Science.gov

Sample records for source emission rate

  1. Comparison of CALPUFF and ISCST3 models for predicting downwind odor and source emission rates

    NASA Astrophysics Data System (ADS)

    Wang, Lingjuan; Parker, David B.; Parnell, Calvin B.; Lacey, Ronald E.; Shaw, Bryan W.

    CALPUFF model and ISCST3 Gaussian dispersion models were evaluated for predicting downwind odor concentrations and back-calculating area source odor emission rates. The comparison between the predicted and field-sampled downwind concentrations indicates that the CALPUFF model could fairly well predict average downwind odor concentrations. However, ISCST3 tended to under predict downwind odor concentrations as compared to the measured concentrations. Both the CALPUFF and ISCST3 models failed to predict peak odor concentrations using the constant average emission rate. Odor emission rates obtained by back-calculating fluxes using CALPUFF and ISC models with the same field measurements of downwind odor concentrations are significantly different. It indicates that back-calculated emission rates are model specific. The modeled emission rates tended to be higher than flux chamber source sampling results. The flux chamber protocol may under-estimate odor emission rates.

  2. Odor emission rate estimation of indoor industrial sources using a modified inverse modeling method.

    PubMed

    Li, Xiang; Wang, Tingting; Sattayatewa, Chakkrid; Venkatesan, Dhesikan; Noll, Kenneth E; Pagilla, Krishna R; Moschandreas, Demetrios J

    2011-08-01

    Odor emission rates are commonly measured in the laboratory or occasionally estimated with inverse modeling techniques. A modified inverse modeling approach is used to estimate source emission rates inside of a postdigestion centrifuge building of a water reclamation plant. Conventionally, inverse modeling methods divide an indoor environment in zones on the basis of structural design and estimate source emission rates using models that assume homogeneous distribution of agent concentrations within a zone and experimentally determined link functions to simulate airflows among zones. The modified approach segregates zones as a function of agent distribution rather than building design and identifies near and far fields. Near-field agent concentrations do not satisfy the assumption of homogeneous odor concentrations; far-field concentrations satisfy this assumption and are the only ones used to estimate emission rates. The predictive ability of the modified inverse modeling approach was validated with measured emission rate values; the difference between corresponding estimated and measured odor emission rates is not statistically significant. Similarly, the difference between measured and estimated hydrogen sulfide emission rates is also not statistically significant. The modified inverse modeling approach is easy to perform because it uses odor and odorant field measurements instead of complex chamber emission rate measurements. PMID:21874959

  3. Odor Sampling: Techniques and Strategies for the Estimation of Odor Emission Rates from Different Source Types

    PubMed Central

    Capelli, Laura; Sironi, Selena; Rosso, Renato Del

    2013-01-01

    Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou·s−1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology. PMID:23322098

  4. Characterization of emission rates from indoor combustion sources. Final report, March 1982-March 1985

    SciTech Connect

    Moschandreas, D.J.; Relwani, S.M.; O'Neill, H.J.; Cole, J.T.; Elkins, R.H.

    1985-03-01

    Indoor air pollution in residences, offices, public access buildings, and the like may be as important a factor to public health as pollution in the outdoors and in indoor-industrial environments. The advent of energy-conservation measures, new technologies, and new materials in buildings may exacerbate the potential indoor air pollution problem. In addition to others, unvented gas appliances are perceived to be sources of indoor nitric oxide (NO) and nitrogen dioxide (NO2). Chamber experiments were performed to measure emission rates of NO, NO2, and CO for range-top burners, range ovens, pilot lights, gas dryers, gas space heaters, and cigarettes. The values evaluated establish the range of emission rates for these constituents under well-controlled conditions. Emissions of particulate matter, formaldehyde, polynuclear aromatic hydrocarbons, and volatile organic compounds were also measured and found to be low compared to NOx and CO. Factors that impact on the emission rates from unvented gas appliances include appliance type, primary aeration level, relative humidity, and variable fuel rate (firing rate). Chamber experiments confirm that the presence of indoor surfaces (fabric, carpet, etc.) reduces the indoor NO2 concentrations.

  5. GAS-PHASE MASS TRANSFER MODEL FOR PREDICTING VOLATILE ORGANIC COMPOUND (VOC) EMISSION RATES FROM INDOOR POLLUTANT SOURCES

    EPA Science Inventory

    Analysis of the impact of sources on indoor pollutant concentrations and occupant exposure to indoor pollutants requires knowledge of the emission rates from the sources. Emission rates are often determined by chamber testing and the data from the chamber test are fitted to an em...

  6. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  7. Use of open-path FTIR monitoring for emission rate assessment of industrial area sources during winter conditions

    NASA Astrophysics Data System (ADS)

    Kricks, Robert J.; Keely, Jerry A.; Spellicy, Robert L.; Perry, Stephen H.

    1999-02-01

    Open-path Fourier transform-infrared (OP-FTIR) was used to collect emission data for a number of chemical compounds for several area sources at a northwestern industrial facility. The data collected was used in conjunction with meteorological measurements to assess the emission rate of several of the compounds from these area sources. The release of a tracer gas at a known emission rate and its subsequent measurement with the OP-FTIR allowed for correction of emission rates to account for local effects on the site specific vertical dispersion coefficients used for emission assessments. The methodology for emission rate assessment is presented, and the implications of correcting for site specific vertical dispersion are discussed. Four area source case studies are included for the study. Most of this data was collected during cold temperature conditions, and some of the data collected during the night time hours, this represents one of the first studies of site specific vertical dispersion under these conditions. Possible impacts of these conditions on emission rate determinations will be presented. The effectiveness of OP-FTIR as a tool for area source emission rate assessment will be evaluated. OP-FTIR was employed for data collection because of its ability to detect the compounds of interest accurately and with reasonable levels of detectability. Emission rate determinations were done for process ponds AA, and BB. Fence-line concentration measurements were also made north of pond AA. The on-site study was conducted from 11/10/97 through 11/26/97. The data collected indicated that moderate to significant levels of two target compounds were being emitted by both pond AA and pond BB. Emission rates were estimated using text book dispersion coefficients and found to overestimate actual emission rates based on tracer gas release significantly. One target compound's emission rate was found to also be related to wind speed.

  8. Estimation of point source fugitive emission rates from a single sensor time series: A conditionally-sampled Gaussian plume reconstruction

    NASA Astrophysics Data System (ADS)

    Foster-Wittig, Tierney A.; Thoma, Eben D.; Albertson, John D.

    2015-08-01

    Emerging mobile fugitive emissions detection and measurement approaches require robust inverse source algorithms to be effective. Two Gaussian plume inverse approaches are described for estimating emission rates from ground-level point sources observed from remote vantage points. The techniques were tested using data from 41 controlled methane release experiments (14 studies) and further investigated using 7 field studies executed downwind of oil and gas well pads in Wyoming. Analyzed measurements were acquired from stationary observation locations 18-106 m downwind of the emission sources. From the fluctuating wind direction, the lateral plume geometry is reconstructed using a derived relationship between the wind direction and crosswind plume position. The crosswind plume spread is determined with both modeled and reconstructed Gaussian plume approaches and estimates of source emission rates are found through inversion. The source emission rates were compared to a simple point source Gaussian emission estimation approach that is part of Draft EPA Method OTM 33A. Compared to the known release rates, the modeled, reconstructed, and point source Gaussian controlled release results yield average percent errors of -5%, -2%, and 6% with standard deviations of 29%, 25%, and 37%, respectively. Compared to each other, the three methods agree within 30% for 78% of all 48 observations (41 CR and 7 Wyoming).

  9. Estimation of point source fugitive emission rates from a single sensor time series: a conditionally-sampled Gaussian plume reconstruction

    EPA Science Inventory

    This paper presents a technique for determining the trace gas emission rate from a point source. The technique was tested using data from controlled methane release experiments and from measurement downwind of a natural gas production facility in Wyoming. Concentration measuremen...

  10. Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a SingleDownwind High-Frequency Gas Sensor

    EPA Science Inventory

    Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a Single Downwind High-Frequency Gas Sensor With the tremendous advances in onshore oil and gas exploration and production (E&P) capability comes the realization that new tools are needed to support env...

  11. A primary standard for the measurement of alpha and beta particle surface emission rate from large area reference sources.

    PubMed

    Ravindra, Anuradha; Kulkarni, D B; Joseph, Leena; Kulkarni, M S; Babu, D A R

    2016-01-01

    A large area windowless gas flow multi wire proportional counting system for the calibration of large area reference sources has been developed as a primary standard at Bhabha Atomic Research Centre (BARC). The counting system consists of a multi wire proportional counter (MWPC), vacuum system, gas flow system and pulse processing units. The MWPC detector assembly consists of a vacuum tight aluminum enclosure, multi wire grid and sliding source tray. Various detector characteristics like operating characteristics curve, Fe-55 spectrum for beta discriminator threshold setting and dead time of the measurement system were studied and determined in order to achieve an optimized detection capability. The surface emission rates of different source strengths were measured and their relative combined standard uncertainties were determined. Large Area Sources Comparison Exercise (LASCE) was organized by International Committee on Radionuclide Metrology (ICRM) working group and coordinated by National Institute for Ionising Radiation Metrology (ENEA), Italy, to demonstrate equivalence of surface emission rate measurements at the international platform. BARC participated in the programme and the results of LASCE are also discussed in this paper. PMID:26457924

  12. Volatile organic compound concentrations, emission rates, and source apportionment in newly-built apartments at pre-occupancy stage.

    PubMed

    Shin, Seung H; Jo, Wan K

    2012-10-01

    The present study investigated the indoor concentrations of selected volatile organic compounds (VOCs) and formaldehyde and their indoor emission characteristics in newly-built apartments at the pre-occupancy stage. In total, 107 apartments were surveyed for indoor and outdoor VOC concentrations in two metropolitan cities and one rural area in Korea. A mass balanced model was used to estimate surface area-specific emission rates of individual VOCs and formaldehyde. Seven (benzene, ethyl benzene, toluene, m,p-xylene, o-xylene, n-hexane, and n-heptane) of 40 target compounds were detectable in all indoor air samples, whereas the first five were detected in all outdoor air samples. Formaldehyde was also predominant in the indoor air samples, with a high detection frequency of 96%. The indoor concentrations were significantly higher than the outdoor concentrations for aromatics, alcohols, terpenes, and ketones. However, six halogenated VOCs exhibited similar concentrations for indoor and outdoor air samples, suggesting that they are not major components emitted from building materials. It was also suggested that a certain portion of the apartments surveyed were constructed by not following the Korean Ministry of Environment guidelines for formaldehyde emissions. Toluene exhibited the highest emission rate with a median value of 138 μg m(-2) h(-1). The target compounds with median emission rates greater than 20 μg m(-2) h(-1) were toluene, 1-propanol, formaldehyde, and 2-butanone. The wood panels/vinyl floor coverings were the largest indoor pollutant source, followed by floorings, wall coverings, adhesives, and paints. The wood panels/vinyl floor coverings contributed nearly three times more to indoor VOC concentrations than paints. PMID:22698369

  13. Field emission electron source

    SciTech Connect

    Zettl, A.K.; Cohen, M.L.

    2000-05-02

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm{sup 2} at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  14. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  15. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  16. APMP comparison of measurement of surface emission rate of 36Cl large area source (APMP.RI(II)-K2.Cl-36).

    PubMed

    Yunoki, Akira; Hino, Yoshio

    2012-09-01

    An international comparison of measurement of beta particle surface emission rate from a (36)Cl large area source (APMP.RI(II)-S1.Cl-36) was carried out within the framework of the Asia-Pacific Metrology Program (APMP). Participants from APMP were NMIJ (Japan), KRISS (Korea) and INER (Chinese Taipei). Participants from the other RMOs were NIST (United States), PTB (Germany), NMISA (South Africa) and VNIIM (Russia). All the results of the participants agreed within ±1%. This was the first international comparison of measurement of surface emission rate of beta particle from a large area source. PMID:22424747

  17. Passive Effluent Diffusion in a Convective Atmospheric Boundary Layer: An Airborne Approach to Locating Sources and Estimating Their Emission Rates

    NASA Astrophysics Data System (ADS)

    Suard, Maxime

    We studied the near field dispersion of natural gas plumes leaking from transmission lines and diffusing in a convective Atmospheric Boundary Layer (ABL), with the intent of providing an aerial system of leak detection and pinpointing, as well as quantitative leak rate estimation. We used high frequency measurements of methane and ethane concentrations on a fixed wing aircraft using high rate spectroscopic gas concentration measurements. We looked for characteristics of the effluent concentration field which can be related to the distance from the effluent source, and developed an empirical approach to effluent source position estimation from airborne effluent concentration measurements. From a mass-balance approach we developed a practical method of effluent leak rate estimation based on airborne effluent concentration measurements. Since gathering experimental data was costly and time-expensive, Large Eddy Simulation (LES) results were also investigated. Results showed that analysis of effluent concentration variability is likely to provide information about the position of the effluent source. The developed leak rate estimation method provided encouraging results showing that such an approach is able to yield relatively accurate leak rate estimates. LES results proved to be very useful as they helped to provide guidelines for experiments as well as to deepen our understanding of the diffusion dynamics of turbulent effluent plumes.

  18. Exploiting dual otoacoustic emission sources

    NASA Astrophysics Data System (ADS)

    Abdala, Carolina; Kalluri, Radha

    2015-12-01

    Two distinct processes generate otoacoustic emissions (OAEs). Reflection-source emissions, here recorded as stimulus frequency OAEs, are optimally informative at low sound levels and are more sensitive to slight hearing loss; they have been linked to cochlear amplifier gain and tuning. Distortion-source emissions are strongest at moderate-high sound levels and persist despite mild hearing loss; they likely originate in the nonlinear process of hair cell transduction. In this preliminary study, we exploit the unique features of each by generating a combined reflection-distortion OAE profile in normal hearing and hearing-impaired ears. Distortion-product (DP) and stimulus-frequency (SF) OAEs were recorded over a broad range of stimulus levels and frequencies. Individual I/O and transfer functions were generated for both emission types in each ear, and OAE peak strength, compression threshold, and rate of compression were calculated. These combined SFOAE and DPOAE features in normal and hearing-impaired ears may provide a potentially informative and novel index of hearing loss. This is an initial step toward utilizing OAE source in characterizing cochlear function and dysfunction.

  19. Minimization of nitrous oxide emission from CASS process treating low carbon source domestic wastewater: Effect of feeding strategy and aeration rate.

    PubMed

    Liang, Weihao; Yu, Chao; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2015-12-01

    Nitrous oxide (N2O) emission during wastewater treatment can be mitigated by improving operational conditions, e.g., organic carbon supply and dissolved oxygen. To evaluate the control parameters for N2O emission in the low carbon source domestic wastewater treatment process, N2O emissions from Cyclic Activated Sludge System (CASS) under different feeding strategies and aeration rates were investigated. Results showed that continuous feeding enhanced nitrogen removal and reduced N2O emission compared to batch feeding, while a higher aeration rate led to less N2O emission. N2O was mainly produced during non-aeration phases in batch feeding CASS and the amount of N2O generated from denitrification decreased under continuous feeding, indicating that carbon source in the continuous influent relieved the electron competition between denitrification reductases during non-aeration phase. Moreover, taxonomic analysis based on high-throughput 16S rRNA gene sequencing revealed higher abundance of denitrifying bacteria, especially N2O-reducing bacteria in continuous feeding CASS. PMID:26386420

  20. ATLAS OF SOURCE EMISSION PARTICLES

    EPA Science Inventory

    An atlas of various source emission particles characterized by electron optical techniques has been compiled for use by air pollution investigators. The particles studied were emitted by mobile, stationary, and natural sources. Sources included automobiles, manufacturing operatio...

  1. Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles.

    PubMed

    Sax, Sonja N; Bennett, Deborah H; Chillrud, Steven N; Kinney, Patrick L; Spengler, John D

    2004-01-01

    The Toxics Exposure Assessment Columbia-Harvard (TEACH) Project characterized personal, indoor, and outdoor concentrations of a suite of volatile organic compounds (VOCs) for high school students living in New York City (NYC) and Los Angeles (LA). This paper presents the analysis of VOC measurements collected indoors and outdoors for 46 students' homes in NYC and for 41 students' homes in LA across two seasons. Dual-sorbent thermal desorption tubes were used for the collection of 15 VOCs and C(18) 2,4-dinitrophenylhydrazine-coated cartridges were used for the collection of seven aldehydes. Air-exchange rates (AERs) were also measured using a perfluorocarbon tracer gas method. The AERs were lower in the winter in both cities, averaging 1 h(-1) in NYC and 1.4 h(-1) in LA, compared with 1.8 h(-1) in NYC in the summer and 2.5 h(-1) in LA in the fall. Higher AERs were generally associated with lower indoor-outdoor ratios with significant differences for the compounds with indoor sources, including chloroform, 1,4-dichlorobenzene, and formaldehyde. Using a mass-balance model to account for AER and other housing parameters, effective source emission rates (SER) were calculated for each compound. Based on I/O ratios and source emission rates, VOCs could be divided into: (1). indoor-source-influenced compounds, (2). those with contributions from both indoor and outdoor sources, and (3). those with mostly outdoor sources. Significant indoor sources were found for the following six compounds (mean emission rates presented): chloroform (0.11 mg/h), 1,4-dichlorobenzene (19 mg/h), formaldehyde (5 mg/h), acetaldehyde (2 mg/h), benzaldehyde (0.6 mg/h), and hexaldehyde (2 mg/h). Although chloroform had variable I/O ratios across seasons, SERs, which accounted for AER, were similar in both cities for both seasons (e.g., LA means 0.12 and 0.11 mg/h in winter and fall, respectively). Formaldehyde had substantially higher indoor emission rates in the summer in NYC compared to winter (3

  2. METHANE EMISSIONS FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    The chapter identifies and describes major industrial sources of methane (CH4) emissions. or each source type examined, it identifies CH4 release points and discusses in detail the factors affecting emissions. t also summarizes and discusses available global and country-specific ...

  3. Acoustic emission source location

    NASA Astrophysics Data System (ADS)

    Promboon, Yajai

    The objective of the research program was development of reliable source location techniques. The study comprised two phases. First, the research focused on development of source location methods for homogeneous plates. The specimens used in the program were steel railroad tank cars. Source location methods were developed and demonstrated for empty and water filled tanks. The second phase of the research was an exploratory study of source location method for fiber reinforced composites. Theoretical analysis and experimental measurement of wave propagation were carried out. This data provided the basis for development of a method using the intersection of the group velocity curves for the first three wave propagation modes. Simplex optimization was used to calculate the location of the source. Additional source location methods have been investigated and critically examined. Emphasis has been placed on evaluating different methods for determining the time of arrival of a wave. The behavior of wave in a water filled tank was studied and source location methods suitable for use in this situation have been examined through experiment and theory. Particular attention is paid to the problem caused by leaky Lamb waves. A preliminary study into the use of neural networks for source location in fiber reinforced composites was included in the research program. A preliminary neural network model and the results from training and testing data are reported.

  4. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates

    NASA Astrophysics Data System (ADS)

    Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Burrows, J. P.; Bovensmann, H.

    2011-04-01

    MAMAP is an airborne passive remote sensing instrument designed for measuring columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument consists of two optical grating spectrometers: One in the short wave infrared band (SWIR) at 1590-1690 nm to measure CO2 and CH4 absorptions and another one in the near infrared (NIR) at 757-768 nm to measure O2 absorptions for reference purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an airplane MAMAP can effectively survey areas on regional to local scales with a ground pixel resolution of about 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h-1. The retrieval precision of the measured column relative to background is typically ≲ 1% (1σ). MAMAP can be used to close the gap between satellite data exhibiting global coverage but with a rather coarse resolution on the one hand and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007 test flights were performed over two coal-fired powerplants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr-1) and Schwarze Pumpe (11.9 Mt CO2 yr-1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions as stated by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods - the Gaussian plume model fit and the Gaussian integral method - are capable of delivering reliable estimates for strong point source emission rates, given appropriate flight patterns and detailed knowledge of wind conditions.

  5. Estimating Thermal Energy Emission and Eruption Rates at Guatemalan Volcanoes Using Thermal Data From a FLIR Camera, ASTER and MODIS Data Sources

    NASA Astrophysics Data System (ADS)

    Bowman, L. J.; Kapelanczyk, L.; Colvin, A. S.; Matias, O.; Rose, W. I.

    2008-12-01

    Analysis of thermal images taken with a Forward-Looking Infrared camera has allowed us to establish a baseline data set for three open vent volcanoes in Guatemala that vary in composition from dacite (Santiaguito) to basalt (Fuego and Pacaya). This allows for the evaluation of eruption rates using remote sensing and provides satellite thermal remote sensing validations. The field data were collected during two field trips in 2008. The Santiaguito data have been atmospherically corrected and analyzed to allow estimates of the emitted thermal energy and also the equivalent eruption rate (Rose, et al 2008). Using similar techniques, data from Pacaya volcano were analyzed to obtain estimated emission of thermal energy along with observations of vent morphology. The long term goal is to employ a variety of thermal remote sensing tools, including data comparison from ASTER and MODIS sources, in order to closely monitor eruption rates at open vent volcanoes, such as Santiaguito, Fuego and Pacaya. Ultimately, eruption rate estimates at these volcanoes may lead to improved hazard forecasts.

  6. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    NASA Astrophysics Data System (ADS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  7. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....6 for natural gas For other fuels, the combustion source must specify the SO2 emissions factor. (c... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions rate. (a) Data requirements. The designated representative of a combustion source shall submit...

  8. SOURCES OF COPPER AIR EMISSIONS

    EPA Science Inventory

    The report gives results of a study to update estimates of atmospheric emissions of copper and copper compounds in the U.S. Source categories evaluated included: metallic minerals, primary copper smelters, iron and steel making, combustion, municipal incineration, secondary coppe...

  9. Passive flux sampler for measurement of formaldehyde emission rates

    NASA Astrophysics Data System (ADS)

    Shinohara, Naohide; Fujii, Minoru; Yamasaki, Akihiro; Yanagisawa, Yukio

    A new passive flux sampler (PFS) was developed to measure emission rates of formaldehyde and to determine emission sources in indoor environments. The sampler consisted of a glass Petri dish containing a 2,4-dinitrophenyl hydrazine (DNPH)-impregnated sheet. At the start of sampling, the PFS was placed with the open face of the dish on each of the indoor materials under investigation, such as flooring, walls, doors, closets, desks, beds, etc. Formaldehyde emitted from a source material diffused through the inside of the PFS and was adsorbed onto the DNPH sheet. The formaldehyde emission rates could be determined from the quantities adsorbed. The lower determination limits were 9.2 and 2.3 μg m -2 h -1 for 2- and 8-h sampling periods. The recovery rate and the precision of the PFS were 82.9% and 8.26%, respectively. The emission rates measured by PFS were in good agreement with the emission rates measured by the chamber method ( R2=0.963). This shows that it is possible to take measurements of the formaldehyde emission rates from sources in a room and to compare them. In addition, the sampler can be used to elucidate the emission characteristics of a source by carrying out emission measurements with different air-layer thicknesses inside the PFS and at different temperatures. The dependency of the emission rate on the thickness of the air layer inside the PFS indicated whether the internal mass transfer inside the source material or the diffusion in the gas-phase boundary layer controlled the formaldehyde emission rate from a material. In addition, as a pilot study, the formaldehyde emission rates were measured, and the largest emission source of formaldehyde could be identified from among several suspected materials in a model house by using the PFS.

  10. VALIDATION OF A METHOD FOR ESTIMATING POLLUTION EMISSION RATES FROM AREA SOURCES USING OPEN-PATH FTIR SPECTROSCOPY AND DISPERSION MODELING TECHNIQUES

    EPA Science Inventory

    The paper describes a rapid and cost effective methodology developed to estimate emissions factors of organic compounds from a variety of area sources. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations of hydrocarb...

  11. VALIDATION OF A METHOD FOR ESTIMATING POLLUTION EMISSION RATES FROM AREA SOURCES USING OPEN-PATH FTIR SEPCTROSCOPY AND DISPERSION MODELING TECHNIQUES

    EPA Science Inventory

    The paper describes a methodology developed to estimate emissions factors for a variety of different area sources in a rapid, accurate, and cost effective manner. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations o...

  12. Ultrafast spontaneous emission source using plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  13. Ultrafast spontaneous emission source using plasmonic nanoantennas

    PubMed Central

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  14. EXTERNAL COMBUSTION PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of the development of particulate emission factors based on cutoff size for inhalable particles for external combustion sources. After a review of available information characterizing particulate emissions from external combustion sources, the data were s...

  15. An emission inventory of sulfur from anthropogenic sources in Antarctica

    NASA Astrophysics Data System (ADS)

    Shirsat, S. V.; Graf, H. F.

    2009-05-01

    This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft) in Antarctica, covering the 2004-2005 period. The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica. Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only) have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004-2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  16. An emission inventory of sulfur from anthropogenic sources in Antarctica

    NASA Astrophysics Data System (ADS)

    Shirsat, S. V.; Graf, H. F.

    2009-01-01

    This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft) in Antarctica, covering the 2004-2005 period. The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica. Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only) have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004-2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  17. Emission Rates in ASTRAL Argon Plasmas.

    NASA Astrophysics Data System (ADS)

    Kamar, Ola; Boivin, Robert; Loch, Stuart; Munoz, Jorge; Ballance, Connor

    2006-10-01

    Relative Emission rates measured in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source are compared to theoretical predictions. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 to 10^13 cm-3 and Te = 2 to 10 eV. A rf compensated Langmuir probe is used to measure Te and ne. In a first series of experiment Ar I, Ar II and Ar III transitions are monitored as a function of plasma density and this for constant electron temperature. In the second series of experiments, the same transitions are observed as a function of Te while ne is this time kept constant. Observations revealed that Te is by far the most significant parameter affecting the emission rate coefficients in the ASTRAL plasma. The spectroscopy measurements are compared with spectral modeling from the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. We use existing standard R-matrix electron-impact excitation data in our modeling, and assess this dataset against the results from a new R-matrix with pseudo-states calculation.

  18. Linearity between temperature peak and bioenergy CO2 emission rates

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Gasser, Thomas; Bright, Ryan M.; Ciais, Philippe; Strømman, Anders H.

    2014-11-01

    Many future energy and emission scenarios envisage an increase of bioenergy in the global primary energy mix. In most climate impact assessment models and policies, bioenergy systems are assumed to be carbon neutral, thus ignoring the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation. Here, we show that the temperature peak caused by CO2 emissions from bioenergy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR; ref. ) to fossil fuel emissions is approximately constant, the CCR to bioenergy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bioenergy CO2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO2 emissions from bioenergy matters. Under the international agreement to limit global warming to 2 °C by 2100, early emissions from bioenergy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bioenergy is sourced from biomass with medium (50-60 years) or long turnover times (100 years).

  19. Attributing Atmospheric Methane to Anthropogenic Emission Sources.

    PubMed

    Allen, David

    2016-07-19

    Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ("bottom-up analyses") differing from estimates that infer emissions based on ambient data ("top-down analyses") by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source

  20. Microscopic fungi as significant sesquiterpene emission sources

    NASA Astrophysics Data System (ADS)

    HorváTh, Eszter; Hoffer, AndráS.; SebőK, Flóra; Dobolyi, Csaba; Szoboszlay, SáNdor; Kriszt, BaláZs; GelencséR, AndráS.

    2011-08-01

    Among the volatile organic compounds emitted by vegetation, isoprene, monoterpenes, sesquiterpenes, and their derivatives are thought to contribute to secondary organic aerosol formation. Although it is well known that microscopic fungi globally turn over vast amount of carbon by decomposing the organic matter in the soil, vegetation is considered as the exclusive source of biogenic secondary organic aerosol precursors in various atmospheric models. Secondary fungal metabolites including sesquiterpenes have been recognized as characteristic volatile organic compounds emitted by fungi. In the present study, we investigated the rates of sesquiterpene emission of microscopic fungi to establish their potential significance compared to those from vegetation. To sample the headspace of the pure culture of some common fungi, we used an aseptic flow-through apparatus designed for solid phase microextraction in our laboratory. The identified sesquiterpenes in the headspace extracts were quantified for eight strains of microscopic fungi belonging to four different genera. Our results showed that microscopic fungi emit a considerable amount of sesquiterpenes. Based on our first estimations microscopic fungi may be considered as potentially significant sesquiterpene emission sources whose contribution to secondary organic aerosol formation may be comparable to that of vegetation.

  1. Atmospheric process evaluation of mobile source emissions

    SciTech Connect

    1995-07-01

    During the past two decades there has been a considerable effort in the US to develop and introduce an alternative to the use of gasoline and conventional diesel fuel for transportation. The primary motives for this effort have been twofold: energy security and improvement in air quality, most notably ozone, or smog. The anticipated improvement in air quality is associated with a decrease in the atmospheric reactivity, and sometimes a decrease in the mass emission rate, of the organic gas and NO{sub x} emissions from alternative fuels when compared to conventional transportation fuels. Quantification of these air quality impacts is a prerequisite to decisions on adopting alternative fuels. The purpose of this report is to present a critical review of the procedures and data base used to assess the impact on ambient air quality of mobile source emissions from alternative and conventional transportation fuels and to make recommendations as to how this process can be improved. Alternative transportation fuels are defined as methanol, ethanol, CNG, LPG, and reformulated gasoline. Most of the discussion centers on light-duty AFVs operating on these fuels. Other advanced transportation technologies and fuels such as hydrogen, electric vehicles, and fuel cells, will not be discussed. However, the issues raised herein can also be applied to these technologies and other classes of vehicles, such as heavy-duty diesels (HDDs). An evaluation of the overall impact of AFVs on society requires consideration of a number of complex issues. It involves the development of new vehicle technology associated with engines, fuel systems, and emission control technology; the implementation of the necessary fuel infrastructure; and an appropriate understanding of the economic, health, safety, and environmental impacts associated with the use of these fuels. This report addresses the steps necessary to properly evaluate the impact of AFVs on ozone air quality.

  2. INSTRUMENTAL SENSING OF STATIONARY SOURCE EMISSIONS

    EPA Science Inventory

    Remote sensing methods offer a number of advantages over contact measurement methods in the area of enforcement and surveillance of emissions from stationary sources. Several techniques have been developed that can measure the gas concentration, effluent velocity, and particulate...

  3. Radiation source with shaped emission

    DOEpatents

    Kubiak, Glenn D.; Sweatt, William C.

    2003-05-13

    Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

  4. 40 CFR 74.23 - 1985 Allowable SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.23 1985 Allowable SO2 emissions rate. (a) Data requirements. (1) The designated representative of the combustion source shall... data: (i) Allowable SO2 emissions rate of the combustion source expressed in lbs/mmBtu as defined...

  5. Jovian S emission: Model of radiation source

    NASA Astrophysics Data System (ADS)

    Ryabov, B. P.

    1994-04-01

    A physical model of the radiation source and an excitation mechanism have been suggested for the S component in Jupiter's sporadic radio emission. The model provides a unique explanation for most of the interrelated phenomena observed, allowing a consistent interpretation of the emission cone structure, behavior of the integrated radio spectrum, occurrence probability of S bursts, location and size of the radiation source, and fine structure of the dynamic spectra. The mechanism responsible for the S bursts is also discussed in connection with the L type emission. Relations are traced between parameters of the radio emission and geometry of the Io flux tube. Fluctuations in the current amplitude through the tube are estimated, along with the refractive index value and mass density of the plasma near the radiation source.

  6. Determination of PM10 emission rates from street sweepers.

    PubMed

    Fitz, D R; Bumiller, K

    2000-02-01

    The use of street sweepers to clean paved roads, particularly after high-wind events, has been proposed as a PM10 control method. Using an artificial tunnel, the emission rates for several street sweepers were quantified under actual operating conditions. The tunnel was a tent enclosure, 6.1 x 4.3 x 73 m, open on both ends. PM10 concentrations were measured at the inlet and outlet while a sweeper removed sand deposited along the length. Measurements were made using a specialized low-volume filter sampler and an integrating nephelometer. The volume of air passing through the tunnel was measured by releasing an inert tracer, sulfur hexafluoride, at the inlet and measuring its concentration at the outlet. A large difference in emission rates between vacuum-type sweepers was observed, with rates varying from 5 to 100 mg m-1 swept. For the cleanest sweepers, the background rates (collected by sweeping clean pavement) were about half of the total PM10 emission rate. These background emission rates likely were from diesel exhaust; background rates for the single gasoline-powered sweeper were below detection. Particle light scattering data confirmed the filter collection results. The artificial tunnel approach would be useful in measuring total emissions from other mobile and stationary sources. PMID:10680347

  7. Evaluation of Mobile Source Emissions and Trends

    NASA Astrophysics Data System (ADS)

    Dallmann, Timothy Ryan

    Mobile sources contribute significantly to air pollution problems. Relevant pollutants include numerous gaseous and particle-phase species that can affect human health, ecosystems, and climate. Accurate inventories of emissions from these sources are needed to help understand possible adverse impacts, and to develop effective air quality management strategies. Unfortunately large uncertainties persist in the understanding of mobile source emissions, and how these emissions are changing over time. This dissertation aims to evaluate long-term trends in mobile source emissions in the United States, and to make detailed measurements of emissions from present-day fleets of on-road vehicles operating in California. Long-term trends in mobile source emissions of nitrogen oxides (NO x) and fine particulate matter (PM2.5) in the United States were investigated through development of a fuel-based emission inventory. Annual emissions from on- and off-road gasoline and diesel engines were quantified for the years 1996-2006. Diesel engines were found to be the dominant mobile source of NOx and PM2.5, and on-road diesel vehicles were identified as the single largest anthropogenic source of NOx emissions in the United States as of 2005. The importance of diesel engines as a source of exhaust particulate matter emissions has led to the recent introduction of advanced emission control technologies in the United States, such as diesel particle filters (DPF), which have been required since 2007 for all new on-road heavy-duty (HD) diesel engines. In addition to national requirements for the use of such control devices on new engines, California has mandated accelerated clean-up of statewide emissions from older in-use diesel engines. The plume capture method was further applied to measure emissions from a more diverse population of trucks observed at the Caldecott tunnel in summer 2010. Emissions from hundreds of individual trucks were measured, and emission factor distributions were

  8. SETTING PRIORITIES FOR CONTROL OF FUGITIVE PARTICULATE EMISSIONS FROM OPEN SOURCES

    EPA Science Inventory

    The report describes setting priorities for controlling fugitive particulate emissions. Emission rate estimates of suspended particulates from open sources in the U.S. were obtained from emission factors and source extents in the literature. Major open sources, with their estimat...

  9. Controlling NOx emission from industrial sources

    SciTech Connect

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  10. Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in school Buildings (PCB Workshop presentation)

    EPA Science Inventory

    Measure PCB emission rates from primary sources in laboratory chambersMeasure transport and sorption by materials and dust in laboratory chambersCharacterize PCBs in school building materialsEstimate PCB emission rates from sources in schoolsExamine congener patterns in sources a...

  11. Remote measurement of ground source emissivity

    SciTech Connect

    Henderson, J.R.

    1995-07-01

    The remote measurement of the emissivity of ground materials is of tremendous value in their identification and mapping. Traditional techniques use reflected solar radiation for this measurement for wavelengths shorter than 5 {mu}m. With the development of new techniques, the 10 Jim atmospheric transmission window might also be used for this purpose. Previous work using the multi-angle data acquisition technique demonstrated its utility to determine source thermal emission. Here we find the multi-angle technique can be used to determine the source specular reflectivity to {approximately}0.05 if there is very good system performance (NETD {approx} 0.01 K).

  12. Proton emission from a laser ion source

    SciTech Connect

    Torrisi, L.; Cavallaro, S.; Gammino, S.; Cutroneo, M.; Margarone, D.

    2012-02-15

    At intensities of the order of 10{sup 10} W/cm{sup 2}, ns pulsed lasers can be employed to ablate solid bulk targets in order to produce high emission of ions at different charge state and kinetic energy. A special interest is devoted to the production of protons with controllable energy and current from a roto-translating target irradiated in repetition rate at 1-10 Hz by a Nd:Yag pulsed laser beam. Different hydrogenated targets based on polymers and hydrates were irradiated in high vacuum. Special nanostrucutres can be embedded in the polymers in order to modify the laser absorption properties and the amount of protons to be accelerated in the plasma. For example, carbon nanotubes may increase the laser absorption and the hydrogen absorption to generate high proton yields from the plasma. Metallic nanostrucutres may increase the electron density of the plasma and the kinetic energy of the accelerated protons. Ion collectors, ion energy analyzer, and mass spectrometers, used in time-of-flight configuration, were employed to characterize the ion beam properties. A comparison with traditional proton ion source is presented and discussed.

  13. CONTROLLING NOX EMISSION FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx ...

  14. Nitrogen Source Effects on Nitrous Oxide Emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of N fertilizer source and tillage on nitrous oxide (N2O) emissions from soils under several irrigated, crop management systems were evaluated. Irrigated corn production systems [conventional-till continuous corn (CT-CC); no-till continuous corn (NT-CC); NT corn-dry bean (NT-CDb); and NT cor...

  15. 40 CFR 63.843 - Emission limits for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Primary Aluminum Reduction...

  16. Krakow conference on low emissions sources: Proceedings

    SciTech Connect

    Pierce, B.L.; Butcher, T.A.

    1995-12-31

    The Krakow Conference on Low Emission Sources presented the information produced and analytical tools developed in the first phase of the Krakow Clean Fossil Fuels and Energy Efficiency Program. This phase included: field testing to provide quantitative data on missions and efficiencies as well as on opportunities for building energy conservation; engineering analysis to determine the costs of implementing pollution control; and incentives analysis to identify actions required to create a market for equipment, fuels, and services needed to reduce pollution. Collectively, these Proceedings contain reports that summarize the above phase one information, present the status of energy system management in Krakow, provide information on financing pollution control projects in Krakow and elsewhere, and highlight the capabilities and technologies of Polish and American companies that are working to reduce pollution from low emission sources. It is intended that the US reader will find in these Proceedings useful results and plans for control of pollution from low emission sources that are representative of heating systems in central and Eastern Europe. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. NMHC emissions from Asia: sources and transport

    NASA Astrophysics Data System (ADS)

    Shirai, T.; Blake, D. R.; Barletta, B.; Meinardi, S.; Rowland, F. S.; Chan, J. C.; Takegawa, N.; Kondo, Y.; Koike, M.; Kita, K.; Takigawa, M.; Kawakami, S.; Ogawa, T.

    2002-12-01

    Recent rapid industrialization and economic growth in Asia changed the industrial structure, land use, and people's lifestyle resulting in a dramatic change in the amount and composition of the gas emissions from Asia. Because emissions can be transported very rapidly once convected to the free troposphere, Asian emissions can affect both local and regional air quality and climate. To access the impact of changing emission from Asia, an airborne observation campaign PEACE (the Pacific Exploration of Asian Continental Emission) phase-A and B were conducted in January and April - May 2002, respectively, sponsored by NASDA (National Space Development Agency of Japan). The concentrations of NMHCs (nonmethanehydrocarbons) and halocarbons were obtained by whole air sampling and subsequent gas chromatography analyses in the laboratory. Quantified onboard the aircraft were CO, CO2, O3, NO, NO2, NOy, H2O, SO2, aerosols, and condensation nuclei. The experiment was conducted in the vicinity of Japan and PEACE-A and B represent the local winter and spring weather conditions. The trace gas distributions in the lower troposphere were often influenced by local pollution (i.e. from Japan, Korea) while those of the long-range transport (i.e. from Europe) were occasionally seen in the upper troposphere. This is confirmed by the airmass age estimation using the ratios of short-lived gases (i.e. C2H4) vs. more stable compounds (i.e. CO). Emissions from China were distinguished using data obtained from ground-based sampling and measurements. Transport from China was seen both in the lower troposphere and upper troposphere. Some case studies on source identification will be discussed.

  18. High rates of methane emissions from south taiga wetland ponds.

    NASA Astrophysics Data System (ADS)

    Glagolev, M.; Kleptsova, I.; Maksyutov, S.

    2012-04-01

    Since wetland ponds are often assumed to be insignificant sources of methane, there is a limited data about its fluxes. In this study, we found surprisingly high rates of methane emission at several shallow ponds in the south taiga zone of West Siberia. Wetland ponds within the Great Vasyugan Mire ridge-hollow-pool patterned bog system were investigated. 22 and 24 flux measurements from ponds and surrounded mires, respectively, were simultaneously made by a static chamber method in July, 2011. In contrast to previous measurements, fluxes were measured using the small boat with floated chamber to avoid disturbance to the water volume. Since the ebullition is most important emission pathway, minimization of physical disturbance provoking gas bubbling significantly increases the data accuracy. Air temperature varied from 15 to 22° C during the measurements, and pH at different pond depths - from 4.4 to 5. As it was found, background emission from surrounding ridges and hollows was 1.7/2.6/3.3 mgC·m-2·h1 (1st/2nd/3rd quartiles). These rates are in a perfect correspondence with the typical methane emission fluxes from other south taiga bogs. Methane emission from wetland ponds turned out to be by order of magnitude higher (9.3/11.3/15.6 mgC·m-2·h1). Comparing to other measurements in West Siberia, many times higher emissions (70.9/111.6/152.3 mgC·m-2·h1) were found in forest-steppe and subtaiga fen ponds. On the contrary, West Siberian tundra lakes emit methane insignificantly, with the flux rate close to surrounding wetlands (about 0.2-0.3 mgC·m-2·h1). Apparently, there is a naturally determined distribution of ponds with different flux rates over different West Siberia climate-vegetation zones. Further investigations aiming at revelation of the zones with different fluxes would be helpful for total flux revision purposes. With respect to other studies, high emission rates were already detected, for instance, in Baltic ponds (Dzyuban, 2002) and U.K. lakes

  19. Development of a novel methodology for indoor emission source identification

    NASA Astrophysics Data System (ADS)

    Han, K. H.; Zhang, J. S.; Knudsen, H. N.; Wargocki, P.; Chen, H.; Varshney, P. K.; Guo, B.

    2011-06-01

    The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material, gypsum board, linoleum, two paints, polyolefine, PVC and wood. Volatile Organic Compound (VOC) emissions from each material were measured in a 50-liter small-scale chamber. Chamber air was sampled by PTR-MS to establish a database of emission signatures unique to each individual material. The same task was performed to measure combined emissions from material mixtures for the application and validation of the developed signal separation method. Results showed that the proposed method could identify the individual sources under laboratory conditions with two, three, five and seven materials present. Further experiments and investigation are needed for cases where the relative emission rates among different compounds may change over a long-term period.

  20. Ar II Emission Processes and Emission Rate Coefficients in ASTRAL Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Kamar, O.; Kesterson, A.; Loch, S.; Munoz, J.; Ballance, C.

    2008-11-01

    Emission processes for Ar II line emission are described for low temperature plasmas (Te < 10 eV). It is found that Ar II emission results primarily from Ar ion ground state excitation rather than from any Ar neutral state. This suggests that Ar II emission results from stepping processes which includes ionization and then excitation of the neutral Ar atom filling the vacuum chamber. The Ar II emission rate coefficients are measured in the ASTRAL helicon plasma source using a 0.33 m monochromator and a CCD camera. ASTRAL produces Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. In this experiment, Ar II transitions are monitored as a function of Te while ne is kept constant. Experimental emission rates are obtained as a function of Te and compared to theoretical predictions. Theoretical predictions make use of the ADAS suite of codes as well as recent R-matrix electron-impact excitation calculations that includes pseudo-states contributions. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations.

  1. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    EPA Science Inventory

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  2. 40 CFR 74.24 - Current allowable SO 2 emissions rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Current allowable SO 2 emissions rate... PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.24 Current allowable SO 2 emissions rate. The designated representative shall submit the following data: (a)...

  3. 40 CFR 74.24 - Current allowable SO 2 emissions rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Current allowable SO 2 emissions rate... PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.24 Current allowable SO 2 emissions rate. The designated representative shall submit the following data: (a)...

  4. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Current allowable SO2 emissions rate... PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.24 Current allowable SO2 emissions rate. The designated representative shall submit the following data: (a)...

  5. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Current allowable SO2 emissions rate... PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.24 Current allowable SO2 emissions rate. The designated representative shall submit the following data: (a)...

  6. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Current allowable SO2 emissions rate... PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.24 Current allowable SO2 emissions rate. The designated representative shall submit the following data: (a)...

  7. Light absorption by biomass burning source emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  8. Denitrification as a Source of NO Emissions using Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Cardenas, Laura; Loick, Nadine; Abalos, Diego; Dixon, Liz; Vallejo, Antonio; Watson, Catherine; McGeough, Karen; Well, Reinhard; Matthews, Peter

    2015-04-01

    Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O) which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification. Depending on the environmental conditions such as substrate availability, pH and water filled pore space (WFPS) N2O emissions have been attributed to both processes, whereas NO emissions are thought to predominantly derive from nitrification. This is due to the fact that the environmental factors which promote denitrifying conditions also restrict gaseous diffusivity causing consumption of the highly reactive NO. Recent findings however challenge this assumption indicating that denitrification can be a significant source of NO. Attributing gaseous emissions to specific soil processes is still difficult; however, advanced isotopic methods show great potential. Labelling methods rely on the use of 15N enriched substrates, whereas isotopomer analyses rely on differences in the utilisation of heavy vs light N and O isotopes at natural abundance. The present study analysed the effect of different enrichment levels on gaseous emissions using the gas-flow-soil-core technique (Cardenas et al 2003). This system provides continuous measurements of NO, N2O as well as N2 fluxes by exchanging the normal atmosphere with a mixture of He:O2 (80:20). This was combined with 15N labelled isotopic techniques and isotopomer measurements to determine the source and processes responsible for the measured N-emissions. Nutrient solutions were applied containing KNO3 with 15N at natural abundance, 5 atom% and 20 atom% enrichment at a rate of 75 kg N ha-1 together with glucose at a rate of 400 kg C ha-1. Results showed that at the higher level of enrichment gaseous emissions were affected by showing an increase in emissions of NO and N2O. Additionally, under denitrifying conditions (high WFPS and NO3- availability) denitrification played a key role in NO emissions

  9. Source gases: Concentrations, emissions, and trends

    NASA Technical Reports Server (NTRS)

    Fraser, Paul J.; Harriss, Robert; Penkett, Stuart A.; Makide, Yoshihiro; Sanhueza, Eugenio; Alyea, Fred N.; Rowland, F. Sherwood; Blake, Don; Sasaki, Toru; Cunnold, Derek M.

    1991-01-01

    Source gases are defined as those gases that influence levels of stratospheric ozone (O3) by transporting species containing halogen, hydrogen, and nitrogen to the stratosphere. Examples are the CFC's, methane (CH4), and nitrous oxide (N2O). Other source gases that also come under consideration in an atmospheric O3 context are those that are involved in the O3 or hydroxyl (OH) radical chemistry of the troposphere. Examples are CH4, carbon monoxide (CO), and nonmethane hydrocarbons (NMHC's). Most of the source gases, along with carbon dioxide (CO2) and water vapor (H2O), are climatically significant and thus affect stratospheric O3 levels by their influence on stratospheric temperatures. Carbonyl sulphide (COS) could affect stratospheric O3 through maintenance of the stratospheric sulphate aerosol layer, which may be involved in heterogeneous chlorine-catalyzed O3 destruction. The previous reviews of trends and emissions of source gases, either from the context of their influence on atmospheric O3 or global climate change, are updated. The current global abundances and concentration trends of the trace gases are given in tabular format.

  10. Glow discharge lamp: A light source for optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Vishwanathan, K. S.; Srinivasan, V.; Nalini, S.; Mahalingam, T. R.

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emission spectrography by standardizing a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii, and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent.

  11. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Shetty, Suraj K.

    ) and CAMNet (Canadian Atmospheric Mercury Measurement Network). The model estimated a total deposition of 474 Mg yr-1 to the CONUS (Contiguous United States) domain, with two-thirds being dry deposited. Reactive gaseous mercury contributed the most to 60% of deposition. Emission speciation distribution is a key factor for local deposition as contribution from large point sources can be as high as 75% near (< 100 km) the emission sources, indicating that emission reduction may result in direct deposition decrease near the source locations. Among the sources, BC contributes to about 68% to 91% of total deposition. Excluding the BC's contribution, EGU contributes to nearly 50% of deposition caused by CONUS emissions in the Northeast, Southeast and East Central regions, while emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). The modeling results implies that implementation of the new emission standards proposed by USEPA (United States Environmental Protection Agency) would significantly benefit regions that have larger contributions from EGU sources. Control of mercury emissions from coal combustion processes has attracted great attention due to its toxicity and the emission-control regulations and has lead to advancement in state-of-the-art control technologies that alleviate the impact of mercury on ecosystem and human health. This part of the work applies a sorption model to simulate adsorption of mercury in flue gases, onto a confined-bed of activated carbon. The model's performances were studied at various flue gas flow rates, inlet mercury concentrations and adsorption bed temperatures. The process simulated a flue gas, with inlet mercury concentration of 300 ppb, entering at a velocity of 0.3 m s-1 from the bottom into a fixed bed (inside bed diameter of 1 m and 3 m bed height; bed temperature of 25 °C) of activated carbon (particle size of 0.004 m with density of 0.5 g cm-3 and

  12. PAVED ROAD PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of extensive field tests to develop emission factors for particulate emissions generated by traffic entrainment of paved road surface particulate matter. Using roadway surface silt loading as the basis, predictive emission factor equations for each partic...

  13. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Emission standards for existing sources. 63.1157 Section 63.1157 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards...

  14. Setting maximum emission rates from ozone emitting consumer appliances in the United States and Canada

    NASA Astrophysics Data System (ADS)

    Morrison, Glenn; Shaughnessy, Richard; Shu, Shi

    2011-02-01

    A Monte Carlo analysis of indoor ozone levels in four cities was applied to provide guidance to regulatory agencies on setting maximum ozone emission rates from consumer appliances. Measured distributions of air exchange rates, ozone decay rates and outdoor ozone levels at monitoring stations were combined with a steady-state indoor air quality model resulting in emission rate distributions (mg h -1) as a function of % of building hours protected from exceeding a target maximum indoor concentration of 20 ppb. Whole-year, summer and winter results for Elizabeth, NJ, Houston, TX, Windsor, ON, and Los Angeles, CA exhibited strong regional differences, primarily due to differences in air exchange rates. Infiltration of ambient ozone at higher average air exchange rates significantly reduces allowable emission rates, even though air exchange also dilutes emissions from appliances. For Houston, TX and Windsor, ON, which have lower average residential air exchange rates, emission rates ranged from -1.1 to 2.3 mg h -1 for scenarios that protect 80% or more of building hours from experiencing ozone concentrations greater than 20 ppb in summer. For Los Angeles, CA and Elizabeth, NJ, with higher air exchange rates, only negative emission rates were allowable to provide the same level of protection. For the 80th percentile residence, we estimate that an 8-h average limit concentration of 20 ppb would be exceeded, even in the absence of an indoor ozone source, 40 or more days per year in any of the cities analyzed. The negative emission rates emerging from the analysis suggest that only a zero-emission rate standard is prudent for Los Angeles, Elizabeth, NJ and other regions with higher summertime air exchange rates. For regions such as Houston with lower summertime air exchange rates, the higher emission rates would likely increase occupant exposure to the undesirable products of ozone reactions, thus reinforcing the need for zero-emission rate standard.

  15. 40 CFR 62.08 - Emission inventories and source surveillance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission inventories and source... General Provisions § 62.08 Emission inventories and source surveillance. (a) Each subpart identifies the plan provisions for source surveillance which are disapproved, and sets forth the...

  16. The Power Source(s) of Nearby Low-Ionization Nuclear Emission Regions

    NASA Astrophysics Data System (ADS)

    Molina, Mallory; Eracleous, Michael; Maoz, Dan; Barth, Aaron J.; Walsh, Jonelle; Ho, Luis C.; Shields, Joseph C.

    2015-01-01

    The majority of low-ionization nuclear emission regions (LINERs) harbor supermassive black holes (SMBHs) with very low accretion rates. Since SMBHs spend most of their lifetimes in these low-accretion rate states, understanding LINERs is important for understanding active galactic nuclei (AGN) in the context of galaxy evolution. On scales of ~100 pc, the energy budget of LINERs appears to be deficient when the only source of power considered is the AGN. Thus, other energy sources are likely to contribute to the excitation of the emission-line gas. To probe these sources, we observed three nearby, bright LINERs, NGC 1052, NGC 4278 and NGC 4579, with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). We specifically looked at the 0.1-1 arcsecond (corresponding to 5-50 pc) scale to find what and how far from the nucleus these other energy sources are. After subtracting both the unresolved nuclear light and the spatially-extended starlight, we measured a number of diagnostic emission line ratios. We find that line ratios, such as [O III]/[O II] and [O III]/H-beta change as a function of distance from the nucleus. Within 5 pc, the line ratios suggest AGN photoionization. At larger distances the line ratios seem to be inconsistent with AGN photoionization, but they appear to be consistent with excitation by hot stars or shocks.

  17. Constraining Emission Models of Luminous Blazar Sources

    SciTech Connect

    Sikora, Marek; Stawarz, Lukasz; Moderski, Rafal; Nalewajko, Krzysztof; Madejski, Greg; /KIPAC, Menlo Park /SLAC

    2009-10-30

    Many luminous blazars which are associated with quasar-type active galactic nuclei display broad-band spectra characterized by a large luminosity ratio of their high-energy ({gamma}-ray) and low-energy (synchrotron) spectral components. This large ratio, reaching values up to 100, challenges the standard synchrotron self-Compton models by means of substantial departures from the minimum power condition. Luminous blazars have also typically very hard X-ray spectra, and those in turn seem to challenge hadronic scenarios for the high energy blazar emission. As shown in this paper, no such problems are faced by the models which involve Comptonization of radiation provided by a broad-line-region, or dusty molecular torus. The lack or weakness of bulk Compton and Klein-Nishina features indicated by the presently available data favors production of {gamma}-rays via up-scattering of infrared photons from hot dust. This implies that the blazar emission zone is located at parsec-scale distances from the nucleus, and as such is possibly associated with the extended, quasi-stationary reconfinement shocks formed in relativistic outflows. This scenario predicts characteristic timescales for flux changes in luminous blazars to be days/weeks, consistent with the variability patterns observed in such systems at infrared, optical and {gamma}-ray frequencies. We also propose that the parsec-scale blazar activity can be occasionally accompanied by dissipative events taking place at sub-parsec distances and powered by internal shocks and/or reconnection of magnetic fields. These could account for the multiwavelength intra-day flares occasionally observed in powerful blazars sources.

  18. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  19. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size

  20. NONFERROUS INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of the development of particulate emission factors based on cutoff size for inhalable particles for the nonferrous industry. After a review of available information characterizing particulate emissions from nonferrous plants, the data were summarized and ...

  1. Estimating gas emissions from multiple sources using a backward Lagrangian stochastic model.

    PubMed

    Gao, Zhiling; Desjardins, Raymond L; van Haarlem, Ronald P; Flesch, Thomas K

    2008-11-01

    Manure storage tanks and animals in barns are important agricultural sources of methane. To examine the possibility of using an inverse dispersion technique based on a backward Lagrangian Stochastic (bLS) model to quantify methane (CH4) emissions from multiple on-farm sources, a series of tests were carried out with four possible source configurations and three controlled area sources. The simulated configurations were: (C1) three spatially separate ground-level sources, (C2) three spatially separate sources with wind-flow disturbance, (C3) three adjacent ground-level sources to simulate a group of adjacent sources with different emission rates, and (C4) a configuration with a ground level and two elevated sources. For multiple ground-level sources without flow obstructions (C1 and C3), we can use the condition number (K, the ratio of the uncertainty in the calculated emission rate to the uncertainty in the predicted ratio of concentration to emission rate) to evaluate the applicability of this inverse dispersion technique and a preliminary threshold of K <10 is recommended. For multiple sources with wind disturbance (C2) or an even more complex configuration including ground level and elevated sources (C4), a low kappa is not sufficient to provide reasonable discrete and total emission rates. The effect of flow obstructions can be neglected as long as the distance between the source and the measurement location is greater than approximately 10 times the height of the flow obstructions. This study shows that the bLS model has the potential to provide accurate discrete emission rates from multiple on-farm emissions of gases provided that certain conditions are met. PMID:19044157

  2. EMISSIONS FORECASTS FOR INDUSTRIAL PROCESS SOURCES

    EPA Science Inventory

    The report gives national and regional air emissions forecasts from several sulfur oxide and nitrogen oxide (SOx and NOx) emissions control Process Model Projection Technique (PROMPT) test runs. PROMPT, one of a number of National Acid Precipitation Assessment Program emission fo...

  3. Study of acoustic emission sources and signals

    NASA Astrophysics Data System (ADS)

    Pumarega, M. I. López; Armeite, M.; Oliveto, M. E.; Piotrkowski, R.; Ruzzante, J. E.

    2002-05-01

    Methods of acoustic emission (AE) signal analysis give information about material conditions, since AE generated in stressed solids can be used to indicate cracks and defect positions so as their damaging potential. We present a review of results of laboratory AE tests on metallic materials. Rings of seamless steel tubes, with and without oxide layers, were cut and then deformed by opening their ends. Seamless Zry-4 tubes were submitted to hydraulic stress tests until rupture with a purposely-constructed hydraulic system. In burst type signals, their parameters, Amplitude (A), Duration (D) and Risetime (R), were statistically studied. Amplitudes were found to follow the Log-normal distribution. This led to infer that the detected AE signal, is the complex consequence of a great number of random independent sources, which individual effects are linked. We could show, using cluster analysis for A, D and R mean values, with 5 clusters, coincidence between the clusters and the test types. A slight linear correlation was obtained for the parameters A and D. The arrival time of the AE signals was also studied, which conducted to discussing Poisson and Polya processes. The digitized signals were studied as (1/f)β noises. The general results are coherent if we consider the AE phenomena in the frame of Self Organized Criticality theory.

  4. AUTOMOTIVE HYDROCARBON EMISSION PATTERNS AND THE MEASUREMENT OF NONMETHANE HYDROCARBON EMISSION RATES

    EPA Science Inventory

    The advent of emission control technology has resulted in significant changes in both the total mass and detailed patterns of hydrocarbons emitted from automobiles. Emission rates of 56 hydrocarbons from 22 motor vehicles, including catalyst and noncatalyst configurations, were d...

  5. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  6. Calculated emission rates for barium releases in space

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1989-01-01

    The optical emissions from barium releases in space are caused by resonance and fluorescent scattering of sunlight. Emission rates for the dominant ion and neutral lines are calculated assuming the release to be optically thin and the barium to be in radiative equilibrium with the solar radiation. The solar spectrum has deep Fraunhofer absorption lines at the primary barium ion resonances. A velocity component toward or away from the sun will Doppler shift the emission lines relative to the absorption lines and the emission rates will increase many-fold over the rest value. The Doppler brightening is important in shaped charge or satellite releases where the barium is injected at high velocities. Emission rates as a function of velocity are calculated for the 4554, 4934, 5854, 6142 and 6497 A ion emission lines and the dominant neutral line at 5535 A. Results are presented for injection parallel to the ambient magnetic field, B, and for injection at an angle to B.

  7. RESEARCH ON EMISSIONS AND MITIGATION OF POP'S FROM COMBUSTION SOURCES

    EPA Science Inventory

    Chapter summarizes EPA's research on emissions and control of persistent organic pollutants (POPS) from combustion sources, with emphasis on source characterization and measurement, formation and destruction mechanisms, formation prevention, and flue gas cleaning. Laboratory exp...

  8. RESEARCH AREA -- MOBILE SOURCE EMISSIONS (EMISSIONS CHARACTERIZATION AND PREVENTION BRANCH, APPCD, NRMRL)

    EPA Science Inventory

    The objective of this program is to characterize mobile source emissions which are one of the largest sources of tropospheric ozone precursor emissions (CO, NOx, and volotile organic compounds) in the U.S. The research objective of the Emissions Characterization and Prevention Br...

  9. Emission of gravitational radiation from ultrarelativistic sources

    NASA Astrophysics Data System (ADS)

    Segalis, Ehud B.; Ori, Amos

    2001-09-01

    Recent observations suggest that blobs of matter are ejected with ultrarelativistic speeds in various astrophysical phenomena such as supernova explosions, quasars, and microquasars. In this paper we analyze the gravitational radiation emitted when such an ultrarelativistic blob is ejected from a massive object. We express the gravitational wave by the metric perturbation in the transverse-traceless gauge, and calculate its amplitude and angular dependence. We find that in the ultrarelativistic limit the gravitational wave has a wide angular distribution, like 1+cos θ. The typical burst's frequency is Doppler shifted, with the blueshift factor being strongly beamed in the forward direction. As a consequence, the energy flux carried by the gravitational radiation is beamed. In the second part of the paper we estimate the anticipated detection rate of such bursts by a gravitational-wave detector, for blobs ejected in supernova explosions. Dar and De Rujula recently proposed that ultrarelativistic blobs ejected from the central core in supernova explosions constitute the source of gamma-ray bursts. Substituting the most likely values of the parameters as suggested by their model, we obtain an estimated detection rate of about 1 per year by the advanced LIGO-II detector.

  10. Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry.

    PubMed

    Groth, Angela; Maurer, Claudia; Reiser, Martin; Kranert, Martin

    2015-02-01

    The aim of the work was to establish a method for emission control of biogas plants especially the observation of fugitive methane emissions. The used method is in a developmental stage but the topic is crucial to environmental and economic issues. A remote sensing measurement method was adopted to determine methane emission rates of a biogas plant in Rhineland-Palatinate, Germany. An inverse dispersion model was used to deduce emission rates. This technique required one concentration measurement with an open path tunable diode laser absorption spectrometer (TDLAS) downwind and upwind the source and basic wind information, like wind speed and direction. Different operating conditions of the biogas plant occurring on the measuring day (December 2013) could be represented roughly in the results. During undisturbed operational modes the methane emission rate averaged 2.8 g/s, which corresponds to 4% of the methane gas production rate of the biogas plant. PMID:25446786

  11. Dust from southern Africa: rates of emission and biogeochemical properties

    NASA Astrophysics Data System (ADS)

    Bhattachan, A.; D'Odorico, P.; Zobeck, T. M.; Okin, G. S.; Dintwe, K.

    2012-12-01

    The stabilized linear dunefields in the southern Kalahari show signs of reactivation due to reduced vegetation cover owing to drought and/or overgrazing. It has been demonstrated with a laboratory dust generator that the southern Kalahari soils are good emitters of dust and that large-scale dune reactivation can potentially make the region an important dust source in the relatively low-dust Southern Hemisphere. We show that emergence of the southern Kalahari as a new dust source may affect ocean biogeochemistry as the soils are rich in soluble iron and the dust from the southern Kalahari commonly reaches the Southern Ocean. We investigate the biogeochemical properties of the fine fraction of soil from the Kalahari dunes and compare them to those of currently active dust sources such as the Makgadikgadi and the Etosha pans as well as other smaller pans in the region. Using field measurements of sediment fluxes and satellite images, we calculate the rates of dust emission from the southern Kalahari under different land cover scenarios. To assess the reversibility of dune reactivation in the southern Kalahari, we investigate the resilience of dunefield vegetation by looking at changes in soil nutrients, fine soil fractions, and seed bank in areas affected by intense denudation.

  12. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  13. Source localization of Jupiter's Io dependent radio emissions

    NASA Technical Reports Server (NTRS)

    Aubier, Monique G.; Genova, Francoise; Calvert, Wynne

    1988-01-01

    The peak frequencies of the Io-dependent part of the Jovian emissions are compared with the surface gyrofrequency determined from Jovian magnetic models in order to localize the source of Jovian radio emissions. The bulk of the Io-controlled emissions was found to be delayed by up to 70 deg of equatorial longitude from the predicted instantaneous position of the Io flux tube, with the L and S emissions both displaying this same unexpected behavior. It is suggested that the source of these emissions is delayed substantially with respect to Io either as an Alfven-wave delay or because of errors in the magnetic field models.

  14. Locating and estimating air emissions from sources of nickel

    SciTech Connect

    Not Available

    1984-03-01

    To assist groups interested in inventorying air emissions of various potentially toxic substances, EPA is preparing a series of documents such as this to compile available information on sources and emissions of these substances. This document deals specifically with nickel. Its intended audience includes Federal, State and local air pollution personnel and others interested in locating potential emitters of nickel and in making gross estimates of air emissions therefrom. This document presents information on (1) the types of sources that may emit nickel, (2) process variations and release points that may be expected within these sources, and (3) available emissions information indicating the potential for nickel release into the air from each operation.

  15. 40 CFR 62.4622 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission inventories, source surveillance, reports. 62.4622 Section 62.4622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) § 62.4622 Emission inventories, source surveillance, reports. (a) The requirements of § 60.25(a)...

  16. 40 CFR 62.4622 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Emission inventories, source surveillance, reports. 62.4622 Section 62.4622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) § 62.4622 Emission inventories, source surveillance, reports. (a) The requirements of § 60.25(a)...

  17. 40 CFR 62.4622 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Emission inventories, source surveillance, reports. 62.4622 Section 62.4622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) § 62.4622 Emission inventories, source surveillance, reports. (a) The requirements of § 60.25(a)...

  18. REVIEW OF INDOOR EMISSION SOURCE MODELS--PART 1. OVERVIEW

    EPA Science Inventory

    Indoor emission source models are mainly used as a component in indoor air quality (IAQ) and exposure modeling. They are also widely used to interpret the experimental data obtained from environmental chambers and buildings. This paper compiles 46 indoor emission source models fo...

  19. 40 CFR 60.25 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electronic documents shall comply with the requirements of 40 CFR part 3—(Electronic reporting). (2) Periodic... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission inventories, source... State Plans for Designated Facilities § 60.25 Emission inventories, source surveillance, reports....

  20. 40 CFR 62.4622 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall require the owner or operator of any such source to submit information within 30 days on the nature and amounts of emissions from such source and any other information as may be deemed necessary by... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission inventories,...

  1. 40 CFR 60.25 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electronic documents shall comply with the requirements of 40 CFR part 3—(Electronic reporting). (2) Periodic... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission inventories, source... State Plans for Designated Facilities § 60.25 Emission inventories, source surveillance, reports....

  2. 40 CFR 63.843 - Emission limits for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Emission limits for existing sources. 63.843 Section 63.843 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  3. 40 CFR 63.843 - Emission limits for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Emission limits for existing sources. 63.843 Section 63.843 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  4. 40 CFR 63.843 - Emission limits for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Emission limits for existing sources. 63.843 Section 63.843 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  5. Area Source Emission Measurements Using EPA OTM 10

    EPA Science Inventory

    Measurement of air pollutant emissions from area and non-point sources is an emerging environmental concern. Due to the spatial extent and non-homogenous nature of these sources, assessment of fugitive emissions using point sampling techniques can be difficult. To help address th...

  6. Source sampling of particulate matter emissions from cotton harvesting - System field testing and emission factor development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission factors are used in the air pollution regulatory process to quantify the mass of pollutants emitted from a source. Accurate emission factors must be used in the air pollution regulatory process to ensure fair and appropriate regulation for all sources. Agricultural sources, including cotton...

  7. Dry Sources of Plume Emissions on Enceladus

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2009-12-01

    rapidly frozen early oceanic water. A lack of highly saline particles in E ring that are expected to form due to significant evaporation of an aqueous reservoir also argues for dry sources. The E-ring grains [1,3] may represent neither thick salt deposits at the core-ice boundary nor brines that may exist at that boundary today [5]. A low upper limit for atomic Na content at Enceladus [6] is consistent with Na emission in salt particles from dry sources. A low (far from eutectic) NH3/H2O ratio in plumes [2] implies dry sources as well. If present, primary species (e.g. NH3, HCN) in plums [2] and Mg silicates in E-ring particles [3] could originate from unmelted fragments of sunken primordial crust that have been incorporated into the formed icy shell. The structural heterogeneity of current icy shell may account for the chemical diversity of gases [2] and solids [1,3] emitted from Enceladus. Refs.: [1] Portberg F. et al. (2009) Nature 459, 1098-1101. [2] Waite J. et al. et al. (2009) Nature 460, 487-490. [3] Postberg F. et al. (2008) Icarus 193, 438-454. [4] Schubert G. et al. (2007) Icarus 188, 335-345. [5] Zolotov M. (2007) GRL 34, L23203. [6] Schneider N. et al. (2009) Nature 459, 1098-1101.

  8. Registration for the Hanford Site: Sources of radioactive emissions

    SciTech Connect

    Silvia, M.J.

    1993-04-01

    This Registration Application serves to renew the registration for all Hanford Site sources of radioactive air emissions routinely reported to the State of Washington Department of Health (DOH). The current registration expires on August 15, 1993. The Application is submitted pursuant to the Washington Administrative Code (WAC) Chapter 246--247, and is consistent with guidance provided by DOH for renewal. The Application subdivides the Hanford Site into six major production, processing or research areas. Those six areas are in the 100 Area, 200 East Area, 200 West Area, 300 Area, 400 Area, and 600 Area. Each major group of point sources within the six areas listed above is represented by a Source Registration for Radioactive Air Emissions form. Annual emissions. for the sources are listed in the ``Radionuclide Air Emissions Report for the Hanford Site,`` published annually. It is a requirement that the following Statement of Compliance be provided: ``The radioactive air emissions from the above sources do meet the emissions standards contained in Chapter 173-480-040 WAC, Ambient Air Quality Standards and Emissions Limits for Radionuclides. As the Statement of Compliance pertains to this submittal, the phrase ``above sources`` is to be understood as meaning the combined air emissions from all sources registered by this submittal.

  9. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration adjustment... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to...

  10. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  11. EFFECTS OF VENTILATION RATES AND PRODUCT LOADING ON ORGANIC EMISSION RATES FROM PARTICLEBOARD

    EPA Science Inventory

    The paper discusses the effects of ventilation rates and product loading on organic emission rates from particleboard. Recently, investigators have confirmed the presence of varied and significant amounts of organic compounds in indoor environment, including compounds known or su...

  12. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  13. Intake fraction variability between air pollution emission sources inside an urban area.

    PubMed

    Tainio, Marko; Holnicki, Piotr; Loh, Miranda M; Nahorski, Zbigniew

    2014-11-01

    The cost-effective mitigation of adverse health effects caused by air pollution requires information on the contribution of different emission sources to exposure. In urban areas the exposure potential of different sources may vary significantly depending on emission height, population density, and other factors. In this study, we quantified this intraurban variability by predicting intake fraction (iF) for 3,066 emission sources in Warsaw, Poland. iF describes the fraction of the pollutant that is inhaled by people in the study area. We considered the following seven pollutants: particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), benzo[a] pyrene (BaP), nickel (Ni), cadmium (Cd), and lead (Pb). Emissions for these pollutants were grouped into four emission source categories (Mobile, Area, High Point, and Other Point sources). The dispersion of the pollutants was predicted with the CALPUFF dispersion model using the year 2005 emission rate data and meteorological records. The resulting annual average concentrations were combined with population data to predict the contribution of each individual source to population exposure. The iFs for different pollutant-source category combinations varied between 51 per million (PM from Mobile sources) and 0.013 per million (sulfate PM from High Point sources). The intraurban iF variability for Mobile sources primary PM emission was from 4 per million to 100 per million with the emission-weighted iF of 44 per million. These results propose that exposure due to intraurban air pollution emissions could be decreased more effectively by specifically targeting sources with high exposure potency rather than all sources. PMID:24913007

  14. Spectra and rates of bremsstrahlung neutrino emission in stars

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Qian, Yong-Zhong

    2016-08-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average ν¯e and ν¯x(x =μ ,τ ) energies, for this process with those for e± pair annihilation, plasmon decay, and photoneutrino emission over a wide range of temperature and density. We also compare our updated energy loss rates for the above thermal neutrino emission processes with the fitting formulas widely used in stellar evolution models and determine the temperature and density domain in which each process dominates. We discuss the implications of our results for detection of ν¯e from massive stars during their presupernova evolution and find that pair annihilation makes the predominant contribution to the signal from the thermal emission processes.

  15. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that is a major source must not discharge or cause to be discharged to the atmosphere: (1) Emissions in... discharged to the atmosphere emissions in excess of: (1) 0.40 kilogram (kg) of THC, as propane, per megagram.../decoating kiln must not discharge or cause to be discharged to the atmosphere emissions in excess of: (i)...

  16. The Equivalence of Rater Sources on Job Analysis Ratings.

    ERIC Educational Resources Information Center

    Camara, Wayne J.

    Previous efforts to investigate the equivalence of rating sources for job analysis ratings have reported conflicting results. In the present research, correlational and generalizability analyses were conducted to examine the equivalency of rating sources for over 70 state civil service job classifications. Incumbent and supervisor ratings (N=697)…

  17. User access to the MAP3S source emissions inventory

    SciTech Connect

    Benkovitz, C M; Evans, V A

    1981-03-01

    An emissions inventory based on data obtained from the National Emissions Data System (NEDS), the Federal Power Commission (FPC), Environment Canada, and other agencies was compiled by the MAP3S Central Data Coordination at Brookhaven National Laboratory. Pertinent data was brought together, collated, and loaded into computerized data bases using SYSTEM 2000 as the data base management system. These data bases are available to interested users for interactive scanning or batch retrieval. The emissions inventory consists of two distinct sections: a point source inventory and an area source inventory. The point source inventory covers the continental US and Canada; information is kept at the individual source level. The area source inventory covers the continental US; information is kept on a county basis. Work is in progress to obtain a Canadian area source inventory based on census divisions.

  18. Comparison of two dynamic measurement methods of odor and odorant emission rates from freshly dewatered biosolids.

    PubMed

    Wang, Tingting; Sattayatewa, Chakkrid; Venkatesan, Dhesikan; Noll, Kenneth E; Pagilla, Krishna R; Moschandreas, Demetrios J

    2011-06-01

    Odor and odorant emission rates from freshly dewatered biosolids in a dewatering building of a Water Reclamation Plant (WRP) are measured using the EPA flux chamber and wind tunnel methods. Experimental results are compared statistically to test whether the two methods result in similar emission rates when experiments are performed under field conditions. To the best of our knowledge the literature is void of studies comparing the two methods indoors. In this paper the two methods are compared indoors where the wind velocity and air exchange rate are pertinent field conditions and can be measured. The difference between emission rates of odor and hydrogen sulfide measured with the two methods is not statistically significant (P values: 0.505 for odor, 0.130 for H(2)S). It is concluded that both methods can be used to estimate source emissions but selection of the most effective or efficient method depends on prevailing environmental conditions. The wind tunnel is appropriate for outdoor environments where wind effects on source emissions are more pronounced than indoors. The EPA flux chamber depends on the air exchange rate of the chamber, which simulates corresponding conditions of the indoor environment under investigation and is recommended for estimation of indoor pollution sources. PMID:21552636

  19. Volatile organic compound concentrations and emission rates in new manufactured and site-built houses.

    PubMed

    Hodgson, A T; Rudd, A F; Beal, D; Chandra, S

    2000-09-01

    Concentrations of 54 volatile organic compounds (VOCs) and ventilation rates were measured in four new manufactured houses over 2-9.5 months following installation and in seven new site-built houses 1-2 months after completion. The houses were in four projects located in hot-humid and mixed-humid climates. They were finished and operational, but unoccupied. Ventilation rates ranged from 0.14-0.78 h-1. Several of the site-built houses had ventilation rates below the ASHRAE recommended value. In both manufactured and site-built houses, the predominant airborne compounds were alpha-pinene, formaldehyde, hexanal, and acetic acid. Formaldehyde concentrations were below or near 50 ppb with a geometric mean value for all houses of 40 ppb. Similarities in the types of VOCs and in VOC concentrations indicated that indoor air quality in the houses was impacted by the same or similar sources. Major identified sources included plywood flooring, latex paint and sheet vinyl flooring. One site-built house was operated at ventilation rates of 0.14 and 0.32 h-1. VOC emission rates calculated at the two conditions agreed within +/- 10% for the most volatile compounds. Generally, the ratios of emission rates at the low and high ventilation rates decreased with decreasing compound volatility. Changes in VOC emission rates in the manufactured houses over 2-9.5 months after installation varied by compound. Only several compounds showed a consistent decrease in emission rate over this period. PMID:10979199

  20. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources. (a... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing affected...

  1. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources. (a... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing affected...

  2. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources. (a... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing affected...

  3. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources. (a... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing affected...

  4. MEASUREMENT OF PM-10 EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Measurements of PM-10 particulate matter emissions from stationary sources were performed using two sampling approaches currently under development. PM-10 particulate matter is defined as all particles nominally 10 micrometers aerodynamic diameter and smaller. Aerodynamic inertia...

  5. DEVELOPMENT OF A MONITOR FOR HCN IN MOBILE SOURCE EMISSIONS

    EPA Science Inventory

    Three real-time monitors for measurement of HCN concentrations in mobile source emissions have been designed, built, tested, and delivered to the Environmental Protection Agency (EPA). The important design parameters for these identical instruments were determined during the firs...

  6. SOURCES OF ORGANIC AEROSOL: SEMIVOLATILE EMISSIONS AND PHOTOCHEMICAL AGING

    EPA Science Inventory

    The proposed research integrates emissions testing, smog chamber experiments, and regional chemical transport models (CTMs) to investigate the sources of organic aerosol in urban and regional environments.

  7. METHOD FOR MEASURING CARBON FIBER EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Carbon fibers are highly conductive, lightweight and of small dimensions. When released as emissions from production, manufacturing, processing and disposal sources they may become airborne and disperse over wide areas. If they settle onto electronic or electrical components they...

  8. AIR POLLUTION: GROUND-BASED SENSING OF SOURCE EMISSIONS

    EPA Science Inventory

    Some types of gaseous pollution sources, particularly extended area industrial complexes and those producing hot combustion products, cannot be monitored adequately with conventional point sampling methods. To aid in characterizing emissions from and in developing remote sensing ...

  9. IRON AND STEEL PLANT OPEN SOURCE FUGITIVE EMISSION CONTROL EVALUATION

    EPA Science Inventory

    The report gives results of measurements of the control efficiency of various techniques used to mitigate emissions from open dust sources in the iron and steel industry. Of estimated emissions of 88,800 tons/year suspended particulate in 1978 (based on a 10-plant survey), 70, 13...

  10. IMPACT OF A PRIMARY SULFATE EMISSION SOURCE ON AIR QUALITY

    EPA Science Inventory

    A one-month study was carried out at an isolated oil-fired power plant in New York State to assess the impact of primary sulfate emissions on air quality. Emissions of total sulfate from the source varied from 22 kg/hr to 82 kg/hr per boiler with the sulfuric acid concentration a...

  11. Are mercury emissions from geologic sources significant? A status report.

    PubMed

    Gustin, Mae Sexauer

    2003-03-20

    Geologic sources of atmospheric mercury include areas of fossil and current geothermal activity, recent volcanic activity, precious and base metal deposits, and organic rich sedimentary rocks. Early estimates of emissions from these sources were not based on measurements of mercury fluxes but implied based on the difference between emissions from anthropogenic point sources and wet/dry deposition estimates. In the past approximately 7 years significant progress has been made in development of methods for the measurement of mercury emissions, definition of those parameters most important in controlling emissions and scaling up emissions from natural source areas. This paper summarizes the work done on scaling of emissions from discrete areas of natural enrichment and from the State of Nevada, which is situated within a global belt of mercury enrichment. Preliminary data indicate that elemental mercury is the predominant (>95%) form of mercury being emitted from these sources. Scaling results suggest that the value used in early models to represent emissions from global mercuriferous belts is too low by at least three times. PMID:12663180

  12. Ammonia emissions from non-agricultural sources in the UK

    NASA Astrophysics Data System (ADS)

    Sutton, M. A.; Dragosits, U.; Tang, Y. S.; Fowler, D.

    A detailed literature review has been undertaken of the magnitude of non-agricultural sources of ammonia (NH 3) in the United Kingdom. Key elements of the work included estimation of nitrogen (N) excreted by different sources (birds, animals, babies, human sweat), review of miscellaneous combustion sources, as well as identification of industrial sources and use of NH 3 as a solvent. Overall the total non-agricultural emission of NH 3 from the UK in 1996 is estimated here as 54 (27-106) kt NH 3-N yr -1, although this includes 11 (6-23) kt yr -1 from agriculture related sources (sewage sludge spreading, biomass burning and agro-industry). Compared with previous estimates for 1990, component source magnitudes have changed both because of revised average emissions per source unit (emission factors) and changes in the source activity between 1990 and 1996. Sources with larger average emission factors than before include horses, wild animals and sea bird colonies, industry, sugar beet processing, household products and non-agricultural fertilizer use, with the last three sources being included for the first time. Sources with smaller emission factors than before include: land spreading of sewage sludge, direct human emissions (sweat, breath, smoking, infants), pets (cats and dogs) and fertilizer manufacture. Between 1990 and 1996 source activities increased for sewage spreading (due to reduced dumping at sea) and transport (due to increased use of catalytic converters), but decreased for coal combustion. Combined with the current UK estimates of agricultural NH 3 emissions of 229 kt N yr -1 (1996), total UK NH 3 emissions are estimated at 283 kt N yr -1. Allowing for an import of reduced nitrogen (NH x) of 30 kt N yr -1 and deposition of 230 kt N yr -1, these figures imply an export of 83 kt NH 3-N yr -1. Although export is larger than previously estimated, due to the larger contribution of non-agricultural NH 3 emissions, it is still insufficient to balance the UK

  13. Emissions of ozone precursors from stationary sources:. a critical review

    NASA Astrophysics Data System (ADS)

    Placet, M.; Mann, C. O.; Gilbert, R. O.; Niefer, M. J.

    This paper discusses and critiques methods used to estimate emissions of, and create both aggregate and detailed modeling inventories for, nitrogen oxides (NO x), volatile organic compounds (VOC) and carbon monoxide (CO), the main pollutants involved in ozone formation. Emissions of sulfur dioxide (SO 2) and methods to project emissions into the future are also briefly discussed. Many improvements have been made in emissions inventories over the past decade. For example, the required use of continuous emission monitors (CEMS) has produced site-specific emissions estimates from almost all US electric utility power plants, which are the major stationary source of NO x. However, many data quality issues remain. For example, the overall quality of standardized emission factors is very poor. In addition, uncertainties have been introduced by use of simplistic assumptions on the existent level of emission control. Even the use of CEMS has not eliminated uncertainty in emissions from power plants, because methods to deal with missing data can introduce bias. Emissions data for Mexico are not comprehensive, making ozone modeling in US border regions difficult. Data for VOC speciation is outdated, and crude data is often used to disaggregate emissions to the fine level of spatial and temporal detail needed for atmospheric modeling. It is difficult to make general statements about the importance of each of these problems, because there are no reliable estimates of the overall uncertainty of emissions values, and because the impact of emission inventory errors is very site specific. The Emissions Inventory Improvement Program (EIIP) initiated by the US Environmental Protection Agency promises to enhance the quality of future inventories, mainly through communication of best practices among state agencies. Further inventory improvement efforts must be focused on problems that most strongly influence poor prediction of ozone concentrations. Targets for improvement could be

  14. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  15. 75 FR 63259 - Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...This action proposes how EPA will address Clean Air Act requirements to establish new source performance standards for new units and emission guidelines for existing units for specific categories of solid waste incineration units. In previous actions, EPA has promulgated new source performance standards and emission guidelines for large municipal waste combustion units, small municipal waste......

  16. Locating and quantifying gas emission sources using remotely obtained concentration data

    NASA Astrophysics Data System (ADS)

    Hirst, Bill; Jonathan, Philip; González del Cueto, Fernando; Randell, David; Kosut, Oliver

    2013-08-01

    We describe a method for detecting, locating and quantifying sources of gas emissions to the atmosphere using remotely obtained gas concentration data; the method is applicable to gases of environmental concern. We demonstrate its performance using methane data collected from aircraft. Atmospheric point concentration measurements are modelled as the sum of a spatially and temporally smooth atmospheric background concentration, augmented by concentrations due to local sources. We model source emission rates with a Gaussian mixture model and use a Markov random field to represent the atmospheric background concentration component of the measurements. A Gaussian plume atmospheric eddy dispersion model represents gas dispersion between sources and measurement locations. Initial point estimates of background concentrations and source emission rates are obtained using mixed ℓ2 - ℓ1 optimisation over a discretised grid of potential source locations. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated values and uncertainties for the number, emission rates and locations of sources unconstrained by a grid. Source area, atmospheric background concentrations and other model parameters, including plume model spreading and Lagrangian turbulence time scale, are also estimated. We investigate the performance of the approach first using a synthetic problem, then apply the method to real airborne data from a 1600 km2 area containing two landfills, then a 225 km2 area containing a gas flare stack.

  17. The sources of electrically evoked otoacoustic emissions.

    PubMed

    Zou, Yuan; Zheng, Jiefu; Nuttall, Alfred L; Ren, Tianying

    2003-06-01

    It has been hypothesized that electrically evoked otoacoustic emissions (EEOAEs) are generated at a site on the basilar membrane near the stimulating electrode. From this original site, the energy propagates towards the oval window, giving rise to the short time delay component (SDC) of EEOAEs. The energy also propagates towards its characteristic frequency (CF) location, and the emission reflected from the CF location forms a long time delay component (LDC). This hypothesis is directly tested in this study by using an acoustical swept tone to modulate the EEOAEs generated by alternating electric current delivered to the round window niche in gerbils. An acoustical tone with a high sound pressure level or a small frequency separation from the EEOAE frequency induced a strong suppression of the EEOAE LDC, but no obvious suppression of the SDC. When the electrical current frequency was fixed, the swept acoustic tone induced a slight suppression, an enhanced peak, and a strong suppression of EEOAEs as the acoustic frequency was swept from the low to high frequency. These data indicate that the electrical current induced cochlear partition vibration near the stimulating electrode. One part of this energy propagates directly to the ear canal, forming the SDC, and the other part propagates to its CF place and is reflected from there to the ear canal, forming the LDC. PMID:12782357

  18. Source Emissions in Multipollutant Air Quality Management

    EPA Science Inventory

    Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...

  19. Monoterpene emission rate measurements from a Monterey pine

    NASA Astrophysics Data System (ADS)

    Juuti, Soile; Arey, Janet; Atkinson, Roger

    1990-05-01

    The monoterpenes emitted from a Monterey pine (Pinus radiata) were investigated using a dynamic flow-through enclosure technique. The monoterpenes identified and quantified were α- and β-pinene, d-limonene + β-phellandrene, myrcene, camphene and Δ3-carene, with α- and β-pinene accounting for over 80% of the total monoterpene emissions. The monoterpene emission rate increased with temperature, in good agreement with previous data for other coniferous species. The absence of added CO2 to the synthetic air flow stream, exposure to elevated levels (300-500 ppb mixing ratio) of O3 for 3-4 hours, and increased air movement within the enclosure had no observable effect on the monoterpene emission rate at a given temperature. In contrast, "rough handling" of the pine during the sampling protocol resulted in increases in the monoterpene emission rate by factors of 10-50. These results will be useful to those designing enclosure sampling protocols for the determination of the emission rates of biogenic organic compounds from vegetation.

  20. Monoterpene emission rate measurements from a Monterey pine

    SciTech Connect

    Juuti, S. ); Arey, J.; Atkinson, R. )

    1990-05-20

    The monoterpenes emitted from a Monterey pine (pinus radiata) were investigated using a dynamic flow-through enclosure technique. The monoterpenes identified and quantified were {alpha}- and {beta}-pinene, d-limonene + {beta} phellandrene, myrcene, camphene and {Delta}{sup 3}-carene, with {alpha}- and {beta}-pinene accounting for over 80% of the total monoterpene emissions. The monoterpene emission rate increased with temperature, in good agreement with previous data for other coniferous species. The absence of added CO{sub 2} to the synthetic air flow stream, exposure to elevated levels (300-500 ppb mixing ratio) of O{sub 3} for 3-4 hours, and increased air movement within the enclosure, had no observable effect on the monoterpene emission rate at a given temperature. In contrast, rough handling of the pine during the sampling protocol resulted in increases in the monoterpene emission rate by factors of 10-50. These results will be useful to those designing enclosure sampling protocols for the determination of the emission rates of biogenic organic compounds from vegetation.

  1. TRANSIT BUS LOAD-BASED MODAL EMISSION RATE MODEL DEVELOPMENT

    EPA Science Inventory

    Heavy-duty diesel vehicles (HDDVs) operations are a major source of oxides of nitrogen (NOx) and particulate matter (PM) emissions in metropolitan area nationwide. Although HD¬DVs constitute a small portion of the on-road fleet, they typically contribute more than 45% of NOx and ...

  2. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  3. Comparison of emission rate values for odour and odorous chemicals derived from two sampling devices

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Ayoko, G. A.

    Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device - either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m -2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1. These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.

  4. Effect of low emission sources on air quality in Cracow

    SciTech Connect

    Nedoma, J.

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  5. ENVIRONMENTAL TOBACCO SMOKE: MUTAGENIC EMISSION RATES AND THEIR RELATIONSHIP TO OTHER EMISSION FACTORS

    EPA Science Inventory

    The objective of this study was to evaluate the emission rates and exposure concentrations of mutagens, nicotine, and particles from cigarettes. Studies were conducted under controlled laboratory and chamber conditions as well as in personal residences. The mutagenicity of enviro...

  6. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  7. Aerostat-Lofted Instrument Platform and Sampling Method for Determination of Emissions from Open Area Sources

    EPA Science Inventory

    Sampling emissions from open area sources, particularly sources of open burning, is difficult due to fast dilution of emissions and safety concerns for personnel. Representative emission samples can be difficult to obtain with flaming and explosive sources since personnel safety ...

  8. Noise source emissions, Davis Canyon site, Utah

    SciTech Connect

    Not Available

    1987-07-01

    This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompass all phases of activity, from site preparation through the exploratory shaft facility (ESF) and repository construction and operation, and decommissioning. Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. The data for the construction of transportation corridors were provided by Bechtel National, Inc. Use of the quietest equipment available within the proven state of the art was assumed, as was the use of acoustical enclosures to the extent practical. The programmatic assumptions are based on the noise-sensitive nature of the Canyonlands National Park. Another feature of the data is the use of 1/3-octave-band rather than 1/1-octave-band resolution of emission spectra. This was done to permit evaluation of audibility of sounds reaching the park.

  9. 40 CFR 62.08 - Emission inventories and source surveillance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surveillance. 62.08 Section 62.08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... General Provisions § 62.08 Emission inventories and source surveillance. (a) Each subpart identifies the plan provisions for source surveillance which are disapproved, and sets forth the...

  10. 40 CFR 62.08 - Emission inventories and source surveillance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surveillance. 62.08 Section 62.08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... General Provisions § 62.08 Emission inventories and source surveillance. (a) Each subpart identifies the plan provisions for source surveillance which are disapproved, and sets forth the...

  11. 40 CFR 62.08 - Emission inventories and source surveillance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surveillance. 62.08 Section 62.08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... General Provisions § 62.08 Emission inventories and source surveillance. (a) Each subpart identifies the plan provisions for source surveillance which are disapproved, and sets forth the...

  12. WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY

    EPA Science Inventory

    AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...

  13. SOURCES, EMISSION AND EXPOSURE TO TRICHLOROETHYLENE (TCE) AND RELATED CHEMICALS

    EPA Science Inventory

    This report documents the sources, emission, environmental fate and exposures for TCE, some of its metabolites, and some other chemicals known to produce identical metabolites. The major findings for TCE are:


    1. The primary sources releasing TCE to the environment ...

    2. X-Ray Emission from Compact Sources

      SciTech Connect

      Cominsky, L

      2004-03-23

      This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

    3. Mass flow rate measurement in abrasive jets using acoustic emission

      NASA Astrophysics Data System (ADS)

      Ivantsiv, V.; Spelt, J. K.; Papini, M.

      2009-09-01

      The repeatability of abrasive jet machining operations is presently limited by fluctuations in the mass flow rate due to powder compaction, stratification and humidity effects. It was found that the abrasive mass flow rate for a typical abrasive jet micromachining setup could be determined by using data from the acoustic emission of the abrasive jet impacting a flat plate. Two methods for extracting the mass flow rate from the acoustic emission were developed and compared. In the first method, the number of particle impacts per unit time was determined by a direct count of peaks in the acoustic emission signal. The second method utilizes the power spectrum density of the acoustic emission in a specific frequency range. Both measures were found to correlate strongly with the mass flow rate measured by weighing samples of blasted powder for controlled time periods. It was found that the peak count method permits measurement of the average frequency of the impacts and the mass flow rate, but can only be applied to flow rates in which the impact frequency is approximately one order of magnitude less than the frequency of the target plate ringing. The power spectrum density method of signal processing is applicable to relatively fine powders and to flow rates at which the average impact frequency is of the same order of magnitude as that of the ringing due to the impact. The acoustic emission technique can be used to monitor particle flow variations over a wide range of time periods and provides a straightforward and accurate means of process control.

    4. Quantification of Methane Source Locations and Emissions in AN Urban Setting

      NASA Astrophysics Data System (ADS)

      Crosson, E.; Richardson, S.; Tan, S. M.; Whetstone, J.; Bova, T.; Prasad, K. R.; Davis, K. J.; Phillips, N. G.; Turnbull, J. C.; Shepson, P. B.; Cambaliza, M. L.

      2011-12-01

      The regulation of methane emissions from urban sources such as landfills and waste-water treatment facilities is currently a highly debated topic in the US and in Europe. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of Methane (CH4) and in fact may be substantially higher than current inventory estimates(1). As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill and wastewater treatment facility owners, watchdog groups, and the governmental agencies seeking to evaluate or enforce regulations. In an attempt to identify major methane source locations and emissions in Boston, Indianapolis, and the Bay Area, systematic measurements of CH4 concentrations and meteorology data were made at street level using a vehicle mounted cavity ringdown analyzer. A number of discrete sources were detected at concentration levels in excess of 15 times background levels. Using Gaussian plume models as well as tomographic techniques, methane source locations and emission rates will be presented. In addition, flux chamber measurements of discrete sources such as those found in natural gas leaks will also be presented. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.

    5. Neptune's non-thermal radio emissions - Phenomenology and source locations

      NASA Technical Reports Server (NTRS)

      Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

      1992-01-01

      During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

    6. Particulate matter composition and emission rates from the disk incorporation of class B biosolids into soil

      NASA Astrophysics Data System (ADS)

      Paez-Rubio, Tania; Xin, Hua; Anderson, James; Peccia, Jordan

      Biosolids contain metal, synthetic organic compound, endotoxin, and pathogen concentrations that are greater than concentrations in the agricultural soils to which they are applied. Once applied, biosolids are incorporated into soils by disking and the aerosols produced during this process may pose an airborne toxicological and infectious health hazard to biosolids workers and nearby residents. Field studies at a Central Arizona biosolids land application site were conducted to characterize the physical, chemical, and biological content of the aerosols produced during biosolids disking and the content of bulk biosolids and soils from which the aerosols emanate. Arrayed samplers were used to estimate the vertical source aerosol concentration profile to enable plume height and associated source emission rate calculations. Source aerosol concentrations and calculated emission rates reveal that disking is a substantial source of biosolids-derived aerosols. The biosolids emission rate during disking ranged from 9.91 to 27.25 mg s -1 and was greater than previously measured emission rates produced during the spreading of dewatered biosolids or the spraying of liquid biosolids. Adding biosolids to dry soils increased the moisture content and reduced the total PM 10 emissions produced during disking by at least three times. The combination of bulk biosolids and aerosol measurements along with PM 10 concentrations provides a framework for estimating aerosol concentrations and emission rates by reconstruction. This framework serves to eliminate the difficulty and inherent limitations associated with monitoring low aerosol concentrations of toxic compounds and pathogens, and can promote an increased understanding of the associated biosolids aerosol health risks to workers and nearby residents.

    7. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part II: Correlated emission rates

      NASA Astrophysics Data System (ADS)

      Roumeliotis, Taylor S.; Dixon, Brad J.; Van Heyst, Bill J.

      2010-10-01

      Emission rates of ammonia, acid gases, inorganic aerosols, methane, and size fractionated particulate matter were measured from a commercial broiler facility. This paper discusses the statistically influential parameters on numerous pollutants' emission from a broiler chicken facility and generates emission correlations to fill data gaps and develop averaged emission factors. Live mass of the birds was commonly a significant variable to each pollutant's emission. Some variables significantly impacted the pollutants' emissions, such as litter moisture content, but were measured discretely and cannot be used for filling in data gaps. House parameter correlations were, therefore, developed using parameters measured at the facility, such as indoor temperature, relative humidity, and the live mass of the birds, and relied on the mutual behaviour of discretely measured explanatory parameters and continuously monitored confounding variables. The live mass and the difference in the indoor temperature and the house set-point temperature were the most significant variables in each pollutant's correlation. The correlations predicted each pollutants emission to within 20% (total mass basis) over most broiler production cycles. Their validation on independent datasets also successfully estimated the flocks' emissions to within 3%. Emission factors (EFs) were developed for methane, ammonia, and size fractionated particulate matter using measured data and correlated emissions to fill in data gaps. PM 10 (particulate matter ≤10 microns) EFs were estimated to be 4.6 and 5.9 g d -1 [Animal Unit, AU] -1 for five and six week production cycles, respectively. PM 2.5 (PM ≤ 2.5 microns) EFs were 0.8 and 1.4 g d -1 AU -1 for five and six week cycles, respectively. Ammonia and methane emission factors were estimated at 120.8 and 197.0 g d -1 AU -1, respectively for a five week production cycle.

    8. Rep-rate explosive whisker emission cathode investigations

      NASA Astrophysics Data System (ADS)

      Litz, Marc S.; Golden, Jeffry

      1994-05-01

      An experiment is underway to study the performance of several materials as field-emission cathodes for low voltage (rate. This provides a high average power (50 kW) test bed for the study. A comparison is made of cathodes fabricated from velvet, carbon, diamond coatings, niobium wire nanocomposite, and poly-crystalline tungsten. Surface emission is monitored by an array of Faraday cups. The `turn-on' time, uniformity of emission, and gap closure time are measured as a function of the spatially averaged, macroscopic electric field at the cathode. The carbon fiber cathode produces the largest current density and has the lowest threshold voltage for emission.

  1. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin.

    PubMed

    Lavoie, Tegan N; Shepson, Paul B; Cambaliza, Maria O L; Stirm, Brian H; Karion, Anna; Sweeney, Colm; Yacovitch, Tara I; Herndon, Scott C; Lan, Xin; Lyon, David

    2015-07-01

    We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total. PMID:26148549

  2. Dilepton and photon emission rates from a hadronic gas. II

    SciTech Connect

    Steele, J.V.; Yamagishi, H.; Zahed, I.

    1997-11-01

    We extend our recent analysis of the dilepton and photon emission rates to the case of finite temperature and baryon density, within the context of a density expansion. To leading order, the effects of the baryon density are assessed using data (photon emission) or constraints from broken chiral symmetry (dilepton emission). Next-to-leading-order effects are worked out, and their contribution qualitatively assessed. The opening of the {pi}N cut causes the photon rate to saturate the upper limits for the photon yield from WA80 for a nucleon density that just reaches the lower limits of the low mass dileptons seen at CERES. {copyright} {ital 1997} {ital The American Physical Society}

  3. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Krishna, Koduru Hari; De Luca, Antonio; Strangi, Giuseppe

    2014-01-01

    Hyperbolic metamaterial (HMM), a sub-wavelength periodic artificial structure with hyperbolic dispersion, can enhance the spontaneous emission of quantum emitters. Here, we demonstrate the large spontaneous emission rate enhancement of an organic dye placed in a grating coupled hyperbolic metamaterial (GCHMM). A two-dimensional (2D) silver diffraction grating coupled with an Ag/Al2O3 HMM shows 18-fold spontaneous emission decay rate enhancement of dye molecules with respect to the same HMM without grating. The experimental results are compared with analytical models and numerical simulations, which confirm that the observed enhancement of GCHMM is due to the outcoupling of non-radiative plasmonic modes as well as strong plasmon-exciton coupling in HMM via diffracting grating. PMID:25209102

  4. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  5. An inversion algorithm for determining area-source emissions from downwind concentration measurements.

    PubMed

    Lehning, M; Shonnard, D R; Chang, D P; Bell, R L

    1994-10-01

    Measuring emissions from nonuniform area sources, such as waste repository sites, has been a difficult problem. A simple but reliable method is not available. An objective method of inverting downwind concentration measurements, utilizing an assumed form of atmospheric dispersion to reconstruct total emission rate and distribution, is described in this study. The Gaussian dispersion model is compared to a more realistic model based on K-theory and similarity expressions. A sensitivity analysis is presented indicating the atmospheric conditions under which a successful application of the method could be anticipated. Field releases of sulfur hexafluoride (SF6) from a simulated area source in flat terrain were conducted to check the method, ability to reconstruct source distribution, and total emission rate. The sensitivity analysis and the field study confirm that a few ground-level concentration measurements and a simple determination of the atmospheric dispersion characteristics are sufficient, under neutral to stable conditions, to obtain the total emission rate accurately. Reconstruction of the spatial pattern of the source is possible by utilizing concentration information from samplers located on two separate ground-level receptor lines, if a shift in the wind direction occurs and if it can be assumed that the total emission rate is time invariant. A method of cross-checking the accuracy of the reconstruction, using a simultaneous tracer release, is presented. PMID:7812684

  6. EFFECT OF VENTILATION ON EMISSION RATES OF WOOD FINISHING MATERIALS

    EPA Science Inventory

    The paper gives results from EPA studies on the effect of ventilation (air changes per hour) and material loading on the emission rate for selected organics and total measured organics from three wood finishing materials (stain, polyurethane, and wax). The data are analyzed to sh...

  7. Control for NOx Emissions from Combustion Sources

    NASA Technical Reports Server (NTRS)

    PozodeFernandez, Maria E.; Collins, Michelle M.

    2000-01-01

    The Environmental Program Office at the Kennedy Space Center is interested in finding solutions and to promote research and development (R&D) that could contribute to solve the problems of air, soil, and groundwater contamination. This study is undertaken as part of NASA's environmental stewardship program. The objective of this study involves the removal of nitrogen oxides from the flue gases of the boilers at KSC using hydrogen peroxide. Phase 1 of this study have shown the potential of this process to be used as an alternative to the current methods of treatment used in the power industry. This report summarizes the research done during the ten-week summer program. During this period, support has been given to implement the modifications suggested for Phase 2 of the project, which focus on oxidation reactions carried at lower temperatures using an ultraviolet source. The redesign and assembly of the modifications for the scrubbing system was the main objective of this research.

  8. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antarctica

    NASA Astrophysics Data System (ADS)

    Kyle, Philip R.; Meeker, Kimberley; Finnegan, David

    1990-11-01

    SO2 emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO2 emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing particle and (Li-7)OH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. HCl and HF emissions in 1983 are inferred to be about 1200 and 500 Mg/day, respectively. Mt. Erebus has therefore been an important source of halogens to the Antarctic atmosphere and could be responsible for excess Cl found in central Antarctica snow.

  9. Acidifier application rate impacts on ammonia emissions from US roaster chicken houses

    NASA Astrophysics Data System (ADS)

    Shah, Sanjay B.; Grimes, Jesse L.; Oviedo-Rondón, Edgar O.; Westerman, Philip W.

    2014-08-01

    Due to its potential environmental and public health impacts, emissions of ammonia (NH3) as well as several other gases from US livestock farms may be regulated. Broiler houses are important sources of NH3 emissions. However, there are no emissions data from roaster (8-12 wk old broilers, ˜4 kg ea.) houses. Producers treat the litter in broiler houses with acidifiers, such as sodium bisulfate (SBS, NaHSO4) to reduce ammonia production and protect bird health. However, there is very little data on the effect of acidifiers, particularly at high application rates on ammonia emissions. The impact of different SBS application rates [High (0.95-1.46 kg m-2, whole house), Medium (0.73 kg m-2, whole house), Low (0.37-0.49 kg m-2, whole house), and Control (0.37-0.49 kg m-2, brood chamber)] on ammonia emissions was evaluated in commercial roaster houses over 22 months spanning eight flocks. Ammonia emission from each fan was measured with an acid scrubber that operated only when the fan operated. Emissions were calculated using >95% measured data with the rest being estimated using robust methods. Exhaust ammonia-N concentrations were inversely correlated with the SBS application rates. Emission rates on animal unit (AU, where 1 AU = 500 kg live-mass) basis (ER, g d-1 AU-1) were reduced by 27, 13, and 5%, respectively, in the High, Medium, and Low treatments vs. the Control treatment (mean: 100 g d-1 AU-1, range: 86-114 g d-1 AU-1). Emission rates for the Control treatment measured in this study on roasters were mostly higher than ERs in the literature. Differences in ERs are not only due to diet, environmental and management conditions, but also due to measurement methods.

  10. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2011-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  11. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2010-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  12. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2013-10-01

    The Sloan Digital Sky Survey has discovered a remarkable group of ~100 quasars with extremely weak emission lines in their rest-frame optical-UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of six quasars of this class with a total exposure time of 128 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the optical-UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  13. Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue

    NASA Astrophysics Data System (ADS)

    Hepach, H.; Quack, B.; Raimund, S.; Fischer, T.; Atlas, E. L.; Bracher, A.

    2015-11-01

    Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 and up to 9.2 pmol L-1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water, CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L-1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L-1. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and one of the main driving factors of their emissions into the atmosphere in the ACT-region. The calculated production rates of the compounds in the mixed layer are 34 ± 65 pmol m-3 h-1 for CHBr3, 10

  14. Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue

    NASA Astrophysics Data System (ADS)

    Hepach, H.; Quack, B.; Raimund, S.; Fischer, T.; Atlas, E. L.; Bracher, A.

    2015-04-01

    Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 pmol L-1 and up to 9.2 pmol L-1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water,CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L-1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a~biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L-1, and the observed anticorrelation with global radiation was likely due to its strong photolysis. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and has an influence on emissions into the atmosphere. The calculated production rates of the

  15. Dilepton and photon emission rates from a hadronic gas. III

    SciTech Connect

    Lee, C.; Zahed, I.; Yamagishi, H.

    1998-11-01

    We extend our early analyses of the dilepton and photon emission rates from a hadronic gas to account for strange mesons using a density expansion. The emission rates are reduced to vacuum correlation functions using three-flavor chiral reduction formulas, and the latter are assessed in terms of empirical data. Using a fire- ball, we compare our results to the low and intermediate mass dilepton data available from CERN. Our results suggest that a baryon free hadronic gas does not account for the excess of low mass dielectrons observed at CERES but does well in accounting for the intermediate dimuons at HELIOS. The same observations apply to the recent low and high p{sub t} dielectron rates from CERES. thinsp {copyright} {ital 1998} {ital The American Physical Society}

  16. Acoustic emission strand burning technique for motor burning rate prediction

    NASA Technical Reports Server (NTRS)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  17. Atmospheric emissions of mercury from Australian point sources

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.

    The UN Global Mercury Assessment (GMA) estimates that atmospheric emissions of mercury from Australian stationary combustion sources were 97.0 tonnes for the year of 1995. This is more than 90% of the estimated emissions from stationary combustion for the whole of North America, and seems abnormally high for a country with a population of around 20 million, in spite of the fact that most of Australia's stationary energy supply is provided by coal. It is also significantly larger than previous estimates of mercury emissions from Australian sources. New estimates of Australian mercury emissions from stationary energy sources, based on both a top down and bottom up approach, are presented. These estimates can be reconciled for black coal fired power stations, but suggest that the bottom up approach (the Australian National Pollutant Inventory) significantly under-estimates emissions from brown coal fired plant, if mercury capture efficiencies in these plants are low, as observed for lignite-fired plant. The major uncertainties in these estimates are the coal mercury content in coals burnt in Australian power stations, and the mercury capture efficiency in particulate control devices used at these stations. Based on these estimates, Australian emissions of mercury from stationary energy are currently 2-8 tonnes/year, significantly lower than the GMA estimate.

  18. Footprint methods to separate N2O emission rates from adjacent paddock areas.

    PubMed

    Mukherjee, Sandipan; McMillan, Andrew M S; Sturman, Andrew P; Harvey, Mike J; Laubach, Johannes

    2015-03-01

    Using micrometeorological techniques to measure greenhouse gas emissions from differently treated adjacent plots is a promising avenue to verify the effect of mitigation strategies at the field scale. In pursuing such an approach, it is crucial to accurately characterize the source area of the fluxes measured at each sampling point. Hence, a comprehensive footprint analysis method is required so that emission rates can be obtained for a specific field within a biochemically heterogeneous area. In this study, a footprint analysis method is developed to estimate the emission for an experiment where the flux of N2O is measured from several control and treated plots. The emission rate of an individual plot is estimated using an inverse footprint fraction approach where the footprint fractions are obtained from an analytical footprint model. A numerical solution for obtaining the background flux for such a multiplot measurement system is also provided. Results of the footprint analysis method are assessed, first, by comparing footprint fractions obtained from both an analytical footprint model and a "forward" simulation of a backward Lagrangian stochastic (bLs) model; and second, by comparing the emission rates of a control plot obtained from the footprint analysis method and from the "backward" simulation of the bLs model. It is found that the analytical footprint fractions compare well with the values obtained from the bLs model (correlation coefficient of 0.58 and 0.66 within p value <0.001). An average of 4.3 % of the measured fluxes is found to be contributed by sources outside the measured area and, excluding this outside area contribution to the measured flux, footprint corrected emission rates within the defined domain are found to increase by 2.1 to 5.8 % of the measured flux. Also, the proposed method of emission rate estimation is found to work well under a wide range of atmospheric stability. PMID:24899395

  19. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related

  20. A measurement system for alpha and beta surface emission rate using MWPC

    NASA Astrophysics Data System (ADS)

    Lin, Ye; Fang, Fang; Ren, Jia-Fu; He, Lin-Feng; Tang, Fang-Dong; Xu, Yi-He; Ding, Wei-Cheng

    2015-05-01

    We have developed a large area multi-wire proportional counter (MWPC) as a standard for the measurement of alpha and beta surface emission rate at the Shanghai Institute of Measurement and Testing Technology (SIMT). To shorten the preparation time for chamber gas refilling, a self-designed gas control unit was adopted. Various characteristics of the system have been studied. The uncertainties were analysed. Three certified alpha plane sources (Am-241) and six certified beta plane sources (Tl-204 and Sr-90/Y-90) were measured by this system. The results show excellent agreement with the surface emission rate reported by the National Institute of Measuring, China (NIM) that En values of all measured sources are within ±1. Supported by National Natural Science Foundation of China (41204133)

  1. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  2. Industrial source identification and emission estimation of perfluorooctane sulfonate in China.

    PubMed

    Xie, Shuangwei; Wang, Tieyu; Liu, Shijie; Jones, Kevin C; Sweetman, Andrew J; Lu, Yonglong

    2013-02-01

    Perfluorooctane sulfonate (PFOS) and related chemicals (collectively "PFOS equivalents") are currently manufactured and used in a wide variety of industrial processes in China. Since 2003, the national annual production has increased dramatically to accommodate both domestic demands and ongoing overseas needs for metal plating, fire-fighting foams, photographic, semiconductor and aviation industries. Accordingly, PFOS-related industries are significant sources of PFOS to the environment in China, though little information is available. In the present study, industrial sources of PFOS in China were identified and emissions from major related industries, including PFOS manufacture, textile treatment, metal plating, fire-fighting and semiconductor industries, were evaluated. Contribution by various industrial sources and spatial distribution of the PFOS emission were discussed. It was estimated that the total emission of PFOS equivalents in China was 70t in 2010. Industrial use of PFOS in metal plating was identified as the largest source of PFOS pollution at the national level, followed by textile treatment, fire-fighting, PFOS manufacture and semiconductor industry. At the regional level, greater contributions were made by metal plating and textile treatment in most provinces of eastern China, while in the western part of China and several northeastern provinces fire-fighting was the predominant source. The contribution by PFOS manufacture was considerable in Hubei and Fujian provinces. Total emission, emission density and emission intensity showed geographical variations. In general, the eastern coastal provinces, as the most intensively industrialized regions of China, were characterized by significantly higher emission rates, emission density and emission intensity than those in western and northern China. Available monitoring data of PFOS concentrations in surface water of China reflected a similar distribution pattern, confirming that manufacture and industrial

  3. Acidic and total primary sulfates: development of emission factors for major stationary combustion sources

    SciTech Connect

    Goklany, I.M.; Hoffnagle, G.F.; Brackbill, E.A.

    1984-01-01

    ''Best estimates'' of emission factors for major sources of acidic and total primary sulfates are developed for use in the compilation of emission inventories for the eastern U.S. These may, in turn, be used for modeling of acidic or sulfate deposition. The factors are based upon a critical evaluation of the generic measurement methods used to quantify total and acidic primary sulfate emissions, and an exhaustive review and critique of individual papers and studies available in the open literature which present measurement data on primary sulfate emissions. It develops a qualitative rating scheme which specifies the level of confidence that should be attached to the emission factor determinations. The paper concludes that much of the existing data on primary sulfates from stationary combustion sources are, probably, significantly biased upward and, therefore, inappropriate for the derivation of emission factors. Therefore, existing estimates of primary sulfate emissions for these source categories are, probably, substanitally inflated. It also concludes that, for most source categories, very little confidence can be attached to the best estimates because of the paucity of data obtained from measurement techniques which are likely to be free of systematic bias. 68 references.

  4. CO2 EMISSIONS FROM BIOENERGY AND OTHER BIOGENIC SOURCES IN STATIONARY SOURCES

    EPA Science Inventory

    On January 12, 2011, EPA announced a series of steps to address the treatment of biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with accounting for biogenic carbon dioxide emissions from stationary sour...

  5. Plasmonic nanogaps for broadband and large spontaneous emission rate enhancement

    SciTech Connect

    Edwards, Anthony P.; Adawi, Ali M.

    2014-02-07

    We present the optical properties of a plasmonic nanogap formed between a silver metallic nanoparticle and an extended silver film that shows a strong enhancement in the spontaneous emission rate over the whole visible range. In particular, we use three-dimensional finite difference time domain calculations to study the spontaneous emission rate and the quantum efficiency of an emitting material placed within the gap region as a function of the geometrical parameters of the plasmonic nanogap. Our calculations reveal that the enhancements in the total decay rate can be divided into two regions as a function of wavelength; region I spans the wavelength range from 350 nm to 500 nm and peaks at approximately at 400 nm. Region II covers the spectral range between 500 nm and 1000 nm. The enhancements in total decay rate in region I are mainly dominated by Ohmic losses by the metal, while the enhancements in total decay rate in region II are mainly dominated by radiative decay rate enhancements. Furthermore, our calculations show over 100 times enhancement in the spontaneous emission rate in region II. We combine this with quantum efficiency enhancements of almost 30 times from materials with low intrinsic quantum efficiencies and only a small reduction in efficiency from those with high intrinsic quantum efficiencies. All results appear easily achievable using realistic geometrical parameters and simple synthesis techniques. These results are attributed to the strong field confinements in the nanogap region. The structures are of high interest for both the fundamental understanding of light mater interactions under extreme electromagnetic field confinements and also potential applications in quantum optics and Raman spectroscopy.

  6. The sources of Uranus' dominant nightside radio emissions

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Curtis, S. A.

    1987-01-01

    The broad-bandwidth radio emission detected by Voyager 2 over the nightside of Uranus is examined. It is concluded that the source location of the smooth component is consistent with emission originating near the electron gyrofrequency from a small set of field lines whose foot points lie near the Uranomagnetic southern (dark) pole. The source centroid is at L = 11.5, and extends in latitude between about L = 8 and L = 25. This deduced source region is primarily on closed field lines that pass through the outer radiation belt and have their opposite foot points near the Uranomagnetic northern pole (near the present epoch terminator). The source location of the bursty component is less well defined but is consistent with the set of open field lines which map down to the region surrounding the planet's south magnetic dipole tip.

  7. METHOD 25 - DETERMINATION OF TOTAL GASEOUS NON-METHANE ORGANIC EMISSIONS AS CARBON FROM STATIONARY SOURCES

    EPA Science Inventory

    Section 3.17 describes the procedures and specifications for determining volatile organic compounds as total gaseous non-methane organics from stationary sources. n emission sample is withdrawn from the stack at a constant rate through a heated filter and a chilled condensate tra...

  8. Tillage and Inorganic Nitrogen Source Effects on Nitrous Oxide Emissions from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) emissions were monitored from irrigated corn production systems receiving different N sources at fertilizer rates of 246 kg N ha-1 when in corn (Zea mays L.), 56 kg N ha-1 when in dry bean (Phaseolus vulgaris L.), and 157 kg N ha-1 when in barley (Hordeum distichon L.). Croppin...

  9. DEVELOPMENT OF A SOURCE PM10 SAMPLING TRAIN USING EMISSION GAS RECYCLE (EGR)

    EPA Science Inventory

    Measurement of accurate particulate emission factors in ducted sources with particle size segregation involves a compromise between two conflicting requirements. In order to avoid anisokinetic sampling bias over a duct traverse, the flow rate of gas entering the sampling nozzle m...

  10. Tillage and Nitrogen Source Effects on Nitrous Oxide Emissions from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide emissions were monitored from irrigated corn production systems receiving different N sources at fertilizer rates of 246 kg N ha-1 when in corn (Zea mays L.), 56 kg N ha-1 when in dry bean (Phaseolus vulgaris L.), and 157 kg N ha-1 when in barley (Hordeum distichon L.). Cropping syst...

  11. Modeling Atmospheric Emissions and Calculating Mortality Rates Associated with High Volume Hydraulic Fracturing Transportation

    NASA Astrophysics Data System (ADS)

    Mathews, Alyssa

    Emissions from the combustion of fossil fuels are a growing pollution concern throughout the global community, as they have been linked to numerous health issues. The freight transportation sector is a large source of these emissions and is expected to continue growing as globalization persists. Within the US, the expanding development of the natural gas industry is helping to support many industries and leading to increased transportation. The process of High Volume Hydraulic Fracturing (HVHF) is one of the newer advanced extraction techniques that is increasing natural gas and oil reserves dramatically within the US, however the technique is very resource intensive. HVHF requires large volumes of water and sand per well, which is primarily transported by trucks in rural areas. Trucks are also used to transport waste away from HVHF well sites. This study focused on the emissions generated from the transportation of HVHF materials to remote well sites, dispersion, and subsequent health impacts. The Geospatial Intermodal Freight Transport (GIFT) model was used in this analysis within ArcGIS to identify roadways with high volume traffic and emissions. High traffic road segments were used as emissions sources to determine the atmospheric dispersion of particulate matter using AERMOD, an EPA model that calculates geographic dispersion and concentrations of pollutants. Output from AERMOD was overlaid with census data to determine which communities may be impacted by increased emissions from HVHF transport. The anticipated number of mortalities within the impacted communities was calculated, and mortality rates from these additional emissions were computed to be 1 in 10 million people for a simulated truck fleet meeting stricter 2007 emission standards, representing a best case scenario. Mortality rates due to increased truck emissions from average, in-use vehicles, which represent a mixed age truck fleet, are expected to be higher (1 death per 341,000 people annually).

  12. EMISSIONS ASSESSMENT OF CONVENTIONAL STATIONARY SYSTEMS: VOLUME III. EXTERNAL COMBUSTION SOURCES FOR ELECTRICITY GENERATION

    EPA Science Inventory

    The report characterizes multimedia emissions from external combustion sources for electricity generation. Study results indicate that external combustion sources for electricity generation contribute significantly to the nationwide emissions burden. Flue gas emissions of NOx, SO...

  13. Mapping methane emission sources over California based on airborne measurements

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  14. FEASIBILITY OF DEVELOPING SOURCE SAMPLING METHODS FOR ASBESTOS EMISSIONS

    EPA Science Inventory

    The objective of this program was to determine the feasibility of developing methods for sampling asbestos in the emissions of major asbestos sources: (1) ore production and taconite production, (2) asbestos-cement production, (3) asbestos felt and paper production, and (4) the p...

  15. 40 CFR 60.25 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electronic documents shall comply with the requirements of 40 CFR part 3—(Electronic reporting). (2) Periodic... surveillance, reports. 60.25 Section 60.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... State Plans for Designated Facilities § 60.25 Emission inventories, source surveillance, reports....

  16. 40 CFR 60.25 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electronic documents shall comply with the requirements of 40 CFR part 3—(Electronic reporting). (2) Periodic... surveillance, reports. 60.25 Section 60.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... State Plans for Designated Facilities § 60.25 Emission inventories, source surveillance, reports....

  17. 40 CFR 60.25 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electronic documents shall comply with the requirements of 40 CFR part 3—(Electronic reporting). (2) Periodic... surveillance, reports. 60.25 Section 60.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... State Plans for Designated Facilities § 60.25 Emission inventories, source surveillance, reports....

  18. 40 CFR 62.4622 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS Louisiana Plan for Control of Designated Pollutants from Existing Facilities (section 111(d) Plan... limitations or other control measures that are part of the applicable plan. (2) Commencing after the initial... source is in compliance with applicable emission limitations or other control measures that are part...

  19. INVENTORY OF COMBUSTION-RELATED EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    The report describes the first year of a study covering the combustion-related emissions inventory phase of a 3-year program entitled, 'Analysis of NOx Control in Stationary Sources.' The study is aimed at assisting in the establishment of priorities for detailed studies of techn...

  20. SENSITIVITY OF RADM TO POINT SOURCE EMISSIONS PROCESSING

    EPA Science Inventory

    The Regional Acid Deposition Model (RADM) and associated Engineering Model have been developed to study episodic source-receptor relationships on a regional scale. he RADM includes transport, chemical transformation, and deposition processes as well as input of emissions into the...

  1. SOURCE EMISSION TESTS AT THE BALTIMORE DEMONSTRATION PYROLYSIS FACILITY

    EPA Science Inventory

    TRW was retained by EPA/IERL Cincinnati in May of 1976 to conduct source emission tests at a solid waste treatment plant in Baltimore, Maryland. The plant is designed to recover low-grade fossil fuel from non-toxic solid waste by the use of a process known as pyrolysis. When plan...

  2. Methane emission by goats consuming different sources of condensed tannins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-four yearling Boer x Spanish wethers (7/8 Boer; initial body weight [BW] of 37.5 plus/minus 0.91 kg) were used to assess effects of different condensed tannin (CT) sources on methane emission. Diets were Kobe lespedeza (Lespedeza striata; K), K plus quebracho providing CT at 5% of dry matter...

  3. 40 CFR Table 1 to Subpart Nnnnnn... - HAP Emissions Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of the General Provisions (40 CFR part 63, subpart A) as shown in the following table. ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... production a. Primary rotary roasting kiln used to produce chromic oxide. b. Chromic oxide filter. c....

  4. 40 CFR Table 1 to Subpart Nnnnnn... - HAP Emissions Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of the General Provisions (40 CFR part 63, subpart A) as shown in the following table. ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... production a. Primary rotary roasting kiln used to produce chromic oxide. b. Chromic oxide filter. c....

  5. 40 CFR 62.08 - Emission inventories and source surveillance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission inventories and source surveillance. 62.08 Section 62.08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS General Provisions § 62.08...

  6. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    NASA Astrophysics Data System (ADS)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  7. On-road emission rates of PAH and n-alkane compounds from heavy-duty diesel vehicles.

    PubMed

    Shah, Sandip D; Ogunyoku, Temitope A; Miller, J Wayne; Cocker, David R

    2005-07-15

    This paper presents the quantification of the emission rates of PAH and n-alkane compounds from on-road emissions testing of nine heavy-duty diesel (HDD) vehicles tested using CE-CERT's Mobile Emissions Laboratory (MEL) over the California Air Resources Board (ARB) Four Phase Cycle. Per mile and per CO2 emission rates of PAHs and n-alkanes were highest for operation simulating congested traffic (Creep) and lowest for cruising conditions (Cruise). Significant differences were seen in emission rates over the different phases of the cycle. Creep phase fleet average emission rates (mg mi(-1)) of PAHs and n-alkanes were approximately an order of magnitude higher than Cruise phase. This finding indicates that models must account for mode of operation when performing emissions inventory estimates. Failure to account for mode of operation can potentially lead to significant over- and underpredictions of emissions inventories (up to 20 times), especially in small geographic regions with significant amounts of HDD congestion. Howeverthe PAH and n-alkane source profiles remained relatively constant for the different modes of operation. Variability of source profiles within the vehicle fleet exceeded the variability due to different operating modes. Analysis of the relative risk associated with the compounds indicated the importance of naphthalene as a significant contributor to the risk associated with diesel exhaust. This high relative risk is driven by the magnitude of the emission rate of naphthalene in comparison to other compounds. PMID:16082957

  8. Refining emission rate estimates using a coupled receptor-dispersion modeling approach

    NASA Astrophysics Data System (ADS)

    Selvaraju, N.; Pushpavanam, S.

    2010-10-01

    Receptor modeling techniques like chemical mass balance are used to attribute pollution levels at a point to different sources. Here we analyze the composition of particulate matter and use the source profiles of sources prevalent in a region to estimate quantitative source contributions. In dispersion modeling on the other hand the emission rates of various sources together with meteorological conditions are used to determine the concentrations levels at a point or in a region. The predictions using these two approaches are often inconsistent. In this work these differences are attributed to errors in emission inventory. Here an algorithm for coupling receptor and dispersion models is proposed to reduce the differences of the two predictions and determine the emission rates accurately. The proposed combined approach helps reconcile the differences arising when the two approaches are used in a stand-alone mode. This work is based on assuming that the models are perfect and uses a model-to-model comparison to illustrate the concept.

  9. A simple method for screening emission sources of carbonyl compounds in indoor air.

    PubMed

    Yamashita, Shohei; Kume, Kazunari; Horiike, Toshiyuki; Honma, Nobuyuki; Fusaya, Masahiro; Ohura, Takeshi; Amagai, Takashi

    2010-06-15

    Volatile organic compounds (VOCs) emitted from building and furnishing materials are frequently observed in high concentrations in indoor air. Nondestructive analytical methods that determine the main parameters influencing concentration of the chemical substances are necessary to screen for sources of VOC emissions. Toward this goal, we have developed a new flux sampler, referred to herein as an emission cell for simultaneous multi-sampling (ECSMS), that is used for screening indoor emission sources of VOCs and for determining the emission rates of these sources. Because the ECSMS is based on passive sampling, it can be easily used on-site at a low cost. Among VOCs, low-molecular-weight carbonyl compounds including formaldehyde are frequently detected at high concentrations in indoor environments. In this study, we determined the reliability of the ECSMS for the collection of formaldehyde and other carbonyl compounds emitted from wood-based composites of medium density fiberboards and particleboards. We then used emission rates determined by the ECSMS to predict airborne concentrations of formaldehyde emitted from a bookshelf in a large chamber, and these data were compared to formaldehyde concentrations that were acquired simultaneously by means of an active sampling method. The values obtained from the two methods were quite similar, suggesting that ECSMS measurement is an effective method for screening primary sources influencing indoor concentrations of formaldehyde. PMID:20149530

  10. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  11. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    PubMed

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  12. EPA's mobile monitoring of source emissions and near-source impact

    EPA Science Inventory

    Real-time ambient monitoring onboard a moving vehicle is a unique data collection approach applied to characterize large-area sources, such as major roadways, and detect fugitive emissions from distributed sources, such as leaking oil wells. EPA's Office of Research and Developme...

  13. Source dynamics of the microwave emission during a solar flare

    NASA Astrophysics Data System (ADS)

    Begum Shaik, Shaheda; Gary, Dale E.; Nita, Gelu M.

    2016-05-01

    Determining the microwave burst source characteristics is important to understand the parameters of the flare process which produce the microwave emission. Previous studies show that the microwave solar bursts do typically exhibit a single source of emission but also often show inhomogeneous sources as a function of frequency at some periods during the burst. This study focuses on the spectral and spatial dynamics of the microwave gyrosynchrotron source through the microwave spectral and imaging analysis. We report the source characteristics of few impulsive flare events observed by the newly upgraded Expanded Owens Valley Solar Array (EOVSA) in the frequency range of 2.5 to 18 GHz and from the complimentary data of (Nobeyama Radioheliograph / Nobeyama Radio Polarimeters) NoRH / NoRP. The low frequency optically thick part of the microwave spectrum is an indicator of spatial inhomogeneity and complexity of the sources. We concentrate in the dynamics of the low frequency spectrum (intensity and spectral index) measured by EOVSA, and compare it to the corresponding spatial propoerties of the NoRH sources observed at 17 GHz and to the loop structures seen in the EUV (Extreme Ultraviolet) images with SDO (Solar Dynamics Observatory).

  14. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  15. Are biogenic emissions a significant source of summertime atmospheric toluene in rural Northeastern United States?

    NASA Astrophysics Data System (ADS)

    White, M. L.; Russo, R. S.; Zhou, Y.; Ambrose, J. L.; Haase, K.; Frinak, E. K.; Varner, R. K.; Wingenter, O. W.; Mao, H.; Talbot, R.; Sive, B. C.

    2008-06-01

    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequentially, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004 2006. These included: 1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) content to meet U.S. EPA summertime volatility standards, 2) local industrial emissions and 3) local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d-1, and did not fully account for the observed enhancements (20 50 pptv) in 2004 2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d-1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d-1) and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  16. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    NASA Astrophysics Data System (ADS)

    White, M. L.; Russo, R. S.; Zhou, Y.; Ambrose, J. L.; Haase, K.; Frinak, E. K.; Varner, R. K.; Wingenter, O. W.; Mao, H.; Talbot, R.; Sive, B. C.

    2009-01-01

    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004-2006. These included: (1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) content to meet US EPA summertime volatility standards, (2) local industrial emissions and (3) local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d-1, and did not fully account for the observed enhancements (20-50 pptv) in 2004-2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d-1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d-1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  17. Optimized source selection for intracavitary low dose rate brachytherapy

    SciTech Connect

    Nurushev, T.; Kim, Jinkoo

    2005-05-01

    A procedure has been developed for automating optimal selection of sources from an available inventory for the low dose rate brachytherapy, as a replacement for the conventional trial-and-error approach. The method of optimized constrained ratios was applied for clinical source selection for intracavitary Cs-137 implants using Varian BRACHYVISION software as initial interface. However, this method can be easily extended to another system with isodose scaling and shaping capabilities. Our procedure provides optimal source selection results independent of the user experience and in a short amount of time. This method also generates statistics on frequently requested ideal source strengths aiding in ordering of clinically relevant sources.

  18. Field measurement of greenhouse gas emission rates and development of emission factors for wastewater treatment. Final report, September 1994-March 1997

    SciTech Connect

    Eklund, B.; LaCosse, J.

    1997-09-01

    The report gives results of field testing to develop more reliable greenhouse gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. Field tests of emissions were conducted for WWT lagoons that use anaerobic processes to treat large volumes of wastewater with large biological oxygen demand (BOD) loadings. Air emissions and wastewater were measured at anaerobic lagoons at three meat processing plants and two publicly owned treatment works. The overall emission rates of CH4, carbon dioxide, carbon monoxide, nitrous oxide, ammonia (NH3), and chlorofluorocarbons were measured from each source using an open-path monitoring approach. The emitted compounds were identified and quantified by Fourier-Transform Infrared spectroscopy. Emission factors were developed for CH4 and NH3 as a function of the plant production rate, wastewater parameters (e.g., influent BOD and chemical oxygen demand (COD) loadings), and WWT system performance (e.g., BOD and COD removal rates).

  19. Fission-neutrons source with fast neutron-emission timing

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  20. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  1. NATURAL VOLATILE ORGANIC COMPOUND EMISSION RATE ESTIMATES FOR U.S. WOODLAND LANDSCAPES

    EPA Science Inventory

    Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. oliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOC'S. ypical emission rates at a leaf temperatur...

  2. Dispersion from safety valves and other momentum emission sources: Continuous

    NASA Astrophysics Data System (ADS)

    Hanzevack, E. L.

    Safety valves are atypical pollutant emission sources in petroleum refineries and chemical plants. Their releases are characterized by very high velocities (from 20ms -1 to sonic) and near-ambient temperatures, so they are referred to as momentum sources, as opposed to bouyant sources. Since releases from these sources to the atmosphere may contain relatively high (often 100%) pollutant concentrations we have developed a method of accurately predicting the critical ground level concentrations of pollutants resulting from such sources. (The critical ground level concentration is the highest ambient pollutant concentration at any downwind location or meterological condition.) Since no data were available on which to base an air dispersion model for predicting ground level concentrations for momentum sources, an experimental program was undertaken, consisting of a full scale simulation of a momentum source emission using an inert tracer gas and downwind sampling to determine resulting critical ground level concentrations. Based on the data collected, a dispersion calculation method for estimating ground level concentrations from momentum sources was developed. The general form of this correlation is similar to the previously suggested, but not validated, American Society of Mechanical Engineers (ASME) momentum plume equation. The modified equation contains an additional parameter to account for the large gas density differences often encountered with momentum source releases. The equation was designed to be somewhat conservative to compensate for the randomness of atmospheric phenomena, the limited amount of experimental data, and the fact that safety valve releases can include dangerous substances. The calculation method described in this report is recommended to predict peak ambient concentrations for any source dominated by momentum plume conditions.

  3. Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in School Buildings

    EPA Science Inventory

    Building materials and components containing polychlorinated biphenyls (PCBs) were used in some U.S. school buildings until the late 1970s and may be present today. PCB emission rates from caulk and fluorescent light ballasts were measured in laboratory chambers. PCB concentrat...

  4. Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawai`i, an Update: 2002-2006

    USGS Publications Warehouse

    Elias, Tamar; Sutton, A.J.

    2007-01-01

    Introduction Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Greenland and others, 1985; Casadevall and others, 1987; Elias and others, 1998; Sutton and others, 2001, Elias and Sutton, 2002, Sutton and others, 2003). Compilations of SO2 emission-rate and wind-vector data from 1979 through 2001 are available on the web. (Elias and others, 1998 and 2002). This report updates the database through 2006, and documents the changes in data collection and processing that have occurred during the interval 2002-2006. During the period covered by this report, Kilauea continued to release SO2 gas predominantly from its summit caldera and east rift zone (ERZ) (Elias and others, 1998; Sutton and others, 2001, Elias and others, 2002, Sutton and others, 2003). These two distinct sources are always measured independently (fig.1). Sulphur Banks is a minor source of SO2 and does not contribute significantly to the total emissions for Kilauea (Stoiber and Malone, 1975). From 1979 until 2003, summit and east rift zone emission rates were derived using vehicle- and tripod- based Correlation Spectrometry (COSPEC) measurements. In late 2003, we began to augment traditional COSPEC measurements with data from one of the new generation of miniature spectrometer systems, the FLYSPEC (Horton and others, 2006; Elias and others, 2006, Williams-Jones and others, 2006).

  5. The measurement of roadway PM 10 emission rates using atmospheric tracer ratio techniques

    NASA Astrophysics Data System (ADS)

    Kantamaneni, Ravi; Adams, Glen; Bamesberger, Lee; Allwine, Eugene; Westberg, Hal; Lamb, Brian; Claiborn, Candis

    In this work, stationary and mobile point source tracer release techniques have been used to determine PM 10 emission rates from four-lane commercial/residential paved roads under sanded and unsanded conditions, and from unpaved roads relative to site-specific vehicular and ambient parameters. Measured street (4 + lanes; ⩾ 10,000 vehicles per day) emission factors for unsanded and sanded roads were 40 and 20% lower, respectively, than the EPA approved reference value. The sanded road emission factor was approximately 40% higher than that for the unsanded road. These results indicate a consistent relationship between PM 10 and relative humidity under unsanded conditions. There is some evidence to suggest that street sweeping has a measurable effect on PM,, emission reduction during periods of low relative humidity (i.e. ⩽ 30%). Within the constraints imposed by the variable experimental conditions, the emission factors determined for unpaved roads agreed reasonably well with the unpaved road empirical formula. Limited correlations were observed with ambient meteorological parameters. The capability of the "upwind-dowiawind" concentration modeling method to predict accurate emission was tested using a Gaussian dispersion model (SIMFLUX). Predictions agreed well with the experimentally determined emission factors.

  6. Switching regulator emission control circuit for ion sources

    NASA Technical Reports Server (NTRS)

    Clay, F. P., Jr.; Brock, F. J.; Melfi, L. T., Jr.

    1975-01-01

    An electron emission control circuit of the switching regulator type operating at 100 kHz has been developed which maintains a constant emission current within 0.1% for a cathode power demand variation of approximately 100%. The power output stage has an efficiency of 67%, and the overall efficiency is 45% when driving a thoria-coated iridium cathode having a nominal resistance at operating temperature of 2.5 ohms. Under optimum conditions, the bus power demand is 1.75 W. The circuit is useful in controlling the electron emission current of ion sources in applications which involve a substantial variation of the cathode work function, such as oxygen partial pressure measurements over a large dynamic range.

  7. Software for emission rate modeling of accidental toxic releases

    SciTech Connect

    Kumar, A.; Vashisth, S.

    1999-08-01

    This book fulfills the need for Section 112(r) of the Clean Air Act Amendments of 1990. This software is based on the guidelines released by the USEPA. It includes manual and proprietary software on CDROM. Contents include release scenario description (two-phase and single-phase choked/unchoked gas release, two-phase pressurized and refrigerated liquid release, single-phase high and low volatility liquid release); emission rate model development for each release class; software design and software evaluation and application.

  8. Development of source testing, analytical, and mutagenicity bioassay procedures for evaluating emissions from municipal and hospital waste combustors.

    PubMed Central

    Watts, R R; Lemieux, P M; Grote, R A; Lowans, R W; Williams, R W; Brooks, L R; Warren, S H; DeMarini, D M; Bell, D A; Lewtas, J

    1992-01-01

    Incineration is currently being used for disposal of about 10% of the solid waste generated in the United States, and this percentage will likely increase as land disposal declines. Siting new incinerators, however, is often controversial because of concerns related to the possibility of adverse health effects and environmental contamination from long-term exposure to stack emissions. Specific concerns relate to the adequacies of a) stack emission testing protocols, b) existing regulations, and c) compliance monitoring and enforcement of regulations. U.S. Environmental Protection Agency laboratories are cooperatively conducting research aimed at developing new testing equipment and procedures that will allow a more comprehensive assessment of the complex mixture of organics that is present in stack emissions. These efforts are directed specifically toward developing source testing equipment and procedures, analytical procedures, and bioassay procedures. The objectives of this study were to field test two types of high-volume source dilution samplers, collect stack samples for use in developing analytical and mutagenicity bioassay procedures, and determine mutagenicity of organics associated with emission particles from two municipal waste combustors and a hospital waste combustor. Data are presented for particle concentrations and emission rates, extractable organic concentrations and emission rates, and Salmonella (Ames) mutagenic potency and emission rates. The mutagenic emission rates and emission factors are compared to other incinerators and combustion sources. PMID:1486854

  9. The infrared emission bands. III. Southern IRAS sources.

    PubMed

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features. PMID:11542167

  10. Global High-Resolution Emission Inventories from Combustion Sources

    NASA Astrophysics Data System (ADS)

    Tao, S.; Huang, Y.; Chen, H.; Shen, H.

    2014-12-01

    A series efforts have been made to reduce uncertainty of emission inventories from combustion sources. The inventories developed are highly resolved spatially (0.1 degree), temporally (monthly or daily), and sectorically (over 60 combustion sources). Sub-national, instead of national fuel data are used to reduce spatial bias due to uneven distribution of per person energy consumption within large countries. Space-for-time substitution method was developed to model the dependence of residential energy consumptions on a series of meteorological and socioeconomic conditions. The regression models were used to project temporal variation of energy consumption, subsequently emissions of greenhouse gases and air pollutants. The models can also be used to downscale spatial distribution of residential emissions. By using this approach, global emission inventories of black carbon, polycyclic aromatic hydrocarbons, mercury, TSP, PM10, and PM2.5 have been established. The inventories were used to potential health impact assessment, atmospheric transport and long-range transport modeling, as well as exposure and health impact modeling.

  11. High emission rate of sulfuric acid from Bezymianny volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Zelenski, Michael; Taran, Yuri; Galle, Bo

    2015-09-01

    High concentrations of primary sulfuric acid (H2SO4) in fumarolic gases and high emission rate of sulfuric acid aerosol in the plume were measured at Bezymianny volcano, an active dome-growing andesitic volcano in central Kamchatka. Using direct sampling, filter pack sampling, and differential optical absorption spectroscopy measurements, we estimated an average emission of H2SO4 at 243 ± 75 t/d in addition to an average SO2 emission of 212 ± 65 t/d. The fumarolic gases of Bezymianny correspond to arc gases released by several magma bodies at different stages of degassing and contain 25-92% of entrained air. H2SO4 accounts for 6-87 mol% of the total sulfur content, 42.8 mol% on average, and SO2 is the rest. The high H2SO4 in Bezymianny fumaroles can be explained by catalytic oxidation of SO2 inside the volcanic dome. Because sulfate aerosol is impossible to measure remotely, the total sulfur content in a plume containing significant H2SO4 may be seriously underestimated.

  12. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  13. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2012-08-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even in Africa which

  14. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation

  15. Uranian H Ly-alpha emission - The interstellar wind source

    NASA Technical Reports Server (NTRS)

    Yelle, R. V.; Sandel, B. R.

    1986-01-01

    IUE observation of Uranian emissions in hydrogen Lyman alpha (H Ly-alpha) over the past four years have recently been summarized by Clarke et al. (1985). Over this time period they find an average H Ly-alpha brightness of 1260 R which they estimate is composed of 200 R of solar scattered radiation and 1060 R from a collisional source. A third component, not considered by previous authors, is the reflection of H Ly-alpha emissions from the interstellar wind. Hydrogen in the interstellar wind forms an extended source of H Ly-alpha whose importance relative to the solar flux increases with distance from the sun. The present paper demonstrates that scattering of interstellar H Ly-alpha is more important than scattering of solar H Ly-alpha for reasonable values of H column abundance and, in fact, may make up 10-40 percent of the observed signal. Large H column abundances are still required to explain the H Ly-alpha brightness solely on the basis of resonant scattering; therefore it is likely that the emissions are due in part to collisional sources and in part to the scattering of interstellar H Ly-alpha with solar scattering playing a minor role.

  16. Mitigation strategies for methane emissions from agricultural sources

    SciTech Connect

    Duxbury, J.M.

    1993-12-31

    Anthropogenic emissions of CH{sub 4} account for 70% of total global emissions of this greenhouse gas. Current anthropogenic emissions of CH{sub 4} in the US are estimated to be between 24-30 Tg CH{sub 4} or 7-9% of the global anthropogenic total. By comparison the US is responsible for 27% of anthropogenic emissions of CO{sub 2} from fossil fuel use. Table 1 shows that the major anthropogenic sources of CH{sub 4} in the US are landfills (37%), domestic livestock and livestock waste (31%) and the coal mining/natural gas/petroleum industries (28%). On a global basis it is estimated that US landfills contribute 30% to the global landfill total, whereas livestock (including waste) and the coal mining/natural gas/petroleum industries each contribute about 8% to their respective global totals. The US is an insignificant contributor (< 1%) to global emissions of CH{sub 4} from rice paddies.

  17. Carbon nanotube based field emission X-ray sources

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  18. Carbonyl emissions from vehicular exhausts sources in Hong Kong.

    PubMed

    Ho, Steven Sai Hang; Ho, Kin Fai; Lee, Shun Cheng; Cheng, Yan; Yu, Jian Zhen; Lam, Ka Man; Feng, Natale Sin Yau; Huang, Yu

    2012-02-01

    Vehicular emission (VE) is one of the important anthropogenic sources for airborne carbonyls in urban area. Six types of VE-dominated samples were collected at representative locations in Hong Kong where polluted by a particular fueled type of vehicles, including (i) a gas refilling taxis station (liquefied petroleum gas [LPG] emission); (ii) a light-duty passenger car park (gasoline emission); (iii) a minibus station (diesel emission); (iv) a single-deck-bus depot (diesel emission); (v) a double-deck-bus depot (diesel emission); and (vi) a whole-food market entrance for light- and heavy-duty vehicles (diesel emission). A total of 15 carbonyls in the samples were quantified. Formaldehyde was the most abundant carbonyl among the VE-dominated samples, and its contribution to the total quantified amount on a molar basis ranged from 54.8% to 60.8%. Acetaldehyde and acetone were the next two abundant carbonyls. The carbonyls were quantified at three roadside locations in Hong Kong. The highest concentrations of formaldehyde and acetaldehyde, 22.7 +/- 8.4 and 6.0 +/- 2.8 microg/m3, respectively, were determined in the samples collected at a main transportation gate for goods between Hong Kong and Mainland China. The total quantified carbonyl concentration, 37.9 +/- 9.3 microg/m3, was the highest at an entrance of a cross-harbor tunnel in downtown area. The theoretical carbonyls compositions of the three roadside locations were estimated according to the VE-dominated sample profiles and the statistics on vehicle numbers and types during the sampling period. The measured compositions of formaldehyde were much higher than the theoretical compositions in summer, demonstrating that photochemical reactions significantly contributed to the formaldehyde production in the roadsides. PMID:22442938

  19. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that is a major or area source. (d) Scrap dryer/delacquering kiln/decoating kiln. On and after the compliance date established by § 63.1501: (1) The owner or operator of a scrap dryer/delacquering kiln/decoating kiln must not discharge or cause to be discharged to the atmosphere emissions in excess of: (i)...

  20. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that is a major or area source. (d) Scrap dryer/delacquering kiln/decoating kiln. On and after the compliance date established by § 63.1501: (1) The owner or operator of a scrap dryer/delacquering kiln/decoating kiln must not discharge or cause to be discharged to the atmosphere emissions in excess of: (i)...

  1. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that is a major or area source. (d) Scrap dryer/delacquering kiln/decoating kiln. On and after the compliance date established by § 63.1501: (1) The owner or operator of a scrap dryer/delacquering kiln/decoating kiln must not discharge or cause to be discharged to the atmosphere emissions in excess of: (i)...

  2. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that is a major or area source. (d) Scrap dryer/delacquering kiln/decoating kiln. On and after the compliance date established by § 63.1501: (1) The owner or operator of a scrap dryer/delacquering kiln/decoating kiln must not discharge or cause to be discharged to the atmosphere emissions in excess of: (i)...

  3. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

    PubMed Central

    Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J

    2012-01-01

    The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants

  4. Atmospheric Pollution and Emission Sources in South Asian Urban Region

    NASA Astrophysics Data System (ADS)

    Biswas, K. F.; Husain, Liaquat

    2009-04-01

    Rapid urbanization, and lack of efficient monitoring and control of pollution, along with phenomena like Asian Brown Haze or prolonged episodes of winter fog, makes the South Asian atmospheric chemistry a very complex one. The anthropogenic aerosols released from this region are projected to become the dominant component of anthropogenic aerosols worldwide in the next 25 years (Nakicenovic and Swart, 2000). The region is one of the most densely populated in the world, with present population densities of 100-500 persons km-2. There are six big cities, namely, Delhi, Dhaka, Karachi, Kolkata, Lahore, and Mumbai, each housing a population around or above 10 million. There is now a real concern about the sustainability of the region's ability to support the population due to air pollution, loss of biodiversity and soil degradation. Therefore, we conducted several extensive campaigns over last 10 years in Lahore, Karachi, and Islamabad in Pakistan to (1) chemically characterize the aerosols (PM2.5 mass, concentrations of trace elements, ions, black and organic carbon), and gaseous pollutants (concentrations of NH3, SO2, HONO, HNO3, HCl and (COOH)2, and (2) identify the major emission sources in this region. Exceedingly high concentrations of all species, relative to major urban areas of US and Europe, were observed. Concentrations of PM2.5, BC, Pb, SO42-, NH4+, HONO, NH3 respectively, up to 476, 110, 12, 66, 60, 19.6 and 50 μgm-3 were observed in these cities, which were far in excess of WHO and US EPA air quality standard (Biswas et al., 2008). We use air parcel back trajectories, intercomponent relationships and meteorological observations to explain chemistry and emission sources of aerosol constituents. Carbonaceous aerosols contributed up to 69% of the PM2.5 mass (Husain et al., 2007). Source apportionment was conducted using positive matrix factorization. The analysis has classified six emission sources of aerosol components, namely, industrial activities, wood

  5. Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H- ion sources

    SciTech Connect

    Han, Baoxi; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2014-01-01

    An RF-driven, Cs-enhanced H- ion source feeds the SNS accelerator with a high current (typically >50 mA), ~1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a mean for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN chamber and an external RF antenna are also briefly discussed.

  6. Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H(-) ion sources.

    PubMed

    Han, B X; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2014-02-01

    A RF-driven, Cs-enhanced H(-) ion source feeds the SNS accelerator with a high current (typically >50 mA), ∼1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a means for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN (aluminum nitrite) chamber and an external RF antenna are also briefly discussed. PMID:24593570

  7. Dose rate constant and energy spectrum of interstitial brachytherapy sources.

    PubMed

    Chen, Z; Nath, R

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125I and 103Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S(K)) standard for 125I seeds and has also established an S(K) standard for 103Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (inverted V) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of dose rate constant and to develop a simple method for a quick and accurate estimation of dose rate constant. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that dose rate constant may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S(K) and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for dose rate constant was derived for point sources with known photon energy spectra. This approach enabled a systematic study of dose rate constant as a function of energy. Using the measured energy spectra, the calculated dose rate constant for 125I model 6711 and 6702 seeds and for 192Ir seed agreed with the AAPM recommended values within +/-1%. For the 103Pd model 200 seed, the agreement was 5% with a recently measured value (within the +/-7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for dose rate constant proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known. PMID:11213926

  8. Dose characterization in the near-source region for two high dose rate brachytherapy sources.

    PubMed

    Wang, Ruqing; Li, X Allen

    2002-08-01

    High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413

  9. Modeling indoor air concentrations near emission sources in imperfectly mixed rooms.

    PubMed

    Furtaw, E J; Pandian, M D; Nelson, D R; Behar, J V

    1996-09-01

    Assessments of exposure to indoor air pollutants usually employ spatially well-mixed models which assume homogeneous concentrations throughout a building or room. However, practical experience and experimental data indicate that concentrations are not uniform in rooms containing point sources of emissions; concentrations tend to be greater in close proximity to the source than they are further from it. This phenomenon could account for the observation that "personal air" monitors frequently yield higher concentrations than nearby microenvironmental monitors (i.e., the so-called "personal cloud" effect). In this project, we systematically studied the concentrations of a tracer gas at various distances from its emission source in a controlled-environment, room-size chamber under a variety of ventilation conditions. Measured concentrations in the proximity of the source deviated significantly above the predictions of a conventional well-mixed single-compartment mass balance model. The deviation was found to be a function of distance from the source and total room air flow rate. At typical air flow rates, the average concentration at arm's length (approximately 0.4 meters) from the source exceeds the theoretical well-mixed concentration by a ratio of about 2:1. However, this ratio is not constant; the monitored concentration appears to vary randomly from near the theoretical value to several times above it. Concentration data were fitted to a two-compartment model with the source located in a small virtual compartment within the room compartment. These two compartments were linked with a stochastic air transfer rate parameter. The resulting model provides a more realistic simulation of exposure concentrations than does the well-mixed model for assessing exposure to emissions from active sources. Parameter values are presented for using the enhanced model in a variety of typical situations. PMID:8925388

  10. The source location of certain Jovian decametric radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1983-01-01

    Evidence is presented which supports the concept that certain of the Jovian decametric radio waves originate as northern hemisphere extraordinary mode cyclotron emissions. The wave signals received by Voyager 1 near 10 MHz shortly after the closest approach to Jupiter were found to exhibit cusps in the fringe pattern which can be attributed to Faraday rotation in the Io plasma torus. At nearly the same time, the wave polarization near 1 MHz was found to exhibit a sudden reversal of its rotation sense, indicating that the wave path for those frequencies had also become perpendicular to the magnetic field at the spacecraft. It was determined that the waves came from the northern hemisphere at progressively lower altitudes with increasing frequency, and if the source is assumed to be associated with an L = 6 field line, the emission appears to have occurred near the source cyclotron frequency somewhere in the local midnight sector. The evidence indicates that the source is at the Io flux tube and that the emitted wave mode must have been extraordinary. In addition, the emitted wave polarization must have been substantially noncircular which would require a low plasma density near the source, much like that which occurs with auroral kilometric radiation at the earth.

  11. Predicting Changes in the Radio Emission Fluxes of Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Sukharev, A. L.; Ryabov, M. I.; Donskikh, G. I.

    2016-06-01

    Data from long-term monitoring with the 26-m University of Michigan radio telescope at a frequency of 14.5 GHz (1974-2011) is used to predict changes in the radio emission fluxes from the extragalactic sources 3C273, 3C120, 3C345, 3C446, 3C454.3, OJ287, OT081, and BLLac. The predictions are based on data on the major periods of variability and their durations obtained by wavelet analysis. The radio emission fluxes from the sources 3C345, 3C446, and 3C454.3, which have complicated variabilities, are predicted using an autoregression linear prediction method. This yields a forecast of the flux variations extending up to 5 years. Harmonic prediction is used for another group of sources, BLLac, OJ287, and OT081, with rapid variability. This approach yielded forecasts extending 4-9 years. For the sources 3C273 and 3C120, which have stable long periods, the harmonic method was also used and yielded a forecast extending up to 16 years. The reliability of the prediction was confirmed by independent observational data from the MOJAVE program for 2011-2015.

  12. Rate effect on mechanical properties of hydraulic concrete flexural-tensile specimens under low loading rates using acoustic emission technique.

    PubMed

    Su, Huaizhi; Hu, Jiang; Tong, Jianjie; Wen, Zhiping

    2012-09-01

    Acoustic emission (AE) waveform is generated by dislocation, microcracking and other irreversible changes in a concrete material. Based on the AE technique (AET), this paper focuses on strain rate effect on physical mechanisms of hydraulic concrete specimens during the entire fracture process of three point bending (TPB) flexural tests at quasi-static levels. More emphasis is placed on the influence of strain rate on AE hit rate and AE source location around peak stress. Under low strain rates, namely 0.77×10(-7)s(-1), 1×10(-7)s(-1) to 1×10(-6)s(-1) respectively, the results show that the tensile strength increases as the strain rate increases while the peak AE hit rate decreases. Meanwhile, the specimen under a relatively higher strain rate shows a relatively wider intrinsic process zone in a more diffuser manner, lots of distributed microcracks relatively decrease stress intensity, thus delay both microcracking localization and macrocrack propagation. These phenomena can be attributed to Stéfan effect. In addition, further tests, namely the combination of AE monitoring and strain measuring systems was designed to understand the correlation between AE event activity and microfracture (i.e., microcracking and microcracking localization). The relative variation trend of cumulative AE events accords well with that of the load-deformation curve. PMID:22534061

  13. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China.

    PubMed

    Zhang, Lei; Wang, Shuxiao; Wang, Long; Wu, Ye; Duan, Lei; Wu, Qingru; Wang, Fengyang; Yang, Mei; Yang, Hai; Hao, Jiming; Liu, Xiang

    2015-03-01

    China is the largest contributor to global atmospheric mercury (Hg), and accurate emission inventories in China are needed to reduce large gaps existing in global Hg mass balance estimates and assess Hg effects on various ecosystems. The China Atmospheric Mercury Emission (CAME) model was developed in this study using probabilistic emission factors generated from abundant on-site measurements and literature data. Using this model, total anthropogenic Hg emissions were estimated to be continuously increasing from 356 t in 2000 to 538 t in 2010 with an average annual increase rate of 4.2%. Industrial coal combustion, coal-fired power plants, nonferrous metal smelting, and cement production were identified to be the dominant Hg emission sources in China. The ten largest contributing provinces accounted for nearly 60% of the total Hg emissions in 2010. Speciated Hg emission inventory was developed over China with a grid-resolution of 36 × 36 km, providing needed emission fields for Hg transport models. In this new inventory, the sectoral Hg speciation profiles were significantly improved based on the latest data from field measurements and more detailed technology categorization. The overall uncertainties of the newly developed inventory were estimated to be in the range of -20% to +23%. PMID:25655106

  14. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions.

    PubMed

    Segarra, K E A; Schubotz, F; Samarkin, V; Yoshinaga, M Y; Hinrichs, K-U; Joye, S B

    2015-01-01

    The role of anaerobic oxidation of methane (AOM) in wetlands, the largest natural source of atmospheric methane, is poorly constrained. Here we report rates of microbially mediated AOM (average rate=20 nmol cm(-3) per day) in three freshwater wetlands that span multiple biogeographical provinces. The observed AOM rates rival those in marine environments. Most AOM activity may have been coupled to sulphate reduction, but other electron acceptors remain feasible. Lipid biomarkers typically associated with anaerobic methane-oxidizing archaea were more enriched in (13)C than those characteristic of marine systems, potentially due to distinct microbial metabolic pathways or dilution with heterotrophic isotope signals. On the basis of this extensive data set, AOM in freshwater wetlands may consume 200 Tg methane per year, reducing their potential methane emissions by over 50%. These findings challenge precepts surrounding wetland carbon cycling and demonstrate the environmental relevance of an anaerobic methane sink in ecosystems traditionally considered strong methane sources. PMID:26123199

  15. Transition rates and transition rate diagrams in atomic emission spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2015-08-01

    In low pressure plasmas with low electron densities, such as glow discharges, radiative de-excitation is a major de-excitation process of most excited states. Their relative de-excitation rates can be determined by emission spectroscopy, making it possible to study excitation processes in these discharges. This is in contrast to denser plasmas, in which such considerations are usually based on relative populations of excited states and concepts related to thermodynamic equilibrium. In the approach using reaction rates rather than populations, a convenient tool is the recently introduced formalism of transition rate diagrams. This formalism is reviewed, its relevance to different plasmas is discussed and some recent results on glow discharge excitation of manganese, copper and iron ions are presented. The prospects for the use of this formalism for the comparison of rate constants and cross sections for charge transfer reactions with argon ions of elements of interest in analytical glow discharge spectroscopy are discussed.

  16. Smog O3 Production Rate in California Air: Marker Compounds Allow Checks on Source Attribution to Fire and Other Sources

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Esswein, R. F.; Cai, C.; Kaduwela, A.; Kulkarni, S.; Blake, D. R.; Weinheimer, A. J.; Fried, A.; Huey, L. G.

    2012-12-01

    We are able to attribute sources of both radical reactivity and NO that determined the smog-chemical production rate of ozone, P(O3), for NASA's wide-ranging sampling of California air in June, 2008, part of the ARCTAS intensive. We relate formaldehyde, HCHO, and reactive nitrogen oxides, NOx, to a variety of distinct "marker" species that identify origins. We have labeled the sources and markers as (i) Fire emissions (CH3CN), (ii) Biogenic emissions (Isoprene), (iii) Urban/business emissions (CHCl3), (iv) Transport-related fuel consumption, (SO2), and (v) Refining/Port emissions ("residual" toluene). We use multiple linear regression with some appropriate restrictions. We achieve R-squared or explained variance of 88% for HCHO (VOC's) and 60% for NOx. HCHO and NOx are slowly evolving measures of potential ozone generation. The two related but radiation-influenced measures j (HCHO->H+HCO) x [HCHO] and [NO] quantitatively, but non-linearly, relate to instantaneous ozone production in California air, with R-squared of 86-93%, just as in New York City (Chatfield et al., Atmos. Environ., 2010). Maps of attribution for 650 samples from the Port of San Diego to the Northern Sierra foothills, and offshore -— all show huge variability in source attributions for VOCs and NOx. They indicate a widespread fire-emission influence on VOCs as they produce peroxy radicals, but show no positive influence on NOx, in fact consuming NOx from other sources. Comparisons with simulations help to refine our attribution classes and also to check balances of VOC emissions in available inventories. The use of the P(O3) measures is directly translatable to a method for estimate smog-ozone production rate from space, as data from another intensive, DISCOVER-AQ, show. (Left) A rare example where all sources contribute significantly, with markers and tentative attributions marked. (Right) Three different situations describing the control of smog ozone production, all from the same geographic

  17. Comparison between modeled and experimental emission rates in ASTRAL argon plasmas.

    NASA Astrophysics Data System (ADS)

    Munoz, J.; Boivin, R.; Gardner, A.; Kamar, O.; Loch, S.; Ballance, C.

    2007-11-01

    Argon emission rate coefficients are measured in the ASTRAL helicon plasma source using a 0.33 m scanning monochromator and a CCD camera. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 - 10^13 cm-3 and Te = 2 - 10 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A rf compensated Langmuir probe is used to measure Te and ne. In this experiment Ar I, Ar II and Ar III transitions are monitored as a function of Te while ne is kept constant. Thus, experimental emission rates are obtained as a function of Te and compared to theoretical predictions. Using the ADAS suite of codes, we present spectral modeling of Ar plasmas produced in the ASTRAL helicon plasma source. Recent R-matrix electron-impact excitation data are combined with a new R-matrix calculation that includes pseudo-states contributions. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. Good to excellent agreement has been obtained by including Te and ne profiles in the modeling. The experiment-theory comparison confirms that Te is the dominant parameters in determining the emission rate coefficients in these plasmas.

  18. Hyperbolic source location of crack related acoustic emission in bone.

    PubMed

    O'Toole, John; Creedon, Leo; Hession, John; Muir, Gordon

    2013-01-01

    Little work has been done on the localization of microcracks in bone using acoustic emission. Microcrack localization is useful to study the fracture process in bone and to prevent fractures in patients. Locating microcracks that occur before fracture allows one to predict where fracture will occur if continued stress is applied to the bone. Two source location algorithms were developed to locate microcracks on rectangular bovine bone samples. The first algorithm uses a constant velocity approach which has some difficulty dealing with the anisotropic nature of bone. However, the second algorithm uses an iterative technique to estimate the correct velocity for the acoustic emission source location being located. In tests with simulated microcracks, the constant velocity algorithm achieves a median error of 1.78 mm (IQR 1.51 mm) and the variable velocity algorithm improves this to a median error of 0.70 mm (IQR 0.79 mm). An experiment in which the bone samples were loaded in a three point bend test until they fractured showed a good correlation between the computed location of detected microcracks and where the final fracture occurred. Microcracks can be located on bovine bone samples using acoustic emission with good accuracy and precision. PMID:23363217

  19. Observe Z sources at High Mass Accretion Rates

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2008-09-01

    We propose to test a new interpretation that links mass accretion rate to observed spectral changes in Z-sources in a diffwrent way than previously though. Integral part of the test is to catch Z-source on the horizontal branch (HB). There are a few sources where RXTE and previous observatories established a fairly accurate record of how often they appear on a specific spectral branch. 4 observations for 8 ks each has a 50% chance to observe GX 5-1 on the HB.

  20. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions

    NASA Astrophysics Data System (ADS)

    Roumeliotis, Taylor S.; Dixon, Brad J.; Van Heyst, Bill J.

    2010-10-01

    This paper characterizes the emission rates of size fractionated particulate matter, inorganic aerosols, acid gases, ammonia and methane measured over four flocks at a commercial broiler chicken facility. Mean emission rates of each pollutant, along with sampling notes, were reported in this paper, the first in a series of two. Sampling notes were needed because inherent gaps in data may bias the mean emission rates. The mean emission rates of PM 10 and PM 2.5 were 5.0 and 0.78 g day -1 [Animal Unit, AU] -1, respectively, while inorganic aerosols mean emission rates ranged from 0.15 to 0.46 g day -1 AU -1 depending on the season. The average total acid gas emission rate was 0.43 g day -1 AU -1 with the greatest contribution from nitrous and nitric acids and little contribution from sulfuric acid (as SO 2). Ammonia emissions were seasonally dependent, with a mean emission rate of 66.0 g day -1 AU -1 in the cooler seasons and 94.5 g day -1 AU -1 during the warmer seasons. Methane emissions were relatively consistent with a mean emission rate of 208 g day -1 AU -1. The diurnal pattern in each pollutant's emission rate was relatively consistent after normalizing the hourly emissions according to each daily mean emission rate. Over the duration of a production cycle, all the measured pollutants' emissions increased proportionally to the total live mass of birds in the house, with the exception of ammonia. Interrelationships between pollutants provide evidence of mutually dependent release mechanisms, which suggests that it may be possible to fill data gaps with minimal data requirements. In the second paper (Roumeliotis, T.S., Dixon, B.J., Van Heyst, B.J. Characterization of gaseous pollutants and particulate matter emission rates from a commercial broiler operation part II: correlated emission rates. Atmospheric Environment, 2010.), regression correlations are developed to estimate daily mean emission rates for data gaps and, using the normalized hourly diurnal

  1. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia (NH3) emissions are a substantial source of nitrogen pollution to sensitive terrestrial, aquatic, and marine ecosystems. Dependable quantification of NH3 sources is of growing importance due to recently observed increases in ammonium (NH4+) deposition rates that are directly proportional to ...

  2. Locating and estimating air emissions from sources of chlorobenzenes (revised March 1994). Final report

    SciTech Connect

    Not Available

    1994-03-01

    ;Table of Contents: Background; Emissions from Chlorobenzenes Production; Emissions from Major Uses of Chlorobenzene; Emission from the Use of Materials Containing Chlorobenzenes; Byproduct Emission -- Processes Unrelated to Production or Use of Chlorobenzenes; Ambient Air and Stationary Source Test Procedures; Potential Source Categories of Chlorobenzenes Emissions; Textile Fiber Dyeing Facilities with Annual Sales Greater Than $1 Million; and Summary of Emission Factors Listed in this Document.

  3. REVISED EMISSIONS ESTIMATION METHODOLOGIES FOR INDUSTRIAL, RESIDENTIAL, AND ELECTRIC UTILITY STATIONARY COMBUSTION SOURCES

    EPA Science Inventory

    The report describes the development of improved and streamlined EPA emission estimation methods for stationary combustion area sources by the Joint Emissions Inventory Oversight Group (JEIOG) research program. hese sources include categories traditionally labeled "other stationa...

  4. REVISED EMISSIONS ESTIMATION METHODOLOGIES FOR INDUSTRIAL, RESIDENTIAL, AND ELECTRIC UTILITY STATIONARY COMBUSTION SOURCES

    EPA Science Inventory

    The report describes the development of improved and streamlined EPA emission estimation methods for stationary combustion area sources by the Joint Emissions Inventory Oversight Group (JEIOG) research program. These sources include categories traditionally labeled "other statio...

  5. EMISSIONS ASSESSMENT OF CONVENTIONAL STATIONARY COMBUSTION SYSTEMS: VOLUME IV. COMMERCIAL/INSTITUTIONAL COMBUSTION SOURCES

    EPA Science Inventory

    The report characterizes air emissions from commercial/institutional external combustion sources and reciprocating engines and is the fourth of a series of five project reports characterizing emissions from conventional combustion sources. This characterization was based on a cri...

  6. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. PMID:23897802

  7. Tunable Casimir-Polder Forces and Spontaneous Emission Rates

    NASA Astrophysics Data System (ADS)

    Rosa, Felipe; Kort-Kamp, Wilton; Pinheiro, Felipe; Cysne, Tarik; Oliver, Diego; Farina, Carlos

    2015-03-01

    We investigate the dispersive Casimir-Polder interaction between a Rubidium atom and a graphene sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for a high degree of control of dispersive interactions at micro and nanoscales. Indeed, we show that the application of an external magnetic field can induce a 80 % reduction of the Casimir-Polder energy relative to its value without the field. We also show that sharp discontinuities emerge in the Casimir-Polder interaction energy for certain values of the applied magnetic field at low temperatures. In addition, we also show that atomic spontaneous emission rates can be greatly modified by the action of the magnetic field, with an order of magnitude enhancement or suppression depending on the dipole's moment orientation.

  8. Outer heliospheric radio emissions. II - Foreshock source models

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  9. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources.

    PubMed

    Kai, Fuu Ming; Tyler, Stanley C; Randerson, James T; Blake, Donald R

    2011-08-11

    Atmospheric methane (CH(4)) increased through much of the twentieth century, but this trend gradually weakened until a stable state was temporarily reached around the turn of the millennium, after which levels increased once more. The reasons for the slowdown are incompletely understood, with past work identifying changes in fossil fuel, wetland and agricultural sources and hydroxyl (OH) sinks as important causal factors. Here we show that the late-twentieth-century changes in the CH(4) growth rates are best explained by reduced microbial sources in the Northern Hemisphere. Our results, based on synchronous time series of atmospheric CH(4) mixing and (13)C/(12)C ratios and a two-box atmospheric model, indicate that the evolution of the mixing ratio requires no significant change in Southern Hemisphere sources between 1984 and 2005. Observed changes in the interhemispheric difference of (13)C effectively exclude reduced fossil fuel emissions as the primary cause of the slowdown. The (13)C observations are consistent with long-term reductions in agricultural emissions or another microbial source within the Northern Hemisphere. Approximately half (51 ± 18%) of the decrease in Northern Hemisphere CH(4) emissions can be explained by reduced emissions from rice agriculture in Asia over the past three decades associated with increases in fertilizer application and reductions in water use. PMID:21833086

  10. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  11. Biosolid stockpiles are a significant point source for greenhouse gas emissions.

    PubMed

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2014-10-01

    The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (<1 year old) had the greatest CH4 and N2O emissions of 60.2 kg of CO2-e per Mg of biosolid per year. Stockpiles that were between 1 and 3 years old emitted less overall GHG (∼29 kg CO2-e Mg(-1) yr(-1)) and the oldest stockpiles emitted the least GHG (∼10 kg CO2-e Mg(-1) yr(-1)). Methane emissions were negligible in all stockpiles but the relative contribution of N2O and CO2 changed with stockpile age. The youngest stockpile emitted two thirds of the GHG emission as N2O, while the 1-3 year old stockpile emitted an equal amount of N2O and CO2 and in the oldest stockpile CO2 emissions dominated. We did not detect any seasonal variability of GHG emissions and did not observe a correlation between GHG flux and environmental variables such as biosolid temperature, moisture content or nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over

  12. Mapping Fugitive Gas Emission Sources and Severity Across Southeastern Saskatchewan

    NASA Astrophysics Data System (ADS)

    Baillie, J.; Risk, D. A.; Lavoie, M.; Williams, J. P.

    2015-12-01

    Southeastern Saskatchewan, Canada contains a 10,000 km2 region heavily developed by oil and gas activity that has been struggling with air quality issues, arising from hundreds or thousands of oil and gas leak points. The region is also very diverse in terms of oilfield operators, who use extraction techniques including conventional, enhanced oil recovery (EOR), and fracking. As regulators and operators need more knowledge about emission patterns locally, we undertook comprehensive mapping and characterization of leak sources at the regional scale using vehicle-based data collection, together with computational techniques. We measured the presence and source of fugitive emissions from infrastructure and oilfield activities in eight 100 km2 survey domains. These included two controls with no oil and gas activity, and otherwise the domains were selected to capture the diversity of development; targeting primarily conventional and EOR activities in the Weyburn-Midale beds, and unconventional activities in the Bakken play. A total of 25 unique operators fell within the survey domains. Each domain was surveyed multiple times for CO2, CH4, and H2S, allowing us to identify persistent leaks and to screen out one-time events. The multiple gas targets also provided opportunities for discriminating one type of fugitive emission from another (i.e. flares from storage tanks) using ratios of excess (above ambient) concentrations, after correcting for natural background variability with a signal-processing routine. Fugitive emissions were commonly observed in all study domains. Most emissions were associated with oil and gas infrastructure, as opposed to drilling and other short-term activities. There were obvious emissions at many well pads, storage tanks, and flares. We also observed high geochemical variability around flares, with some being very effective in combusting toxic gases, and others less so. Almost all observed concentrations fell below regulatory limits, but have a

  13. Environmental tobacco smoke: mutagenic emission rates and their relationship to other emission factors

    SciTech Connect

    Lewtas, J.; Williams, K.; Lofroth, G.; Hammond, K.; Leaderer, B.

    1987-05-01

    The objective of this study was to evaluate the emission rates and exposure concentrations of mutagens, nicotine, and particles from cigarettes. Studies were conducted under controlled laboratory and chamber conditions as well as in personal residences. The mutagenicity of environmental tobacco smoke (ETS) was evaluated in three bioassays using two strains of Salmonella typhimurium. Strain TA98 was used in the standard plate-incorporation and microsuspension histidine reversion assays; and strain TM677 in a microsuspension forward mutation assay. The mutagenicity, expressed either per Ug particle or per Ug nicotine, appeared to be a relatively constant factor that did not vary significantly between various cigarette brands. These data are being used to model the emissions of mutagens to predict mutagenic exposure concentrations under various conditions.

  14. Cooperative Emission of Dye Molecules at High Dephasing Rates

    NASA Astrophysics Data System (ADS)

    Klochkov, V. P.; Verkhovskiĭ, E. B.

    2000-05-01

    The dependence of the emission of a concentrated (˜1019 cm-3 solution of Rhodamine C on the power density Φ of exciting laser radiation was studied. The emission intensity for the power density of exciting radiation above ˜1025 cm-2 s-1 was found to have a nearly quadratic dependence on the power density Φ, and this emission was interpreted as the cooperative spontaneous emission of a Dicke type. For Φ≲1025 cm-2 s-1, the emission intensity increased with increasing Φ according to the exponential law. This emission was interpreted as the amplified spontaneous emission. The spectra of cooperative emission depended on the pump radiation power only weakly. The absence of lasing in dye solutions at high concentrations, which is a well-known phenomenon, was shown to be caused by the development of the cooperative spontaneous emission and not by the concentration quenching, and the former process is more rapid than the latter.

  15. Identifying Dust Sources in North Africa and Modeling Patterns of Dust Emissions From These Sources

    NASA Astrophysics Data System (ADS)

    Ballantine, J. A.; Okin, G. S.; Roberts, D. A.

    2003-12-01

    Atmospheric models are requiring more accurate representations of the surface in modeling emissions of dust from the surface and the nutrients attached to fine mineral particles. Regional to continental scale characterization of surface landforms that are susceptible to erosion has become possible with the advent of satellites that monitor the land surface at moderate spectral and spatial resolution (e.g. MODIS). The most productive dust sources in the world are in the Sahara Desert and the Sahel, in areas where human pressures may be making the landscape more susceptible to wind erosion. This project seeks to model dust emissions in the Sahara and Sahel with estimates of surface parameters from satellite imagery and ancillary data. A map of landforms for Africa, north of 10 degrees, was constructed using a multiple endmember spectral mixture analysis (MESMA) of the MODIS 500 meter, 7 band, reflectance product. The magnitude of surface winds acting on the landforms was determined from forecast models. Surface parameters (vegetation characteristics, threshold wind velocity, and grain size distribution) were estimated for the imagery. Estimates of nutrient concentration on Saharan/Sahelian dust were used to estimate nutrient emissions. The results highlight patterns of dust emission from sources in North Africa and are compared with modeled and observed sources in the literature.

  16. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I...

  17. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL...: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I meet for tire production affected sources? You must meet each emission limit in...

  18. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL...: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I meet for tire production affected sources? You must meet each emission limit in...

  19. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL...: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I meet for tire production affected sources? You must meet each emission limit in...

  20. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I...

  1. Radon source rate measurements using multiple perfluorocarbon tracers

    SciTech Connect

    D'Ottavio, T.W.; Dietz, R.N.; Kunz, C.; Kothari, B.

    1987-01-01

    In all passive monitoring system utilizing ..cap alpha..-track detectors for radon and perfluorocarbon tracer (PFT) samplers for ventilation has been used to measure radon entry rates for 60 homes located within four separate areas of New York State (USA). Each home was divided into two or three zones so that multiple PFTs and multizone mass balance models could be used to compute zonal radon source rates. The whole house radon source rate for all 60 homes, averaged for a 2 to 7 week time period during the winter of 85-86, had a geometric mean of 4.94 Bq/s and an arithmetic mean of 10.0 Bq/s. Zonal mass balance equations applied to a tracer emitted in the soil outside 45 of the homes showed that, on average, 55% of the emitted tracer actually entered the houses. Diffusion alone cannot account for such a high value.

  2. Measurements of Point Source Methane Emissions in the Barnett Shale and Eagle Ford Basins

    NASA Astrophysics Data System (ADS)

    Lavoie, T. N.; Shepson, P. B.; Cambaliza, M. O. L.; Karion, A.; Sweeney, C.; Kort, E. A.; Hirst, B.; Wolter, S.; Conley, S. A.; Faloona, I. C.; Lyon, D.; Alvarez, R.

    2014-12-01

    The global average temperature is rising as a result of anthropogenic emissions of greenhouse gases. The two organic carbon gases that contribute most to this warming are carbon dioxide (CO2) and methane (CH4). CH4, however, is 34 times more potent as a greenhouse gas than CO2 on a 100-year timescale, and 86 times more potent on a 20-year timescale. The ~12 year lifetime of CH4 means that measures to control methane emissions on the near-term time scale may have a relatively large climate benefit. The past decade has witnessed a dramatic increase in the reliance on natural gas (NG) to meet the energy needs of the U.S. To enable informed greenhouse gas policy and mitigation efforts, a comprehensive understanding of the nature and magnitude of CH4 emissions for various related NG technologies and engineering practices is required. Here we report results of our recent studies of the CH4 emission rate observed at eight different biogenic and NG point sources in the Barnett shale basin and a dozen well pads in the Eagle Ford shale region of Texas. We compare our field measurements to reported inventory estimates from the Greenhouse Gas Reporting Program (GHGRP). Using an aircraft-based mass balance approach, we found that the summed observed CH4 emission rates for our study sites were a factor of 2.5 to 4.5 greater than the GHGRP-based estimates, for the 8 sources we investigated in the Barnett shale region. The sum of the 5 Barnett NG sources we quantified had on average CH4 emissions 17.5X higher than the GHGRP inventory indicates. The sum of the 3 landfill emission rates were on average 1.5X greater than the inventory values. In the Eagle Ford shale region, high variability was observed in repeated measurements at the same well pads, highlighting the difficulty of assessing the character and statistics of the distribution of emissions from individual pads. These results indicate a need for better methods of emissions monitoring and reporting and highlight the

  3. Indoor acrolein emission and decay rates resulting from domestic cooking events

    NASA Astrophysics Data System (ADS)

    Seaman, Vincent Y.; Bennett, Deborah H.; Cahill, Thomas M.

    2009-12-01

    Acrolein (2-propenal) is a common constituent of both indoor and outdoor air, can exacerbate asthma in children, and may contribute to other chronic lung diseases. Recent studies have found high indoor levels of acrolein and other carbonyls compared to outdoor ambient concentrations. Heated cooking oils produce considerable amounts of acrolein, thus cooking is likely an important source of indoor acrolein. A series of cooking experiments were conducted to determine the emission rates of acrolein and other volatile carbonyls for different types of cooking oils (canola, soybean, corn and olive oils) and deep-frying different food items. Similar concentrations and emission rates of carbonyls were found when different vegetable oils were used to deep-fry the same food product. The food item being deep-fried was generally not a significant source of carbonyls compared to the cooking oil. The oil cooking events resulted in high concentrations of acrolein that were in the range of 26.4-64.5 μg m -3. These concentrations exceed all the chronic regulatory exposure limits and many of the acute exposure limits. The air exchange rate and the decay rate of the carbonyls were monitored to estimate the half-life of the carbonyls. The half-life for acrolein was 14.4 ± 2.6 h, which indicates that indoor acrolein concentrations can persist for considerable time after cooking in poorly-ventilated homes.

  4. Quantifying Molecular Hydrogen Emissions and an Industrial Leakage Rate for the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Irish, M. C.; Schroeder, J.; Beyersdorf, A. J.; Blake, D. R.

    2015-12-01

    The poorly understood atmospheric budget and distribution of molecular hydrogen (H2) have invited further research since the discovery that emissions from a hydrogen-based economy could have negative impacts on the global climate system and stratospheric ozone. The burgeoning fuel cell electric vehicle industry in the South Coast Air Basin of California (SoCAB) presents an opportunity to observe and constrain urban anthropogenic H2 emissions. This work presents the first H2 emissions estimate for the SoCAB and calculates an upper limit for the current rate of leakage from production and distribution infrastructure within the region. A top-down method utilized whole air samples collected during the Student Airborne Research Program (SARP) onboard the NASA DC-8 research aircraft from 23-25 June 2015 to estimate H2 emissions from combustion and non-combustion sources. H2:carbon monoxide (CO) and H2:carbon dioxide ratios from airborne observations were compared with experimentally established ratios from pure combustion source ratios and scaled with the well-constrained CO emissions inventory to yield H2 emissions of 24.9 ± 3.6 Gg a-1 (1σ) from combustion engines and 8.2 ± 4.7 Gg a-1 from non-combustion sources. Total daily production of H2 in the SoCAB was compared with the top-down results to estimate an upper limit leakage rate (5%) where all emissions not accounted for by incomplete combustion in engines were assumed to be emitted from H2 infrastructure. For bottom-up validation, the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory dispersion model was run iteratively with all known stationary sources in attempt to constrain emissions. While this investigation determined that H2 emissions from non-combustion sources in the SoCAB are likely significant, more in-depth analysis is required to better predict the atmospheric implications of a hydrogen economy.

  5. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  6. Nitrogen placement and source effects on nitrous oxide emissions and yields of irrigated corn.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J

    2013-01-01

    Limited information is available on how N fertilizer placement affects soil nitrous oxide (NO) emissions under irrigated conditions in the semiarid western United States. Our objective was to compare surface banding near corn row and broadcasting of three N sources (urea, polymer-coated urea [PCU], and stabilized urea [SU] containing urease and nitrification inhibitors) on NO emissions from a clay loam soil under sprinkler-irrigated continuous corn production. The N fertilizers were applied at a rate of 202 kg N ha to strip-till (2010 and 2011) and no-till (2011) corn at crop emergence, with ∼19 mm irrigation water applied the next day. Band-applied N had a 1.46-fold greater NO emission than broadcast N averaged over N sources and three studies. Soil NO-N emissions from urea were 1.48- and 1.74-fold greater than from PCU and SU, respectively, when averaged over N placement and studies. The N placement × source interaction was not significant. Averaged across studies, grain yield and N uptake did not vary with N placement, whereas grain yields were greater for SU than PCU but were not different from urea. Nitrous oxide emissions per unit of N applied, per unit of grain yield, and per unit N uptake were 59, 49, and 47% greater, respectively, with banded than with broadcast N fertilizer. These studies show that N placement and N source selection are important manageable factors that can affect NO emissions and need to be considered when developing NO mitigation practices in irrigated cropping systems in the semiarid western United States. PMID:23673823

  7. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    SciTech Connect

    Kyle, P.R.; Meeker, K. ); Finnegan, D. )

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.

  8. Particle mass emission rates from current-technology, light-duty gasoline vehicles.

    PubMed

    Chase, R E; Duszkiewicz, G J; Jensen, T E; Lewis, D; Schlaps, E J; Weibel, A T; Cadle, S; Mulawa, P

    2000-06-01

    Now that the U.S. Environmental Protection Agency has promulgated new National Ambient Air Quality Standards for PM2.5, work will begin on generating the data required to determine the sources of ambient PM2.5 and the magnitude of their contributions to air pollution. This paper summarizes the results of an Environmental Research Consortium program, carried out under the auspices of the U.S. Council for Automotive Research. The program focused on particulate matter (PM) emissions from representative, current-technology, light-duty gasoline vehicles produced by DaimlerChrysler Corp., Ford Motor Co., and General Motors Corp. The vehicles, for the most part taken from the manufacturer's certification and durability fleets, were dynamometer-tested using the three-phase Federal Test Procedure in the companies' laboratories. The test fleet was made up of a mixture of both low-mileage (2K-35K miles) and high-mileage (60K-150K miles) cars, vans, sport utility vehicles, and light trucks. For each vehicle tested, PM emissions were accumulated over 4 cold-start tests, which were run on successive days. PM emission rates from the entire fleet (22 vehicles total) averaged less than 2 mg/mile. All 18 vehicles tested using California Phase 2 reformulated gasoline had PM emission rates less than 2 mg/mile at both low and high mileages. PMID:10902385

  9. Far-Infrared sources and diffuse emission in M31

    NASA Technical Reports Server (NTRS)

    Xu, Cong; Helou, George

    1994-01-01

    A study on the far-infrared (FIR) emission of M31 has been carried out with the High Resolution (HiRes) maps (approx. 1 min) derived from IRAS data. Sixty-eight FIR sources are detected in M31, which in general coincide with optical HII regions, and contribute 15, 23, 29, and 23 percent to the fluxes in 12, 25, 60, and 100 micron bands, respectively. The remaining diffuse emission, which dominates the FIR emission of M31, is studied using a dust heating model which utilizes the UV and optical photometry maps and the HI maps available in the literature. It is found that the global dust-to-gas ratio in M31 disk is 6.5 10(exp -3), very close to the dust-to-gas ratio in the solar neighborhood. There is a significant galactocentric gradient of the dust-to-HI-gas ratio, with an e-folding scale length of 9 kpc. The diffuse dust correlates tightly with the HI gas. The model indicates that the non-ionizing UV (913-4000A) radiation from massive and intermediate massive stars contributes only about 30 percent of the heating of the diffuse dust, while the optical-NIR (4000-9000A) radiation from the old stellar population is responsible for the most of the heating.

  10. Atmospheric Modeling and Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Turnbull, J. C.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.; Norris, M. W.; Zondervan, A.

    2014-12-01

    Emissions from large point sources (electricity generation and large-scale industry) of fossil fuel CO2 (CO2ff) emissions are currently determined from self-reported "bottom-up" inventory data, with an uncertainty of about 20% for individual power plants. As the world moves towards a regulatory environment, there is a need for independent, objective measurements of these emissions both to improve the accuracy of and to verify the reported amounts. "Top-down" atmospheric methods have the potential to independently constrain point source emissions, combining observations with atmospheric transport modeling to derive emission estimates. We use the Kapuni Gas Treatment Plant to examine methodologies and model sensitivities for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes and vents CO2 from locally extracted natural gas at a rate of ~0.1 Tg carbon per year. We measured the CO2ff content in three different types of observations: air samples collected in flasks over a period of a few minutes, sodium hydroxide solution exposed the atmosphere, and grass samples from the surrounding farmland, the latter two representing ~1 week integrated averages. We use the WindTrax Lagrangian plume dispersion model to compare these atmospheric observations with "expected" values given the emissions reported by the Kapuni plant. The model has difficulty accurately capturing the short-term variability in the flask samples but does well in representing the longer-term averages from grass samples, suggesting that passive integrated-sampling methods have the potential to monitor long-term emissions. Our results indicate that using this method, point source emissions can be verified to within about 30%. Further improvements in atmospheric transport modelling are needed to reduce uncertainties. In view of this, we discuss model strengths and weaknesses and explore model sensitivity to meteorological conditions

  11. Acoustic emission source modeling using a data-driven approach

    NASA Astrophysics Data System (ADS)

    Cuadra, J.; Vanniamparambil, P. A.; Servansky, D.; Bartoli, I.; Kontsos, A.

    2015-04-01

    The next generation of acoustics-based non-destructive evaluation for structural health monitoring applications will depend, among other reasons, on the capability to effectively characterize the transient stress wave effects related to acoustic emission (AE) generated due to activation of failure mechanisms in materials and structures. In this context, the forward problem of simulating AE is addressed herein by a combination of experimental, analytical and computational methods, which are used to form a data-driven finite element (FE) model for AE generation and associated transient elastic wave propagation. Acoustic emission is viewed for this purpose as part of the dynamic process of energy release caused by crack initiation. To this aim, full field experimental data obtained from crack initiation monitored by digital image correlation is used to construct a traction-separation law and to define damage initiation parameters. Subsequently, 3D FE simulations based on this law are performed using both a cohesive and an extended finite element modeling approach. To create a realistic computational AE source model, the transition between static and dynamic responses is evaluated. Numerically simulated AE signals from the dynamic response due to the onset of crack growth are analyzed in the context of the inverse problem of source identification and demonstrate the effects of material and geometry in crack-induced wave propagation.

  12. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  13. Source identification of benzene emissions in Texas City using an adjoint neighborhood scale transport model

    NASA Astrophysics Data System (ADS)

    Guven, B.; Olaguer, E. P.; Herndon, S. C.; Kolb, C. E.; Cuclis, A.

    2012-12-01

    During the "Formaldehyde and Olefins from Large Industrial Sources" (FLAIR) study in 2009, the Aerodyne Research Inc. (ARI) mobile laboratory performed real-time in situ measurements of VOCs, NOx and HCHO in Texas City, TX on May 7, 2009 from 11 am to 3 pm. This high resolution dataset collected in a predominantly industrial area provides an ideal test bed for advanced source attribution. Our goal was to identify and quantify emission sources within the largest facility in Texas City most likely responsible for measured benzene concentrations. For this purpose, fine horizontal resolution (200 m x 200 m) 4D variational (4Dvar) inverse modeling was performed by running the HARC air quality transport model in adjoint mode based on ambient concentrations measured by the mobile laboratory. The simulations were conducted with a horizontal domain size of 4 km x 4 km for a four-hour period (11 am to 3 pm). Potential emission unit locations within the facility were specified using a high spatial resolution digital model of the largest industrial complex in the area. The HARC model was used to infer benzene emission rates from all potential source locations that would account for the benzene concentrations measured by the Aerodyne mobile laboratory in the vicinity of the facility. A Positive Matrix Factorization receptor model was also applied to the concentrations of other compounds measured by the mobile lab to support the source attribution by the inverse model. Although previous studies attributed measured benzene concentrations during the same time period to a cooling tower unit at the industrial complex, this study found that some of the flare units in the facility were also associated with the elevated benzene concentrations. The emissions of some of these flare units were found to be greater than reported in emission inventories, by up to two orders of magnitude.

  14. Contribution of Changing Sources and Sinks to the Growth Rate of Atmospheric Methane Concentrations for the Last Two Decades

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Walter, B.; Bogner, J.; Sarma, D.; Portney, B.; Hansen, James (Technical Monitor)

    2000-01-01

    In situ measurements of atmospheric methane concentrations begun in the early 1980s show decadal trends, as well as large interannual variations, in growth rate. Recent research indicates that while wetlands can explain several of the large growth anomalies for individual years, the decadal trend may be the combined effect of increasing sinks, due to increases in tropospheric OH, and stabilizing sources. We discuss new 20-year histories of annual, global source strengths for all major methane sources, i.e., natural wetlands, rice cultivation, ruminant animals, landfills, fossil fuels, and biomass burning, and present estimates of the temporal pattern of the sink required to reconcile these sources and atmospheric concentrations over the time period. Analysis of the individual emission sources, together with model-derived estimates of the OH sink strength, indicates that the growth rate of atmospheric methane observed over the last 20 years can only be explained by a combination of changes in source emissions and an increasing tropospheric sink.

  15. Atmospheric dispersion modeling with AERMOD for comparative impact assessment of different pollutant emission sources in an Alpine context

    NASA Astrophysics Data System (ADS)

    Antonacci, Gianluca; Giovannini, Lorenzo; Tomasi, Elena; Zardi, Dino

    2015-04-01

    High-resolution simulations are performed with the AERMOD model to analyze the impact on air quality of different pollutant emission sources in the area surrounding the town of Vipiteno in the northeastern Italian Alps. In this area the environmental burden of pollutant emissions is particularly high because of both its complex terrain and the presence of specific pollutant sources. In this study the effects of the main sources are analyzed and compared: the A22 motorway, which leads to the Brenner pass, the town of Vipiteno, mainly characterized by intensive use of biomass for house heating, three major plants with high emission rates, and a parking lot located near the motorway, offering park spaces for up to 260 trucks and 50 cars. To assess the impact of these pollution sources the AERMOD model is run with a spatial resolution of 25 m and with meteorological input data obtained from different datasets, such as annual series of standard meteorological variables taken from local weather stations and a set of vertical soundings. During the simulations the sources are modeled in different ways depending on the type of the emissions: the motorway is modeled as a linear source, the village as a diffuse source, the local companies as point sources and the parking lot is modeled as a composition of a diffuse source, representing the idling vehicles inside the park, and of a linear source, representing the access routes to the parking. For each type of source, specific emission factors are chosen, and hourly and seasonal emission patterns are set with particular attention to the analysis of idling vehicle emission factors. The results of the simulations are analyzed in terms of NO2 and PM10 and the impact of each source is discussed.

  16. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass...

  17. Validation of Point Source Emissions of SO2 Using Aircraft Data

    NASA Astrophysics Data System (ADS)

    Fiddler, M. N.; Green, J. R.; Bililign, S.; McDuffie, E.; Fibiger, D. L.; Brown, S. S.; Jaegle, L.; Weinheimer, A. J.; Thornton, J. A.; Campos, T. L.; Shah, V.; Lopez-Hilfiker, F.; Lee, B. H.; Haskins, J.; Sparks, T.; Ebben, C. J.; Wooldridge, P. J.; Cohen, R. C.; Veres, P. R.; Dibb, J. E.; Schroder, J. C.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Sullivan, A.; Guo, H.; Weber, R. J.; Leen, J. B.; DiGangi, J. P.; Wolfe, G. M.

    2015-12-01

    Emissions inventories of SO2 in the Eastern United States have largely relied on point source measurements from power plants. A comparison will be made between these source measurements and in situ measurements using the TECO 43C SO2 analyzer a CO/CO2 analyzer during an airborne platform aboard the NCAR C-130 plane during wintertime conditions, which was part of a suite of measurements taken during the Wintertime Investigation of Transport, Emission, and Reactivity (WINTER) 2015 field campaign. The data obtained originates from a series of survey night and day flights that occurred from Feb 3 to Mar 13, 2015 over the Eastern coastal region of the United States ranging from New York to Florida. SO2/CO2 mixing ratios will be compared from three sources: power plant emission values (taking into account dispersion), chemical forecast predictions, and aircraft data. During the winter the removal processes for gaseous SO2 are slower, which results in a measurably longer atmospheric lifetime. Loss, emission, and dispersion rates will be discussed.

  18. Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawai`i, an Update: 1998-2001

    USGS Publications Warehouse

    Elias, Tamar; Sutton, A. Jefferson

    2002-01-01

    Introduction Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Greenland and others, 1985; Casadevall and others, 1987; Elias and others, 1998; Sutton and others, 2001). A compilation of SO2 emission-rate and wind-vector data from 1979 through 1997 is available as Open-File Report 98-462 (Elias and others, 1998) and on the web at http://hvo.wr.usgs.gov/products/OF98462/. The purpose of this report is to update the existing database through 2001. Kilauea releases SO2 gas predominantly from its summit caldera and east rift zone (ERZ) (fig. 1), as described in previous reports (Elias and others, 1998; Sutton and others, 2001). These two distinct sources are quantified independently. The summit and east rift zone emission rates reported here were derived using vehicle-based Correlation Spectrometry (COSPEC) measurements as described in Elias and others (1998). In 1998 and 1999, these measurements were augmented with airborne and tripod-based surveys.

  19. Component Failure Rate Data Sources for Probabilistic Safety and Reliability

    SciTech Connect

    L. C. Cadwallader; S. A. Eide

    2010-09-01

    Probabilistic safety methods are being used in several industries, including chemical, manufacturing, and energy. When performing reliability studies or using probabilistic safety approaches, a basic need arises for input data on failure rates of the mechanical, electrical, instrumentation and control, and other components that comprise the engineering systems in the facility. Some companies have many types of data stored and can retrieve these in-house data for such uses. Other companies hire consultants to perform safety assessments; the consulting firms often use their own data bases. For those analysts who do not have either of those options available, this paper presents some data sources that are retrievable from the literature. These data sources have been evaluated with a basic rating of usefulness for analysis work, and each has a description of what data can be found in the citation that can be used to support assessments in industry. The accessibility of data documents via the internet is also described.

  20. COMBINING RATE-BASED AND CAP-AND-TRADE EMISSIONS POLICIES. (R828628)

    EPA Science Inventory

    Rate-based emissions policies (like tradable performance standards, TPS) fix average emissions intensity, while cap-and-trade (CAT) policies fix total emissions. This paper shows that unfettered trade between rate-based and cap-and-trade programs always raises combined emissio...

  1. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX emission rate. 75.12 Section 75.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate....

  2. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... for a NOX continuous emission monitoring system (CEMS) for each affected coal-fired unit, gas-fired... moisture content is needed to properly calculate the NOX emission rate in lb/mmBtu, e.g., if the...

  3. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    NASA Astrophysics Data System (ADS)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  4. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NASA Astrophysics Data System (ADS)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national

  5. VOC emissions of Grey poplar leaves as affected by salt stress and different N sources.

    PubMed

    Teuber, M; Zimmer, I; Kreuzwieser, J; Ache, P; Polle, A; Rennenberg, H; Schnitzler, J-P

    2008-01-01

    Nitrogen nutrition and salt stress experiments were performed in a greenhouse with hydroponic-cultured, salt-sensitive Grey poplar (Populus x canescens) plants to study the combined influence of different N sources (either 1 mm NO(3) (-) or NH(4)(+)) and salt (up to 75 mm NaCl) on leaf gas exchange, isoprene biosynthesis and VOC emissions. Net assimilation and transpiration proved to be highly sensitive to salt stress and were reduced by approximately 90% at leaf sodium concentrations higher than 1,800 microg Na g dry weight (dw)(-1). In contrast, emissions of isoprene and oxygenated VOC (i.e. acetaldehyde, formaldehyde and acetone) were unaffected. There was no significant effect of combinations of salt stress and N source, and neither NO(3)(-) or NH(4)(+) influenced the salt stress response in the Grey poplar leaves. Also, transcript levels of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PcDXR) and isoprene synthase (PcISPS) did not respond to the different N sources and only responded slightly to salt application, although isoprene synthase (PcISPS) activity was negatively affected at least in one of two experiments, despite high isoprene emission rates. A significant salt effect was the strong reduction of leaf dimethylallyl diphosphate (DMADP) content, probably due to restricted availability of photosynthates for DMADP biosynthesis. Further consequences of reduced photosynthetic gas exchange and maintaining VOC emissions are a very high C loss, up to 50%, from VOC emissions related to net CO(2) uptake and a strong increase in leaf internal isoprene concentrations, with maximum mean values up to 6.6 microl x l(-1). Why poplar leaves maintain VOC biosynthesis and emission under salt stress conditions, despite impaired photosynthetic CO(2) fixation, is discussed. PMID:18211549

  6. BASELINE EMISSIONS FORECASTS FOR INDUSTRIAL NON-BOILER SOURCES

    EPA Science Inventory

    The report gives regional air emission forecasts from three Process Model Projection Technique (PROMPT) runs. These estimates illustrate a range of possible future emissions. PROMPT, one of a number of National Acid Precipitation Assessment Program emission forecasting models, pr...

  7. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  8. Development of a composite line source emission model for traffic interrupted microenvironments and its application in particle number emissions at a bus station

    NASA Astrophysics Data System (ADS)

    Wang, Lina; Jayaratne, Rohan; Heuff, Darlene; Morawska, Lidia

    A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.

  9. Geographical distribution and source type analysis of toxic metal emissions

    SciTech Connect

    Benjey, W.G.; Conventry, D.H.

    1992-05-01

    An interim toxic emission inventory has been developed for the conterminous United States. Seven toxic metals found in lake and coastal waters are included: arsenic, cadmium, chromium, lead, mercury, nickel and selenium. The emissions are large relative to some estimates and demonstrate the importance of metal production in toxic metal emissions. In the absence of regional inventories dedicated to toxic emissions, there is a need for improvement of emission factors and speciation profiles for use with particulate emission inventories.

  10. An overview of key emissions sources and ambient pollution characteristics from major cities in North America

    NASA Astrophysics Data System (ADS)

    Herndon, Scott; Fortner, Edward; Knighton, Berk; Floerchinger, Cody; Yacovitch, Tara; Roscioli, Rob; Zahniser, Mark; Nelson, David; Kolb, Charles; Zavala, Miguel; Molina, Luisa

    2013-04-01

    Many urban anthropogenic emission sources are difficult to characterize. They can be distributed across a spatial scale that precludes specific vector sampling. Others are difficult to identify a specific point of emissions. Novel emissions quantification methods, including fuel-based emission indicies and tracer flux ratio, are described and evaluated for a variety of urban pollution sources. These techniques can be used to quantify emissions for a large range of species including methane and carbon dioxide isotopes, formaldehyde and other toxic volatile organic carbon compounds, nitrogen oxides, carbon monoxide and black carbon particulate matter. Results from urban emissions source case-studies using a mobile laboratory either alone or in conjunction with tracer-release will be described. These include on road light duty and heavy duty vehicle emissions, in-use aircraft engine emissions at airports, and industrial emission sources.

  11. Emission Characteristics and Stability of Laser Ion Sources

    SciTech Connect

    Krasa, J.; Velyhan, A.; Krousky, E.; Laska, L.; Rohlena, K.; Jungwirth, K.; Ullschmied, J.; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowksi, J.

    2010-10-13

    A new classification of laser ion sources concerning their pulse-to-pulse reproducibility in the ion emission is proposed. In particular, we distinguish between plasmas according to the electron distribution changing its characteristics at a laser intensity threshold of 10{sup 14} W/cm{sup 2}. Well reproducible continuous pulsed ion currents are typical for the intensity below the threshold. In contrast to this plasma the 'two-temperature' plasma arising for the intensity above this threshold shows not only a separation of charges in space and time but it also shows irregular and intense outbursts of ions similar to a self pulsing instability leading to a chaos. The sequence of fast ion outbursts visible on time-of-flight spectra is sensitive to details of non-linear interaction of the sub-nanosecond laser beam with the generated plasma.

  12. Improving transportation data for mobile source emission estimates. Final report

    SciTech Connect

    Chatterjee, A.; Miller, T.L.; Philpot, J.W.; Wholley, T.F.; Guensler, R.

    1997-12-31

    The report provides an overview of federal statutes and policies which form the foundation for air quality planning related to transportation systems development. It also provides a detailed presentation regarding the use of federally mandated air quality models in estimating mobile source emissions resulting from transportation development and operations. The authors suggest ways in which current practice and analysis tools can be improved to increase the accuracy of their results. They also suggest some priorities for additional related research. Finally, the report should assist federal agency practitioners in their efforts to improve analytical methods and tools for determining conformity. The report also serves as a basic educational resource for current and future transportation and air quality modeling.

  13. Extended H2 emission line sources from UWISH2

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Makin, S. V.; Davis, C. J.; Gledhill, T. M.; Kim, Y.; Koo, B.-C.; Rowles, J.; Eislöffel, J.; Nicholas, J.; Lee, J. J.; Williamson, J.; Buckner, A. S. M.

    2015-12-01

    We present the extended source catalogue for the UKIRT Wide Field Infrared Survey for H2 (UWISH2). The survey is unbiased along the inner Galactic Plane from l ≈ 357° to l ≈ 65° and |b| ≤ 1.5° and covers 209 deg2. A further 42.0 and 35.5 deg2 of high dust column density regions have been targeted in Cygnus and Auriga. We have identified 33 200 individual extended H2 features. They have been classified to be associated with about 700 groups of jets and outflows, 284 individual (candidate) planetary nebulae, 30 supernova remnants and about 1300 photodissociation regions. We find a clear decline of star formation activity (traced by H2 emission from jets and photodissociation regions) with increasing distance from the Galactic Centre. About 60 per cent of the detected candidate planetary nebulae have no known counterpart and 25 per cent of all supernova remnants have detectable H2 emission associated with them.

  14. Adaptive source rate control for wireless video conferencing

    NASA Astrophysics Data System (ADS)

    Liu, Hang; El Zarki, Magda

    1997-12-01

    Hybrid ARQ schemes can yield much better throughput and reliability than static FEC schemes for the transmission of data over time-varying wireless channels. However these schemes result in higher delay. They adapt to the varying channel conditions by retransmitting erroneous packets, this results in variable effective data rates for current PCS networks because the channel bandwidth is constant. Hybrid ARQ schemes are currently being proposed as the error control schemes for real-time video transmission. The standardization process is on-going in ITU, MPEG-4 and wireless ATM forum. The important issue is how to ensure low delay while taking advantage of the high throughput and reliability that these schemes provide for. In this paper we propose an adaptive source rate control (ASRC) protocol which can work together with the hybrid ARQ error control schemes to achieve efficient transmission of real-time video with low delay and high reliability. The ASRC scheme adjusts the source rate based on the channel conditions, the transport buffer occupancy and the delay constraints. It optimizes the video quality by dynamically changing both the number of the forced update (intracoded) macroblocks and the quantization scale used in a frame. The number of the forced update macroblocks used in a frame is first adjusted according to the allocated source rate. This reduces the fluctuation of the quantization scale with the change in the channel conditions during encoding so that the uniformity of the video quality is improved. The simulation results show that the proposed ASRC protocol performs very well for both slow fading and fast fading channels.

  15. Production and characterization of 228Th calibration sources with low neutron emission for GERDA

    NASA Astrophysics Data System (ADS)

    Baudis, L.; Benato, G.; Carconi, P.; Cattadori, C.; De Felice, P.; Eberhardt, K.; Eichler, R.; Petrucci, A.; Tarka, M.; Walter, M.

    2015-12-01

    The GERDA experiment at the Laboratori Nazionali del Gran Sasso (LNGS) searches for the neutrinoless double beta decay of 76Ge. In view of the GERDA Phase II data collection, four new 228Th radioactive sources for the calibration of the germanium detectors enriched in 76Ge have been produced with a new technique, leading to a reduced neutron emission rate from (α, n) reactions. The gamma activities of the sources were determined with a total uncertainty of ~4% using an ultra-low background HPGe detector operated underground at LNGS. The neutron emission rate was determined using a low background LiI(Eu) detector and a 3He counter at LNGS. In both cases, the measured neutron activity is ~10-6 n/(sṡBq), with a reduction of about one order of magnitude with respect to commercially available 228Th sources. Additionally, a specific leak test with a sensitivity to leaks down to ~10 mBq was developed to investigate the tightness of the stainless steel capsules housing the sources after their use in cryogenic environment.

  16. Development of tomographic imaging systems using carbon-nanotube-based field-emission x-ray sources

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2005-11-01

    Conventional thermionic x-ray sources use hot filament cathodes to generate electrons for x-ray production. The thermionic technology has several inherent limitations such as high operating temperature, slow response time, and difficulty for miniaturization. On the other hand, field emission provides an alternative to generate electrons without all these limitations. The concept of field emission x-ray source has been proposed and tested in the early 1970s. Unfortunately all of the early field emission x-ray systems failed due primarily to the limitations on the electron field emitters. Carbon nanotubes (CNT) have recently emerged as a promising class of electron emissive materials and field emission x-ray source based on CNTs are expected to have significantly improved properties. We have recently developed a CNT-based field emission micro-focus x-ray source. It shows stable tube current under high operating voltage, extraordinary dynamic imaging capability, and excellent potential for miniaturization. All of these new features make it very attractive for various potential industrial and medical applications. In order to demonstrate its applications, two sets of x-ray imaging systems using this field emission x-ray source were constructed in our lab. One is a micro-computed tomographic (micro-CT) imaging system using a single field emission x-ray source for dynamic radiographic and tomographic imaging applications. It shows great potential for the future development of dynamic micro-CT scanner. The other one is a multi-beam field emission x-ray source with multiple addressable focal spots which can provide scanning x-ray beams without mechanical movement. It can lead to fast data acquisition rates for future tomographic imaging systems with a simplified experimental set-up.

  17. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions

    NASA Astrophysics Data System (ADS)

    Powell, Jon T.; Townsend, Timothy G.; Zimmerman, Julie B.

    2016-02-01

    Landfill disposal of municipal solid waste represents one of the largest anthropogenic global methane emission sources, and recent policy approaches have targeted significant reductions of these emissions to combat climate change in the US (ref. ). The efficacy of active gas collection systems in the US was examined by analysing performance data, including fire occurrence, from more than 850 landfills. A generalized linear model showed that the operating status of a landfill--open and actively receiving waste or closed--was the most significant predictor of collection system performance. Gas collection systems at closed landfills were statistically significantly more efficient (p < 0.001) and on average 17 percentage points more efficient than those at open landfills, but open landfills were found to represent 91% of all landfill methane emissions. These results demonstrate the clear need to target open landfills to achieve significant near-term methane emission reductions. This observation is underscored by landfill disposal rates in the US significantly exceeding previously reported national estimates, with this study reporting 262 million tonnes in the year 2012 compared with 122 million tonnes in 2012 as estimated by the US Environmental Protection Agency.

  18. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    NASA Astrophysics Data System (ADS)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  19. Characterization of helium/argon working gas systems in a radiofrequency glow discharge atomic emission source. Part I: Optical emission, sputtering and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Christopher, Steven J.; Hartenstein, Matthew L.; Marcus, R. Kenneth; Belkin, Mikhail; Caruso, Joseph A.

    1998-08-01

    Studies are performed to determine the influence of discharge gas composition (helium/argon working gas mixtures) on the analyte emission signal intensities, sputtering rates, and DC-bias characteristics of an analytical radiofrequency glow discharge atomic emission spectroscopy (RF-GD-AES) source. As the partial pressure of He is increased from 0 to 15 torr, increased emission intensity is observed for a range of bulk and trace elements in NIST 1250 SRM (low alloy steel), regardless of the base pressure of Ar in the source (5 and 9 torr). In contrast to increases in analyte emission intensity of up to 300%, counterindicative decreases in the sputtering rates on the order of about 30-50% are observed. The magnitude of these effects depends on both the partial pressure of helium introduced to the source and the total pressure of the He and Ar gases. Use of relative emission yield (REY) to normalize changes in emission intensity to sputtering rates indicates that excitation efficiencies increase under these conditions. Increases in average electron energy and temperature appear to control this response. Decreases in both analyte emission intensities and sputter rates occur with increasing He partial pressure when the total pressure in the cell remains fixed (11 torr in these studies). Emission yields for the fixed pressure, mixed gas plasmas decrease as the partial pressure of He (He/Ar ratio) in the RF-GD source increases. In this case, decreases in electron number densities appear to dictate the lower REYs. Measurement of DC-bias values at the sample surface provide understanding with respect to the observed changes in sputtering rates as well as suggest the origins of changes in plasma electron energetics. Use of a diamond stylus profilometer provides both the quantitative sputter rate information as well as qualitative insights into the use of mixed gas plasmas for enhanced depth profiling capabilities. The analyte emission characteristics of these mixed gas

  20. Acoustic emission source localization based on distance domain signal representation

    NASA Astrophysics Data System (ADS)

    Gawronski, M.; Grabowski, K.; Russek, P.; Staszewski, W. J.; Uhl, T.; Packo, P.

    2016-04-01

    Acoustic emission is a vital non-destructive testing technique and is widely used in industry for damage detection, localisation and characterization. The latter two aspects are particularly challenging, as AE data are typically noisy. What is more, elastic waves generated by an AE event, propagate through a structural path and are significantly distorted. This effect is particularly prominent for thin elastic plates. In these media the dispersion phenomenon results in severe localisation and characterization issues. Traditional Time Difference of Arrival methods for localisation techniques typically fail when signals are highly dispersive. Hence, algorithms capable of dispersion compensation are sought. This paper presents a method based on the Time - Distance Domain Transform for an accurate AE event localisation. The source localisation is found through a minimization problem. The proposed technique focuses on transforming the time signal to the distance domain response, which would be recorded at the source. Only, basic elastic material properties and plate thickness are used in the approach, avoiding arbitrary parameters tuning.

  1. Variability analysis in low count rate sources. [in astrophysics

    NASA Technical Reports Server (NTRS)

    Collura, A.; Maggio, A.; Sciortino, S.; Serio, S.; Vaiana, G. S.

    1987-01-01

    A method, based on the chi-square statistics, is described for detecting pulselike time variability in low count rate sources observed with photon-counting instruments. This method can be used even in the presence of observational gaps, takes full advantage of the filtering effect due to binning with different bin sizes, and takes into account the arbitrariness introduced by the binning phase. The procedure developed to limit the dependence of the results on the binning phase and ensure statistically correct results is described along with the application of the proposed procedure to a model of a variable source. Monte Carlo simulations are used to show how the method can be used to derive the characteristic variability time scales and that the method is more sensitive than the nonparametric Kolmogorov-Smirnov test in detecting variability to a given confidence level.

  2. Oil layer as source of hydrocarbon emissions in SI engines

    SciTech Connect

    Min, K.; Cheng, W.K.

    1998-07-01

    The role of lubrication oil film on the cylinder liner as a source of hydrocarbon emissions in spark-ignition engines is assessed. First, the source strength is examined via an analytical model of the gasoline vapor absorption/desorption process. The solution shows that depending on engine operating conditions, there are three regimes. The process could be (1) limited by the gas side diffusion process, (2) limited by the liquid phase diffusion process, with the absorbed fuel fully penetrating the oil layer thickness (thin oil film regime), and (3) again limited by the liquid phase diffusion process, but with the absorbed fuel penetration depth small compared to the oil layer thickness (thick oil film regime). In regime (1), the source strength (the integrated absorption or desorption flux over one cycle) is proportional to the inverse of the square root of the rpm, but independent of oil layer parameters. In regimes (2), the strength is proportional to the oil film thickness divided by the Henry`s constant. In regime (3), the strength is independent of the oil film thickness, but is proportional to the fuel penetration depth divided by the Henry`s constant. Then, the oxidation of the desorbed fuel (using iso-octane as fuel) is examined with a one-dimensional reaction/diffusion model. The novel feature of the model is that the desorbed fuel is being exposed to the piston crevice hydrocarbon, which is laid along the liner as the piston descends. At stoichiometric conditions, the oxidation of the crevice HC is reduced by the presence of the desorbed HC from the oil layer.

  3. Oil layer as source of hydrocarbon emissions in SI engine

    SciTech Connect

    Min, K.; Cheng, W.K.

    1996-12-31

    The role of lubrication oil film on the cylinder liner as a source of hydrogen emissions in spark ignition engines is assessed. First, the source strength is examined via an analytical model of the gasoline vapor absorption/desorption process. The solution shows that depending on engine operating conditions, there are three regimes. The process could be (i) limited by the gas side diffusion process; (ii) limited by the liquid phase diffusion process, with the absorbed fuel fully penetrating the oil layer thickness (thin oil film regime); and (iii) again limited by the liquid phase diffusion process, but with the absorbed fuel penetration depth small compared to the oil layer thickness (thick oil film regime). In regime (i), the source strength (the integrated absorption or desorption flux over one cycle) is proportional to the square root of the rpm but independent of oil layer parameters. In regime (ii), the strength is proportional to the oil film thickness divided by the Henry`s constant. In regime (iii), the strength is independent of the oil film thickness, but is proportional to the fuel penetration depth divided by the Henry`s constant. Then the oxidation of the desorbed fuel (using iso-octane as fuel) is examined with a one dimensional reaction/diffusion model. The novel feature of the model is that the desorbed fuel is being exposed to the piston crevice hydrogen which is laid along the liner as the piston descends. At stoichiometric condition, the oxidation of the crevice HC is reduced by the presence of the desorbed HC from the oil layer.

  4. N(2)O emissions and source processes in snow-covered soils in the Swiss Alps.

    PubMed

    Mohn, Joachim; Steinlin, Christine; Merbold, Lutz; Emmenegger, Lukas; Hagedorn, Frank

    2013-01-01

    Nitrous oxide (N2O) emissions from snow-covered soils represent a significant fraction of the annual flux from alpine, subalpine or cold-temperate regions. In winter 2010-2011, we investigated the temporal variability of N2O emissions and source processes from a subalpine valley in the Swiss Alps. The study included regular measurements of N2O snow profiles at a fixed location and an intensive sampling campaign along a transversal cut through the valley with grassland at the bottom and coniferous forest at the slopes. During the intensive campaign, recently developed laser spectroscopy was employed for high-precision N2O isotopomer analysis. Maximum N2O fluxes (0.77±0.64 nmol m(-2) h(-1)) were found for periods with elevated air temperature and, in contrast to our expectations, were higher from forest than from grassland in mid-February. At maximum snow height (63 cm) the main N2O source processes were heterotrophic denitrification and nitrifier denitrification. The reduction of N2O by heterotrophic denitrifiers was much more pronounced for the grassland compared with the forest soil, as indicated by the (15)N site preferences of 16.4±11.5 ‰ (grassland) and-1.6±2.1 ‰ (forest). This illustrates the potential of laser spectroscopic N2O isotopomer analysis for the identification of source processes even at low emission rates in nutrient poor ecosystems. PMID:24313373

  5. Estimation of mercury emission from different sources to atmosphere in Chongqing, China.

    PubMed

    Wang, Dingyong; He, Lei; Wei, Shiqiang; Feng, Xinbin

    2006-08-01

    This investigation presents a first assessment of the contribution to the regional mercury budget from anthropogenic and natural sources in Chongqing, an important industrial region in southwest China. The emissions of mercury to atmosphere from anthropogenic sources in the region were estimated through indirect approaches, i.e. using commonly acceptable emission factors method, which based on annual process throughputs or consumption for these sources. The natural mercury emissions were estimated from selected natural sources by the dynamic flux chamber technique. The results indicated that the anthropogenic mercury emissions totaled approximately 8.85 tons (t), more than 50% of this total originated in coal combustion and 23.7% of this total emission in the industrial process (include cement production, metal smelting and chemical industry). The natural emissions represented approximately 17% of total emissions (1.78 t yr(-1)). The total mercury emission to atmosphere in Chongqing in 2001 was 10.63 t. PMID:16219340

  6. Next Generation Emission Measurements for Fugitive, Area Source, and Fence Line Applications?

    EPA Science Inventory

    Next generation emissions measurements (NGEM) is an EPA term for the rapidly advancing field of air pollutant sensor technologies, data integration concepts, and associated geospatial modeling strategies for source emissions measurements. Ranging from low coat sensors to satelli...

  7. Emissions from Combustion of Open Area Sources: Prescribed Forest and Agricultural Burns

    EPA Science Inventory

    Emissions from wildfires and prescribed forest and agricultural burns generate a variety of emissions that can cause adverse health effects for humans, contribute to climate change, and decrease visibility. Only limited pollutant data are available for these sources, particularly...

  8. Regional modeling of natural dust in the United State: Source emission, transport, and photochemical impact

    NASA Astrophysics Data System (ADS)

    Tong, D. Q.; Mathur, R.; Mobley, D.; Wong, D.; Yu, S.

    2008-12-01

    We developed a dust emission module to estimate the wind-blown dust emissions from dessert and agricultural land using local wind speed, threshold wind speed to initiate erosion, soil texture and moisture, land use type, and vegetation coverage. The estimated dust is then partitioned to create a fraction of the total sediment mobilized by the wind for vertical transport and subsequent regional circulation. This dust module also included detailed chemical speciation and size distribution, and a geographic filter to eliminate unrealistic emission sources (e.g., mountain peaks with dry soil and strong winds). We then couple the dust module with a regional air quality model CMAQ to: (1) study if the WRF-CMAQ national air quality forecasting system can accurately predict major dust storms occurring in the United States; 2) estimate the annual budget of natural dust emissions from agricultural and dessert lands and their relative importance for total PM2.5 over different U.S. regions; and 3) examine the effects of dust emissions on photolysis rates and consequently on levels of tropospheric O3 and atmospheric oxidants.

  9. NATURAL HYDROCARBON EMISSION RATE MEASUREMENTS FROM SELECTED FOREST SITES

    EPA Science Inventory

    The report presents results from studies of biogenic hydrocarbon emissions conducted in Lancaster, Pennsylvania during 1979 and Seattle, Washington during 1980. The principal objective of the studies was to compare a branch enclosure method with a micrometeorological gradient tec...

  10. Simulating industrial emissions using atmospheric dispersion modeling system: model performance and source emission factors.

    PubMed

    El-Fadel, M; Abi-Esber, L

    2012-03-01

    In this paper, the Gaussian Atmospheric Dispersion Modeling System (ADMS4) was coupled with field observations of surface meteorology and concentrations of several air quality indicators (nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM10) and sulfur dioxide (SO2)) to test the applicability of source emission factors set by the European Environment Agency (EEA) and the United States Environmental Protection Agency (USEPA) at an industrial complex. Best emission factors and data groupings based on receptor location, type of terrain and wind speed, were relied upon to examine model performance using statistical analyses of simulated and observed data. The model performance was deemed satisfactory for several scenarios when receptors were located at downwind sites with index of agreement 'd' values reaching 0.58, fractional bias 'FB' and geometric mean bias 'MG' values approaching 0 and 1, respectively, and normalized mean square error 'NMSE' values as low as 2.17. However, median ratios of predicted to observed concentrations 'Cp/Co' at variable downstream distances were 0.01, 0.36, 0.76 and 0.19 for NOx, CO, PM10 and SO2, respectively, and the fraction of predictions within a factor of two of observations 'FAC2' values were lower than 0.5, indicating that the model could not adequately replicate all observed variations in emittant concentrations. Also, the model was found to be significantly sensitive to the input emission factor bringing into light the deficiency in regulatory compliance modeling which often uses internationally reported emission factors without testing their applicability. PMID:22482291

  11. 40 CFR Table 1 to Subpart Qqqq of... - Emission Limits for New or Reconstructed Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of Wood Building Products Pt. 63, Subpt. QQQQ, Table 1 Table 1 to Subpart QQQQ of Part 63—Emission Limits... affected source in the following table as required by § 63.4690. If the affected source applies coating...

  12. 40 CFR Table 1 to Subpart Qqqq of... - Emission Limits for New or Reconstructed Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of Wood Building Products Pt. 63, Subpt. QQQQ, Table 1 Table 1 to Subpart QQQQ of Part 63—Emission Limits... affected source in the following table as required by § 63.4690. If the affected source applies coating...

  13. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  14. EMISSION FACTORS FOR IRON AND STEEL SOURCES: CRITERIA AND TOXIC POLLUTANTS

    EPA Science Inventory

    The report provides a comprehensive set of emission factors for sources of both criteria and toxic air pollutants in integrated iron and steel plants and specialty electric arc shops (minimills). Emission factors are identified for process sources, and process and open source fug...

  15. EMISSION FACTORS FOR IRON AND STEEL SOURCES -- CRITERIA AND TOXIC POLLUTANTS

    EPA Science Inventory

    The report provides a comprehensive set of emission factors for sources of both criteria and toxic air pollutants in integrated iron and steel plants and specialty electric arc shops (minimills). Emission factors are identified for process sources, and process and open source fug...

  16. Source fingerprint monitoring of air pollutants from petrochemical industry and the determination of their annual emission flux using open path Fourier transform infrared spectroscopy

    SciTech Connect

    Yih-Shiaw Huang; Shih-Yi Chang; Tai-Ly Tso

    1996-12-31

    Toxic air pollutants were investigated in several petrochemical industrial park in Taiwan using a movable open-path Fourier-transform infrared spectroscopy (FTIR). The results show the qualitative and quantitative analysis of emission gases from plants, and also provide the emission rates of various compounds. More than twenty compounds under usual operation were found from these industrial park. The concentration variation with time could be correlated exactly with the distances from the emission source along the wind direction. This means that by changing the measuring points the source of emission could be unambiguously identified. The point, area and line source (PAL) plume dispersion model has been applied to estimate the emission rate of either a point or an area source. The local atmospheric stability was determined by releasing an SF{sub 6} tracer. The origin of errors came mainly from the uncertainty of the source configuration and the variation of the meteorological condition. Through continuous measurement using a portable open-path Fourier transform infrared (POP-FTIR) spectrometer, the maximum value of the emission rate and the annual amount of emission could be derived. The emission rate of the measured toxic gases was derived by the model technique, and the results show that the emission amount is on the order of ten to hundred tons per year.

  17. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  18. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and

  19. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  20. RATE OF ACCLIMATION OF THE CAPACITY FOR ISOPRENE EMISSION IN RESPONSE TO LIGHT AND TEMPERATURE

    EPA Science Inventory

    Isoprene emission from plants accounts for nearly half of all non-methane hydrocarbons entering the atmosphere. Light and temperature regulate the instantaneous rate of isoprene emission, but there is increasing evidence that they also affect the capacity for isoprene emission (i...

  1. Source location of the smooth high-frequency radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Calvert, W.

    1989-01-01

    The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.

  2. ASPHALTIC CONCRETE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report describes the development of particulate emission factors based on cutoff size for inhalable particles for the asphaltic concrete industry. After review of available information characterizing particulate emissions from asphalt concrete plants, the data were summarized...

  3. METALLURGICAL COKE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of a study to develop particulate emission factors based on cutoff size for inhalable particles for the metallurgical coke industry. After a review of available information characterizing particulate emissions from metallurgical coke plants, the data were...

  4. Impact of routine episodic emissions on the expected frequency distribution of emissions from oil and gas production sources.

    NASA Astrophysics Data System (ADS)

    Smith, N.; Blewitt, D.; Hebert, L. B.

    2015-12-01

    In coordination with oil and gas operators, we developed a high resolution (< 1 min) simulation of temporal variability in well-pad oil and gas emissions over a year. We include routine emissions from condensate tanks, dehydrators, pneumatic devices, fugitive leaks and liquids unloading. We explore the variability in natural gas emissions from these individual well-pad sources, and find that routine short-term episodic emissions such as tank flashing and liquids unloading result in the appearance of a skewed, or 'fat-tail' distribution of emissions, from an individual well-pad over time. Additionally, we explore the expected variability in emissions from multiple wells with different raw gas composition, gas/liquids production volumes and control equipment. Differences in well-level composition, production volume and control equipment translate into differences in well-level emissions leading to a fat-tail distribution of emissions in the absence of operational upsets. Our results have several implications for recent studies focusing on emissions from oil and gas sources. Time scale of emission estimates are important and have important policy implications. Fat tail distributions may not be entirely driven by avoidable mechanical failures, and are expected to occur under routine operational conditions from short-duration emissions (e.g., tank flashing, liquid unloading). An understanding of the expected distribution of emissions for a particular population of wells is necessary to evaluate whether the observed distribution is more skewed than expected. Temporal variability in well-pad emissions make comparisons to annual average emissions inventories difficult and may complicate the interpretation of long-term ambient fenceline monitoring data. Sophisticated change detection algorithms will be necessary to identify when true operational upsets occur versus routine short-term emissions.

  5. Volatile organic compound concentrations and emission rates measured over one year in a new manufactured house

    SciTech Connect

    Hodgson, Alfred T.; Nabinger, Steven J.; Persily, Andrew K.

    2004-09-01

    A study to measure indoor concentrations and emission rates of volatile organic compounds (VOCs), including formaldehyde, was conducted in a new, unoccupied manufactured house installed at the National Institute of Standards and Technology (NIST) campus. The house was instrumented to continuously monitor indoor temperature and relative humidity, heating and air conditioning system operation, and outdoor weather. It also was equipped with an automated tracer gas injection and detection system to estimate air change rates every 2 h. Another automated system measured indoor concentrations of total VOCs with a flame ionization detector every 30 min. Active samples for the analysis of VOCs and aldehydes were collected indoors and outdoors on 12 occasions from August 2002 through September 2003. Individual VOCs were quantified by thermal desorption to a gas chromatograph with a mass spectrometer detector (GC/MS). Formaldehyde and acetaldehyde were quantified by high performance liquid chromatography (HPLC). Weather conditions changed substantially across the twelve active sampling periods. Outdoor temperatures ranged from 7 C to 36 C. House air change rates ranged from 0.26 h{sup -1} to 0.60 h{sup -1}. Indoor temperature was relatively constant at 20 C to 24 C for all but one sampling event. Indoor relative humidity (RH) ranged from 21% to 70%. The predominant and persistent indoor VOCs included aldehydes (e.g., formaldehyde, acetaldehyde, pentanal, hexanal and nonanal) and terpene hydrocarbons (e.g., a-pinene, 3-carene and d-limonene), which are characteristic of wood product emissions. Other compounds of interest included phenol, naphthalene, and other aromatic hydrocarbons. VOC concentrations were generally typical of results reported for other new houses. Measurements of total VOCs were used to evaluate short-term changes in indoor VOC concentrations. Most of the VOCs probably derived from indoor sources. However, the wall cavity was an apparent source of

  6. Opacity meter for monitoring exhaust emissions from non-stationary sources

    DOEpatents

    Dec, John Edward

    2000-01-01

    Method and apparatus for determining the opacity of exhaust plumes from moving emissions sources. In operation, a light source is activated at a time prior to the arrival of a diesel locomotive at a measurement point, by means of a track trigger switch or the Automatic Equipment Identification system, such that the opacity measurement is synchronized with the passage of an exhaust plume past the measurement point. A beam of light from the light source passes through the exhaust plume of the locomotive and is detected by a suitable detector, preferably a high-rate photodiode. The light beam is well-collimated and is preferably monochromatic, permitting the use of a narrowband pass filter to discriminate against background light. In order to span a double railroad track and provide a beam which is substantially stronger than background, the light source, preferably a diode laser, must provide a locally intense beam. A high intensity light source is also desirable in order to increase accuracy at the high sampling rates required. Also included is a computer control system useful for data acquisition, manipulation, storage and transmission of opacity data and the identification of the associated diesel engine to a central data collection center.

  7. Quantifying Spatial and Temporal Variability of Methane Emissions from a Complex Area Source: Case Study of a Central Indiana Landfill

    NASA Astrophysics Data System (ADS)

    Cambaliza, M. O. L.; Bogner, J. E.; Green, R. B.; Shepson, P. B.; Thoma, E. D.; Foster-wittig, T. A.; Spokas, K.

    2014-12-01

    Atmospheric methane is a powerful greenhouse gas that is responsible for about 17% of the total direct radiative forcing from long-lived greenhouse gases (IPCC 2013). While the global emission of methane is relatively well quantified, the temporal and spatial variability of methane emissions from individual area or point sources are still poorly understood. Using 4 field methods (aircraft-based mass balance, tracer correlation, vertical radial plume mapping, and static chambers) and a new field-validated process-based model (California Landfill Methane Inventory Model, CALMIM 5.4), we investigated both the total emissions from a central Indiana landfill as well as the partitioned emissions inclusive of methanotrophic oxidation for the various cover soils. This landfill is an upwind source for the city of Indianapolis, so the resolution of m2 to km2 scale emissions, as well as understanding the temporal variability for this complex area source, contributes to improved regional inventory calculations. Emissions for the site as a whole were measured using both an aircraft-based mass balance approach as well as a ground-based tracer correlation method, permitting direct comparison of the strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emission signatures and strengths from the various cover areas. Thus we also deployed static chambers and vertical radial plume mapping to quantify the spatial variability of emissions from the thinner daily and intermediate cover areas. Understanding the daily, seasonal and annual emission rates from a landfill is not trivial, and usually requires a combination of measurement and modeling approaches. Thus, our unique data set provides an opportunity to gain an improved understanding of the emissions from a complex

  8. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    NASA Astrophysics Data System (ADS)

    Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean-François; De Smedt, Isabelle; Van Roozendael, Michel; van der Werf, Guido R.; Wiedinmyer, Christine; Kaiser, Johannes W.; Sindelarova, Katerina; Guenther, Alex

    2016-08-01

    are suggested in Indochina and during the 2007 fires in southern Europe. Moreover, changes in fire seasonal patterns are suggested; e.g., the seasonal amplitude is reduced over southeast Asia. In Africa, the inversion indicates increased fluxes due to agricultural fires and decreased maxima when natural fires are dominant. The top-down fire emissions are much better correlated with MODIS fire counts than the a priori inventory in regions with small and agricultural fires, indicating that the OMI-based inversion is well-suited to assess the associated emissions. Regarding biogenic sources, significant reductions in isoprene fluxes are inferred in tropical ecosystems (30-40 %), suggesting overestimated basal emission rates in those areas in the bottom-up inventory, whereas strongly positive isoprene emission updates are derived over semiarid and desert areas, especially in southern Africa and Australia. This finding suggests that the parameterization of the soil moisture stress used in MEGAN greatly exaggerates the flux reduction due to drought in those regions. The isoprene emission trends over 2005-2013 are often enhanced after optimization, with positive top-down trends in Siberia (4.2 % year-1) and eastern Europe (3.9 % year-1), likely reflecting forest expansion and warming temperatures, and negative trends in Amazonia (-2.1 % year-1), south China (-1 % year-1), the United States (-3.7 % year-1), and western Europe (-3.3 % year-1), which are generally corroborated by independent studies, yet their interpretation warrants further investigation.

  9. Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-01

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions provides a physically consistent and computationally efficient approach to establish source-receptor relationships and transport pathways. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Arctic BC concentrations, deposition, and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic BC burden, but has much less impact on lower-level concentrations and deposition. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions.

  10. The Use of Satellite-Measured Aerosol Optical Depth to Constrain Biomass Burning Emissions Source Strength in the GOCART Model

    NASA Astrophysics Data System (ADS)

    Petrenko, M. M.; Kahn, R. A.; Chin, M.; Kucsera, T.; Soja, A. J.; Harshvardhan, D.

    2012-12-01

    Simulations of biomass burning (BB) emissions in chemistry transport models strongly depend on the inventories that define emission source location and strength. We compare snapshots of aerosol optical depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) for 124 fire events occurring between 2006 and 2007 with AOD simulate by the GOCART model in 13 runs using different BB emission options, exposing regional biases of each emission option. The BB emissions input into the Goddard Chemistry Aerosol Radiation and Transport (GOCART) include the widely used Global Fire Emission Database (GFED) monthly and daily versions, Fire Radiative Power (FRP)-based Quick Fire Emission Dataset QFED, and 11 calculated emissions from different combinations of burned area based on the MODIS products, effective fuel load, and species emission factors. MODIS AOD snapshots for 124 globally distributed fire events serve as instantaneous constraint to the strength of the BB sources in the model. Even though globally GOCART average fire AOD values compare best to MODIS-measured AOD when the daily GFED inventory is used as input to GOCART, the regional performance of each inventory is essential when evaluating BB emissions. Even though GFED-based emission options provide the lowest emissions in the tropics, GFED-based GOCART AOD compares best with MODIS AOD in tropical cases. Fire-counts-based emission options give the largest emission estimates in the boreal regions, and the model performs best at higher latitudes with these inputs when compared to MODIS. Comparison of total annual BB emissions by all inventories suggests that burned area estimates are usually the largest source of disagreement. It is also shown that the quantitative relationship between BB aerosol emission rate and model-simulated AOD is related to the horizontal plume dispersion, which can be approximated by the wind speed in the planetary boundary layer in most cases. Thus, given average wind speed of the

  11. GHG emissions during the high-rate production of compost using standard and advanced aeration strategies.

    PubMed

    Puyuelo, B; Gea, T; Sánchez, A

    2014-08-01

    In this study, we have evaluated different strategies for the optimization of the aeration during the active thermophilic stage of the composting process of source-selected Organic Fraction of Municipal Solid Waste (or biowaste) using reactors at bench scale (50L). These strategies include: typical cyclic aeration, oxygen feedback controller and a new self-developed controller based on the on-line maximization of the oxygen uptake rate (OUR) during the process. Results highlight differences found in the emission of most representative greenhouse gases (GHG) emitted from composting (methane and nitrous oxide) as well as in gases typically related to composting odor problems (ammonia as typical example). Specifically, the cyclic controller presents emissions that can double that of OUR controller, whereas oxygen feedback controller shows a better performance with respect to the cyclic controller. A new parameter, the respiration index efficiency, is presented to quantitatively evaluate the GHG emissions and, in consequence, the main negative environmental impact of the composting process. Other aspects such as the stability of the compost produced and the consumption of resources are also evaluated for each controller. PMID:24873708

  12. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    PubMed

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades. PMID:24945600

  13. ACCURACY OF REMOTELY SENSED SO2 MASS EMISSION RATES

    EPA Science Inventory

    Remote sensing data of single-stack power plant emissions and local wind speed have been analyzed to determined SO2 mass flux for comparison with EPA referenced methods. Four days of SO2 data were gathered from a moving platform by three upward-viewing remote sensors -- two ultra...

  14. ESTIMATES OF ISOPRENE AND MONOTERPENE EMISSION RATES IN PLANTS

    EPA Science Inventory

    A range of plant species, including crops, shrubs, herbs, and trees, was surveyed to determine the magnitude of isoprene emissions. In studies to determine if plants emitted isoprene, greenhouse-grown plants were encapsulated in impermeable plastic bags and kept in a growth chamb...

  15. 40 CFR Appendix C to Part 60 - Determination of Emission Rate Change

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 60—Determination of Emission Rate Change 1.Introduction 1.1The following method shall be used to determine whether a physical or operational change to an existing facility resulted in an increase in the... 40 Protection of Environment 7 2011-07-01 2011-07-01 false Determination of Emission Rate Change...

  16. 40 CFR Appendix C to Part 60 - Determination of Emission Rate Change

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 60—Determination of Emission Rate Change 1.Introduction 1.1The following method shall be used to determine whether a physical or operational change to an existing facility resulted in an increase in the... 40 Protection of Environment 7 2010-07-01 2010-07-01 true Determination of Emission Rate Change...

  17. 40 CFR Appendix C to Part 60 - Determination of Emission Rate Change

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 60—Determination of Emission Rate Change 1.Introduction 1.1The following method shall be used to determine whether a physical or operational change to an existing facility resulted in an increase in the... 40 Protection of Environment 8 2013-07-01 2013-07-01 false Determination of Emission Rate Change...

  18. 40 CFR Appendix C to Part 60 - Determination of Emission Rate Change

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 60—Determination of Emission Rate Change 1.Introduction 1.1The following method shall be used to determine whether a physical or operational change to an existing facility resulted in an increase in the... 40 Protection of Environment 8 2012-07-01 2012-07-01 false Determination of Emission Rate Change...

  19. 40 CFR Appendix C to Part 60 - Determination of Emission Rate Change

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 60—Determination of Emission Rate Change 1. Introduction 1.1 The following method shall be used to determine whether a physical or operational change to an existing facility resulted in an increase in the... 40 Protection of Environment 8 2014-07-01 2014-07-01 false Determination of Emission Rate Change...

  20. Miniature high stability high temperature space rated blackbody radiance source

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Beswick, A. G.

    1987-01-01

    This paper presents the design and test performance of a conical cavity type blackbody radiance source that will meet the requirements of the Halogen Occultation Experiment on the NASA Upper Atmospheric Research Satellite program. The thrust of this design effort was to minimize the heat losses, in order to keep the power usage under 7.5 watts, and to minimize the amount of silica in the materials. Silica in the presence of the platinum heater winding used in this design would cause the platinum to erode, changing the operating temperature set-point. The design required the development of fabrication techniques which would provide very small, close tolerance parts from extremely difficult-to-machine materials. Also, a space rated ceramic core and unique, low thermal conductance, ceramic-to-metal joint was developed, tested and incorporated in this design. The completed flight qualification hardware has undergone performance, environmental and life testing. The design configuration and test results are discussed in detail.

  1. Historic emissions from deforestation and forest degradation in Mato Grosso, Brazil: 1) source data uncertainties

    PubMed Central

    2011-01-01

    Background Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from credited mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results Deforestation estimates showed good agreement for multi-year periods of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by > 20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C ha-1, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions Estimates of source data uncertainties are essential for REDD+. Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions. PMID:22208947

  2. EUV emission of Xe-clusters excited by a high-repetition rate burst mode laser

    NASA Astrophysics Data System (ADS)

    Stiel, Holger; Vogt, Ulrich; Ter-Avetisyan, Sargis; Schnurer, Matthias; Will, Ingo; Nickles, Peter V.

    2002-10-01

    In this contribution we describe a laser plasma source for Extreme Ultraviolet Lithography (EUVL) based on a Xe-cluster target. Although Xe-clusters as target systems for EUVL are known for some time, no attempts have been made for a systematic study of the influence of the laser parameters on the EUV-emission at a well defined Xe-aggregation. The MBI burst mode laser used offers some unique features: Within one burst (duration 800 μs) the repetition rate of single laser pulses can be adjusted between 30 and 1000 kHz. The average power per burst is about 5 kW at the maximum energy of 4 J/burst. The pulse duration of a single pulse can be adjusted from the ps- to ns-range. We have examined the EUV-emission from the Xe-cluster target within one burst of the laser as a function of single pulse intensity and repetition rate. Based on the measured EUV-spectra the conversion efficiency at 13.4 nm wavelength in dependence on pulse duration in the range from 30 ps to 3 ns were estimated.

  3. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-02-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions+re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  4. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-07-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  5. The influence of surface sorption and air flow rate on phthalate emissions from vinyl flooring: Measurement and modeling

    NASA Astrophysics Data System (ADS)

    Liang, Yirui; Xu, Ying

    2015-02-01

    This study investigated the influences of surface sorption and air flow rate on the emission of phthalates from building materials. Controlled tests were conducted in specially designed stainless steel and wood chambers, and the steady-state concentration in the stainless steel chamber was about 2-3 times higher than that in the wood chamber for di(2-ethylhexyl) phthalate (DEHP) and diisononyl phthalate (DINP). The emission rate of phthalates increased in the wood chamber due to the diffusion mass flow through the chamber wall (i.e., surface absorption). The adsorption isotherm of phthalates on the stainless steel surface and the absorption parameters (i.e., diffusion and partition coefficients) of phthalates on the wood surface were determined experimentally, and the values were comparable to those in the literature. The equilibration time scale for phthalates absorbed to the sink reservoir in actual indoor environments was estimated and can be substantial (approximately 80 years), indicating that surface absorption may continuously drive phthalates from their indoor sources to various sinks and thus significantly increase the emission rate of phthalates. The gas-phase concentration of DEHP was measured in two stainless steel chambers operated at flow rates of 300 mL/min and 3000 mL/min, respectively, which were both adjusted to 1000 mL/min after steady state was reached. The gas-phase concentration of DEHP in the chamber was very sensitive to the chamber air flow rate, and higher air flow rates resulted in lower concentration levels. However, the increased emission rate compensated for the dilution in the gas phase and made the DEHP concentration not drop substantially with an increase in the air flow rate. Independently measured or calculated parameters were used to validate a semi-volatile organic compounds (SVOCs) emission model that included absorptive surfaces and for a range of air flow rates, with excellent agreement between the model predictions and the

  6. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  7. Estimation of Eruption Source Parameters from Plume Growth Rate

    NASA Astrophysics Data System (ADS)

    Pouget, Solene; Bursik, Marcus; Webley, Peter; Dehn, Jon; Pavalonis, Michael; Singh, Tarunraj; Singla, Puneet; Patra, Abani; Pitman, Bruce; Stefanescu, Ramona; Madankan, Reza; Morton, Donald; Jones, Matthew

    2013-04-01

    The eruption of Eyjafjallajokull, Iceland in April and May, 2010, brought to light the hazards of airborne volcanic ash and the importance of Volcanic Ash Transport and Dispersion models (VATD) to estimate the concentration of ash with time. These models require Eruption Source Parameters (ESP) as input, which typically include information about the plume height, the mass eruption rate, the duration of the eruption and the particle size distribution. However much of the time these ESP are unknown or poorly known a priori. We show that the mass eruption rate can be estimated from the downwind plume or umbrella cloud growth rate. A simple version of the continuity equation can be applied to the growth of either an umbrella cloud or the downwind plume. The continuity equation coupled with the momentum equation using only inertial and gravitational terms provides another model. Numerical modeling or scaling relationships can be used, as necessary, to provide values for unknown or unavailable parameters. Use of these models applied to data on plume geometry provided by satellite imagery allows for direct estimation of plume volumetric and mass growth with time. To test our methodology, we compared our results with five well-studied and well-characterized historical eruptions: Mount St. Helens, 1980; Pinatubo, 1991, Redoubt, 1990; Hekla, 2000 and Eyjafjallajokull, 2010. These tests show that the methodologies yield results comparable to or better than currently accepted methodologies of ESP estimation. We then applied the methodology to umbrella clouds produced by the eruptions of Okmok, 12 July 2008, and Sarychev Peak, 12 June 2009, and to the downwind plume produced by the eruptions of Hekla, 2000; Kliuchevsko'i, 1 October 1994; Kasatochi 7-8 August 2008 and Bezymianny, 1 September 2012. The new methods allow a fast, remote assessment of the mass eruption rate, even for remote volcanoes. They thus provide an additional path to estimation of the ESP and the forecasting

  8. Methods to assess atmospheric emissions of persistent organic pollutants from point sources

    SciTech Connect

    Pacyna, J.M.; Thomas, D.; Horejs, J.

    1995-12-31

    A set of guidelines for estimating POP emissions from various sources is presented together with procedures for verification of emission data. The guidelines include a compilation of emission factors for various POPs together with information on the physical, chemical, technological, and meteorological conditions under which these factors were elaborated. The above information is presented for PCBs, PCP, HCB, selected dibenzodioxins and dibenzofurans and selected PAHs. An assessment of uncertainty in the estimation of emission factors is enclosed with classification based on the frequency and accuracy of emission measurements. Ground Truth verification procedure has been elaborated which involves techniques that make direct comparisons between emission estimates and some other known quantity which is related either directly to the emission source or indirectly to the underlying process that results in the emissions. POP profiles are presented for major source categories. Combustion of coal generates higher emissions of most of the studied POPs than the combustion of oil, gas, and fuel wood. This particularly applies to the emissions of PCBs and PCDDs/Fs during combustion of hard coal. In the emissions from the burning of fossil fuels there is a considerable content of PCDDs/Fs in comparison with their emissions from other sources. There is also a higher proportion of phenanthrene compared with other PAHs. During the combustion of industrial wastes, phenanthrene, fluoranthene, and pyrene are characteristically, significantly higher in the flue gas.

  9. 40 CFR Table 1 to Subpart Xxxx of... - Emission Limits for Tire Production Affected Sources

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Emission Limits for Tire Production... SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 1 Table 1 to Subpart XXXX of Part 63—Emission Limits for...

  10. [Emission and source characterization of monoaromatic hydrocarbons from coke production].

    PubMed

    He, Qiu-Sheng; Wang, Xin-Ming; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-09-01

    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking. PMID:16366463

  11. Characterization, concentrations and emission rates of polycyclic aromatic hydrocarbons in the exhaust emissions from in-service vehicles in Damascus

    NASA Astrophysics Data System (ADS)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan

    2013-02-01

    Motor vehicles are significant sources of polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Improved understanding of PAH emission profiles in mobile sources is the key to determining the viable approach for reducing PAH emissions from motor vehicles. Very limited data is available on the levels of PAH emissions in the urban atmospheres in Syria and no data are currently available on the level of PAH emissions from different combustion sources in the country. The aim of this study was to determine the profile and concentration of PAH in exhaust emissions of light and heavy-duty vehicles running on the roads of Damascus city. Three different types of vehicles (passenger cars, minivans and buses) were selected along with different age groups. Vapor- and particulate-phase PAH were collected from the vehicular exhausts of six in-service vehicles (with/without catalytic converters). High-performance liquid chromatography system, equipped with UV-Visible and fluorescence detectors, was used for the identification and quantification of PAH compounds in the cleaned extracts of the collected samples. The mean concentration of total PAH emissions (sum of 15 compounds) from all types of studied vehicles ranged between 69.28 ± 1.06 μg/m3 for passenger cars equipped with catalytic converters and 2169.41 ± 5.17 μg/m3 for old diesel buses without pollution controls. Values of total benzo(a)pyrene equivalent (∑ B[a]Peq) ranged between 1.868 μg/m3and 37.652 μg/m3. The results obtained in this study showed that the use of catalytic converters resulted into cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained in the absence of catalytic converters.

  12. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    NASA Astrophysics Data System (ADS)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  13. Contribution of Changing Sources and Sinks to the Growth Rate of Atmospheric Methane Concentrations for the Last Two Decades

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Walter, B.; Bogner, J.; Sarma, D.; Portmey, G.; Travis, Larry (Technical Monitor)

    2001-01-01

    In situ measurements of atmospheric methane concentrations begun in the early 1980s show decadal trends, as well as large interannual variations, in growth rate. Recent research indicates that while wetlands can explain several of the large growth anomalies for individual years, the decadal trend may be the combined effect of increasing sinks, due to increases in tropospheric OH, and stabilizing sources. We discuss new 20-year histories of annual, global source strengths for all major methane sources, i.e., natural wetlands, rice cultivation, ruminant animals, landfills, fossil fuels, and biomass burning. We also present estimates of the temporal pattern of the sink required to reconcile these sources and atmospheric concentrations over this time period. Analysis of the individual emission sources, together with model-derived estimates of the OH sink strength, indicates that the growth rate of atmospheric methane observed over the last 20 years can only be explained by a combination of changes in source emissions and an increasing tropospheric sink. Direct validation of the global sources and the terrestrial sink is not straightforward, in part because some sources/sinks are relatively small and diffuse (e.g., landfills and soil consumption), as well as because the atmospheric record integrates multiple and substantial sources and tropospheric sinks in regions such as the tropics. We discuss ways to develop and test criteria for rejecting and/or accepting a suite of scenarios for the methane budget.

  14. Characteristics of ultrafine particle sources and deposition rates in primary school classrooms

    NASA Astrophysics Data System (ADS)

    Laiman, Rusdin; He, Congrong; Mazaheri, Mandana; Clifford, Samuel; Salimi, Farhad; Crilley, Leigh R.; Megat Mokhtar, Megat Azman; Morawska, Lidia

    2014-09-01

    The aim of this work was to investigate changes in particle number concentration (PNC) within naturally ventilated primary school classrooms arising from local sources either within or adjacent to the classrooms. We quantify the rate at which ultrafine particles were emitted either from printing, grilling, heating or cleaning activities and the rate at which the particles were removed by both deposition and air exchange processes. At each of 25 schools in Brisbane, Australia, two weeks of measurements of PNC and CO2 were taken both outdoors and in the two classrooms. Bayesian regression modelling was employed in order to estimate the relevant rates and analyse the relationship between air exchange rate (AER), particle infiltration and the deposition rates of particle generated from indoor activities in the classrooms. During schooling hours, grilling events at the school tuckshop as well as heating and printing in the classrooms led to indoor PNCs being elevated by a factor of more than four, with emission rates of (2.51 ± 0.25) × 1011 p min-1, (8.99 ± 6.70) × 1011 p min-1 and (5.17 ± 2.00) × 1011 p min-1, respectively. During non-school hours, cleaning events elevated indoor PNC by a factor of above five, with an average emission rate of (2.09 ± 6.30) × 1011 p min-1. Particles were removed by both air exchange and deposition; chiefly by ventilation when AER > 0.7 h-1 and by deposition when AER < 0.7 h-1.

  15. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... published in the Federal Register on April 13, 2012 (77 FR 22392), and is available at: http://www.epa.gov... AGENCY 40 CFR Part 60 Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources... proposed rule, ``Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources:...

  16. 40 CFR 63.1158 - Emission standards for new or reconstructed sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Emission standards for new or reconstructed sources. 63.1158 Section 63.1158 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National...

  17. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... methods is found in appendix M of 40 CFR part 51. (e) Definitions of terms used in this section. The... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  18. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... methods is found in appendix M of 40 CFR part 51. (e) Definitions of terms used in this section. The... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  19. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... methods is found in appendix M of 40 CFR part 51. (e) Definitions of terms used in this section. The... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  20. RERANKING OF AREA SOURCES IN LIGHT OF SEASONAL/ REGIONAL EMISSION FACTORS AND STATE/LOCAL NEEDS

    EPA Science Inventory

    The report gives results of an effort to provide a better understanding of air pollution area sources and their emissions, to prioritize their importance as emitters of volatile organic compounds (VOCs), and to identify sources for which better emission estimation methodologies a...

  1. GLOBAL METHANE EMISSIONS FROM MINOR ANTHROPOGENIC SOURCES AND BIOFUEL COMBUSTION IN RESIDENTIAL STOVES (JOURNAL)

    EPA Science Inventory

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...

  2. Nitrogen Source Affects Nitrous Oxide Emissions in a Strip-Tilled Continuous Corn Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of nitrogen (N) source on nitrous oxide (N2O) emissions from a strip-till (ST), irrigated continuous corn field in 2009 near Fort Collins, CO. Emissions were monitored from plots receiving six different inorganic N fertilizer sources (urea, ESN®1, SuperU®, UAN, UAN+Agrotain...

  3. Nitrogen Source and Placement Affect Soil Nitrous Oxide Emissions from Irrigated Corn in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited information is available on the effects of N fertilizer source on soil nitrous oxide (N2O) emissions. This article summarizes research conducted by the USDA-ARS from 2009-2011 on N fertilizer source effects on growing season soil nitrous oxide (N2O) emissions from irrigated corn systems in...

  4. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... source Emissions must not exceed 280 grams HAP per megagram (0.56 pounds per ton) of fabric processed at... tire cord production affected source Emissions must not exceed 220 grams HAP per megagram (0.43 pounds... Table 16 to this subpart must not exceed 1,000 grams HAP per megagram (2 pounds per ton) of...

  5. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... source Emissions must not exceed 280 grams HAP per megagram (0.56 pounds per ton) of fabric processed at... tire cord production affected source Emissions must not exceed 220 grams HAP per megagram (0.43 pounds... Table 16 to this subpart must not exceed 1,000 grams HAP per megagram (2 pounds per ton) of...

  6. REGIONAL AIR POLLUTION STUDY: POINT AND AREA SOURCE ORGANIC EMISSION INVENTORY

    EPA Science Inventory

    An inventory of organic emissions from stationary and mobile sources has been assembled for the St. Louis Air Quality Control Region. The inventory covers point and area sources for process, combustion and evaporative emissions. A breakdown into five categories has been assigned ...

  7. Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector

    NASA Astrophysics Data System (ADS)

    Paustian, K.; Herrick, J.

    2015-12-01

    Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach

  8. Validation of flux measurements with artificial sources: simulating CH4 from cows and NH3 emissions from medium plot scales

    NASA Astrophysics Data System (ADS)

    Sintermann, Jörg; Felber, Raphael; Häni, Christoph; Ammann, Christof; Neftel, Albrecht

    2014-05-01

    Mitigation of ammonia (NH3) emissions with detrimental environmental effects as well as of greenhouse gas emissions (GHG: CO2, N2O, CH4) are key challenges faced by the agricultural production sector. While NH3 originates mainly from polluted surfaces, e.g. after slurry application, the main source for CH4 emissions are cows and other ruminating animals, representing point sources. There are two widespread state-of-the-art techniques to determine agricultural emissions: eddy covariance (EC) flux measurements and Lagrangian stochastic (LS) dispersion modelling, namely the WindTrax (WT) model. Whereas GHG emissions can be measured with both techniques, NH3 emissions are usually not feasible with EC measurements due to the stickiness of NH3 molecules on surfaces. In addition, point sources render difficulties for the interpretation of EC flux data. We tested the EC technique and the WT model using artificial sources with known gas release rates. i) The effect of a point source on EC fluxes was investigated by placing an artificial CH4 source with known release rate upwind of the EC tower at two different heights and during different wind conditions. ii) The WT model was checked with a NH3 release grid of 314 m2 of known source strength. Ambient NH3 concentrations were measured by open path DOAS systems and impinger sampling. The CH4 concentration timeseries influenced by the point source showed a similar pattern as in the presence of cows upwind of the EC system. CH4 release rates from the point source were reproduced by the EC flux measurement with stationary background conditions only. The experiments with the NH3 release showed that WT performs well for emission determination, even in complex terrain (asphalt surrounded by grassland) with associated micrometeorology, given a realistic description of the vertical profile of wind velocity. Calculated gas recoveries ranged between 73 to 105%. Such a result is encouraging considering the immanent uncertainties from a

  9. IRON AND STEEL INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of a study to develop particulate emission factors based on cutoff size for inhalable particles for the iron and steel industry. After reviewing available information characterizing particulate emissions from iron and steel plants, the data were summarize...

  10. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    SciTech Connect

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  11. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity

    NASA Astrophysics Data System (ADS)

    Gan, Xuetao; Gao, Yuanda; Fai Mak, Kin; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew E.; Hatami, Fariba; Heinz, Tony F.; Hone, James; Englund, Dirk

    2013-10-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70.

  12. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.

    2015-12-01

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.

  13. Time-dependent modelling of the molecular line emission from shock waves in outflow sources

    NASA Astrophysics Data System (ADS)

    Flower, D. R.; Pineau des Forêts, G.

    2012-04-01

    We have developed further the technique of time-dependent modelling of magnetohydrodynamic shock waves, with a view to interpreting the molecular line emission from outflow sources. The extensively observed source L1157 B1 was chosen as an exemplar of the application of this technique. The dynamical age of the shock wave model was varied in the range 500 ≤t≤ 5000 yr, with the best fit to the observed line intensities being obtained for t= 1000 yr; this is of the same order as the dynamical age derived by Gueth, Guilloteau & Bachiller from their observations of L1157 B1. The emission line spectra of H2, CO, SiO, ortho- and para-H2O, ortho- and para-NH3, and A- and E-type CH3OH were calculated in parallel with the dynamical and chemical parameters of the model, using the 'large velocity gradient' (LVG) approximation to the line transfer problem. We compared the predictions of the models with the observed intensities of emission lines of H2, CO, SiO, ortho-H2O, ortho-NH3 and CH3OH, which include recent Herschel satellite measurements. In the case of SiO, we show (in Appendix A) that extrapolations of the collisional rate coefficients beyond the range of kinetic temperature for which they were originally calculated lead to spurious rotational line intensities and profiles. The computed emission-line spectra of SiO, NH3 and CH3OH are shown to depend on the assumed initial composition of the grain mantles, from whence they are released, by sputtering in the shock wave, into the gas phase. The dependence of the model predictions on the adopted form of the grain-size distribution is investigated in Appendix B; the corresponding integral line intensities are given in tabular form, for a range of C-type shock speeds, in the online Supporting Information.

  14. Historic Emissions from Deforestation and Forest Degradation in Mato Grosso, Brazil: 1. Source Data Uncertainties

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Sales, Marcio H.; Souza, Carlos M., Jr.; Griscom, Bronson

    2011-01-01

    Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results: Deforestation estimates showed good agreement for multi-year trends of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by >20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C/ha, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions: Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions.

  15. Identifying sensitive sources and key control handles for the reduction of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-10-01

    This research investigates the effects of adjusting control handle values on greenhouse gas emissions from wastewater treatment, and reveals critical control handles and sensitive emission sources for control through the combined use of local and global sensitivity analysis methods. The direction of change in emissions, effluent quality and operational cost resulting from variation of control handles individually is determined using one-factor-at-a-time sensitivity analysis, and corresponding trade-offs are identified. The contribution of each control handle to variance in model outputs, taking into account the effects of interactions, is then explored using a variance-based sensitivity analysis method, i.e., Sobol's method, and significant second order interactions are discovered. This knowledge will assist future control strategy development and aid an efficient design and optimisation process, as it provides a better understanding of the effects of control handles on key performance indicators and identifies those for which dynamic control has the greatest potential benefits. Sources with the greatest variance in emissions, and therefore the greatest need to monitor, are also identified. It is found that variance in total emissions is predominantly due to changes in direct N2O emissions and selection of suitable values for wastage flow rate and aeration intensity in the final activated sludge reactor is of key importance. To improve effluent quality, costs and/or emissions, it is necessary to consider the effects of adjusting multiple control handles simultaneously and determine the optimum trade-off. PMID:24960125

  16. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE PAGESBeta

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  17. Black carbon emissions from Russian diesel sources: case study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-02-01

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), fishing and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emission in Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 70% of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source emitting about 12% of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 56.7 Gg in 2010, and on-road transport contributed 55% of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  18. Black carbon emissions from Russian diesel sources: case study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-01

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  19. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    SciTech Connect

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  20. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. t includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and ...

  1. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  2. 40 CFR 63.843 - Emission limits for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subcategory, whichever is more stringent. (b) Paste production plants. The owner or operator shall install, operate, and maintain equipment to capture and control POM emissions from each paste production plant....

  3. BBQ charcoal as an important source of mercury emission.

    PubMed

    Pandey, Sudhir Kumar; Kim, Ki-Hyun; Kang, Chang-Hee; Jung, Myung Chae; Yoon, H

    2009-02-15

    In this study, the environmental significance of mercury emission has been investigated with respect to the use of the barbecue (BBQ) charcoal. For this purpose, emission gas samples collected from a total of 11 barbecue charcoal products commonly available in the Korean market were analyzed. All of these products consist of both domestic (4 types) and imported products (7 types from three countries). The emission concentration of Hg varied widely from sample to sample ranging from 114 to 496ngm(-3). The amount of Hg emission appeared to be affected by the diverse nature of raw materials and/or the processes involved in their production. In light of the recent reference exposure limits (REL) of Hg, it can be a potential threat to human health. As such, a proper regulation is desirable from a toxicological viewpoint to reduce the potential risk associated with the use of BBQ charcoal. PMID:18571317

  4. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FORM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  5. Fabrication of high rate chromium getter sources for fusion applications

    SciTech Connect

    Gabbard, W.A.; Simpkins, J.E.; Mioduszewski, P.; Edmonds, P.H.

    1983-01-01

    Design and fabrication techniques are described for the manufacture of large-capacity chromium getter sources, analogous to the commercially available titanium getter source known as Ti-Ball, manufactured by Varian Associates.

  6. EMISSION CHARACTERIZATION OF STATIONARY NOX SOURCES: VOLUME II. DATA SUPPLEMENT

    EPA Science Inventory

    This is part of 10 special reports on the environmental assessment of stationary source NOx combustion modification technologies program. The program has two main objectives: (1) to identify the multimedia environmental impact of stationary combustion sources and NOx combustion m...

  7. Low-emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rates

    NASA Astrophysics Data System (ADS)

    Benjamin, Michael T.; Sudol, Mark; Bloch, Laura; Winer, Arthur M.

    Large-scale tree planting programs have been proposed, and are being implemented, as a means of reducing energy demand, mitigating urban heat islands, and improving air quality. However, many species of trees emit highly photochemically reactive hydrocarbons and the rates of such emissions can vary by four orders of magnitude, depending upon the tree species. Thus, planting of high-emitting trees species on a massive scale has the potential to adversely affect air quality rather than leading to improvement. However, the selection of low-emitting trees is difficult because emission rates have been experimentally determined for only a limited number of species. The present study describes a methodology for assigning biogenic emission rates based on taxonomic relationships. Using this methodology, direct emission measurements from 124 tree and shrub species found in the California South Coast Air Basin (SoCAB) are used to assign emission rates to 253 other species found in the SoCAB but for which there are no measured emission rates. The combined listing of 377 species is ranked according to total (isoprene and monoterpenes) biogenic emission rate on an hourly basis. Although the ranking of trees developed here is specific to Southern California, the methodology described can be applied to other geographic areas to assist in the planting of low-emitting urban forests.

  8. The Use of Variational Assimilation of Surface and Satellite Datafor Emission Rate Optimization

    NASA Astrophysics Data System (ADS)

    Elbern, H.

    Given observations of emitted and product species, the inference of emission rates of precursors is a typical ill-posed inversion problem. In this study the four-dimensional variational (4D-var) data assimilation method has used for emission rate optimisation by ingesting surface ozone measurements in tandem with monthly averaged satellite retrievals of tropospheric NO2 columns. As the latter observations are rather coarse in spatial and temporal resolution, the key problem to be solved is that it is a product species which is taken to estimate its precursor emissions. It will be shown, that, with suitably chosen regularisation rules, emission rate estimates of precursor species of ozone can be inferred with the variational calculus mainly by assimilation of ozone observations. The benefits from temporally averaged tropospheric NO2 columns is explored. In this study the adjoint University of Cologne EURAD CTM is used for inversion. Emission rate optimisation is feasible with observations of surface ozone only. An independent corroboration of this statement can be claimed in terms of im- proved ensuing forecasts for the day following the assimilation period. In summary it can be stated that the emission rate optimisation by the 4D-var calculus is able to optimise emission rates of ozone precursor species, even if only ozone as the prod- uct species is observed. Additional forecast improvements due to the assimilation of individual satellite retrievals of tropospheric NO2 columns is subject to further inves- tigation.

  9. Megacity and country emissions from combustion sources-Buenos Aires-Argentina

    NASA Astrophysics Data System (ADS)

    Dawidowski, L.; Gomez, D.; Matranga, M.; D'Angiola, A.; Oreggioni, G.

    2010-12-01

    Historic time series (1970-2006) emissions of greenhouse gases and air pollutants arising from stationary and mobile combustion sources were estimated at national level for Argentina and at regional level for the metropolitan area of Buenos Aires (MABA). All emissions were estimated using a bottom-up approach following the IPCC good practice guidance. For mobile sources, national emissions include all transport categories. Regional emissions account thus far only for on-road. For national emissions, methodologies and guidance by the IPCC were employed, applying the highest possible tier and using: i)country-specific emission factors for carbon and sulphur and technology-based information for other species, ii)activity data from energy balance series (1970-2007), and iii)complementary information concerning the non-energy use of fuels. Regional emissions in 2006 were estimated in-depth using a technology-based approach for the city of Buenos Aires (CBA) and the 24 neighboring districts composing the MABA. A regional emissions factors database was developed to better characterize Latin American fleets and driving conditions employing COPERT III-IV algorithms and emission factors measured in dynamometers and circulating vehicles in Argentina, Brazil, Chile and Colombia. Past emissions were back estimated from 2005 to 1970 using the best available information, which differs greatly among categories, spatial disaggregation and time periods. The time series of stationary and mobile combustion sources at the national and regional level allowed the identification of distinct patterns. National greenhouse gas emissions in 2006 amounted to ~ 150 million ton CO2-equivalent, 70% of which were contributed by stationary sources. On-road transport was the major contributor within mobile sources (28.1 %). The increasing emissions trends are dominated by on-road transport, agriculture and residential categories while the variability is largely associated with energy industries

  10. Long-term variation of OH peak emission altitude and volume emission rate over Indian low latitudes

    NASA Astrophysics Data System (ADS)

    Sivakandan, Mani; Thokuluwa, Ramkumar; Kandula, Niranjan; Taori, Alok

    2016-07-01

    Using 13 (April 2002 -December 2014) years of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER/TIMED) 1.6µm OH airglow emission data, we have studied the long-term variation of OH peak emission altitude and volume emission rate (VER) for 0-10 N latitude and 70-90 E longitude grid. We have noted that, during day time the OH peak emission altitude is varying from 80 to 87 km with mean value of 83.5 km and from 82 to 88 km with mean value of 85 km during night time. The signature of semi-annual oscillation (SAO), annual oscillation (AO) and quasi-biennial oscillation (QBO) in the OH peak emission altitude as well as the VER is evident. Our analysis reveals that the SAO and QBO signatures but not the AO signature are very strong in the equatorial region during night time. Apart from the SAO, AO and QBO signatures, the presence of oscillation related to the El Niño oscillation (ENSO) is also noted. After the removal of these oscillations, we find the evidence of the influence of solar activity and a long term trend in the OH emission layer. It is also found good correlation between the mesospheric and stratospheric variations (ECMWF data).

  11. Long-term variation of OH peak emission altitude and volume emission rate over Indian low latitudes

    NASA Astrophysics Data System (ADS)

    Sivakandan, M.; Ramkumar, T. K.; Taori, A.; Rao, Venkateshwara; Niranjan, K.

    2016-02-01

    Using 13 (April 2002-December 2014) years of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER/TIMED) 1.6 μm OH airglow emission data, we have studied the long-term variation of OH peak emission altitude and volume emission rate (VER) for 0-10°N latitude and 70-90°E longitude grid. We have noted that, during day time the OH peak emission altitude is varying from 80 to 87 km with mean value of 83.5 km and from 82 to 88 km with mean value of 85 km during night time. The signature of semi-annual oscillation (SAO), annual oscillation (AO) and quasi-biennial oscillation (QBO) in the OH peak emission altitude as well as the VER is evident. Our analysis reveals that the SAO and QBO signatures but not the AO signature are very strong in the equatorial region during night time. Apart from the SAO, AO and QBO signatures, the presence of oscillation related to the El Niño oscillation (ENSO) is also noted. After the removal of these oscillations, we find the evidence of the influence of solar activity and a long term trend in the OH emission layer. It is also found good correlation between the mesospheric and stratospheric variations (ECMWF data).

  12. Collection and evaluation of modal traffic data for determination of vehicle emission rates under certain driving conditions. Final report

    SciTech Connect

    Yu, L.

    1997-08-01

    This report presents a research effort for collecting the on-road vehicle emission data, developing the ONROAD emission estimation model and evaluating existing emission estimation models including the emission factor models MOBILE and EMFAC. The on-road emission data were collected from highway locations in Houston using a Remote Emission Sensor (RES) called Smog Dog, which was developed by the Santa Barbara Research Center (SBRC). The SMOG DOG is used to collect the emission concentrations of CO, HC, and NO{sub x}, as well as to simultaneously record a vehicle`s instantaneous speed value and acceleration/deceleration rates while its emission is detected. During the emission data collection, the ambient temperature and humidity were periodically recorded. The collected emission data are used to develop the ONROAD emission estimation model, which consists of a series of emission estimation equations. In these emission estimation equations, the emission rates are made functions of a vehicle`s instantaneous speed, acceleration/deceleration rate, ambient temperature and humidity. The emission factors that are derived from MOBILE and EMFAC are compared with the collected on-road emission data by emulating the standard FTP driving cycles using the ONROAD emission rates. Efforts are also made to compare the emission estimates in traffic simulation models with the on-road emission data. It is found that traffic simulation models considerably underestimate the on-road emissions, and thus these models are not recommended for use in performing any field vehicle emission analysis.

  13. Collection and evaluation of modal traffic data for determination of vehicle emission rates under certain driving conditions. Research report

    SciTech Connect

    Yu, L.

    1997-09-01

    This report presents a research effort for collecting the on-road vehicle emission data, developing the ONROAD emission estimation model and evaluating existing emission estimation models including the emission factor models MOBILE and EMFAC. The on-road emission data were collected from highway locations in Houston using a Remote Emission Sensor (RES) called Smog Dog, which was developed by the Santa Barbara Research Center (SBRC). The SMOG DOG is used to collect the emission concentrations of CO, HC, and NO{sub x}, as well as to simultaneously record a vehicle`s instantaneous speed value and acceleration/deceleration rates while its emission is detected. During the emission data collection, the ambient temperature and humidity were periodically recorded. The collected emission data are used to develop the ONROAD emission estimation model, which consists of a series of emission estimation equations. In these emission estimation equations, the emission rates are made functions of a vehicle`s instantaneous speed, acceleration/deceleration rate, ambient temperature and humidity. The emission factors that are derived from MOBILE and EMFAC are compared with the collected on-road emission data by emulating the standard FTP driving cycles using the ONROAD emission rates. Efforts are also made to compare the emission estimates in traffic simulation models with the on-road emission data. It is found that traffic simulation models considerably underestimate the on-road emissions, and thus these models are not recommended for use in performing any field vehicle emission analysis.

  14. Sources of persistent organic pollutants emission on the territory of Belarus

    NASA Astrophysics Data System (ADS)

    Kakareka, Sergey V.

    The paper considers selected persistent organic pollutants (POPs) atmospheric emission evaluation on the territory of Belarus for main source categories. The procedure applied was based on the UNECE EMEP methodology. Data of industrial statistics, production processes analysis and relevant emission factors were used. For a number of sources, only quality and semi-quality emission evaluation was conducted, due to the lack of information for the selection of emission factors or statistical data relevant. In the paper, emissions of the following groups of pollutants are discussed: dioxins/furans (PCDD/PCDF) and polychlorinated biphenyls (PCB) as requested for EMEP database (Protocol on Persistent Organic Pollutants to the convention of 1979 on Long-range Transboundary Air Pollution in Europe and Annexes I, II, or III to the Protocol, 1998). PAH emission and selected chlorinated pesticides input also requested by EMEP will be described in other issues. Estimations have showed that Belarus as a whole is not a large emission source of such POPs as dioxins. Its share in European emissions is significantly below 1%. This can be explained by the fact that in Belarus there are no such large dioxin emission sources like sintering, waste incineration, non-ferrous industry. But some important sources of dioxins/furans for instance, open burning are not included in quantitative estimation now. The main contribution to dioxin emissions is by firewood and peat combustion. Only electric steel smelting plant can be considered as a large emission point source. Leakage from transformers and damaged capacitors was estimated as the main source of polychlorinated biphenyls (PCB) discharged into the environment: dielectric fluids with PCB are still in use in electrical equipment.

  15. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring NOX... provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... for a NOX continuous emission monitoring system (CEMS) for each affected coal-fired unit,...

  16. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specific provisions for monitoring NOX... provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... for a NOX continuous emission monitoring system (CEMS) for each affected coal-fired unit,...

  17. Comparison of atmospheric stability methods for calculating ammonia and methane emission rates with WindTrax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inverse dispersion models are useful tools for estimating emissions from animal feeding operations, waste storage ponds, and manure application fields. Atmospheric stability is an important input parameter to such models. The objective of this study was to compare emission rates calculated with a ba...

  18. Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Arnold, S.; Ramsey, J.M. )

    1992-11-15

    Fluorescence lifetimes of Rhodamine 6G in levitated micron-sized droplets have been measured using a time-correlated photon counting technique. The coupling of emission into spherical cavity modes of the droplet results in significant emission rate enhancements which allow estimation of the homogeneous linewidth at room temperature.

  19. Field emissions of greenhouse gases from contrasting biofuel feedstock production systems under different N fertilization rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management choices (crop type, fertilization rate) could affect agricultural soil emissions of important temperature-forcing greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Soil GHG emissions were measured in situ over the 2010 growing season at a biofu...

  20. Estimation of dairy particulate matter emission rates by lidar and inverse modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate matter (PM) emissions from agricultural operations are an important issue for air quality and human health and a topic of interest to government regulators. PM emission rates from a dairy in the San Joaquin Valley of California were investigated during June 2008. The facility had 1,885 t...

  1. Calculations on decay rates of various proton emissions

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-03-01

    Proton radioactivity of neutron-deficient nuclei around the dripline has been systematically studied within the deformed density-dependent model. The crucial proton-nucleus potential is constructed via the single-folding integral of the density distribution of daughter nuclei and the effective M3Y nucleon-nucleon interaction or the proton-proton Coulomb interaction. After the decay width is obtained by the modified two-potential approach, the final decay half-lives can be achieved by involving the spectroscopic factors from the relativistic mean-field (RMF) theory combined with the BCS method. Moreover, a simple formula along with only one adjusted parameter is tentatively proposed to evaluate the half-lives of proton emitters, where the introduction of nuclear deformation is somewhat discussed as well. It is found that the calculated results are in satisfactory agreement with the experimental values and consistent with other theoretical studies, indicating that the present approach can be applied to the case of proton emission. Predictions on half-lives are made for possible proton emitters, which may be useful for future experiments.

  2. PM 2.5 source profiles for black and organic carbon emission inventories

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Lowenthal, Douglas H.; Antony Chen, L.-W.; Motallebi, Nehzat

    2011-10-01

    Emission inventories for black or elemental (BC or EC) and organic (OC) carbon can be derived by multiplying PM 2.5 emission estimates by mass fractions of these species in representative source profiles. This study examines the variability of source profiles and its effect on EC emission estimates. An examination of available profiles shows that EC and OC ranged from 6-13% and 35-40% for agricultural burning, 4-33% and 22-68% for residential wood combustion, 6-38% and 24-75% for on-road gasoline vehicles, and 33-74% and 20-47% for on-road heavy-duty diesel vehicles, respectively. Source profiles from the U.S. EPA SPECIATE data base were applied to PM 2.5 emissions from the U.S. EPA National Emissions Inventory for 2005. The total estimated EC emissions of 432 Gg yr -1 was apportioned as 42.5% from biomass burning, 35.4% from non-road mobile sources, 15% from on-road mobile sources, 5.4% from fossil fuel (e.g., coal, oil, and natural gas) combustion in stationary sources, 1% from other stationary industrial sources, and 0.5% from fugitive dust. Considering the variability in available source profiles, BC emission estimates for major sources such as open fires and non-road diesels ranged from 42 to 133 (a factor of 3) and 25 to 100 (a factor of 4) Gg yr -1, respectively. The choice of source profiles can be a major source of uncertainty in national and global BC/EC emission inventories.

  3. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures

    NASA Astrophysics Data System (ADS)

    Felix, J. David; Elliott, Emily M.

    2014-08-01

    Quantifying contributions of local and regional NOx emission sources is an important initial step towards accurately assessing improvements in NOx emission reduction efforts. Current global NOx inventories report large uncertainties in contributions of some NOx sources, especially diffuse sources (e.g. lightning and soil NOx). Examining the isotopic composition of NOx and its oxidation products (NOy) is one approach to further constrain contributions from these sources. While natural and anthropogenically-derived NOx emissions are reported to have relatively distinct δ15N values that could aid NOx source apportionment studies, existing δ15N-NOx source data is limited and variable collection approaches have been employed. To build on existing δ15N-NOx source data, inexpensive and easily deployable passive samplers were used to collect nitrogen dioxide (NO2) emissions and its oxidation product, nitric acid (HNO3), from multiple emission sources including livestock waste, fertilized soils, and vehicles. The resulting isotope data provides evidence that passive samplers can be used across a range of environmental conditions with widely varying NO2 concentrations and NO2 isotopic compositions. Using this approach, we report the first δ15N and δ18O-NO2 of livestock waste emissions, as well as the first measurements of δ18O-NO2 from biogenic soil and vehicle emissions. We observe the highest δ15N-NO2 values to date of vehicle emissions and investigate potential fractionations associated with oxidation and equilibrium processes. The large differences reported here between δ15N-NO2 values from fossil fuel-based sources and microbially-produced sources allows for identification and possible quantification of source contributions to ambient NOx concentrations.

  4. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    NASA Technical Reports Server (NTRS)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  5. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O'Brien, J.; Wolde, M.

    2015-09-01

    Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5 % of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11 % of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as less than 30 %, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.

  6. High resolution European emission grids for anthropogenic sources for the years 2003-2007

    NASA Astrophysics Data System (ADS)

    Denier van der Gon, Hugo; Visschedijk, Antoon; Kuenen, Jeroen; van der Brugh, Hans; Dröge, Rianne; Schaap, Martijn

    2010-05-01

    To develop atmospheric services such as forecasting atmospheric composition a combination of meteorological models, atmospheric chemical transport models, satellite observational data and emission grids are needed. The latter are input for the predictive models and need to be as accurate as possible both in time and space. To support the new EU FP7 MACC (Monitoring Atmospheric Composition and Climate) we developed high resolution (1/8 degree x 1/16 degree lon-lat or ~ 7 x7 km) emission grids for UNECE-Europe for the years 2003-2007. These years are the focus of a reanalysis exercise within MACC. Reanalysis datasets are produced with data assimilation and modelling systems applied to the best available observational datasets. Such reanalysed fields of climate and atmospheric composition can be used in other studies (e.g. IPCC) to make more accurate assessments. For the MACC reanalysis years we use a combination of official reported emission data as available from EMEP, the IIASA GAINS model and expert estimates resulting in a consistent emission data set by country by source category for these years. From 2003-2007 emissions of air pollutants decreased by about 5%, although the reduction of NH3 emission was less (2.3%) and SO2 reduction was more (13%). However, more remarkable than the overall changes are the regional differences as well as source sector differences. For example, NOx emissions changed by -12% in the EU15+NOR+CHE, -8% in the EU12 and + 6 % in the non-EU countries. The emissions are distributed using our newly developed year 2005 emission database which is partly developed in EU FP7 MEGAPOLI. This database distinguishes itself from previous emission databases by a much improved spatial allocation of emissions. To this end we checked and updated our point source database by adding new point sources and removing obsolete entries for power plants, refineries and industrial installations. For diffuse sources like transport, residential combustion and

  7. Volatile Organic Compound Concentrations and Emission Rates in New Manufactured and Site-Built Houses

    SciTech Connect

    Armin Rudd

    2008-10-30

    This study was conducted with the primary objective of characterizing and comparing the airborne concentrations and the emission rates of total VOCs and selected individual VOCs, including formaldehyde, among a limited number of new manufactured and site-built houses.

  8. Field-scale operation of methane biofiltration systems to mitigate point source methane emissions.

    PubMed

    Hettiarachchi, Vijayamala C; Hettiaratchi, Patrick J; Mehrotra, Anil K; Kumar, Sunil

    2011-06-01

    Methane biofiltration (MBF) is a novel low-cost technique for reducing low volume point source emissions of methane (CH₄). MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting CH₄ to carbon dioxide (CO₂) and water (H₂O). A field research program was undertaken to evaluate the potential to treat low volume point source engineered CH₄ emissions using an MBF at a natural gas monitoring station. A new comprehensive three-dimensional numerical model was developed incorporating advection-diffusive flow of gas, biological reactions and heat and moisture flow. The one-dimensional version of this model was used as a guiding tool for designing and operating the MBF. The long-term monitoring results of the field MBF are also presented. The field MBF operated with no control of precipitation, evaporation, and temperature, provided more than 80% of CH₄ oxidation throughout spring, summer, and fall seasons. The numerical model was able to predict the CH₄ oxidation behavior of the field MBF with high accuracy. The numerical model simulations are presented for estimating CH₄ oxidation efficiencies under various operating conditions, including different filter bed depths and CH₄ flux rates. The field observations as well as numerical model simulations indicated that the long-term performance of MBFs is strongly dependent on environmental factors, such as ambient temperature and precipitation. PMID:21414700

  9. Performance and Limitations of Positron Emission Tomography (PET) Scanners for Imaging Very Low Activity Sources

    PubMed Central

    Freedenberg, Melissa; Badawi, Ramsey D.; Tarantal, Alice F.; Cherry, Simon R.

    2013-01-01

    Emerging applications for positron emission tomography (PET) may require the ability to image very low activity source distributions in the body. The performance of clinical PET scanners in the regime where activity in the field of view is <1 MBq has not previously been explored. In this study, we compared the counting rate performance of two clinical PET/CT scanners, the Siemens Biograph Reveal 16 scanner which is based on lutetium oxyorthosilicate (LSO) detectors and the GE Discovery-ST scanner which is based on bismuth germanate (BGO) detectors using a modified National Electrical Manufacturers Association (NEMA) NU 2-2007 protocol. Across the activity range studied (2-100 kBq/mL in a 5.5 mL line source in the NEMA scatter phantom), the BGO-based scanner significantly outperformed the LSO-based scanner. This was largely due to the effect of background counts emanating from naturally occurring but radioactive 176Lu within the LSO detector material, which dominates the observed counting rate at the lowest activities. Increasing the lower energy threshold from 350 keV to 425 keV in an attempt to reduce this background did not significantly improve the measured NECR performance. The measured singles rate due to 176Lu emissions within the scanner energy window was also found to be dependent on temperature, and to be affected by the operation of CT component, making approaches to correct or compensate for the background more challenging. We conclude that for PET studies in a very low activity range, BGO-based scanners are likely to have better performance because of the lack of significant background. PMID:23680361

  10. CONSTRAINTS ON FREE-FREE EMISSION FROM ANOMALOUS MICROWAVE EMISSION SOURCES IN THE PERSEUS MOLECULAR CLOUD

    SciTech Connect

    Tibbs, C. T.; Paladini, R.; Dickinson, C.; Davies, R. D.; Davis, R. J.; Watson, R. A.; Mason, B. S.; Casassus, S.; Cleary, K.

    2013-06-20

    We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency ({approx}1-5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3{sigma} upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature.

  11. Constraints on Free-Free Emission from Anomalous Microwave Emission Sources in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Tibbs, C. T.; Paladini, R.; Dickinson, C.; Mason, B. S.; Casassus, S.; Cleary, K.; Davies, R. D.; Davis, R. J.; Watson, R. A.

    2013-06-01

    We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency (~1-5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3σ upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature.

  12. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    SciTech Connect

    Cochems, P.; Kirk, A. T.; Bunert, E.; Runge, M.; Goncalves, P.; Zimmermann, S.

    2015-06-15

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  13. Source of O mode radio emissions from the dayside of Uranus

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Curran, D. B.

    1990-01-01

    During the inbound trajectory toward Uranus, the Planetary Radio Astronomy instrument on Voyager 2 observed narrow-band smooth (n-smooth) emission at frequencies centered near 60 kHz and O-mode emission (the dayside source) in a frequency range narrowly confined around 160 kHz. Assuming empirical models of the plasma density for the dayside magnetosphere of Uranus, and using cold plasma theory together with observational constraints, ray-tracing calculations are performed to determine the source location of the O-mode emission. The dayside source appears to originate along magnetic field lines with a footprint near the north magnetic pole. Sources of nightside high-frequency broadband smooth (b-smooth) emission observed by Voyager after encounter are believed to exist near the conjugate footprint of these same field lines. This would indicate that the particle population supplying the free energy source has energies at least as high as a few keV.

  14. Locating and estimating air emissions from sources of lead and lead compounds

    SciTech Connect

    1998-05-01

    This document describes the properties of lead and lead compounds as air pollutants, defines their production and use patterns, identifies source categories of air emissions, and provides lead emission factors. Lead is primarily used in the manufacture of lead-acid batteries, lead alloys, lead oxides in pigments, glass, lead cable coating, and a variety of lead products including ammunition and radiation shielding. Lead is emitted into the atmosphere from mining and smelting; from its use as feedstock in the production of lead alloys, lead compounds and other lead-containing products; from mobile sources; and from combustion sources. In addition to the lead and lead compound sources and emission factor data, information is provided that specifies how individual sources of lead and lead compounds may be tested to quantify air emissions.

  15. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    NASA Astrophysics Data System (ADS)

    Cochems, P.; Kirk, A. T.; Bunert, E.; Runge, M.; Goncalves, P.; Zimmermann, S.

    2015-06-01

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  16. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control.

    PubMed

    Cochems, P; Kirk, A T; Bunert, E; Runge, M; Goncalves, P; Zimmermann, S

    2015-06-01

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter. PMID:26133868

  17. Premature deaths attributed to source-specific BC emissions in six urban US regions

    NASA Astrophysics Data System (ADS)

    Turner, Matthew D.; Henze, Daven K.; Capps, Shannon L.; Hakami, Amir; Zhao, Shunliu; Resler, Jaroslav; Carmichael, Gregory R.; Stanier, Charles O.; Baek, Jaemeen; Sandu, Adrian; Russell, Armistead G.; Nenes, Athanasios; Pinder, Rob W.; Napelenok, Sergey L.; Bash, Jesse O.; Percell, Peter B.; Chai, Tianfeng

    2015-11-01

    Recent studies have shown that exposure to particulate black carbon (BC) has significant adverse health effects and may be more detrimental to human health than exposure to PM2.5 as a whole. Mobile source BC emission controls, mostly on diesel-burning vehicles, have successfully decreased mobile source BC emissions to less than half of what they were 30 years ago. Quantification of the benefits of previous emissions controls conveys the value of these regulatory actions and provides a method by which future control alternatives could be evaluated. In this study we use the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved spatial distributions of benefits related to emission reductions for six urban regions within the continental US. Emissions from outside each of the six chosen regions account for between 7% and 27% of the premature deaths attributed to exposure to BC within the region. While we estimate that nonroad mobile and onroad diesel emissions account for the largest number of premature deaths attributable to exposure to BC, onroad gasoline is shown to have more than double the benefit per unit emission relative to that of nonroad mobile and onroad diesel. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission relative to reductions to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad gasoline emissions in the region. While onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions.

  18. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. PMID:26024252

  19. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    PubMed

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations. PMID:25361293

  20. Seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Bourtsoukidis, E.; Bonn, B.; Kesselmeier, J.; Lelieveld, J.; Williams, J.

    2013-06-01

    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the comparative reactivity method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel VOC emission rates were monitored by a second proton-transfer-reaction mass spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56-69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11-16%. At this time, a large missing fraction of the total OH reactivity emission rate (70-84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only-dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only-dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could

  1. Evolutions of friction properties and acoustic emission source parameters associated with large sliding

    NASA Astrophysics Data System (ADS)

    Yabe, Y.; Tsuda, H.; Iida, T.

    2015-12-01

    It was demonstrated by Yabe (2002) that friction properties and AE (acoustic emission) activities evolve with accumulation of sliding. However, large sliding distances of ~65 mm in his experiments were achieved by recurring ~10 mm sliding on the same fault. The evolution of friction coefficient was discontinuous, when rock samples were reset. Further, normal stress was not kept constant. To overcome these problems and to reexamine the evolutions of friction properties and AE activities with continuous large sliding under a constant normal stress, we developed a rotary shear apparatus. The evolutions of friction and AE up to ~80 mm sliding under a normal stress of 5 MPa were investigated. Rate dependence of friction was the velocity strengthening (a-b>0 in rate and state friction law) at the beginning. The value of a-b gradually decreased with sliding to negative (velocity weakening). Then, it took a constant negative value, when the sliding reached a critical distance. The m-value of Ishimoto-Iida's relation of AE activity increased with sliding at the beginning and converged to a constant value at the critical sliding distance. The m-value showed a negative rate dependence at the beginning, but became neutral after sliding of the critical distance. The sliding distances required to converge the a-b value, the m-value and the rate dependence of the m-value are almost identical to one another. These results are the same as those by Yabe (2002), suggesting the intermission of sliding little affected the evolutions. We, then, examined evolutions of AE source parameters such as source radii and stress drops. The average source radius was constant over the whole sliding distance, while the average stress drop decreased at the beginning of sliding, and converged to a constant value. The sliding distance required to the conversion was the same as that for the above mentioned evolutions of friction property or AE activity.

  2. FIELD MEASUREMENT OF GREENHOUSE GAS EMISSION RATES AND DEVELOPMENT OF EMISSION FACTORS FOR WASTEWATER TREATMENT

    EPA Science Inventory

    The report gives results of field testing to develop more reliable green house gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. (NOTE: Estimates are available for the amount of methane (CH4) emitted from certain types of waste facilities, but there is not adeq...

  3. 75 FR 27249 - Standards of Performance for New Stationary Sources and Emissions Guidelines for Existing Sources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... estimated costs and impacts expected for each of three HMIWI model plants (large, medium and small), which... NO X emissions of 80 ppmv and baseline SO 2 emissions of 0.84 ppmv for the large HMIWI model plant... the 1997 rule. Consequently, the NO X and SO 2 emissions associated with the large HMIWI model...

  4. Source location of the smooth high-frequency radio emissions from Uranus

    SciTech Connect

    Farrell, W.M.; Calvert, W. )

    1989-05-01

    The source location of the smooth high-frequency (SHF) radio emissions from Uranus has been determined using a technique differing from those applied previously. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center for the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56{degree} S, 219{degree} W. The half-angle for the hollow portion of the emission pattern was found to be 13{degree}.

  5. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  6. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020

    NASA Astrophysics Data System (ADS)

    Pacyna, E. G.; Pacyna, J. M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P.

    2010-07-01

    This paper presents the 2005 global inventory of anthropogenic emissions to the atmosphere component of the work that was prepared by UNEP and AMAP as a contribution to the UNEP report Global Atmospheric Mercury Assessment: Sources, Emissions and Transport ( UNEP Chemicals Branch, 2008). It describes the methodology applied to compile emissions data on the two main components of the inventory - the 'by-product' emissions and the 'intentional use' emissions - and to geospatially distribute these emissions estimates to produce a gridded dataset for use by modelers, and the results of this work. It also presents some initial results of work to develop (simplified) scenario emissions inventories for 2020 that can be used to investigate the possible implications of actions to reduce mercury emissions at the global scale.

  7. Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates

    NASA Astrophysics Data System (ADS)

    Hess, S. L. G.; Echer, E.; Zarka, P.; Lamy, L.; Delamere, P. A.

    2014-09-01

    The influence of solar wind conditions on the Jovian auroral radio emissions has long been debated, mostly because it has always been difficult to get accurate solar wind and radio observations at the same time. We present here a study of Jupiter's radio emissions compared to solar wind conditions using radio (RPWS) and magnetic (MAG) data from the Cassini spacecraft from October to December 2000, just before its flyby of Jupiter. The spacecraft was then in the solar wind and could record both the radio emissions coming from the Jovian magnetosphere and the solar wind magnetic field (IMF). With these data, we found a good correspondence between the arrival of interplanetary shocks at Jupiter and the occurrence of radio storms. Our results confirm those from the previous studies showing that fast forward shocks (FFS) trigger mostly dusk emissions, whereas fast reverse shocks (FRS) trigger both dawn and dusk emissions. FFS-triggered emissions are found to occur 10-30 h after the shock arrival when the IMF is weak (below 2 nT), and quasi-immediately after shock arrival when the IMF is strong (above 2 nT). FRS-triggered emissions are found to occur quasi-immediately even when the IMF is weak. We show and discuss in depth the characteristic morphologies of the radio emissions related to each type of shock and their implications. We also used simultaneous radio observations from the ground-based Nançay decameter array and from the Galileo radio instrument (PWS). From the comparison of these measurements with Cassini's, we deduce the regions where the radio storms occur, as well as the radio source subcorotation rates. We show that FFS-triggered emissions onset happens in a sector of local time centered around 15:00 LT, and that all the shock-triggered radio sources sub-corotate with a subcorotation rate of ~50% when the IMF is below 2 nT and of ~80% when it is above 2 nT. These rates could correspond to the extended and compressed states of the Jovian magnetosphere.

  8. A Global inventory of volatile organic compound emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Piccot, Stephen D.; Watson, Joel J.; Jones, Julian W.

    1992-06-01

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic compound (VOC) emissions (excluding methane). Atmospheric chemistry models require, as one input, an emissions inventory of VOCs. Consequently, a global inventory of anthropogenic VOC emissions has been developed. The inventory includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds which possess different chemical reactivities in the atmosphere. The technical approach used to develop this inventory involved four major steps. The first step was to identify the major anthropogenic sources of VOC emissions in the United States and to group these sources into 28 general source groups. Source groups were developed to represent general categories such as "sources associated with oil and natural gas production" and more specific categories such as savanna buming. Emission factors for these source groups were then developed using different techniques and data bases. For example, emission factors for oil and natural gas production were estimated by dividing the United States' emissions from oil and gas production operations by the amount of oil and natural gas produced in the United States. Multiplication of these emission factors by production/consumption statistics for other countries yielded global VOC emission estimates for specific source groups within those countries. The final step in development of the VOC inventory was to distribute emissions into 10° by 10° grid cells using detailed maps of population and industrial activity. The results of this study show total global anthropogenic VOC emissions of

  9. Modeling Ozone in the Eastern United States Using a Fuel-Based Mobile Source Emissions Inventory

    NASA Astrophysics Data System (ADS)

    Mcdonald, B. C.; Ahmadov, R.; McKeen, S. A.; Kim, S. W.; Frost, G. J.; Trainer, M.

    2015-12-01

    A fuel-based mobile source emissions inventory of nitrogen oxides (NOx) and carbon monoxide (CO) is developed for the continental US. Emissions are mapped for the year 2013, including emissions from on-road gasoline and diesel vehicles, and off-road engines. We find that mobile source emissions of NOx in the National Emissions Inventory 2011 (NEI11) are 50-60% higher than results from this study; mobile sources contribute around half of total US anthropogenic NOx emissions. We model chemistry and transport of emissions from the NEI11 and our fuel-based inventory during the Southeast Nexus (SENEX) Study period in the summer of 2013, using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. In the Eastern US, there is a consistent over-prediction of tropospheric ozone (O3) levels when simulating emissions from the NEI11, with the largest biases located in the Southeastern US. Using our fuel-based inventory, we test O3 sensitivity to lower NOx emissions. We highlight results in the Southeast, a region with significant interactions between anthropogenic and biogenic emissions of ozone precursors. Model results of NOy, CO, and O3 are compared with aircraft measurements made during SENEX.

  10. Photon emission as a source of coherent behavior of polaritons.

    PubMed

    Vinck-Posada, Herbert; Rodriguez, Boris A; Guimaraes, P S S; Cabo, Alejandro; Gonzalez, Augusto

    2007-04-20

    We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest-energy photon mode of a microcavity) are presented in support of this statement. PMID:17501462

  11. Cotton harvesting emission factors based on source sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air quality regulation across the U.S. is intensifying due to increasing public concern for environmental protection. Non-attainment status with Federal particulate matter (PM) air quality standards has forced air pollution regulators in some states to focus emission reduction efforts on previously ...

  12. Cotton harvesting emission factors based on source sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton producers in some states across the US cotton belt are facing increased regulatory pressure from state air pollution regulatory agencies. This increased pressure is due in part to inaccurate emission factors for many agricultural operations and poor regional air quality. The objective of this...

  13. SOURCE ASSESSMENT: OVERVIEW AND PRIORITIZATION OF EMISSIONS FROM TEXTILE MANUFACTURING

    EPA Science Inventory

    The report gives an overview of air pollution emission levels and a ranking of the public health hazard potential of textile manufacturing operations. The textile industry was defined and categorized by Bureau of the Census Standard Industrial Classification (SIC) Codes. Flow cha...

  14. EVALUATION OF A REMOTE SENSOR FOR MOBILE SOURCE CO EMISSIONS

    EPA Science Inventory

    Carbon monoxide (CO) emission measurements of thousands of vehicles per day are possible with a recently evaluated remote sensor developed at the University of Denver. unded by the Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV) Innovative Research Program, the ...

  15. MODELING RELATIONSHIPS BETWEEN MOBILE SOURCE PARTICLE EMISSIONS AND POPULATION EXPOSURES

    EPA Science Inventory

    Results from this analysis were recently published (Greco, et al., 2007b). For primary fine particulate matter emitted from mobile sources, the intake fractions varied across source counties from 0.14 to 23 per million (median of 1.2 per million). These values were highly...

  16. EMISSION CHARACTERIZATION OF STATIONARY NOX SOURCES: VOLUME 1. RESULTS

    EPA Science Inventory

    The report gives results of an inventory of gaseous, liquid, and solid effluents from stationary NOx sources, projected to the year 2000, and ranks them according to their potential for environmental hazard. It classifies sources according to their pollution formation characteris...

  17. Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States

    SciTech Connect

    Gillette, D.A. ); Stensland, G.J.; Williams, A.L.; Barnard, W.; Gatz, D. ); Sinclair, P.C. ); Johnson, T.C. )

    1992-12-01

    Models of dust emissions by wind erosion (including winds associated with regional activity as well as dust devils) and vehicular disturbances of unpaved roads were developed, calibrated, and used to estimate alkaline dust emissions from elemental soil and road composition data. Emissions from tillage of soils were estimated form the work of previous researchers. The area of maximum dust production by all of those sources is the area of the old Dust Bowl' of the 1930s (the panhandles of Texas and Oklahoma, eastern New Mexico and Colorado, and western Kansas). The areas of maximum alkaline dust production are the arid southwest, the Dust Bowl,' and the midwestern-mideastern states from Iowa to Pennsylvania. Our calculations show that calcium is the dominant alkaline element produced by open sources' (sources too great in extent to be controlled by enclosure or ducting). Although the largest dust mass source is wind erosion (by winds associated with regional activity and convective activity), the largest producer of the alkaline component is road dust because the abundance of alkaline materials in road coverings (which include crushed limestone) is significantly higher than for soils. Comparing the above estimated sources of alkaline material with inventories of SO[sub 2] and NO[sub x] emissions by previous investigators gives the rough approximation that alkaline emission rates are of the order of the SO[sub 2] + NO[sub x] emissions in the western United States and that they are much smaller than SO[sub 2] + NO[sub x] in the eastern United States. This approximation is substantiated by data on Ca/(SO[sub 4] + NO[sub 3]) for wet deposition for National Atmospheric Deposition Program sites. 53 refs., 9 figs., 2 tabs.

  18. Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Gillette, Dale A.; Stensland, Gary J.; Williams, Allen L.; Barnard, William; Gatz, Donald; Sinclair, Peter C.; Johnson, Tezz C.

    1992-12-01

    Models of dust emissions by wind erosion (including winds associated with regional activity as well as dust devils) and vehicular disturbances of unpaved roads were developed, calibrated,and used to estimate alkaline dust emissions from elemental soil and road composition data. Emissions from tillage of soils were estimated from the work of previous researchers. The area of maximum dust production by all of those sources is the area of the old "Dust Bowl" of the 1930s (the panhandles of Texas and Oklahoma, eastern New Mexico and Colorado, and western Kansas). The areas of maximum alkaline dust production are the arid southwest, the "Dust Bowl," and the midwestern-mideastern states from Iowa to Pennsylvania. Our calculations show that calcium is the dominant alkaline element produced by "open sources" (sources too great in extent to be controlled by enclosure or ducting). Although the largest dust mass source is wind erosion (by winds associated with regional activity and convective activity), the largest producer of the alkaline component is road dust because the abundance of alkaline materials in road coverings (which include crushed limestone) is significantly higher than for soils. Comparing the above estimated sources of alkaline material with inventories of SO2 and NOx emissions by previous investigators gives the rough approximation that alkaline emission rates are of the order of the SO2 + NOx emissions in the western United States and that they are much smaller than SO2 + NOx in the eastern United States. This approximation is substantiated by data on Ca/(SO4 + NO3) for wet deposition for National Atmospheric Deposition Program sites.

  19. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  20. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  1. Sources of Asian dust and role of climate change versus desertification in Asian dust emission

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Gong, S. L.; Zhao, T. L.; Arimoto, R.; Wang, Y. Q.; Zhou, Z. J.

    2003-12-01

    Simulations of Asian dust emissions over the past 43 years are presented based on a size-dependent soil dust emission and transport model (NARCM) along with supporting data from a network of surface stations. The deserts in Mongolia and in western and northern China (mainly the Taklimakan and Badain Juran, respectively) contribute ~70% of the total dust emissions; non-Chinese sources account for ~40% of this. Several areas, especially the Onqin Daga sandy land, Horqin sandy land, and Mu Us Desert, have increased in dust emissions over the past 20 years, but efforts to reduce desertification in these areas may have little effect on Asian dust emission amount because these are not key sources. The model simulations indicate that meteorology and climate have had a greater influence on the Asian dust emissions and associated Asian dust storm occurrences than desertification.

  2. Sulfur dioxide emission rates from Kīlauea Volcano, Hawai‘i, 2007–2010

    USGS Publications Warehouse

    Elias, T.; Sutton, A.J.

    2012-01-01

    Kīlauea Volcano has one of the longest running volcanic sulfur dioxide (SO2) emission rate databases on record. Sulfur dioxide emission rates from Kīlauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Elias and Sutton, 2007, and references within). Compilations of SO2 emission-rate and wind-vector data from 1979 through 2006 are available on the USGS Web site (Elias and others, 1998; Elias and Sutton, 2002; Elias and Sutton, 2007). This report updates the database, documents the changes in data collection and processing methods, and highlights how SO2 emissions have varied with eruptive activity at Kīlauea Volcano for the interval 2007–2010.

  3. Establishing Global Source-Receptor Relationships for Carbonaceous Aerosol to Characterize Sensitivity of its Climate Forcing to Emission Uncertainties

    NASA Astrophysics Data System (ADS)

    Wang, H.; Rasch, P. J.; Easter, R. C.; Singh, B.; Qian, Y.; Ma, P.; Zhang, R.

    2013-12-01

    Carbonaceous aerosol (CA) has been identified as an important but very uncertain forcing agent in the Earth's climate system. It has cascading radiative, microphysical and dynamical effects across the different scales in the atmosphere. Light-absorbing CA (e.g., black carbon (BC) and brown carbon) deposited on snow, sea ice and glaciers can accelerate their melting, which can induce more profound impact through positive feedback mechanisms, having important implications for climate change and fresh water availability at the global and regional scale. Many factors can affect the amount and impacts of CA in a specific region such as the Arctic, among which the global distribution of emissions is of primary importance. There are many uncertainties in global CA emissions, which are changing over time. To better understand the response of climate to these uncertainties and to potential future CA emission changes, it is useful to characterize the global source-receptor relationships and attribute CA loading and radiative forcing to various regional and sectoral CA sources. Observational evidence has clearly demonstrated the occurrence of intercontinental long-range transport of aerosols and to some extent the characteristic transport pathways. However, the observational approach alone cannot provide quantitative information on global source-receptor relationships. We have recently improved the treatment of aerosol transport and wet removal processes in the Community Atmosphere Model version 5 (CAM5) and introduced a brute-force aerosol source tagging technique in which aerosol particles emitted from many independent source regions and sectors are tagged and explicitly tracked. We run the CAM5 model in an 'offline' mode (i.e., driven by reanalysis data) so the transport processes are less likely to be subject to model biases in meteorology and circulation patterns. This modeling tool is used to quantify the characteristics (e.g., burden, surface deposition rate, lifetime

  4. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    PubMed

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-01

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas. PMID:23634761

  5. Enhanced Atlantic sea-level rise relative to the Pacific under high carbon emission rates

    NASA Astrophysics Data System (ADS)

    Krasting, J. P.; Dunne, J. P.; Stouffer, R. J.; Hallberg, R. W.

    2016-03-01

    Thermal expansion of the ocean in response to warming is an important component of historical sea-level rise. Observational studies show that the Atlantic and Southern oceans are warming faster than the Pacific Ocean. Here we present simulations using a numerical atmospheric-ocean general circulation model with an interactive carbon cycle to evaluate the impact of carbon emission rates, ranging from 2 to 25 GtC yr-1, on basin-scale ocean heat uptake and sea level. For simulations with emission rates greater than 5 GtC yr-1, sea-level rise is larger in the Atlantic than Pacific Ocean on centennial timescales. This basin-scale asymmetry is related to the shorter flushing timescales and weakening of the overturning circulation in the Atlantic. These factors lead to warmer Atlantic interior waters and greater thermal expansion. In contrast, low emission rates of 2 and 3 GtC yr-1 will cause relatively larger sea-level rise in the Pacific on millennial timescales. For a given level of cumulative emissions, sea-level rise is largest at low emission rates. We conclude that Atlantic coastal areas may be particularly vulnerable to near-future sea-level rise from present-day high greenhouse gas emission rates.

  6. Source-emission testing of the Rail Shop Media Blast Booth, Hill AFB, Utah. Final report

    SciTech Connect

    O'Brien, R.J.

    1990-10-01

    At the request of HQ Ogden ALC/EM, personnel of the AFOEHL Air Quality Function conducted source emission testing for particulates on the Rail Shop Media Blast Booth at Hil AFB. Testing was performed on 29 and 30 Aug 90. The Utah Bureau of Air Quality required testing for approval order compliance. Particulate emissions were above the emission limits allowed by the State of Utah. Action is recommended to bring the media blast booth into compliance.

  7. Sources of CO emissions in an HCCI engine: A numerical analysis

    SciTech Connect

    Bhave, Amit; Kraft, Markus; Montorsi, Luca; Mauss, Fabian

    2006-02-01

    Factors influencing a reliable prediction of CO emissions in a homogeneous charge compression ignition (HCCI) engine are investigated using an improved probability density function (PDF)-based engine cycle model. A previously validated PDF-based stochastic reactor model is utilized to identify critical sources of CO emissions numerically. The full cycle model includes detailed chemical kinetics, accounts for the inhomogeneities in temperature and composition, and has been demonstrated to provide sufficiently reliable predictions of the combustion and engine parameters and emissions.

  8. 40 CFR Table 2 to Subpart Qqqq of... - Emission Limits for Existing Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of Wood Building... following table as required by § 63.4690. If the affected source applies coating to products in...

  9. 40 CFR Table 2 to Subpart Qqqq of... - Emission Limits for Existing Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of Wood Building... following table as required by § 63.4690. If the affected source applies coating to products in...

  10. 40 CFR Table 2 to Subpart Qqqq of... - Emission Limits for Existing Affected Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Surface Coating of Wood... the following table as required by § 63.4690. If the affected source applies coating to products...

  11. CHEMICAL CHARACTERIZATION & SPECIATION OF MOBILE SOURCE EMISSIONS: HUMAN EXPOSURE IMPLICATIONS & IMPLEMENTATION PERSPECTIVES

    EPA Science Inventory

    A significant number of epidemiological studies have identified an increase in occurrence of adverse health effects associated with exposures to mobile source emissions. These adverse effects include asthma, other respiratory diseases, cardiovascular effects, cancer, development...

  12. THE MEASUREMENT OF HYDROCARBON EMISSIONS FROM FUGITIVE SOURCES IN PETROLEUM REFINERIES

    EPA Science Inventory

    The paper gives preliminary results of measurements of hydrocarbon emissions from a number of petroleum refineries. Sampled sources included valves, flanges, pump and compressor seals, pressure relief devices, drains, and cooling towers. The paper discusses sampling techniques an...

  13. Comparing two micrometeorological techniques for estimating trace gas emissions from distributed sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring trace gas emission from distributed sources such as treatment lagoons, treatment wetlands, land spread of manure, and feedlots requires micrometeorological methods. In this study, we tested the accuracy of two relatively new micrometeorological techniques, vertical radial plume mapping (VR...

  14. Impact of various operating modes on performance and emission parameters of small heat source

    NASA Astrophysics Data System (ADS)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  15. 40 CFR 63.2343 - What are my requirements for emission sources not requiring control?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution... identified in paragraph (a) of this section on a plant site plan or process and instrumentation diagram...

  16. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART II

    EPA Science Inventory

    The southern Lake Michigan area continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban pollut...

  17. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART III

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban polluti...

  18. Modeling air pollutant emissions from Indian auto-rickshaws: Model development and implications for fleet emission rate estimates

    NASA Astrophysics Data System (ADS)

    Grieshop, Andrew P.; Boland, Daniel; Reynolds, Conor C. O.; Gouge, Brian; Apte, Joshua S.; Rogak, Steven N.; Kandlikar, Milind

    2012-04-01

    Chassis dynamometer tests were conducted on 40 Indian auto-rickshaws with 3 different fuel-engine combinations operating on the Indian Drive Cycle (IDC). Second-by-second (1 Hz) data were collected and used to develop velocity-acceleration look-up table models for fuel consumption and emissions of CO2, CO, total hydrocarbons (THC), oxides of nitrogen (NOx) and fine particulate matter (PM2.5) for each fuel-engine combination. Models were constructed based on group-average vehicle activity and emissions data in order to represent the performance of a 'typical' vehicle. The models accurately estimated full-cycle emissions for most species, though pollutants with more variable emission rates (e.g., PM2.5) were associated with larger errors. Vehicle emissions data showed large variability for single vehicles ('intra-vehicle variability') and within the test group ('inter-vehicle variability'), complicating the development of a single model to represent a vehicle population. To evaluate the impact of this variability, sensitivity analyses were conducted using vehicle activity data other than the IDC as model input. Inter-vehicle variability dominated the uncertainty in vehicle emission modeling. 'Leave-one-out' analyses indicated that the model outputs were relatively insensitive to the specific sample of vehicles and that the vehicle samples were likely a reasonable representation of the Delhi fleet. Intra-vehicle variability in emissions was also substantial, though had a relatively minor impact on model performance. The models were used to assess whether the IDC, used for emission factor development in India, accurately represents emissions from on-road driving. Modeling based on Global Positioning System (GPS) activity data from real-world auto-rickshaws suggests that, relative to on-road vehicles in Delhi, the IDC systematically under-estimates fuel use and emissions; real-word auto-rickshaws consume 15% more fuel and emit 49% more THC and 16% more PM2.5. The models

  19. 77 FR 41146 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 Delegation of National Emission Standards for Hazardous Air Pollutants for Source... delegation of specific national emission standards for hazardous air pollutants (NESHAP) to the Gila...

  20. NATIONAL- AND STATE-LEVEL EMISSIONS ESTIMATES OF RADIATIVELY IMPORTANT TRACE GASES (RITGS) FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report documents the development of national- and state- level emissions estimates of radiatively important trace gases (RlTGs). Emissions estimates are presented for the principal anthropogenic sources of carbon dioxide (CO2), methane (CH4), chlorofluorocarbons (CFCs), and o...

  1. MULTIPLE METALS STACK EMISSION MEASUREMENT METHODOLOGY FOR STATIONARY SOURCES, CURRENT STATUS

    EPA Science Inventory

    Stack emissions of metals from stationary sources are of present interest to the United States Environmental Protection Agency (USEPA), to state and local governments, to industries, and to the public. hen regulations require limitation of metals stack emissions, it follows logic...

  2. MULTIPLE METALS STACK EMISSION MEASUREMENT METHODOLOGY FOR STATIONARY SOURCES - CURRENT STATUS

    EPA Science Inventory

    Stack emissions of metals from stationary sources are of present interest to the United States Environmental Protection Agency (USEPA), to state and local governments, to industries, and to the public. hen regulations require limitation of metals stack emissions, it follows logic...

  3. REGIONAL AIR POLLUTION STUDY: OFF-HIGHWAY MOBILE SOURCE EMISSION INVENTORY

    EPA Science Inventory

    An emission inventory of mobile off-highway sources of air pollution has been determined for the Regional Air Pollution Study (RAPS) in St. Louis, Missouri. Emissions of HC, CO, NOx, SOx and particulate matter have been calculated with the aid of a computer for the 1,989 grid squ...

  4. INVESTIGATION OF SOURCE EMISSION PM-10 PARTICULATE MATTER FIELD STUDIES OF CANDIDATE METHODS

    EPA Science Inventory

    The report outlines the results of four field tests of two candidate methods for source PM10 measurement. The first method involves a new sampling train design which incorporates emission gas recycle (EGR) to avoid the anisokinetic sampling bias inherent in size specific emission...

  5. Emission estimates of particulate matter and heavy metals from mobile sources in Delhi (India).

    PubMed

    Kumari, Ragini; Attri, Arun K; Panis, Luc Int; Gurjar, B R

    2013-04-01

    An attempt has been made to make a comprehensive emission inventory of particulate matter (PM) of various size fractions and also of heavy metals (HMs) emitted from mobile sources (both exhaust and non-exhaust) from the road transport of Delhi, India (1991-2006). COPERT-III and 4 models were mainly used toestimate these emissions. Results show that the annual exhaust emission of PM of size upto 2.5 micrometer (PM2.5) has increased from 3Gg to 4.5Gg during 1991-2006 irrespective of'improvement in vehicle-technology and fuel use. PM emission from exhaust and non-exhaust sources in general has increased. Heavy commercial vehicles-need attention to control particulate emission as it emerged as a predominant source of PM emissions. Among non-exhaust emissions of total suspended particulate matter (TSP), road-surface wear (~49%) has the prime contribution. As a result of-introduction of unleaded gasoline Pb has significantly reduced (~8 fold) whereas share of Cu and Zn are still considerable. Among non-exhaust sources, Pb release was the most significant one from tyre-wear whereas from break-wear, Cu release was found to be the most significant followed by Pb and Cr + Zn. Because of public health concerns further policies need to be developed to reduce emissions of PM and HMs from the road transport of megacity Delhi. PMID:25508320

  6. Emission estimates of particulate matter and heavy metals from mobile sources in Delhi (India).

    PubMed

    Kumari, Ragini; Attri, Arun K; Panis, Luc Int; Gurjar, B R

    2013-04-01

    An attempt has been made to make a comprehensive emission inventory of particulate matter (PM) of various size fractions and also of heavy metals (HMs) emitted from mobile sources (both exhaust and non-exhaust) from the road transport of Delhi, India (1991-2006). COPERT-III and 4 models were mainly used toestimate these emissions. Results show that the annual exhaust emission of PM of size upto 2.5 micrometer (PM2.5) has increased from 3Gg to 4.5Gg during 1991-2006 irrespective of'improvement in vehicle-technology and fuel use. PM emission from exhaust and non-exhaust sources in general has increased. Heavy commercial vehicles-need attention to control particulate emission as it emerged as a predominant source of PM emissions. Among non-exhaust emissions of total suspended particulate matter (TSP), road-surface wear (~49%) has the prime contribution. As a result of-introduction of unleaded gasoline Pb has significantly reduced (~8 fold) whereas share of Cu and Zn are still considerable. Among non-exhaust sources, Pb release was the most significant one from tyre-wear whereas from break-wear, Cu release was found to be the most significant followed by Pb and Cr + Zn. Because of public health concerns further policies need to be developed to reduce emissions of PM and HMs from the road transport of megacity Delhi. PMID:25464689

  7. 76 FR 80531 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...On March 21, 2011, the EPA promulgated national emission standards for the control of hazardous air pollutants from two area source categories: industrial boilers, and commercial and institutional boilers. On that same date, the EPA announced that it was convening a proceeding for reconsideration of certain portions of those final emission standards. After promulgation, the Administrator......

  8. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Emission Limits for Tire Cord...: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 2 Table 2 to Subpart XXXX of Part 63—Emission Limits for Tire Cord Production Affected Sources As stated in § 63.5986, you must comply with the...

  9. LABORATORY AND FIELD EVALUATIONS OF METHODOLOGY FOR DETERMINING HEXAVALENT CHROMIUM EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Development of methodology for sampling and analysis of chromium to support stationary source regulations was initiated in 1984. his study was initiated to determine whether chromium emissions should be regulated under Section 112 of the Clean Air Act National Emissions Standards...

  10. Emission of volatile organic compounds from silage: compounds, sources, and implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  11. Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H{sup −} ion sources

    SciTech Connect

    Han, B. X. Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, M. P.

    2014-02-15

    A RF-driven, Cs-enhanced H{sup −} ion source feeds the SNS accelerator with a high current (typically >50 mA), ∼1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a means for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN (aluminum nitrite) chamber and an external RF antenna are also briefly discussed.

  12. Qualities of Judgmental Ratings by Four Rater Sources.

    ERIC Educational Resources Information Center

    Tsui, Anne S.

    Quality of performance data yielded by subjective judgment is of major concern to researchers in performance appraisal. However, some confusion exists in the analysis of quality on ratings obtained from different rating scale formats and from different raters. To clarify this confusion, a study was conducted to assess the quality of judgmental…

  13. 40 CFR 63.5986 - What emission limits must I meet for tire cord production affected sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tire cord production affected sources? 63.5986 Section 63.5986 Protection of Environment ENVIRONMENTAL...: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5986 What emission limits must I meet for tire cord production affected sources? You must meet each emission limit...

  14. 40 CFR 63.5987 - What are my alternatives for meeting the emission limits for tire cord production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the emission limits for tire cord production affected sources? 63.5987 Section 63.5987 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5987 What are my alternatives for meeting the emission limits for tire cord production affected sources?...

  15. 40 CFR 63.5986 - What emission limits must I meet for tire cord production affected sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tire cord production affected sources? 63.5986 Section 63.5986 Protection of Environment ENVIRONMENTAL...: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5986 What emission limits must I meet for tire cord production affected sources? You must meet each emission limit...

  16. 40 CFR 63.5986 - What emission limits must I meet for tire cord production affected sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tire cord production affected sources? 63.5986 Section 63.5986 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5986 What emission limits must...

  17. 40 CFR 63.5987 - What are my alternatives for meeting the emission limits for tire cord production affected sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the emission limits for tire cord production affected sources? 63.5987 Section 63.5987 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5987 What are my alternatives for meeting the emission limits for tire cord production affected sources?...

  18. 40 CFR 63.5985 - What are my alternatives for meeting the emission limits for tire production affected sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the emission limits for tire production affected sources? 63.5985 Section 63.5985 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5985 What are my alternatives for meeting the emission limits for tire production affected sources? You must...

  19. 40 CFR 63.5985 - What are my alternatives for meeting the emission limits for tire production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the emission limits for tire production affected sources? 63.5985 Section 63.5985 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5985 What are my alternatives for meeting the emission limits for tire production affected sources? You must...

  20. 40 CFR 63.5986 - What emission limits must I meet for tire cord production affected sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tire cord production affected sources? 63.5986 Section 63.5986 Protection of Environment ENVIRONMENTAL...: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5986 What emission limits must I meet for tire cord production affected sources? You must meet each emission limit...