reports Server (NTRS)

Rizzi, Stephen A.

2005-01-01

The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

7. Three-dimensional imaging of dislocations by X-ray diffraction laminography

Hänschke, D.; Helfen, L.; Altapova, V.; Danilewsky, A.; Baumbach, T.

2012-12-01

Synchrotron radiation laminography with X-ray diffraction contrast enables three-dimensional imaging of dislocations in monocrystalline wafers. We outline the principle of the technique, the required experimental conditions, and the reconstruction procedure. The feasibility and the potential of the method are demonstrated by three-dimensional imaging of dislocation loops in an indent-damaged and annealed silicon wafer.

8. TWILIGHT: A Cellular Framework for Three-Dimensional Radiative Transfer

2015-01-01

We describe a new framework for solving three-dimensional radiative transfer of arbitrary geometries, including a full characterisation of the wavelength-dependent anisotropic scattering, absorption, and thermal reemission of light by dust. By adopting a cellular approach to discretising the light and dust, the problem can be efficiently solved through a fully deterministic iterative process. As a proof of concept we present TWILIGHT, our implementation of the cellular approach, in order to demonstrate and benchmark the new method. TWILIGHT simultaneously renders over one hundred unique images of a given environment with no additional slowdown, enabling a close study of inclination effects of three-dimensional dust geometries. In addition to qualitative rendering tests, TWILIGHT is successfully tested against two Monte-Carlo radiative transfer benchmarks, producing similar brightness profiles at varying inclinations. With the proof-of-concept established, we describe the improvements and current developments underway using the cellular framework, including a technique to resolve the subgrid physics of dust radiative transfer from micron-scale grain models to kiloparsec-sized dust environments.

9. Three-dimensional optical encryption based on ptychography

Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi

2015-10-01

We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.

10. Three-dimensional metamaterials fabricated using Proton Beam Writing

Bettiol, A. A.; Turaga, S. P.; Yan, Y.; Vanga, S. K.; Chiam, S. Y.

2013-07-01

Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

11. Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis

Hyung Kim, Dal; Seung Soo Kim, Paul; Agung Julius, Anak; Jun Kim, Min

2012-01-01

We demonstrate three-dimensional control with the eukaryotic cell Tetrahymena pyriformis (T. pyriformis) using two sets of Helmholtz coils for xy-plane motion and a single electromagnet for z-direction motion. T. pyriformis is modified to have artificial magnetotaxis with internalized magnetite. To track the cell's z-axis position, intensity profiles of non-motile cells at varying distances from the focal plane are used. During vertical motion along the z-axis, the intensity difference is used to determine the position of the cell. The three-dimensional control of the live microorganism T. pyriformis as a cellular robot shows great potential for practical applications in microscale tasks, such as target transport and cell therapy.

12. An analysis of the three-dimensional velocity field of a free laminar jet issuing from a rectangular nozzle

Gariaev, A. B.; Krauze, Kh.; Motulevich, V. P.; Sergievskii, E. D.; Khanel, B.

1984-11-01

Results are presented of an analytical study of three-dimensional incompressible fluid jets issuing from a rectangular nozzle into a slipstream of a fluid whose physical properties are similar to those of the jet. The analysis is based on solving the Navier-Stokes equations in the approximation of a three-dimensional boundary layer. The resulting three-dimensional velocity profiles are shown in graphical form.

13. Multigroup Three-Dimensional Direct Integration Method Radiation Transport Analysis Code System.

Energy Science and Technology Software Center (ESTSC)

1987-09-18

Version 00 TRISTAN solves the three-dimensional, fixed-source, Boltzmann transport equation for neutrons or gamma rays in rectangular geometry. The code can solve an adjoint problem as well as a usual transport problem. TRISTAN is a suitable tool to analyze radiation shielding problems such as streaming and deep penetration problems.

14. Three-Dimensional Printing: An Enabling Technology for IR.

PubMed

Sheth, Rahul; Balesh, Elie R; Zhang, Yu Shrike; Hirsch, Joshua A; Khademhosseini, Ali; Oklu, Rahmi

2016-06-01

Rapid prototyping, also known as three-dimensional (3D) printing, is a recent technologic advancement with tremendous potential for advancing medical device design. A wide range of raw materials can be incorporated into complex 3D structures, including plastics, metals, biocompatible polymers, and even living cells. With its promise of highly customized, adaptable, and personalized device design at the point of care, 3D printing stands to revolutionize medical care. The present review summarizes the methods for 3D printing and their current and potential roles in medical device design, with an emphasis on their potential relevance to interventional radiology. PMID:27117948

15. Three-dimensional stereo by photometric ratios

SciTech Connect

Wolff, L.B.; Angelopoulou, E.

1994-11-01

We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy.

16. Three-Dimensional Printing in Orthopedic Surgery.

PubMed

Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

2015-11-01

Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661

17. Three-dimensional quantitative flow diagnostics

NASA Technical Reports Server (NTRS)

Miles, Richard B.; Nosenchuck, Daniel M.

1989-01-01

The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

18. Three-dimensional x-ray microtomography

SciTech Connect

Flannery, B.P.; Deckman, H.W.; Roberge, W.G.; D'Amico, K.L.

1987-09-18

The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate it performance with both synchrotron and laboratory x-ray sources are presented.

19. Three dimensional digital holographic aperture synthesis.

PubMed

Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R

2015-09-01

Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474

20. High resolution three-dimensional doping profiler

DOEpatents

Thundat, Thomas G.; Warmack, Robert J.

1999-01-01

A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

1. Three-dimensional instability of elliptical flow

Bayly, B. J.

1986-10-01

A clarification of the physical and mathematical nature of Pierrhumbert's (1986) three-dimensional short-wave inviscid instability of simple two-dimensional elliptical flow is presented. The instabilities found are independent of length scale, extending Pierrhumbert's conclusion that the structures of the instabilities are independent of length scale in the limit of large wave number. The fundamental modes are exact solutions of the nonlinear equations, and they are plane waves whose wave vector rotates elliptically around the z axis with a period of 2(pi)/Omega. The growth rates are shown to be the exponents of a matrix Floquet problem, and good agreement is found with previous results.

2. Three-dimensional ultrasonic colloidal crystals

Caleap, Mihai; Drinkwater, Bruce W.

2016-05-01

Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"

3. Electrode With Porous Three-Dimensional Support

DOEpatents

Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

1999-07-27

Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

4. Three-dimensional simulations of burning thermals

Aspden, Andy; Bell, John; Woosley, Stan

2010-11-01

Flame ignition in type Ia supernovae (SNe Ia) leads to isolated bubbles of burning buoyant fluid. As a bubble rises due to gravity, it becomes deformed by shear instabilities and transitions to a turbulent buoyant vortex ring. Morton, Taylor and Turner (1956) introduced the entrainment assumption, which can be applied to inert thermals. In this study, we use the entrainment assumption, suitably modified to account for burning, to predict the late-time asymptotic behaviour of these turbulent buoyant vortex rings in SNe Ia. The theory is validated against three- dimensional simulations with adaptive mesh refinement at effective resolutions up to 4096^3.

5. Three-dimensional lock and key colloids.

PubMed

Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Yi, Gi-Ra; Sacanna, Stefano; Pine, David J; Weck, Marcus

2014-05-14

Colloids with well-defined multicavities are synthesized through the hydrolytic removal of silica cluster templates from organo-silica hybrid patchy particles. The geometry of the cavities stems from the originally assembled cluster templates, displaying well-defined three-dimensional symmetries, ranging from spherical, linear, triangular, tetrahedral, trigonal dipyramidal, octahedral, to pentagonal dipyramidal. The concave surface of the cavities is smooth, and the cavity shallowness and size can be varied. These particles with multicavities can act as "lock" particles with multiple "key holes". Up to n "key" particles can self-assemble into the lock particles via depletion interaction, resulting in multivalent, site-specific, reversible, and flexible bonding. PMID:24785203

6. Three-dimensional television: a broadcaster's perspective

Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.

2009-02-01

The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.

7. Three-dimensional image signals: processing methods

Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

2010-11-01

Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

8. On three-dimensional dilational elastic metamaterials

Bückmann, Tiemo; Schittny, Robert; Thiel, Michael; Kadic, Muamer; Milton, Graeme W.; Wegener, Martin

2014-03-01

Dilational materials are stable, three-dimensional isotropic auxetics with an ultimate Poisson's ratio of -1. Inspired by previous theoretical work, we design a feasible blueprint for an artificial material, a metamaterial, which approaches the ideal of a dilational material. The main novelty of our work is that we also fabricate and characterize corresponding metamaterial samples. To reveal all modes in the design, we calculate the phonon band structures. On this basis, using cubic symmetry we can unambiguously retrieve all different non-zero elements of the rank-four effective metamaterial elasticity tensor from which all effective elastic metamaterial properties follow. While the elastic properties and the phase velocity remain anisotropic, the effective Poisson's ratio indeed becomes isotropic and approaches -1 in the limit of small internal connections. This finding is also supported by independent, static continuum-mechanics calculations. In static experiments on macroscopic polymer structures fabricated by three-dimensional printing, we measure Poisson's ratios as low as -0.8 in good agreement with the theory. Microscopic samples are also presented.

SciTech Connect

Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

2005-04-01

Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

10. Two component-three dimensional catalysis

DOEpatents

Schwartz, Michael; White, James H.; Sammells, Anthony F.

2002-01-01

This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.

11. Nanowired three-dimensional cardiac patches

Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.

2011-11-01

Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.

12. Nanowired three-dimensional cardiac patches.

PubMed

Dvir, Tal; Timko, Brian P; Brigham, Mark D; Naik, Shreesh R; Karajanagi, Sandeep S; Levy, Oren; Jin, Hongwei; Parker, Kevin K; Langer, Robert; Kohane, Daniel S

2011-11-01

Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches. PMID:21946708

13. Three-dimensional model of lignin structure

SciTech Connect

Jurasek, L.

1995-12-01

An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.

14. Three-dimensional turbopump flowfield analysis

NASA Technical Reports Server (NTRS)

Sharma, O. P.; Belford, K. A.; Ni, R. H.

1992-01-01

A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

15. Three-dimensional singular points in aerodynamics

NASA Technical Reports Server (NTRS)

Unal, Aynur

1988-01-01

When three-dimensional separation occurs on a body immersed in a flow governed by the incompressible Navier-Stokes equations, the geometrical surfaces formed by the three vector fields (velocity, vorticity and the skin-friction) and a scalar field (pressure) become interrelated through topological maps containing their respective singular points and extremal points. A mathematically consistent description of these singular points becomes inevitable when we want to study the geometry of the separation. A separated stream surface requires, for example, the existence of a saddle-type singular point on the skin-friction surface. This singular point is actually, in the proper language of mathematics, a saddle of index two. The index is a measure of the dimension of the outset (set leaving the singular point). Hence, when a saddle of index two is specified, a two dimensional surface that becomes separated from the osculating plane of the saddle is implied. The three-dimensional singular point is interpreted mathematically and the most common aerodynamical singular points are discussed through this perspective.

16. Intersection of three-dimensional geometric surfaces

NASA Technical Reports Server (NTRS)

Crisp, V. K.; Rehder, J. J.; Schwing, J. L.

1985-01-01

Calculating the line of intersection between two three-dimensional objects and using the information to generate a third object is a key element in a geometry development system. Techniques are presented for the generation of three-dimensional objects, the calculation of a line of intersection between two objects, and the construction of a resultant third object. The objects are closed surfaces consisting of adjacent bicubic parametric patches using Bezier basis functions. The intersection determination involves subdividing the patches that make up the objects until they are approximately planar and then calculating the intersection between planes. The resulting straight-line segments are connected to form the curve of intersection. The polygons in the neighborhood of the intersection are reconstructed and put back into the Bezier representation. A third object can be generated using various combinations of the original two. Several examples are presented. Special cases and problems were encountered, and the method for handling them is discussed. The special cases and problems included intersection of patch edges, gaps between adjacent patches because of unequal subdivision, holes, or islands within patches, and computer round-off error.

Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James

2003-05-01

Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).

18. Embedded three-dimensional shape measurement system with microprojector

Hu, Farong; Zhang, Wanzhen; Lin, Bin

2012-10-01

An embedded system implementing fringe encoding, image acquisition and algorithm processing has been recently designed and developed for 3D shape measurement based on structured light technology. Compared with traditional 3D shape measurement system, which has disadvantages of complex structure and slow processing speed, our embedded system is more effective in industrial quality detection. With self-developed digital micro projector based on liquid crystal on silicon, the structured light patterns are projected by high-resolution such as 720p. In the generated module of the stripes, we add a Gamma value to lower the projection error. Image acquisition sensor is synchronized with the micro projector by EP2C8 FPGA hardware circuits, which simultaneously control the phase encoding fringes according to different characteristic objects. To get high performance, accurate synchronization is crucial, especially in Phase Shifting Method, there are sequential images with shifting phases, in other words hardware circuit guarantee the processing speed before algorithm processing. We improved the three step phase algorithm, using the intensity modulation, which is a relatively simple method to solve the intensity imbalance of the three images. By implementing the digital signal processing (DSP) TMS320DM642 system, we realized three-dimensional measurement with a pipeline process of structure light encoding, image acquisition and three-dimensional reconstruction. Finally the measure experiment shows that the processing frame rate is up to 16 fps, and the measurement error is less than three percent. It means we can quickly and accurately detect three-dimensional profile with the portable device.

19. Computations of Complex Three-Dimensional Turbulent Free Jets

NASA Technical Reports Server (NTRS)

Wilson, Robert V.; Demuren, Ayodeji O.

1997-01-01

Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.

20. Three-dimensional modeling of the plasma arc in arc welding

SciTech Connect

Xu, G.; Tsai, H. L.; Hu, J.

2008-11-15

Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

1. Three-dimensional modeling of the plasma arc in arc welding

Xu, G.; Hu, J.; Tsai, H. L.

2008-11-01

Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

2. Modeling of three-dimensional mixing and reacting ducted flows

NASA Technical Reports Server (NTRS)

Zelazny, S. W.; Baker, A. J.; Rushmore, W. L.

1976-01-01

A computer code, based upon a finite element solution algorithm, was developed to solve the governing equations for three-dimensional, reacting boundary region, and constant area ducted flow fields. Effective diffusion coefficients are employed to allow analyses of turbulent, transitional or laminar flows. The code was used to investigate mixing and reacting hydrogen jets injected from multiple orifices, transverse and parallel to a supersonic air stream. Computational results provide a three-dimensional description of velocity, temperature, and species-concentration fields downstream of injection. Experimental data for eight cases covering different injection conditions and geometries were modeled using mixing length theory (MLT). These results were used as a baseline for examining the relative merits of other mixing models. Calculations were made using a two-equation turbulence model (k+d) and comparisons were made between experiment and mixing length theory predictions. The k+d model shows only a slight improvement in predictive capability over MLT. Results of an examination of the effect of tensorial transport coefficients on mass and momentum field distribution are also presented. Solutions demonstrating the ability of the code to model ducted flows and parallel strut injection are presented and discussed.

3. Three-dimensional pseudospectral modelling of cardiac propagation in an inhomogeneous anisotropic tissue.

PubMed

Ng, K T; Yan, R

2003-11-01

Various investigators have used the monodomain model to study cardiac propagation behaviour. In many cases, the governing non-linear parabolic equation is solved using the finite-difference method. An adequate discretisation of cardiac tissue with realistic dimensions, however, often leads to a large model size that is computationally demanding. Recently, it has been demonstrated, for a two-dimensional homogeneous monodomain, that the Chebyshev pseudospectral method can offer higher computational efficiency than the finite-difference technique. Here, an extension of the pseudospectral approach to a three-dimensional inhomogeneous case with fibre rotation is presented. The unknown transmembrane potential is expanded in terms of Chebyshev polynomial trial functions, and the monodomain equation is enforced at the Gauss-Lobatto node points. The forward Euler technique is used to advance the solution in time. Numerical results are presented that demonstrate that the Chebyshev pseudospectral method offered an even larger improvement in computational performance over the finite-difference method in the three-dimensional case. Specifically, the pseudospectral method allowed the number of nodes to be reduced by approximately 85 times, while the same solution accuracy was maintained. Depending on the model size, simulations were performed with approximately 18-41 times less memory and approximately 99-169 times less CPU time. PMID:14686586

4. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

DOE PAGESBeta

Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

2016-06-09

Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less

5. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

2016-09-01

In this paper we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.

6. Volumetric techniques: three-dimensional midface modeling

PubMed Central

Pierzchała, Ewa; Placek, Waldemar

2014-01-01

Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354

7. Three-dimensional modular electronic interconnection system

NASA Technical Reports Server (NTRS)

Bolotin, Gary S. (Inventor); Cardone, John (Inventor)

2001-01-01

A three-dimensional connection system uses a plurality of printed wiring boards with connectors completely around the printed wiring boards, and connected by an elastomeric interface connector. The device includes internal space to allow room for circuitry. The device is formed by stacking an electronics module, an elastomeric interface board on the electronics module such that the interface board's exterior makes electrical connection with the connectors around the perimeter of the interface board, but the internal portion is open to allow room for the electrical devices on the printed wiring board. A plurality of these devices are stacked between a top stiffener and a bottom device, and held into place by alignment elements.

8. Modelling of Three-Dimensional Nanographene.

PubMed

Mathioudakis, Christos; Kelires, Pantelis C

2016-12-01

Monte Carlo simulations and tight-binding calculations shed light on the properties of three-dimensional nanographene, a material composed of interlinked, covalently-bonded nanoplatelet graphene units. By constructing realistic model networks of nanographene, we study its structure, mechanical stability, and optoelectronic properties. We find that the material is nanoporous with high specific surface area, in agreement with experimental reports. Its structure is characterized by randomly oriented and curved nanoplatelet units which retain a high degree of graphene order. The material exhibits good mechanical stability with a formation energy of only ∼0.3 eV/atom compared to two-dimensional graphene. It has high electrical conductivity and optical absorption, with values approaching those of graphene. PMID:26983431

9. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

SciTech Connect

KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

2003-05-04

BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

10. Three-Dimensional Reflectance Traction Microscopy

PubMed Central

Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

2016-01-01

Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

11. Three-dimensional tori and Arnold tongues

Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki

2014-03-01

This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

12. Three-dimensional structures of magnesium nanopores

Wu, Shujing; Zheng, He; Jia, Shuangfeng; Sheng, Huaping; Cao, Fan; Li, Lei; Hu, Shuaishuai; Zhao, Penghui; Zhao, Dongshan; Wang, Jianbo

2016-03-01

The optimization of nanopore-based devices is closely related to the nanopore three-dimensional (3D) structures. In this paper, faceted nanopores were fabricated in magnesium (Mg) by aligning the electron beam (e-beam) along the [0001] direction. Detailed structural characterization by transmission electron microscopy reveals the existence of two 3D structures: hexagonal prism-shaped and hourglass-shaped 3D morphologies. Moreover, the 3D structures of nanopores are also found to depend on the widest nanopore diameter-to-thickness ratio (D/t). A plausible formation mechanism for different 3D structures is discussed. Our results incorporate a critical piece of information regarding the nanopore 3D structures in Mg and may serve as an important design guidance for the size- and shape-controllable fabrication of solid-state nanopores applying the e-beam sculpting technique.

13. Three-dimensional pancreas organogenesis models.

PubMed

Grapin-Botton, A

2016-09-01

A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129

14. Heterogeneous, three-dimensional texturing of graphene.

PubMed

Wang, Michael Cai; Chun, SungGyu; Han, Ryan Steven; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

2015-03-11

We report a single-step strategy to achieve heterogeneous, three-dimensional (3D) texturing of graphene and graphite by using a thermally activated shape-memory polymer substrate. Uniform arrays of graphene crumples can be created on the centimeter scale by controlling simple thermal processing parameters without compromising the electrical properties of graphene. In addition, we show the capability to selectively pattern crumples from otherwise flat graphene and graphene/graphite in a localized manner, which has not been previously achievable using other methods. Finally, we demonstrate 3D crumpled graphene field-effect transistor arrays in a solution-gated configuration. The presented approach has the capability to conform onto arbitrary 3D surfaces, a necessary prerequisite for adaptive electronics, and will enable facile large-scale topography engineering of not only graphene but also other thin-film and 2D materials in the future. PMID:25667959

15. Multiscale modeling of three-dimensional genome

Zhang, Bin; Wolynes, Peter

The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

16. Three-dimensional joint transform correlator cryptosystem.

PubMed

Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto

2016-02-01

We introduce for the first time, to the best of our knowledge, a three-dimensional experimental joint transform correlator (JTC) cryptosystem allowing the encryption of information for any 3D object, and as an additional novel feature, a second 3D object plays the role of the encoding key. While the JTC architecture is normally used to process 2D data, in this work, we envisage a technique that allows the use of this architecture to protect 3D data. The encrypted object information is contained in the joint power spectrum. We register the key object as a digital off-axis Fourier hologram. The encryption procedure is done optically, while the decryption is carried out by means of a virtual optical system, allowing for flexible implementation of the proposal. We present experimental results to demonstrate the validity and feasibility of the method. PMID:26907433

17. The Three-Dimensional EIT Wave

NASA Technical Reports Server (NTRS)

Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)

2002-01-01

An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.

18. Three dimensional fabric evolution of sheared sand

SciTech Connect

Hasan, Alsidqi; Alshibli, Khalid

2012-10-24

Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

19. Surface fitting three-dimensional bodies

NASA Technical Reports Server (NTRS)

Dejarnette, F. R.; Ford, C. P., III

1975-01-01

The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.

20. Three-dimensional hybrid vortex solitons

Driben, Rodislav; Kartashov, Yaroslav V.; Malomed, Boris A.; Meier, Torsten; Torner, Lluis

2014-06-01

We show, by means of numerical and analytical methods, that media with a repulsive nonlinearity which grows from the center to the periphery support a remarkable variety of previously unknown complex stationary and dynamical three-dimensional (3D) solitary-wave states. Peanut-shaped modulation profiles give rise to vertically symmetric and antisymmetric vortex states, and novel stationary hybrid states, built of top and bottom vortices with opposite topological charges, as well as robust dynamical hybrids, which feature stable precession of a vortex on top of a zero-vorticity soliton. The analysis reveals stability regions for symmetric, antisymmetric, and hybrid states. In addition, bead-shaped modulation profiles give rise to the first example of exact analytical solutions for stable 3D vortex solitons. The predicted states may be realized in media with a controllable cubic nonlinearity, such as Bose-Einstein condensates.

1. Three-dimensional hologram display system

NASA Technical Reports Server (NTRS)

Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

2009-01-01

The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

2. Three-dimensional tori and Arnold tongues

SciTech Connect

Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki

2014-03-15

This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

3. Towards microscale electrohydrodynamic three-dimensional printing

He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

2016-02-01

It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

4. Three-dimensional cultured glioma cell lines

NASA Technical Reports Server (NTRS)

Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)

1991-01-01

Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.

5. Numerical simulation of three dimensional transonic flows

NASA Technical Reports Server (NTRS)

Sahu, Jubaraj; Steger, Joseph L.

1987-01-01

The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.

6. Three-Dimensional Gear Crack Propagation Studies

NASA Technical Reports Server (NTRS)

Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

1998-01-01

Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

7. Three-dimensional printing physiology laboratory technology.

PubMed

Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

2013-12-01

Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254

8. Three dimensional thrust chamber life prediction

NASA Technical Reports Server (NTRS)

Armstrong, W. H.; Brogren, E. W.

1976-01-01

A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

9. Magneto Transport in Three Dimensional Carbon Nanostructures

Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa

Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.

10. Three-dimensional image contrast using biospeckle

Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

2010-09-01

The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

11. A three-dimensional asymmetric magnetopause model

Lin, R. L.; Zhang, X. X.; Liu, S. Q.; Wang, Y. L.; Gong, J. C.

2010-04-01

A new three-dimensional asymmetric magnetopause model has been developed for corrected GSM coordinates and parameterized by the solar wind dynamic and magnetic pressures (Pd + Pm), the interplanetary magnetic field (IMF) Bz, and the dipole tilt angle. On the basis of the magnetopause crossings from Geotail, IMP 8, Interball, TC1, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Wind, Cluster, Polar, Los Alamos National Laboratory (LANL), GOES, and Hawkeye, and the corresponding upstream solar wind parameters from ACE, Wind, or OMNI, this model is constructed by the Levenberg-Marquardt method for nonlinear multiparameter fitting step-by-step over the divided regions. The asymmetries of the magnetopause and the indentations near the cusps are appropriately described in this new model. In addition, the saturation effect of IMF Bz on the subsolar distance and the extrapolation for the distant tail magnetopause are also considered. On the basis of this model, the power law index for the subsolar distance versus Pd + Pm is a bit less than -1/6, the northward IMF Bz almost does not influence the magnetopause, and the dipole tilt angle is very important to the north-south asymmetry and the location of indentations. In comparison with the previous empirical magnetopause models based on our database, the new model improves prediction capability to describe the three-dimensional structure of the magnetopause. It is shown that this new model can be used to quantitatively study how Pd + Pm compresses the magnetopause, how the southward IMF Bz erodes the magnetopause, and how the dipole tilt angle influences the north-south asymmetry and the indentations.

12. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas

Yan, Xin-Zhong

2011-07-01

The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green’s function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

13. A multiphase model for three-dimensional tumor growth

Sciumè, G.; Shelton, S.; Gray, W. G.; Miller, C. T.; Hussain, F.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A.

2013-01-01

infiltration is predicted for the opposite condition. Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells grow around microvessels in a three-dimensional geometry. It is shown that TCs tend to migrate among adjacent vessels seeking new oxygen and nutrients. This model can predict and optimize the efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion on TC proliferation.

14. Three-dimensional magnetic resonance microscopy of materials.

PubMed

Botto, R E; Cody, G D; Dieckman, S L; French, D C; Gopalsami, N; Rizo, P

1996-07-01

Several aspects of magnetic resonance microscopy are examined employing three-dimensional (3D) back-projection reconstruction techniques in combination with either simple Bloch-decay methods or MREV-8 multiple-pulse line narrowing techniques in the presence of static field gradients. Applications to the areas of ceramic processing, catalyst porosity measurements and the characterization of polymeric materials are presented. The focus of the discussion centers on issues of sensitivity and resolution using this approach compared with other methods. Advantages and limitations of 3D microscopy over more commonly employed slice selection protocols are discussed, as well as potential remedies to some of the inherent limitations of the technique. PMID:8902960

15. Three-dimensional "Mercedes-Benz" model for water.

PubMed

Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

2009-08-01

In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility. PMID:19673572

16. Three-dimensional `Mercedes-Benz'' model for water

Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

2009-08-01

In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

17. Growing Three-Dimensional Cartilage-Cell Cultures

NASA Technical Reports Server (NTRS)

Spaulding, Glenn F.; Prewett, Tacey L.; Goodwin, Thomas J.

1995-01-01

Process for growing three-dimensional cultures of mammalian cartilage from normal mammalian cells devised. Effected using horizontal rotating bioreactor described in companion article, "Simplified Bioreactor for Growing Mammalian Cells" (MSC-22060). Bioreactor provides quiescent environment with generous supplies of nutrient and oxygen. Initiated with noncartilage cells. Artificially grown tissue resembles that in mammalian cartilage. Potential use in developing therapies for damage to cartilage by joint and back injuries and by such inflammatory diseases as arthritis and temporal-mandibular joint disease. Also used to test nonsteroid anti-inflammation medicines.

18. Nitsche's method for two and three dimensional NURBS patch coupling

Nguyen, Vinh Phu; Kerfriden, Pierre; Brino, Marco; Bordas, Stéphane P. A.; Bonisoli, Elvio

2014-06-01

We present a Nitche's method to couple non-conforming two and three-dimensional non uniform rational b-splines (NURBS) patches in the context of isogeometric analysis. We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications.

19. Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures

SciTech Connect

Cowan, B.; /SLAC

2006-09-07

We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

20. Three dimensional electromechanical model of porcine heart with penetrating wound injury.

PubMed

Usyk, Taras; Kerckhoffs, Roy

2005-01-01

The aim of this study is development a prototype computational model of the pig heart that can be used to predict physiological responses to a penetrating wound injury. The pig has been chosen for this model studies because it shares many anatomical similarities with humans. Three-dimensional cubic Hermite finite element meshes based on detailed measurements of porcine anatomy combined into an integrated anatomic model. The pig ventricular model includes detailed left and right ventricular geometry and myofiber and laminar sheet orientations throughout the mesh. The cardiac mesh was refined and monodomain equations for action potential propagation solved using well-established collocation-Galerkin finite element methods. The membrane kinetic equations for the action potential model was based on detailed cellular models of transmembrane ionic fluxes and intracellular calcium fluxes in canine ventricular myocytes and human atrial myocytes. We modified the anisotropic myocardial conductivity tensor on the endocardial surface of the ventricles by making use of a surface model fitted to measured of Purkinje fiber network anatomy. The mechanical model compute regional three-dimensional stress and strain distributions using anisotropic constitutive laws referred to local material coordinate axes defined by local myofiber and laminar sheet orientations. Passive myocardial mechanics modeled using exponential orthotropic strain energy functions. Active systolic myocardial stresses computed from a multi-scale model that uses crossbridge theory to predict calcium-activated sarcomere length- and velocity-dependent tension filament tension. Since the electrical and mechanical models use a common finite element mesh as the parent parametric framework and both models are solved within our custom finite element package, it is straightforward to couple these models, as we have recently done for a model of coupled ventricular electromechanics. We apply the coupled electromechanical

1. A three-dimensional spin-diffusion model for micromagnetics

PubMed Central

Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

2015-01-01

We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

2. A three-dimensional spin-diffusion model for micromagnetics.

PubMed

Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

2015-01-01

We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

3. A three-dimensional spin-diffusion model for micromagnetics

Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

2015-10-01

We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation.

4. Three dimensional map construction using a scanning laser range finder

Chang, Yau-Zen; Lee, Shih-Tseng

2009-01-01

This paper presents the development of a three-dimensional environment reconstruction system using a laser range finder. The original design of URG-04LX laser range finder, provided by Hokuyo Inc., is efficient in providing two-dimensional distance information. To enhance the capability of the device, we developed a rotation mechanism to provide it a sweep motion for stereo data collection. Geometric equations are derived that includes parameters of misalignment that are unavoidable in manufacturing and assembling. The parameters are calibrated according to practical data measurement of three relatively-perpendicular planes. The calibration is formulated as an optimization problem solved using the Nelder- Mead simplex algorithm. Validity of the calibration scheme is demonstrated by the reconstruction of several real-world scenes.

5. Unsteady three-dimensional marginal separation, including breakdown

NASA Technical Reports Server (NTRS)

Duck, Peter W.

1990-01-01

A situation involving a three-dimensional marginal separation is considered, where a (steady) boundary layer flow is on the verge of separating at a point (located along a line of symmetry/centerline). At this point, a triple-deck is included, thereby permitting a small amount of interaction to occur. Unsteadiness is included within this interaction region through some external means. It is shown that the problem reduces to the solution of a nonlinear, unsteady, partial-integro system, which is solved numerically by means of time-marching together with a pseudo-spectral method spatially. A number of solutions to this system are presented which strongly suggest a breakdown of this system may occur, at a finite spatial position, at a finite time. The structure and details of this breakdown are then described.

6. Three Dimensional Shear Wave Elastographic Reconstruction of Ablations*

PubMed Central

Ingle, Atul; Varghese, Tomy

2014-01-01

This paper presents an algorithm for three dimensional (3D) reconstruction of tumor ablations using ultrasound electrode vibration elastography. Shear wave velocity, which is used as a surrogate for tissue stiffness, is estimated by perturbing the ablation needle and tracking frame-to-frame displacements using radiofrequency ultrasound echo data. This process is repeated over many imaging planes that share a common axis of intersection collinear with needle. A 3D volume is reconstructed by solving an optimization problem which smoothly approximates shear wave velocities on a stack of transverse planes. The mean shear wave velocity estimates obtained in the phantom experiments are within 20% of those measured using a commercial shear wave imaging system. PMID:25570587

7. Agglomeration multigrid for the three-dimensional Euler equations

NASA Technical Reports Server (NTRS)

Venkatakrishnan, V.; Mavriplis, D. J.

1994-01-01

A multigrid procedure that makes use of coarse grids generated by the agglomeration of control volumes is advocated as a practical approach for solving the three dimensional Euler equations on unstructured grids about complex configurations. It is shown that the agglomeration procedure can be tailored to achieve certain coarse grid properties such as the sizes of the coarse grids and aspect ratios of the coarse grid cells. The agglomeration is done as a preprocessing step and runs in linear time. The implications for multigrid of using arbitrary polyhedral coarse grids are discussed. The agglomeration multigrid technique compares very favorably with existing multigrid procedures both in terms of convergence rates and elapsed times. The main advantage of the present approach is the ease with which coarse grids of any desired degree of coarseness may be generated in three dimensions, without being constrained by considerations of geometry. Inviscid flows over a variety of complex configurations are computed using the agglomeration multigrid strategy.

8. A three-dimensional magnetostatics computer code for insertion devices.

PubMed

Chubar, O; Elleaume, P; Chavanne, J

1998-05-01

RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica [Mathematica is a registered trademark of Wolfram Research, Inc.]. The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented. PMID:15263552

9. Parallelization of a three-dimensional compressible transition code

NASA Technical Reports Server (NTRS)

Erlebacher, G.; Hussaini, M. Y.; Bokhari, Shahid H.

1990-01-01

The compressible, three-dimensional, time-dependent Navier-Stokes equations are solved on a 20 processor Flex/32 computer. The code is a parallel implementation of an existing code operational on the Cray-2 at NASA Ames, which performs direct simulations of the initial stages of the transition process of wall-bounded flow at supersonic Mach numbers. Spectral collocation in all three spatial directions (Fourier along the plate and Chebyshev normal to it) ensures high accuracy of the flow variables. By hiding most of the parallelism in low-level routines, the casual user is shielded from most of the nonstandard coding constructs. Speedups of 13 out of a maximum of 16 are achieved on the largest computational grids.

10. Multigrid for hypersonic viscous two- and three-dimensional flows

NASA Technical Reports Server (NTRS)

Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.

1991-01-01

The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time-dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that remove the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock-capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional viscous flow over a blunt biconic.

11. Implicit solution of three-dimensional internal turbulent flows

NASA Technical Reports Server (NTRS)

Michelassi, V.; Liou, M.-S.; Povinelli, Louis A.; Martelli, F.

1991-01-01

The scalar form of the approximate factorization method was used to develop a new code for the solution of three dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form were iterated in time until a steady solution was reached. Evidence was given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at the domain boundaries was proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects were accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. The flow in a developing S-duct was then solved in the laminar regime in a Reynolds number (Re) of 790 and in the turbulent regime at Re equals 40,000 by using the Baldwin-Lomax model. The Stanitz elbow was then solved by using an invicid version of the same code at M sub inlet equals 0.4. Grid dependence and convergence rate were investigated, showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re equals 2.5 times 10(exp 6) was solved with the Baldwin-Lomax and the q-omega models. Both approaches show satisfactory agreement with experiments, although the q-omega model was slightly more accurate.

12. A combinatorial relative mass value evaluation of endogenous bioactive proteins in three-dimensional cultured nucleus pulposus cells of herniated intervertebral discs: identification of potential target proteins for gene therapeutic approaches.

PubMed

Mern, Demissew S; Fontana, Johann; Beierfuß, Anja; Thomé, Claudius; Hegewald, Aldemar A

2013-01-01

Painful degenerative disc diseases have been targeted by different biological treatment approaches. Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) maintenance by orchestrating catabolic, anabolic and inflammatory factors that affect the extracellular matrix. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism. Therefore, accurate knowledge about their quantity and quality with regard to matrix synthesis is vital for a rational gene therapeutic approach. NP cells were isolated from 63 patients operated due to lumbar disc herniation (mean age 56 / range 29 - 84 years). Then, three-dimensional culture with low-glucose was completed in a collagen type I scaffold for four weeks. Subsequently cell proliferation evaluation was performed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and intracellular concentration of 28 endogenously expressed anabolic, catabolic, inflammatory factors and relevant matrix proteins was determined by enzyme-linked immunosorbent assay. Specimen-related grades of degeneration were confirmed by preoperative magnetic resonance imaging. Independent from gender, age and grade of degeneration proliferation rates remained similar in all groups of NP cells. Progressive grades of degeneration, however, showed a significant influence on accumulation of selective groups of factors such as disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, metalloproteinase inhibitor 1 and 2, interleukin-1β and interleukin-1 receptor. Along with these changes, the key NP matrix proteins aggrecan and collagen II decreased significantly. The concentration of anabolic factors bone morphogenetic proteins 2, 4, 6 and 7, insulin-like growth factor 1, transforming growth factor beta 1 and 3, however, remained below the minimal detectable quantities. These findings indicate that progressive degenerative changes in NP may

13. A Combinatorial Relative Mass Value Evaluation of Endogenous Bioactive Proteins in Three-Dimensional Cultured Nucleus Pulposus Cells of Herniated Intervertebral Discs: Identification of Potential Target Proteins for Gene Therapeutic Approaches

PubMed Central

Mern, Demissew S.; Fontana, Johann; Beierfuß, Anja; Thomé, Claudius; Hegewald, Aldemar A.

2013-01-01

Painful degenerative disc diseases have been targeted by different biological treatment approaches. Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) maintenance by orchestrating catabolic, anabolic and inflammatory factors that affect the extracellular matrix. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism. Therefore, accurate knowledge about their quantity and quality with regard to matrix synthesis is vital for a rational gene therapeutic approach. NP cells were isolated from 63 patients operated due to lumbar disc herniation (mean age 56 / range 29 - 84 years). Then, three-dimensional culture with low-glucose was completed in a collagen type I scaffold for four weeks. Subsequently cell proliferation evaluation was performed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and intracellular concentration of 28 endogenously expressed anabolic, catabolic, inflammatory factors and relevant matrix proteins was determined by enzyme-linked immunosorbent assay. Specimen-related grades of degeneration were confirmed by preoperative magnetic resonance imaging. Independent from gender, age and grade of degeneration proliferation rates remained similar in all groups of NP cells. Progressive grades of degeneration, however, showed a significant influence on accumulation of selective groups of factors such as disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, metalloproteinase inhibitor 1 and 2, interleukin-1β and interleukin-1 receptor. Along with these changes, the key NP matrix proteins aggrecan and collagen II decreased significantly. The concentration of anabolic factors bone morphogenetic proteins 2, 4, 6 and 7, insulin-like growth factor 1, transforming growth factor beta 1 and 3, however, remained below the minimal detectable quantities. These findings indicate that progressive degenerative changes in NP may

14. PLOT3D- DRAWING THREE DIMENSIONAL SURFACES

NASA Technical Reports Server (NTRS)

Canright, R. B.

1994-01-01

PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.

15. Three-dimensional modeling of ovarian cancer

PubMed Central

Erin, White; Hilary, Kenny; Ernst, Lengyel

2015-01-01

New models for epithelial ovarian cancer initiation and metastasis are required to obtain a mechanistic understanding of the disease and to develop new therapeutics. Modeling ovarian cancer however is challenging as a result of the genetic heterogeneity of the malignancy, the diverse pathology, the limited availability of human tissue for research, the atypical mechanisms of metastasis, and because the origin is unclear. Insights into the origin of high-grade serous ovarian carcinomas and mechanisms of metastasis have resulted in the generation of novel three-dimensional (3D) culture models that better approximate the behavior of the tumor cells in vivo than prior two-dimensional models. The 3D models aim to recapitulate the tumor microenvironment, which has a critical role in the pathogenesis of ovarian cancer. Ultimately, findings using models that accurately reflect human ovarian cancer biology are likely to translate into improved clinical outcomes. In this review we discuss the design of new 3D culture models of ovarian cancer primarily using human cells, key studies in which these models have been applied, current limitations, and future applications. PMID:25034878

16. Three-dimensional charge coupled device

DOEpatents

Conder, Alan D.; Young, Bruce K. F.

1999-01-01

A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

17. Three-dimensional laser velocimeter simultaneity detector

NASA Technical Reports Server (NTRS)

Brown, James L. (Inventor)

1990-01-01

A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.

18. Three-Dimensional Optical Coherence Tomography

NASA Technical Reports Server (NTRS)

Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

2009-01-01

Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

19. Collimation and Stability of Three Dimensional Jets

Hardee, P. E.; Clarke, D. A.; Howell, D. A.

1993-12-01

Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.

20. Three-dimensional modeling equatorial spread F

Huba, J. D.; Krall, J.; Joyce, G.

2008-12-01

Equatorial spread F (ESF) is a low-latitude ionospheric phenomenon that leads to the development of large scale electron density depletions that adversely affect communications and navigation systems. The development of models to understand and predict the onset and evolution of ESF is therefore critically important to a number of space-based systems. To this end, NRL has developed a three-dimensional model of ESF. The global NRL ionosphere model SAMI3 has been modified to simulate a narrow wedge of the post-sunset ionosphere to capture the onset and evolution of ESF. Preliminary results indicate that (1) bubbles can rise to ~ 1600 km, (2) extremely steep ion density gradients can develop in both longitude and latitude, (3) upward plasma velocities approach 1 km/s, and (4) the growth time of the instability is ~eq 15 min. We will also report the effects of meridional and zonal winds on bubble development, as well as ion composition (both atomic and molecular). The simulations will focus on current, low solar activity conditions, and results will be compared to C/NOFS data where available. Research supported by ONR

1. Three-dimensional null point reconnection regimes

SciTech Connect

Priest, E. R.; Pontin, D. I.

2009-12-15

Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.

2. Surface fitting three-dimensional bodies

NASA Technical Reports Server (NTRS)

Dejarnette, F. R.

1974-01-01

The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.

3. Three Dimensional Numerical Analysis on Discharge Properties

Takaishi, Kenji; Katsurai, Makoto

2003-10-01

A three dimensional simulation code with the finite difference time domain (FDTD) method combined with the two fluids model for electron and ion has been developed for the microwave excited surface wave plasma in the RDL-SWP device. This code permits the numerical analysis of the spatial distributions of electric field, power absorption, electron density and electron temperature. At low gas pressure of about 10 mTorr, the numerical results compared with the experimental measurements that shows the validity of this 3-D simulation code. A simplified analysis assuming that an electron density is spatially uniform has been studied and its applicability is evaluated by 3-D simulation. The surface wave eigenmodes are determined by electron density, and it is found that the structure of the device strongly influences to the spatial distribution of the electric fields of surface wave in a low density area. A method to irradiate a microwave to the whole surface area of the plasma is proposed which is found to be effective to obtain a high uniformity distribution of electron density.

4. Three-Dimensional Tomography of Interplanetary Disturbances

Jackson, Bernard V.; Hick, P. Paul

2004-09-01

We have developed a Computer Assisted Tomography (CAT) program that modifies a three-dimensional kinematic heliospheric model to fit interplanetary scintillation (IPS) or Thomson scattering observations. The tomography program iteratively changes this global model to least-squares fit the data. Both a corotating and time-dependent model can be reconstructed. The short time intervals of the time-dependent modeling (to shorter than 1 day) force the heliospheric reconstructions to depend on outward solar wind motion to give perspective views of each point in space accessible to the observations, allowing reconstruction of interplanetary Coronal Mass Ejections (CMEs) as well as corotating structures. We show these models as velocity or density Carrington maps and remote views. We have studied several events, including the 2000 July 14 Bastille-Day halo CME and several intervals using archival Cambridge IPS data, and we have also used archival Helios photometer data to reproduce the heliosphere. We check our results by comparison with additional remote-sensing observations, and in-situ observations from near-Earth spacecraft. A comparison of these observations and the Earth forecasts possible using them is available in real time on the World Wide Web using IPS data from the Solar Terrestrial Environment Laboratory, Japan.

5. Compact integral three-dimensional imaging device

Arai, J.; Yamashita, T.; Hiura, H.; Miura, M.; Funatsu, R.; Nakamura, T.; Nakasu, E.

2015-05-01

A compact integral three-dimensional (3D) imaging device for capturing high resolution 3D images has been developed that positions the lens array and image sensor close together. Unlike the conventional scheme, where a camera lens is used to project the elemental images generated by the lens array onto the image sensor, the developed device combines the lens array and image sensor into one unit and makes no use of a camera lens. In order to capture high resolution 3D images, a high resolution imaging sensor and a lens array composed of many elemental lenses are required, and in an experimental setup, a CMOS image sensor circuit patterned with multiple exposures and a multiple lens array were used. Two types of optics were implemented for controlling the depth of 3D images. The first type was a convex lens that is suitable for compressing a relatively large object space, and the second was an afocal lens array that is suitable for capturing a relatively small object space without depth distortion. The objects captured with the imaging device and depth control optics were reconstructed as 3D images by using display equipment consisting of a liquid crystal panel and a lens array. The reconstructed images were found to have appropriate motion parallax.

6. A three-dimensional human walking model

Yang, Q. S.; Qin, J. W.; Law, S. S.

2015-11-01

A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.

7. Automatic creation of three-dimensional avatars

2003-01-01

Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

8. Three-dimensional Printing in the Intestine.

PubMed

Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John

2016-08-01

Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913

9. Three-dimensional assessment of hand outcome

PubMed Central

Belcher, HJCR

2013-01-01

Introduction Patient reported outcome measures are central to National Health Service quality of care assessments. This study investigated the benefit of elective hand surgery by the simultaneous analysis of pain, function and appearance, using a three-dimensional (3D) graphical model for evaluating and presenting outcome. Methods A total of 188 patients scheduled for surgery completed pre- and postoperative questionnaires grading the severity of their pain, dysfunction and deformity of their hand(s). Scores were plotted on a 3D graph to demonstrate the degree of ‘normalisation’ following surgery. Results Surgical groups included: nerve compression (n=53), Dupuytren’s disease (n=51), trigger finger (n=20), ganglion (n=17) or other lump (n=21), trapeziometacarpal joint osteoarthritis (n=10), rheumatoid disease (n=5) and other pathology (n=13). A significant improvement towards normality was seen after surgery in each group except for patients with rheumatoid disease. Conclusions This study provides a simple, visual representation of hand surgery outcome by plotting patient scores for pain, function and appearance simultaneously on a 3D graph. PMID:24025292

10. Modelling Three Dimensional, Tape Spring Based, Space Deployable Structures

Walker, S. J. I.; Kiley, A.; Aglietti, G. S.; Cook, A.; McDonald, A. D.

2012-07-01

Deployable structures are required for many satellite operations, to deploy booms for communications or area deployment for power generation, and many sophisticated mechanisms have been developed for these types of structures. However, tape springs, defined as thin metallic strips with an initially curved cross- section, are an attractive structural solution and hinge mechanism for satellite deployable structures because of their low mass, low cost and general simplicity. They have previously been used to deploy booms and array panels in various configurations that incorporate small two-dimensional tape hinges, but they also have the potential to be used in greater numbers to create larger, more geometrically complicated deployable structures. This publication investigates the applicability of using a simplified modelling approach to predict the deployment dynamics of a three dimensional deployable structure that uses a significant quantity of tape springs. This work builds on previous studies which have focused on the analysis of two dimensional tape spring based structures. The configuration being investigated consists of four walls mounted as a square. Each wall has three fold lines allowing the structure to fold down in a concertina style and each fold line is populated by a series of tape spring hinges mounted in pairs. A total number of around 600 individual tape springs elements are used across the 12 fold lines. A computationally efficient method of simulating the three dimensional deployable structure was studied based on a finite element explicit analysis. Equivalent static and dynamic experimental testing on a breadboard structure is presented allowing a direct comparison of the theoretical and experimental data. It was concluded that this simplified analysis approach is capable of modelling the structural dynamics in the deployment direction for three dimensional structural deployments. As a result, the use of this approach could significantly reduce

11. Parallax scanning methods for stereoscopic three-dimensional imaging

Mayhew, Christopher A.; Mayhew, Craig M.

2012-03-01

Under certain circumstances, conventional stereoscopic imagery is subject to being misinterpreted. Stereo perception created from two static horizontally separated views can create a "cut out" 2D appearance for objects at various planes of depth. The subject volume looks three-dimensional, but the objects themselves appear flat. This is especially true if the images are captured using small disparities. One potential explanation for this effect is that, although three-dimensional perception comes primarily from binocular vision, a human's gaze (the direction and orientation of a person's eyes with respect to their environment) and head motion also contribute additional sub-process information. The absence of this information may be the reason that certain stereoscopic imagery appears "odd" and unrealistic. Another contributing factor may be the absence of vertical disparity information in a traditional stereoscopy display. Recently, Parallax Scanning technologies have been introduced, which provide (1) a scanning methodology, (2) incorporate vertical disparity, and (3) produce stereo images with substantially smaller disparities than the human interocular distances.1 To test whether these three features would improve the realism and reduce the cardboard cutout effect of stereo images, we have applied Parallax Scanning (PS) technologies to commercial stereoscopic digital cinema productions and have tested the results with a panel of stereo experts. These informal experiments show that the addition of PS information into the left and right image capture improves the overall perception of three-dimensionality for most viewers. Parallax scanning significantly increases the set of tools available for 3D storytelling while at the same time presenting imagery that is easy and pleasant to view.

12. Horseshoe Drag in Three-dimensional Globally Isothermal Disks

Masset, F. S.; Benítez-Llambay, P.

2016-01-01

We study the horseshoe dynamics of a low-mass planet in a three-dimensional, globally isothermal, inviscid disk. We find, as reported in previous work, that the boundaries of the horseshoe region (separatrix sheets) have cylindrical symmetry about the disk’s rotation axis. We interpret this feature as arising from the fact that the whole separatrix sheets have a unique value of Bernoulli’s constant, and that this constant does not depend on altitude, but only on the cylindrical radius, in barotropic disks. We next derive an expression for the torque exerted by the horseshoe region on the planet, or horseshoe drag. Potential vorticity is not materially conserved as in two-dimensional flows, but it obeys a slightly more general conservation law (Ertel’s theorem) that allows an expression for the horseshoe drag identical to the expression in a two-dimensional disk to be obtained. Our results are illustrated and validated by three-dimensional numerical simulations. The horseshoe region is found to be slightly narrower than previously extrapolated from two-dimensional analyses with a suitable softening length of the potential. We discuss the implications of our results for the saturation of the corotation torque, and the possible connection to the flow at the Bondi scale, which the present analysis does not resolve.

13. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

PubMed

Gao, Guifang; Cui, Xiaofeng

2016-02-01

With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology. PMID:26466597

14. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

PubMed Central

Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

2016-01-01

The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care. PMID:27403103

15. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction.

PubMed

Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

2016-01-01

The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients' ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care. PMID:27403103

16. MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)

EPA Science Inventory

A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...

17. Development of a three-dimensional time-dependent flow field model

NASA Technical Reports Server (NTRS)

Farmer, R. C.; Waldrop, W. R.; Pitts, F. H.; Shah, K. R.

1975-01-01

A three-dimensional, time-dependent mathematical model to represent Mobile Bay was developed. Computer programs were developed which numerically solve the appropriate conservation equations for predicting bay and estuary flow fields. The model is useful for analyzing the dispersion of sea water into fresh water and the transport of sediment, and for relating field and physical model data.

18. Nonlinear characteristics analysis of vortex-induced vibration for a three-dimensional flexible tube

Feng, Zhipeng; Jiang, Naibin; Zang, Fenggang; Zhang, Yixiong; Huang, Xuan; Wu, Wanjun

2016-05-01

Vortex-induced vibration of a three-dimensional flexible tube is one of the key problems to be considered in many engineering situations. This paper aims to investigate the nonlinear dynamic behaviors and response characteristics of a three-dimensional tube under turbulent flow. The three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, and the dynamic equilibrium equations are discretized by the finite element theory. A three-dimensional fully coupled numerical model for vortex-induced vibration of flexible tube is proposed. The model realized the fluid-structure interaction with solving the fluid flow and the structure vibration simultaneously. Based on this model, Response regimes, trajectory, phase difference, fluid force coefficient and vortex shedding frequency are obtained. The nonlinear phenomena of lock-in, phase-switch are captured successfully. Meanwhile, the limit cycle, bifurcation of lift coefficient and displacement are analyzed using phase portrait and Poincare section. The results reveal that, a quasi-upper branch occurs in the present fluid-flexible tube coupling system with high mass-damping and low mass ratio. There is no bifurcation of lift coefficient and lateral displacement occurred in the three-dimensional flexible tube submitted to uniform turbulent flow.

19. Three-dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blades

SciTech Connect

He, L.; Denton, J.D. . Whittle Lab.)

1994-07-01

20. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. IV. FULL AMPLITUDE THREE-DIMENSIONAL SOLUTIONS

SciTech Connect

Geroux, Christopher M.; Deupree, Robert G.

2015-02-10

Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.

1. Exact analytical solutions for steady three-dimensional inviscid vortical flows

Bhattacharya, S.

Vortical flows with an axial (z-axis) swirl and a toroidal circulation (in the (rho,z)-plane) can be observed in a wide range of fluid mechanical phenomena such as flow around rotary machines or natural vortices like tornadoes and hurricanes. In this paper, we obtain exact analytical solutions for a general class of steady systems with such three-dimensional circulating structures. Assuming incompressible ideal fluid, a general single-variable equation, known as the Squire-Long equation, can be constructed which can uniquely describe the velocity fields with steady axial and toroidal circulations. In this paper, we consider the case where this type of flow can be analysed by solving a linear homogeneous partial differential equation. The derived equation resembles the governing equation of the hydrogen problem. As a result, we obtain a quantization relation which is similar to the expression for the quantized energy states in a hydrogen atom.For circulating flows, this formalism provides a complete set of orthogonal basis functions which are regular and localized. Hence, each of the basis solutions can be used as a simplified model for a realistic phenomenon. Moreover, an arbitrary circulating field can be expanded in terms of these orthogonal functions. Such an expansion can be potentially useful in the study of more general vortices. As illustrations, we present a few examples where we solve the linear homogeneous equation to analyse fluid mechanical systems which can be models for circulating flow in confined geometry. First, we consider three-dimensional vortices confined between two parallel planar walls. Our examples include flows between two infinite planar walls, inside and outside a vertical cylinder bounded at the ends by horizontal plates, and in an axially confined annular region. Then we describe the special way in which the basis functions should be superposed so that a complicated steady velocity-field with three-dimensional vortical structures can

2. Three-Dimensional Tectonic Model of Taiwan

Wu, Francis; Kuo-Chen, Hao; McIntosh, kirk

2014-05-01

We built a three-dimensional model of the interactions of the Eurasian plate (EUP) the Philippine Sea plate (PSP) and the collisional orogen, in and around Taiwan. The model is based on the results of comprehensive, milt-prong TAIGER experiments on land and at sea as well as other existing data. The clockwise rotating PSP moves NWW at ~8 cm/year relative to the Taiwan Strait. Under northern Taiwan the northward subducting PSP terminates near the edge of eastern Taiwan and collides with EUP at in increasing depth toward the north. Mountain building due to collision of EUP and PSP tapers off where the PSP goes below about 60 km. The PSP in the asthenosphere continues to advance NWW-ward. In central Taiwan PSP and EUP collide fully, lithosphere against lithosphere in the upper 60 km or so, leading to significant thickening of the crust to about 55 km on the Central Range side and about 35 km on the Coastal Range/Arc side. In between these "roots" a high velocity rise is found. Although a clear, steep dipping high velocity zone under Central Taiwan is detected, it is found not to be associated with seismicity. In southern Taiwan, mountains form over well-defined, seismically active subduction zone. The upper mantle high velocity anomaly appears to be continues with that under central Taiwan, but here an inclined seismic zone is found. In this area the Luzon Arc has not yet encountered the continental shelf - thus arc-continental collision has not yet occurred. The orogeny here may involve inversion of the subducted South China Sea lithosphere, rifted Eurasian continent, and/or escape of continental material from central Taiwan. GPS and Leveling data reflect well the 3-D plate collision model.

3. Three-dimensional ring current decay model

Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

1995-06-01

This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995

4. Three Dimensional Printing in Orthopaedic Surgery

PubMed Central

Mulford, Jonathan; MacKay, N; Babazadeh, S

2016-01-01

Objectives: Three dimensional (3D) printing technology has many current and future applications in orthopaedics. The objectives of this article are to review published literature regarding applications of 3D technology in orthopaedic surgery with a focus on knee surgery. Methods: A narrative review of the applications of 3D printing technology in orthopaedic practice was achieved by a search of computerised databases, internet and reviewing references of identified publications. Results: There is current widespread use of 3D printing technology in orthopaedics. 3D technology can be used in education, preoperative planning and custom manufacturing. Custom manufacturing applications include surgical guides, prosthetics and implants. Many future applications exist including biological applications. 3D printed models of anatomy have assisted in the education of patients, students, trainees and surgeons. 3D printed models also assist with surgical planning of complex injuries or unusual anatomy. 3D printed surgical guides may simplify surgery, make surgery precise and reduce operative time. Computer models based on MRI or CT scans are utilised to plan surgery and placement of implants. Complex osteotomies can be performed using 3D printed surgical guides. This can be particularly useful around the knee. A 3D printed guide allows pre osteotomy drill holes for the plate fixation and provides an osteotomy guide to allow precise osteotomy. 3D printed surgical guides for knee replacement are widely available. 3D printing has allowed the emergence of custom implants. Custom implants that are patient specific have been particularly used for complex revision arthroplasty or for very difficult cases with altered anatomy. Future applications are likely to include biological 3D printing of cartilage and bone scaffolds. Conclusion: 3D printing in orthopaedic surgery has and will continue to change orthopaedic practice. Its role is to provide safe, reproducible, reliable models with

5. Three-dimensional topological insulator based nanospaser

Paudel, Hari P.; Apalkov, Vadym; Stockman, Mark I.

2016-04-01

After the discovery of the spaser (surface plasmon amplification by stimulated emission of radiation), first proposed by Bergman and Stockman in 2003, it has become possible to deliver optical energy beyond the diffraction limit and generate an intense source of an optical field. The spaser is a nanoplasmonic counterpart of a laser. One of the major advantages of the spaser is its size: A spaser is a truly nanoscopic device whose size can be made smaller than the skin depth of a material to a size as small as the nonlocality radius (˜1 nm). Recently, an electrically pumped graphene based nanospaser has been proposed that operates in the midinfrared region and utilizes a nanopatch of graphene as a source of plasmons and a quantum-well cascade as its gain medium. Here we propose an optically pumped nanospaser based on three-dimensional topological insulator (3D TI) materials, such as Bi2Se3 , that operates at an energy close to the bulk band-gap energy ˜0.3 eV and uses the surface as a source for plasmons and its bulk as a gain medium. Population inversion is obtained in the bulk and the radiative energy of the exciton recombination is transferred to the surface plasmons of the same material to stimulate spasing action. This is truly a nanoscale spaser as it utilizes the same material for dual purposes. We show theoretically the possibility of achieving spasing with a 3D TI. As the spaser operates in the midinfrared spectral region, it can be a useful device for a number of applications, such as nanoscopy, nanolithography, nanospectroscopy, and semiclassical information processing.

6. Three-dimensional ring current decay model

NASA Technical Reports Server (NTRS)

Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

1995-01-01

This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

7. Three-dimensional kinematics of hummingbird flight.

PubMed

Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A

2007-07-01

Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species. PMID:17575042

8. Three-dimensional porous graphene-Co3O4 nanocomposites for high performance photocatalysts

Bin, Zeng; Hui, Long

2015-12-01

Novel three-dimensional porous graphene-Co3O4 nanocomposites were synthesized by freeze-drying methods. Scanning and transmission electron microscopy revealed that the graphene formed a three-dimensional porous structure with Co3O4 nanoparticles decorated surfaces. The as-obtained product showed high photocatalytic efficiency and could be easily separated from the reaction medium by magnetic decantation. This nanocomposite may be expected to have potential in water purification applications.

9. Computer-assisted three-dimensional reconstruction and simulations of vestibular macular neural connectivities

NASA Technical Reports Server (NTRS)

Ross, Muriel D.; Chimento, Thomas; Doshay, David; Cheng, Rei

1992-01-01

Results of computer-assisted research concerned with the three-dimensional reconstruction and simulations of vestibular macular neural connectivities are summarized. The discussion focuses on terminal/receptive fields, the question of synapses across the striola, endoplasmic reticulum and its potential role in macular information processing, and the inner epithelial plexus. Also included are preliminary results of computer simulations of nerve fiber collateral functioning, an essential step toward the three-dimensional simulation of a functioning macular neural network.

10. Three-dimensional nipple-areola tattooing: a new technique with superior results.

PubMed

Halvorson, Eric G; Cormican, Michael; West, Misti E; Myers, Vinnie

2014-05-01

Traditional coloring techniques for nipple-areola tattooing ignore the artistic principles of light and shadow to create depth on a two-dimensional surface. The method presented in this article is essentially the inverse of traditional technique and results in a more realistic and three-dimensional reconstruction that can appear better than surgical methods. The application of three-dimensional techniques or "realism" in tattoo artistry has significant potential to improve the aesthetic outcomes of reconstructive surgery. PMID:24776543

11. Realistic three-dimensional radiative transfer simulations of observed precipitation

Adams, I. S.; Bettenhausen, M. H.

2013-12-01

Remote sensing observations of precipitation typically utilize a number of instruments on various platforms. Ground validation campaigns incorporate ground-based and airborne measurements to characterize and study precipitating clouds, while the precipitation measurement constellation envisioned by the Global Precipitation Measurement (GPM) mission includes measurements from differing space-borne instruments. In addition to disparities such as frequency channel selection and bandwidth, measurement geometry and resolution differences between observing platforms result in inherent inconsistencies between data products. In order to harmonize measurements from multiple passive radiometers, a framework is required that addresses these differences. To accomplish this, we have implemented a flexible three-dimensional radiative transfer model. As its core, the radiative transfer model uses the Atmospheric Radiative Transfer Simulator (ARTS) version 2 to solve the radiative transfer equation in three dimensions using Monte Carlo integration. Gaseous absorption is computed with MonoRTM and formatted into look-up tables for rapid processing. Likewise, scattering properties are pre-computed using a number of publicly available codes, such as T-Matrix and DDSCAT. If necessary, a melting layer model can be applied to the input profiles. Gaussian antenna beams estimate the spatial resolutions of the passive measurements, and realistic bandpass characteristics can be included to properly account for the spectral response of the simulated instrument. This work presents three-dimensional simulations of WindSat brightness temperatures for an oceanic rain event sampled by the Tropical Rainfall Measuring Mission (TRMM) satellite. The 2B-31 combined Precipitation Radar / TRMM Microwave Imager (TMI) retrievals provide profiles that are the input to the radiative transfer model. TMI brightness temperatures are also simulated. Comparisons between monochromatic, pencil beam simulations and

12. A new mosaic method for three-dimensional surface

Yuan, Yun; Zhu, Zhaokun; Ding, Yongjun

2011-08-01

Three-dimensional (3-D) data mosaic is a indispensable link in surface measurement and digital terrain map generation. With respect to the mosaic problem of the local unorganized cloud points with rude registration and mass mismatched points, a new mosaic method for 3-D surface based on RANSAC is proposed. Every circular of this method is processed sequentially by random sample with additional shape constraint, data normalization of cloud points, absolute orientation, data denormalization of cloud points, inlier number statistic, etc. After N random sample trials the largest consensus set is selected, and at last the model is re-estimated using all the points in the selected subset. The minimal subset is composed of three non-colinear points which form a triangle. The shape of triangle is considered in random sample selection in order to make the sample selection reasonable. A new coordinate system transformation algorithm presented in this paper is used to avoid the singularity. The whole rotation transformation between the two coordinate systems can be solved by twice rotations expressed by Euler angle vector, each rotation has explicit physical means. Both simulation and real data are used to prove the correctness and validity of this mosaic method. This method has better noise immunity due to its robust estimation property, and has high accuracy as the shape constraint is added to random sample and the data normalization added to the absolute orientation. This method is applicable for high precision measurement of three-dimensional surface and also for the 3-D terrain mosaic.

13. MAGNETIC FIELD INTENSIFICATION BY THE THREE-DIMENSIONAL 'EXPLOSION' PROCESS

SciTech Connect

Hotta, H.; Yokoyama, T.; Rempel, M.

2012-11-01

We investigate an intensification mechanism for the magnetic field near the base of the solar convection zone that does not rely on differential rotation. Such mechanism in addition to differential rotation has been suggested by studies of flux emergence, which typically require field strength in excess of those provided by differential rotation alone. We study here a process in which potential energy of the superadiabatically stratified convection zone is converted into magnetic energy. This mechanism, known as the 'explosion of magnetic flux tubes', has been previously studied in thin flux tube approximation as well as two-dimensional magnetohydrodynamic (MHD) simulations; here we expand the investigation to three-dimensional MHD simulations. Our main result is that enough intensification can be achieved in a three-dimensional magnetic flux sheet as long as the spatial scale of the imposed perturbation normal to the magnetic field is sufficiently large. When this spatial scale is small, the flux sheet tends to rise toward the surface, resulting in a significant decrease of the magnetic field amplification.

14. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

NASA Technical Reports Server (NTRS)

Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

2003-01-01

15. Mach Cones in Three-Dimensional Yukawa Crystals

Qian, Xin; Bhattacharjee, Amitava

2006-10-01

Mach cones have been observed in two-dimensional dusty plasma experiments (D. Samsonov et al., Phys. Rev. Lett., 83, 3649, 1999) and molecular dynamics (MD) simulations assuming that the dust particles interact via a Yukawa potential (Z. W. Ma and A. Bhattacharjee, Phys. Plasmas, 9, 3349, 2002). We present new simulation results of Mach cones in three-dimensional Yukawa crystals excited by external laser forcing. As is well known, these crystals can be of the bcc and fcc type, and experiments have produced crystals with both types coexisting. Under a variety of conditions, our simulations show stable three-dimensional Mach cones with a tent structure. While the two-dimensional projection of these cones resemble the multiple cone structure of two-dimensional cones, they need larger dust charge and higher-amplitude forcing for their excitation. We present results on the effect of melting on these Mach cones, and their structures in the near-field and far-field regions.

16. A Novel Three-Dimensional Human Peritubular Microvascular System.

PubMed

Ligresti, Giovanni; Nagao, Ryan J; Xue, Jun; Choi, Yoon Jung; Xu, Jin; Ren, Shuyu; Aburatani, Takahide; Anderson, Susan K; MacDonald, James W; Bammler, Theo K; Schwartz, Stephen M; Muczynski, Kimberly A; Duffield, Jeremy S; Himmelfarb, Jonathan; Zheng, Ying

2016-08-01

Human kidney peritubular capillaries are particularly susceptible to injury, resulting in dysregulated angiogenesis, capillary rarefaction and regression, and progressive loss of kidney function. However, little is known about the structure and function of human kidney microvasculature. Here, we isolated, purified, and characterized human kidney peritubular microvascular endothelial cells (HKMECs) and reconstituted a three-dimensional human kidney microvasculature in a flow-directed microphysiologic system. By combining epithelial cell depletion and cell culture in media with high concentrations of vascular endothelial growth factor, we obtained HKMECs of high purity in large quantity. Unlike other endothelial cells, isolated HKMECs depended on high vascular endothelial growth factor concentration for survival and growth and exhibited high tubulogenic but low angiogenic potential. Furthermore, HKMECs had a different transcriptional profile. Under flow, HKMECs formed a thin fenestrated endothelium with a functional permeability barrier. In conclusion, this three-dimensional HKMEC-specific microphysiologic system recapitulates human kidney microvascular structure and function and shows phenotypic characteristics different from those of other microvascular endothelial cells. PMID:26657868

17. Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether

Ismail, N. A.; Cartmell, M. P.

2016-03-01

This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.

18. Interactive graphical tools for three-dimensional mesh redistribution

SciTech Connect

Dobbs, L.A.

1996-03-01

Three-dimensional meshes modeling nonlinear problems such as sheet metal forming, metal forging, heat transfer during welding, the propagation of microwaves through gases, and automobile crashes require highly refined meshes in local areas to accurately represent areas of high curvature, stress, and strain. These locally refined areas develop late in the simulation and/or move during the course of the simulation, thus making it difficult to predict their exact location. This thesis is a systematic study of new tools scientists can use with redistribution algorithms to enhance the solution results and reduce the time to build, solve, and analyze nonlinear finite element problems. Participatory design techniques including Contextual Inquiry and Design were used to study and analyze the process of solving such problems. This study and analysis led to the in-depth understanding of the types of interactions performed by FEM scientists. Based on this understanding, a prototype tool was designed to support these interactions. Scientists participated in evaluating the design as well as the implementation of the prototype tool. The study, analysis, prototype tool design, and the results of the evaluation of the prototype tool are described in this thesis.

19. Numerical investigation of the three-dimensional development in boundary layer transition

Fasel, H. F.; Rist, U.; Konzelmann, U.

1987-06-01

A numerical method for solving the complete Navier-Stokes equations for incompressible flows is introduced that is applicable for investigating three-dimensional transition phenomena in a spatially-growing boundary layer. Results are discussed for a test case with small three-dimensional disturbances for which detailed comparison to linear stability theory is possible. The validity of this numerical model for investigating nonlinear transition phenomena is demonstrated by realistic spatial simulations of the experiments by Kachanov and Levchenko (1984) for a subharmonic resonance breakdown and of the experiments of Klebanoff et al. (1962) for a fundamental resonance breakdown.

20. The efficient simulation of separated three-dimensional viscous flows using the boundary-layer equations

NASA Technical Reports Server (NTRS)

Van Dalsem, W. R.; Steger, J. L.

1985-01-01

A simple and computationally efficient algorithm for solving the unsteady three-dimensional boundary-layer equations in the time-accurate or relaxation mode is presented. Results of the new algorithm are shown to be in quantitative agreement with detailed experimental data for flow over a swept infinite wing. The separated flow over a 6:1 ellipsoid at angle of attack, and the transonic flow over a finite-wing with shock-induced 'mushroom' separation are also computed and compared with available experimental data. It is concluded that complex, separated, three-dimensional viscous layers can be economically and routinely computed using a time-relaxation boundary-layer algorithm.

1. A quasi-three-dimensional blade surface boundary layer analysis for rotating blade rows

NASA Technical Reports Server (NTRS)

Thompkins, W. T., Jr.; Usab, W. J., Jr.

1981-01-01

A quasi-three-dimensional approximation has been developed for a blade boundary layer which involves the calculation of the effect of nonzero pressure gradients, turbulent flow, and blade twist, but includes only a simple coupling between streamlines. The resulting set of equations is solved using Keller's box scheme. The solution scheme is checked against available incompressible flow solutions and then applied to a NASA low aspect ratio transonic compressor stage for which extensive experimental and computational data are available. It is found that the three-dimensional boundary layer separates significantly sooner and has a much larger influence on rotor performance than would be expected from a two-dimensional analysis.

2. Three-dimensional computations of cross-flow injection and combustion in a supersonic flow

NASA Technical Reports Server (NTRS)

Carpenter, M. H.

1989-01-01

A low-storage version of the SPARK3D code which is based on the temporally second-order accurate MacCormack (1969) explicit scheme is used to solve the governing equations for three-dimensional chemically reacting flows with finite-rate chemistry. The code includes a fourth-order compact spatial scheme capable of providing higher order spatial accuracy, and it is used to study two-dimensional linear advection, two-dimensional Euler flow, and three-dimensional viscous flow. Also considered are the injection, mixing, and combustion of hydrogen in a supersonic cross stream.

3. Grid Generator for Two, Three-dimensional Finite Element Subsurface Flow Models

Energy Science and Technology Software Center (ESTSC)

1993-04-28

GRIDMAKER serves as a preprocessor for finite element models in solving two- and three-dimensional subsurface flow and pollutant transport problems. It is designed to generate three-point triangular or four-point quadrilateral elements for two-dimensional domains and eight-point hexahedron elements for three-dimensional domains. A two-dimensional domain of an aquifer with a variable depth layer is treated as a special case for depth-integrated two-dimensional, finite element subsurface flow models. The program accommodates the need for aquifers with heterogeneousmore » systems by identifying the type of material in each element.« less

4. Maneuvering target tracking algorithm based on current statistical model in three dimensional space

Huang, Ligang; Yan, Kang; Wang, Xiangdong

2015-07-01

This paper is mainly to solve the problems associated with maneuvering target tracking based current statistical model in three dimensional space. Firstly, a three-dimensional model of the nine state variables is presented. Then adaptive Kalman filtering algorithm is designed with the motor acceleration data mean and variance. Finally, A simulation about the adaptive Kalman filtering put forward by this thesis and the direct calculation method is given, which aim at the maneuvering target in three-dimension. The results show the good performances such as better target position, velocity and acceleration estimates brought by the proposed approach by presenting and discussing the simulation results.

5. Airway branching morphogenesis in three dimensional culture

PubMed Central

2010-01-01

Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching

6. Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility

PubMed Central

Hoevenaren, Inge A.; Meulstee, J.; Krikken, E.; Bergé, S. J.; Ulrich, D. J. O.; Maal, Thomas J. J.

2015-01-01

Purpose Using three-dimensional (3D) stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT) data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings. Methods A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1). Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method. Results The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers) than the female hand. Conclusions This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored. PMID:26366860

7. Three-dimensional carbon nanotube based photovoltaics

Flicker, Jack

2011-12-01

Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values

8. Structured image reconstruction for three-dimensional ghost imaging lidar.

PubMed

Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng

2015-06-01

A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814

9. A three-dimensional fast solver for arbitrary vorton distributions

SciTech Connect

Strickland, J.H.; Baty, R.S.

1994-05-01

A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.

10. Comparison of kinetic theory predictions with experimental results for a vibrated three-dimensional granular bed

Viswanathan, H.; Wildman, R. D.; Huntley, J. M.; Martin, T. W.

2006-11-01

The three-dimensional conservation equations relating energy and momentum transfer in a vibrated three-dimensional granular bed have been solved numerically by the finite element method. Two closures based on granular kinetic theory were used: one, the standard Fourier law relating heat flux to temperature gradient and the other, including an additional concentration gradient term. Each prediction of the two-dimensional axisymmetric granular temperature and packing fraction fields was compared against a one-dimensional model and three-dimensional experimental results, acquired using the technique of positron emission particle tracking. Both closures resulted in solutions that were in reasonable agreement with the experimental results, but it was found that differences between the predictions of each of the closures were relatively small in comparison to the anisotropy of the experimentally determined temperature distribution.

11. Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.

PubMed

Tegze, Miklós; Bortel, Gábor

2016-07-01

The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated. PMID:27357847

12. Implicit solution of three-dimensional internal turbulent flows

NASA Technical Reports Server (NTRS)

Michelassi, V.; Liou, M.-S.; Povinelli, L. A.

1990-01-01

The scalar form of the approximate factorization method was used to develop a new code for the solution of three-dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form are iterated in time until a steady solution is reached. Evidence is given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at domain boundaries is proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects are accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. For the first, an investigation on the model behavior in case of multiple boundaries is performed. The flow in a developing S-duct is then solved in the laminar regime at Reynolds number (Re) 790 and in the turbulent regime at Re=40,000 using the Baldwin-Lomax model . The Stanitz elbow is then solved using an inviscid version of the same code at M(sub inlet)=0.4. Grid dependence and convergence rate are investigated showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re=2.5x10(exp 6) is solved with the Baldwin-Lomax and the q-omega models. Both approaches showed satisfactory agreement with experiments, although the q-omega model is slightly more accurate.

NASA Technical Reports Server (NTRS)

Geng, Jason

2005-01-01

A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

14. Three dimensional Visualization of Jupiter's Equatorial Region

NASA Technical Reports Server (NTRS)

1997-01-01

Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.

Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper

15. Three dimensional Visualization of Jupiter's Equatorial Region

NASA Technical Reports Server (NTRS)

1997-01-01

Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.

Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly

16. Three dimensional Visualization of Jupiter's Equatorial Region

NASA Technical Reports Server (NTRS)

1997-01-01

Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.

Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on

17. Three dimensional Visualization of Jupiter's Equatorial Region

NASA Technical Reports Server (NTRS)

1997-01-01

Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.

Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional

18. Three dimensional Visualization of Jupiter's Equatorial Region

NASA Technical Reports Server (NTRS)

1997-01-01

Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.

Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

19. Three dimensional Visualization of Jupiter's Equatorial Region

NASA Technical Reports Server (NTRS)

1997-01-01

Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.

Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

20. Three-Dimensional Gear Crack Propagation Studied

NASA Technical Reports Server (NTRS)

Lewicki, David G.

1999-01-01

Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

1. Applications of three-dimensional carbon nanotube networks

PubMed Central

Castrucci, Paola; De Nicola, Francesco; Cacciotti, Ilaria; Nanni, Francesca; Gatto, Emanuela; Venanzi, Mariano; De Crescenzi, Maurizio

2015-01-01

Summary In this paper, we show that it is possible to synthesize carbon-based three-dimensional networks by adding sulfur, as growth enhancer, during the synthesis process. The obtained material is self-supporting and consists of curved and interconnected carbon nanotubes and to lesser extent of carbon fibers. Studies on the microstructure indicate that the assembly presents a marked variability in the tube external diameter and in the inner structure. We study the relationship between the observed microscopic properties and some potential applications. In particular, we show that the porous nature of the network is directly responsible for the hydrophobic and the lipophilic behavior. Moreover, we used a cut piece of the produced carbon material as working electrode in a standard electrochemical cell and, thus, demonstrating the capability of the system to respond to incident light in the visible and near-ultraviolet region and to generate a photocurrent. PMID:25977850

2. Human gesture recognition using three-dimensional integral imaging.

PubMed

Javier Traver, V; Latorre-Carmona, Pedro; Salvador-Balaguer, Eva; Pla, Filiberto; Javidi, Bahram

2014-10-01

Three-dimensional (3D) integral imaging allows one to reconstruct a 3D scene, including range information, and provides sectional refocused imaging of 3D objects at different ranges. This paper explores the potential use of 3D passive sensing integral imaging for human gesture recognition tasks from sequences of reconstructed 3D video scenes. As a preliminary testbed, the 3D integral imaging sensing is implemented using an array of cameras with the appropriate algorithms for 3D scene reconstruction. Recognition experiments are performed by acquiring 3D video scenes of multiple hand gestures performed by ten people. We analyze the capability and performance of gesture recognition using 3D integral imaging representations at given distances and compare its performance with the use of standard two-dimensional (2D) single-camera videos. To the best of our knowledge, this is the first report on using 3D integral imaging for human gesture recognition. PMID:25401260

3. Three-dimensional Nuclear Telomere Organization in Multiple Myeloma12

PubMed Central

Klewes, Ludger; Vallente, Rhea; Dupas, Eric; Brand, Carolin; Grün, Dietrich; Guffei, Amanda; Sathitruangsak, Chirawadee; Awe, Julius A; Kuzyk, Alexandra; Lichtensztejn, Daniel; Tammur, Pille; Ilus, Tiiu; Tamm, Anu; Punab, Mari; Rubinger, Morel; Olujohungbe, Adebayo; Mai, Sabine

2013-01-01

Multiple myeloma (MM) is preceded by monoclonal gammopathy of undetermined significance (MGUS). Up to date, it is difficult to predict an individual's time to disease progression and the treatment response. To examine whether the nuclear telomeric architecture will unravel some of these questions, we carried out. Three-dimensional (3D) telomere analysis on samples from patients diagnosed with MGUS and MM, as well as from patients who went into relapse. Telomere signal intensity, number of telomere aggregates, nuclear volume, and the overall nuclear telomere distribution (a/c ratio) were analyzed. The telomeric profiles allowed for the differentiation of the disease stages. The telomeric profiles of myeloma cells obtained from blood and bone marrow aspirates were identical. Based on this study, we discuss the use of 3D telomere profiling as a potential future tool for risk stratification and personalized treatment decisions. PMID:24466378

4. Symmetry protected Josephson supercurrents in three-dimensional topological insulators.

PubMed

Cho, Sungjae; Dellabetta, Brian; Yang, Alina; Schneeloch, John; Xu, Zhijun; Valla, Tonica; Gu, Genda; Gilbert, Matthew J; Mason, Nadya

2013-01-01

Coupling the surface state of a topological insulator to an s-wave superconductor is predicted to produce the long-sought Majorana quasiparticle excitations. However, superconductivity has not been measured in surface states when the bulk charge carriers are fully depleted, that is, in the true topological regime relevant for investigating Majorana modes. Here we report measurements of d.c. Josephson effects in topological insulator-superconductor junctions as the chemical potential is moved through the true topological regime characterized by the presence of only surface currents. We compare our results with three-dimensional quantum transport simulations, and determine the effects of bulk/surface mixing, disorder and magnetic field; in particular, we show that the supercurrent is largely carried by surface states, due to the inherent topology of the bands, and that it is robust against disorder. Our results thus clarify key open issues regarding the nature of supercurrents in topological insulators. PMID:23575693

5. Three dimensional imaging detector employing wavelength-shifting optical fibers

DOEpatents

Worstell, W.A.

1997-02-04

A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

6. Applications of three-dimensional printing technology in urological practice.

PubMed

Youssef, Ramy F; Spradling, Kyle; Yoon, Renai; Dolan, Benjamin; Chamberlin, Joshua; Okhunov, Zhamshid; Clayman, Ralph; Landman, Jaime

2015-11-01

A rapid expansion in the medical applications of three-dimensional (3D)-printing technology has been seen in recent years. This technology is capable of manufacturing low-cost and customisable surgical devices, 3D models for use in preoperative planning and surgical education, and fabricated biomaterials. While several studies have suggested 3D printers may be a useful and cost-effective tool in urological practice, few studies are available that clearly demonstrate the clinical benefit of 3D-printed materials. Nevertheless, 3D-printing technology continues to advance rapidly and promises to play an increasingly larger role in the field of urology. Herein, we review the current urological applications of 3D printing and discuss the potential impact of 3D-printing technology on the future of urological practice. PMID:26010346

7. Functional Three-Dimensional Graphene/Polymer Composites.

PubMed

Wang, Meng; Duan, Xidong; Xu, Yuxi; Duan, Xiangfeng

2016-08-23

Integration of graphene with polymers to construct three-dimensional porous graphene/polymer composites (3DGPCs) has attracted considerable attention in the past few years for both fundamental studies and diverse technological applications. With the broad diversity in molecular structures of graphene and polymers via rich chemical routes, a number of 3DGPCs have been developed with unique structural, electrical, and mechanical properties, chemical tenability, and attractive functions, which greatly expands the research horizon of graphene-based composites. In particular, the properties and functions of the 3DGPCs can be readily tuned by precisely controlling the hierarchical porosity in the 3D graphene architecture as well as the intricate synergistic interactions between graphene and polymers. In this paper, we review the recent progress in 3DGPCs, including their synthetic strategies and potential applications in environmental protection, energy storage, sensors, and conducting composites. Lastly, we will conclude with a brief perspective on the challenges and future opportunities. PMID:27403991

8. Quadratic algebras for three-dimensional superintegrable systems

SciTech Connect

2010-02-15

The three-dimensional superintegrable systems with quadratic integrals of motion have five functionally independent integrals, one among them is the Hamiltonian. Kalnins, Kress, and Miller have proved that in the case of nondegenerate potentials with quadratic integrals of motion there is a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral implies that the integrals of motion form a ternary parafermionic-like quadratic Poisson algebra with five generators. In this contribution we investigate the structure of this algebra. We show that in all the nondegenerate cases there is at least one subalgebra of three integrals having a Poisson quadratic algebra structure, which is similar to the two-dimensional case.

9. Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials.

PubMed

Wang, Zhuoxian; Meng, Xiangeng; Choi, Seung Ho; Knitter, Sebastian; Kim, Young L; Cao, Hui; Shalaev, Vladimir M; Boltasseva, Alexandra

2016-04-13

Plasmonics has brought revolutionary advances to laser science by enabling deeply subwavelength nanolasers through surface plasmon amplification. However, the impact of plasmonics on other promising laser systems has so far remained elusive. Here, we present a class of random lasers enabled by three-dimensional plasmonic nanorod metamaterials. While dense metallic nanostructures are usually detrimental to laser performance due to absorption losses, here the lasing threshold keeps decreasing as the volume fraction of metal is increased up to ∼0.07. This is ∼460 times higher than the optimal volume fraction reported thus far. The laser supports spatially confined lasing modes and allows for efficient modulation of spectral profiles by simply tuning the polarization of the pump light. Full-field speckle-free imaging at micron-scales has been achieved by using plasmonic random lasers as the illumination sources. Our findings show that plasmonic metamaterials hold potential to enable intriguing coherent optical sources. PMID:27023052

10. DNA Origami with Complex Curvatures in Three-Dimensional Space

SciTech Connect

Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao

2011-04-14

We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.

11. Three-dimensional recurring patterns in excitable media

Biton, Y.; Rabinovitch, A.; Braunstein, D.; Friedman, M.; Aviram, I.

2011-06-01

A new method to create three-dimensional periodic patterns in excitable media is presented. The method is demonstrated and the patterns are obtained with the help of two types of 3D “spiral pairs” generators, which are respectively based on a “corner effect” and a “unidirectional propagation” processes. The results portray time-repeating patterns resembling fruits or potteries. The method is easy to implement and can be used to form other types of 3D patterns in excitable media. The question of periodicity of the patterns thus obtained is resolved by calculating the singular lines (filaments) around which they evolve and showing their unique reattachment property. Actual realizations could be conceived e.g. in chemical reactions such as Belousov-Zhabotinsky. Possible severe cardiac arrhythmias following the appearance of such patterns in the action potential of the heart are considered.

12. Three dimensional imaging detector employing wavelength-shifting optical fibers

DOEpatents

Worstell, William A.

1997-01-01

A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

13. DNA origami with complex curvatures in three-dimensional space.

PubMed

Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao

2011-04-15

We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature--such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask--were assembled. PMID:21493857

14. Three-Dimensional Magnetic Assembly of Microscale Hydrogels

PubMed Central

Xu, Feng; Wu, Chung-an Max; Rengarajan, Venkatakrishnan; Finley, Thomas Dylan; Keles, Hasan Onur; Sung, Yuree; Li, Baoqiang; Gurkan, Umut Atakan

2012-01-01

Directed assembly of nano and microscale particles is of great interest and has widespread applications in various fields including electronics, nanomaterials and tissue engineering. Bottom-up tissue engineering is motivated by the occurrence of repeating functional units in vivo. The bottom-up approach requires novel techniques to assemble engineered functional units as building blocks at a high speed with spatial control over three-dimensional (3D) micro-architecture. Here, we report a magnetic assembler that utilizes nanoparticles and microscale hydrogels as building blocks to create 3D complex multi-layer constructs via external magnetic fields using different concentrations of magnetic nanoparticles. This approach holds potential for 3D assembly processes that could be utilized in various tissue engineering and regenerative medicine applications. PMID:21830240

15. Visualising very large phylogenetic trees in three dimensional hyperbolic space

PubMed Central

Hughes, Timothy; Hyun, Young; Liberles, David A

2004-01-01

Background Common existing phylogenetic tree visualisation tools are not able to display readable trees with more than a few thousand nodes. These existing methodologies are based in two dimensional space. Results We introduce the idea of visualising phylogenetic trees in three dimensional hyperbolic space with the Walrus graph visualisation tool and have developed a conversion tool that enables the conversion of standard phylogenetic tree formats to Walrus' format. With Walrus, it becomes possible to visualise and navigate phylogenetic trees with more than 100,000 nodes. Conclusion Walrus enables desktop visualisation of very large phylogenetic trees in 3 dimensional hyperbolic space. This application is potentially useful for visualisation of the tree of life and for functional genomics derivatives, like The Adaptive Evolution Database (TAED). PMID:15117420

16. Three-dimensional optofluidic device for isolating microbes

Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.

2015-03-01

Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.

17. The relationship between three-dimensional imaging and group decision making: an exploratory study.

PubMed

Litynski, D M; Grabowski, M; Wallace, W A

1997-07-01

This paper describes an empirical investigation of the effect of three dimensional (3-D) imaging on group performance in a tactical planning task. The objective of the study is to examine the role that stereoscopic imaging can play in supporting face-to-face group problem solving and decision making-in particular, the alternative generation and evaluation processes in teams. It was hypothesized that with the stereoscopic display, group members would better visualize the information concerning the task environment, producing open communication and information exchanges. The experimental setting was a tactical command and control task, and the quality of the decisions and nature of the group decision process were investigated with three treatments: 1) noncomputerized, i.e., topographic maps with depth cues; 2) two-dimensional (2-D) imaging; and 3) stereoscopic imaging. The results were mixed on group performance. However, those groups with the stereoscopic displays generated more alternatives and spent less time on evaluation. In addition, the stereoscopic decision aid did not interfere with the group problem solving and decision-making processes. The paper concludes with a discussion of potential benefits, and the need to resolve demonstrated weaknesses of the technology. PMID:11541531

18. A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations

Duy, Truong Vinh Truong; Ozaki, Taisuke

2014-03-01

With tens of petaflops supercomputers already in operation and exaflops machines expected to appear within the next 10 years, efficient parallel computational methods are required to take advantage of such extreme-scale machines. In this paper, we present a three-dimensional domain decomposition scheme for enabling large-scale electronic structure calculations based on density functional theory (DFT) on massively parallel computers. It is composed of two methods: (i) the atom decomposition method and (ii) the grid decomposition method. In the former method, we develop a modified recursive bisection method based on the moment of inertia tensor to reorder the atoms along a principal axis so that atoms that are close in real space are also close on the axis to ensure data locality. The atoms are then divided into sub-domains depending on their projections onto the principal axis in a balanced way among the processes. In the latter method, we define four data structures for the partitioning of grid points that are carefully constructed to make data locality consistent with that of the clustered atoms for minimizing data communications between the processes. We also propose a decomposition method for solving the Poisson equation using the three-dimensional FFT in Hartree potential calculation, which is shown to be better in terms of communication efficiency than a previously proposed parallelization method based on a two-dimensional decomposition. For evaluation, we perform benchmark calculations with our open-source DFT code, OpenMX, paying particular attention to the O(N) Krylov subspace method. The results show that our scheme exhibits good strong and weak scaling properties, with the parallel efficiency at 131,072 cores being 67.7% compared to the baseline of 16,384 cores with 131,072 atoms of the diamond structure on the K computer.

19. A novel wireless health monitor by using a wearable rubber glove with three-dimensional scanning elastic electrodes to measure acupuncture bio-potentials and impedances of a whole palm.

PubMed

Lin, Jium-Ming; Lin, Cheng-Hung

2015-01-01

This paper proposes a novel wearable wireless-sensing technology on a glove to measure the bio-potentials and impedances of acupunctures on a whole palm in a non-invasive manner. Moreover, the device can transmit the information to a remote cloud server to learn at normal condition, and take measurement later for health condition analysis and monitoring. An example is given how to measure the acupuncture impedances and bio-potentials on a palm. One can see if certain acupuncture's impedance or bio-potential is not follow the Ohm's law or voltage divider rule along a meridian, then the health condition of the corresponding organ maybe with some problem. This discovery is not found in the previous literatures. PMID:26684570

20. Three-dimensional imaging of the myocardium with isotopes

NASA Technical Reports Server (NTRS)

Budinger, T. F.

1975-01-01

Three methods of imaging the three-dimensional distribution of isotopes in the myocardium are discussed. Three-dimensional imaging was examined using multiple Anger-camera views. Longitudinal tomographic images with compensation for blurring were studied. Transverse-section reconstruction using coincidence detection of annihilation gammas from positron emitting isotopes was investigated.

1. Pathogen Propagation in Cultured Three-Dimensional Tissue Mass

NASA Technical Reports Server (NTRS)

Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

2000-01-01

A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

2. Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.

ERIC Educational Resources Information Center

Hamel, Cheryl J.; Ryan-Jones, David L.

1997-01-01

Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…

3. Pathogen propagation in cultured three-dimensional tissue mass

NASA Technical Reports Server (NTRS)

Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

2000-01-01

A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

4. Three dimensional unstructured multigrid for the Euler equations

NASA Technical Reports Server (NTRS)

Mavriplis, D. J.

1991-01-01

The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.

5. Three-dimensional boundary layer calculation by a characteristic method

NASA Technical Reports Server (NTRS)

Houdeville, R.

1992-01-01

A numerical method for solving the three-dimensional boundary layer equations for bodies of arbitrary shape is presented. In laminar flows, the application domain extends from incompressible to hypersonic flows with the assumption of chemical equilibrium. For turbulent boundary layers, the application domain is limited by the validity of the mixing length model used. In order to respect the hyperbolic nature of the equations reduced to first order partial derivative terms, the momentum equations are discretized along the local streamlines using of the osculator tangent plane at each node of the body fitted coordinate system. With this original approach, it is possible to overcome the use of the generalized coordinates, and therefore, it is not necessary to impose an extra hypothesis about the regularity of the mesh in which the boundary conditions are given. By doing so, it is possible to limit, and sometimes to suppress, the pre-treatment of the data coming from an inviscid calculation. Although the proposed scheme is only semi-implicit, the method remains numerically very efficient.

6. Three-dimensional static modeling of the lumbar spine.

PubMed

2012-08-01

This paper presents three-dimensional static modeling of the human lumbar spine to be used in the formation of anatomically-correct movement patterns for a fully cable-actuated robotic lumbar spine which can mimic in vivo human lumbar spine movements to provide better hands-on training for medical students. The mathematical model incorporates five lumbar vertebrae between the first lumbar vertebra and the sacrum, with dimensions of an average adult human spine. The vertebrae are connected to each other by elastic elements, torsional springs and a spherical joint located at the inferoposterior corner in the mid-sagittal plane of the vertebral body. Elastic elements represent the ligaments that surround the facet joints and the torsional springs represent the collective effect of intervertebral disc which plays a major role in balancing torsional load during upper body motion and the remaining ligaments that support the spinal column. The elastic elements and torsional springs are considered to be nonlinear. The nonlinear stiffness constants for six motion types were solved using a multiobjective optimization technique. The quantitative comparison between the angles of rotations predicted by the proposed model and in the experimental data confirmed that the model yields angles of rotation close to the experimental data. The main contribution is that the new model can be used for all motions while the experimental data was only obtained at discrete measurement points. PMID:22938364

7. Multiple reflectors based autocollimator for three-dimensional angle measurement

Su, Ang; Liu, Haibo; Yu, Qifeng

2015-03-01

This paper designs a multiple reflectors based autocollimator, and proposes a direct linear solution for three-dimensional (3D) angle measurement with the observation vectors of the reflected lights from the reflectors. In the measuring apparatus, the multiple reflectors is fixed with the object to be measured and the reflected lights are received by a CCD camera, then the light spots in the image are extracted to obtain the vectors of the reflected lights in space. Any rotation of the object will induce a change in the observation vectors of the reflected lights, which is used to solve the rotation matrix of the object by finding a linear solution of Wahba problem with the quaternion method, and then the 3D angle is obtained by decomposing the rotation matrix. This measuring apparatus can be implemented easily as the light path is simple, and the computation of 3D angle with observation vectors is efficient as there is no need to iterate. The proposed 3D angle measurement method is verified by a set of simulation experiments.

8. Three-dimensional transient electromagnetic modeling in the Laplace Domain

SciTech Connect

Mizunaga, H.; Lee, Ki Ha; Kim, H.J.

1998-09-01

In modeling electromagnetic responses, Maxwell's equations in the frequency domain are popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient electromagnetic interactions in the conductive medium. This paper presents a new technique to compute the electromagnetic response of three-dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting system of equations is then solved for the fields using the incomplete Cholesky conjugate gradient (ICCG) method. The new method is particularly effective in saving computer memory since all the operations are carried out in real numbers. For the same reason, the computing speed is faster than frequency domain modeling. The proposed approach can be an extremely useful tool in developing an inversion algorithm using the time domain data.

9. Rapid Calculations of Three-Dimensional Inlet/Fan Interaction

NASA Technical Reports Server (NTRS)

Chima, Rodrick V.

2007-01-01

Two computational fluid dynamics codes have been merged to permit rapid calculations of inlet/fan interaction. Inlets are modeled using the WIND-US Navier-Stokes code. Fans are modeled using a new three-dimensional Euler code called CSTALL that solves the flow through the entire compression system but models blade rows using body forces for turning and loss. The body force model is described and it is shown how unknown terms in the model can be estimated from other Navier-Stokes solutions of the blade rows run separately. The inlet and fan calculations are run simultaneously and are coupled at an interface plane using a third code called SYNCEX that is described briefly. Results are shown for an axisymmetric nacelle at high angle of attack modeled both as an isolated inlet and coupled to a single stage fan. The isolated inlet calculations are unrealistic after the flow separates but the coupled codes can model large regions of separated flow extending from the lower lip of the nacelle into the fan rotor.

10. Parallel direct numerical simulation of three-dimensional spray formation

Chergui, Jalel; Juric, Damir; Shin, Seungwon; Kahouadji, Lyes; Matar, Omar

2015-11-01

We present numerical results for the breakup mechanism of a liquid jet surrounded by a fast coaxial flow of air with density ratio (water/air) ~ 1000 and kinematic viscosity ratio ~ 60. We use code BLUE, a three-dimensional, two-phase, high performance, parallel numerical code based on a hybrid Front-Tracking/Level Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces and a precise treatment of surface tension forces. The parallelization of the code is based on the technique of domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The interface method is also parallelized and defines the interface both by a discontinuous density field as well as by a triangular Lagrangian mesh and allows the interface to undergo large deformations including the rupture and/or coalescence of interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

11. Flat tori in three-dimensional space and convex integration

PubMed Central

Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

2012-01-01

It is well-known that the curvature tensor is an isometric invariant of C2 Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C1. This unexpected flexibility has many paradoxical consequences, one of them is the existence of C1 isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash’s results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C1 fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C1 and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations. PMID:22523238

12. Computation of three-dimensional mixed convective boundary layer flow

NASA Technical Reports Server (NTRS)

1995-01-01

The paper presents the numerical solution of heat and mass transfer during cross-flow (orthogonal) mixed convection. In this class of flow, a buoyancy-driven transport in the vertical direction and a forced convective flow in the horizontal direction results in a three-dimensional boundary layer structure adjacent to the plate. The rates of heat and mass transfer are determined by a combined influence of the two transport processes. The equations for the conservation of mass, momentum, energy, and species concentration were solved along with appropriate boundary conditions to determine the distributions of velocity components, temperature, and concentration across the thickness of the boundary layer at different locations on the plate. Results were expressed in dimensionless form using Reynolds number, Richardson number for heat transfer, Richardson number for mass transfer, Prandtl number, and Schmidt number as parameters. It was found that the transport is dominated by buoyancy at smaller vertical locations and at larger distances away from the forced convection leading edge. Effects of forced convection appeared to be very strong at smaller horizontal distances from the leading edge. The cross stream forced convection enhanced the rate of heat and mass transfer by a very significant amount.

13. Propagation of three-dimensional electron-acoustic solitary waves

SciTech Connect

Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.

2011-06-15

Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

14. Extension of a three-dimensional viscous wing flow analysis

NASA Technical Reports Server (NTRS)

Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.

1990-01-01

Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.

15. Three dimensional inviscid compressible calculations around axial flow turbine blades

Fourmaux, Antoine; Petot, Bertrand

1991-12-01

The application of a three dimensional (3D) method to the prediction of steady inviscid compressible flows in highly loaded stator bladings is presented. The complete set of Euler equations is solved by a finite difference method using a time marching two step Lax-Wendorff algorithm. The treatment of the boundary conditions is based on the use of the characteristic relations. This technique offers a great versatility and allows to prescribe conditions close to the physics of flows encountered in turbomachines. The code was adapted in order to build a 3D design tool able to run in different types of turbine blade geometries. Two types of multidomain structured meshes were tested (H+0+H and H+C). The H+C type of grid was finally choosen for industrial applications. Two applications to turbine nozzles are presented. The first is a low pressure turbine vane with evolutive flow path outer diameter. The results demonstrate the ability to predict flow features that cannot be computed via the classical two dimensional approach. The second is a high pressure inlet guide vane at transonic conditions. The strong radial evolution of pressure distribution and the trailing edge flow pattern are correctly predicted.

16. Three dimensional boundary element solutions for eddy current nondestructive evaluation

Yang, Ming; Song, Jiming; Nakagawa, Norio

2014-02-01

The boundary integral equations (BIE) method is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations. It can be applied in many areas of engineering and science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics. The eddy current problem is formulated by the BIE and discretized into matrix equations by the method of moments (MoM) or the boundary element method (BEM). The three dimensional arbitrarily shaped objects are described by a number of triangular patches. The Stratton-Chu formulation is specialized for the conductive medium. The equivalent electric and magnetic surface currents are expanded in terms of Rao-Wilton-Glisson (RWG) vector basis function while the normal component of magnetic field is expanded in terms of the pulse basis function. Also, a low frequency approximation is applied in the external medium. Additionally, we introduce Auld's impedance formulas to calculate impedance variation. There are very good agreements between numerical results and those from theory and/or experiments for a finite cross-section above a wedge.

17. A Three-Dimensional Unsteady CFD Model of Compressor Stability

NASA Technical Reports Server (NTRS)

Chima, Rodrick V.

2006-01-01

A three-dimensional unsteady CFD code called CSTALL has been developed and used to investigate compressor stability. The code solved the Euler equations through the entire annulus and all blade rows. Blade row turning, losses, and deviation were modeled using body force terms which required input data at stations between blade rows. The input data was calculated using a separate Navier-Stokes turbomachinery analysis code run at one operating point near stall, and was scaled to other operating points using overall characteristic maps. No information about the stalled characteristic was used. CSTALL was run in a 2-D throughflow mode for very fast calculations of operating maps and estimation of stall points. Calculated pressure ratio characteristics for NASA stage 35 agreed well with experimental data, and results with inlet radial distortion showed the expected loss of range. CSTALL was also run in a 3-D mode to investigate inlet circumferential distortion. Calculated operating maps for stage 35 with 120 degree distortion screens showed a loss in range and pressure rise. Unsteady calculations showed rotating stall with two part-span stall cells. The paper describes the body force formulation in detail, examines the computed results, and concludes with observations about the code.

18. Radiative transfer for a three-dimensional raining cloud

NASA Technical Reports Server (NTRS)

Haferman, J. L.; Krajewski, W. F.; Smith, T. F.; Sanchez, A.

1993-01-01

Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.

19. Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera

Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.

2004-01-01

We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.

20. Three-dimensional Magnetic Resonance Imaging of fossils across taxa

Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F.

2007-08-01

The visibility of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide an interesting methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI) which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.

1. Three-dimensional Magnetic Resonance Imaging of fossils across taxa

Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F.

2008-01-01

The frequency of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide a valuable methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI) which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.

2. Three-dimensional micromechanical modeling of voided polymeric materials

Danielsson, M.; Parks, D. M.; Boyce, M. C.

2002-02-01

A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states. The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix. The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality. The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for

3. Visualization of Three-Dimensional Nephron Structure With Microcomputed Tomography

SciTech Connect

Bentley,M.; Jorgensen, S.; Lerman, L.; Ritman, E.; Romero, J.

2007-01-01

The three-dimensional architecture of nephrons in situ and their interrelationship with other nephrons are difficult to visualize by microscopic methods. The present study uses microcomputed X-ray tomography (micro-CT) to visualize intact nephrons in situ. Rat kidneys were perfusion-fixed with buffered formalin and their vasculature was subsequently perfused with radiopaque silicone. Cortical tissue was stained en bloc with osmium tetroxide, embedded in plastic, scanned, and reconstructed at voxel resolutions of 6, 2, and 1 {mu}m. At 6 {mu}m resolution, large blood vessels and glomeruli could be visualized but nephrons and their lumens were small and difficult to visualize. Optimal images were obtained using a synchrotron radiation source at 2 {mu}m resolution where nephron components could be identified, correlated with histological sections, and traced. Proximal tubules had large diameters and opaque walls, whereas distal tubules, connecting tubules, and collecting ducts had smaller diameters and less opaque walls. Blood vessels could be distinguished from nephrons by the luminal presence of radiopaque silicone. Proximal tubules were three times longer than distal tubules. Proximal and distal tubules were tightly coiled in the outer cortex but were loosely coiled in the middle and inner cortex. The connecting tubules had the narrowest diameters of the tubules and converged to form arcades that paralleled the radial vessels as they extended to the outer cortex. These results illustrate a potential use of micro-CT to obtain three-dimensional information about nephron architecture and nephron interrelationships, which could be useful in evaluating experimental tubular hypertrophy, atrophy, and necrosis.

4. A mixed method Poisson solver for three-dimensional self-gravitating astrophysical fluid dynamical systems

NASA Technical Reports Server (NTRS)

Duncan, Comer; Jones, Jim

1993-01-01

A key ingredient in the simulation of self-gravitating astrophysical fluid dynamical systems is the gravitational potential and its gradient. This paper focuses on the development of a mixed method multigrid solver of the Poisson equation formulated so that both the potential and the Cartesian components of its gradient are self-consistently and accurately generated. The method achieves this goal by formulating the problem as a system of four equations for the gravitational potential and the three Cartesian components of the gradient and solves them using a distributed relaxation technique combined with conventional full multigrid V-cycles. The method is described, some tests are presented, and the accuracy of the method is assessed. We also describe how the method has been incorporated into our three-dimensional hydrodynamics code and give an example of an application to the collision of two stars. We end with some remarks about the future developments of the method and some of the applications in which it will be used in astrophysics.

5. Numerical investigations in three-dimensional internal flows

NASA Technical Reports Server (NTRS)

Rose, William C.

1993-01-01

In the present reporting period, the 3D version of the OVERFLOW code was used to solve the flow within the internal portion of the supersonic inlet. The internal portion of this inlet is bounded by an inflow plane containing the leading edge of the sidewalls, the sidewalls, the ramp and cowl surfaces and an outflow plane just downstream of the minimum geometric area of the inlet. Boundary layer bleed was used in the two-dimensional calculations discussed in the previous progress report and that same bleed was applied in the present study. For reference, this bleed corresponds to locations designated as R2 and R3 in the Mach 5 inlet model test. Using the GRIDGEN code, a three dimensional grid was generated that accounted for the viscous effects expected to occur on the sidewall, as well as those known to occur on the ramp and cowl surfaces. The internal flow grid size was 141 streamwise by 101 cross stream by 71 in the lateral direction between sidewalls. Since the flow entering the inlet was not symmetrical, the inlet was solved from sidewall to sidewall (without using a symmetry plane). In addition to the short sidewalls proposed in the Langley geometry database, a set of shorter sidewalls was also investigated in the present study and was shown to have beneficial effects with respect to the flow distortion exiting the supersonic inlet. In addition to these calculations, additional 3D solutions using the OVERFLOW code were obtained for the flow downstream of the throat of the supersonic inlet, including a terminal shock wave system produced by a backpressured subsonic diffuser.

6. Recognizing parameterized three-dimensional objects

Goldberg, Robert R.

1994-10-01

Complex object models require multiple components affixed to each other in specific and variable geometric paths. This paper expands upon earlier research to present an unified approach for relating components' coordinate systems to each other in the same model. Particularly, we show that rather complex relationships such as ball joints and geometric transformations about arbitrary axes are no more complicated than describing the model base in terms of the camera coordinate system. These require only simple rotations and translations about the major axes. This modeling approach was next integrated with a verification module of a model based vision system. We recovered from a single 2D image the original model and camera parameters that would align the projected model edges with the image segments by solving a nonlinear least squares system. A specific example of the theory is implemented. A lamp head is seceded to its base by a ball joint with three parameters of rotational freedom. From a wide range of initial guess error, the numerical system converged to the correct set of model and camera parameters. Thus, the theory of parameterized affixments and the numerical implementation to obtain these values from 2D images will aid in associated recognition tasks and in real-time tracking of complex conglomerate objects.

7. Three-dimensional formulation of dislocation climb

Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.

2015-10-01

We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.

8. Transport of molecular fluids through three-dimensional porous media

2014-05-01

The main purpose of this study is to extend the analysis which has been made for the double layer theory (summarized by [1]) to situations where the distance between the solid walls is of the order of several molecular diameters. This is of a large interest from a scientific viewpoint and for various engineering applications. The intermolecular forces and their influence on fluid structure and dynamics can be taken into account by using the mesoscopic scale models based on the Boltzmann equation [2]. The numerical methods derived from these models are less demanding in computational resources than conventional molecular dynamics methods and therefore long time evolution of large samples can be considered. Three types of fluid particles are considered, namely the anions, the cations and the solvent. They possess a finite diameter which should be at least a few lattice units. The collision frequency between particles is increased by the pair correlation function for hard spheres. The lattice Boltzmann model is built in three dimensions with 19 velocities; it involves two relaxation times. The particle distribution functions are discretized over a basis of Hermite polynomial tensors. Electric forces are included and a Poisson equation is simultaneously solved by a successive over-relaxation method. The numerical algorithm is detailed; it is devised in order to be able to address any three-dimensional porous media. It involves the determination of the densities of each particle species, of the overall density and of the equilibrium distribution function. Then, the electric forces are determined. Collision operators are applied as well as the boundary conditions. Finally, the propagation step is performed and the algorithm starts a new loop. The influence of parameters can be illustrated by systematic calculations in a plane Poiseuille configuration. The drastic influence of the ratio between the channel width and the particle sizes on the local densities and the

9. Three-Dimensional Radiative Transfer on a Massively Parallel Computer.

Vath, Horst Michael

1994-01-01

We perform three-dimensional radiative transfer calculations on the MasPar MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. To make radiative transfer calculations efficient, we must re-consider the numerical methods and methods of storage of data that have been used with serial machines. We developed a numerical code which efficiently calculates images and spectra of astrophysical systems as seen from different viewing directions and at different wavelengths. We use this code to examine a number of different astrophysical systems. First we image the HI distribution of model galaxies. Then we investigate the galaxy NGC 5055, which displays a radial asymmetry in its optical appearance. This can be explained by the presence of dust in the outer HI disk far beyond the optical disk. As the formation of dust is connected to the presence of stars, the existence of dust in outer regions of this galaxy could have consequences for star formation at a time when this galaxy was just forming. Next we use the code for polarized radiative transfer. We first discuss the numerical computation of the required cyclotron opacities and use them to calculate spectra of AM Her systems, binaries containing accreting magnetic white dwarfs. Then we obtain spectra of an extended polar cap. Previous calculations did not consider the three -dimensional extension of the shock. We find that this results in a significant underestimate of the radiation emitted in the shock. Next we calculate the spectrum of the intermediate polar RE 0751+14. For this system we obtain a magnetic field of ~10 MG, which has consequences for the evolution of intermediate polars. Finally we perform 3D radiative transfer in NLTE in the two-level atom approximation. To solve the transfer equation in this case, we adapt the short characteristic method and examine different acceleration methods to obtain the

10. Three-dimensional Printing in Developing Countries.

PubMed

Ibrahim, Ahmed M S; Jose, Rod R; Rabie, Amr N; Gerstle, Theodore L; Lee, Bernard T; Lin, Samuel J

2015-07-01

The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents. PMID:26301132

11. Three-dimensional Printing in Developing Countries

PubMed Central

Ibrahim, Ahmed M. S.; Jose, Rod R.; Rabie, Amr N.; Gerstle, Theodore L.; Lee, Bernard T.

2015-01-01

Summary: The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents. PMID:26301132

12. Utilizing stem cells for three-dimensional neural tissue engineering.

PubMed

Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

2016-05-26

Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs. PMID:26890524

13. Two finite element techniques for computing mode I stress intensity factors in two- or three-dimensional problems

SciTech Connect

Iskander, S.K.

1981-02-01

Two finite element (FE) approaches were used to calculate opening mode I stress intensity factors (K/sub I/) in two- or three-dimensional (2-D and 3-D) problems for the Heavy-Section Steel Technology (HSST) program. For problems that can be modeled in two dimensions, two techniques were used. One of these may be termed an ''energy release rate'' technique, and the other is based on the classical near-tip displacement and stress field equations. For three-dimensional problems, only the latter technique was used. In the energy release technique, K/sub I/ is calculated as the change in potential energy of the structure due to a small change in crack length. The potential energy is calculated by the FE method but without completely solving the system of linear equations for the displacements. Furthermore, the system of linear equations is only slightly perturbed by the change in crack length and, therefore, many computations need not be repeated for the second structure with the slight change in crack length. Implementation of these last two items has resulted in considerable savings in the calculation of K/sub I/ as compared to two complete FE analyses. These ideas are incorporated in the FMECH code. The accuracy of the methods has been checked by comparing the results of the two approaches with each other and with closed form solutions. It is estimated that the accuracy of the results is about +-5%.

14. STOCHASTIC ANALYSIS OF THREE-DIMENSIONAL FLOW IN A BOUNDED DOMAIN.

USGS Publications Warehouse

Naff, R.L.; Vecchia, A.V.

1986-01-01

A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated sapatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three-dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions.

15. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

SciTech Connect

Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

1985-01-01

A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (1) the discretized 3-D problem is simply too big to fit on the computer or (2) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code.

16. Numerical Study of Three-dimensional Spatial Instability of a Supersonic Flat Plate Boundary Layer

NASA Technical Reports Server (NTRS)

Maestrello, Lucio; Bayliss, A.; Krishnan, R.

1989-01-01

The behavior of spatially growing three-dimensional waves in a supersonic boundary layer was studied numerically by solving the complete Navier-Stokes equations. Satisfactory comparison with linear parallel and non-parallel stability theories, and experiment are obtained when a small amplitude inflow disturbance is used. The three-dimensional unsteady Navier-Stokes equations are solved by a finite difference method which is fourth-order and second-order accurate in the convection and viscous terms respectively, and second-order accurate in time. Spanwise periodicity is assumed. The inflow disturbance is composed of eigenfunctions from linear stability theory. By increasing the amplitude of the inflow disturbance, nonlinear effects in the form of a relaxation type oscillation of the time signal of rho(u) are observed.

17. Sensitivity derivatives for three dimensional supersonic Euler code using incremental iterative strategy

NASA Technical Reports Server (NTRS)

Korivi, Vamshi Mohan; Taylor, Arthur C., III; Newman, Perry A.; Jones, Henry E.

1994-01-01

In a recent work, an incremental strategy was proposed to iteratively solve the very large systems of linear equations that are required to obtain quasianalytical sensitivity derivatives from advanced computational fluid dynamics (CFD) codes. The technique was sucessfully demonstrated for two large two-dimensional problems: a subsonic and a transonic airfoil. The principal feature of this incremental iterative stategy is that it allows the use of the identical approximate coefficient matrix operator and algorithm to solve the nonlinear flow and the linear sensitivity equations; at convergence, the accuracy of the sensitivity derivatives is not compromised. This feature allows a comparatively straightforward extension of the methodology to three-dimensional problems; this extension is successfully demonstrated in the present study for a space-marching solution of the three-dimensional Euler equations over a Mach 2.4 blended wing-body configuration.

18. Three-dimensional piezoelasticity solution for piezolaminated angle-ply cylindrical shells featuring imperfect interfacial bonding

Kapuria, S.; Kumar, Amit

2010-04-01

The work presents an analytical three-dimensional solution for simply supported angle-ply piezoelectric (hybrid) laminated cylindrical shells in cylindrical bending with interlaminar bonding imperfections, in an electro-thermomechanical loading environment. The jumps in displacements, electric potential and temperature at the imperfect interfaces are modeled using linear spring-layer model. The solution includes the case when, besides at inner and outer surfaces, electric potentials are prescribed at layer interfaces also for effective actuation/sensing. The entities for each layer are expanded in Fourier series in circumferential coordinate to satisfy the boundary conditions at the simply supported ends. The resulting ordinary differential equations in thickness coordinate with variable coefficients are solved by the modified Frobenius method. Numerical results are presented for hybrid composite and sandwich shells with varying imperfection compliance. The effect of location of imperfect interface on the response is studied for cross-ply panels while the effect of ply angle on the sensitivity towards imperfection is studied for angle-ply panels. The effect of weak bonding at actuator/sensor interface on the actuation/sensing authority is investigated. The presented results would also help assessing 2D shell theories that incorporate interlaminar bonding imperfections.

19. Three-Dimensional Force Field Spectroscopy

Schwarz, Alexander; Hölscher, Hendrik; Langkat, S. M.; Wiesendanger, R.

2003-12-01

A method is presented that utilizes the frequency modulation technique in ultra-high vacuum to measure the tip-sample force field in all three dimensions with atomic resolution. It is based on a systematic procedure to record frequency shift versus distance curves. After their conversion into the tip-surface potential landscape the complete force field in all three dimensions can be calculated. Experimental results obtained in the non-contact regime on NiO(001) with an iron-coated silicon tip are presented to demonstrate that interatomic vertical and lateral forces can be determined and assigned to specific sites within the surface unit cell.

20. Three-dimensional warping registration of the pelvis and prostate