Science.gov

Sample records for somatic embryogenesis induction

  1. Induction of direct somatic embryogenesis in garlic (Allium sativum).

    PubMed

    Sata, S J; Bagatharia, S B; Thaker, V S

    2000-01-01

    An efficient novel method of direct somatic embryogenesis from basal tissue of garlic clove was developed. The influence of plant growth regulators, basal medium and explant type on somatic embryo induction was examined. The best plant growth regulator combination was, 2,4-D and kinetin at 1.0 mg/L and 0.5 mg/L respectively, inducing direct somatic embryogenesis in 60% of explants. White's medium was used as basal medium and somatic embryos developed on explants after six weeks. The technique has potential applicability for problems associated with plant regeneration and virus elimination in garlic. PMID:11549942

  2. Induction of somatic embryogenesis in gum arabic tree [Acacia senegal (L.) Willd].

    PubMed

    Rathore, Jitendra Singh; Rai, Manoj K; Shekhawat, N S

    2012-10-01

    Factors affecting somatic embryogenesis from immature cotyledon of gum arabic tree [Acacia senegal (L.) Willd.] were investigated. Induction of somatic embryogenesis was influenced by plant growth regulator concentrations and addition of amino acids in medium. Best induction of somatic embryogenesis was obtained on MS medium supplemented with 0.45 μM 2, 4-D, 2.32 μM Kin and 15 mM L-glutamine. L-glutamine plays a significant role in the maturation of somatic embryos and most of embryos attained maturity only on L-glutamine (15 mM) containing medium. Maximum percent (75.0 ± 2.5) germination of somatic embryos was recorded on medium containing 0.22 μM BAP. PMID:24082503

  3. Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed-coat-derived carrot somatic embryos.

    PubMed

    Ogata, Yumiko; Iizuka, Misato; Nakayama, Daisuke; Ikeda, Miho; Kamada, Hiroshi; Koshiba, Tomokazu

    2005-06-01

    When seed coats (pericarps) were picked from 14-day-old carrot (Daucus carota) seedlings and cultured on agar plates, embryogenic cell clusters were produced very rapidly at a high frequency on the open side edge. Embryo induction progressed without auxin treatment; indeed treatment caused the formation of non-embryogenic callus. The embryogenic tissues (primary embryos) developed normally until the torpedo stage; however, after this a number of secondary somatic embryos were produced in the hypocotyl and root regions. "Tertiary" embryos were formed on some of the secondary embryos, but many developed into normal plantlets. The primary embryos contained significantly higher levels of abscisic acid (ABA) than the hypocotyl-derived normal and seed-coat-derived secondary embryos. Fluridone inhibited the induction of secondary embryogenesis, while exogenously supplied ABA induced not only "tertiary" embryogenesis on the seed-coat-derived secondary embryos, but also secondary embryos on the hypocotyl-derived normal somatic embryos. These results indicate that ABA is one of the important endogenous factors for the induction of secondary embryogenesis on carrot somatic embryos. Higher levels of indole-3-acetic acid (IAA) in primary embryos also suggest the presence of some concerted effect of ABA and IAA on the induction of secondary embryogenesis in primary embryos. PMID:15770487

  4. Protocol for Callus Induction and Somatic Embryogenesis in Moso Bamboo

    PubMed Central

    Wu, Xiao-Li; Gu, Xiao-Ping

    2013-01-01

    Moso bamboo [Phyllostachys heterocycla var. pubescens (Mazel ex J. Houz.) Ohwi] is one of the most important forest crops in China and the rest of Asia. Although many sympodial bamboo tissue culture protocols have been established, there is no protocol available for plantlet regeneration as indicated by callus induction for monopodial bamboos, such as Moso bamboo. In the present report, embryogenic callus induction, embryoid development, and germination were established for Moso bamboo from zygotic seed embryos. Callus was initiated from zygotic embryos after 10–20 d culture on MS media supplemented with 4.0 mg/L 2, 4-D and 0.1 mg/L zeatin (ZT). About 50% of the explants produced calli, and nearly 15% of the calli were found to be embryogenic in nature. These embryogenic calli can be subcultured for proliferation in the Murashige and Skoog media (MS) supplemented with 0.5–2.0 mg/L 2, 4-D. These calli were found to have maintained their capacity for regeneration even after one year of subculture. The viable somatic embryoids regenerated in medium containing 5.0–7.0 mg/L ZT. Nearly 5% of the calli were found capable of regenerating into plantlets directly in MS medium containing 5.0–7.0 mg/L ZT. Root growth was more pronounced when the plantlets were transferred to medium containing 2.0 mg/L NAA. After 30 days of subculture, the plantlets were transferred to a greenhouse. PMID:24349159

  5. Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora.

    PubMed

    Ayil-Gutiérrez, Benajmín; Galaz-Ávalos, Rosa; Peña-Cabrera, Eduardo; Loyola-Vargas, Victor

    2013-11-01

    Most of the somatic embryogenesis (SE) process requires the presence, either before or during the embryogenic process, of at least one exogenous auxin. This exogenous auxin induces the presence of endogenous auxins, which appears to be essential for SE induction. We found that during the preincubation period of SE in Coffea canephora, there is an important increase in both free and conjugated indole-3-acetic acid (IAA), as well as indole-3-butyric acid. This increase is accompanied by an increase in the expression of YUCCA (CcYUC), TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (CcTAA1), and GRETCHEN HAGEN 3 (GH3) genes. On the other hand, most of the IAA compounds decreased during the induction of SE. The results presented in this research suggest that a balance between free IAA and its amide conjugates is necessary to allow the expression of SE-related genes. PMID:24299659

  6. Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora

    PubMed Central

    Ayil-Gutiérrez, Benajmín; Galaz-Ávalos, Rosa María; Peña-Cabrera, Eduardo; Loyola-Vargas, Victor Manuel

    2013-01-01

    Most of the somatic embryogenesis (SE) process requires the presence, either before or during the embryogenic process, of at least one exogenous auxin. This exogenous auxin induces the presence of endogenous auxins, which appears to be essential for SE induction. We found that during the preincubation period of SE in Coffea canephora, there is an important increase in both free and conjugated indole-3-acetic acid (IAA), as well as indole-3-butyric acid. This increase is accompanied by an increase in the expression of YUCCA (CcYUC), TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (CcTAA1), and GRETCHEN HAGEN 3 (GH3) genes. On the other hand, most of the IAA compounds decreased during the induction of SE. The results presented in this research suggest that a balance between free IAA and its amide conjugates is necessary to allow the expression of SE-related genes. PMID:24299659

  7. Application of Somatic Embryogenesis in Woody Plants.

    PubMed Central

    Guan, Yuan; Li, Shui-Gen; Fan, Xiao-Fen; Su, Zhen-Hong

    2016-01-01

    Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means. PMID:27446166

  8. Somatic Embryogenesis and Genetic Modification of Vitis.

    PubMed

    Dhekney, Sadanand A; Li, Zhijian T; Grant, Trudi N L; Gray, Dennis J

    2016-01-01

    Grapevine embryogenic cultures are ideal target tissues for inserting desired traits of interest and improving existing cultivars via precision breeding (PB). PB is a new approach that, like conventional breeding, utilizes only DNA fragments obtained from sexually compatible grapevine plants. Embryogenic culture induction occurs by placing leaves or stamens and pistils on induction medium with a dark/light photoperiod cycle for 12-16 weeks. Resulting cultures produce sectors of embryogenic and non-embryogenic callus, which can be identified on the basis of callus morphology and color. Somatic embryo development occurs following transfer of embryogenic callus to development medium and cultures can be maintained for extended periods of time by transfer of the proliferating proembryonic masses to fresh medium at 4-6-week intervals. To demonstrate plant recovery via PB, somatic embryos at the mid-cotyledonary stage are cocultivated with Agrobacterium containing the desired gene of interest along with a, non-PB, enhanced green fluorescent protein/neomycin phosphotransferase II (egfp/nptII) fusion gene. Modified cultures are grown on proliferation and development medium to produce uniformly modified somatic embryos via secondary embryogenesis. Modified embryos identified on the basis of green fluorescence and kanamycin resistance are transferred to germination medium for plant development. The resulting plants are considered to prototype examples of the PB approach, since they contain egfp/nptII, a non-grapevine-derived fusion gene. Uniform green fluorescent protein (GFP) fluorescence can be observed in all tissues of regenerated plants. PMID:26619866

  9. Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees.

    PubMed

    Corredoira, E; Ballester, A; Ibarra, M; Vieitez, A M

    2015-06-01

    A reproducible procedure for induction of somatic embryogenesis (SE) from adult trees of Eucalyptus globulus Labill. and the hybrid E. saligna Smith × E. maidenii has been developed for the first time. Somatic embryos were obtained from both shoot apex and leaf explants of all three genotypes evaluated, although embryogenic frequencies were significantly influenced by the species/genotype, auxin and explant type. Picloram was more efficient for somatic embryo induction than naphthaleneacetic acid (NAA), with the highest frequency of induction being obtained in Murashige and Skoog medium containing 40 µM picloram and 40 mg l(-1) gum Arabic, in which 64% of the shoot apex explants and 68.8% of the leaf explants yielded somatic embryos. The embryogenic response of the hybrid was higher than that of the E. globulus, especially when NAA was used. The cultures initiated on picloram-containing medium consisted of nodular embryogenic structures surrounded by a mucilaginous coating layer that emerged from a watery callus developed from the initial explants. Cotyledonary somatic embryos were differentiated after subculture of these nodular embryogenic structures on a medium lacking plant growth regulators. Histological analysis confirmed the bipolar organization of the somatic embryos, with shoot and root meristems and closed procambial tissue that bifurcated into small cotyledons. The root pole was more differentiated than the shoot pole, which appeared to be formed by a few meristematic layers. Maintenance of the embryogenic lines by secondary SE was attained by subculturing individual cotyledonary embryos or small clusters of globular and torpedo embryos on medium with 16.11 µM NAA at 4- to 5-week intervals. Somatic embryos converted into plantlets after being transferred to liquid germination medium although plant regeneration remained poor. PMID:25877768

  10. Somatic embryogenesis - Stress-induced remodeling of plant cell fate.

    PubMed

    Fehér, Attila

    2015-04-01

    Plants as sessile organisms have remarkable developmental plasticity ensuring heir continuous adaptation to the environment. An extreme example is somatic embryogenesis, the initiation of autonomous embryo development in somatic cells in response to exogenous and/or endogenous signals. In this review I briefly overview the various pathways that can lead to embryo development in plants in addition to the fertilization of the egg cell and highlight the importance of the interaction of stress- and hormone-regulated pathways during the induction of somatic embryogenesis. Somatic embryogenesis can be initiated in planta or in vitro, directly or indirectly, and the requirement for dedifferentiation as well as the way to achieve developmental totipotency in the various systems is discussed in light of our present knowledge. The initiation of all forms of the stress/hormone-induced in vitro as well as the genetically provoked in planta somatic embryogenesis requires extensive and coordinated genetic reprogramming that has to take place at the chromatin level, as the embryogenic program is under strong epigenetic repression in vegetative plant cells. Our present knowledge on chromatin-based mechanisms potentially involved in the somatic-to-embryogenic developmental transition is summarized emphasizing the potential role of the chromatin to integrate stress, hormonal, and developmental pathways leading to the activation of the embryogenic program. The role of stress-related chromatin reorganization in the genetic instability of in vitro cultures is also discussed. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity. PMID:25038583

  11. Somatic Embryogenesis in Crocus sativus L.

    PubMed

    Sevindik, Basar; Mendi, Yesim Yalcin

    2016-01-01

    Saffron (Crocus sativus L.) is one of the most important species in Crocus genus because of its effective usage. It is not only a very expensive spice, but it has also a big ornamental plant potential. Crocus species are propagated by corm and seed, and male sterility is the most important problem of this species. Hence, somatic embryogenesis can be regarded as a strategic tool for the multiplication of saffron plants. In this chapter, the production of saffron corms via somatic embryogenesis is described. PMID:26619871

  12. Somatic Embryogenesis in Lisianthus (Eustoma russellianum Griseb.).

    PubMed

    Ruffoni, Barbara; Bassolino, Laura

    2016-01-01

    Somatic embryogenesis is, for the main floricultural crops, a promising system for commercial scale-up, providing cloned material to be traded as seedlings. Somatic embryos, having the contemporary presence of root apical meristem and shoot apical meristem, can be readily acclimatized. For Lisianthus it is possible to induce embryogenic callus from leaf fragments of selected genotypes and to obtain embryos either in agarized substrate or in liquid suspension culture. The production of somatic embryos in liquid medium is high and can be modulated in order to synchronize the cycle and the size of the neoformed structures. The possibility to use the liquid substrate with high propagation rates reduces labor costs and could support the costs of eventual automation. In this paper we report a stepwise protocol for somatic embryogenesis in the species Eustoma russellianum. PMID:26619872

  13. Somatic embryogenesis in Hedychium bousigonianum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient primary somatic embryo (SE) and secondary somatic embryo (SSE) production system was developed for the ornamental ginger Hedychium bousigonianum Pierre ex Gagnepain. Addition of two ethylene inhibitors, salicylic acid (SA) and silver nitrate (AgNO3), to the culture media improved the sy...

  14. Somatic Embryogenesis in Peach Palm Using the Thin Cell Layer Technique: Induction, Morpho-histological Aspects and AFLP Analysis of Somaclonal Variation

    PubMed Central

    Steinmacher, D. A.; Krohn, N. G.; Dantas, A. C. M.; Stefenon, V. M.; Clement, C. R.; Guerra, M. P.

    2007-01-01

    Background and Aims The thin cell layer (TCL) technique is based on the use of very small explants and has allowed enhanced in vitro morphogenesis in several plant species. The present study evaluated the TCL technique as a procedure for somatic embryo production and plantlet regeneration of peach palm. Methods TCL explants from different positions in the shoot apex and leaf sheath of peach palm were cultivated in MS culture medium supplemented with 0–600 µm Picloram in the presence of activated charcoal. The production of primary calli and embryogenic calli was evaluated in these different conditions. Histological and amplified fragment length polymorphism (AFLP) analyses were conducted to study in vitro morphogenetic responses and genetic stability, respectively, of the regenerated plantlets. Key Results Abundant primary callus induction was observed from TCLs of the shoot meristem in culture media supplemented with 150–600 µm Picloram (83–97 %, respectively). The production of embryogenic calli depends on Picloram concentration and explant position. The best response observed was 43 % embryogenic callus production from shoot meristem TCL on 300 µm Picloram. In maturation conditions, 34 ± 4 somatic embryos per embryogenic callus were obtained, and 45·0 ± 3·4 % of these fully developed somatic embryos were converted, resulting in plantlets ready for acclimatization, of which 80 % survived. Histological studies revealed that the first cellular division events occurred in cells adjacent to vascular tissue, resulting in primary calli, whose growth was ensured by a meristematic zone. A multicellular origin of the resulting somatic embryos arising from the meristematic zone is suggested. During maturation, histological analyses revealed bipolarization of the somatic embryos, as well as the development of new somatic embryos. AFLP analyses revealed that 92 % of the regenerated plantlets were true to type. The use of TCL explants considerably improves the

  15. Studies for Somatic Embryogenesis in Sweet Potato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  16. Studies on Somatic Embryogenesis in Sweetpotato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  17. Advances in Conifer Somatic Embryogenesis Since Year 2000.

    PubMed

    Klimaszewska, Krystyna; Hargreaves, Catherine; Lelu-Walter, Marie-Anne; Trontin, Jean-François

    2016-01-01

    This review compiles research results published over the last 14 years on conifer somatic embryogenesis (SE). Emphasis is placed on the newest findings that affect the response of seed embryos (typical explants) and shoot primordia (rare explants) to the induction of SE and long-term culture of early somatic embryos. Much research in recent years has focused on maturation of somatic embryos, with respect to both yield and quality, as an important stage for the production of a large number of vigorous somatic seedlings. Attempts to scale up somatic embryo production numbers and handling have resulted in a few bioreactor designs, the utility of which may prove beneficial for an industrial application. A few simplified cryopreservation methods for embryonal masses (EM) were developed as a means to ensure cost-efficient long-term storage of genotypes during clonal field testing. Finally, recent long-term studies on the growth of somatic trees in the field, including seed production yield and comparison of seed parameters produced by somatic versus seed-derived trees, are described. PMID:26619862

  18. Spaceflight reduces somatic embryogenesis in orchardgrass (Poaceae)

    NASA Technical Reports Server (NTRS)

    Conger, B. V.; Tomaszewski, Z. Jr; McDaniel, J. K.; Vasilenko, A.

    1998-01-01

    Somatic embryos initiate and develop from single mesophyll cells in in vitro cultured leaf segments of orchard-grass (Dactylis glomerata L.). Segments were plated at time periods ranging from 21 to 0.9 d (21 h) prior to launch on an 11 d spaceflight (STS-64). Using a paired t-test, there was no significant difference in embryogenesis from preplating periods of 14 d and 21 d. However, embryogenesis was reduced by 70% in segments plated 21 h before launch and this treatment was significant at P=0.0001. The initial cell divisions leading to embryo formation would be taking place during flight in this treatment. A higher ratio of anticlinal:periclinal first cell divisions observed in the flight compared to the control tissue suggests that microgravity affects axis determination and embryo polarity at a very early stage. A similar reduction in zygotic embryogenesis would reduce seed formation and have important implications for long-term space flight or colonization where seeds would be needed either for direct consumption or to grow another generation of plants.

  19. In vitro plant regeneration of Aster scaber via somatic embryogenesis.

    PubMed

    Boo, Kyung Hwan; Cao, Dang Viet; Pamplona, Reniel S; Lee, Doseung; Riu, Key-Zung; Lee, Dong-Sun

    2015-01-01

    We established an in vitro plant regeneration system via somatic embryogenesis of Aster scaber, an important source of various biologically active phytochemicals. We examined the callus induction and embryogenic capacities of three explants, including leaves, petioles, and roots, on 25 different media containing different combinations of α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). The optimum concentrations of NAA and BA for the production of embryogenic calli were 5.0 μM and 0.05 μM, respectively. Media containing higher concentrations of auxin and cytokinin (such as 25 μM NAA and 25 μM BA) were suitable for shoot regeneration, especially for leaf-derived calli, which are the most readily available calli and are highly competent. For root induction from regenerated shoots, supplemental auxin and/or cytokinin did not improve rooting, but instead caused unwanted callus induction or retarded growth of regenerated plants. Therefore, plant growth regulator-free medium was preferable for root induction. Normal plants were successfully obtained from calli under the optimized conditions described above. This is the first report of the complete process of in vitro plant regeneration of A. scaber via somatic embryogenesis. PMID:25640866

  20. Reproduction of the Medicinal Plant Pelargonium sidoides via Somatic Embryogenesis.

    PubMed

    Duchow, Stefanie; Blaschek, Wolfgang; Classen, Birgit

    2015-08-01

    The medicinal plant Pelargonium sidoides DC. (Geraniaceae) was traditionally used for the treatment of the common cold and cough in South Africa. Today an aequous-ethanolic root extract from this plant is approved for the treatment of acute bronchitis and is globally marketed also as an immunostimulant. The increasing demand of the plant material for the industrial production indicates the need of new effective methods for the propagation of P. sidoides. Here we report somatic embryogenesis and in vitro plantlet regeneration from somatic cells of inflorescence shoots and petioles of P. sidoides. A one-week cultivation of explants in media containing different concentrations of thidiazuron (1, 2.2, 3, and 4 mg/L) followed by a cultivation period without phytohormones resulted in the induction of somatic embryos within 2-4 weeks. After 2-4 months, the embryos generated roots and could be transferred into a greenhouse, where flower formation took place and the development of seeds occurred with high germination rates. The root umckalin concentration, determined by high-performance thin-layer chromatography, was comparable to that of seed-cultivated plants (100 ± 6 vs. 113 ± 10 µg umckalin/g dried roots). For the first time, direct somatic embryogenesis has been established as an appropriate cultivation method for P. sidoides plants used as raw material in the pharmaceutical industry. Moreover, genetically identical plants (chemical races) can be easily generated by this procedure. PMID:26287694

  1. Indirect somatic embryogenesis in cassava for genetic modification purposes.

    PubMed

    Raemakers, Krit; Pereira, Isolde; van Putten, Herma Koehorst; Visser, Richard

    2006-01-01

    In cassava both direct and indirect somatic embryogenesis is described. Direct somatic embryogenesis starts with the culture of leaf explants on Murashige and Skoog (MS) medium supplemented with auxins. Somatic embryos undergo secondary somatic embryogenesis when cultured on the same medium. Indirect somatic embryogenesis is initiated by subculture of directly induced embryogenic tissue on auxin-supplemented medium with Gresshoff and Doy salts and vitamins. A very fine friable embryogenic callus (FEC) is formed after a few rounds of subculture and stringent selection. This FEC is maintained by subculture on auxin supplemented medium. Lowering of the auxin concentration allows the FEC to form mature somatic embryos that develop into plants when transferred to a cytokinin-supplemented medium. PMID:16673909

  2. Somatic Embryogenesis: Identified Factors that Lead to Embryogenic Repression. A Case of Species of the Same Genus

    PubMed Central

    Nic-Can, Geovanny I.; Galaz-Ávalos, Rosa M.; De-la-Peña, Clelia; Alcazar-Magaña, Armando; Wrobel, Kazimierz; Loyola-Vargas, Víctor M.

    2015-01-01

    Somatic embryogenesis is a powerful biotechnological tool for the mass production of economically important cultivars. Due to the cellular totipotency of plants, somatic cells under appropriate conditions are able to develop a complete functional embryo. During the induction of somatic embryogenesis, there are different factors involved in the success or failure of the somatic embryogenesis response. Among these factors, the origin of the explant, the culture medium and the in vitro environmental conditions have been the most studied. However, the secretion of molecules into the media has not been fully addressed. We found that the somatic embryogenesis of Coffea canephora, a highly direct embryogenic species, is disrupted by the metabolites secreted from C. arabica, a poorly direct embryogenic species. These metabolites also affect DNA methylation. Our results show that the abundance of two major phenolic compounds, caffeine and chlorogenic acid, are responsible for inhibiting somatic embryogenesis in C. canephora. PMID:26038822

  3. Relationship between ploidy variation of citrus calli and competence for somatic embryogenesis.

    PubMed

    Zhang, Jun-E; Guo, Wen-Wu; Deng, Xiu-Xin

    2006-07-01

    This study focuses on the relationship between the genetic variation of calli and the competence for somatic embryogenesis in citrus. The DNA content of 35 citrus calli of different genotypes was measured three times by flow cytometry during a period of four years. The results showed that 71.4 % of the genotypes had a progressive increase of varied cells, while those of Page tangelo, Shamouti sweet orange, Russ navel orange and Cleopatra decreased; significant difference in the variation degree (percentages) existed among genotypes. Studies carried out on the induction of somatic embryogenesis revealed that 9 out of the 35 genotypes had still kept the competence of somatic embryogenesis, and the rest 26 had lost the competence. Correlation analysis indicated that there was no significant relationship between the variation degree and the embryogenesis competence r = -0.10 (P < 0.01), neither for the relationship between the subculture duration and the regeneration capacity. PMID:16875323

  4. Somatic Embryogenesis of Abies cephalonica Loud.

    PubMed

    Krajňáková, Jana; Häggman, Hely

    2016-01-01

    Greek fir (Abies cephalonica Loudon) belongs to the Mediterranean fir species and is widely distributed in the mountains of Central and Southern Greece. Considering a climatic scenario, infestation by pathogens or insects and fire episodes, it has been proposed that Mediterranean firs could be in danger in some parts of their present range but, on the other hand, could also replace other species in more northern zones with temperate humid climates (e.g., silver fir, Abies alba Mill.). As fir species are generally highly productive and therefore important for commercial forestry, they have traditionally been involved in conventional tree improvement programs. A lot of effort has been put into the development of vegetative propagation methods for firs, in order to rapidly gain the benefits of traditional breeding to be utilized in reforestation. The present paper provides up to date information on protocols for somatic embryogenesis (i.e., the most promising in vitro method for vegetative propagation) of Greek fir. Moreover, the protocols for cryopreservation and long-term storage of embryogenic material are described as well. PMID:26619877

  5. Somatic embryogenesis in Picea suspension cultures.

    PubMed

    Stasolla, Claudio

    2006-01-01

    Generation of somatic embryos in spruce is achieved through the execution of five steps designated as: (1) induction of embryogenic tissue, (2) maintenance of embryogenic tissue, (3) embryo development, (4) embryo maturation, and (5) conversion into plants. Depending on species and genotypes within the same species, each step must be optimized for obtaining maximum results. In general, embryogenic tissue is generated from immature and mature zygotic embryos and maintained in either liquid or solid conditions in the presence of plant growth regulators auxin and cytokinin. Initiation of embryo development in suspension cultured is induced by removal of plant growth regulators, whereas continuation of development and completion of maturation require applications of abscisic acid and imposition of a desiccation period. Both treatments are needed for conferring morphological and physiological maturation to the embryos. Mature somatic embryos are germinated in the absence of plant regulators and embryo conversion (i.e., formation of a functional shoot and root, occurs after a few weeks in culture). PMID:16673908

  6. Callose deposition is required for somatic embryogenesis in plasmolyzed Eleutherococcus senticosus zygotic embryos.

    PubMed

    Tao, Lei; Yang, Yang; Wang, Qiuyu; You, Xiangling

    2012-01-01

    Dynamic changes in callose content, which is deposited as a plant defense response to physiological changes, were analyzed during somatic embryogenesis in Eleutherococcus senticosus zygotic embryos plasmolyzed in 1.0 M mannitol. During plasmolysis, callose deposition was clearly observed inside the plasma membrane of zygotic embryo epidermal cells using confocal laser scanning microscopy. The callose content of zygotic embryos gradually increased between 0 and 12 h plasmolysis and remained stable after 24 h plasmolysis. During eight weeks induction of somatic embryogenesis, the callose content of explants plasmolyzed for 12 h was slightly higher than explants plasmolyzed for 6 or 24 h, with the largest differences observed after 6 weeks culture, which coincided with the maximum callose content and highest number of globular somatic embryos. The highest frequency of somatic embryo formation was observed in explants plasmolyzed for 12 h. The somatic embryo induction rate and number of somatic embryos per explant were markedly different in zygotic embryos pretreated with plasmolysis alone (78.0%, 43 embryos per explant) and those pretreated with plasmolysis and the callose synthase inhibitor 2-deoxy-d-glucose (11.5%, 8 embryos per explant). This study indicates that callose production is required for somatic embryogenesis in plasmolyzed explants. PMID:23203053

  7. Somatic embryogenesis and plant regeneration of cassava (Manihot esculenta Crantz) landraces from Cameroon.

    PubMed

    Mongomake, Kone; Doungous, Oumar; Khatabi, Behnam; Fondong, Vincent N

    2015-01-01

    A procedure to regenerate cassava (Manihot esculenta Crantz) cultivars from Cameroon via somatic embryogenesis (SE) was developed. Shoot apical meristems and immature leaf lobes were used as explants on Murashige and Skoog (MS) basal medium containing 33 or 50 µM of the auxins Picloram (Pic), 2,4-Dichlorophenoxyacetic acid (2,4-D), Dicamba (Dic), and α-Naphthalene acetic acid. Cultivar performance was assessed using SE and number of somatic embryos produced. Overall, the frequency of primary somatic embryogenesis (PSE) and the mean number of somatic embryos produced varied considerably with genotype, type of auxin and concentration tested. For example, cultivar (cv.) Ngan Mbada showed the best performance on MS medium supplemented with 50 µM Pic with a SE frequency of 40 % and an average number of somatic embryos of 90. The second best performance was recorded in cv. Local Red on MS medium supplemented with 33 µM 2,4-D, where the SE frequency was 40 % and an average number of somatic embryos of 60.5. Cultivar Ekona Red recorded the best performance on medium supplemented with 50 µM Pic showing a SE frequency of 47 % and an average number of somatic embryos of 45. We further examined secondary and cyclic somatic embryogenesis (SSE, CSE) and both were also observed to vary with genotype, however, both exhibited significantly higher frequencies of SE compared with PSE. SE started to decline at the fourth cycle of embryogenesis. Examination of organogenesis showed that shoot bud induction from green cotyledons varied across cultivars and benzylaminopurine was shown to outperform Thidiazuron in the ability to induce organogenesis. Furthermore, the frequencies of bud induction were identical under light and dark conditions. Finally, regenerated plants grew easily in the greenhouse with 90-100 % survival rate and did not display detectable variation in morphology. PMID:26361578

  8. Yield performance of cacao propagated by somatic embryogenesis and grafting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twelve cacao (Theobroma cacao) clones propagated by grafting and somatic embryogenesis and grown on an Ultisol soil were evaluated for five years under intensive management at Corozal, Puerto Rico. Preliminary data showed no significant differences between propagation methods for yield of dry beans ...

  9. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis

    PubMed Central

    Steinmacher, D. A.; Guerra, M. P.; Saare-Surminski, K.; Lieberei, R.

    2011-01-01

    Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture. Key Results The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts

  10. Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium).

    PubMed

    da Silva, Jaime A Teixeira; Winarto, Budi

    2016-01-01

    The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon 'Day Light' and Dendrobium 'Jayakarta', D. 'Gradita 31', and D. 'Zahra FR 62') for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. 'Zahra FR 62'. PMID:26619873

  11. Molecular characterization of a Cyrtochilum loxense Somatic Embryogenesis Receptor-like Kinase (SERK) gene expressed during somatic embryogenesis.

    PubMed

    Cueva, Augusta; Concia, Lorenzo; Cella, Rino

    2012-06-01

    Somatic embryogenesis is crucial for the propagation of endangered Ecuadorian orchid species, among them Cyrtochilum loxense, in view of the fact that their number in nature or in collections is quite reduced. One of the genes expressed during somatic and zygotic embryogenesis is Somatic Embryogenesis Receptor-like Kinase (SERK). Despite the development of somatic embryogenesis protocols for orchids, no SERK genes have been isolated from this family. This is the first report on the isolation of a full-length orchid SERK sequence, namely that of Cyrtochilum loxense (ClSERK). The identity of ClSERK was inferred by the presence of all domains typical of SERK proteins: a signal peptide, a leucine zipper domain, five LRRs, a serine proline-rich domain, a transmembrane domain, a kinase domain, and the C-terminal region. We have observed that the ClSERK gene is highly expressed in embryogenic calluses generated from protocorms at the time of appearance of embryonic morphological features. At later stages when embryos become well visible on calluses, ClSERK gene expression decreases. Compared to early stages of embryo formation on calluses, the expression detected in leaf tissue is far lower, thus suggesting a role of this gene during development. PMID:22350407

  12. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    PubMed

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions. PMID:24248842

  13. Role of trace elements in somatic embryogenesis A PIXE study

    NASA Astrophysics Data System (ADS)

    Saha, P.; Raychaudhuri, S.; Mishra, D.; Chakraborty, A.; Sudarshan, M.

    2008-03-01

    Proton induced X-ray emission was used to study the trace elemental profiles of embryogenic and non-embryogenic callus of an important cash crop of India - Plantago ovata. Somatic embryogenesis, a well-known process for plant regeneration and crop improvement is modulated by various factors such as ionizing radiation and micro nutrients in the growth media. The present work reports the trace element variation in normal and irradiated callus tissue of P. ovata. Embryogenic and non-embryogenic callus tissues were exposed to gamma rays from a 60Co gamma source. The absorbed dose ranged from 10 to 100 Gy. Subsequent experiments showed significant dose dependent alterations in K, Ca, Mn, Fe, Ni, Cu, Zn, Br, Sr in both the embryogenic and non-embryogenic callus. The precise involvement of these elements has been discussed in light of somatic embryogenesis of the selected medicinal plant.

  14. Alternative oxidase involvement in Daucus carota somatic embryogenesis.

    PubMed

    Frederico, António Miguel; Campos, Maria Doroteia; Cardoso, Hélia Guerra; Imani, Jafargholi; Arnholdt-Schmitt, Birgit

    2009-12-01

    Plant alternative oxidase (AOX) is a mitochondrial inner membrane enzyme involved in alternative respiration. The critical importance of the enzyme during acclimation upon stress of plant cells is not fully understood and is still an issue of intensive research and discussion. Recently, a role of AOX was suggested for the ability of plant cells to change easily its fate upon stress. In order to get new insights about AOX involvement in cell reprogramming, quantitative real-time polymerase chain reaction (PCR) and inhibitor studies were performed during cell redifferentiation and developmental stages of Daucus carota L. somatic embryogenesis. Transcript level analysis shows that D. carota AOX genes (DcAOX1a and DcAOX2a) are differentially expressed during somatic embryogenesis. DcAOX1a shows lower expression levels, being mainly down-regulated, whereas DcAOX2a presented a large up-regulation during initiation of the realization phase of somatic embryogenesis. However, when globular embryos start to develop, both genes are down-regulated, being this state transient for DcAOX2a. In addition, parallel studies were performed using salicylhydroxamic acid (SHAM) in order to inhibit AOX activity during the realization phase of somatic embryogenesis. Embryogenic cells growing in the presence of the inhibitor were unable to develop embryogenic structures and its growth rate was diminished. This effect was reversible and concentration dependent. The results obtained contribute to the hypothesis that AOX activity supports metabolic reorganization as an essential part of cell reprogramming and, thus, enables restructuring and de novo cell differentiation. PMID:19863756

  15. Proteomic analysis of somatic embryogenesis in Vitis vinifera.

    PubMed

    Marsoni, Milena; Bracale, Marcella; Espen, Luca; Prinsi, Bhakti; Negri, Alfredo S; Vannini, Candida

    2008-02-01

    Two dimensional gel electrophoresis coupled to mass spectrometry has been used to study the somatic embryogenesis in Vitis vinifera, by comparing embryogenic and non embryogenic calluses of the Thompson seedless cv. More than 1,000 spots were reproducibly resolved in colloidal Coomassie brilliant blue stained gels over a pI nonlinear range of 3-10 in the first dimension and using homogeneous 12.5% polyacrylamide gels in the second dimension. The expression pattern of 35 spots differed significantly between the two samples. These spots were processed by mass spectrometry analysis and the protein identity was assigned by using both the non-redundant protein and EST databases. Several responsive proteins, some already known to be involved in the somatic embryogenesis process while others, for the first time put into relation with this process, have been described. Moreover, they have been subdivided in functional categories, and their putative role is discussed in terms of their relevance in the somatic embryogenesis process. PMID:17874111

  16. Plant regeneration through somatic embryogenesis from callus induced on immature embryos of Alstroemeria spp. L.

    PubMed

    Van Schaik, C E; Posthuma, A; De Jeu, M J; Jacobsen, E

    1996-01-01

    The plant regeneration ability of callus obtained from zygotic embryos of the monocot Alstroemeria spp. was studied. The best explants for somatic embryogenesis were immature zygotic embryos in half-ovules when the endosperm was still soft and white. For 2 genotypes embryogenic callus was induced on callus induction medium with a success rate of 54%. The best callus induction period was 10 weeks. The morphology of embryogenic callus was nodular. Somatic embryos were formed after transfer of the callus to regeneration medium. These somatic embryos revealed later on the typical features of zygotic Alstroemeria embryos. The total duration of the plant regeneration protocol, from inoculation till rooted plantlets ready for transfer to the greenhouse, was 28 weeks. PMID:24178361

  17. Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi.

    PubMed

    Lü, Jinfeng; Chen, Rong; Zhang, Muhan; da Silva, Jaime A Teixeira; Ma, Guohua

    2013-09-01

    Camellia nitidissima Chi (Theaceae) is a world-famous economic and ornamental plant with golden-yellow flowers. It has been classified as one of the rarest and most endangered plants in China. Our objective was to induce somatic embryogenesis, shoot organogenesis and plant regeneration for C. nitidissima. Three types of callus (whitish, reddish and yellowish) were induced from immature cotyledons on improved woody plant medium (WPM) with different plant growth regulators (PGRs). Among the callus, whitish callus was induced by 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and reddish and yellowish callus were induced by strongly active cytokinins, thidiazuron (TDZ) or 6-benzylaminopurine (BAP), singly or combined with weakly active auxin, α-naphthaleneacetic acid (NAA). The embryogenic callus could differentiate into somatic embryos, nodular embryogenic structures (large embryo-like structures) or adventitious shoots depending on the PGR used in WPM. BAP was best for adventitious buds and zeatin was best for somatic embryogenesis while kinetin (Kt) was best for the formation of nodular embryogenic structures. The three regeneration pathways often occurred in the same embryogenic callus clumps. Most shoots (80.0%) developed roots in WPM supplemented with 24.6 μM IBA and 0.3 μM NAA while 47.5% of somatic embryos could germinate directly and develop into plantlets on induction medium supplemented with 0.9 μM BAP and 0.1 μM NAA. The nodular embryogenic structures could be sub-cultured and cyclically developed in one of two differentiation pathways: shoot organogenesis or somatic embryogenesis. Plantlets derived from shoot buds rooted and somatic embryos germinated when transplanted into soil in a greenhouse; 66.7% of plantlets from shoot culture and 78.6% of plantlets from somatic embryos survived after 8 weeks' acclimatization. PMID:23790533

  18. Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

  19. Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences.

    PubMed

    Rocha, Diego Ismael; Vieira, Lorena Melo; Tanaka, Francisco André Ossamu; da Silva, Luzimar Campos; Otoni, Wagner Campos

    2012-07-01

    The characterization of cellular changes that occur during somatic embryogenesis is essential for understanding the factors involved in the transition of somatic cells into embryogenically competent cells and determination of cells and/or tissues involved. The present study describes the anatomical and ultrastructural events that lead to the formation of somatic embryos in the model system of the wild passion fruit (Passiflora cincinnata). Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Zygotic embryo explants at different development stages were collected and processed by conventional methods for studies using light, scanning, and transmission electron microscopy (TEM). Histochemical tests were used to examine the mobilization of reserves. The differentiation of the somatic embryos began in the abaxial side of the cotyledon region. Protuberances were formed from the meristematic proliferation of the epidermal and mesophyll cells. These cells had large nuclei, dense cytoplasm with a predominance of mitochondria, and a few reserve compounds. The protuberances extended throughout the abaxial surface of the cotyledons. The ongoing differentiation of peripheral cells of these structures led to the formation of proembryogenic zones, which, in turn, dedifferentiated into somatic embryos of multicellular origin. In the initial stages of embryogenesis, the epidermal and mesophyll cells showed starch grains and less lipids and protein reserves than the starting explant. These results provide detailed information on anatomical and ultrastructural changes involved in the acquisition of embryogenic competence and embryo differentiation that has been lacking so far in Passiflora. PMID:21927886

  20. The role of chromatin modifications in somatic embryogenesis in plants

    PubMed Central

    De-la-Peña, Clelia; Nic-Can, Geovanny I.; Galaz-Ávalos, Rosa M.; Avilez-Montalvo, Randy; Loyola-Vargas, Víctor M.

    2015-01-01

    Somatic embryogenesis (SE) is a powerful tool for plant genetic improvement when used in combination with traditional agricultural techniques, and it is also an important technique to understand the different processes that occur during the development of plant embryogenesis. SE onset depends on a complex network of interactions among plant growth regulators, mainly auxins and cytokinins, during the proembryogenic early stages, and ethylene and gibberellic and abscisic acids later in the development of the somatic embryos. These growth regulators control spatial and temporal regulation of multiple genes in order to initiate change in the genetic program of somatic cells, as well as moderating the transition between embryo developmental stages. In recent years, epigenetic mechanisms have emerged as critical factors during SE. Some early reports indicate that auxins and in vitro conditions modify the levels of DNA methylation in embryogenic cells. The changes in DNA methylation patterns are associated with the regulation of several genes involved in SE, such as WUS, BBM1, LEC, and several others. In this review, we highlight the more recent discoveries in the understanding of the role of epigenetic regulation of SE. In addition, we include a survey of different approaches to the study of SE, and new opportunities to focus SE studies. PMID:26347757

  1. Somatic Embryogenesis in Peach-Palm (Bactris gasipaes) Using Different Explant Sources.

    PubMed

    Steinmacher, Douglas A; Heringer, Angelo Schuabb; Jiménez, Víctor M; Quoirin, Marguerite G G; Guerra, Miguel P

    2016-01-01

    Peach palm (Bactris gasipaes Kunth) is a member of the family Arecaceae and is a multipurpose but underutilized species. Nowadays, fruit production for subsistence and local markets, and heart-of-palm production for local, national, and international markets are the most important uses of this plant. Conventional breeding programs in peach palm are long-term efforts due to the prolonged generation time, large plant size, difficulties with controlled pollination and other factors. Although it is a caespitose palm, its propagation is currently based on seeds, as off-shoots are difficult to root. Hence, tissue culture techniques are considered to be the most likely strategy for efficient clonal plantlet regeneration of this species. Among various techniques, somatic embryogenesis offers the advantages of potential automated large-scale production and putative genetic stability of the regenerated plantlets. The induction of somatic embryogenesis in peach palm can be achieved by using different explant sources including zygotic embryos, immature inflorescences and thin cell layers from the young leaves and shoot meristems. The choice of a particular explant depends on whether clonal propagation is desired or not, as well as on the plant conditions and availability of explants. Protocols to induce and express somatic embryogenesis from different peach palm explants, up to acclimatization of plantlets, are described in this chapter. PMID:26619867

  2. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies.

    PubMed

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  3. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies

    PubMed Central

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  4. Somatic Embryogenesis and Plant Regeneration of Brachiaria brizantha.

    PubMed

    Cabral, Glaucia B; Carneiro, Vera T C; Dusi, Diva M A; Martinelli, Adriana P

    2016-01-01

    The genus Brachiaria (Trin.) Griseb. belongs to the family Poaceae, order Poales, class Monocotyledonae. In Brachiaria brizantha (Hochst. ex A. Rich.) Stapf., embryogenic callus can be induced from seeds from apomictic plants, which results in high frequency somatic embryo development and plant regeneration. We report here a detailed protocol for callus induction from apomictic seed; followed by in vitro morphogenesis (somatic embryo and bud differentiation), plant regeneration, and acclimatization in the greenhouse. Important details regarding the positioning of seeds for callus induction and precautions to avoid endophytic contamination and the occurrence of albino plants are presented. PMID:26619875

  5. Somatic Embryogenesis and Plant Regeneration in Sapindus mukorossi Gaertn. from Leaf-Derived Callus Induced with 6-Benzylaminopurine.

    PubMed

    Singh, Reetika; Rai, Manoj Kumar; Kumari, Nishi

    2015-09-01

    A somatic embryogenesis system was developed for Sapindus mukorossi Gaertn. from leaf explants obtained from fresh flushes of a mature tree. Callus was induced from the midrib region of leaf explants on Murashige and Skoog (MS) medium containing different concentrations of 2,4-dichlorophenoxyacetic acid or 6-benzylaminopurine. Callus induction and somatic embryogenesis was significantly influenced by the size, physiological age, and orientation of leaf explants on the culture medium and plant growth regulators. Adaxial-side-up orientation of leaf explants significantly promoted embryogenesis in comparison with abaxial-side-up orientation. Maximum number of somatic embryos was induced on MS medium supplemented with 8.88 μM 6-benzylaminopurine. Scanning electron microscopy of embryogenic callus revealed somatic embryo origin and the development of globular-, heart-, and cotyledonary-stage somatic embryos. The frequency of maturation as well as germination of somatic embryos was higher on MS medium containing 8.88 μM 6-benzylaminopurine than on medium without 6-benzylaminopurine. Plantlets which developed from somatic embryos were acclimatized successfully with 90 % survival. PMID:26208689

  6. Improved protocol for somatic embryogenesis and calcium alginate encapsulation in Anethum graveolens L.: a medicinal herb.

    PubMed

    Dhir, Richa; Shekhawat, G S; Alam, Afroz

    2014-08-01

    An improved procedure has been developed for efficient somatic embryogenesis in Anethum graveolens. Green friable embryogenic callus was obtained from hypocotyl segments on medium augmented with 2,4-dichlorophenoxyacetic acid (2,4-D). The highest embryogenic callus induction frequency of 87 % was obtained on Murashige and Skoog (MS) medium containing 1.13 μM 2,4-D. At lower concentration of 2,4-D (0.34 μM) callus turned dark in color and slow growing. Embryogenic cultures (76 %) responded with a mean number of 43 globular and 18 heart stage embryos. Somatic embryo maturation and subsequent conversion into plantlets took place on MS lacking growth regulators. Maximum number of somatic embryos developed on MS medium was 128.3 (per flask) and a plantlet conversion of 82 % was observed. Calcium alginate beads were produced by encapsulating somatic embryos. Highest percent germination (83 %) was observed on 0.8 % agar solidified MS medium with the plantlets acquiring an average length of 2.1 cm. Encapsulated somatic embryos could be stored at 4 °C up to 60 days with a conversion frequency of 49.3 %. Highest protein and proline content has been observed in embryogenic callus with small globular embryos. During morphological differentiation of the somatic embryos, changes in the antioxidant enzymatic system were observed. Superoxide dismutase (SOD) activity increased during initial stages and decreased catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) activities were detected. PMID:24974170

  7. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis

    PubMed Central

    Heringer, Angelo Schuabb; Barroso, Tatiana; Macedo, Amanda Ferreira; Santa-Catarina, Claudete; Souza, Gustavo Henrique Martins Ferreira; Floh, Eny Iochevet Segal; de Souza-Filho, Gonçalo Apolinário; Silveira, Vanildo

    2015-01-01

    The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E) and non-embryogenic (NE) callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L-1) of activated charcoal (AC). Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days) in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project), including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus. PMID:26035435

  8. Somatic Embryogenesis in Horse Chestnut (Aesculus hippocastanum L.).

    PubMed

    Capuana, Maurizio

    2016-01-01

    Embryogenic cultures of horse chestnut (Aesculus hippocastanum L.) can be obtained from different organs and tissues. We describe here the induction from stamen filaments and the procedures applied for the successive phases of somatic embryo development and maturation. Embryogenic tissues are obtained on Murashige and Skoog medium containing 9.0 μM 2,4-dichlorophenoxyacetic acid. Somatic embryos develop after transfer to hormone-free medium enriched with glutamine. Maturation and germination of isolated embryos are achieved by transfer to medium containing polyethylene glycol 4000 and activated charcoal, successive desiccation treatment, and cold storage at 4 °C for 8 weeks. PMID:26619878

  9. Somatic embryogenesis pathway for plant regeneration in Qinjiao (Gentiana macrophylla Pall.).

    PubMed

    Chen, Li Yu; Xu, Zi Qin

    2007-08-01

    Qinjiao (Gentiana macrophylla Pall.) is a perennial herbage native to northwestern China. It has been taken as a kind of Chinese herbs for more than one thousand years. The major secondary metabolite named as gentiopicroside accounts for 8% of the dry weight of roots. It has been used for medical purpose in the treatment with rheumatism, osteoarthritis, inflammatory or ulceration. Conventionally, Qinjiao is propagated by seeds, but the seeds should be planted in one year after harvesting and the germination rate is extremely low. These confine its spread by seeds after year-round storage. Therefore, plant regeneration from somatic cells will be an ideal way for its propagation. Plant regeneration from somatic cell can be divided into two ways: somatic embryogenesis and organogenesis. Similar to zygotic embryo, somatic embryo has a bipolar structure with both shoot and root poles. Somatic embryogenesis also goes through the same key stages as globular-, heart-, torpedo- and cotyledon-stages Somatic embryogenesis was first observed in carrot callus cells more than 45 years ago. Since then, plant regeneration via somatic embryogenesis has been studied in many important species. Though the plant regeneration of Qinjiao has been previously studied, there is no investigation of somatic embryogenesis reported in this plant. Therefore, the aim of our experiment is to confirm the somatic embryogenesis pathway of plant regeneration in Qinjiao. PMID:17966465

  10. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana.

    PubMed

    Ikeda-Iwai, Miho; Umehara, Mikihisa; Satoh, Shinobu; Kamada, Hiroshi

    2003-04-01

    Somatic embryogenesis is an obvious experimental evidence of totipotency, and is used as a model system for studying the mechanisms of de-differentiation and re-differentiation of plant cells. Although Arabidopsis is widely used as a model plant for genetic and molecular biological studies, there is no available tissue culture system for inducing somatic embryogenesis from somatic cells in this plant. We established a new tissue culture system using stress treatment to induce somatic embryogenesis in Arabidopsis. In this system, stress treatment induced formation of somatic embryos from shoot-apical-tip and floral-bud explants. The somatic embryos grew into young plantlets with normal morphology, including cotyledons, hypocotyls, and roots, and some embryo-specific genes (ABI3 and FUS3) were expressed in these embryos. Several stresses (osmotic, heavy metal ion, and dehydration stress) induced somatic embryogenesis, but the optimum stress treatment differed between different stressors. When we used mannitol to cause osmotic stress, the optimal conditions for somatic embryogenesis were 6-9 h of culture on solid B5 medium containing 0.7 m mannitol, after which the explants were transferred to B5 medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 4.5 microm), but no mannitol. Using this tissue culture system, we induced somatic embryogenesis in three major ecotypes of Arabidopsis thaliana-Ws, Col, and Ler. PMID:12662313

  11. Clonal propagation of Cyclamen persicum via somatic embryogenesis.

    PubMed

    Winkelmann, Traud

    2010-01-01

    Cyclamen (Cyclamen persicum) is an economically important ornamental pot plant with local use as cut flower as well. Traditionally, it is propagated via seeds, but interest is given in vegetative propagation of parental lines as well as superior single plants. Somatic embryogenesis is an efficient in vitro propagation method for many cyclamen cultivars. Starting from ovules of unpollinated flowers, callus is induced and propagated in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-(gamma,gamma-dimethylallylamino)purine (2iP). Transfer to hormone-free medium results in the differentiation of somatic embryos, which afterwards germinate on the same medium. These first culture stages take about 6-7 months and are carried out in complete darkness. Two to four months after the transfer to light, plantlets develop which can be acclimatized in the greenhouse. The regenerated plants are characterized by low percentages of somaclonal variation. This protocol has proven useful not only for clonal propagation, but also for artificial seed preparation, cryopreservation, genetic transformation and protoplast regeneration. PMID:20099110

  12. In vitro somatic embryogenesis and plantlet regeneration from immature male inflorescence of adult dura and tenera palms of Elaeis guineensis (Jacq.).

    PubMed

    Jayanthi, Madhavan; Susanthi, Bollarapu; Murali Mohan, Nandiganti; Mandal, Pranab Kumar

    2015-01-01

    We report here a method for plant regeneration through somatic embryogenesis from explants collected from immature male inflorescence of adult oil palm cultivated in India. Callus induction was successful from tissues of immature male inflorescence collected from both dura and tenera varieties of oil palm. A modified Y3 (Eeuwens) media supplemented with several additives and activated charcoal (3%) were used for the experiments. Out of four different auxin treatments, 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (picloram) produced maximum callus induction (82%) and it was not significantly different from 2,4-dichlorophenoxyacetic acid (2,4-D) and a combination of 2,4-D + picloram. The callus induction obtained with auxin α-naphthalene acetic acid was only 54% and it was significantly low as compared to the other treatments. Highest embryogenesis was obtained with a combination of 2,4-D + picloram (4.9%) followed by picloram (3.4%). Genotypic variation in response to the same auxins was observed both for callus induction and embryogenesis. Callus induction and embryogenesis ranged from 42 to 72% and 6.8 to 9.35%, respectively in tenera. The formation of embryogenic calli was marked by the appearance of white to yellowish globular or nodular structures which subsequently formed clear somatic embryos. Somatic embryogenesis was asynchronous and at one time we could find different stages of embryogenesis like the globular, torpedo and the cotyledonary stages. The somatic embryos when exposed to light in the same basal media along with 6-benzyladenine (18 µM), abscisic acid (3.78 µM) and gibberellic acid (5.78 µM) regenerated into plantlets. To the best of our knowledge this is the first report o f callus induction and somatic embryogenesis from immature male inflorescence of oil palm. PMID:26085976

  13. Proteomic Analysis of Immature Fraxinus mandshurica Cotyledon Tissues during Somatic Embryogenesis: Effects of Explant Browning on Somatic Embryogenesis

    PubMed Central

    Liu, Chun-Ping; Yang, Ling; Shen, Hai-Long

    2015-01-01

    Manchurian ash (Fraxinus mandshurica Rupr.) is a valuable hardwood species in Northeast China. In cultures of F. mandshurica, somatic embryos were produced mainly on browned explants. Therefore, we studied the mechanism of explant browning and its relationship with somatic embryogenesis (SE). We used explants derived from F. mandshurica immature zygotic embryo cotyledons as materials. Proteins were extracted from browned embryogenic explants, browned non-embryogenic explants, and non-brown explants, and then separated by 2-dimensional electrophoresis. Differentially and specifically expressed proteins were analyzed by mass spectrometry to identify proteins involved in the browning of explants and SE. Some stress response and defense proteins such as chitinases, peroxidases, aspartic proteinases, and an osmotin-like protein played important roles during SE of F. mandshurica. Our results indicated that explant browning might not be caused by the accumulation and oxidation of polyphenols only, but also by some stress-related processes, which were involved in programmed cell death (PCD), and then induced SE. PMID:26084048

  14. Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes.

    PubMed

    Luo, Y; Koop, H U

    1997-01-01

    Immature zygotic embryos of six ecotypes (Nd-0, Ler, C24, Col-0, Nossen, Ws-2) of Arabidopsis thaliana (L.) Heynh. were cultured in vitro. The same ecotypes, except Nossen, were used for studies on leaf protoplast culture. Experimental conditions for the induction of somatic embryos were established in both culture systems. In the case of immature zygotic embryos, the parameters investigated were the influence of developmental stage of the explant, the ecotypes used, and various concentrations and combinations of growth regulatory substances (phytohormones). In the ecotype Ler, structures were discovered which were very similar to those found in the early stages of zygotic embryo-genesis: globular structures at the end of a suspensor-like single file of cells were frequently observed. In the case of leaf protoplasts, high efficiencies of colony formation and plant regeneration occurred in Ws-2 and C24. A novel type of cell division pattern was found in Col-0 and C24, again highly reminiscent of the early division patterns in zygotic embryos. Similarities and differences between zygotic and somatic embryogenesis are discussed. PMID:9232908

  15. Genetic variability of somatic embryogenesis in tissue cultures of sugar beet breeding lines.

    PubMed

    Golovko, A

    2001-01-01

    Genetic variability of callus initiation and plant regeneration has been investigated among three sugar beet genotypes. It was found that TDZ has a genotype-independent effect on callus initiation and is responsible for more than a two-fold increase in the friable callus induction rate and more than a three-fold increase in the shoot regeneration rate from this callus. Along with the genotype-independent organogenesis, regeneration from callus occasionally went through the process of somatic embryogenesis in a highly genotype-specific manner. Despite fast and uncontrollable conversion of embryos to normal plants, it was possible to select and maintain repetitive embryogenic culture without loosing regeneration and root formation capabilities. Extensive experimenting with medium composition and culture conditions resulted in an optimal medium for maintenance of repetitive embryos. Comparing with BAP, low concentrations of TDZ provide higher level of adventitious shoot formation and do not induce vitrification of tissues. PMID:11944321

  16. Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis.

    PubMed

    Salo, Heikki M; Sarjala, Tytti; Jokela, Anne; Häggman, Hely; Vuosku, Jaana

    2016-03-01

    Somatic embryogenesis (SE) is one of the methods with the highest potential for the vegetative propagation of commercially important coniferous species. However, many conifers, including Scots pine (Pinus sylvestris L.), are recalcitrant to SE and a better understanding of the mechanisms behind the SE process is needed. In Scots pine SE cultures, embryo production is commonly induced by the removal of auxin, addition of abscisic acid (ABA) and the desiccation of cell masses by polyethylene glycol (PEG). In the present study, we focus on the possible link between the induction of somatic embryo formation and cellular stress responses such as hydrogen peroxide protection, DNA repair, changes in polyamine (PA) metabolism and autophagy. Cellular PA contents and the expression of the PA metabolism genes arginine decarboxylase (ADC), spermidine synthase (SPDS), thermospermine synthase (ACL5) and diamine oxidase (DAO) were analyzed, as well as the expression of catalase (CAT), DNA repair genes (RAD51, KU80) and autophagy-related genes (ATG5, ATG8) throughout the induction of somatic embryo formation in Scots pine SE cultures. Among the embryo-producing SE lines, the expression of ADC, SPDS, ACL5, DAO, CAT, RAD51, KU80 and ATG8 showed consistent profiles. Furthermore, the overall low expression of the stress-related genes suggests that cells in those SE lines were not stressed but recognized the ABA+PEG treatment as a signal to trigger the embryogenic pathway. In those SE lines that were unable to produce embryos, cells seemed to experience the ABA+PEG treatment mostly as osmotic stress and activated a wide range of stress defense mechanisms. Altogether, our results suggest that the direction to the embryogenic pathway is connected with cellular stress responses in Scots pine SE cultures. Thus, the manipulation of stress response pathways may provide a way to enhance somatic embryo production in recalcitrant Scots pine SE lines. PMID:26786537

  17. Analysis of the rolC promoter region involved in somatic embryogenesis-related activation in carrot cell cultures.

    PubMed Central

    Fujii, N; Yokoyama, R; Uchimiya, H

    1994-01-01

    In cell cultures of carrot (Daucus carota L.), somatic embryogenesis can be induced by transferring cells from a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) to one devoid of 2,4-D. Previous analysis of transgenic carrot cells containing the 5' non-coding sequence of the Ri plasmid rolC and a structural gene for bacterial beta-glucuronidase (uidA) has shown that the chimeric gene is actively expressed after induction of somatic embryogenesis. In this study, we demonstrate that activation of the rolC promoter is dependent on the process of embryo development but not on the duration of the cell culture in 2,4-D-free medium. We also analyzed the cis region of the rolC promoter that is responsible for somatic embryogenesis-related activation (SERA), namely relatively low beta-glucuronidase (GUS) activity in calli and proembryogenic masses (PEM) and high GUS activity in heart- and torpedo-stage embryos. When the -255-bp region of the rolC gene was used, SERA was retained. Internal deletions within this -255-bp region did not alter SERA by the rolC promoter. Furthermore, when a rolC promoter fragment (-848 to -94 bp) was fused to the cauliflower mosaic virus (CaMV) 35S core region (-90 to +6 bp), it conferred relatively low GUS activity in calli and PEM but high GUS activity in heart and torpedo embryos. When -848 to -255-bp or -255- to -94-bp fragments of the rolC promoter were fused to the same CaMV 35S core region, GUS activity patterns were not related to somatic embryogenesis. These results suggest that the combination of several regulatory regions in the rolC promoter may be required for SERA in carrot cell cultures. PMID:8016259

  18. Extensive Modulation of the Transcription Factor Transcriptome during Somatic Embryogenesis in Arabidopsis thaliana

    PubMed Central

    Gliwicka, Marta; Nowak, Katarzyna; Balazadeh, Salma; Mueller-Roeber, Bernd; Gaj, Malgorzata D.

    2013-01-01

    Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the process through which already differentiated cells reverse their developmental program and become embryogenic, provide a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic response was found for the majority of them. This study provides comprehensive data focused on the expression of TF genes during SE and suggests directions for further research on functional genomics of SE. PMID:23874927

  19. Interruption of Somatic Embryogenesis in Daucus carota L. by 5-Bromodeoxyuridine

    PubMed Central

    Thomas, John C.; Nessler, Craig; Katterman, Frank

    1989-01-01

    Embryogenic Daucus carota L. cells grown in 9 micromolar 2.4-dichlorophenoxyacetic acid are resistant to greater than 5 micromolar 5-bromodeoxyuridine (BrdU). In contrast, 5 micromolar BrdU strongly inhibits somatic embryogenesis within 24 hours after transfer of cells to an auxin-free medium. DNA synthesis rates in control and BrdU-treated cultures are rapid and similar; however, the DNA content does not reach levels as great in the presence of BrdU as in control cultures. BrdU substitutes for thymidine in the DNA in 28% of the available sites 48 hours after auxin removal. Following DNA repair, somatic embryogenesis resumes. BrdU DNA incorporation leads to somatic embryogenesis inhibition and provides an alternative to auxin treatment for the interruption of carrot cell culture differentiation. Images Figure 2 Figure 3 Figure 7 PMID:16666898

  20. Regeneration by somatic embryogenesis of triploid plants from endosperm of walnut, Juglans regia L. cv Manregian.

    PubMed

    Tulecke, W; McGranahan, G; Ahmadi, H

    1988-08-01

    Plants were regenerated by somatic embryogenesis from endosperm tissue of open-pollinated seeds of Juglans regia L. cv Manregian. These plants were obtained by growing endosperm tissue on media similar to those used for plant regeneration from walnut cotyledons (Tulecke and McGranahan 1985). The plants appear morphologically uniform and have a triploid chromosome number of 3n=48. Nine plants have been grown to a young sapling stage in soil. This embryogenic line from endosperm has been maintained in culture for two years by the process of repetitive somatic embryogenesis. PMID:24241869

  1. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    PubMed

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE. PMID:19153739

  2. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars

    PubMed Central

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-01-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1−l). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1−1) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N6-benzyladenine (BAP, 0.75 mg 1−l) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1−l) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further. PMID:23961149

  3. Microarray Analysis of Siberian Ginseng Cyclic Somatic Embryogenesis Culture Systems Provides Insight into Molecular Mechanisms of Embryogenic Cell Cluster Generation

    PubMed Central

    Zhou, Chenguang; Liu, Likun; Li, Chenghao

    2014-01-01

    Four systems of cyclic somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus Maxim) were used to study the mechanism of embryonic cell cluster generation. The first, direct somatic embryo induction (DSEI), generates secondary embryos directly from the primary somatic embryos; the second, direct embryogenic cell cluster induction (DEC)), induces embryogenic cell clusters directly from somatic embryos in agar medium. Subsequently, we found that when DEC-derived somatic embryos are transferred to suspension culture or a bioreactor culture, only somatic embryos are induced, and embryogenic cell clusters cannot form. Therefore, these new lines were named DEC cultured by liquid medium (ECS) and DEC cultured by bioreactor (ECB), respectively. Transmission electron microscopy showed that DEC epidermal cells contained a variety of inclusions, distinct from other lines. A cDNA library of DEC was constructed, and 1,948 gene clusters were obtained and used as probes. RNA was prepared from somatic embryos from each of the four lines and hybridized to a microarray. In DEC, 7 genes were specifically upregulated compared with the other three lines, and 4 genes were downregulated. EsXTH1 and EsPLT1, which were among the genes upregulated in DEC, were cloned using the rapid amplification of cDNA ends (RACE). Real-time quantitative PCR showed EsXTH1 was more highly expressed in DEC than in other lines throughout the culture cycle, and EsPLT1 expression in DEC increased as culture duration increased, but remained at a low expression level in other lines. These results suggest that EsXTH1 and EsPLT1 may be the essential genes that play important roles during the induction of embryogenic cell clusters. PMID:24743225

  4. Regeneration of Solanum nigrum by Somatic Embryogenesis, Involving Frog Egg-Like Body, a Novel Structure

    PubMed Central

    Xu, Kedong; Chang, Yunxia; Liu, Kun; Wang, Feige; Liu, Zhongyuan; Zhang, Ting; Li, Tong; Zhang, Yi; Zhang, Fuli; Zhang, Ju; Wang, Yan; Niu, Wei; Jia, Shuzhao; Xie, Hengchang; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum. PMID:24896090

  5. Somatic embryogenesis and organogenesis from cryopreserved shoot tips of Lilium Oriental hybrid ‘Siberia’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Somatic embryogenesis and organogenesis were achieved from cryopreserved shoot tips of Lilium Oriental hybrid ‘Siberia’. Shoot tips (1.5-2 mm) were excised from adventitious shoots that were regenerated from basal leaf segments. Precultured shoot tips were then treated with MS containing 0.4 M sucro...

  6. Loss of CMD2-mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis.

    PubMed

    Beyene, Getu; Chauhan, Raj Deepika; Wagaba, Henry; Moll, Theodore; Alicai, Titus; Miano, Douglas; Carrington, James C; Taylor, Nigel J

    2016-09-01

    Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer-preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)-mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild-type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2-type varieties TME 3 and TME 7, but the CMD1-type cultivar TMS 30572 and the CMD3-type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2-mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field-level resistance in CMD2-type cultivars presently grown by farmers in East Africa, where CMD pressure is high. PMID:26662210

  7. Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia W. T. Wang.

    PubMed

    Ouyang, Yao; Chen, Yulu; Lü, Jinfeng; Teixeira da Silva, Jaime A; Zhang, Xinhua; Ma, Guohua

    2016-01-01

    An efficient protocol providing a dual regeneration pathway via direct shoot organogenesis and somatic embryogenesis for an endangered species, Metabriggsia ovalifolia W. T. Wang, was established from leaf explants. When applied at 2.5 μM, the cytokinins 6-benzyladenine (BA) or thidiazuron (TDZ) and the auxins indole-3-butyric acid (IBA), α-naphthaleneacetic acid (NAA) and indole-3-acetic acid (IAA) could induce shoots when on basal Murashige and Skoog (MS) medium. BA and TDZ could induce more adventitious shoots (19.1 and 31.2/explant, respectively) than NAA (4.6/explant), IBA (5.7/explant) or IAA (6.4/explant). BA and TDZ at 5-10 μM could induce both shoots and somatic embryos. A higher concentration of TDZ (25 μM) induced only somatic embryos (39.8/explant). The same concentration of BA induced both adventitious shoots (23.6/explant) and somatic embryos (9.7/explant). Thus, somatic embryogenesis in this plant needs a high cytokinin concentration (BA; TDZ), as evidenced by histology. Somatic embryos germinated easily when left on the same media, but formed adventitious roots in two weeks on MS supplemented with 0.5 μM NAA, 0.5 μM IBA and 0.1% activated charcoal. Over 93% of plantlets survived following acclimatization and transfer to a mixture of sand and vermiculite (1:1, v/v) in trays. PMID:27090564

  8. Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia W. T. Wang

    PubMed Central

    Ouyang, Yao; Chen, Yulu; Lü, Jinfeng; Teixeira da Silva, Jaime A.; Zhang, Xinhua; Ma, Guohua

    2016-01-01

    An efficient protocol providing a dual regeneration pathway via direct shoot organogenesis and somatic embryogenesis for an endangered species, Metabriggsia ovalifolia W. T. Wang, was established from leaf explants. When applied at 2.5 μM, the cytokinins 6-benzyladenine (BA) or thidiazuron (TDZ) and the auxins indole-3-butyric acid (IBA), α-naphthaleneacetic acid (NAA) and indole-3-acetic acid (IAA) could induce shoots when on basal Murashige and Skoog (MS) medium. BA and TDZ could induce more adventitious shoots (19.1 and 31.2/explant, respectively) than NAA (4.6/explant), IBA (5.7/explant) or IAA (6.4/explant). BA and TDZ at 5–10 μM could induce both shoots and somatic embryos. A higher concentration of TDZ (25 μM) induced only somatic embryos (39.8/explant). The same concentration of BA induced both adventitious shoots (23.6/explant) and somatic embryos (9.7/explant). Thus, somatic embryogenesis in this plant needs a high cytokinin concentration (BA; TDZ), as evidenced by histology. Somatic embryos germinated easily when left on the same media, but formed adventitious roots in two weeks on MS supplemented with 0.5 μM NAA, 0.5 μM IBA and 0.1% activated charcoal. Over 93% of plantlets survived following acclimatization and transfer to a mixture of sand and vermiculite (1:1, v/v) in trays. PMID:27090564

  9. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions.

    PubMed

    Mordhorst, A P; Voerman, K J; Hartog, M V; Meijer, E A; van Went, J; Koornneef, M; de Vries, S C

    1998-06-01

    Embryogenesis in plants can commence from cells other than the fertilized egg cell. Embryogenesis initiated from somatic cells in vitro is an attractive system for studying early embryonic stages when they are accessible to experimental manipulation. Somatic embryogenesis in Arabidopsis offers the additional advantage that many zygotic embryo mutants can be studied under in vitro conditions. Two systems are available. The first employs immature zygotic embryos as starting material, yielding continuously growing embryogenic cultures in liquid medium. This is possible in at least 11 ecotypes. A second, more efficient and reproducible system, employing the primordia timing mutant (pt allelic to hpt, cop2, and amp1), was established. A significant advantage of the pt mutant is that intact seeds, germinated in 2,4-dichlorophenoxyacetic acid (2, 4-D) containing liquid medium, give rise to stable embryonic cell cultures, circumventing tedious hand dissection of immature zygotic embryos. pt zygotic embryos are first distinguishable from wild type at early heart stage by a broader embryonic shoot apical meristem (SAM). In culture, embryogenic clusters originate from the enlarged SAMs. pt somatic embryos had all characteristic embryo pattern elements seen in zygotic embryos, but with higher and more variable numbers of cells. Embryogenic cell cultures were also established from seedling, of other mutants with enlarged SAMs, such as clavata (clv). pt clv double mutants showed additive effects on SAM size and an even higher frequency of seedlings producing embryogenic cell lines. pt clv double mutant plants had very short fasciated inflorescence stems and additive effects on the number of rosette leaves. This suggests that the PT and CLV genes act in independent pathways that control SAM size. An increased population of noncommitted SAM cells may be responsible for facilitated establishment of somatic embryogenesis in Arabidopsis. PMID:9611173

  10. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions.

    PubMed Central

    Mordhorst, A P; Voerman, K J; Hartog, M V; Meijer, E A; van Went, J; Koornneef, M; de Vries, S C

    1998-01-01

    Embryogenesis in plants can commence from cells other than the fertilized egg cell. Embryogenesis initiated from somatic cells in vitro is an attractive system for studying early embryonic stages when they are accessible to experimental manipulation. Somatic embryogenesis in Arabidopsis offers the additional advantage that many zygotic embryo mutants can be studied under in vitro conditions. Two systems are available. The first employs immature zygotic embryos as starting material, yielding continuously growing embryogenic cultures in liquid medium. This is possible in at least 11 ecotypes. A second, more efficient and reproducible system, employing the primordia timing mutant (pt allelic to hpt, cop2, and amp1), was established. A significant advantage of the pt mutant is that intact seeds, germinated in 2,4-dichlorophenoxyacetic acid (2, 4-D) containing liquid medium, give rise to stable embryonic cell cultures, circumventing tedious hand dissection of immature zygotic embryos. pt zygotic embryos are first distinguishable from wild type at early heart stage by a broader embryonic shoot apical meristem (SAM). In culture, embryogenic clusters originate from the enlarged SAMs. pt somatic embryos had all characteristic embryo pattern elements seen in zygotic embryos, but with higher and more variable numbers of cells. Embryogenic cell cultures were also established from seedling, of other mutants with enlarged SAMs, such as clavata (clv). pt clv double mutants showed additive effects on SAM size and an even higher frequency of seedlings producing embryogenic cell lines. pt clv double mutant plants had very short fasciated inflorescence stems and additive effects on the number of rosette leaves. This suggests that the PT and CLV genes act in independent pathways that control SAM size. An increased population of noncommitted SAM cells may be responsible for facilitated establishment of somatic embryogenesis in Arabidopsis. PMID:9611173

  11. Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Somatic embryogenesis was obtained from immature cotyledon explants that were cultured on half-strength Murashige and Skoog (MS) salts and vitamins with 5.4 uM naphthaleneacetic acid (NAA) and 0.2 uM thidiazuron (TDZ) plus a 4x4 factorial combination of 0,9.8, 34.6, or 49.2 uM indole-3-butyric acid ...

  12. Regulation of organogenesis and somatic embryogenesis by auxin in melon, Cucumis melo L.

    PubMed

    Tabei, Y; Kanno, T; Nishio, T

    1991-08-01

    Various tissues of seeds and seedlings of melon were cultured in vitro to study the effects of auxin concentration on organogenesis and embryogenesis. Adventitious shoots and somatic embryos were formed from explants of cotyledons of mature seeds, hypocotyls of seedlings, and leaves and petioles of young plantlets. Expanded cotyledons of seedlings formed only adventitious shoots. All tissues responded similarly to the 2,4-D concentration in the media, that is, adventitious shoots were formed at low concentration, callus proliferated without differentiation at intermediate concentration and somatic embryos were induced at high concentration. Cotyledons of mature seeds formed both adventitious shoots and somatic embryos more efficiently than any other tissues cultured.Effects of three auxins, 2,4-D, NAA and IAA, on organogenesis and embryogenesis were compared using cotyledons of mature seeds. Adventitious shoots were formed at low level of auxins (0 to 0.01 mg/l 2,4-D; 0 to 0.1 mg/l NAA; 0 to 1.0 mg/l IAA), and embryos were formed at high level of auxins (1.0 to 2.0 mg/l 2,4-D; 3.0 to 10.0 mg/l NAA; 20.0 to 100.0 mg/l IAA). IAA gave more efficient shoot formation and embryogenesis than the other auxins. PMID:24221584

  13. Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents.

    PubMed

    Pullman, Gerald S; Zeng, Xiaoyan; Copeland-Kamp, Brandi; Crockett, Jonathan; Lucrezi, Jacob; May, Sheldon W; Bucalo, Kylie

    2015-02-01

    A major barrier to the commercialization of somatic embryogenesis technology in loblolly pine (Pinus taeda L.) is recalcitrance of some high-value crosses to initiate embryogenic tissue (ET) and continue early-stage somatic embryo growth. Developing initiation and multiplication media that resemble the seed environment has been shown to decrease this recalcitrance. Glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid and dehydroascorbate analyses were performed weekly throughout the sequence of seed development for female gametophyte and zygotic embryo tissues to determine physiological concentrations. Major differences in stage-specific oxidation-reduction (redox) agents were observed. A simple bioassay was used to evaluate potential growth-promotion of natural and inorganic redox agents added to early-stage somatic embryo growth medium. Compounds showing statistically significant increases in early-stage embryo growth were then tested for the ability to increase initiation of loblolly pine. Low-cost reducing agents sodium dithionite and sodium thiosulfate increased ET initiation for loblolly pine and Douglas fir (Mirb) Franco. Germination medium supplementation with GSSG increased somatic embryo germination. Early-stage somatic embryos grown on medium with or without sodium thiosulfate did not differ in GSH or GSSG content, suggesting that sodium thiosulfate-mediated growth stimulation does not involve GSH or GSSG. We have developed information demonstrating that alteration of the redox environment in vitro can improve ET initiation, early-stage embryo development and somatic embryo germination in loblolly pine. PMID:25716878

  14. Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides.

    PubMed

    Duchow, Stefanie; Dahlke, Renate I; Geske, Thomas; Blaschek, Wolfgang; Classen, Birgit

    2016-11-01

    Root extracts of the medicinal plant Pelargonium sidoides, native to South Africa, are used globally for the treatment of common cold and cough. Due to an increasing economic commercialization of P. sidoides remedies, wild collections of root material should be accompanied by effective methods for plant propagation like somatic embryogenesis. Based on this, the influence of arabinogalactan-proteins (AGPs) on somatic embryogenesis and plant propagation of P. sidoides has been investigated. High-molecular weight AGPs have been isolated from dried roots as well as from cell cultures of P. sidoides with yields between 0.1% and 0.9%, respectively. AGPs are characterized by a 1,3-linked Galp backbone, branched at C6 to 1,6-linked Galp side chains terminated by Araf and to a minor extent by GlcpA, Galp or Rhap. Treatment of explants of P. sidoides with AGPs from roots or suspension culture over 5.5 weeks resulted in effective stimulation of somatic embryo development and plant regeneration. PMID:27516259

  15. Influence of low temperature preincubation on somatic embryogenesis and ethylene emanation from orchardgrass leaves

    NASA Technical Reports Server (NTRS)

    Tomaszewski, Z. Jr; Kuklin, A. I.; Sams, C. E.; Conger, B. V.

    1994-01-01

    The objectives of this study were to determine the effects of low temperature (4 degrees C) preincubation on somatic embryogenesis from orchardgrass (Dactylis glomerata L.) leaf cultures and to relate these effects to ethylene emanation during the preincubation and incubation periods. Experiments were also conducted with an ethylene biosynthesis inhibitor aminooxyacetic acid (AOA). Segments from the innermost two leaves were cultured on SH medium with 30 micromoles dicamba at 4 degrees C for 1 to 7 d before transfer to 21 degrees C. Results from a paired design showed that the embryogenic response of leaf segments preincubated at 4 degrees C was equal or superior to nonpreincubated leaves at all time periods. Ethylene emanation was decreased during the low temperature incubation. Transfer of leaf segments from 4 degrees C to 21 degrees C was accompanied by a burst of ethylene which rose to control levels within 30 min. AOA at 20 and 40 micromoles decreased ethylene emanation but did not stimulate the embryogenic response. We conclude that the stimulation of somatic embryogenesis by low temperature is probably due to factors other than suppression of ethylene biosynthesis.

  16. AGAMOUS-Like15 Promotes Somatic Embryogenesis in Arabidopsis and Soybean in Part by the Control of Ethylene Biosynthesis and Response1[C][W][OA

    PubMed Central

    Zheng, Qiaolin; Zheng, Yumei; Perry, Sharyn E.

    2013-01-01

    Many of the regulatory processes occurring during plant embryogenesis are still unknown. Relatively few cells are involved, and they are embedded within maternal tissues, making this developmental phase difficult to study. Somatic embryogenesis is a more accessible system, and many important regulatory genes appear to function similar to zygotic development, making somatic embryogenesis a valuable model for the study of zygotic processes. To better understand the role of the Arabidopsis (Arabidopsis thaliana) MADS factor AGAMOUS-Like15 (AGL15) in the promotion of somatic embryogenesis, direct target genes were identified by chromatin immunoprecipitation-tiling arrays and expression arrays. One potential directly up-regulated target was At5g61590, which encodes a member of the ethylene response factor subfamily B-3 of APETALA2/ETHYLENE RESPONSE FACTOR transcription factors and is related to Medicago truncatula SOMATIC EMBRYO-RELATED FACTOR1 (MtSERF1), which has been shown to be required for somatic embryogenesis in M. truncatula. Here, we report confirmation that At5g61590 is a directly expressed target of AGL15 and that At5g61590 is essential for AGL15’s promotion of somatic embryogenesis. Because At5g61590 is a member of the ETHYLENE RESPONSE FACTOR family, effects of ethylene on somatic embryogenesis were investigated. Precursors to ethylene stimulate somatic embryogenesis, whereas inhibitors of ethylene synthesis or perception reduce somatic embryogenesis. To extend findings to a crop plant, we investigated the effects of ethylene on somatic embryogenesis in soybean (Glycine max). Furthermore, we found that a potential ortholog of AGL15 in soybean (GmAGL15) up-regulates ethylene biosynthesis and response, including direct regulation of soybean orthologs of At5g61590/MtSERF1 named here GmSERF1 and GmSERF2, in concordance with the M. truncatula nomenclature. PMID:23457229

  17. First Report of Plant Regeneration via Somatic Embryogenesis from Shoot Apex-derived Callus of Hedychium muluense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants were successfully regenerated via somatic embryogenesis from shoot apex-derived callus of Hedychium muluense R.M. Smith, an important monocotyledonous ornamental ginger plant. Callus was induced on a modified Murashige and Skoog (MS) medium supplemented with 9.05 µM 2-4, D and 4.6µM kinetin. ...

  18. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton.

    PubMed

    Zhou, Ting; Yang, Xiyan; Guo, Kai; Deng, Jinwu; Xu, Jiao; Gao, Wenhui; Lindsey, Keith; Zhang, Xianlong

    2016-06-01

    Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling

  19. Histological analysis of indirect somatic embryogenesis in the Marsh clubmoss Lycopodiella inundata (L.) Holub (Pteridophytes).

    PubMed

    Atmane; Blervacq; Michaux-Ferriere; Vasseur

    2000-07-28

    An efficient in vitro plant regeneration method was developed for Lycopodiella inundata (L.) Holub, an endangered medicinal Lycopod (Pteridophytes). Vegetative apices were used as explant material. Nodular calluses were established after three cycles (13 weeks each) on a medium containing a few minerals and organic compounds and supplemented with 0.05 µM 3-indolebutyric acid (IBA) and 1.4 µM kinetin (Kin). Propagation was achieved every 13 weeks on this callus medium (CM). When nodular calluses were transferred on a medium supplemented with 2.5 µM IBA and 0.33 µM gibberellic acid (GA(3)) designated as embryogenic medium (EM), organized structures appeared and developed into plantlets. Development phases were characterized by histological studies. Some phases of zygotic embryogenesis previously described for Lycopods were observed in L. inundata. Histological analyses established that an indirect somatic embryo was derived from a single embryogenic cell by following the zygotic developmental pathway. As this phenomenon has not previously been reported in Lycopods, a comparison between somatic and zygotic embryos is discussed based upon morphology and histology. PMID:10936522

  20. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim.

    PubMed

    Tao, Lei; Zhao, Yue; Wu, Ying; Wang, Qiuyu; Yuan, Hongmei; Zhao, Lijuan; Guo, Wendong; You, Xiangling

    2016-03-01

    Somatic embryogenesis (SE) has been studied as a model system to understand molecular events in physiology, biochemistry, and cytology during plant embryo development. In particular, it is exceedingly difficult to access the morphological and early regulatory events in zygotic embryos. To understand the molecular mechanisms regulating early SE in Eleutherococcus senticosus Maxim., we used high-throughput RNA-Seq technology to investigate its transcriptome. We obtained 58,327,688 reads, which were assembled into 75,803 unique unigenes. To better understand their functions, the unigenes were annotated using the Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. Digital gene expression libraries revealed differences in gene expression profiles at different developmental stages (embryogenic callus, yellow embryogenic callus, global embryo). We obtained a sequencing depth of >5.6 million tags per sample and identified many differentially expressed genes at various stages of SE. The initiation of SE affected gene expression in many KEGG pathways, but predominantly that in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. This information on the changes in the multiple pathways related to SE induction in E. senticosus Maxim. embryogenic tissue will contribute to a more comprehensive understanding of the mechanisms involved in early SE. Additionally, the differentially expressed genes may act as molecular markers and could play very important roles in the early stage of SE. The results are a comprehensive molecular biology resource for investigating SE of E. senticosus Maxim. PMID:26657036

  1. Somatic embryogenesis and direct as well as indirect organogenesis in Lilium pumilum DC. Fisch., an endangered ornamental and medicinal plant.

    PubMed

    Zhang, Jing; Gai, MeiZhu; Li, XueYan; Li, TianLai; Sun, HongMei

    2016-10-01

    Somatic embryogenesis and organogenesis in Lilium pumilum were successfully regulated by picloram, α-naphthaleneacetic acid (NAA), and 6-benzyladenine (BA). In organogenesis, the highest shoot regeneration frequency (92.5%) was obtained directly from bulb scales on Murashige and Skoog (MS) medium containing 2.0 mg L(-1) BA and 0.2 mg L(-1) NAA, while organogenic callus (OC) formed from leaves on MS medium supplemented with 1.0 mg L(-1) BA and 0.5 mg L(-1) NAA. Following subculture, 76.7% of OC regenerated shoots. In somatic embryogenesis, the combination of picloram and NAA increased the amount of embryogenic callus (EC) that formed with a maximum on 90.7% of all explants which formed 11 somatic embryos (SEs) per explant. Differences between EC and OC in cellular morphology and cell differentiation fate were easily observed. SEs initially formed via an exogenous or an endogenous origin. The appearance of a protoderm in heart-shaped SE and the bipolar shoot-root development in oval-shaped SE indicated true somatic embryogenesis. This protocol provides a new and detailed regulation and histological examination of regeneration pattern in L. pumilum. PMID:27285948

  2. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange.

    PubMed

    Wu, Xiao-Meng; Liu, Mei-Ya; Ge, Xiao-Xia; Xu, Qiang; Guo, Wen-Wu

    2011-03-01

    Somatic embryogenesis (SE) is a remarkable process of plant somatic cells developing into an embryo capable of forming a complete plant. MiRNAs play important roles in plant development by regulating expression of their target genes, but its function in SE has rarely been studied. Herein, ten conserved miRNAs with critical functions in plant development are detected by stem-loop qRT-PCR in the SE system of Valencia sweet orange. Sixteen unigenes from citrus are predicted to be targeted by six of the miRNAs. Cleavage sites on 15 of these target mRNAs are mapped by 5'RACE, of which ten are reported in this study. Transcript abundances of the 16 target unigenes are detected by qRT-PCR during SE process. Stage and tissue-specific expressions of miRNAs and their targets suggest their possible modulation on SE of citrus callus: miR156, 168 and 171 exert regulatory function during somatic embryo induction process; miR159, 164, 390 and 397 are related to globular-shaped embryo formation; miR166, 167 and 398 are required for cotyledon-shaped embryo morphogenesis; in addition, target genes of miR164, 166 and 397 are associated with SE disability of nonembryogenic callus. Exploration of miRNA-mediated modulation on SE is expected to provide new insights into plant cell totipotency, as well as how to maintain and enhance the embryogenic capacity of somatic cells. PMID:21103993

  3. Analysis of trace elements during different developmental stages of somatic embryogenesis in Plantago ovata Forssk using energy dispersive X-ray fluorescence.

    PubMed

    Saha, Priyanka; Raychaudhuri, Sarmistha Sen; Sudarshan, Mathummal; Chakraborty, Anindita

    2010-06-01

    Energy dispersive X-ray fluorescence (ED-XRF) technique has been used for the determination of trace element profile during different developmental stages of somatic embryogenic callus of an economically important medicinal plant, Plantago ovata Forssk. Somatic embryogenesis is a plant tissue culture-based technique, which is used for plant regeneration and crop improvement. In the present investigation, elemental content was analysed using ED-XRF technique during different developmental stages and also determine the effect of additives--casein hydrolysate and coconut water on the trace elemental profile of embryogenic callus tissue of P. ovata. Subsequent experiments showed significant alteration in the concentration of K, Ca, Mn, Fe, Zn, Cu, Br, and Sr in both the embryogenic and non-embryogenic callus. Higher K, Ca, Fe, Cu, and Zn accumulation was in embryogenic tissue stage compared to other stages, suggesting these elements are crucial for successful embryogenesis. The results suggest that this information could be useful for formulating a media for in vitro embryo induction of P. ovata. PMID:19696971

  4. Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors.

    PubMed

    Schiavone, F M; Cooke, T J

    1987-06-01

    The effects of various exogenous auxins and polar auxin transport inhibitors on somatic embryogenesis in carrot cultures were investigated. Indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid do not disrupt the sequence or the polarity of individual stages in embryo development, but tend to cause developing embryos to revert to undifferentiated callus, with increasing frequency in later embryo stages. The transport inhibitors, N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid, block morphological transitions to the subsequent stage; for example, they cause the formation of enlarged globular and oblong embryos. Heart embryos in these treatments usually develop additional lateral growth axes. These results shed light on the role of auxin and its polar transport in somatic embryogenesis. PMID:3607884

  5. [Investigation of molecular-genetic heterogeneity of clematis plants (Clematis L.) obtained by organogenesis and somatic embryogenesis in vitro].

    PubMed

    Mitrofanova, I V; Galaev, A V; Sivolap, Iu M

    2003-01-01

    Genome variability of in vitro micropropagated Clematis plants was established. The optimum concentrations of BAP and zeatin in the culture medium regulating in vitro morphogenetic processes in clematis explants cv. Serenada Kryma were determined. Molecular-genetic analysis of Clematis plants obtained via in vitro somatic embryogenesis and organogenesis was carried out. Using ISSR primers 105 amplicons have been revealed, six of them were polymorphic. The mean index of heterogeneity of clematis plants was 5.7%. PMID:15067940

  6. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck).

    PubMed

    Pan, Zhiyong; Guan, Rui; Zhu, Shiping; Deng, Xiuxin

    2009-02-01

    Two dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to study the somatic embryogenesis (SE) in Valencia sweet orange (Citrus sinensis Osbeck). Twenty-four differentially expressed proteins were identified at five time points of citrus SE (0, 1, 2, 3, 4 weeks after embryo initiation) covering globular, heart/torpedo and cotyledon-shaped embryo stages. The general expression patterns for these proteins were consistent with those appeared at 4 weeks of citrus SE. The most striking feature of our study was that five proteins were predicted to be involved in glutathione (GSH) metabolism and anti-oxidative stress, and they exhibited different expression patterns during SE. Based on that oxidative stress has been validated to enhance SE, the preferential representation for anti-oxidative proteins suggests that they could have a developmental role in citrus SE. Some proteins involved in cell division, photosynthesis and detoxification were also identified, and their possible roles in citrus SE were discussed. PMID:18989674

  7. A Chimeric Arabinogalactan Protein Promotes Somatic Embryogenesis in Cotton Cell Culture1[W][OA

    PubMed Central

    Poon, Simon; Heath, Robyn Louise; Clarke, Adrienne Elizabeth

    2012-01-01

    Arabinogalactan proteins (AGPs) are a family of extracellular plant proteoglycans implicated in many aspects of plant growth and development, including in vitro somatic embryogenesis (SE). We found that specific AGPs were produced by cotton (Gossypium hirsutum) calli undergoing SE and that when these AGPs were isolated and incorporated into tissue culture medium, cotton SE was promoted. When the AGPs were partly or fully deglycosylated, SE-promoting activity was not diminished. Testing of AGPs separated by reverse-phase high-performance liquid chromatography revealed that the SE-promoting activity resided in a hydrophobic fraction. We cloned a full-length complementary DNA (cotton PHYTOCYANIN-LIKE ARABINOGALACTAN-PROTEIN1 [GhPLA1]) that encoded the protein backbone of an AGP in the active fraction. It has a chimeric structure comprising an amino-terminal signal sequence, a phytocyanin-like domain, an AGP-like domain, and a hydrophobic carboxyl-terminal domain. Recombinant production of GhPLA1 in tobacco (Nicotiana tabacum) cells enabled us to purify and analyze a single glycosylated AGP and to demonstrate that this chimeric AGP promotes cotton SE. Furthermore, the nonglycosylated phytocyanin-like domain from GhPLA1, which was bacterially produced, also promoted SE, indicating that the glycosylated AGP domain was unnecessary for in vitro activity. PMID:22858635

  8. Glutathione-S-Transferase is Detected During Somatic Embryogenesis in Chicory

    PubMed Central

    Galland, Rachel; Blervacq, Anne-Sophie; Blassiau, Christelle; Smagghe, Benoît; Decottignies, Jean-Pierre

    2007-01-01

    Glutathione S-tranferases (GSTs) are a heterogeneous family of proteins, which perform diverse pivotal catalytic and non-enzymatic functions during plant development and in plant stress responses. Previous studies have shown that a GST activity (EC 2.5.1.18) is closely linked with the precocious phases of somatic embryogenesis in leaf tissues of an interspecific chicory hybrid (Cichorium intybus L. var. sativa × C. endivia L. var. latifolia). In order to learn more about the involvement of this enzyme in this process, in situ-hybridization as well as immunolocalization were performed in parallel. GST-mRNAs and proteins were colocalized in small veins, particularly in young protoxylem cell walls. During cell reactivation, the in situ and protein signals became less intense and were associated with chloroplasts. The GST-mRNAs and corresponding proteins were not always colocalized in the same tissues. While high amounts of transcripts could be detected in multicellular embryos, the proteins were not well labeled. Our results indicated that GSTs belong to a complex anti-oxidant mechanism within the cell, and also at the cell wall level. GSTs presence in reactivated cell and multicellular embryos is discussed in relation to redox cell status. PMID:19516999

  9. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation.

    PubMed

    Colcombet, Jean; Boisson-Dernier, Aurélien; Ros-Palau, Roc; Vera, Carlos E; Schroeder, Julian I

    2005-12-01

    Among the >200 members of the leucine-rich repeat receptor kinase family in Arabidopsis thaliana, only a few have been functionally characterized. Here, we report a critical function in anther development for the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 (SERK1) and SERK2 genes. Both SERK1 and SERK2 are expressed widely in locules until stage 6 anthers and are more concentrated in the tapetal cell layer later. Whereas serk1 and serk2 single insertion mutants did not show developmental phenotypes, serk1 serk2 double mutants were not able to produce seeds because of a lack of pollen development in mutant anthers. In young buds, double mutant anthers developed normally, but serk1 serk2 microsporangia produced more sporogenous cells that were unable to develop beyond meiosis. Furthermore, serk1 serk2 double mutants developed only three cell layers surrounding the sporogenous cell mass, whereas wild-type anthers developed four cell layers. Further confocal microscopic and molecular analyses showed that serk1 serk2 double mutant anthers lack development of the tapetal cell layer, which accounts for the microspore abortion and male sterility. Taken together, these findings demonstrate that the SERK1 and SERK2 receptor kinases function redundantly as an important control point for sporophytic development controlling male gametophyte production. PMID:16284306

  10. Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling

    PubMed Central

    Fayos, Oreto; Vallés, María P.; Garcés-Claver, Ana; Mallor, Cristina; Castillo, Ana M.

    2015-01-01

    The use of doubled haploids in onion breeding is limited due to the low gynogenesis efficiency of this species. Gynogenesis capacity from Spanish germplasm, including the sweet cultivar Fuentes de Ebro, the highly pungent landrace BGHZ1354 and the two Valenciana type commercial varieties Recas and Rita, was evaluated and optimized in this study. The OH-1 population, characterized by a high gynogenesis induction, was used as control. Growing conditions of the donor plants were tested with a one-step protocol and field plants produced a slightly higher percentage of embryogenesis induction than growth chamber plants. A one-step protocol was compared with a two-step protocol for embryogenesis induction. Spanish germplasm produced a 2–3 times higher percentage of embryogenesis with the two-step protocol, Recas showing the highest percentage (2.09%) and Fuentes de Ebro the lowest (0.53%). These percentages were significantly lower than those from the OH-1 population, with an average of 15% independently of the protocol used. The effect of different containers on plant regeneration was tested using both protocols. The highest percentage of acclimated plants was obtained with the two-step protocol in combination with Eco2box (70%), whereas the lowest percentage was observed with glass tubes in the two protocols (20–23%). Different amiprofos-methyl (APM) treatments were applied to embryos for chromosome doubling. A similar number of doubled haploid plants were recovered with 25 or 50 μM APM in liquid medium. However, the application of 25 μM in solid medium for 24 h produced the highest number of doubled haploid plants. Somatic regeneration from flower buds of haploid and mixoploid plants proved to be a successful approach for chromosome doubling, since diploid plants were obtained from the four regenerated lines. In this study, doubled haploid plants were produced from the four Spanish cultivars, however further improvements are needed to increase their gynogenesis

  11. Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin

    PubMed Central

    Mira, Mohamed M.; Wally, Owen S. D.; Elhiti, Mohamed; El-Shanshory, Adel; Reddy, Dhadi S.; Hill, Robert D.; Stasolla, Claudio

    2016-01-01

    Previous studies have shown that the beneficial effect of suppression of the Arabidopsis phytoglobin 2 gene, PGB2, on somatic embryogenesis occurs through the accumulation of nitric oxide (NO) within the embryogenic cells originating from the cultured explant. NO activates the expression of Allene oxide synthase (AOS) and Lipoxygenase 2 (LOX2), genes encoding two key enzymes of the jasmonic acid (JA) biosynthetic pathway, elevating JA content within the embryogenic tissue. The number of embryos in the single aos1-1 mutant and pgb2-aos1-1 double mutant declined, and was not rescued by increasing levels of NO stimulating embryogenesis in wild-type tissue. NO also influenced JA responses by up-regulating PLANT DEFENSIN 1 (PDF1) and JASMONATE-ZIM-PROTEIN (JAZ1), as well as down-regulating MYC2. The NO and JA modulation of MYC2 and JAZ1 controlled embryogenesis. Ectopic expression of JAZ1 or suppression of MYC2 promoted the formation of somatic embryos, while repression of JAZ1 and up-regulation of MYC2 reduced the embryogenic performance. Sustained expression of JAZ1 induced the transcription of several indole acetic acid (IAA) biosynthetic genes, resulting in higher IAA levels in the embryogenic cells. Collectively these data fit a model integrating JA in the PGB2 regulation of Arabidopsis embryogenesis. Suppression of PGB2 increases JA through NO. Elevated levels of JA repress MYC2 and induce JAZ1, favoring the accumulation of IAA in the explants and the subsequent production of somatic embryos. PMID:26962208

  12. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis.

    PubMed

    Bai, Bo; Su, Ying Hua; Yuan, Jia; Zhang, Xian Sheng

    2013-07-01

    Somatic embryogenesis is an important experimental model for studying cellular and molecular mechanisms of early embryo development. Although it has long been known that removal of exogenous auxin from medium results in somatic embryogenesis, the mechanisms underlying the initiation of somatic embryos (SEs) are poorly understood. In this study, we showed that YUCCAs (YUCs) encoding key enzymes in auxin biosynthesis are required for SE induction in Arabidopsis. To identify other factors mediating SE initiation, we performed transcriptional profiling and gene expression analysis. The results showed that genes involved in ethylene biosynthesis and its responses were down-regulated during SE initiation. Ethylene level decreased progressively during SE initiation, whereas treatment with the metabolic precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), or mutation of ETHYLENE-OVERPRODUCTION1 (ETO1) disrupted SE induction, suggesting that ethylene plays a role in this process. Suppression of SE induction was also observed in the constitutive triple response 1 (ctr1) mutant, in which ethylene signaling was enhanced. These results indicate that down-regulation of not only ethylene biosynthesis, but also ethylene response is critical for SE induction. We further showed that ethylene disturbed SE initiation through inhibiting YUC expression that might be involved in local auxin biosynthesis and subsequent auxin distribution. Our results provide new information on the mechanisms of hormone-regulated SE initiation. PMID:23271028

  13. Rorippa indica Regeneration via Somatic Embryogenesis Involving Frog Egg-like Bodies Efficiently Induced by the Synergy of Salt and Drought Stresses

    PubMed Central

    Xu, Kedong; Chang, Yunxia; Zhang, Yi; Liu, Kun; Zhang, Ju; Wang, Wei; Li, Zhanshuai; Wu, Jianxin; Ma, Shuya; Xin, Yuexing; Li, Chunjing; Zhou, Qianbei; Qiu, Hanhan; Pi, Yumei; Wang, Youwei; Tan, Guangxuan; Li, Chengwei

    2016-01-01

    Frog egg-like bodies (FELBs), novel somatic embryogenesis (SE) structures first observed in Solanum nigrum, were induced in Rorippa indica. NaCl-mediated salt and mannitol-mimicked drought stresses induced FELBs in R. indica, which is very different from the induction by plant growth regulators (PGRs) under low light condition that was used in S. nigrum FELB induction. It demonstrated that NaCl or mannitol supplements alone could induce FELBs in R. indica, but with low induction rates, while the synergy of NaCl and mannitol significantly increased the FELB induction rates. For the combination of 5.0 g/L mannitol and 10.0 g/L NaCl the highest FELB induction rate (100%) was achieved. It suggests that the synergy of drought and salt stresses can replace PGRs to induce FELBs in R. indica. On medium supplemented with 1.0 mg/L gibberellic acid all the inoculated in vitro FELBs developed into multiple plantlets. Morphological and histological analyses confirmed the identity of FELBs induced in R. indica and revealed that FELBs originate from root cortex cells. PMID:26796345

  14. Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.

    PubMed

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-Graciamedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa. PMID:24027442

  15. Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18.

    PubMed

    Zheng, Qiaolin; Perry, Sharyn E

    2014-03-01

    Somatic embryogenesis (SE) is a poorly understood process during which competent cells respond to inducing conditions, allowing the development of somatic embryos. It is important for the regeneration of transgenic plants, including for soybean (Glycine max). We report here that constitutive expression of soybean orthologs of the Arabidopsis (Arabidopsis thaliana) MADS box genes Agamous-like15 (GmAGL15) and GmAGL18 increased embryogenic competence of explants from these transgenic soybean plants. To understand how GmAGL15 promotes SE, expression studies were performed. Particular genes of interest involved in embryogenesis (abscisic acid-insensitive3 and FUSCA3) were found to be directly up-regulated by GmAGL15 by using a combination of quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation. To look more broadly at changes in gene expression in response to GmAGL15, we assessed the transcriptome using the Affymetrix Soybean Genome Array. Interestingly, the gene expression profile of 35Spro:GmAGL15 explants (0 d in culture) was found to resemble nontransgenic tissue that had been induced for SE by being placed on induction medium for 3 d, possibly explaining the more rapid SE development observed on 35Spro:GmAGL15 tissue. In particular, transcripts from genes related to the stress response showed increased transcript accumulation in explants from 35Spro:GmAGL15 tissue. These same genes also showed increased transcript accumulation in response to culturing nontransgenic soybean explants on the medium used to induce SE. Overexpression of GmAGL15 may enhance SE by making the tissue more competent to respond to 2,4-dichlorophenoxyacetic acid induction by differential regulation of genes such as those involved in the stress response, resulting in more rapid and prolific SE. PMID:24481137

  16. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl).

    PubMed

    Mithila, J; Hall, J C; Victor, J M R; Saxena, P K

    2003-01-01

    Regeneration via shoot organogenesis and somatic embryogenesis was observed from thidiazuron (TDZ)-treated leaf and petiole explants of greenhouse- and in vitro-grown African violet plants. The response of cultures to other growth regulators over a range of 0.5 microM to 10 microM was 50% less than that observed with TDZ. A comparative study among several cultivars of African violet indicated that "Benjamin" and "William" had the highest regeneration potential. In "Benjamin", higher frequencies of shoot organogenesis (twofold) and somatic embryogenesis (a 50% increase) were observed from in vitro- and greenhouse-grown plants, respectively. At concentrations lower than 2.5 microM, TDZ induced shoot organogenesis, whereas at higher doses (5-10 microM) somatic embryos were formed. These findings provide the first report of simultaneous shoot organogenesis and somatic embryogenesis of African violet explants in response to TDZ. PMID:12789442

  17. Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation.

    PubMed

    Ge, Xiao-Xia; Liu, Zheng; Wu, Xiao-Meng; Chai, Li-Jun; Guo, Wen-Wu

    2015-12-10

    The homeodomain-leucine zipper (HD-Zip) transcription factors, which belong to a class of Homeobox proteins, has been reported to be involved in different biological processes of plants, including growth and development, photomorphogenesis, flowering, fruit ripening and adaptation responses to environmental stresses. In this study, 27 HD-Zip genes (CsHBs) were identified in Citrus. Based on the phylogenetic analysis and characteristics of individual gene or protein, the HD-Zip gene family in Citrus can be classified into 4 subfamilies, i.e. HD-Zip I, HD-Zip II, HD-Zip III, and HD-Zip IV containing 16, 2, 4, and 5 members respectively. The digital expression patterns of 27 HD-Zip genes were analyzed in the callus, flower, leaf and fruit of Citrus sinensis. The qRT-PCR and RT-PCR analyses of six selected HD-Zip genes were performed in six citrus cultivars with different embryogenic competence and in the embryo induction stages, which revealed that these genes were differentially expressed and might be involved in citrus somatic embryogenesis (SE). The results exhibited that the expression of CsHB1 was up-regulated in somatic embryo induction process, and its expression was higher in citrus cultivars with high embryogenic capacity than in cultivars recalcitrant to form somatic embryos. Moreover, a microsatellite site of three nucleotide repeats was found in CsHB1 gene among eighteen citrus genotypes, indicating the possible association of CsHB1 gene to the capacity of callus induction. PMID:26232336

  18. Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees.

    PubMed

    Park, So-Young; Klimaszewska, Krystyna; Park, Ji-Young; Mansfield, Shawn D

    2010-11-01

    Of the various alternatives for cloning elite conifers, somatic embryogenesis (SE) appears to be the best option. In recent years, significant areas of lodgepole pine (Pinus contorta) forest have been devastated by the mountain pine beetle (MPB) in Western Canada. In an attempt to establish an SE propagation system for MPB-resistant lodgepole pine, several families displaying varying levels of resistance were selected for experimentation involving shoot bud and immature seed explants. In bud cultures, eight embryogenic lines were induced from 2 of 15 genotypes following various treatments. Genotype had an important influence on embryogenic culture initiation, and this effect was consistent over time. These lines were identified by microscopic observation and genetic markers. Despite the abundance of early somatic embryos, the cultures have yet to develop into mature embryos. In contrast, immature zygotic embryos (ZEs) cultured from megagametophytes initiated SE at an early dominance stage via nodule-type callus in 1 of 10 genotypes. As part of the study, putative embryogenesis-specific genes, WOX2 (WUSCHELL homeobox 2) and HAP3A, were analyzed in cultures of both shoot bud explants and ZEs. On the basis of these analyses, we postulate that PcHAP3A was expressed mainly in callus and may be involved in cell division, whereas WOX2 was expressed mainly in embryonal mass (EM)-like tissues. The findings from this study, based on molecular assessment, suggest that the cell lines derived from bud cultures were truly EM. Moreover, these experimental observations suggest that PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus. PMID:20935320

  19. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture.

    PubMed

    Lakshmanan, Prakash; Geijskes, R Jason; Wang, Lifang; Elliott, Adrian; Grof, Christopher P L; Berding, Nils; Smith, Grant R

    2006-10-01

    Rapid and efficient in vitro regeneration methods that minimise somaclonal variation are critical for the genetic transformation and mass propagation of commercial varieties. Using a transverse thin cell layer culture system, we have identified some of the developmental and physiological constraints that limit high-frequency regeneration in sugarcane leaf tissue. Tissue polarity and consequently the orientation of the explant in culture, size and developmental phase of explant, and auxin concentration play a significant role in determining the organogenic potential of leaf tissue in culture. Both adventitious shoot production and somatic embryogenesis occurred on the proximal cut surface of the explant, and a regeneration gradient, decreasing gradually from the basal to the distal end, exists in the leaf roll. Importantly, auxin, when added to the culture medium, reduced this spatial developmental constraint, as well as the effect of genotype on plant regeneration. Transverse sections (1-2 mm thick) obtained from young leaf spindle rolls and orienting explants with its distal end facing the medium (directly in contact with medium) are critical for maximum regeneration. Shoot regeneration was observed as early as 3 weeks on MS medium supplemented with alpha-naphthalenencetic acid (NAA) and 6-benzyladenine, while somatic embryogenesis or both adventitious shoot organogenesis and somatic embryogenesis occurred on medium with NAA and chlorophenoxyacetic acid. Twenty shoots or more could be generated from a single transverse section explant. These shoots regenerated roots and successfully established after transplanted to pots. Large numbers of plantlets can be regenerated directly and rapidly using this system. SmartSett, the registered name for this process and the plants produced, will have significant practical applications for the mass propagation of new cultivars and in genetic modification programs. The SmartSett system has already been used commercially to

  20. Isolation of putative glycoprotein gene from early somatic embryo of carrot and its possible involvement in somatic embryo development.

    PubMed

    Takahata, Kiminori; Takeuchi, Miyuki; Fujita, Minoru; Azuma, Junichi; Kamada, Hiroshi; Sato, Fumihiko

    2004-11-01

    Somatic embryogenesis is a unique process in plant cells. For example, embryogenic cells (EC) of carrot (Daucus carota) maintained in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) regenerate whole plants via somatic embryogenesis after the depletion of 2,4-D. Although some genes such as C-ABI3 and C-LEC1 have been found to be involved in somatic embryogenesis, the critical molecular and cellular mechanisms for somatic embryogenesis are unknown. To characterize the early mechanism in the induction of somatic embryogenesis, we isolated genes expressed during the early stage of somatic embryogenesis after 2,4-D depletion. Subtractive hybridization screening and subsequent RNA gel blot analysis suggested a candidate gene, Carrot Early Somatic Embryogenesis 1 (C-ESE1). C-ESE1 encodes a protein that has agglutinin and S-locus-glycoprotein domains and its expression is highly specific to primordial cells of somatic embryo. Transgenic carrot cells with reduced expression of C-ESE1 had wide intercellular space and decreased polysaccharides on the cell surface and showed delayed development in somatic embryogenesis. The importance of cell-to-cell attachment in somatic embryogenesis is discussed. PMID:15574842

  1. New Insights into Somatic Embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 Are Epigenetically Regulated in Coffea canephora

    PubMed Central

    Nic-Can, Geovanny I.; López-Torres, Adolfo; Barredo-Pool, Felipe; Wrobel, Kazimierz; Loyola-Vargas, Víctor M.; Rojas-Herrera, Rafael; De-la-Peña, Clelia

    2013-01-01

    Plant cells have the capacity to generate a new plant without egg fertilization by a process known as somatic embryogenesis (SE), in which differentiated somatic cells can form somatic embryos able to generate a functional plant. Although there have been advances in understanding the genetic basis of SE, the epigenetic mechanism that regulates this process is still unknown. Here, we show that the embryogenic development of Coffea canephora proceeds through a crosstalk between DNA methylation and histone modifications during the earliest embryogenic stages of SE. We found that low levels of DNA methylation, histone H3 lysine 9 dimethylation (H3K9me2) and H3K27me3 change according to embryo development. Moreover, the expression of LEAFY COTYLEDON1 (LEC1) and BABY BOOM1 (BBM1) are only observed after SE induction, whereas WUSCHEL-RELATED HOMEOBOX4 (WOX4) decreases its expression during embryo maturation. Using a pharmacological approach, it was found that 5-Azacytidine strongly inhibits the embryogenic response by decreasing both DNA methylation and gene expression of LEC1 and BBM1. Therefore, in order to know whether these genes were epigenetically regulated, we used Chromatin Immunoprecipitation (ChIP) assays. It was found that WOX4 is regulated by the repressive mark H3K9me2, while LEC1 and BBM1 are epigenetically regulated by H3K27me3. We conclude that epigenetic regulation plays an important role during somatic embryogenic development, and a molecular mechanism for SE is proposed. PMID:23977240

  2. In vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [ Cajanus cajan (L.) Millsp.] cv. JKR105.

    PubMed

    Krishna, Gaurav; Reddy, P Sairam; Ramteke, Pramod W; Rambabu, Pogiri; Sohrab, Sayed S; Rana, Debashis; Bhattacharya, Parthasarathi

    2011-10-01

    In vitro regeneration of pigeon pea through organogenesis and somatic embryogenesis was demonstrated with pigeon pea cv. JKR105. Embryonic axes explants of pigeon pea showed greater regeneration of shoot buds on 2.5 mg L(-1) 6-benzylaminopurine (BAP) in the medium, followed by further elongation at lower concentrations. Rooting of shoots was observed on half-strength Murashige and Skoog (MS) medium with 2 % sucrose and 0.5 mg L(-1) 3-indolebutyric acid (IBA). On the other hand, the regeneration of globular embryos from cotyledon explant was faster and greater with thidiazuron (TDZ) than BAP with sucrose as carbohydrate source. These globular embryos were maturated on MS medium with abscisic acid (ABA) and finally germinated on half-strength MS medium at lower concentrations of BAP. Comparison of regeneration pathways in pigeon pea cv. JKR105 showed that the turnover of successful establishment of plants achieved through organogenesis was more compared to somatic embryogenesis, despite the production of more embryos than shoot buds. PMID:23573031

  3. Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis

    PubMed Central

    Chávez-Hernández, Elva C.; Alejandri-Ramírez, Naholi D.; Juárez-González, Vasti T.; Dinkova, Tzvetanka D.

    2015-01-01

    Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process. PMID:26257760

  4. A Lower pH Value Benefits Regeneration of Trichosanthes kirilowii by Somatic Embryogenesis, Involving Rhizoid Tubers (RTBs), a Novel Structure

    PubMed Central

    Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei

    2015-01-01

    A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0–9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids. PMID:25744384

  5. High efficient somatic embryogenesis development from leaf cultures of Citrullus colocynthis (L.) Schrad for generating true type clones.

    PubMed

    Ramakrishna, D; Shasthree, T

    2016-04-01

    We report an efficient somatic embryogenesis and plant regeneration system using leaf cultures of Citrullus colocynthis (L.) and assessed the effect of plant growth regulators on the regeneration process. Initially leaf explants were cultured on Murashige and Skoog medium supplemented with different concentrations of auxins viz., 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, gibberellic acid alone and along with combination of 6-benzylaminopurine. The different forms of calli such as compact, white friable, creamy friable, brownish nodular, green globular and green calli were induced from the leaf explants on MS medium containing different concentrations of auxins and gibberellins. Subsequently initial callus was subcultured at 1.5 mg L(-1) BAP + 1.0 mg L(-1) 2,4-D which resulted in 25 % somatic embryos from 85 % nodular embryogenic nodular callus that is highest percentage. Similarly the lowest percentage of somatic embryos was recorded at 2.5 mg L(-1) BAP + 0.5 mg L(-1) NAA from 55 % embryogenic globular callus i.e., 16 %. High frequency of embryo development takes place at intermittent light when compared with continuous light in the individual subcultures. The cotyledonary embryos were developed into complete platelets on MS medium. In vitro regenerated plantlets were washed to remove the traces of agar and then transferred to sterile vermiculite and sand (2:1) containing pot. PMID:27436919

  6. Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis.

    PubMed

    Nowak, Katarzyna; Gaj, Małgorzata D

    2016-04-01

    The bHLH109 gene of the bHLH family was identified among the transcription factor encoding genes that were differentially expressed in an embryogenic culture of Arabidopsis. A strong activation of bHLH109 expression was found to be associated with somatic embryogenesis (SE) induction. Several pieces of evidence suggested the involvement of bHLH109 in SE, including the high stimulation of the gene expression in SE-induced explants, which contrasts to the drastically lower level of the gene transcripts in the non-embryogenic callus and in tissue that is induced towards shoot regeneration via organogenesis. Moreover, in contrast to the overexpression of bHLH109, which has been indicated to enhance SE induction in a culture, the bhlh109 knock-out mutation was found to impair the embryogenic potential of explants. In order to identify the genes interacting with the bHLH109, the candidate co-expressed genes were identified in a yeast one hybrid assay. The in vitro regulatory interactions that were identified were verified through mutant and expression analysis. The results suggest that in SE bHLH109 acts as an activator of ECP63, a member of the LEA (LATE EMBRYOGENESIS ABUNDANT) family. Among the potential regulators of bHLH109, three candidates (At5g61620, bZIP4 and bZIP43) were indicated to possibly control bHLH109. The functions of all of the genes that are assumed to interact with bHLH109 are annotated to stress responses. Collectively, the results of the study provide new evidence that cell responses to stress that is imposed under in vitro conditions underlies the promotion of SE. bHLH109 may play a central role in the stress-related mechanism of SE induction via an increased accumulation of the LEA protein (ECP63), which results in the enhanced tolerance of the cells to stress. PMID:26973252

  7. Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum.

    PubMed

    Podio, Maricel; Felitti, Silvina Andrea; Siena, Lorena Adelina; Delgado, Luciana; Mancini, Micaela; Seijo, José Guillermo; González, Ana María; Pessino, Silvina Claudia; Ortiz, Juan Pablo A

    2014-03-01

    The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue. PMID:24146222

  8. Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.).

    PubMed

    Schellenbaum, Paul; Jacques, Alban; Maillot, Pascale; Bertsch, Christophe; Mazet, Flore; Farine, Sibylle; Walter, Bernard

    2008-12-01

    Little is known about the genes expressed during grapevine somatic embryogenesis. Both groups of Somatic Embryogenesis Receptor Kinase (SERK) and Leafy Cotyledon (LEC and L1L) genes seem to play key roles during somatic embryogenesis in various plant species. Therefore, we identified and analysed the sequences of VvSERK and VvL1L (Leafy cotyledon1-Like) genes. The deduced amino acid sequences of VvSERK1, VvSERK2 and VvSERK3 are very similar to that of registered SERK proteins, with highest homologies for the kinase domain in the C-terminal region. The amino acid sequence of VvL1L presents all the domains that are characteristic for LEC1 and L1L proteins, particularly, the 16 amino acid residues that serve as signature of the B-domain. Phylogenetic analysis distinguishes members of subclass LEC1 and subclass L1L, and VvL1L is closely related to L1L proteins. Using semi-quantitative RT-PCR, we studied gene expression of VvSERK1, VvSERK2, VvSERK3 and VvL1L in calli and somatic embryos obtained from anther culture of Vitis vinifera L. cv Chardonnay. Expression of VvSERK2 is relatively stable during in vitro culture. In contrast, VvSERK1, VvSERK3 and VvL1L are expressed more 4 to 6 weeks after transfer of the calli onto embryo induction medium, before the visible appearance of embryos on the calli as seen by environmental scanning electron microscopy. Later on (8 weeks after transfer) VvSERK1 expression is maintained in the embryogenic calli and VvSERK3 in the embryos, whereas VvL1L expression is very low. All together, these data suggest the involvement of VvSERK and VvL1L genes in grapevine somatic embryogenesis. PMID:18766346

  9. Selective autophagic degradation of maternally-loaded germline P granule components in somatic cells during C. elegans embryogenesis.

    PubMed

    Zhao, Yu; Tian, E; Zhang, Hong

    2009-07-01

    Germline P granules are specialized protein/RNA aggregates that are found exclusively in germ cells in C. elegans. During the early embryonic divisions that generate germ blastomeres, aggregate-prone P granule components PGL-1 and PGL-3 that remain in the cytoplasm destined for somatic daughters are selectively removed by autophagy. Loss-of-function of components of the autophagy pathway, including the VPS-34/BEC-1 complex, causes accumulation of PGL-1 and PGL-3 into aggregates in somatic cells (termed PGL granules). Formation of PGL granules depends on SEPA-1, which is an integral component of these granules. SEPA-1 is preferentially degraded by autophagy and is also required for the autophagic degradation of PGL-1 and PGL-3. SEPA-1 functions as a bridging molecule in mediating degradation of P granule components by directly interacting with PGL-3 and also with the autophagy protein LGG-1/Atg8. The defect in embryonic development in autophagy mutants is suppressed by mutation of sepa-1, suggesting that autophagic degradation of PGL granule components may provide nutrients for embryogenesis and/or also prevent the formation of aggregates that could be toxic for animal development. Our study reveals a specific physiological function of selective autophagic degradation during C. elegans development. PMID:19372764

  10. Plant regeneration via somatic embryogenesis in the seeded diploid banana Musa ornata Roxb.

    PubMed

    Cronauer-Mitra, S S; Krikorian, A D

    1988-01-01

    Somatic embryos of a seeded diploid ornamental banana (Musa ornata Roxb.) were obtained from zygotic embryos cultured on semi-solid Murashige and Skoog (MS) (1962) medium with the auxin 2,4-D (0.5, 1, 2 mg/l) and 5% CW. Removal of 2,4-D and transferral to Schenk and Hildebrandt (SH) (1972) salts with CW followed by basal MS led to embryo germination and growth. Plantlet production was obtained using filter paper bridges in liquid half-strength SH medium with 1% sucrose. The remarkable phenotypic fidelity of somatic embryos to that of zygotic embryos and the presence of a haustorium-like outgrowth on the somatic embryos is described. PMID:11538845

  11. Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression.

    PubMed

    Rocha, Diego Ismael; Pinto, Daniela Lopes Paim; Vieira, Lorena Melo; Tanaka, Francisco André Ossamu; Dornelas, Marcelo Carnier; Otoni, Wagner Campos

    2016-03-01

    The integration of cellular and molecular data is essential for understanding the mechanisms involved in the acquisition of competence by plant somatic cells and the cytological changes that underlie this process. In the present study, we investigated the dynamics and fate of Passiflora edulis Sims cotyledon explants that were committed to somatic embryogenesis by characterizing the associated ultrastructural events and analysing the expression of a putative P. edulis ortholog of the Somatic Embryogenesis Receptor-like Kinase (SERK) gene. Embryogenic calli were obtained from zygotic embryo explants cultured on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Callus formation was initiated by the division of cells derived from the protodermal and subprotodermal cells on the abaxial side of the cotyledons. The isodiametric protodermal cells of the cotyledon explants adopted a columnar shape and became meristematic at the onset of PeSERK expression, which was not initially detected in explant cells. Therefore, we propose that these changes represent the first observable steps towards the acquisition of a competent state within this regeneration system. PeSERK expression was limited to the early stages of somatic embryogenesis; the expression of this gene was confined to proembryogenic zones and was absent in the embryos after the globular stage. Our data also demonstrated that the dynamics of the mobilization of reserve compounds correlated with the differentiation of the embryogenic callus. PMID:26008651

  12. Somatic and movement inductions phantom limb in non-amputees

    NASA Astrophysics Data System (ADS)

    Casas, D. M.; Gentiletti, G. G.; Braidot, A. A.

    2016-04-01

    The illusion of the mirror box is a tool for phantom limb pain treatment; this article proposes the induction of phantom limb syndrome on non-amputees upper limb, with a neurological trick of the mirror box. With two study situations: a) Somatic Induction is a test of the literature reports qualitatively, and novel proposal b) Motor Induction, which is an objective report by recording surface EEG. There are 3 cases proposed for Motor illusion, for which grasped movement is used: 1) Control: movement is made, 2) illusion: the mirror box is used, and 3) Imagination: no movement is executed; the subject only imagines its execution. Three different tasks are registered for each one of them (left hand, right hand, and both of them). In 64% of the subjects for somatic experience, a clear response to the illusion was observed. In the experience of motor illusion, cortical activation is detected in both hemispheres of the primary motor cortex during the illusion, where the hidden hand remains motionless. These preliminary findings in phantom limb on non-amputees can be a tool for neuro-rehabilitation and neuro-prosthesis control training.

  13. High expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens.

    PubMed

    Pilarska, Maria; Malec, Przemysław; Salaj, Jan; Bartnicki, Filip; Konieczny, Robert

    2016-03-01

    The aim of this study was to identify and examine the expression pattern of the ortholog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene from Trifolium nigrescens (TnSERK) in embryogenic and non-regenerative cultures of immature cotyledonary-stage zygotic embryos (CsZEs). In the presence of 1-naphthaleneacetic acid and N(6)-[2-isopentenyl]-adenine, the CsZE regenerated embryoids directly and in a lengthy culture produced callus which was embryogenic or remained non-regenerative. As revealed by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), the TnSERK was expressed in both embryogenic and non-regenerative cultures, but the expression level was significantly higher in embryogenic ones. An in situ RNA hybridization assay revealed that the expression of TnSERK preceded the induction of cell division in explants, and then, it was maintained exclusively in actively dividing cells from which embryoids, embryo-like structures (ELSs), callus or tracheary elements were produced. However, the cells involved in different morphogenic events differed in intensity of hybridization signal which was the highest in embryogenic cells. The TnSERK was up-regulated during the development of embryoids, but in cotyledonary embryos, it was preferentially expressed in the regions of the apical meristems. The occurrence of morphological and anatomical abnormalities in embryoid development was preceded by a decline in TnSERK expression, and this coincided with the parenchymatization of the ground tissue in developing ELSs. TnSERK was also down-regulated during the maturation of parenchyma and xylem elements in CsZE and callus. Altogether, these data suggest the involvement of TnSERK in the induction of various developmental programs related to differentiation/transdifferentiation and totipotent state of cell(s). PMID:25876517

  14. Partial characterization of genes whose transcripts accumulate preferentially in cell clusters at the earliest stage of carrot somatic embryogenesis.

    PubMed

    Yasuda, H; Nakajima, M; Ito, T; Ohwada, T; Masuda, H

    2001-04-01

    We attempted to identify genes that are preferentially expressed immediately after somatic cells divide to form cell clusters at the earliest stage of carrot somatic embryogenesis when they are not or barely expressed in non-embryogenic suspension-cultured cells in the presence of 2,4-D. Using the differential display technique, we isolated three cDNA clones, designated No. 43, No. 87 and No. 93. The No. 43 transcript was preferentially expressed in the earliest cell clusters, its level decreased drastically at the globular and heart-shaped and torpedo-shaped stages, and it was not detected in non-embryogenic suspension-cultured cells. No. 43 cDNA encoded a protein with homology to thaumatin-like proteins and the deduced positions of seven cysteine residues in the 63 amino acid sequence from the carboxyl terminus were identical to those in thaumatin-like proteins. The full-length nucleotide sequence of No. 93 cDNA was determined and its product was about 80% homologous to precursor of the 14 kDa proline-rich DC 2.15 protein of carrot at the amino acid level. However, the deduced amino acid sequence lacked the characteristic core of repeating Pro-X motifs found in DC 2.15. The No. 93 transcript accumulated preferentially in the earliest cell clusters but it was also detected at a low level in non-embryogenic suspension-cultured cells, unlike DC 2.15 transcripts that begin to accumulate in heart-shaped embryos before their level falls in torpedo-shaped embryos. No. 87 transcripts were expressed preferentially in the earliest cell clusters that has been incubated with 2,4-D but were also detected at a low level in suspension-cultured cells subcultured in the continued presence of 2,4-D. The No. 87 cDNA exhibited no significant homology to any sequences in databases. PMID:11430432

  15. Somatic embryogenesis and plant regeneration in tissue cultures of radish (Raphanus sativus L.).

    PubMed

    Jeong, W J; Min, S R; Liu, J R

    1995-07-01

    Hypocotyl segments of 2- to 3-week-old radish (Raphanus sativus L. cv. F1 Handsome Fall) seedlings produced yellowish compact calli when cultured on Murashige and Skoog's (MS) medium supplemented with 1 mgl(-1) 2,4-dichlorophenoxyacetic acid (2,4-D). Upon transfer onto medium containing 6-benzyladenine and α-naphthaleneacetic acid, up to 5.3% of the calli gave rise to a few somatic embryos. When subcultured for 3 to 6 months, 7% of the yellowish, compact calli produced white, compact calli which formed numerous embryos. These calli maintained their embryogenic capacity for over 18 months. When cultured on medium containing 0.1 to 3 mgl(-1) 2,4-D, up to 90% of longitudinally sliced somatic embryo halves produced calli with numerous secondary embryos. Embryos were transferred onto medium containing 0.1 mgl(-1) 2,4-D and 1 mgl(-1) abscisic acid where they developed into the cotyledonary stage. Upon transfer onto half-strength MS basal medium, approximately 90% of the embryos developed into plantlets. These plantlets were successfully transplanted in potting soil and after cold treatment they were grown to maturity in a phytotron. PMID:24194314

  16. Pretreatments, conditioned medium and co-culture increase the incidence of somatic embryogenesis of different Cichorium species

    PubMed Central

    Couillerot, Jean-Paul; Windels, David; Vazquez, Franck; Michalski, Jean-Claude; Hilbert, Jean-Louis; Blervacq, Anne-Sophie

    2012-01-01

    Somatic embryogenesis (SE) in Cichorium involves dedifferentiation and redifferentiation of single cells and can be induced by specific in vitro culture conditions. We have tested the effect of various treatments on the incidence of SE (ISE) of an interspecific embryogenic hybrid (C. endivia x C. intybus) and of different commercial chicories (C. endivia and C. intybus) that are typically recalcitrant to SE in standard culture conditions. We found that the ISE of the hybrid is significantly increased by pretreatment of tissues by submersion in solutions of glycerol, abscisic acid, spermine, putrescine or of combinations of these compounds. Interestingly, the most efficient of these pretreatments also had an unexpectedly high effect on the ISE of the C. intybus cultivars. The ISE of the hybrid and of the commercial chicories were increased when explants were co-cultured with highly embryogenic chicory explants or when they were cultured in conditioned medium. These observations established that unidentified SE-promoting factors are released in the culture medium. HPLC analyses of secreted Arabino-Galactan Proteins (AGPs), which are known to stimulate SE, did not allow identifying a fraction containing differentially abundant AGP candidates. However, pointing to their role in promoting SE, we found that the hybrid had a drastically higher ISE when amino sugars and L-Proline, the putative precursors of secreted AGPs, were both added to the medium. PMID:22301978

  17. Evolution of endogenous hormone concentration in embryogenic cultures of carrot during early expression of somatic embryogenesis.

    PubMed

    Jiménez, V M; Guevara, E; Herrera, J; Bangerth, F

    2005-01-01

    Embryogenic callus and suspension cultures of carrot (Daucus carota L., cv. Nantaise), growing on/in medium including 1 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D), were transferred to medium with or without this plant growth regulator, to impair or induce, respectively, further development of somatic embryos. The endogenous hormone levels of the cultures were determined over 7 days by means of radio-immunoassay, to characterize their evolution in the initial stages of embryo development. In general, levels of indoleacetic acid (IAA) and abscisic acid (ABA) showed only short-lived differences among treatments during this time in both types of tissue analyzed (i.e., a peak of IAA in callus cultures in the absence of 2,4-D, 48 h after medium change, and higher ABA contents 144 h after subculture of suspension cultures in the presence of 2,4-D). Gibberellins (1, 3 and 20) were detected only in suspension cultures devoid of 2,4-D, starting 24 h after subculture. Concerning the evaluated cytokinins-zeatin/zeatin riboside and N6(Delta2-isopentenyl) adenine/N6(Delta2-isopentenyl) adenosine-the most remarkable observation is that high levels of the former generally coincided with low concentrations of the latter, indicating a shift from precursor to the active form, and vice versa. PMID:15375630

  18. A Novel In Vitro Protocol for Inducing Direct Somatic Embryogenesis in Phalaenopsis aphrodite without Taking Explants

    PubMed Central

    Chen, Jen-Tsung

    2014-01-01

    An alternative in vitro protocol for embryo induction directly from intact living seedlings of Phalaenopsis aphrodite subspecies formosana was established in this study. Without the supplementation of plant growth regulators (PGRs), no embryos were obtained from all the seedlings when cultured on the solid medium. In contrast, embryos formed from the seedlings on the 2-layer medium and the 2-step culture system without the use of PGRs. It was found that the age of the seedlings affected embryo induction. The 2-month-old seedlings typically had higher embryogenic responses when compared with the 4-month-old seedlings in the 2-layer medium or 2-step system. For the 2-month-old seedlings, 1 mg/L TDZ resulted in the highest number of embryos at the distal site of the shoot. However, on the leaves' surface, 0.5 mg/L TDZ induced the highest number of embryos. When the 2-month-old seedlings were cultured using the 2-step method at 1 mg/L of TDZ, the highest embryogenic response was obtained, with an average of 44 embryos formed on each seedling. These adventitious embryos were able to convert into plantlets in a PGR-free 1/2 MS medium, and the plantlets had normal morphology and growth. PMID:24963505

  19. Somatic embryogenesis, pigment accumulation, and synthetic seed production in Digitalis davisiana Heywood.

    PubMed

    Verma, Sandeep Kumar; Sahin, Gunce; Gurel, Ekrem

    2016-04-01

    Digitalis davisiana, commonly called Alanya foxglove, from Turkey, is an important medicinal herb as the main source of cardiac glycosides, cardenolides, anthraquinones, etc. It is also known in the Indian Medicine for treatment of wounds and burns. It has ornamental value as well. Overexploitation of D. davisiana has led this species to be declared protected, and thereby encouraged various methods for its propagation. In this study, an optimized and efficient plant tissue culture protocol was established using cotyledonary leaf, hypocotyl and root explants of D. davisiana. Callus tissues were obtained from the cotyledonary leaf, hypocotyl and root segments cultured on Murashige and Skoog's (MS) medium containing different plant growth regulators. The maximum number of somatic embryos were achieved by the MS medium containing 6-benzyladenine (1.0 mg/L BAP) or 2,4-dichlorophenoxy acetic acids (0.1 mg/L 2,4-D), which produced an average of 8.3 ± 1.5 or 5.3 ± 1.5 embryos per cotyledonary leaf, respectively. After 3 wk of culture in MS medium supplemented with 1.0 mg/L 2,4-D, callus showed a clear accumulation of orange pigmentation. Shoot regeneration was remarkably higher (14.3 indirect shoots) in a combination of α-naphthalene acetic acid (0.25 mg/L NAA) plus 3.0 mg/L BAP than 2.0 mg/L zeatin (10.3 ± 0.5 direct shoots) alone. The shoots were successfully rooted on MS medium supplemented with NAA (0.1-1.0 mg/L). In addition, synthetic seeds were produced by encapsulating shoot tips in 4% sodium alginate solution. Maximum conversion frequency of 76.6% was noted from encapsulated shoot tips cultured on 0.25 mg/L NAA with 1.0 mg/L BAP. The encapsulated shoot tips could be stored up to 60 days at 4 °C. Regenerated plantlets of D. davisiana were successfully acclimatized and transferred to soil. This study has demonstrated successful preservation of elite genotypes of D. davisiana. PMID:27295921

  20. Alterations in the Transcriptome of Soybean in Response to Enhanced Somatic Embryogenesis Promoted by Orthologs of AGAMOUS-Like15 and AGAMOUS-Like181[C][W][OPEN

    PubMed Central

    Zheng, Qiaolin; Perry, Sharyn E.

    2014-01-01

    Somatic embryogenesis (SE) is a poorly understood process during which competent cells respond to inducing conditions, allowing the development of somatic embryos. It is important for the regeneration of transgenic plants, including for soybean (Glycine max). We report here that constitutive expression of soybean orthologs of the Arabidopsis (Arabidopsis thaliana) MADS box genes AGAMOUS-Like15 (GmAGL15) and GmAGL18 increased embryogenic competence of explants from these transgenic soybean plants. To understand how GmAGL15 promotes SE, expression studies were performed. Particular genes of interest involved in embryogenesis (ABSCISIC ACID-INSENSITIVE3 and FUSCA3) were found to be directly up-regulated by GmAGL15 by using a combination of quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation. To look more broadly at changes in gene expression in response to GmAGL15, we assessed the transcriptome using the Affymetrix Soybean Genome Array. Interestingly, the gene expression profile of 35Spro:GmAGL15 explants (0 d in culture) was found to resemble nontransgenic tissue that had been induced for SE by being placed on induction medium for 3 d, possibly explaining the more rapid SE development observed on 35Spro:GmAGL15 tissue. In particular, transcripts from genes related to the stress response showed increased transcript accumulation in explants from 35Spro:GmAGL15 tissue. These same genes also showed increased transcript accumulation in response to culturing nontransgenic soybean explants on the medium used to induce SE. Overexpression of GmAGL15 may enhance SE by making the tissue more competent to respond to 2,4-dichlorophenoxyacetic acid induction by differential regulation of genes such as those involved in the stress response, resulting in more rapid and prolific SE. PMID:24481137

  1. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis.

    PubMed

    Wójcikowska, Barbara; Jaskóła, Karolina; Gąsiorek, Przemysław; Meus, Magdalena; Nowak, Katarzyna; Gaj, Małgorzata D

    2013-09-01

    The LEAFY COTYLEDON2 (LEC2) transcription factor with a plant-specific B3 domain plays a central role in zygotic and somatic embryogenesis (SE). LEC2 overexpression induced in planta leads to spontaneous somatic embryo formation, but impairs the embryogenic response of explants cultured in vitro under auxin treatment. The auxin-related functions of LEC2 appear during SE induction, and the aim of the present study was to gain further insights into this phenomenon. To this end, the effect of LEC2 overexpression on the morphogenic responses of Arabidopsis explants cultured in vitro under different auxin treatments was evaluated. The expression profiles of the auxin biosynthesis genes were analysed in embryogenic cultures with respect to LEC2 activity. The results showed that LEC2 overexpression severely modifies the requirement of cultured explants for an exogenous auxin concentration at a level that is effective in SE induction and suggested an increase in the auxin content in 35S::LEC2-GR transgenic explants. The assumption of an LEC2 promoted increase in endogenous auxin in cultured explants was further supported by the expression profiling of the genes involved in auxin biosynthesis. The analysis indicated that YUCCAs and TAA1, working in the IPA-YUC auxin biosynthesis pathway, are associated with SE induction, and that the expression of three YUCCA genes (YUC1, YUC4 and YUC10) is associated with LEC2 activity. The results also suggest that the IAOx-mediated auxin biosynthesis pathway involving ATR1/MYB34 and CYP79B2 does not seem to be involved in SE induction. We conclude that de novo auxin production via the tryptophan-dependent IPA-YUC auxin biosynthesis pathway is implicated in SE induction, and that LEC2 plays a key role in this mechanism. PMID:23722561

  2. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 Network Regulates Somatic Embryogenesis by Regulating Auxin Homeostasis1[OPEN

    PubMed Central

    Min, Ling; Hu, Qin; Li, Yaoyao; Xu, Jiao; Ma, Yizan; Zhu, Longfu; Yang, Xiyan; Zhang, Xianlong

    2015-01-01

    Somatic embryogenesis (SE) is an efficient tool for the propagation of plant species and also, a useful model for studying the regulatory networks in embryo development. However, the regulatory networks underlying the transition from nonembryogenic callus to somatic embryos during SE remain poorly understood. Here, we describe an upland cotton (Gossypium hirsutum) CASEIN KINASE I gene, GhCKI, which is a unique key regulatory factor that strongly affects SE. Overexpressing GhCKI halted the formation of embryoids and plant regeneration because of a block in the transition from nonembryogenic callus to somatic embryos. In contrast, defective GhCKI in plants facilitated SE. To better understand the mechanism by which GhCKI regulates SE, the regulatory network was analyzed. A direct upstream negative regulator protein, cotton LEAFY COTYLEDON1, was identified to be targeted to a cis-element, CTTTTC, in the promoter of GhCKI. Moreover, GhCKI interacted with and phosphorylated cotton CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF transcription factor15 by coordinately regulating the expression of cotton PHYTOCHROME INTERACTING FACTOR4, finally disrupting auxin homeostasis, which led to increased cell proliferation and aborted somatic embryo formation in GhCKI-overexpressing somatic cells. Our results show a complex process of SE that is negatively regulated by GhCKI through a complex regulatory network. PMID:26491146

  3. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth.

    PubMed

    Klimaszewska, Krystyna; Pelletier, Gervais; Overton, Catherine; Stewart, Don; Rutledge, Robert G

    2010-07-01

    Adult conifers are still recalcitrant in clonal propagation despite significant advances in forest tree biotechnology. Plant regeneration through somatic embryogenesis from explants older than mature zygotic embryos is either difficult or impossible to achieve. To investigate if ectopic expression of transcription factors involved in the induction of the embryogenic process would induce somatic embryogenesis in Picea glauca (white spruce) somatic plants, we used the LEAFY-COTYLEDON1 homolog cloned from Picea mariana, CHAP3A, and Arabidopsis thaliana WUS to transform embryonal mass of P. glauca. Ectopic gene expression was induced by 17-beta-estradiol during stages of somatic embryogenesis (early embryogenesis and late embryogenesis) and somatic seedling growth in the transgenics. Of the two transcription factors, only WUS produced severe phenotypes by disrupting the development of somatic embryos on the maturation medium and inhibiting germination. However, none of the transgenes induced ectopic somatic embryogenesis even in the presence of plant growth regulators. Absolute quantitative PCR confirmed the expression of both CHAP3A and WUS in transgenic embryonal mass and in all parts of somatic seedlings. A high expression of the transgenes did not influence expression profiles of any of the ten other transcription factors tested, some of which have been known to be involved in the process of embryogenesis. Implications of these results for further work are discussed. PMID:20424847

  4. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells.

    PubMed

    Kikuchi, Akira; Sanuki, Nobuya; Higashi, Katsumi; Koshiba, Tomokazu; Kamada, Hiroshi

    2006-03-01

    Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10(-4) M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses. PMID:16160844

  5. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.)

    PubMed Central

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Key message: Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation. PMID:27403857

  6. Conditions Favorable for the Somatic Embryogenesis in Carrot Cell Culture Enhance Expression of the roIC Promoter-GUS Fusion Gene.

    PubMed

    Fujii, N; Uchimiya, H

    1991-01-01

    We obtained carrot (Daucus carota) cells possessing the 5'-noncoding sequence of the ORF12 gene (roIC) of TL-DNA of the Ri plasmid and a structural gene of bacterial beta-glucuronidase by Agrobacterium-mediated transformation. When such cells were cultured in medium containing 2,4-dichlorophenoxyacetic acid, substantial reduction in beta-glucuronidase activity was observed. Upon transferring the cells from a 2,4-D-containing medium to one devoid of 2,4-dichlorophenoxyacetic acid, enhanced expression of beta-glucuronidase in somatic embryo development was recorded. Activation by gibberillic acid and suppression by abscisic acid of beta-glucuronidase activities, in concord with embryogenesis, were also noted. PMID:16667958

  7. Conditions Favorable for the Somatic Embryogenesis in Carrot Cell Culture Enhance Expression of the roIC Promoter-GUS Fusion Gene 1

    PubMed Central

    Fujii, Nobuharu; Uchimiya, Hirofumi

    1991-01-01

    We obtained carrot (Daucus carota) cells possessing the 5′-noncoding sequence of the ORF12 gene (roIC) of TL-DNA of the Ri plasmid and a structural gene of bacterial β-glucuronidase by Agrobacterium-mediated transformation. When such cells were cultured in medium containing 2,4-dichlorophenoxyacetic acid, substantial reduction in β-glucuronidase activity was observed. Upon transferring the cells from a 2,4-D-containing medium to one devoid of 2,4-dichlorophenoxyacetic acid, enhanced expression of β-glucuronidase in somatic embryo development was recorded. Activation by gibberillic acid and suppression by abscisic acid of β-glucuronidase activities, in concord with embryogenesis, were also noted. Images Figure 2 PMID:16667958

  8. Genomewide analysis of small RNAs in nonembryogenic and embryogenic tissues of citrus: microRNA- and siRNA-mediated transcript cleavage involved in somatic embryogenesis.

    PubMed

    Wu, Xiao-Meng; Kou, Shu-Jun; Liu, Yuan-Long; Fang, Yan-Ni; Xu, Qiang; Guo, Wen-Wu

    2015-04-01

    Somatic embryogenesis (SE) is a process of somatic cells becoming dedifferentiated and generating embryos. SE has been widely used in biotechnology as a powerful way of regeneration and a model system for studying plant embryogenesis, but the controlling mechanisms of SE are far from clear. Here, we show the genomewide profiles of miRNAs/siRNAs and their target genes in nonembryogenic and embryogenic tissues of 'Valencia' sweet orange. By high-throughput sequencing (HTS) of small RNAs and RNA degradome tags, we identified 50 known and 45 novel miRNAs, 130 miniature inverted-repeat transposable elements (MITEs) derived, 94 other and 235 phased small interfering RNAs (siRNAs), as well as 203 target genes. The majority of the abundantly expressed miRNAs/siRNAs exhibit lower expression levels in embryogenic callus (EC) or during SE process than in nonembryogenic callus (NEC), which is supposed to derepress the target genes that are involved in development and stress response, thus to activate the biological processes required for cell differentiation. However, the conserved csi-miR156a/b, miR164b and 171c directed suppression of specific transcription factors (TFs) are supposed to inactivate the postembryonic growth thus to maintain normal SE. In this study, miRNA- and siRNA-mediated silencing of target genes was found under sophisticated regulation in citrus SE system; the enhancement effect of specific conserved miRNAs on SE was discussed, providing new clues for future investigation of mechanisms that control SE. PMID:25615015

  9. Formulation of nutrient medium for in vitro somatic embryo induction in Plantago ovata forsk.

    PubMed

    Saha, Priyanka; Bandyopadhyay, Subhendu; Raychaudhuri, Sarmistha Sen

    2011-05-01

    A nutrient medium has been formulated by altering the macro- and micro-elemental concentration in the culture medium for in vitro somatic embryo induction of economically important medicinal plant Plantago ovata Forsk .A comparison was made between induced embryos with normal embryos (produced in Murashige and Skoog (MS) medium) to observe frequency of embryo induction and also to determine regeneration efficiency. In the present investigation, three different media have been formulated. Among them, FM3 (formulated media, treatment 3) was the most suitable for increasing the frequency of somatic embryo production and regeneration of P. ovata Forsk. Better result was obtained using formulated medium than with MS medium. PMID:20405339

  10. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14.

    PubMed

    Nyaboga, Evans N; Njiru, Joshua M; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1-2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70-80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  11. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14

    PubMed Central

    Nyaboga, Evans N.; Njiru, Joshua M.; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1–2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70–80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  12. Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers

    PubMed Central

    Shu, Jian; Wu, Chen; Wu, Yetao; Li, Zhiyuan; Shao, Sida; Zhao, Wenhui; Tang, Xing; Yang, Huan; Shen, Lijun; Zuo, Xiaohan; Yang, Weifeng; Shi, Yan; Chi, Xiaochun; Zhang, Hongquan; Gao, Ge; Shu, Youmin; Yuan, Kehu; He, Weiwu; Tang, Chao; Zhao, Yang; Deng, Hongkui

    2014-01-01

    SUMMARY The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here we report that during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a “seesaw model,” in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming. PMID:23706735

  13. An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula.

    PubMed

    Nolan, Kim E; Song, Youhong; Liao, Siyang; Saeed, Nasir A; Zhang, Xiyi; Rose, Ray J

    2014-01-01

    Somatic embryogenesis (SE) can be readily induced in leaf explants of the Jemalong 2HA genotype of the model legume Medicago truncatula by auxin and cytokinin, but rarely in wild-type Jemalong. Gibberellic acid (GA), a hormone not included in the medium, appears to act in Arabidopsis as a repressor of the embryonic state such that low ABA (abscisic acid): GA ratios will inhibit SE. It was important to evaluate the GA effect in M. truncatula in order to formulate generic SE mechanisms, given the Arabidopsis information. It was surprising to find that low ABA:GA ratios in M. truncatula acted synergistically to stimulate SE. The unusual synergism between GA and ABA in inducing SE has utility in improving SE for regeneration and transformation in M. truncatula. Expression of genes previously shown to be important in M. truncatula SE was not increased. In investigating genes previously studied in GA investigations of Arabidopsis SE, there was increased expression of GA2ox and decreased expression of PICKLE, a negative regulator of SE in Arabidopsis. We suggest that in M. truncatula there are different ABA:GA ratios required for down-regulating the PICKLE gene, a repressor of the embryonic state. In M. truncatula it is a low ABA:GA ratio while in Arabidopsis it is a high ABA:GA ratio. In different species the expression of key genes is probably related to differences in how the hormone networks optimise their expression. PMID:24937316

  14. Development of grapevine somatic embryogenesis using an air-lift bioreactor as an efficient tool in the generation of transgenic plants.

    PubMed

    Tapia, Eduardo; Sequeida, Alvaro; Castro, Alvaro; Montes, Christian; Zamora, Pablo; López, Reinaldo; Acevedo, Fernando; Prieto, Humberto

    2009-01-01

    The grapevine genetic transformation programs have relayed on the use of solid media-based somatic embryogenesis. To reach a high throughput of candidate gene evaluation in 'Thompson Seedless', a semi-automatic system allowing viable transformation of explants was designed. An intermediate procedure using liquid media and agitated flasks was first characterized, leading to reduction in the biomass duplication time of pro-embryogenic (PE) cells from 30 d in dishes to 14 d. The oxygen transfer coefficient value in this system was 213h(-1) at 120rpm and 25 degrees C with a 16/8-h (light/darkness) photoperiod. The scaling-up to the air-lift bioreactor decreased the biomass duplication time of PE cells up to 5.3 d post-inoculation (pi) and an average volumetric productivity of 1.6g/(dxL). Although slight browning was seen in the explants during the phase of 8-14 d pi, no losses in their viability and regenerative capability were observed. Cultured cells showed normal elongation in the transition from heart- to the torpedo-shape and finally to advanced developmental stages, with radicle emergence and whole plant generation. Agrobacterium-mediated transformation of cells was efficiently incorporated after this multiplication process by use of conventional procedures in dishes, allowing the generation of transgenic plantlets confirmed by PCR. PMID:18984020

  15. Endogenous target mimics down-regulate miR160 mediation of ARF10, -16, and -17 cleavage during somatic embryogenesis in Dimocarpus longan Lour

    PubMed Central

    Lin, Yuling; Lai, Zhongxiong; Tian, Qilin; Lin, Lixia; Lai, Ruilian; Yang, Manman; Zhang, Dongmin; Chen, Yukun; Zhang, Zihao

    2015-01-01

    MicroRNA160 plays a critical role in plant development by negatively regulating the auxin response factors ARF10, -16, and -17. However, the ways in which miR160 expression is regulated at the transcriptional level, and how miR160 interacts with its targets during plant embryo development, remain unknown. Here, we studied the regulatory relationships among endogenous target mimics (eTMs), and miR160 and its targets, and their involvement in hormone signaling and somatic embryogenesis (SE) in Dimocarpus longan. We identified miR160 family members and isolated the miR160 precursor, primary transcript, and promoter. The promoter contained cis-acting elements responsive to stimuli such as light, abscisic acid, salicylic acid (SA) and heat stress. The pri-miR160 was down-regulated in response to SA but up-regulated by gibberellic acid, ethylene, and methyl jasmonate treatment, suggesting that pri-miR160 was associated with hormone transduction. Dlo-miR160a, -a∗ and -d∗ reached expression peaks in torpedo-shaped embryos, globular embryos and cotyledonary embryos, respectively, but were barely detectable in friable-embryogenic callus. This suggests that they have expression-related and functional diversity, especially during the middle and later developmental stages of SE. Four potential eTMs for miR160 were identified. Two of them, glucan endo-1,3-beta- glucosidase-like protein 2-like and calpain-type cysteine protease DEK1, were confirmed to control the corresponding dlo-miR160a∗ expression level. This suggests that they may function to abolish the binding between dlo-miR160a∗ and its targets. These two eTMs also participated in 2,4-D and ABA signal transduction. DlARF10, -16, and -17 targeting by dlo-miR160a was confirmed; their expression levels were higher in friable-embryogenic callus and incomplete compact pro-embryogenic cultures and responded to 2,4-D, suggesting they may play a major role in the early stages of longan SE dependent on 2,4-D. The eTMs, mi

  16. Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray.

    PubMed

    Ge, Xiao-Xia; Chai, Li-Jun; Liu, Zheng; Wu, Xiao-Meng; Deng, Xiu-Xin; Guo, Wen-Wu

    2012-10-01

    Somatic embryogenesis (SE) is a most promising technology that is used for in vitro germplasm conservation and genetic improvement via biotechnological approaches in citrus. Herein, three suppression subtractive hybridization (SSH) libraries were constructed using calluses of Citrus sinensis cv. 'Valencia' to explore the molecular mechanisms that underlie the SE in citrus. A total of 880 unisequences were identified by microarray screening based on these three SSH libraries. Gene ontology analysis of the differentially expressed genes indicated that nucleolus associated regulation and biogenesis processes, hormone signal transduction, and stress factors might be involved in SE. Transcription factors might also play an important role. LEC1/B3 domain regulatory network genes (LEC1, L1L, FUS3, ABI3, and ABI5) were isolated in citrus SE. Some new transcription factors associated with citrus SE, like a B3 domain containing gene and HB4, were identified. To understand the influence of these isolated genes on SE competence, their expression profiles were compared among callus lines of seven citrus cultivars with different SE competence. The expression dynamics suggested that these genes could be necessary for the SE initiation and might play a role in embryogenic competence maintenance in different cultivars. On the basis of gene expression profiles, an overview of major physiological and biosynthesis processes at different developmental stages during citrus SE is presented. For the first time, these data provide a global resource for transcriptional events important for SE in citrus, and the specific genes offer new information for further investigation on citrus SE maintenance and development. PMID:22622359

  17. The Conformation of a Plasma Membrane-Localized Somatic Embryogenesis Receptor Kinase Complex Is Altered by a Potato Aphid-Derived Effector1[OPEN

    PubMed Central

    Peng, Hsuan-Chieh; Hicks, Glenn R.; Kaloshian, Isgouhi

    2016-01-01

    Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding. PMID:27208261

  18. Evaluation of suitable reference genes for normalization of microRNA expression by real-time reverse transcription PCR analysis during longan somatic embryogenesis.

    PubMed

    Lin, Yu Ling; Lai, Zhong Xiong

    2013-05-01

    Accurate profiling of microRNAs (miRNAs) is an essential step for understanding both developmental and physiological functions of miRNAs. Real-time quantitative PCR (qPCR) is being widely used in miRNA expression studies, but choosing a suitable reference gene is a crucial factor for correct analysis of results. To date, there has been no systematic evaluation of qPCR reference genes for the study of miRNAs during somatic embryogenesis (SE) in the longan tree (Dimocarpus longan). Here, the most stably expressed miRNAs in synchronized longan tree embryogenic cultures at different developmental stages were determined using the geNorm and NormFinder algorithms. Validation qPCR experiments were performed for 24 miRNAs together with a snRNA (U6 snRNA), a rRNA (5S rRNA), and three housekeeping genes. It was found that small RNAs had better expression stability than protein-coding genes, and dlo-miR24 was identified as the most reliable reference gene, followed by dlo-miR168a*, dlo-miR2089*-1 and 5S rRNA. dlo-miR24 was recommended as a normalizer if only a single reference gene was to be used, while the combination of dlo-miR156c, dlo-2089*-1 and 5S rRNA was preferred to normalize miRNA expression data during longan SE. PMID:23454294

  19. The Conformation of a Plasma Membrane-Localized Somatic Embryogenesis Receptor Kinase Complex Is Altered by a Potato Aphid-Derived Effector.

    PubMed

    Peng, Hsuan-Chieh; Mantelin, Sophie; Hicks, Glenn R; Takken, Frank L W; Kaloshian, Isgouhi

    2016-07-01

    Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding. PMID:27208261

  20. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.).

    PubMed

    Zur, Iwona; Dubas, Ewa; Golemiec, Elzbieta; Szechyńska-Hebda, Magdalena; Gołebiowska, Gabriela; Wedzony, Maria

    2009-08-01

    Isolated microspore cultures of two spring triticale (x Triticosecale Wittm.) cultivars were used to examine the effect of various stress treatments (either high--32 degrees C or low--5 degrees C temperature with or without nitrogen/carbohydrate starvation) applied to excised anthers on the effectiveness of microspore embryogenesis induction. To quantify the effects of pretreatment conditions, the activity of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) together with respiration rate and heat emission were measured. It was observed that heat shock treatment applied as the only one stress factor increased the activity of antioxidative enzymes which suggests intensive generation of reactive oxygen species. Such pretreatment effectively triggered microspore reprogramming but drastically decreased microspore viability. After low temperature treatment, the activity of antioxidative enzymes was similar to the control subjected only with the stress originated from the transfer to in vitro culture conditions. This pretreatment decreased the number of microspores entering embryogenesis but sustained cell viability and this effect prevailed in the final estimation of microspore embryogenesis effectiveness. For both, low- and high-temperature treatments, interaction with starvation stress was beneficial increasing microspore viability (at 5 degrees C) or efficiency of embryogenesis induction (at 32 degrees C). The latter treatment significantly reduced cell metabolic activity. Physiological background of these effects seems to be different and some hypothetical explanations have been discussed. Received data indicate that in triticale, anther preculture conditions could generate oxidative stress and change the cell metabolic activity which could next be reflected in the cell viability and the efficiency of microspore embryogenesis. PMID:19551385

  1. Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose

    PubMed Central

    Parra-Vega, Verónica; Corral-Martínez, Patricia; Rivas-Sendra, Alba; Seguí-Simarro, Jose M.

    2015-01-01

    The induction of microspore embryogenesis produces dramatic changes in different aspects of the cell physiology and structure. Changes at the cell wall level are among the most intriguing and poorly understood. In this work, we used high pressure freezing and freeze substitution, immunolocalization, confocal, and electron microscopy to analyze the structure and composition of the first cell walls formed during conventional Brassica napus microspore embryogenesis, and in cultures treated to alter the intracellular Ca2+ levels. Our results revealed that one of the first signs of embryogenic commitment is the formation of a callose-rich, cellulose-deficient layer beneath the intine (the subintinal layer), and of irregular, incomplete cell walls. In these events, Ca2+ may have a role. We propose that abnormal cell walls are due to a massive callose synthesis and deposition of excreted cytoplasmic material, and the parallel inhibition of cellulose synthesis. These features were absent in pollen-like structures and in microspore-derived embryos, few days after the end of the heat shock, where abnormal cell walls were no longer produced. Together, our results provide an explanation to a series of relevant aspects of microspore embryogenesis including the role of Ca2+ and the occurrence of abnormal cell walls. In addition, our discovery may be the explanation to why nuclear fusions take place during microspore embryogenesis. PMID:26635844

  2. MicroRNA390-Directed TAS3 Cleavage Leads to the Production of tasiRNA-ARF3/4 During Somatic Embryogenesis in Dimocarpus longan Lour

    PubMed Central

    Lin, Yuling; Lin, Lixia; Lai, Ruilian; Liu, Weihua; Chen, Yukun; Zhang, Zihao; XuHan, Xu; Lai, Zhongxiong

    2015-01-01

    Trans-acting short-interfering RNAs (tasiRNAs) originate from TAS3 families through microRNA (miRNA) 390-guided cleavage of primary transcripts and target auxin response factors (ARF3/-4), which are involved in the normal development of lateral roots and flowers in plants. However, their roles in embryo development are still unclear. Here, the pathway miR390-TAS3-ARF3/-4 was identified systematically for the first time during somatic embryo development in Dimocarpus longan. We identified the miR390 primary transcript and promoter. The promoter contained cis-acting elements responsive to stimuli such as light, salicylic acid, anaerobic induction, fungal elicitor, circadian control, and heat stress. The longan TAS3 transcript, containing two miR390-binding sites, was isolated; the miR390- guided cleavage site located near the 3′ end of the TAS3 transcript was verified. Eight TAS3-tasiRNAs with the 21-nucleotides phase were found among longan small RNA data, further confirming that miR390-directed TAS3 cleavage leads to the production of tasiRNA in longan. Among them, TAS3_5′D5+ and 5′D6+ tasiRNAs were highly abundant, and verified to target ARF3 and -4, implying that miR390-guided TAS3 cleavage with 21-nucleotides phase leading to the production of tasiRNA-ARF is conserved in plants. Pri-miR390 was highly expressed in friable-embryogenic callus (EC), and less expressed in incomplete compact pro-embryogenic cultures, while miR390 showed its lowest expression in EC and highest expression in torpedo-shaped embryos (TEs). DlTAS3 and DlARF4 both exhibited their lowest expressions in EC, and reached their peaks in the globular embryos stage, which were mainly inversely proportional to the expression of miR390, especially at the globular embryos to cotyledonary embryos (CEs) stages. While DlARF3 showed little variation from the EC to TEs stages, and exhibited its lowest expression in the CEs stage. There was a general lack of correlation between the expressions of Dl

  3. Protocols for Callus and Somatic Embryo Initiation for Hibiscus sabdariffa L. (Malvaceae): Influence of Explant Type, Sugar, and Plant Growth Regulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A significant work on callus induction and somatic embryogenesis was realized for Hibiscus sabdariffa. Two genotypes (Hibiscus sabdariffa and Hibiscus sabdariffa var. altissima) two sugars (sucrose and glucose) and three concentrations (1 %, 2%, 3%) of each sugar, 3 explant types (root, hypocotyl, c...

  4. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 Are Essential for Tapetum Development and Microspore MaturationW⃞ 111111111111111111111111 100000000000000000000001 100001111000000001000001 100010000100000010100001 100100000010000010100001 101000000001000100010001 101000000001000100010001 101000000001001111111001 101000000001001000001001 100100000010001000001001 100010000100010000000101 100001111000010000000101 100000000000000000000001 111111111111111111111111

    PubMed Central

    Colcombet, Jean; Boisson-Dernier, Aurélien; Ros-Palau, Roc; Vera, Carlos E.; Schroeder, Julian I.

    2005-01-01

    Among the >200 members of the leucine-rich repeat receptor kinase family in Arabidopsis thaliana, only a few have been functionally characterized. Here, we report a critical function in anther development for the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 (SERK1) and SERK2 genes. Both SERK1 and SERK2 are expressed widely in locules until stage 6 anthers and are more concentrated in the tapetal cell layer later. Whereas serk1 and serk2 single insertion mutants did not show developmental phenotypes, serk1 serk2 double mutants were not able to produce seeds because of a lack of pollen development in mutant anthers. In young buds, double mutant anthers developed normally, but serk1 serk2 microsporangia produced more sporogenous cells that were unable to develop beyond meiosis. Furthermore, serk1 serk2 double mutants developed only three cell layers surrounding the sporogenous cell mass, whereas wild-type anthers developed four cell layers. Further confocal microscopic and molecular analyses showed that serk1 serk2 double mutant anthers lack development of the tapetal cell layer, which accounts for the microspore abortion and male sterility. Taken together, these findings demonstrate that the SERK1 and SERK2 receptor kinases function redundantly as an important control point for sporophytic development controlling male gametophyte production. PMID:16284306

  5. Analysis of expression profiles of selected genes associated with the regenerative property and the receptivity to gene transfer during somatic embryogenesis in Triticum aestivum L.

    PubMed

    Delporte, Fabienne; Muhovski, Yordan; Pretova, Anna; Watillon, Bernard

    2013-10-01

    The physiological, biochemical and molecular mechanisms regulating the initiation of a regenerative pathway remain partially unknown. Efforts to identify the biological features that confer transformation ability, or the tendency of some cells to induce transgene silencing, would help to improve plant genetic engineering. The objective of our study was to monitor the evolution of plant cell competencies in relation to both in vitro tissue culture regeneration and the genetic transformation properties. We used a simple wheat regeneration procedure as an experimental model for studying the regenerative capacity of plant cells and their receptivity to direct gene transfer over the successive steps of the regenerative pathway. Target gene profiling studies and biochemical assays were conducted to follow some of the mechanisms triggered during the somatic-to-embryogenic transition (i.e. dedifferentiation, cell division activation, redifferentiation) and affecting the accessibility of plant cells to receive and stably express the exogenous DNA introduced by bombardment. Our results seem to indicate that the control of cell-cycle (S-phase) and host defense strategies can be crucial determinants of genetic transformation efficiency. The results from studies conducted at macro-, micro- and molecular scales are then integrated into a holistic approach that addresses the question of tissue culture and transgenesis competencies more broadly. Through this multilevel analysis we try to establish functional links between both regenerative capacity and transformation receptiveness, and thereby to provide a more global and integrated vision of both processes, at the core of defense/adaptive mechanisms and survival, between undifferentiated cell proliferation and organization. PMID:24078158

  6. Nonimmunogenic radiation-induced lymphoma: immunity induction by a somatic cell hybrid

    SciTech Connect

    Yefenof, E.; Goldapfel, M.; Ber, R.

    1982-05-01

    The cell line designated PIR-2 is a nonimmunogenic X-ray-induced thymoma of C57BL/6 origin that is unable to induce antitumor immunity in syngeneic lymphocytes in vitro and in mice in vivo. Fusion of PIR-2 with an allogeneic universal fuser A9HT (clone 3c) resulted in the establishment of a somatic cell hybrid designated A9/PIR. C57BL/6 lymphocytes sensitized in vitro with A9/PIR could lyse parental PIR-2 cells, as well as other syngeneic tumors. However, immunization of mice with the hybrid significantly enhanced PIR-2 tumor takes while it partially protected the animals against a challenge with unrelated syngeneic tumors. The results imply that somatic cell hybridization can increase the immunogenicity of an otherwise nonimmunogenic tumor. However, in view of the enhancing effects of hybrid preimmunization on parental tumor cell growth, the possible application of this approach for immunotherapy is questionable.

  7. Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423.

    PubMed

    Liu, Beibei; Su, Shengzhong; Wu, Ying; Li, Ying; Shan, Xiaohui; Li, Shipeng; Liu, Hongkui; Dong, Haixiao; Ding, Meiqi; Han, Junyou; Yuan, Yaping

    2015-07-01

    Intact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously. Histological analysis and scanning electron micrographs confirmed the different developmental stages of somatic embryogenesis, including globular-shaped embryo, pear-shaped embryo, scutiform embryo, and mature embryo. cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used for comparative transcript profiling between embryogenic and non-embryogenic calli of a new elite maize inbred line Y423 during somatic embryogenesis. Differentially expressed genes were cloned and sequenced. Gene Ontology analysis of 117 candidate genes indicated their involvement in cellular component, biological process and molecular function. Nine of the candidate genes were selected. The changes in their expression levels during embryo induction and regeneration were analyzed in detail using quantitative real-time PCR. Two full-length cDNA sequences, encoding ZmSUF4 (suppressor of fir 4-like protein) and ZmDRP3A (dynamin-related protein), were cloned successfully from intact somatic embryos of the elite inbred maize line Y423. Here, a procedure for maize plant regeneration from somatic embryos is described. Additionally, the possible roles of some of these genes during the somatic embryogenesis has been discussed. This study is a systematic analysis of the cellular and molecular mechanism during the formation of intact somatic embryos in maize. PMID:25931320

  8. Screening of medicinal plants for induction of somatic segregation activity in Aspergillus nidulans.

    PubMed

    Ramos Ruiz, A; De la Torre, R A; Alonso, N; Villaescusa, A; Betancourt, J; Vizoso, A

    1996-07-01

    Knowledge about mutagenic properties of plants commonly used in traditional medicine is limited. A screening for genotoxic activity was carried out in aqueous or alcoholic extracts prepared from 13 medicinal plants widely used as folk medicine in Cuba: Lepidium virginicum L. (Brassicaceae): Plantago major L. and Plantago lanceolata L. (Plantaginaceae); Ortosiphon aristatus Blume, Mentha x piperita L., Melissa officinalis L. and Plectranthus amboinicus (Lour.) Spreng. (Lamiaceae); Cymbopogon citratus (DC.) Stapf (Poaceae); Passiflora incarnata L. (Passifloraceae); Zingiber officinale Roscoe (Zingiberaceae); Piper auritum HBK. (Piperaceae); Schinus terebinthifolius Raddi (Anacardeaceae) and Momordica charantia L. (Cucurbitaceae). A plate incorporation assay with Aspergillus nidulans was employed, allowing detection of somatic segregation as a result of mitotic crossing-over, chromosome malsegregation or clastogenic effects. Aspergillus nidulans D-30, a well-marked strain carrying four recessive mutations for conidial color in heterozygosity, which permitted the direct visual detection of segregants, was used throughout this study. As a result, only in the aqueous extract of one of the plants screened (Momordica charantia) a statistical significant increase in the frequency of segregant sectors per colony was observed, and consequently, a genotoxic effect is postulated. PMID:8771452

  9. Technological overview of iPS induction from human adult somatic cells.

    PubMed

    Bayart, Emilie; Cohen-Haguenauer, Odile

    2013-04-01

    The unlimited proliferation capacity of embryonic stem cells (ESCs) combined with their pluripotent differentiation potential in various lineages raised great interest in both the scientific community and the public at large with hope for future prospects of regenerative medicine. However, since ESCs are derived from human embryos, their use is associated with significant ethical issues preventing broad studies and therapeutic applications. To get around this bottleneck, Takahashi and Yamanaka have recently achieved the conversion of adult somatic cells into ES-like cells via the forced expression of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. This first demonstration attracted public attention and opened a new field of stem cells research with both cognitive - such as disease modeling - and therapeutic prospects. This pioneer work just received the 2012 Nobel Prize in Physiology or Medicine. Many methods have been reported since 2006, for the generation of induced pluripotent stem (iPS) cells. Most strategies currently under use are based on gene delivery via gamma-retroviral or lentiviral vectors; some experiments have also been successful using plasmids or transposons- based systems and few with adenovirus. However, most experiments involve integration in the host cell genome with an identified risk for insertional mutagenesis and oncogenic transformation. To circumvent such risks which are deemed incompatible with therapeutic prospects, significant progress has been made with transgene-free reprogramming methods based on e.g.: sendai virus or direct mRNA or protein delivery to achieve conversion of adult cells into iPS. In this review we aim to cover current knowledge relating to both delivery systems and combinations of inducing factors including chemicals which are used to generate human iPS cells. Finally, genetic instability resulting from the reprogramming process is also being considered as a safety bottleneck for future clinical translation

  10. Technological Overview of iPS Induction from Human Adult Somatic Cells

    PubMed Central

    Bayart, Emilie; Cohen-Haguenauer, Odile

    2013-01-01

    The unlimited proliferation capacity of embryonic stem cells (ESCs) combined with their pluripotent differentiation potential in various lineages raised great interest in both the scientific community and the public at large with hope for future prospects of regenerative medicine. However, since ESCs are derived from human embryos, their use is associated with significant ethical issues preventing broad studies and therapeutic applications. To get around this bottleneck, Takahashi and Yamanaka have recently achieved the conversion of adult somatic cells into ES-like cells via the forced expression of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. This first demonstration attracted public attention and opened a new field of stem cells research with both cognitive – such as disease modeling - and therapeutic prospects. This pioneer work just received the 2012 Nobel Prize in Physiology or Medicine. Many methods have been reported since 2006, for the generation of induced pluripotent stem (iPS) cells. Most strategies currently under use are based on gene delivery via gamma-retroviral or lentiviral vectors; some experiments have also been successful using plasmids or transposons-based systems and few with adenovirus. However, most experiments involve integration in the host cell genome with an identified risk for insertional mutagenesis and oncogenic transformation. To circumvent such risks which are deemed incompatible with therapeutic prospects, significant progress has been made with transgene-free reprogramming methods based on e.g.: sendaï virus or direct mRNA or protein delivery to achieve conversion of adult cells into iPS. In this review we aim to cover current knowledge relating to both delivery systems and combinations of inducing factors including chemicals which are used to generate human iPS cells. Finally, genetic instability resulting from the reprogramming process is also being considered as a safety bottleneck for future clinical

  11. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells

    PubMed Central

    Morton, Jason; Davis, M. Wayne; Jorgensen, Erik M.; Carroll, Dana

    2006-01-01

    Zinc-finger nucleases are chimeric proteins consisting of engineered zinc-finger DNA-binding motifs attached to an endonuclease domain. These proteins can induce site-specific DNA double-strand breaks in genomic DNA, which are then substrates for cellular repair mechanisms. Here, we demonstrate that engineered zinc-finger nucleases function effectively in somatic cells of the nematode Caenorhabditis elegans. Although gene-conversion events were indistinguishable from uncut DNA in our assay, nonhomologous end joining resulted in mutations at the target site. A synthetic target on an extrachromosomal array was targeted with a previously characterized nuclease, and an endogenous genomic sequence was targeted with a pair of specifically designed nucleases. In both cases, ≈20% of the target sites were mutated after induction of the corresponding nucleases. Alterations in the extrachromosomal targets were largely products of end-filling and blunt ligation. By contrast, alterations in the chromosomal target were mostly deletions. We interpret these differences to reflect the abundance of homologous templates present in the extrachromosomal arrays versus the paucity of such templates for repair of chromosomal breaks. In addition, we find evidence for the involvement of error-prone DNA synthesis in both homologous and nonhomologous pathways of repair. DNA ligase IV is required for efficient end joining, particularly of blunt ends. In its absence, a secondary end-joining pathway relies more heavily on microhomologies in producing deletions. PMID:17060623

  12. Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis.

    PubMed

    Becker, Michael G; Chan, Ainsley; Mao, Xingyu; Girard, Ian J; Lee, Samantha; Elhiti, Mohamed; Stasolla, Claudio; Belmonte, Mark F

    2014-11-01

    Changes in the endogenous ascorbate redox status through genetic manipulation of cellular ascorbate levels were shown to accelerate cell proliferation during the induction phase and improve maturation of somatic embryos in Arabidopsis. Mutants defective in ascorbate biosynthesis such as vtc2-5 contained ~70 % less cellular ascorbate compared with their wild-type (WT; Columbia-0) counterparts. Depletion of cellular ascorbate accelerated cell division processes and cellular reorganization and improved the number and quality of mature somatic embryos grown in culture by 6-fold compared with WT tissues. To gain insight into the molecular mechanisms underlying somatic embryogenesis (SE), we profiled dynamic changes in the transcriptome and analysed dominant patterns of gene activity in the WT and vtc2-5 lines across the somatic embryo culturing process. Our results provide insight into the gene regulatory networks controlling SE in Arabidopsis based on the association of transcription factors with DNA sequence motifs enriched in biological processes of large co-expressed gene sets. These data provide the first detailed account of temporal changes in the somatic embryo transcriptome starting with the zygotic embryo, through tissue dedifferentiation, and ending with the mature somatic embryo, and impart insight into possible mechanisms for the improved culture of somatic embryos in the vtc2-5 mutant line. PMID:25151615

  13. Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis

    PubMed Central

    Becker, Michael G.; Chan, Ainsley; Mao, Xingyu; Girard, Ian J.; Lee, Samantha; Elhiti, Mohamed; Stasolla, Claudio; Belmonte, Mark F.

    2014-01-01

    Changes in the endogenous ascorbate redox status through genetic manipulation of cellular ascorbate levels were shown to accelerate cell proliferation during the induction phase and improve maturation of somatic embryos in Arabidopsis. Mutants defective in ascorbate biosynthesis such as vtc2-5 contained ~70 % less cellular ascorbate compared with their wild-type (WT; Columbia-0) counterparts. Depletion of cellular ascorbate accelerated cell division processes and cellular reorganization and improved the number and quality of mature somatic embryos grown in culture by 6-fold compared with WT tissues. To gain insight into the molecular mechanisms underlying somatic embryogenesis (SE), we profiled dynamic changes in the transcriptome and analysed dominant patterns of gene activity in the WT and vtc2-5 lines across the somatic embryo culturing process. Our results provide insight into the gene regulatory networks controlling SE in Arabidopsis based on the association of transcription factors with DNA sequence motifs enriched in biological processes of large co-expressed gene sets. These data provide the first detailed account of temporal changes in the somatic embryo transcriptome starting with the zygotic embryo, through tissue dedifferentiation, and ending with the mature somatic embryo, and impart insight into possible mechanisms for the improved culture of somatic embryos in the vtc2-5 mutant line. PMID:25151615

  14. Dying with Style: Death Decision in Plant Embryogenesis.

    PubMed

    Huang, Shuanglong; Mira, Mohamed M; Stasolla, Claudio

    2016-01-01

    Embryogenesis is a fascinating event during the plant life cycle encompassing several steps whereby the zygote develops into a fully developed embryo which, in angiosperms, is composed of an axis separating the apical meristems, and two cotyledons. Recapitulation of embryogenesis can also occur in vitro through somatic embryogenesis, where somatic cells are induced to form embryos, and androgenesis, in which embryos originate from immature male gametophytes. Besides cell division and differentiation, embryo patterning in vivo and in vitro requires the dismantling and selective elimination of cells and tissues via programmed cell death (PCD). While the manifestation of the death program has long been acknowledged in vivo, especially in relation to the elimination of the suspensor during the late phases of embryo development, PCD during in vitro embryogenesis has only been described in more recent years. Independent studies using the gymnosperm Norway spruce and the angiosperm maize have shown that the death program is crucial for the proper formation and further development of immature somatic embryos. This chapter summarizes the recent advances in the field of PCD during embryogenesis and proposes novel regulatory mechanisms activating the death program in plants. PMID:26619860

  15. Comparative induction of somatic eye-color mutations and sex-linked recessive lethals in Drosophila melanogaster by tryptophan pyrolysates.

    PubMed

    Fujikawa, K; Inagaki, E; Uchibori, M; Kondo, S

    1983-12-01

    The mutagenicities of the products of pyrolysis of tryptophan, Trp-P-1 and Trp-P-2, on Drosophila melanogaster were examined by measuring the effects of these compounds in inducing recessive lethals and somatic eye-color mutations. Since negative results have already been obtained by the standard procedure in males, Trp-P-1 and Trp-P-2 (0.75 to 6 mg/ml) in sucrose solution were given to females for assay of recessive lethal mutations in X-chromosomes. These compounds caused a marginal increase above the control level in the mutation frequency. For the assay of effects on somatic eye-color mutations, Trp-P-1 (200 and 400 ppm) and Trp-P-2 (400 and 800 ppm) were fed to male larvae of a tester strain carrying a genetically unstable marker set of z and w+ on the X-chromosome. These compounds caused dose-dependent increases above the control level in somatic eye-color mutations in adults. It is concluded that, under the conditions used, the somatic eye-color mutation system was more sensitive than the recessive lethal system to the mutagenic effects of tryptophan pyrolysates. PMID:6419091

  16. Enhancement of American chestnut somatic seedling production.

    PubMed

    Andrade, G M; Merkle, S A

    2005-08-01

    Somatic embryogenesis holds promise for mass propagation of American chestnut trees bred or genetically engineered for resistance to chestnut blight. However, low germination frequency of chestnut somatic embryos has limited somatic seedling production for this forest tree. We tested the effects of culture regime (semi-solid versus liquid), cold treatment, AC and somatic embryo morphology (i.e., cotyledon number) on germination and conversion of the somatic embryos. Cold treatment for 12 weeks was critical for conversion of chestnut somatic embryos to somatic seedlings, raising conversion frequencies for one line to 47%, compared to 7% with no cold treatment. AC improved germination and conversion frequency for one line to 77% and 59%, respectively, and kept roots from darkening. For two lines that produced embryos with one, two or three-plus cotyledons, cotyledon number did not affect germination or conversion frequency. We also established embryogenic American chestnut suspension cultures and adapted a fractionation/plating system that allowed us to produce populations of relatively synchronous somatic embryos for multiple lines. Embryos derived from suspension cultures of two lines tested had higher conversion frequencies (46% and 48%) than those from cultures maintained on semi-solid medium (7% and 30%). The improvements in manipulation of American chestnut embryogenic cultures described in this study have allowed over a 100-fold increase in somatic seedling production efficiency over what we reported previously and thus constitute a substantial advance toward the application of somatic embryogenesis for mass clonal propagation of the tree. PMID:15789206

  17. A Comparison of In Vitro and In Vivo Asexual Embryogenesis.

    PubMed

    Hand, Melanie L; de Vries, Sacco; Koltunow, Anna M G

    2016-01-01

    In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway. PMID:26619856

  18. Induction of mutations by tritiated water and 3H-thymidine in Drosophila melanogaster assayed by the somatic zeste-white eye mutation system.

    PubMed

    Rasmuson, A; Xamena, N; Creus, A; Marcos, R

    1988-01-01

    In order to study the mutagenic effect of exposure to tritium, Drosophila melanogaster larvae were treated with tritiated water (3H2O) or tritiated thymidine (3H-TdR) during development. Dose rates ranged from 0.0058 to 0.058 rad/h per nucleus for 3H-TdR and from 0.049 to 0.122 rad/h for 3H2O. Induction of mutations was measured by the appearance of somatic mutations in the eyes of an unstable strain of Drosophila melanogaster. Both substances caused a significant increase in mutation frequency. With the assumption that each mutation observed in this assay is caused by one DNA break, the effectiveness of tritium to create DNA breaks is estimated to be 0.20 breaks per decay for 3H-TdR and 0.27 breaks per decay for 3H2O. PMID:3128734

  19. Comparison of sister chromatid exchange induction in murine germinal and somatic cells by gamma radiation exposure in vivo

    SciTech Connect

    Morales-Ramirez, P.; Mendiola-Cruz, M.T.; Vallarino-Kelly, T.; Rodriguez-Reyes, R.

    1994-12-31

    Sister chromatid exchange (SCE) induction by gamma rays was determined in speratogonia irradiated before or after BrdU incorporation. Furthermore, the comparison of responses obtained in spermatogonia, bone marrow and salivary gland cells was carried out in the cells irradiated after BrdU incorporation, a condition which permits a higher SCE induction. Results indicate that gamma ray exposure of spermatogonia could induce a significant increase in SCE frequency with doses as low as 0.27 Gy, either before or after BrdU incorporation. However, the increase caused by radiation exposure after BrdU incorporation in spermatogonia was nearly three times lower than that obtained in both bone marrow and salivary gland cells. These data suggest that spermatogonia are either more efficient in repairing the gamma ray-induced lesions involved in SCE production or that these cells are less prone to the induction of such lesions. 53 refs., 2 figs., 3 tabs.

  20. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  1. Induction of Chronic Inflammation and Altered Levels of DNA Hydroxymethylation in Somatic and Germinal Tissues of CBA/CaJ Mice Exposed to (48)Ti Ions.

    PubMed

    Rithidech, Kanokporn Noy; Jangiam, Witawat; Tungjai, Montree; Gordon, Chris; Honikel, Louise; Whorton, Elbert B

    2016-01-01

    Although the lung is one of the target organs at risk for cancer induction from exposure to heavy ions found in space, information is insufficient on cellular/molecular responses linked to increased cancer risk. Knowledge of such events may aid in the development of new preventive measures. Furthermore, although it is known that germinal cells are sensitive to X- or γ-rays, there is little information on the effects of heavy ions on germinal cells. Our goal was to investigate in vivo effects of 1 GeV/n (48)Ti ions (one of the important heavy ions found in the space environment) on somatic (lung) and germinal (testis) tissues collected at various times after a whole body irradiation of CBA/CaJ mice (0, 0.1, 0.25, or 0.5 Gy, delivered at 1 cGy/min). We hypothesized that (48)Ti-ion-exposure induced damage in both tissues. Lung tissue was collected from each mouse from each treatment group at 1 week, 1 month, and 6 months postirradiation. For the testis, we collected samples at 6 months postirradiation. Hence, only late-occurring effects of (48)Ti ions in the testis were studied. There were five mice per treatment group at each harvest time. We investigated inflammatory responses after exposure to (48)Ti ions by measuring the levels of activated nuclear factor kappa B and selected pro-inflammatory cytokines in both tissues of the same mouse. These measurements were coupled with the quantitation of the levels of global 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Our data clearly showed the induction of chronic inflammation in both tissues of exposed mice. A dose-dependent reduction in global 5hmC was found in the lung at all time-points and in testes collected at 6 months postirradiation. In contrast, significant increases in global 5mC were found only in lung and testes collected at 6 months postirradiation from mice exposed to 0.5 Gy of 1 GeV/n (48)Ti ions. Overall, our data showed that (48)Ti ions may create health risks in both

  2. Induction of Chronic Inflammation and Altered Levels of DNA Hydroxymethylation in Somatic and Germinal Tissues of CBA/CaJ Mice Exposed to 48Ti Ions

    PubMed Central

    Rithidech, Kanokporn Noy; Jangiam, Witawat; Tungjai, Montree; Gordon, Chris; Honikel, Louise; Whorton, Elbert B.

    2016-01-01

    Although the lung is one of the target organs at risk for cancer induction from exposure to heavy ions found in space, information is insufficient on cellular/molecular responses linked to increased cancer risk. Knowledge of such events may aid in the development of new preventive measures. Furthermore, although it is known that germinal cells are sensitive to X- or γ-rays, there is little information on the effects of heavy ions on germinal cells. Our goal was to investigate in vivo effects of 1 GeV/n 48Ti ions (one of the important heavy ions found in the space environment) on somatic (lung) and germinal (testis) tissues collected at various times after a whole body irradiation of CBA/CaJ mice (0, 0.1, 0.25, or 0.5 Gy, delivered at 1 cGy/min). We hypothesized that 48Ti-ion-exposure induced damage in both tissues. Lung tissue was collected from each mouse from each treatment group at 1 week, 1 month, and 6 months postirradiation. For the testis, we collected samples at 6 months postirradiation. Hence, only late-occurring effects of 48Ti ions in the testis were studied. There were five mice per treatment group at each harvest time. We investigated inflammatory responses after exposure to 48Ti ions by measuring the levels of activated nuclear factor kappa B and selected pro-inflammatory cytokines in both tissues of the same mouse. These measurements were coupled with the quantitation of the levels of global 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Our data clearly showed the induction of chronic inflammation in both tissues of exposed mice. A dose-dependent reduction in global 5hmC was found in the lung at all time-points and in testes collected at 6 months postirradiation. In contrast, significant increases in global 5mC were found only in lung and testes collected at 6 months postirradiation from mice exposed to 0.5 Gy of 1 GeV/n 48Ti ions. Overall, our data showed that 48Ti ions may create health risks in both lung and

  3. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.).

    PubMed

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  4. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.)

    PubMed Central

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M.; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  5. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process.

    PubMed

    Klimaszewska, Krystyna; Overton, Catherine; Stewart, Don; Rutledge, Robert G

    2011-03-01

    Adult conifers are notoriously recalcitrant in vegetative propagation and micropropagation that would result in the regeneration of juvenile propagules through somatic embryogenesis (SE) has not been demonstrated to date. Because SE-derived material is more amenable in subsequent tissue culture experiments compared with seed-derived material, a multi-year study was conducted to investigate induction of SE from primordial shoot (PS) explants that were excised from shoot buds of somatic embryo-derived white spruce. The SE induction experiments were carried out first with greenhouse-grown and later with field-grown trees each year from 2002 (2-year-old) to 2010 (10-year-old). Of the four genotypes tested, 893-2 and 893-12 never responded, 893-1 responded up to year 4 and 893-6 consistently responded every year. In 2010, for the first time, three of the 17 893-6 clonal trees produced male strobili as well as SE from cultured PS explants. SE induction was associated with formation of a nodule on the surface of an elongated needle primordium or in callus. Early somatic embryos were detectable after about 3 weeks of culture. Of 11 genes whose expression profiles were followed during the PS cultures, CHAP3A, VP1, WOX2 and SAP2C were expressed exclusively in the early stages of SE, and could potentially be used as markers of embryogenecity. Mature somatic embryos and plants were produced from the explants of responding genotype. Implication of these results for future research on adult conifer recalcitrance in micropropagation is discussed. PMID:21136075

  6. Molecular aspects of somatic-to-embryogenic transition in plants.

    PubMed

    Karami, Omid; Aghavaisi, Behzad; Mahmoudi Pour, Aghil

    2009-11-01

    Somatic embryogenesis (SE) is a model system for understanding the physiological, biochemical, and molecular biological events occurring during plant embryo development. Plant somatic cells have the ability to undergo sustained divisions and give rise to an entire organism. This remarkable feature is called plant cell totipotency. SE is a notable illustration of plant totipotency and involves reprogramming of development in somatic cells toward the embryogenic pathway. Plant growth regularities, especially auxins, are key components as their exogenous application recapitulates the embryogenic potential of the mitotically quiescent somatic cells. It has been observed that there are genetic and also physiological factors that trigger in vitro embryogenesis in various types of plant somatic cells. Analysis of the proteome and transcriptome has led to the identification and characterization of certain genes involved in SE. Most of these genes, however, are upregulated only in the late developmental stages, suggesting that they do not play a direct role in the vegetative-to-embryogenic transition. However, the molecular bases of those triggering factors and the genetic and biochemical mechanisms leading to in vitro embryogenesis are still unknown. Here, we describe the plant factors that participate in the vegetative-to-embryogenic transition and discuss their possible roles in this process. PMID:19763658

  7. A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus

    PubMed Central

    2012-01-01

    Background Microspore embryogenesis represents a unique system of single cell reprogramming in plants wherein a highly specialized cell, the microspore, by specific stress treatment, switches its fate towards an embryogenesis pathway. In Brassica napus, a model species for this phenomenon, incubation of isolated microspores at 32°C is considered to be a pre-requisite for embryogenesis induction. Results We have developed a new in vitro system at lower temperature (18°C) to efficiently induce microspore embryogenesis throughout two different developmental pathways: one involving the formation of suspensor-like structures (52.4%) and another producing multicellular embryos without suspensor (13.1%); additionally, a small proportion of non-responsive microspores followed a gametophytic-like development (34.4%) leading to mature pollen. The suspensor-like pathway followed at 18°C involved the establishment of asymmetric identities from the first microspore division and an early polarity leading to different cell fates, suspensor and embryo development, which were formed by cells with different organizations and endogenous auxin distribution, similar to zygotic embryogenesis. In addition, a new strategy for germination of microspore derived embryos was developed for achieving more than 90% conversion of embryos to plantlets, with a predominance of spontaneous doubled haploids plants. Conclusion The present work reveals a novel mechanism for efficient microspore embryogenesis induction in B. napus using continuous low temperature treatment. Results indicated that low temperature applied for longer periods favours an embryogenesis pathway whose first division originates asymmetric cell identities, early polarity establishment and the formation of suspensor-like structures, mimicking zygotic embryogenesis. This new in vitro system provides a convenient tool to analyze in situ the mechanisms underlying different developmental pathways during the microspore reprogramming

  8. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features

    PubMed Central

    Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos

    2016-01-01

    The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843

  9. From Somatic Embryo to Synthetic Seed in Citrus spp. Through the Encapsulation Technology.

    PubMed

    Micheli, Maurizio; Standardi, Alvaro

    2016-01-01

    In vitro propagation by somatic embryogenesis represents an efficient alternative method to produce high-quality and healthy plants in Citrus species. The regenerated somatic embryos need protection from mechanical damages during manipulation and transport, as well as nutritive support for their evolution in plantlets after sowing. The encapsulation technology allows to obtain synthetic seeds by covering somatic embryos with a gel of calcium alginate enriched by nutrients. This chapter describes the procedure for producing synthetic seeds containing somatic embryos from different Citrus genotypes. PMID:26619885

  10. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) – A comparative study

    PubMed Central

    Mujib, A.; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-01-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  11. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) - A comparative study.

    PubMed

    Mujib, A; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-11-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  12. Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus.

    PubMed

    Malik, Meghna R; Wang, Feng; Dirpaul, Joan M; Zhou, Ning; Polowick, Patricia L; Ferrie, Alison M R; Krochko, Joan E

    2007-05-01

    Isolated microspores of Brassica napus are developmentally programmed to form gametes; however, microspores can be reprogrammed through stress treatments to undergo appropriate divisions and form embryos. We are interested in the identification and isolation of factors and genes associated with the induction and establishment of embryogenesis in isolated microspores. Standard and normalized cDNA libraries, as well as subtractive cDNA libraries, were constructed from freshly isolated microspores (0 h) and microspores cultured for 3, 5, or 7 d under embryogenesis-inducing conditions. Library comparison tools were used to identify shifts in metabolism across this time course. Detailed expressed sequence tag analyses of 3 and 5 d cultures indicate that most sequences are related to pollen-specific genes. However, semiquantitative and real-time reverse transcription-polymerase chain reaction analyses at the initial stages of embryo induction also reveal expression of embryogenesis-related genes such as BABYBOOM1, LEAFY COTYLEDON1 (LEC1), and LEC2 as early as 2 to 3 d of microspore culture. Sequencing results suggest that embryogenesis is clearly established in a subset of the microspores by 7 d of culture and that this time point is optimal for isolation of embryo-specific expressed sequence tags such as ABSCISIC ACID INSENSITIVE3, ATS1, LEC1, LEC2, and FUSCA3. Following extensive polymerase chain reaction-based expression profiling, 16 genes were identified as unequivocal molecular markers for microspore embryogenesis in B. napus. These molecular marker genes also show expression during zygotic embryogenesis, underscoring the common developmental pathways that function in zygotic and gametic embryogenesis. The quantitative expression values of several of these molecular marker genes are shown to be predictive of embryogenic potential in B. napus cultivars (e.g. 'Topas' DH4079, 'Allons,' 'Westar,' 'Garrison'). PMID:17384168

  13. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum.

    PubMed

    Schwager, Evelyn E; Meng, Yue; Extavour, Cassandra G

    2015-06-15

    Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression. PMID:25257304

  14. Scriptaid Treatment Decreases DNA Methyltransferase 1 Expression by Induction of MicroRNA-152 Expression in Porcine Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Liang, Shuang; Zhao, Ming-Hui; Choi, Jeong-woo; Kim, Nam-Hyung; Cui, Xiang-Shun

    2015-01-01

    Abnormal epigenetic reprogramming of donor nuclei after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiencies. A growing body of evidence has demonstrated a positive role of Scriptaid, a histone deacetylase inhibitor (HDACi) that belongs to an existing class of hydroxamic acid-containing HDACis, on the development competence of cloned embryos in many species. The present study investigated the effects of Scriptaid on the development of porcine SCNT embryos in vitro and its mechanism. Treatment with 300 or 500 nM Scriptaid for 20 h after activation significantly increased the percentage of SCNT embryos that developed to the blastocyst stage and the total number of cells per blastocyst and significantly decreased the percentage of apoptotic cells in blastocysts. Scriptaid treatment significantly increased the level of histone H3 acetylated at K9 and the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and significantly decreased the level of histone H3 trimethylated at K9 at the pronuclear stage. As a potential mechanism for the DNA methylation changes, our results showed that the expression of DNA methyltransferase 1 was frequently down-regulated in Scriptaid-treated embryos in comparison with untreated embryos and was inversely correlated to endogenous microRNA-152 (miR-152). Taken together, these findings illustrated a crucial functional crosstalk between miR-152 and DNMT1. Meanwhile, mRNA and protein levels of POU5F1 and CDX2 were increased in Scriptaid-treated embryos. mRNA levels of Caspase3, and Bax were significantly decreased and that of Bcl-xL was significantly increased in Scriptaid-treated embryos. In conclusion, these observations would contribute to uncover the nuclear reprogramming mechanisms underlying the effects of Scriptaid on the improvement of porcine SCNT embryos. PMID:26261994

  15. SYCHRONIZED SOMATIC EMBRYO DEVELOPMENT IN EMBRYOGENIC SUSPENSIONS OF GRAPEVINE (MUSCADINIA ROTUNDIFOLIA SMALL AND VITIS VINIFERA L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The full advantages of somatic embryogenesis as a regeneration system and essential model for performing functional genomics studies and understanding molecular aspect of the ontogenesis of higher plants are demonstrated only in high-frequency, synchronous embryogenic system in liquid culture. In t...

  16. (Why) Does Evolution Favour Embryogenesis?

    PubMed

    Rensing, Stefan A

    2016-07-01

    Complex multicellular organisms typically possess life cycles in which zygotes (formed by gamete fusion) and meiosis occur. Canonical animal embryogenesis describes development from zygote to birth. It involves polarisation of the egg/zygote, asymmetric cell divisions, establishment of axes, symmetry breaking, formation of organs, and parental nutrition (at least in early stages). Similar developmental patterns have independently evolved in other eukaryotic lineages, including land plants and brown algae. The question arises whether embryo-like structures and associated developmental processes recurrently emerge because they are local optima of the evolutionary landscape. To understand which evolutionary principles govern complex multicellularity, we need to analyse why and how similar processes evolve convergently - von Baer's and Haeckel's phylotypic stage revisited in other phyla. PMID:26987708

  17. Linker histone variants control chromatin dynamics during early embryogenesis

    PubMed Central

    Saeki, Hideaki; Ohsumi, Keita; Aihara, Hitoshi; Ito, Takashi; Hirose, Susumu; Ura, Kiyoe; Kaneda, Yasufumi

    2005-01-01

    Complex transitions in chromatin structure produce changes in genome function during development in metazoa. Linker histones, the last component of nucleosomes to be assembled into chromatin, comprise considerably divergent subtypes as compared with core histones. In all metazoa studied, their composition changes dramatically during early embryogenesis concomitant with zygotic gene activation, leading to distinct functional changes that are still poorly understood. Here, we show that early embryonic linker histone B4, which is maternally expressed, is functionally different from somatic histone H1 in influencing chromatin structure and dynamics. We developed a chromatin assembly system with nucleosome assembly protein-1 as a linker histone chaperone. This assay system revealed that maternal histone B4 allows chromatin to be remodeled by ATP-dependent chromatin remodeling factor, whereas somatic histone H1 prevents this remodeling. Structural analysis shows that histone B4 does not significantly restrict the accessibility of linker DNA. These findings define the functional significance of developmental changes in linker histone variants. We propose a model that holds that maternally expressed linker histones are key molecules specifying nuclear dynamics with respect to embryonic totipotency. PMID:15821029

  18. Visualization of somatic deletions mediated by R/RS site-specific recombination and induction of germinal deletions caused by callus differentiation and regeneration in rice.

    PubMed

    Toriyama, K; Chiba, A; Nakagawa, Y

    2003-02-01

    A transgenic rice plant expressing the recombinase of Zygosaccharomyces rouxii under the control of the CaMV 35S promoter was crossed with a transgenic plant carrying a cryptic (beta-glucuronidase) GUS reporter gene, which was activated by recombinase-mediated deletions between two specific recombination sites ( RSs). In F(1) plants, GUS activity was observed as blue spots and stripes in vascular bundles in several parts of the leaves. GUS expression was detected in all of the calli induced from F(1) seeds and throughout the regenerated plants. DNA analysis using the polymerase chain reaction and Southern blotting showed that R/ RS-mediated deletions occurred in all of the cells of the regenerated plants. Stable GUS expression was confirmed in the progeny resulting from self-pollination. Thus, the deletions obtained in the regenerated plants were genetically equivalent to the germinal deletions. These results indicate that the induction of callus differentiation and shoot regeneration is an effective manner to activate the R/ RS system and to produce plants with chromosomal deletions. PMID:12789437

  19. Hemoglobin Control of Cell Survival/Death Decision Regulates in Vitro Plant Embryogenesis1[W][OPEN

    PubMed Central

    Huang, Shuanglong; Hill, Robert D.; Wally, Owen S.D.; Dionisio, Giuseppe; Ayele, Belay T.; Jami, Sravan Kumar; Stasolla, Claudio

    2014-01-01

    Programmed cell death (PCD) in multicellular organisms is a vital process in growth, development, and stress responses that contributes to the formation of tissues and organs. Although numerous studies have defined the molecular participants in apoptotic and PCD cascades, successful identification of early master regulators that target specific cells to live or die is limited. Using Zea mays somatic embryogenesis as a model system, we report that the expressions of two plant hemoglobin (Hb) genes (ZmHb1 and ZmHb2) regulate the cell survival/death decision that influences somatic embryogenesis through their cell-specific localization patterns. Suppression of either of the two ZmHbs is sufficient to induce PCD through a pathway initiated by elevated NO and Zn2+ levels and mediated by production of reactive oxygen species. The effect of the death program on the fate of the developing embryos is dependent on the localization patterns of the two ZmHbs. During somatic embryogenesis, ZmHb2 transcripts are restricted to a few cells anchoring the embryos to the subtending embryogenic tissue, whereas ZmHb1 transcripts extend to several embryonic domains. Suppression of ZmHb2 induces PCD in the anchoring cells, allowing the embryos to develop further, whereas suppression of ZmHb1 results in massive PCD, leading to abortion. We conclude that regulation of the expression of these ZmHbs has the capability to determine the developmental fate of the embryogenic tissue during somatic embryogenesis through their effect on PCD. This unique regulation might have implications for development and differentiation in other species. PMID:24784758

  20. [Relationship between epigenetics of sperm and embryogenesis].

    PubMed

    He, Yan-Fang; Ma, Jie-Hua; Pan, Lian-Jun; Huang, Yu-Feng

    2014-08-01

    Epigenetics comprises the modifications made in gene expressions without changing the DNA sequence itself. Significant epigenetic changes take place during spermatogenesis and fertilization and exert direct influences on embryogenesis. This article provides an overview of the latest researches on epigenetics of male germ cells and a brief discussion on the correlation of sperm with embryogenesis in four aspects: DNA methylation, histone modification, regulation of non-coding RNAs, and genomic imprinting. PMID:25195372

  1. New theory of uterovaginal embryogenesis

    PubMed Central

    Makiyan, Zograb

    2016-01-01

    ABSTRACT Background: The explanation of uterine and vaginal embryogenesis in humans still poses many controversies, because it is difficult to assess early stages of an embryo. The literature review revealed many disagreements in Mullerian theory, inciting some authors to propose new embryological hypotheses. In the original Mullerian theory: the paramesonephral ducts form the Fallopian tubes, uterus and vagina; the mesonephral ducts regress in female embryos. Aims: The aim of this article is to investigate the development of Mullerian ducts in humans, using comparative analysis of fundamental embryological theory and various utero-vaginal anomalies. Material and methods: Between 1998 and 2015, 434 patients with various uterovaginal malformations had been operated on at the Scientific Centre of Obstetrics Gynaecology and Perynatology in Moscow. The anatomies of the uterovaginal malformations in these patients were diagnosed with ultrasound and MRI and then verified during surgical correction by laparoscopy. Results: A systematic comparison of uterovaginal malformations to those in the literature has allowed us to formulate a new theory of embryonic morphogenesis. The new theory is significantly different: ovary, ovarian ligamentum proprium, and ligamentum teres uteri derive from gonadal ridges; Fallopian tubes and vagina completely develop from mesonephral ducts. The uterus develops in the area of intersection between the mesonephral ducts with gonadal ridges by the fusion of the two. Conclusions: The new theory may to induce future embryological studies. The hypothetic possibility that the ovary and endometrium derive from the gonadal ridges could be the key to understanding the enigmatic aetiologies of extragenital and ovarian endometriosis. PMID:26900909

  2. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa.

    PubMed

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  3. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    PubMed Central

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  4. Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications forAgrobacterium-mediated transformation.

    PubMed

    Polito, V S; McGranahan, G; Pinney, K; Leslie, C

    1989-04-01

    Early stages of somatic embryo development from embryogenic cultures ofJuglans regia (Persian or English walnut) are described. Histological examination reveals that secondary somatic embryos arise from cotyledons and hypocotyls of primary embryos cultured in the dark. The embryos originate by transverse to oblique divisions of surface cells. Single-cell origin of the secondary embryos confirms the potential of the repetitive embryogenesis system forAgrobacterium-mediated transformation and regeneration of non-chimeric, transgenic walnut plants. PMID:24233141

  5. Somatic symptom disorder

    MedlinePlus

    ... disorder References American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders . 5th ed. Arlington, VA: American Psychiatric Publishing, 2013. Ferri F. Somatization disorder. In: Ferri FF, ...

  6. Microspore-derived embryogenesis in pepper (Capsicum annuum L.): subcellular rearrangements through development.

    PubMed

    Bárány, Ivett; González-Melendi, Pablo; Fadón, Begoña; Mitykó, Judit; Risueño, María C; Testillano, Pilar S

    2005-09-01

    Background information. In vitro-cultured microspores, after an appropriate stress treatment, can switch towards an embryogenic pathway. This process, known as microspore embryogenesis, is an important tool in plant breeding. Basic studies on this process in economically interesting crops, especially in recalcitrant plants, are very limited and the sequence of events is poorly understood. In situ studies are very convenient for an appropriate dissection of microspore embryogenesis, a process in which a mixture of different cell populations (induced and non-induced) develop asynchronically.Results. In the present study, the occurrence of defined subcellular rearrangements has been investigated during early microspore embryogenesis in pepper, an horticultural crop of agronomic interest, in relation to proliferation and differentiation events. Haploid plants of Capsicum annuum L. (var. Yolo Wonder B) have been regenerated from in vitro anther cultures by a heat treatment at 35 degrees C for 8 days. Morphogenesis of microspore-derived embryos has been analysed, at both light and electron microscopy levels, using low-temperature-processed, well-preserved specimens. The comparison with the normal gametophytic development revealed changes in cell organization after embryogenesis induction, and permitted the characterization of the time sequence of a set of structural events, not previously defined in pepper, related to the activation of proliferative activity and differentiation. These changes mainly affected the plastids, the vacuolar compartment, the cell wall and the nucleus. Further differentiation processes mimicked that of the zygotic development.Conclusions. The reported changes can be considered as markers of the microspore embryogenesis. They have increased the understanding of the mechanisms controlling the switch and progression of the microspore embryogenesis, which could help to improve its efficiency and to direct strategies, especially in agronomically

  7. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We aimed to investigate the impact of the epigenome in inducting fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish embryogenesis. One of the significant events in epigenome is DNA methylation which is catalyzed by DNA methyl transferase (DNMT) enzymes. We analyzed DNMT enzyme m...

  8. Transcript Profiling and Identification of Molecular Markers for Early Microspore Embryogenesis in Brassica napus1[W][OA

    PubMed Central

    Malik, Meghna R.; Wang, Feng; Dirpaul, Joan M.; Zhou, Ning; Polowick, Patricia L.; Ferrie, Alison M.R.; Krochko, Joan E.

    2007-01-01

    Isolated microspores of Brassica napus are developmentally programmed to form gametes; however, microspores can be reprogrammed through stress treatments to undergo appropriate divisions and form embryos. We are interested in the identification and isolation of factors and genes associated with the induction and establishment of embryogenesis in isolated microspores. Standard and normalized cDNA libraries, as well as subtractive cDNA libraries, were constructed from freshly isolated microspores (0 h) and microspores cultured for 3, 5, or 7 d under embryogenesis-inducing conditions. Library comparison tools were used to identify shifts in metabolism across this time course. Detailed expressed sequence tag analyses of 3 and 5 d cultures indicate that most sequences are related to pollen-specific genes. However, semiquantitative and real-time reverse transcription-polymerase chain reaction analyses at the initial stages of embryo induction also reveal expression of embryogenesis-related genes such as BABYBOOM1, LEAFY COTYLEDON1 (LEC1), and LEC2 as early as 2 to 3 d of microspore culture. Sequencing results suggest that embryogenesis is clearly established in a subset of the microspores by 7 d of culture and that this time point is optimal for isolation of embryo-specific expressed sequence tags such as ABSCISIC ACID INSENSITIVE3, ATS1, LEC1, LEC2, and FUSCA3. Following extensive polymerase chain reaction-based expression profiling, 16 genes were identified as unequivocal molecular markers for microspore embryogenesis in B. napus. These molecular marker genes also show expression during zygotic embryogenesis, underscoring the common developmental pathways that function in zygotic and gametic embryogenesis. The quantitative expression values of several of these molecular marker genes are shown to be predictive of embryogenic potential in B. napus cultivars (e.g. ‘Topas’ DH4079, ‘Allons,’ ‘Westar,’ ‘Garrison’). PMID:17384168

  9. Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng.

    PubMed

    Kang, Tae-Jin; Lee, Won-Seok; Choi, Eun-Gyung; Kim, Jae-Whune; Kim, Bang-Geul; Yang, Moon-Sik

    2006-01-24

    The B subunit of Escherichia coli heat-labile toxin (LTB) is a potent mucosal immunogen and immunoadjuvant for co-administered antigens. In order to produce large scale of LTB for the development of edible vaccine, we used transgenic somatic embryos of Siberian ginseng, which is known as medicinal plant. When transgenic somatic embryos were cultured in 130L air-lift type bioreactor, they were developed to mature somatic embryos through somatic embryogenesis and contained approximately 0.36% LTB of the total soluble protein. Enzyme-linked immunosorbent assay indicated that the somatic embryo-synthesized LTB protein bound specifically to GM1-ganglioside, suggesting the LTB subunits formed active pentamers. Therefore, the use of the bioreactor system for expression of LTB proteins in somatic embryos allows for continuous mass production in a short-term period. PMID:16174540

  10. Somatization, Paranoia, and Language.

    ERIC Educational Resources Information Center

    Oxman, Thomas E.; And Others

    1988-01-01

    Free speech of subjects with somatization and paranoia was analyzed to identify and compare self-concept dimensions reflected in their lexical choices. The somatization disorder group conveyed a sense of negativism, distress, and preoccupation with an uncertain self-identity. The paranoid patients portrayed an artificially positive, grandiose…

  11. Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis.

    PubMed

    Testillano, P S; Coronado, M J; Seguí, J M; Domenech, J; González-Melendi, P; Raska, I; Risueño, M C

    2000-04-01

    The switch of the gametophytic developmental program toward pollen embryogenesis to form a haploid plant represents an important alternative for plant breeding. In the present study, the switch of the gametophytic developmental program toward a sporophytic pathway, "embryogenesis," has been studied in three different plant species, Brassica, tobacco, and pepper. The switch has been induced by stress (heat shock) at the very responsive stage of the microspore, which is the vacuolate period. As a result, the cell nucleus undergoes striking structural changes with regard to late gametophytic development, including alterations of biosynthetic activities and proliferative activity. An enrichment in HSP70 heat-shock protein and in the presence of Ntf6-MAP kinase was observed after inductive treatment in the nuclei during early embryogenesis. This apparently reflected the possible roles of these proteins, specifically the protective role of HSP70 for the nuclear machinery, and signal transduction of Ntf6-MAPK for the entry of cells into proliferation. Importantly, the observed nuclear changes were similar in the three species investigated and represented convenient markers for early monitoring of embryogenesis and selection purposes for obtaining double-haploid plants in plant breeding. PMID:10806072

  12. Hepatocystin is Essential for TRPM7 Function During Early Embryogenesis

    PubMed Central

    Overton, Jeffrey D.; Komiya, Yuko; Mezzacappa, Courtney; Nama, Kaushik; Cai, Na; Lou, Liping; Fedeles, Sorin V.; Habas, Raymond; Runnels, Loren W.

    2015-01-01

    Mutations in protein kinase C substrate 80K-H (PRKCSH), which encodes for an 80 KDa protein named hepatocystin (80K-H, PRKCSH), gives rise to polycystic liver disease (PCLD). Hepatocystin functions as the noncatalytic beta subunit of Glucosidase II, an endoplasmic reticulum (ER)-resident enzyme involved in processing and quality control of newly synthesized glycoproteins. Patients harboring heterozygous germline mutations in PRKCSH are thought to develop renal cysts as a result of somatic loss of the second allele, which subsequently interferes with expression of the TRP channel polycystin-2 (PKD2). Deletion of both alleles of PRKCSH in mice results in embryonic lethality before embryonic day E11.5. Here, we investigated the function of hepatocystin during Xenopus laevis embryogenesis and identified hepatocystin as a binding partner of the TRPM7 ion channel, whose function is required for vertebrate gastrulation. We find that TRPM7 functions synergistically with hepatocystin. Although other N-glycosylated proteins are critical to early development, overexpression of TRPM7 in Xenopus laevis embryos was sufficient to fully rescue the gastrulation defect caused by loss of hepatocystin. We observed that depletion of hepatocystin in Xenopus laevis embryos decreased TRPM7 expression, indicating that the early embryonic lethality caused by loss of hepatocystin is mainly due to impairment of TRPM7 protein expression. PMID:26671672

  13. Somatic Literacy. Bringing Somatic Education into Physical Education.

    ERIC Educational Resources Information Center

    Linden, Paul

    1994-01-01

    Examines the profession of physical education and what it could become if it embraced somatic work, explaining the basic concepts and processes of somatic education. Somatic education focuses on the interactions of posture, movement, emotion, thought, self-concept, and cultural values. A case study details somatic education in practice. (SM)

  14. Somatic symptom disorder

    MedlinePlus

    ... disorders; Somatization disorder; Somatiform disorders; Briquet syndrome; Illness anxiety disorder ... and emotionally sensitive to pain and other sensations Family ... to illness anxiety disorder . This is when a person is overly ...

  15. Comparative Developmental Staging of Female and Male Water Fleas Daphnia pulex and Daphnia magna During Embryogenesis.

    PubMed

    Toyota, Kenji; Hiruta, Chizue; Ogino, Yukiko; Miyagawa, Shinichi; Okamura, Tetsuro; Onishi, Yuta; Tatarazako, Norihisa; Iguchi, Taisen

    2016-02-01

    The freshwater crustacean genus Daphnia has been used extensively in ecological, developmental and ecotoxicological studies. Daphnids produce only female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable conditions and external stimuli, they produce male offspring. Although we reported that exogenous exposure to juvenile hormones and their analogs can induce male offspring even under female-producing conditions, we recently established a male induction system in the Daphnia pulex WTN6 strain simply by changing day-length. This male and female induction system is suitable for understanding the innate mechanisms of sexual dimorphic development in daphnids. Embryogenesis has been described as a normal plate (developmental staging) in various daphnid species; however, all studies have mainly focused on female development. Here, we describe the developmental staging of both sexes during embryogenesis in two representative daphnids, D. pulex and D. magna, based on microscopic time-course observations. Our findings provide the first detailed insights into male embryogenesis in both species, and contribute to the elucidation of the mechanisms underlying sexual differentiation in daphnids. PMID:26853866

  16. Somatic symptoms in depression

    PubMed Central

    Kapfhammer, Hans-Peter

    2006-01-01

    Both painful and nonpainful somatic symptoms essentially characterize clinical states of depressive mood. So far, this well-established psychopathological knowledge has been appreciated only insufficiently by the official diagnostic sys-terms of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, Text Revision (DSM-IVTR) and the ICD-10 Classification of Mental and Behavioral Disorders. Clinical Descriptions and Diagnostic Guidelines (ICD-10). From a perspective of primary care services, this unmet diagnostic need is deplorable, as the main mode of presenting a depression is by reporting somatic symptoms. This somatic form of presentation, however, significantly contributes to low rates of recognition in primary care. A diagnostic challenge may be seen in the differentiation of a depression with prevailing somatic symptoms from anxiety, somatoform disorders, and medical conditions. When somatic symptoms, particularly painful physical conditions, accompany the already debilitating psychiatric and behavioral symptoms of depression, the course of the illness may be more severe, implying a higher risk of early relapse, chronicity suicide, or mortality due to other natural causes, the economic burden increases considerably, the functional status may be hampered heavily, and health-related quality of life may be lowered dramatically. The neurobiological underpinnings of somatic symptoms in depression may guide more promising treatment approaches. PMID:16889108

  17. Ectopic expression of the Brassica SHOOTMERISTEMLESS attenuates the deleterious effects of the auxin transport inhibitor TIBA on somatic embryo number and morphology.

    PubMed

    Elhiti, Mohamed; Stasolla, Claudio

    2011-02-01

    The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) is a useful compound for investigating the role of auxin flow during plant growth and development. In Arabidopsis lines, applications of TIBA during the induction phase of somatic embryogenesis inhibit embryo development and induce the differentiation of the meristematic cells of the shoot apical meristem (SAM), leading to the fusion of the cotyledons. These abnormalities were associated to changes in the expression levels of auxin transporter genes (PINs) and endogenous distribution of IAA. Treatments of TIBA caused a rapid accumulation of IAA within the epidermal and cortical root cells of the explants (bent-cotyledon zygotic embryos), as well as in the apical and sub-apical cells of the callus generated by the surface of the cotyledons of the explants. Within the callus only a few cells acquired meristematic characteristics, and this was associated to low expression levels of genes involved in embryogenic cell fate acquisition, such as WUSCHEL (WUS), LEAFY COTYLEDON 1 and 2. All these deleterious effects were attenuated when TIBA was administered to lines over-expressing SHOOT MERISTEMLESS (STM) isolated from Brassica oleracea (Bo), B. napus (Bn), and B. rapa (Br). Of interest, TIBA-treated explants of Arabidopsis lines over-expressing the Brassica STM were able to produce a large number of embryogenic cells and somatic embryos which exhibited a normal morphology and two distinct cotyledons. A proposed reason for this behaviour was ascribed to the ability of the transformed tissue to retain a normal distribution of auxin in the presence of TIBA. Proper localization of auxin might be required for the normal expression of several genes needed for the acquisition of embryogenic competence and formation of somatic embryos. PMID:21421384

  18. Periderm prevents pathological epithelial adhesions during embryogenesis

    PubMed Central

    Richardson, Rebecca J.; Hammond, Nigel L.; Coulombe, Pierre A.; Saloranta, Carola; Nousiainen, Heidi O.; Salonen, Riitta; Berry, Andrew; Hanley, Neil; Headon, Denis; Karikoski, Riitta; Dixon, Michael J.

    2014-01-01

    Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in IKKA, revealed an absence of periderm. Together, these data indicate that periderm plays a transient but fundamental role during embryogenesis by acting as a protective barrier that prevents pathological adhesion between immature, adhesion-competent epithelia. Furthermore, this study suggests that failure of periderm formation underlies a series of devastating birth defects, including popliteal pterygium syndrome, cocoon syndrome, and Bartsocas-Papas syndrome. PMID:25133425

  19. Somatization, paranoia, and language.

    PubMed

    Oxman, T E; Rosenberg, S D; Schnurr, P P; Tucker, G J

    1988-02-01

    Somatization and paranoia are circumscribed distortions of reality that are impervious to the normative process of consensual validation. These distortions are often postulated as a means of bolstering lowered self-esteem. We used computerized content analysis of the free speech of patients with these disorders in order to identify and compare dimensions of self-concept reflected in their lexical choices. Interestingly, patients with these disorders differed in the themes prominent in their speech. The higher frequency categories used by the somatization disorder group conveyed an overwhelming sense of negativism, distress, and a preoccupation with an uncertain self-identity. In contrast, the categories used by the paranoid patients portrayed an artificially positive, grandiose self-image and a defensive abstractness. Our exploratory analysis suggests that circumscribed distortions of reality in somatization and paranoid disorders are not associated with the same common defensive style attempting to bolster self-esteem. PMID:3343385

  20. High Efficiency Somatic Embrogenesis and Plant Regeneration in Suspension Cultures of an Ornamental Ginger Hybrid (Hedychium muluense x cv ‘Starburst’)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants were successfully regenerated via somatic embryogenesis from shoot apex-derived callus of an ornamental ginger hybrid, Hedychium muluense x cv ‘Starburst’. H. muluense is a dwarf species and ‘Starburst’ is a hybrid cultivar with white and very fragrant flowers in a circular, wheel-like arrang...

  1. Reprogramming mammalian somatic cells.

    PubMed

    Rodriguez-Osorio, N; Urrego, R; Cibelli, J B; Eilertsen, K; Memili, E

    2012-12-01

    Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in which embryonic genes in a somatic cell can be expressed. This process is controlled by a series of epigenetic modifications, generally referred to as "nuclear reprogramming," which are thought to involve the removal of reversible epigenetic changes acquired during cell differentiation. A similar process is thought to occur by overexpression of key transcription factors to generate induced pluripotent stem cells (iPSCs), bypassing the need for SCNT. Despite its obvious scientific and medical importance, and the great number of studies addressing the subject, the molecular basis of reprogramming in both reprogramming strategies is largely unknown. The present review focuses on the cellular and molecular events that occur during nuclear reprogramming in the context of SCNT and the various approaches currently being used to improve nuclear reprogramming. A better understanding of the reprogramming mechanism will have a direct impact on the efficiency of current SCNT procedures, as well as iPSC derivation. PMID:22979962

  2. Shusterman on Somatic Experience

    ERIC Educational Resources Information Center

    Maattanen, Pentti

    2010-01-01

    Richard Shusterman's "Body Consciousness" aims at formulating a theory of somaesthetics and somatic experience. There has indeed been a growing interest in the role of the body in experience. Shusterman examines the arguments of six important writers who have been influential in this discussion. The emphasis on the body is natural for a…

  3. Embryogenesis of brassica rapa l. under clinorotation

    NASA Astrophysics Data System (ADS)

    Popova, A.; Ivanenko, G.

    Investigation of reproductive development of higher plants in spaceflight represents scientific interest first of all with the necessity to work out the plant space technologies for creation of controlled life-support systems. In such systems mainly the higher plants are considered to be an important component that makes it necessary to obtain the several generations of higher plants with their full ontogenesis. As a rule, seeds obtained in three species of the higher plants in a series of experiments differ from the control by some parameters (Merkis, Laurinavichius, 1983; Musgrave et al., 1998; 2000; Levinskikh et all. 1999; Stankovich et al., 2002). It was shown, that immature embryos generated in microgravity were at a range of developmental stage, while the ground control embryos had all reached the premature stage of development (Kuang et al., 2003). Besides, the distinctions in a degree of nutrient substances accumulation in them were revealed (Kuang et al., 2000). Therefore, the elucidation of the possible reasons for distortion of plant reproduction in microgravity demands the further research. In this study we examined embryogenesis of higher plant Brassica rapa L. with an application of slow horizontal clinostats, that allows to deprive the plants the opportunity to perceive the gravitational stimulus. Some plants were clinorotated from the moment sowing of seeds; in other series the experiment plants were placed on clinostats after formation of flower buds. Temporal fixation of the material was used in these experiments, which allow to obtain material for studying of consecutive stages of embryogenesis. The development of 2-21 day-old embryos was studied. Comparative embryological analysis has shown a similarity in the main of process of embryo differentiation produced under clinorotation and in the stationary control. At the early stages of embryogenesis, the distortion in suspensor formation was observed more frequently. Embryos generated in

  4. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  5. Somatic mutations in the variable regions of a human IgG anti-double-stranded DNA autoantibody suggest a role for antigen in the induction of systemic lupus erythematosus.

    PubMed

    van Es, J H; Gmelig Meyling, F H; van de Akker, W R; Aanstoot, H; Derksen, R H; Logtenberg, T

    1991-02-01

    The processes that govern the generation of pathogenic anti-DNA autoantibodies in human systemic lupus erythematosus (SLE) are largely unknown. Autoantibodies may arise as a consequence of polyclonal B cell activation and/or antigen-driven B cell activation and selection. The role of these processes in humoral autoimmunity may be studied by molecular genetic analysis of immunoglobulin (Ig) variable (V) regions of antibodies that are characteristic of SLE. We have analyzed the gene elements that encode a high affinity, IgG anti-double-stranded DNA autoantibody secreted by a monoclonal Epstein-Barr virus (EBV)-transformed cell line derived from a patient with active SLE. In addition, we have identified, cloned, and sequenced the germline counterparts of the VH and VL genes expressed in this autoantibody. The comparison of both sets of gene elements shows that the autoantibody VH and VL regions harbor numerous somatic mutations characteristic of an antigen-driven immune response. The light chain expressed in this autoantibody is a somatically mutated variant of the kv325 germline gene that is frequently associated with paraproteins having autoantibody activity and with Ig molecules produced by malignant B cells that express the CD5 antigen. Furthermore, the utilized DH segment has been repeatedly found in multireactive, low affinity IgM anti-DNA autoantibodies from SLE patients and healthy individuals. These results suggest that pathogenic IgG anti-DNA autoantibodies in human SLE may arise through antigen-driven selection of somatic mutations in the gene elements that frequently encode multireactive IgM autoantibodies. PMID:1899104

  6. Somatic embryogenesis and massive shoot regeneration from immature embryo explants of tef.

    PubMed

    Gugsa, Likyelesh; Kumlehn, Jochen

    2011-01-01

    Tef (Eragrostis tef) provides a major source of human nutrition in the Horn of Africa, but biotechnology has had little impact on its improvement to date. Here, we report the elaboration of an in vitro regeneration protocol, based on the use of immature zygotic embryos as explant. Explant size was an important determinant of in vitro regeneration efficiency, as was the formulation of the culture medium. Optimal results were obtained by culturing 0.2-0.35 mm embryo explants on a medium containing KBP minerals, 9.2-13.8 μM 2,4-dichlorophenoxyacetic acid, 6 mM glutamine, and 0.5% Phytagel. Although this protocol was effective for both the improved cultivar "DZ-01-196" and the landrace "Fesho", the former produced consistently more embryogenic tissue and a higher number of regenerants. An average of more than 2,800 shoots could be obtained from each "DZ-01-196" explant after 12 weeks of in vitro culture. These shoots readily formed roots, and plantlets transferred to soil were able to develop into morphologically normal, fertile plants. This regeneration and multiplication system should allow for the application of a range of biotechnological methods to tef. PMID:22028975

  7. Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.

  8. Effect of weightlessness conditions on the somatic embryogenesis in the culture of carrot cells

    NASA Technical Reports Server (NTRS)

    Butenko, R. G.; Dmitriyeva, N. N.; Ongko, V.; Basyrova, L. V.

    1977-01-01

    A carrot cell culture seeded in Petri dishes in the United States and transported to the USSR was subjected to weightlessness for 20 days during the flight of Kosmos 782. The controls were cultures placed on a centrifuge (1 g) inside the satellite and cultures left on ground in the U.S.S.R. and the United States. A count of structures in the dishes after the flight showed that the number of developing embryonic structures and the extent of their differentiation in weightlessness did not reliably differ from the number and extent of differentiation in structures developed on the ground. Structures with long roots developed in weightlessness. Analysis of the root zones showed that these roots differed by the increased size of the zone of differentiated cells. The increased size of the zones of differentiated cells can indicate earlier development of embryonic structures.

  9. Aneuploidy in mammalian somatic cells in vivo.

    PubMed

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed. PMID:3941670

  10. Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis

    PubMed Central

    Malik, Meghna R.; Wang, Feng; Dirpaul, Joan M.; Zhou, Ning; Hammerlindl, Joe; Keller, Wilf; Abrams, Suzanne R.; Ferrie, Alison M. R.; Krochko, Joan E.

    2008-01-01

    Brassica napus cultivar Westar is non-embryogenic under all standard protocols for induction of microspore embryogenesis; however, the rare embryos produced in Westar microspore cultures, induced with added brassinosteroids, were found to develop into heritably stable embryogenic lines after chromosome doubling. One of the Westar-derived doubled haploid (DH) lines, DH-2, produced up to 30% the number of embryos as the highly embryogenic B. napus line, Topas DH4079. Expression analysis of marker genes for embryogenesis in Westar and the derived DH-2 line, using real-time reverse transcription-PCR, revealed that the timely expression of embryogenesis-related genes such as LEAFY COTYLEDON1 (LEC1), LEC2, ABSCISIC ACID INSENSITIVE3, and BABY BOOM1, and an accompanying down-regulation of pollen-related transcripts, were associated with commitment to embryo development in Brassica microspores. Microarray comparisons of 7 d cultures of Westar and Westar DH-2, using a B. napus seed-focused cDNA array (10 642 unigenes), identified highly expressed genes related to protein synthesis, translation, and response to stimulus (Gene Ontology) in the embryogenic DH-2 microspore-derived cell cultures. In contrast, transcripts for pollen-expressed genes were predominant in the recalcitrant Westar microspores. Besides being embryogenic, DH-2 plants showed alterations in morphology and architecture as compared with Westar, for example epinastic leaves, non-abscised petals, pale flower colour, and longer lateral branches. Auxin, cytokinin, and abscisic acid (ABA) profiles in young leaves, mature leaves, and inflorescences of Westar and DH-2 revealed no significant differences that could account for the alterations in embryogenic potential or phenotype. Various mechanisms accounting for the increased capacity for embryogenesis in Westar-derived DH lines are considered. PMID:18552352

  11. Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis.

    PubMed

    Malik, Meghna R; Wang, Feng; Dirpaul, Joan M; Zhou, Ning; Hammerlindl, Joe; Keller, Wilf; Abrams, Suzanne R; Ferrie, Alison M R; Krochko, Joan E

    2008-01-01

    Brassica napus cultivar Westar is non-embryogenic under all standard protocols for induction of microspore embryogenesis; however, the rare embryos produced in Westar microspore cultures, induced with added brassinosteroids, were found to develop into heritably stable embryogenic lines after chromosome doubling. One of the Westar-derived doubled haploid (DH) lines, DH-2, produced up to 30% the number of embryos as the highly embryogenic B. napus line, Topas DH4079. Expression analysis of marker genes for embryogenesis in Westar and the derived DH-2 line, using real-time reverse transcription-PCR, revealed that the timely expression of embryogenesis-related genes such as LEAFY COTYLEDON1 (LEC1), LEC2, ABSCISIC ACID INSENSITIVE3, and BABY BOOM1, and an accompanying down-regulation of pollen-related transcripts, were associated with commitment to embryo development in Brassica microspores. Microarray comparisons of 7 d cultures of Westar and Westar DH-2, using a B. napus seed-focused cDNA array (10 642 unigenes), identified highly expressed genes related to protein synthesis, translation, and response to stimulus (Gene Ontology) in the embryogenic DH-2 microspore-derived cell cultures. In contrast, transcripts for pollen-expressed genes were predominant in the recalcitrant Westar microspores. Besides being embryogenic, DH-2 plants showed alterations in morphology and architecture as compared with Westar, for example epinastic leaves, non-abscised petals, pale flower colour, and longer lateral branches. Auxin, cytokinin, and abscisic acid (ABA) profiles in young leaves, mature leaves, and inflorescences of Westar and DH-2 revealed no significant differences that could account for the alterations in embryogenic potential or phenotype. Various mechanisms accounting for the increased capacity for embryogenesis in Westar-derived DH lines are considered. PMID:18552352

  12. Late Embryogenesis Abundant (LEA) proteins in legumes.

    PubMed

    Battaglia, Marina; Covarrubias, Alejandra A

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  13. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  14. Specification of the somatic musculature in Drosophila†

    PubMed Central

    Dobi, Krista C.; Schulman, Victoria K.; Baylies, Mary K.

    2015-01-01

    The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new adult muscle set, responsible for activities such as feeding, walking, and flight. Both the larval and adult muscle systems are comprised of distinct muscle fibers to serve these specific motor functions. In this way, the Drosophila musculature is a valuable model for patterning within a single tissue: while all muscle cells share properties such as the contractile apparatus, properties such as size, position, and number of nuclei are unique for a particular muscle. In the embryo, diversification of muscle fibers relies first on signaling cascades that pattern the mesoderm. Subsequently, the combinatorial expression of specific transcription factors leads muscle fibers to adopt particular sizes, shapes, and orientations. Adult muscle precursors (AMPs), set aside during embryonic development, proliferate during the larval phases and seed the formation of the abdominal, leg, and flight muscles in the adult fly. Adult muscle fibers may either be formed de novo from the fusion of the AMPs, or are created by the binding of AMPs to an existing larval muscle. While less is known about adult muscle specification compared to the larva, expression of specific transcription factors is also important for its diversification. Increasingly, the mechanisms required for the diversification of fly muscle have found parallels in vertebrate systems and mark Drosophila as a robust model system to examine questions about how diverse cell types are generated within an organism. PMID:25728002

  15. Somatization disorders in dermatology.

    PubMed

    Gupta, Madhulika A

    2006-02-01

    This paper reviews a wide range of somatization-related symptoms that are encountered in dermatology. These include the unexplained cutaneous sensory syndromes especially the cutaneous dysesthesias associated with pain, numbness and pruritus; traumatic memories in post-traumatic stress disorder (PTSD) which are experienced on a sensory level as 'body memories' and may present as local or generalized pruritic states, urticaria and angioedema; and unexplained flushing reactions and profuse perspiration, in addition to unexplained exacerbations of stress-reactive dermatoses such as psoriasis and atopic eczema secondary to the autonomic hyperarousal in PTSD; classic 'pseudoneurologic' symptoms associated with dissociation including unexplained loss of touch or pain, in addition to the self-induced dermatoses such as dermatitis artefacta and trichotillomania that are encountered with dissociative states; and body dysmorphic disorder where the patient often presents with a somatic preoccupation involving the skin or hair. PMID:16451879

  16. AID AND SOMATIC HYPERMUTATION

    PubMed Central

    Maul, Robert W.; Gearhart, Patricia J.

    2010-01-01

    In response to an assault by foreign organisms, peripheral B cells can change their antibody affinity and isotype by somatically mutating their genomic DNA. The ability of a cell to modify its DNA is exceptional in light of the potential consequences of genetic alterations to cause human disease and cancer. Thus, as expected, this mechanism of antibody diversity is tightly regulated and coordinated through one protein, activation induced deaminase (AID). AID produces diversity by converting cytosine to uracil within the immunoglobulin loci. The deoxyuracil residue is mutagenic when paired with deoxyguanosine, since it mimics thymidine during DNA replication. Additionally, B cells can manipulate the DNA repair pathways so that deoxyuracils are not faithfully repaired. Therefore, an intricate balance exists which is regulated at multiple stages to promote mutation of immunoglobulin genes, while retaining integrity of the rest of the genome. Here we discuss and summarize the current understanding of how AID functions to cause somatic hypermutation. PMID:20510733

  17. Reprogramming of somatic cells.

    PubMed

    Rajasingh, Johnson

    2012-01-01

    Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed. PMID:22917226

  18. Oil body biogenesis during Brassica napus embryogenesis.

    PubMed

    He, Yu-Qing; Wu, Yan

    2009-08-01

    Although the oil body is known to be an important membrane enclosed compartment for oil storage in seeds, we have little understanding about its biogenesis during embryogenesis. In the present study we investigated the oil body emergence and variations in Brassica napus cv. Topas. The results demonstrate that the oil bodies could be detected already at the heart stage, at the same time as the embryos began to turn green, and the starch grains accumulated in the chloroplast stroma. In comparison, we have studied the development of oil bodies between Arabidopsis thaliana wild type (Col) and the low-seed-oil mutant wrinkled1-3. We observed that the oil body development in the embryos of Col is similar to that of B. napus cv. Topas, and that the size of the oil bodies was obviously smaller in the embryos of wrinkled1-3. Our results suggest that the oil body biogenesis might be coupled with the embryo chloroplast. PMID:19686376

  19. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley

    PubMed Central

    Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C.; Testillano, Pilar S.

    2015-01-01

    Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs. PMID:26161085

  20. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley.

    PubMed

    Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C; Testillano, Pilar S

    2015-01-01

    Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs. PMID:26161085

  1. Direct somatic lineage conversion.

    PubMed

    Tanabe, Koji; Haag, Daniel; Wernig, Marius

    2015-10-19

    The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced. PMID:26416679

  2. Somatic complaints in frontotemporal dementia

    PubMed Central

    Landqvist Waldö, Maria; Santillo, Alexander Frizell; Gustafson, Lars; Englund, Elisabet; Passant, Ulla

    2014-01-01

    Frontotemporal dementia (FTD) is associated with a broad spectrum of clinical characteristics. The objective of this study was to analyze the prevalence of unexplained somatic complaints in neuropathologically verified FTD. We also examined whether the somatic presentations correlated with protein pathology or regional brain pathology and if the patients with these somatic features showed more depressive traits. Ninety-seven consecutively neuropathologically verified FTLD patients were selected. All 97 patients were part of a longitudinal study of FTD and all medical records were systematically reviewed. The somatic complaints focused on were headache, musculoskeletal, gastro/urogenital and abnormal pain response. Symptoms of somatic character (either somatic complaints and/or abnormal pain response) were found in 40.2%. These patients did not differ from the total group with regard to gender, age at onset or duration. Six patients showed exaggerated reactions to sensory stimuli, whereas three patients showed reduced response to pain. Depressive traits were present in 38% and did not correlate with somatic complaints. Suicidal behavior was present in 17 patients, in 10 of these suicidal behavior was concurrent with somatic complaints. No clear correlation between somatic complaints and brain protein pathology, regional pathology or asymmetric hemispherical atrophy was found. Our results show that many FTD patients suffer from unexplained somatic complaints before and/or during dementia where no clear correlation can be found with protein pathology or regional degeneration. Somatic complaints are not covered by current diagnostic criteria for FTD, but need to be considered in diagnostics and care. The need for prospective studies with neuropathological follow up must be stressed as these phenomena remain unexplained, misinterpreted, bizarre and, in many cases, excruciating. PMID:25232513

  3. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation.

    PubMed

    Mai, Thach; Zan, Hong; Zhang, Jinsong; Hawkins, J Seth; Xu, Zhenming; Casali, Paolo

    2010-11-26

    Estrogen enhances antibody and autoantibody responses through yet to be defined mechanisms. It has been suggested that estrogen up-regulates the expression of activation-induced cytosine deaminase (AID), which is critical for antibody class switch DNA recombination (CSR) and somatic hypermutation (SHM), through direct activation of this gene. AID, as we have shown, is induced by the HoxC4 homeodomain transcription factor, which binds to a conserved HoxC4/Oct site in the AICDA/Aicda promoter. Here we show that estrogen-estrogen receptor (ER) complexes do not directly activate the AID gene promoter in B cells undergoing CSR. Rather, they bind to three evolutionarily conserved and cooperative estrogen response elements (EREs) we identified in the HOXC4/HoxC4 promoter. By binding to these EREs, ERs synergized with CD154 or LPS and IL-4 signaling to up-regulate HoxC4 expression, thereby inducing AID and CSR without affecting B cell proliferation or plasmacytoid differentiation. Estrogen administration in vivo significantly potentiated CSR and SHM in the specific antibody response to the 4-hydroxy-3-nitrophenylacetyl hapten conjugated with chicken γ-globulin. Ablation of HoxC4 (HoxC4(-/-)) abrogated the estrogen-mediated enhancement of AID gene expression and decreased CSR and SHM. Thus, estrogen enhances AID expression by activating the HOXC4/HoxC4 promoter and inducing the critical AID gene activator, HoxC4. PMID:20855884

  4. Comparative proteomic analysis of somatic embryo maturation in Carica papaya L.

    PubMed Central

    2014-01-01

    Background Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). Results The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). Conclusions The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya. PMID:25076862

  5. High Genetic and Epigenetic Stability in Coffea arabica Plants Derived from Embryogenic Suspensions and Secondary Embryogenesis as Revealed by AFLP, MSAP and the Phenotypic Variation Rate

    PubMed Central

    Bobadilla Landey, Roberto; Cenci, Alberto; Georget, Frédéric; Bertrand, Benoît; Camayo, Gloria; Dechamp, Eveline; Herrera, Juan Carlos; Santoni, Sylvain; Lashermes, Philippe; Simpson, June; Etienne, Hervé

    2013-01-01

    Embryogenic suspensions that involve extensive cell division are risky in respect to genome and epigenome instability. Elevated frequencies of somaclonal variation in embryogenic suspension-derived plants were reported in many species, including coffee. This problem could be overcome by using culture conditions that allow moderate cell proliferation. In view of true-to-type large-scale propagation of C. arabica hybrids, suspension protocols based on low 2,4-D concentrations and short proliferation periods were developed. As mechanisms leading to somaclonal variation are often complex, the phenotypic, genetic and epigenetic changes were jointly assessed so as to accurately evaluate the conformity of suspension-derived plants. The effects of embryogenic suspensions and secondary embryogenesis, used as proliferation systems, on the genetic conformity of somatic embryogenesis-derived plants (emblings) were assessed in two hybrids. When applied over a 6 month period, both systems ensured very low somaclonal variation rates, as observed through massive phenotypic observations in field plots (0.74% from 200 000 plant). Molecular AFLP and MSAP analyses performed on 145 three year-old emblings showed that polymorphism between mother plants and emblings was extremely low, i.e. ranges of 0–0.003% and 0.07–0.18% respectively, with no significant difference between the proliferation systems for the two hybrids. No embling was found to cumulate more than three methylation polymorphisms. No relation was established between the variant phenotype (27 variants studied) and a particular MSAP pattern. Chromosome counting showed that 7 of the 11 variant emblings analyzed were characterized by the loss of 1–3 chromosomes. This work showed that both embryogenic suspensions and secondary embryogenesis are reliable for true-to-type propagation of elite material. Molecular analyses revealed that genetic and epigenetic alterations are particularly limited during coffee somatic

  6. Expression of developmental genes during early embryogenesis of Hydra.

    PubMed

    Fröbius, Andreas C; Genikhovich, Gregory; Kürn, Ulrich; Anton-Erxleben, Friederike; Bosch, Thomas C G

    2003-09-01

    Hydra is a classical model to study key features of embryogenesis such as axial patterning and stem cell differentiation. In contrast to other organisms where these mechanisms are active only during embryonic development, in Hydra they can be studied in adults. The underlying assumption is that the machinery governing adult patterning mimics regulatory mechanisms which are also active during early embryogenesis. Whether, however, Hydra embryogenesis is governed by the same mechanisms which are controlling adult patterning, remains to be shown. In this paper, in precisely staged Hydra embryos, we examined the expression pattern of 15 regulatory genes shown previously to play a role in adult patterning and cell differentiation. RT-PCR revealed that most of the genes examined were expressed in rather late embryonic stages. In situ hybridization, nuclear run-on experiments, and staining of nucleolar organizer region-associated proteins indicated that genes expressed in early embryos are transcribed in the engulfed "nurse cells" (endocytes). This is the first direct evidence that endocytes in Hydra not only provide nutrients to the developing oocyte but also produce maternal factors critical for embryogenesis. Our findings are an initial step towards understanding the molecular machinery controlling embryogenesis of a key group of basal metazoans and raise the possibility that in Hydra there are differences in the mechanisms controlling embryogenesis and adult patterning. PMID:12883882

  7. Somatic mosaicism and variable expressivity.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-02-01

    For more than 50 years geneticists have assumed that variations in phenotypic expression are caused by alterations in genotype. Recent evidence shows that 'simple' mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained entirely by a gene or allelic alteration. In certain cases of androgen insensitivity syndrome caused by identical mutations in the androgen receptor gene, phenotypic variability is caused by somatic mosaicism, that is, somatic mutations that occur only in certain androgen-sensitive cells. Recently, more than 30 other genetic conditions that exhibit variable expressivity have been linked to somatic mosaicism. Somatic mutations have also been identified in diseases such as prostate and colorectal cancer. Therefore, the concept of somatic mutations and mosaicism is likely to have far reaching consequences for genetics, in particular in areas such as genetic counseling. PMID:11173116

  8. Possible effect from shear stress on maturation of somatic embryos of Norway spruce (Picea abies).

    PubMed

    Sun, Hong; Aidun, Cyrus K; Egertsdotter, Ulrika

    2011-05-01

    Somatic embryogenesis is the only method with the potential for industrial scale clonal propagation of conifers. Implementation of the method has so far been hampered by the extensive manual labor required for development of the somatic embryos into plants. The utilization of bioreactors is limited since the somatic embryos will not mature and germinate under liquid culture conditions. The negative effect on mature embryo yields from liquid culture conditions has been previously described. We have described the negative effects of shear stress on the development of early stage somatic embryos (proembryogenic masses; PEMs) at shear stresses of 0.086 and 0.14 N/m(2). In the present study, additional flow rates were studied to determine the effects of shear stress at lower rates resembling shear stress in a suspension culture flask. The results showed that shear stress at 0.009, 0.014, and 0.029 N/m(2) inhibited the PEM expansions comparing with the control group without shear stress. This study also provides validation for the cross-correlation method previously developed to show the effect of shear stress on early stage embryo suspensor cell formation and polarization. Furthermore, shear stress was shown to positively affect the uptake of water into the cells. The results indicate that the plasmolyzing effect from macromolecules added to liquid culture medium to stimulate maturation of the embryos are affected by liquid culture conditions and thus can affect the conversion of PEMs into mature somatic embryos. PMID:21449024

  9. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  10. Requirement of SLD5 for Early Embryogenesis

    PubMed Central

    Nagahama, Yumi; Gong, Zhi-Yuan; Asano, Masahide; Oshima, Hiroko; Oshima, Masanobu; Fujio, Yasushi; Takakura, Nobuyuki

    2013-01-01

    SLD5 forms a GINS complex with PSF1, PSF2 and PSF3, which is essential for the initiation of DNA replication in lower eukaryotes. Although these components are conserved in mammals, their biological function is unclear. We show here that targeted disruption of SLD5 in mice causes a defect in cell proliferation in the inner cell mass, resulting in embryonic lethality at the peri-implantation stage, indicating that SLD5 is essential for embryogenesis. Moreover, this phenotype of SLD5 mutant mice is quite similar compared with that of PSF1 mutant mice. We have previously reported that haploinsufficiency of PSF1 resulted in failure of acute proliferation of bone marrow hematopoietic stem cells (HSCs) during reconstitution of bone marrow ablated by 5-FU treatment. Since SLD5 was highly expressed in bone marrow, we investigated its involvement in bone marrow reconstitution after bone marrow ablation as observed in PSF1 heterozygous mutant mice. However, heterozygous deletion of the SLD5 gene was found not to significantly affect bone marrow reconstitution. On the other hand, abundant SLD5 expression was observed in human cancer cell lines and heterozygous deletion of the gene attenuated tumor progression in a murine model of spontaneous gastric cancer. These indicated that requirement and dependency of SLD5 for cell proliferation is different in different cell types. PMID:24244394

  11. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  12. Embryogenesis of bladder exstrophy: A new hypothesis

    PubMed Central

    Kulkarni, Bharati; Chaudhari, Navin

    2008-01-01

    Aims and Objective: To postulate a hypothesis to explain the embryogenesis of exstrophy bladder based on our clinical observations. Materials and Methods: In 27 cases of exstrophy, we measured the distance between the lowermost inguinal skin crease to the root of the penis (clitoris) (B) and the distance between the penis (clitoris) and the scrotum (labia majora) (C). These were compared with age, height and XP distance (distance between xiphisternum and symphysis pubis) matched control group of normal children. The distance between the lowermost inguinal skin crease and the penis (clitoris) (A) was measured in control group. Results: The observation was A = B + C. This implies that in exstrophy bladder, the position of the penis (clitoris) has moved cephalad from the lower border of A to the junction of B and C. Conclusion: Based on the observations, we postulate that abnormal origin of genital tubercle may be the cause of exstrophy bladder. The abnormal origin of primordia of the genital tubercle in more cephalad direction than normal causes wedge effect, which will interfere with the medial migration of the mesoderm as well as the midline approximation of mesodermal structures in the lower abdominal wall, thereby resulting in the exstrophy of bladder. PMID:20011468

  13. Somatic Cell Dedifferentiation/Reprogramming for Regenerative Medicine

    PubMed Central

    Ramesh, Thiyagarajan; Lee, Sun-Hee; Lee, Choon-Soo; Kwon, Yoo-Wook; Cho, Hyun-Jai

    2009-01-01

    The concept of dedifferentiation or reprogramming of a somatic cell into a pluripotent embryonic stem cell-like cell (ES-like cell), which give rise to three germ layers and differentiate various cell types, opens a new era in stem cell biology and provides potential therapeutic modality in regenerative medicine. Here, we outline current dedifferentiation/reprogramming methods and their technical hurdles, and the safety and therapeutic applications of reprogrammed pluripotent stem cells in regenerative medicine. This review summarizes the concept and data of somatic cell nuclear transfer, fusion of somatic cells with ES cells, viral or non-viral transduction of pluripotency-related genes into somatic cells, introduction of extract (or proteins) of pluripotent cells into somatic cells. Dedifferentiated/reprogrammed ES-like cells could be a perfect genetic match (autologous or tailored pluripotent stem cells) for future applications. Further studies regarding technical refinements as well as mechanistic analysis of dedifferentiation induction and re-differentiation into specific cell types will provide us with the substantial application of pluripotent stem cells to therapeutic purposes. PMID:24855516

  14. Detection of Epigenetic Modifications During Microspore Embryogenesis: Analysis of DNA Methylation Patterns Dynamics.

    PubMed

    Testillano, Pilar S; Risueño, María Carmen

    2016-01-01

    Methylation of 5-deoxy-cytidines of DNA constitutes a prominent epigenetic modification of the chromatin fiber which is locked in a transcriptionally inactive conformation. Changes in global DNA methylation are involved in many plant developmental processes during proliferation and differentiation events. The analysis of the changes of global DNA methylation distribution patterns during microspore embryogenesis induction and progression will inform on the regulatory mechanisms of the process, helping in the design of protocols to improve its efficiency in different species. To investigate the DNA methylation dynamics during microspore embryogenesis in the different cell types present in the cultures, the analysis of spatial and temporal pattern of nuclear distribution of 5-methyl-deoxy-cytidine (5mdC) constitutes a potent approach. The immunolocalization of 5mdC on sections and subsequent confocal laser microscopy analysis have been developed for in situ cellular analysis of a variety of plant samples, including embryogenic microspore and anther cultures. Quantification of 5mdC immunofluorescence intensity by image analysis software also permits to estimate differences in global DNA methylation levels among different cell types during development. PMID:26619883

  15. Pollen embryogenesis to induce, detect, and analyze mutants

    SciTech Connect

    Constantin, M.J.

    1981-01-01

    The development of fully differentiated plants from individual pollen grains through a series of developmental phases that resemble embryogenesis beginning with the zygote was demonstrated during the mid-1960's. This technology opened the door to the use of haploid plants (sporophytes with the gametic number of chromosomes) for plant breeding and genetic studies, biochemical and metabolic studies, and the selection of mutations. Although pollen embryogenesis has been demonstrated successfully in numerous plant genera, the procedure cannot as yet be used routinely to generate large populations of plants for experiments. Practical results from use of the technology in genetic toxicology research to detect mutations have failed to fully realize the theoretical potential; further developments of the technology could overcome the limitations. Pollen embryogenesis could be used to develop plants from mutant pollen grains to verify that genetic changes are involved. Through either spontaneous or induced chromosome doubling, these plants can be made homozygous and used to analyze genetically the mutants involved. The success of this approach will depend on the mutant frequency relative to the fraction of pollen grains that undergo embryogenesis; these two factors will dictate population size needed for success. Research effort is needed to further develop pollen embryogenesis for use in the detection of genotoxins under both laboratory and in situ conditions.

  16. Pollen embryogenesis to induce, detect, and analyze mutants.

    PubMed Central

    Constantin, M J

    1981-01-01

    The development of fully differentiated plants from individual pollen grains through a series of developmental phases that resemble embryogenesis beginning with the zygote was demonstrated during the mid-1960's. This technology opened the door to the use of haploid plants (sporophytes with the gametic number of chromosomes) for plant breeding and genetic studies, biochemical and metabolic studies, and the selection of mutations. Although pollen embryogenesis has been demonstrated successfully in numerous plant genera, the procedure cannot as yet be used routinely to generate large populations of plants for experiments. Practical results from use of the technology in genetic toxicology research to detect mutations have failed to fully realize the theoretical potential; further developments of the technology could overcome the limitations. Pollen embryogenesis could be used to develop plants from mutant pollen grains to verify that genetic changes are involved. Through either spontaneous or induced chromosome doubling, these plants can be made homozygous and used to analyze genetically the mutants involved. The success of this approach will depend on the mutant frequency relative to the fraction of pollen grains that undergo embryogenesis; these two factors will dictate population size needed for success. Research effort is needed to further develop pollen embryogenesis for use in the detection of genotoxins under both laboratory and in situ conditions. PMID:7460882

  17. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis

    PubMed Central

    Zúñiga, Alejandro; Hödar, Christian; Hanna, Patricia; Ibáñez, Freddy; Moreno, Pablo; Pulgar, Rodrigo; Pastenes, Luis; González, Mauricio; Cambiazo, Verónica

    2009-01-01

    Background Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. Results Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. Conclusion Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we recovered a substantial number of

  18. Characterization of Somatically-Eliminated Genes During Development of the Sea Lamprey (Petromyzon marinus).

    PubMed

    Bryant, Stephanie A; Herdy, Joseph R; Amemiya, Chris T; Smith, Jeramiah J

    2016-09-01

    The sea lamprey (Petromyzon marinus) is a basal vertebrate that undergoes developmentally programmed genome rearrangements (PGRs) during early development. These events facilitate the elimination of ∼20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. Thus far only a handful of germline-specific genes have been definitively identified within the estimated 500 Mb of DNA that is deleted during PGR, although a few thousand germline-specific genes are thought to exist. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a new transcriptomic dataset derived from adult germline and the early embryonic stages during which PGR occurs. Follow-up validation studies identified 44 germline-specific genes and further characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that many of these genes are differentially expressed during early embryogenesis and presumably function in the early development of the germline. Ontology analyses indicate that many of these germline-specific genes play known roles in germline development, pluripotency, and oncogenesis (when misexpressed). These studies provide support for the theory that PGR serves to segregate molecular functions related to germline development/pluripotency in order to prevent their potential misexpression in somatic cells. This larger set of eliminated genes also allows us to extend the evolutionary/developmental breadth of this theory, as some deleted genes (or their gnathostome homologs) appear to be associated with the early development of somatic lineages, perhaps through the evolution of novel functions within gnathostome lineages. PMID:27288344

  19. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis.

    PubMed

    Mark, Manuel; Ghyselinck, Norbert B; Chambon, Pierre

    2006-01-01

    Retinoic acid (RA) is involved in vertebrate morphogenesis, growth, cellular differentiation, and tissue homeostasis. The use of in vitro systems initially led to the identification of nuclear receptor RXR/RAR heterodimers as possible transducers of the RA signal. To unveil the physiological functions of RARs and RXRs, genetic and pharmacological studies have been performed in the mouse. Together, their results demonstrate that (a) RXR/RAR heterodimers in which RXR is either transcriptionally active or silent are involved in the transduction of the RA signal during prenatal development, (b) specific RXRalpha/RAR heterodimers are required at many distinct stages during early embryogenesis and organogenesis, (c) the physiological role of RA and its receptors cannot be extrapolated from teratogenesis studies using retinoids in excess. Additional cell type-restricted and temporally controlled somatic mutagenesis is required to determine the functions of RARs and RXRs during postnatal life. PMID:16402912

  20. Vitellin processing and protein synthesis during cricket embryogenesis.

    PubMed

    Handley, H L; Estridge, B H; Bradley, J T

    1998-11-01

    At the start of insect embryogenesis most of the protein mass of the egg cytoplasm exists as vitellin (Vt) obtained endocytically during vitellogenesis. Of the new embryo polypeptides (EP) appearing in the egg during embryogenesis, many are synthesized de novo, while, in some species, others derive from developmentally programmed partial proteolysis of Vt. Earlier we showed that by the end of vitellogenesis the two native Vts in Acheta domesticus exist in opposing gradients along the longitudinal axis of the egg. Here we hypothesize that this ooplasmic Vt distribution presents a milieu for Vt processing out of which region-specific regulatory molecules could arise. The metabolic origin and stage-specific patterns of seven predominant EPs (EP 1-7) identified by SDS-PAGE were examined and the results correlated with developmental morphology during the 14 days of embryogenesis. Based on antibody reactivity, peptide mapping and in vitro radiolabeling, we determined that EPs 1-3, 6 and 7 are Vt-derived, while EPs 4 and 5 are produced de novo by the embryo. The five Vt-derived EPs appear during the first 24 h of embryogenesis when migrating cleavage nuclei and associated cytoplasm form the cellular blastoderm, and levels of EPs 4 and 5 increase during days 4-6 of embryogenesis when katatrepsis and yolk mass contraction occur. Positive periodic acid-Schiff staining indicated that EPs 1-3 and their Vt-precursor polypeptides are glycoproteins. This work shows that developmental stage-specific Vt processing occurs during A. domesticus embryogenesis and points next to investigation of the functional significance of Vt cleavage products during development. PMID:9818388

  1. Axes, planes and tubes, or the geometry of embryogenesis.

    PubMed

    Brauckmann, Sabine

    2011-12-01

    The paper presents selected figures of chick embryogenesis as depicted in the classic studies of Caspar Friedrich Wolff (1734-1794), Christian Heinrich Pander (1794-1865) and Karl Ernst von Baer (1792-1786). My main objective here is (1) to demonstrate how the imagery of Wolff, Pander and Baer attempted to project an image of a 3-dimensional rotating body into static figures on paper by means of linear contours, and (2) to ponder on the efficacy and pervasiveness of dots, lines and arrows for depicting embryogenesis. PMID:22035710

  2. Chimerism in humans after intragenic recombination at the haptoglobin locus during early embryogenesis.

    PubMed

    Asakawa, J; Kodaira, M; Nakamura, N; Satoh, C; Fujita, M

    1999-08-31

    The human haptoglobin (HP) HP*2 allele contains a 1.7-kilobase (kb) intragenic duplication that arose after a unique nonhomologous recombination between the prototype HP*1 alleles. During a genetic screening of 13,000 children of survivors exposed to atomic-bomb radiation and 10,000 children of unexposed persons, two children suspected of carrying de novo mutations at the haptoglobin locus were identified (one in each group). DNA analyses of single-cell-derived colonies of Epstein-Barr virus-transformed B cells revealed that the two children were mosaics comprising HP*2/HP*2 and HP*2/HP*1 cells at a ratio of approximately 3:1. We infer that the latter cells are caused by reversion of one HP*2 allele to HP*1 through an intramolecular homologous recombination between the duplicated segments of the Hp*2 allele that excised one of the segments. Because the mosaicism is substantial (approximately 25%), this recombination must have occurred in early embryogenesis. The frequency of finding these children and the extent of their mosaicisms corresponds to an HP*2 to HP*1 reversion rate of 8 x 10(-6) per cell during development. This leads to the prediction that the HP*1 allele also will be represented, although usually at a very low frequency, in any HP2-2 person. We tested this prediction by using PCR for a single individual and found the HP*1 allele at frequencies of 4 x 10(-6) and 3 x 10(-6) in somatic and sperm cells. The HP*1 allele was detected by PCR in all four other HP2-2 individuals, which supports the regular but rare occurrence somatically of homologous recombination within duplicated regions in humans, in agreement with previous observations in mouse and Drosophila. PMID:10468605

  3. Characterization of conservative somatic instability of the CAG repeat region in Huntington`s disease

    SciTech Connect

    Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.

    1994-09-01

    Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onset and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.

  4. Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration

    PubMed Central

    Sullivan, Kelly G.; Emmons-Bell, Maya; Levin, Michael

    2016-01-01

    ABSTRACT A key problem in evolutionary developmental biology is identifying the sources of instructive information that determine species-specific anatomical pattern. Understanding the inputs to large-scale morphology is also crucial for efforts to manipulate pattern formation in regenerative medicine and synthetic bioengineering. Recent studies have revealed a physiological system of communication among cells that regulates pattern during embryogenesis and regeneration in vertebrate and invertebrate models. Somatic tissues form networks using the same ion channels, electrical synapses, and neurotransmitter mechanisms exploited by the brain for information-processing. Experimental manipulation of these circuits was recently shown to override genome default patterning outcomes, resulting in head shapes resembling those of other species in planaria and Xenopus. The ability to drastically alter macroscopic anatomy to that of other extant species, despite a wild-type genomic sequence, suggests exciting new approaches to the understanding and control of patterning. Here, we review these results and discuss hypotheses regarding non-genomic systems of instructive information that determine biological growth and form. PMID:27574538

  5. Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration.

    PubMed

    Sullivan, Kelly G; Emmons-Bell, Maya; Levin, Michael

    2016-01-01

    A key problem in evolutionary developmental biology is identifying the sources of instructive information that determine species-specific anatomical pattern. Understanding the inputs to large-scale morphology is also crucial for efforts to manipulate pattern formation in regenerative medicine and synthetic bioengineering. Recent studies have revealed a physiological system of communication among cells that regulates pattern during embryogenesis and regeneration in vertebrate and invertebrate models. Somatic tissues form networks using the same ion channels, electrical synapses, and neurotransmitter mechanisms exploited by the brain for information-processing. Experimental manipulation of these circuits was recently shown to override genome default patterning outcomes, resulting in head shapes resembling those of other species in planaria and Xenopus. The ability to drastically alter macroscopic anatomy to that of other extant species, despite a wild-type genomic sequence, suggests exciting new approaches to the understanding and control of patterning. Here, we review these results and discuss hypotheses regarding non-genomic systems of instructive information that determine biological growth and form. PMID:27574538

  6. Drosophila Embryogenesis Scales Uniformly across Temperature in Developmentally Diverse Species

    PubMed Central

    Kuntz, Steven G.; Eisen, Michael B.

    2014-01-01

    Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5°C and 32.5°C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes 33 hours at 17.5°C, and accelerates with increasing temperature to a low of 16 hours at 27.5°C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5°C and have drastically slowed development by 30°C. Despite ranging from 13 hours for D. erecta at 30°C to 46 hours for D. virilis at 17.5°C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has

  7. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    PubMed Central

    Petrek, Jiri; Zitka, Ondrej; Adam, Vojtech; Bartusek, Karel; Anjum, Naser A.; Pereira, Eduarda; Havel, Ladislav; Kizek, Rene

    2015-01-01

    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we

  8. NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley

    PubMed Central

    Rodríguez-Serrano, María; Bárány, Ivett; Prem, Deepak; Coronado, María-José; Risueño, María C.; Testillano, Pilar S.

    2012-01-01

    Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after

  9. The effect of auxin type and concentration on pecan (Carya illinoinensis) somatic embryo morphology and subsequent conversion into plants.

    PubMed

    Rodriguez, A P; Wetzstein, H Y

    1994-08-01

    Embryogenic cultures were initiated from immature pecan zygotic embryos. Explants were induced for one week on Woody Plant Medium with either α-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid at 2, 6 or 12 mg/l, then subcultured monthly to fresh basal medium. Observations were made on callus production, embryo formation, and embryo morphology. Somatic embryo morphology and overall callus proliferation were affected by auxin type. Callus proliferation was less extensive and more somatic embryos resembling zygotic embryos were obtained from cultures initiated with α-naphthaleneacetic acid than with 2,4-dichlorophenoxyacetic acid. Repetitive somatic embryogenesis was obtained in all auxin treatments. Conversion into plantlets was affected by somatic embryo morphology in that embryos with poorly developed apices exhibited lower percentages of conversion than those with well developed single or multiple apices. Consequently, although more embryos were obtained with 2,4-dichlorophenoxyacetic acid, naphthaleneacetic acid was the superior auxin for production of somatic embryos more likely to convert into plants. PMID:24196238

  10. Genotoxic effects of cisplatin in somatic tissue of Drosophila melanogaster

    SciTech Connect

    Katz, A.J.

    1987-01-01

    Third instar larvae of Drosophila melanogaster transdihybrid for mwh and flr were exposed to varying concentrations of cisplatin by feeding on dry media wetted with aqueous solutions of the test compound. Larval feeding continued until pupation, and surviving transdihybrid adults were collected seven days following commencement of feeding. Wings of adults were removed and scored under 400X magnification for the presence of twin spots and single spots comprised of clones of cells possessing malformed wing hairs. Cisplatin was found to induce both twin spots and single spots, and significant linear concentration-response relationships were obtained with respect to the induction of all endpoints. This capacity to induce mitotic exchange in the somatic tissue of Drosophila compares well with the compound's reported ability to induce chromosome breaks in Drosophila germ cells. However, not all compounds possess similar genotoxic profiles in the somatic an germ tissue of Drosophila.