Science.gov

Sample records for southwestern greenland implications

  1. Abiotic, Graphitic Microstructures in Micaceous Metaquartzite about 3760 Million Years Old from Southwestern Greenland: Implications for Early Precambrian Microfossils

    PubMed Central

    Nagy, Bartholomew; Zumberge, John E.; Nagy, Lois Anne

    1975-01-01

    An Early Precambrian micaceous metaquartzite subjected to low to moderate metamorphism in the Isua area of Southwestern Greenland was derived from the erosion of preexisting rocks which were probably sialic in composition. This metaquartzite may have been formed before the emergence of life. It contains globular particles of graphite arranged in narrow veins or along foliation or bedding planes. This rock contains no organic compounds besides traces of methane and no biologically significant elements associated with the graphite microstructures. Reaction of primitive methane with ferric oxides appears to have oxidized the methane to the vein graphite and reduced the ferric oxides to ferrous-ferric oxide (magnetite). The graphitic microstructures are likely to be abiotic in origin, although a biological origin is not impossible. Somewhat younger microstructures found in other locations on earth have often been described as microfossils; this origin should be reexamined on the basis of the above mentioned conclusions. Images PMID:16592229

  2. Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland.

    PubMed

    Trout-Haney, Jessica V; Wood, Zachary T; Cottingham, Kathryn L

    2016-01-01

    Cyanobacteria and their toxins have received significant attention in eutrophic temperate and tropical systems where conspicuous blooms of certain planktonic taxa release toxins into fresh water, threatening its potability and safe use for recreation. Although toxigenic cyanobacteria are not confined to high nutrient environments, bloom-forming species, or planktonic taxa, these other situations are studied les often studied. For example, toxin production in picoplankton and benthic cyanobacteria-the predominant photoautotrophs found in polar lakes-is poorly understood. We quantified the occurrence of microcystin (MC, a hepatotoxic cyanotoxin) across 18 Arctic lakes in southwestern Greenland. All of the focal lakes contained detectable levels of MC, with concentrations ranging from 5 ng·L(-1) to >400 ng·L(-1) during summer, 2013-2015. These concentrations are orders of magnitude lower than many eutrophic systems, yet the median lake MC concentration in Greenland (57 ng·L(-1)) was still 6.5 times higher than the median summer MC toxicity observed across 50 New Hampshire lakes between 1998 and 2008 (8.7 ng·L(-1)). The presence of cyanotoxins in these Greenlandic lakes demonstrates that high latitude lakes can support toxigenic cyanobacteria, and suggests that we may be underestimating the potential for these systems to develop high levels of cyanotoxins in the future. PMID:27589801

  3. Assessment of GDGTs as paleotemperature proxies in a series of lacustrine sediments from southwestern Greenland

    NASA Astrophysics Data System (ADS)

    Colcord, D. E.; Cadieux, S. B.; Brassell, S. C.; Castaneda, I. S.; Pratt, L. M.; White, J. R.

    2013-12-01

    The proven utility of glycerol dialkyl glycerol tetraethers (GDGTs) in the reconstruction of marine paleotemperatures has prompted assessment of the applicability of these proxies in lacustrine environments. This study of lake systems in southwestern Greenland near Kangerlussuaq seeks to examine the veracity of GDGTs as temperature proxies in these settings in concert with assessment of the effects of environmental variables on their distributions. GDGT distributions have been examined in sediments from a series of 5 lakes (informally named EVV Upper, EVV Lower, Teardrop, Potentilla, and South Twin) in a narrow valley, overlying a structural shear zone, extending from the Russell Glacier to the Søndre Strømfjord. The lakes are characterized by varied water chemistry (e.g. pH, [SO42-]), a range of depths (4 - 8 m) and areas (0.19 - 3.17 ha), and different distances (2 - 7 km) from the edge of the ice sheet. The close proximity of the lakes within a single valley suggests that their temperature history and likely sources of GDGTs, both autochthonous and allochthonous, should be similar. None of the samples contained sufficient isoprenoid GDGTs to allow use of TEX86 (Schouten et al., 2002), whereas all samples contained significant abundances of branched GDGTs enabling application of other established GDGT-based proxies for temperature reconstruction. Temperatures recorded by surface sediments (using the calibration of Pearson et al., 2011) ranged from 7.4°C at Upper Lake (closest to the ice sheet) to 15.2°C at South Twin (furthest from the ice sheet), with the other 3 lakes yielding temperatures within this range. The proximity to the ice sheet appears to exert greater influence on the lake GDGT-based temperatures than other environmental parameters. Down-core GDGT records, obtained from Upper Lake and Lower Lake at 2 cm intervals, follow similar depth trends. Both sequences exhibit inter-sample temperature fluctuations of ~3°C (ranges 7.2 - 12.5 °C and 8

  4. Geochemistry of Mesozoic carbonatite complexes in the southwestern part of Greenland

    NASA Astrophysics Data System (ADS)

    Park, B.; Lee, J.; Lee, M.

    2013-12-01

    This is the results of geochemical analysis of carbonatite taken at the kimberlite and carbonatite complexes in Tikilusaag and Qaqarssuk located in the southwestern part of Greenland. These complexes have high grade of rare earth elements (REE), gold, olivine and diamond ore deposits. These kimberlite, lamprophyre and carbonatite are originated from complex carbonatitic and silicate magma. This kind of ultramafic alkaline complex is not common compared to other igneous bodies in the crust. Tikilusaag carbonatite complex in contains REE in calcite carbonatite. Carbonatite minerals are strontianite (SrCO3) and ancylite (SrCe(CO3)2(OH)H2O). Strontianite contains Ce and ancylite contains considerable amounts of La, Ce, Nd, respectively. Two minerals are the major components which have LREE in the complexes. Tikilussaaq carbonatite complex contain apatite which has maximum 200 micro meter in size and mostly euhedral. Most apatite crystals show compositional zoning under CL attached to SEM (JEOL, JSM-6610). This zoning reflects physiochemical condition of magma at the time of crystallization and the compositional difference of Ca, P, and F with the consideration of chemical composition of apatite. The apatite contain F instead of Cl, namely fluorine apatite. Compositional zoning reflect the difference of Ca and P according to CL image. Qaqarssuk carbonatite complex is consisted of several minerals containing Ba composition. Ba in calcite which is the major mineral of Ba carbonatite (Barytocalcite, CaBa(CO3)2) coexists with barite and Ba-Sr carbonatite. Fenitization near the complex is common process. Basic rocks formed during carbonatitization contain hornblendite predominantly, and high grade of fenitization produced albite-bearing granitic rocks in the area.

  5. Spatial and temporal variability of lake ontogeny in south-western Greenland

    NASA Astrophysics Data System (ADS)

    Law, A. C.; Anderson, N. J.; McGowan, S.

    2015-10-01

    Holocene palaeolimnological records of diatoms and β carotene (a proxy for aquatic production) from four lakes in the low Arctic region of south-western Greenland were used to investigate the role of climate on lake ontogeny. Two of the lakes are located in the maritime, coastal region near Sisimiut and two inland close to the head of Kangerlussuaq fjord, where there is a more continental climate. Diatom records from the four lakes (AT1, AT4, SS1381, SS8) had similar long-term ontogeny trends, independent of climatic setting and the changes are interpreted as responses to first order weathering controls on catchment/lake chemistry. Short-term excursions from these broad trends occurred in one coastal site (AT4) caused by intense erosion of the steep catchment, and at inland sites where temporary hydrological closure and lake level decline occurred during the mid-Holocene (˜8000 - 5000 cal a BP). Algal production (as β carotene) was more closely and consistently correlated with climatic changes; it peaked during the mid-Holocene, the warmest period of the Holocene, at all sites and there were transient increases in production in inland lakes during the Medieval Climate Anomaly and Little Ice Age because of fertilization through increased aeolian dust deposition. A synthesis of seven palaeolimnological records from this region identified that only the mid-Holocene was correlated with diatom stratigraphic zones and there was considerable among-site variability in later Holocene lake response to climate forcing in this area. Comparable long-term trends in species assemblage turnover (DCA/CA axis 1 scores) clearly demonstrate that lakes have predictable ontogeny trends in this region, characterised by maximum alkalinity and nutrient availability in the first few millennia followed by progressive oligotrophication and alkalinity loss. However, individual lake and catchment characteristics (lake morphology, catchment geomorphology), when modified by climatic change

  6. Subpixel variability of MODIS albedo retrievals and its importance for ice sheet surface melting in southwestern Greenland's ablation zone

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Roman, M. O.; Koenig, L.; Smith, L. C.; Schaaf, C.; Wang, Z.; Mioduszewski, J.

    2013-12-01

    On the Greenland ice sheet, albedo declined across 70% of its surface since 2000, with the greatest reduction in the lower 600 m of the southwestern ablation zone. Because albedo plays a prominent role in the ice sheet surface energy balance, its decline has resulted in near doubling of meltwater production. To characterize ice sheet albedo, Moderate Imaging Spectrometer (MODIS) surface albedo products are typically used. However, it is unclear how the spatial variability of albedo within a MODIS pixel influences surface melting and whether it can be considered a linear function of albedo. In this study, high spatiotemporal resolution measurements of spectral albedo and ice sheet surface ablation were collected along a ~ 1.3 km transect during June 2013 within the Akuliarusiarsuup Kuua (AK) River watershed in southwest Greenland. Spectral measurements were made at 325-1075 nm using a Analytical Spectral Devices (ASD) spectroradiometer, fitted with a Remote Cosine Receptor (RCR). In situ albedo measurements are compared with the daily MODIS albedo product (MCD43A) to analyze how space, time, surface heterogeneity, atmospheric conditions, and solar zenith angle geometry govern albedo at different scales. Finally, analysis of sub-pixel albedo and ablation reveal its importance on meltwater production in the lower parts of the ice sheet margin.

  7. Soil development as limiting factor for shrub expansion in southwestern Greenland

    NASA Astrophysics Data System (ADS)

    Caviezel, Chatrina; Hunziker, Matthias; Zoller, Oliver; Wüthrich, Christoph; Kuhn, Nikolaus J.

    2014-05-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased shrub cover at the boreal - tundra border ecotone (Normand et al. 2013). These findings suggest the beginning of a greener Greenland in which tundra vegetation is transformed to a boreal woody flora. However, vegetation at borderline ecotones is influenced by further ecologic factors than just temperature. In this study, the ecologic conditions at a selection of sites along an elevation gradient near Igaliku in southern Greenland were examined to identify potential factors limiting the expansion of woody vegetation apart from temperature. The sites differ in elevation, topography, shrub density and soil parent material. The three study sites comprise i) well established birch shrubs growing between 50 and 180 m a.s.l., where the parent material origins from the Julianehab granite (Brooks 2012); ii) extended shrub patches at about 250 m a.s.l., where the parent material consists of Gardar Sandstones and Lavas (Brooks 2012) and iii) restricted shrub patches at an elevation of 250 m a.s.l., where the soil parent material originates from the Gardar intrusions (Brooks 2012). The extent of the shrub areas, topography and soil moisture were mapped, additionally soil samples were analyzed for C-and N-content, texture including coarse fraction and pH and used as soil development indicators. Our results show that the topographic setting regulates the existence or absence of soil while the soil parent material is an important limiting factor for soil moisture. According to these findings, we suggest that a high proportion of areas where temperature increase would allow the increase of shrub cover is not suitable for a woody flora. Brooks, Kent. 2012. "A Tale of Two Intrusions—where Familiar Rock Names No Longer Suffice." Geology Today 28 (1): 13-19. doi:10.1111/j.1365-2451.2012.00815.x. Masson-Delmotte, V., D

  8. Rapid last-deglacial thinning and retreat of the marine-terminating southwestern Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Winsor, Kelsey; Carlson, Anders E.; Caffee, Marc W.; Rood, Dylan H.

    2015-09-01

    Marine-terminating outlet glaciers are a major source of modern ice loss from the Greenland Ice Sheet (GrIS), but their role in GrIS retreat during the last deglaciation is not well constrained. Here, we develop deglacial outlet glacier retreat chronologies for four regions in southwest and south Greenland to improve understanding of spatial variations in centennial- to millennial-scale ice loss under a warming climate. We calculate 10Be surface exposure ages of boulders located in fjords near the towns of Qaqortoq, Paamiut, Nuuk, and Sisimiut. Our northernmost study site, Sisimiut, deglaciated earliest at ∼18 ka to ∼15 ka with an average thinning rate of 0.1-0.3 m yr-1. Inland retreat from Sisimiut to the modern ice margin took ∼7 ka at an average retreat rate of 15-20 m yr-1. A 10Be-dated moraine ∼25 km from the modern GrIS margin deposited at ∼8 ka suggests a possible ice-margin still-stand, but this does not change overall retreat rates. After retreat from the small coastal Sisimiut fjords, the GrIS margin was mainly land-terminating in this region. In contrast, earliest exposure occurred at ∼12 ka near Qaqortoq, and 11-10 ka near Nuuk and Paamiut, with ice thinning at rates of 0.2-0.3 m yr-1 to instantaneous within measurement uncertainty. Ice retreat inland through the extensive Nuuk, Paamiut, and Qaqortoq fjord systems to near modern ice margins occurred in <1 ka, resulting in minimum retreat rates of 25-65 m yr-1 and maximum retreat rates of ∼95 m yr-1 to instantaneous within the uncertainty of our measurements. This rapid thinning and retreat of marine-terminating southwest GrIS margins is contemporaneous with an incursion of relatively warm ocean waters into the Labrador Sea and toward the southwest Greenland coast, suggesting that a warming ocean may have contributed to the more rapid retreat of marine GrIS termini in the Nuuk, Paamiut, and Qaqortoq fjord systems relative to the slower ice retreat inland from Sisimiut. Our results highlight

  9. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.

    2015-05-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function

  10. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  11. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  12. Efficient removal of meltwater runoff through supraglacial streams and rivers on the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Rennermalm, A. K.; Chu, V. W.; Ryan, J.; Hubbard, A.; Cooper, M. G.; Tedesco, M.; Mote, T. L.; Young, K.; Behar, A.

    2015-12-01

    Supraglacial streams and rivers flowing on the Greenland Ice Sheet have received little physical study. We present remotely sensed (UAV, WorldView) and in situ (Acoustic Doppler Current Profiler, Lagrangian drifters) measurements of supraglacial river drainage pattern, hydraulic properties, and discharge in the Kangerlussuaq region. This area of the ice sheet is characterized by large, well-organized supraglacial stream/river networks that efficiently drain the ice surface with minimal retention of surface water, with river moulins being the the dominant physical mechanism by which surface meltwater enters the ice sheet. An intensive 2015 field campaign acquired novel datasets of watershed extent, drainage pattern, ablation rate, albedo and discharge for a ~70 km2 mid-elevation ice catchment ("Rio Behar"), including a continuous 72-hour record of discharge and water temperature in a supraglacial river upstream of its terminal moulin. We conclude that this area of the ice sheet is efficiently drained by supraglacial stream/river networks, that ice-surface DEMs alone cannot fully describe supraglacial drainage and its connection to subglacial systems; and that in situ measurements of supraglacial river discharge offer a unique opportunity to test runoff predictions of regional climate models.

  13. A juvenile oceanic island arc origin for the Archean (ca. 2.97 Ga) Fiskenæsset anorthosite complex, southwestern Greenland: Evidence from oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Longstaffe, Fred J.

    2014-06-01

    The Archean (ca. 2.97 Ga) Fiskenæsset layered intrusion, southwestern Greenland, consists of an association of anorthosite, leucogabbro, gabbro, hornblendite, pyroxenite, peridotite and dunite. The intrusion is characterized by well-preserved igneous layering, cumulate texture and primary igneous minerals including olivine, pyroxene, plagioclase, hornblende and chromite. We use new whole-rock (n=36) and mineral (n=32) oxygen isotopic data for all major lithologic units from the best preserved stratigraphic section of the Fiskenæsset Complex at Majorqap qâva to revisit geodynamic and petrogenetic hypotheses proposed for the origin of Archean terranes. The Fiskenæsset Complex has modern mantle-like whole-rock O-isotope compositions (δO18=5.8±0.5‰). Average δO18 values increase from peridotite (δO18=5.0‰), through hornblendite (δO18=5.7‰), gabbro (δO18=5.8‰), pyroxene hornblendite (δO18=6.0‰) and leucogabbro (δO18=6.3‰), to anorthosite (δO18=6.3‰). These whole-rock isotopic compositions reflect the approximate modal abundances of olivine (average δO18=4.9‰), hornblende (average δO18=5.7‰), clinopyroxene (average δO18=6.4‰) and plagioclase (average δO18=6.4‰) in each rock type, as a consequence of mineral fractionation in the magma chamber(s). Field relationships and the absence of crustal contamination suggest that the Fiskenæsset Complex formed in an oceanic setting. Subduction zone-like whole-rock trace element signatures and mantle-like δO18 and initial εNd values are consistent with formation of these rocks in a juvenile oceanic island arc setting. Field and geochemical data from the Fiskenæsset region and adjacent terranes suggest that the origin of Archean crust in southwestern Greenland is consistent with Phanerozoic-like plate tectonic processes rather than density-driven sinking, delamination and diapiric processes requiring formation of greenstone belts and anorthosite complexes on pre-existing continental crust

  14. Anthropogenic versus climatic control in a high-resolution 1500-year chironomid stratigraphy from a southwestern Greenland lake

    NASA Astrophysics Data System (ADS)

    Millet, Laurent; Massa, Charly; Bichet, Vincent; Frossard, Victor; Belle, Simon; Gauthier, Emilie

    2014-03-01

    We performed a high-resolution study of chironomid assemblages in a sediment core retrieved from Lake Igaliku in southern Greenland. The well-dated core is located within the former Norse Eastern Settlement and covered the last 1500 yr. The comparison of chironomid stratigraphy (PCA axis scores) with instrumental temperature data, land use history and organic matter in the sediment over the last 140 yr suggested that the primary changes in chironomid fauna in 1988 ± 2 yr were driven by the shift to modern agriculture in the catchment. This unprecedented change in chironomid fauna was most likely triggered by a shift in in-lake processes. Within the instrumental period, subtle variations in the chironomid assemblages that occurred before 1988 ± 2 yr were significantly correlated with summer temperatures even in times of traditional extensive sheep farming in the catchment. The relevance of the chironomid-derived climate signal over the last 1500 yr was supported by its good concordance with previous studies in west Greenland and in the Arctic. The chironomid assemblage therefore appeared to be a valuable proxy for climate changes within the Norse colony area. Synchronous changes in Norse diet and chironomid-reconstructed climate give new insights into the interplay of Norse society with climate.

  15. Real-time measurements of CH4 and CO2 flux and del13C from a proglacial wetland in southwestern Greenland.

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; White, J. R.; Pratt, L. M.; Thompson, H. A.

    2015-12-01

    Arctic permafrost environments represent a large repository of stored carbon that may be mobilized as global temperatures increase, providing a substrate for microbial CH4 production. Proglacial wetlands and lakes are important targets of study to better understand how rapidly changing landscapes affected by climate warming adapt their carbon cycling. Recent advances in portable laser spectrometry have enabled rapid in situ measurements of not only greenhouse gas fluxes, but also del13C compositions of these gases. Here we use a Picarro CH4 and CO2 isotope analyzer to continuously measure CH4 and CO2 flux in situ for comparison to static closed chamber measurements where samples are collected at discrete time intervals and returned to the laboratory for analysis. Real-time, in situ analysis also allowed simple light/dark experiments to be performed on chambers containing different vegetation. In addition, this instrument can be used to measure concentration and del13C of both dissolved CH4 and CO­­2 in lake waters when appropriate gas stripped methods are used. We present data for CH4 and CO2 flux and del13C of emitted and dissolved gases from permafrost-affected wetlands and lakes associated with proglacial landscapes in southwestern Greenland near the Russell Glacier.

  16. Cyanotoxins in arctic lakes of southwestern Greenland and the potential for toxin transfer within-lake and across the aquatic-terrestrial boundary

    NASA Astrophysics Data System (ADS)

    Trout-Haney, J. V.; Cottingham, K. L.

    2015-12-01

    Arctic lakes are often characterized as low-resource environments in which the autotrophic community is limited by factors such as nutrients, temperature, and light. Studies of cyanotoxins have traditionally focused on nutrient-rich lakes with conspicuous blooms, however toxigenic cyanobacteria are confined to neither high nutrient environments nor planktonic taxa. We quantified the occurrence of cyanotoxins across 19 arctic lakes of varying size and depth in the Kangerlussuaq region of southwestern Greenland. Whole lake water microcystins (MC) were detected in all lakes and ranged from low (<5 ng/L) to moderate (>100 ng/L) concentrations. Benthic colonial cyanobacteria of the genus Nostoc are a prominent feature of certain lakes in this region, with estimated densities ranging between 500 and >500,000 colonies per lake. MC were present in the tissue of Nostoc colonies (95% CI, 1638.9 - 3237.6 pg MC (g wet weight)-1) and were actively released by colonies into surrounding water in laboratory trials. These results highlight the potential importance of toxic benthic cyanobacteria in lake ecosystems. Further, we investigated the transfer of these cyanotoxins to other organisms in the lake as well as several mechanisms (i.e., emerging insects, aerosols) that may influence the movement of toxins into the terrestrial ecosystem. The presence and movement of cyanotoxins in the coupled terrestrial-aquatic ecosystem demonstrate that high-latitude lakes can support toxigenic cyanobacteria, and that we may be underestimating the potential for these systems to develop high levels of toxicity in the future.

  17. Ocean Melting Greenland (OMG) bathymetric survey of northwest Greenland and implications for the recent evolution of its glaciers

    NASA Astrophysics Data System (ADS)

    Wood, M.; Rignot, E. J.; Willis, J. K.; Fenty, I. G.

    2015-12-01

    Oceans Melting Greenland (OMG) is a five-year Earth Ventures Suborbital Mission funded by NASA to investigate the role of the oceans in ice loss around the margins of the Greenland Ice Sheet, which includes measurements of seafloor bathymetry from multibeam surveys and airborne gravity, glacier surface elevation from high-frequency radar interferometry, and temperature/salinity/depth from vessels and airborne-dropped probes. Here, we describe the results of the 2016 bathymetry survey of northwest Greenland that took place in the summer of 2015: july 22-August 19 and Sept 2-Sept 16 spanning from Ilulissat to Thule AFB in north Greenland, and to be complemented by a survey of southeast Greenland in 2016. We deployed a multibeam Reson 7160 with 512 beams installed on the hull of the Cape Race vessel, with enhanced capabilities for fjord wall and ice face mapping. The survey tracks were optimized based on the IBCAO3 database, recent cruises, airborne gravity data collected by NASA Operation IceBridge which indicated the presence of troughs, bed topography mapped inland using a mass conservation approach, the spatial distribution of ice discharge to locate the largest outlets and maximizing the number of major fjords sampled during the survey, with the goal to identify all troughs that are major pathways for subsurface ocean heat, and constrain as many glacier ice front thickness as permitted by time and the practicality of navigating the ice-choked fjords. The data reveal many deep, U-shaped, submarine valleys connected to the glaciers, intercut with sills and over deepened in narrower passages where former glaciers and ice streams merged into larger units; as well as fjords ending in shallow plateaus with glaciers in retreated positions. The presence of warm, salty water of Atlantic origin (AW) in the fjords is documented using CTD. Some glaciers sit on shallow plateaus in cold, fresh polar waters (PW) at the end of deep fjords, while others are deeper and standing in

  18. The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012

    NASA Astrophysics Data System (ADS)

    Fausto, Robert S.; As, Dirk; Box, Jason E.; Colgan, William; Langen, Peter L.; Mottram, Ruth H.

    2016-03-01

    During two exceptionally large July 2012 multiday Greenland ice sheet melt episodes, nonradiative energy fluxes (sensible, latent, rain, and subsurface collectively) dominated the ablation area surface energy budget of the southern and western ice sheet. On average the nonradiative energy fluxes contributed up to 76% of daily melt energy at nine automatic weather station sites in Greenland. Comprising 6% of the ablation period, these powerful melt episodes resulted in 12-15% of the south and west Greenland automatic weather station annual ablation totals. Analysis of high resolution (~5 km) HIRHAM5 regional climate model output indicates widespread dominance of nonradiative energy fluxes across the western ablation area during these episodes. Yet HIRHAM5 still underestimates melt by up to 56% during these episodes due to a systematic underestimation of turbulent energy fluxes typical of regional climate models. This has implications for underestimating future melt, when exceptional melt episodes are expected to occur more frequently.

  19. 'Uncertainty explosion' in 21st century Greenland temperature change - implications for sea level rise

    NASA Astrophysics Data System (ADS)

    Kodra, E. A.; Ganguly, A. R.

    2011-12-01

    Sea level rise is one of the most important consequences of anthropogenic climate change, carrying potentially catastrophic implications for coastal populations and ecosystems, and simultaneously one of the most uncertain. Greenland's ice sheet is considered a critical tipping point in the earth's system, where a mean temperature rise of more than 3 degrees Celsius may lead to unrecoverable ice sheet melt and hence sea level rise. However, assigning likelihood to such a tipping point is a difficult task, involving the consideration of many factors. An 'uncertainty explosion' representation of Greenland temperature change is developed here by considering step-by-step accumulation of uncertainty as factors are integrated which are progressively difficult to quantify. Factors considered include uncertainty related to structural differences in global climate models, initial condition runs, methods for assigning credibility to climate models, fossil fuel emissions trajectories, polar amplification of global average warming, and equilibrium climate sensitivity. Results suggest that exceeding the tipping point of 3 degrees change appears to be highly plausible. More broadly, strictly quantitative uncertainty characterization methods may fail to broadcast the true state of uncertainty and the degree of ignorance that is not captured by state-of-the-art numerical models, and thus such methods may understate or completely ignore high risk but low probability runaway warming and hence sea level rise. This work poses implications not only for sea level rise but for many other tasks involving uncertainty characterization, as well. Next steps may involve evaluating the cascade of uncertainty as sequential steps of sea level rise are considered in a similar, extended framework.

  20. Analysis of the recent storm record in the southwestern Spanish coast: implications for littoral management.

    PubMed

    Rodríguez-Ramírez, A; Ruiz, F; Cáceres, L M; Rodríguez Vidal, J; Pino, R; Muñoz, J M

    2003-03-01

    This work compares the geomorphologic evolution of the Huelva coast (SW Spain), some climatic-oceanographic data of the Cádiz Gulf and the recent storm record of this zone, covering the last 4 decades (1956-1996). An interesting correlation was found between the southwestern wind periodicity, the number of storm periods and the beach ridges observed in the main spits (El Rompido and Doñana). The spectral analysis of the wind time series permits to establish two most probable levels of periodicity: 6 and 9-10 years. Both periods coincide with the storm record and the creation of new beach ridges after a high-energy period. Beach damage, another storm-induced effect, was analysed by deducing different implications for the future management of tourist localities. PMID:12606159

  1. The crust and upper mantle of central East Greenland - implications for continental accretion and rift evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, Christian; Balling, Niels; Ebbing, Jörg; Holm Jacobsen, Bo; Bom Nielsen, Søren

    2016-04-01

    .B., 2015. The East Greenland Caledonides - teleseismic signature, gravity and isostasy. Geophysical Journal International, 203, 1400-1418. 2) Schiffer, C., Stephenson, R.A., Petersen, K.D., Nielsen, S.B., Jacobsen, B.H., Balling, N. and Macdonald, D.I.M., 2015. A sub-crustal piercing point for North Atlantic reconstructions and tectonic implications. Geology, 43, 1087-1090.

  2. Basin development and structure of the area covered by Tertiary basalts, offshore central West Greenland - implications of subvolcanic plays

    SciTech Connect

    Whittaker, R.C.; Bate, K.J.; Chalmers, J.A.

    1996-12-31

    The West Greenland shelf area between 68{degrees} and 72{degrees} is covered by Lower Tertiary basalts and has so far proved difficult to explore seismically compared to the offshore basins farther north (Melville Bay) and south (southern West Greenland). A first seismic and geological interpretation of the basalt area has lead to a better understanding of the tectonic events during the Tertiary and their implications for hydrocarbon exploration. After a period of extension accompanied by basalt volcanic in the Paleocene, a period of transpression occurred related to sea-floor spreading in the Labrador Sea and Baffin Bay. The crests of the anticlines formed were then eroded and transgressive marine sediments infilled the irregular topography and formed a number of restricted basins. Strike-slip faulting continued throughout the Eocene. Ongoing geophysical studies, including acquisition of additional seismic data in 1995, are aimed at improving seismic resolution beneath the basalts and deter- mining the structure and nature of the underlying sedimentary section. It has been possible, locally, to interpret horizons beneath the Paleocene volcanics where a thick sedimentary section is inferred to be present. The geological development of this succession has to be extrapolated from offshore southern West Greenland and the nearby onshore Nuussuaq basin. Active exploration including drilling started in the onshore basin in 1995 after the discovery of hydrocarbons in basalts at the surface and in shallow wells. The most promising play concept is subbasaltic reservoir sandstones with a mid- Cretaceous marine or a Paleocene deltaic oil-prone source rock. A possible post - basaltic play has also been identified and several large structural leads have been identified by mapping the Top Paleocene Volcanics horizon.

  3. Basin development and structure of the area covered by Tertiary basalts, offshore central West Greenland - implications of subvolcanic plays

    SciTech Connect

    Whittaker, R.C.; Bate, K.J.; Chalmers, J.A. )

    1996-01-01

    The West Greenland shelf area between 68[degrees] and 72[degrees] is covered by Lower Tertiary basalts and has so far proved difficult to explore seismically compared to the offshore basins farther north (Melville Bay) and south (southern West Greenland). A first seismic and geological interpretation of the basalt area has lead to a better understanding of the tectonic events during the Tertiary and their implications for hydrocarbon exploration. After a period of extension accompanied by basalt volcanic in the Paleocene, a period of transpression occurred related to sea-floor spreading in the Labrador Sea and Baffin Bay. The crests of the anticlines formed were then eroded and transgressive marine sediments infilled the irregular topography and formed a number of restricted basins. Strike-slip faulting continued throughout the Eocene. Ongoing geophysical studies, including acquisition of additional seismic data in 1995, are aimed at improving seismic resolution beneath the basalts and deter- mining the structure and nature of the underlying sedimentary section. It has been possible, locally, to interpret horizons beneath the Paleocene volcanics where a thick sedimentary section is inferred to be present. The geological development of this succession has to be extrapolated from offshore southern West Greenland and the nearby onshore Nuussuaq basin. Active exploration including drilling started in the onshore basin in 1995 after the discovery of hydrocarbons in basalts at the surface and in shallow wells. The most promising play concept is subbasaltic reservoir sandstones with a mid- Cretaceous marine or a Paleocene deltaic oil-prone source rock. A possible post - basaltic play has also been identified and several large structural leads have been identified by mapping the Top Paleocene Volcanics horizon.

  4. Fram Strait ice export during the 19th and 20th centuries reconstructed from a multi-year sea-ice index from Southwestern Greenland

    NASA Astrophysics Data System (ADS)

    Schmith, T.; Hansen, C.

    2003-04-01

    Historical observations of multi-year ice, called 'Storis', in the Southwest Greenland waters exist from the period 1820-2000, obtained from ships logbooks and ice charts. It is argued that this ice originates in the Arctic Ocean and has travelled via the Fram Strait, southward along the Greenland coast in the East Greenland Current and around the southern tip of Greenland. Therefore, it is hypothesised that these observations can be used as 'proxies' for reconstructing the Fram Strait ice export on an annual basis. An index describing the Storis extent is extracted from the observations and a linear statistical model formulated relating this index to the Fram Strait ice export. The model is calibrated using ice export values from a hindcast study with a coupled ocean-ice model over the period 1949-1998. Subsequently, the model is used to reconstruct the Fram Strait annual ice export in the period 1820-2000. The model has significant skill, calculated on independent data. Based on this reconstruction, it is discussed how time periods with large and small ice export on multidecadal time scale coincide with time periods of cold and warm North Atlantic sea surface temperatures reported by others. This implies that trend studies based on satellite observations should be regarded with some care, since the time period of satellite observations, the last decades, where a particularly strong negative trend is observed in the ice export is preceded by a time period with a positive trend. The occurrence of 'Great salinity anomalies' (GSA's) are also connected to the multidecadal variability. The GSA's observed in Greenland waters around 1968-1970 and 1980-1982 both occurred when the general level of ice export was high. Prior to these there was a long period with generally low ice export and no GSA's but during an epoch around the turn of the 19th century several GSA's occurred. Finally, it is found that the correlation between the Fram Strait ice export and the NAO index

  5. Cenozoic Contourite Drift Development in the Norwegian - Greenland Sea Area: Paleoceanographic Implications

    NASA Astrophysics Data System (ADS)

    Laberg, J. S.; Rebesco, M.; Lucchi, R. G.; Stoker, M. S.

    2014-12-01

    For the evolution of the Cenozoic high northern latitude paleo-climate, the development of the North Atlantic - Arctic Ocean interactions including its southern (Faeroe - Shetland channel) and northern (Fram Strait) gateways were vital. In this paper we review the timing of inflow of paleo-Atlantic water into the Norwegian - Greenland Sea and the Arctic Ocean using the development of ocean current controlled contourite drift deposition as a proxy. In the early Miocene, drift growth accelerated in the Rockall Trough and in the Faroe-Shetland Channel interpreted to be related to the opening of the Faeroe - Shetland channel and establish a deep-water passage across the Greenland - Shetland Ridge. To the north, offshore Norway, growth of the Lofoten Drift has been estimated from mid-Miocene although age control is sparse in this area. No drift development has been reported from the SW Barents Sea continental slope while offshore the NW part of the Barents Sea slope, drift growth seems to have come in later, at ~1.3 Ma. North of the Fram Strait gateway, drift growth has been inferred from at least mid-Miocene (~11 Ma). Studies from the central Arctic Ocean shows ventilated surface water conditions from ~17.5 Ma ascribed to the opening of the Fram Strait which was a narrow oceanic corridor during early Miocene (20 - 15 Ma) and where the onset of sea floor spreading and the establishment of a deep-water corridor has been suggested to start from late Miocene (~10 Ma). Other, more recent studies have, however, reported evidence for the development of an initial deep-water gateway through the Fram Strait from around 17 Ma. To summarize: - A circulation system similar to the present was probably established in the southern Norwegian - Greenland Sea before the Fram Strait became a deep-water gateway and before the establishments of the major ice sheets in this area (the first occurred in SE Greenland from ~7 Ma). - Uncertainties still relates to the timing of the development

  6. Neogene Contourite Drift Development in the Norwegian - Greenland Sea Area; Paleoceanographic Implications

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Rebesco, Michele; Lucchi, Renata G.; Stoker, Martyn S.

    2015-04-01

    For the evolution of the Cenozoic high northern latitude paleo-climate, the development of the North Atlantic - Arctic Ocean interactions including its southern (Faeroe - Shetland channel) and northern (Fram Strait) gateways were vital. In this paper we review the timing of inflow of paleo-Atlantic water into the Norwegian - Greenland Sea and the Arctic Ocean using the development of ocean current controlled contourite drift deposition as a proxy. In the early Miocene, drift growth accelerated in the Rockall Trough and in the Faroe-Shetland Channel interpreted to be related to the opening of the Faeroe - Shetland channel and establish a deep-water passage across the Greenland - Shetland Ridge. To the north, offshore Norway, growth of the Lofoten Drift has been estimated from mid-Miocene although age control is sparse in this area. No drift development has been reported from the SW Barents Sea continental slope while offshore the NW part of the Barents Sea slope, drift growth seems to have come in later, at ~1.3 Ma. North of the Fram Strait gateway, drift growth has been inferred from at least mid-Miocene (~11 Ma). Studies from the central Arctic Ocean shows ventilated surface water conditions from ~17.5 Ma ascribed to the opening of the Fram Strait which was a narrow oceanic corridor during early Miocene (20 - 15 Ma) and where the onset of sea floor spreading and the establishment of a deep-water corridor has been suggested to start from late Miocene (~10 Ma). Other, more recent studies have, however, reported evidence for the development of an initial deep-water gateway through the Fram Strait from around 17 Ma. To summarize: - A circulation system similar to the present was probably established in the southern Norwegian - Greenland Sea before the Fram Strait became a deep-water gateway and before the establishments of the major ice sheets in this area (the first occurred in SE Greenland from ~7 Ma). - Uncertainties still relates to the timing of the development

  7. Upper mantle and crustal structure of the East Greenland Caledonides: New geophysical evidence and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Balling, N.; Jacobsen, B. H.; Hejrani, B.; Nielsen, S. B.

    2013-12-01

    The East Greenland and Scandinavian Caledonides once formed a major coherent mountain range, as a consequence of the collision of the continents of Laurentia and Baltica. The crustal and upper mantle structure was furthermore influenced by several geodynamic processes leading to the formation of the North Atlantic passive margins, including the gravitational collapse, extension, rifting and a possible influence by volcanism related to the Iceland hot spot. The landscape and topography were finally shaped by extensive erosion, finding its peak in the quaternary glaciations. Seismological data were acquired in the East Greenland Caledonides by the Ella-Ø-array for a period of two years (2009-2011). The array containing 11 broadband seismometers was situated at approximately 73 °N covering a distance of 270 km from the Greenland Ice Sheet to the Atlantic coast, north of the Iceland Ridge. A Receiver Function study based on an average of 36 events per station reveals a clear eastward dipping high-velocity structure underneath the study area. The geophysical character, supported by synthetic modelling, is consistent with a 10 km thick subducted slab of eclogitized oceanic crust. This might be the key for unravelling of a complex geodynamic setting and development leading to the formation of the Caledonides. The distinct preservation of structures in the upper mantle to depths of 100 km or more, limits the impact of subsequent collision and extension related deformation. In support of this interpretation, we present selected results from on-going detailed studies of the crustal and upper mantle, including a Receiver Function inversion, seismic P-wave travel time tomography and gravity modelling.

  8. North America-Greenland-Eurasian relative motions: implications for circum-arctic tectonic reconstructions

    SciTech Connect

    Rowley, D.B.; Lottes, A.L.; Ziegler, A.M.

    1985-02-01

    The Mesozoic-Cenozoic tectonic evolution of the Circum-Arctic region is based on constraints imposed by (1) relative motion histories of the three major plates (North America, Greenland, and Eurasia) and a number of smaller pieces, and (2) distribution and age of sutures, accretionary prisms, volcanic arcs, fold-thrust belts, stretched continental crust, strike-slip faults, and ocean floor. The authors conclude that: (1) North America and Eurasia remained relatively fixed to each other until the latest Cretaceous-Paleocene opening of the Labrador Sea-Baffin Bay and Greenland-Norwegian and Eurasian basins (earlier convergence between North America and Eurasia in the Bering Sea region shown on many reconstructions are artifacts of incorrect plate reconstructions); (2) the North Slope-Seward-Chukotka block has constituted an isthmus connection between North America and northeast Asia since at least the middle Paleozoic and did not rotate away from the Canadian Arctic; (3) the Canada basin opened behind a clockwise-rotating Alpha Cordillera-Mendeleyev ridge arc during the Early to middle Cretaceous and consumed older, Paleozoic(.) Makarov basin ocean floor (the Chukchi cap is a detached continental fragment derived from the Beaufort Sea; the North Slope Arctic margin is a left-lateral transform fault associated with the opening of the Canada basin); and (4) the Nares Strait fault has a net relative displacement of approximately 25 km, but actual motion between Greenland and northern Ellesmere was about 250 km of strongly transpressive motion that resulted in the Eurekan and Svalbardian orogenies.

  9. Submarine melting at the grounding line of Greenland's tidewater glaciers: Observations and Implications. (Invited)

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.; Xu, Y.; Koppes, M. N.; Menemenlis, D.; Schodlok, M.; Spreen, G.

    2010-12-01

    The traditional view on the mass balance of the Greenland Ice Sheet is that interior snowfall accumulation is balanced by discharge of surface runoff and icebergs at the periphery. Most Greenland glaciers however terminate in the ocean, and melt in contact with the warm ocean waters to produce glacial melt before detaching into icebergs. Underneath floating ice shelves, the melting process is governed by the buoyancy associated with the melting of glacier ice at the seawater-ice interface. Under tidewater glaciers, the melting process is also forced by the strongly buoyant influx of subglacial freshwater near the grounding line. In August 2008, we collected bathymetry, temperature, salinity and current velocity data in front of 4 west Greenland glaciers (Eqip Sermia, Kangilerngata Sermia, Sermeq Kujatdleq and Sermeq Avangnardleq) to calculate the rates of submarine melting of the calving faces. The results revealed large rates of melting (meters per day), and large spatial variations from fjord to fjord as well as across the calving faces. In August 2010, we returned to Eqip Sermia, Sermeq Avangnardleq and visited Store and Little glaciers to conduct similar measurements. Strong outflows of subglacial water were detected on Avangnardleq, Lille and Store glaciers, and high rates of submarine melting were deduced from the data. We find that the sea bed in front of the calving faces (100 to 500 m) are much shallower than in the bulk of the glacial fjords (800 to 900 m), and the sill depth at the fjord entrance (~300 m ) is confirmed to be the major control on the access of warm ocean waters to the submerged calving faces. In the presence of heavy brash ice, our data suggest a conceivably weakened submarine circulation. Finally, we combine our summer data with long-term records of temperature and salinity, at the depth relevant to submarine melting, from the ECCO2 ocean state estimation project to examine seasonal to long-term trends in thermal forcing from the ocean

  10. Fluid-deposited graphite and its geobiological implications in early Archean gneiss from Akilia, Greenland.

    PubMed

    Lepland, A; van Zuilen, M A; Philippot, P

    2011-01-01

    Graphite, interpreted as altered bioorganic matter in an early Archean, ca. 3.83-Ga-old quartz-amphibole-pyroxene gneiss on Akilia Island, Greenland, has previously been claimed to be the earliest trace of life on Earth. Our petrographic and Raman spectroscopy data from this gneiss reveal the occurrence of graphitic material with the structure of nano-crystalline to crystalline graphite in trails and clusters of CO₂, CH₄ and H₂O bearing fluid inclusions. Irregular particles of graphitic material without a fluid phase, representing decrepitated fluid inclusions are common in such trails too, but occur also as dispersed individual or clustered particles. The occurrence of graphitic material associated with carbonic fluid inclusions is consistent with an abiologic, fluid deposited origin during a poly-metamorphic history. The evidence for fluid-deposited graphitic material greatly complicates any claim about remnants of early life in the Akilia rock. PMID:21070588

  11. Observations of Pronounced Greenland Ice Sheet Firn Warming and Implications for Runoff Production

    NASA Technical Reports Server (NTRS)

    Polashenski, Chris; Courville, Zoe; Benson, Carl; Wagner, Anna; Chen, Justin; Wong, Gifford; Hawley, Robert; Hall, Dorothy

    2014-01-01

    Field measurements of shallow borehole temperatures in firn across the northern Greenland ice sheet are collected during May 2013. Sites first measured in 19521955 are revisited, showing long-term trends in firn temperature. Results indicate a pattern of substantial firn warming (up to +5.7C) at midlevel elevations (1400-2500 m) and little temperature change at high elevations (2500 m). We find that latent heat transport into the firn due to meltwater percolation drives the observed warming. Modeling shows that heat is stored at depth for several years, and energy delivered from consecutive melt events accumulates in the firn. The observed warming is likely not yet in equilibrium with recent melt production rates but captures the progression of sites in the percolation facies toward net runoff production.

  12. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth's earliest life.

    PubMed

    Fedo, Christopher M; Whitehouse, Martin J

    2002-05-24

    A quartz-pyroxene rock interpreted as a banded iron formation (BIF) from the island of Akilia, southwest Greenland, contains (13)C-depleted graphite that has been claimed as evidence for the oldest (>3850 million years ago) life on Earth. Field relationships on Akilia document multiple intense deformation events that have resulted in parallel transposition of Early Archean rocks and significant boudinage, the tails of which commonly form the banding in the quartz-pyroxene rock. Geochemical data possess distinct characteristics consistent with an ultramafic igneous, not BIF, protolith for this lithology and the adjacent schists. Later metasomatic silica and iron introduction have merely resulted in a rock that superficially resembles a BIF. An ultramafic igneous origin invalidates claims that the carbon isotopic composition of graphite inclusions represents evidence for life at the time of crystallization. PMID:12029129

  13. Present-day kinematics of the Rivera plate and implications for tectonics in southwestern Mexico

    NASA Astrophysics Data System (ADS)

    Demets, Charles; Stein, Seth

    1990-12-01

    A model for the present-day motion of the Rivera plate relative to the North America, Cocos, and Pacific plates is derived using new data from the Pacific-Rivera rise and Rivera transform fault, together with new estimates of Pacific-Rivera motions. The results are combined with the closure-consistent NUVEL-1 global plate motion model of DeMets et al. (1990) to examine present-day deformation in southwestern Mexico. The analysis addresses several questions raised in previous studies of the Rivera plate. Namely, do plate motion data from the northern East Pacific rise require a distinct Rivera plate? Do plate kinematic data require the subduction of the Rivera plate along the seismically quiescent Acapulco trench? If so, what does the predicted subduction rate imply about the earthquake recurrence interval in the Jalisco region of southwestern Mexico?

  14. Present-day kinematics of the Rivera plate and implications for tectonics in southwestern Mexico

    NASA Technical Reports Server (NTRS)

    Demets, Charles; Stein, Seth

    1990-01-01

    A model for the present-day motion of the Rivera plate relative to the North America, Cocos, and Pacific plates is derived using new data from the Pacific-Rivera rise and Rivera transform fault, together with new estimates of Pacific-Rivera motions. The results are combined with the closure-consistent NUVEL-1 global plate motion model of DeMets et al. (1990) to examine present-day deformation in southwestern Mexico. The analysis addresses several questions raised in previous studies of the Rivera plate. Namely, do plate motion data from the northern East Pacific rise require a distinct Rivera plate? Do plate kinematic data require the subduction of the Rivera plate along the seismically quiescent Acapulco trench? If so, what does the predicted subduction rate imply about the earthquake recurrence interval in the Jalisco region of southwestern Mexico?

  15. Implications of Farmers' Propensity to Discontinue Adoption of Downy-Mildew Resistant Maize and Improved Cowpea Varieties for Extension Education in Southwestern Nigeria

    ERIC Educational Resources Information Center

    Oladele, O. I.; Adekoya, A. E.

    2006-01-01

    This paper examines the implications of farmers' propensity to discontinue the adoption of agricultural technologies in southwestern Nigeria. This is predicated on the fact that extension education process should be proactive in addressing farmers in order to sustain the adoption process. Empirical studies looking at diffusion processes from an…

  16. Measured basal water pressure variability of the western Greenland Ice Sheet: Implications for hydraulic potential

    NASA Astrophysics Data System (ADS)

    Wright, Patrick J.; Harper, Joel T.; Humphrey, Neil F.; Meierbachtol, Toby W.

    2016-06-01

    The gradient of the hydraulic potential field at the ice-bedrock interface beneath the Greenland Ice Sheet (GrIS) dictates the routing and energetics of subglacial water, thereby influencing drainage system characteristics and sliding dynamics. In the ablation zone of the GrIS, variable water pressure due to an active subglacial drainage system and basal topography with high relief potentially interact to drive unknown spatial patterns and temporal changes in the hydraulic potential field. Here we present a suite of water pressure measurements collected in 13 boreholes along a 46 km transect on the western GrIS to investigate the role of spatial and temporal basal water pressure adjustments in hydraulic potential gradient dynamics. All borehole sites show pressures with similar seasonality, having relatively steady and high values during winter, variable and irregular behavior during spring and fall, and diurnal cycles that can persist for multiple weeks during the peak melt season. Despite much higher variability during the melt season, the median pressure of the summer period is nearly the same as the median pressure of the winter period. However, time variability of water pressure due to basal drainage processes can force changes in the magnitude and orientation of the hydraulic potential field over diurnal periods. We find that the basal water pressure across the transect generally mimics the ice thickness field but with superimposed large pressure gradients that develop at shorter scales within the basal drainage system. This leads to a complex hydraulic potential field across regions of similar ice thickness.

  17. Comparing dust flux records from the Subarctic North Pacific and Greenland: Implications for atmospheric transport to Greenland and for the application of dust as a chronostratigraphic tool

    NASA Astrophysics Data System (ADS)

    Serno, Sascha; Winckler, Gisela; Anderson, Robert F.; Maier, Edith; Ren, Haojia; Gersonde, Rainer; Haug, Gerald H.

    2015-06-01

    We present a new record of eolian dust flux to the western Subarctic North Pacific (SNP) covering the past 27,000 years based on a core from the Detroit Seamount. Comparing the SNP dust record to the North Greenland Ice Core Project (NGRIP) ice core record shows significant differences in the amplitude of dust changes to the two regions during the last deglaciation, while the timing of abrupt changes is synchronous. If dust deposition in the SNP faithfully records its mobilization in East Asian source regions, then the difference in the relative amplitude must reflect climate-related changes in atmospheric dust transport to Greenland. Based on the synchronicity in the timing of dust changes in the SNP and Greenland, we tie abrupt deglacial transitions in the 230Th-normalized 4He flux record to corresponding transitions in the well-dated NGRIP dust flux record to provide a new chronostratigraphic technique for marine sediments from the SNP. Results from this technique are complemented by radiocarbon dating, which allows us to independently constrain radiocarbon paleoreservoir ages. We find paleoreservoir ages of 745 ± 140 years at 11,653 year B.P., 680 ± 228 years at 14,630 year B.P., and 790 ± 498 years at 23,290 year B.P. Our reconstructed paleoreservoir ages are consistent with modern surface water reservoir ages in the western SNP. Good temporal synchronicity between eolian dust records from the Subantarctic Atlantic and equatorial Pacific and the ice core record from Antarctica supports the reliability of the proposed dust tuning method to be used more widely in other global ocean regions.

  18. Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets and their glaciological implications

    NASA Astrophysics Data System (ADS)

    Swift, Darrel; Patton, Henry; Livingstone, Stephen; Jones, Andrew; Clark, Chris; Cook, Simon

    2016-04-01

    Understanding of overdeepening origin and glaciological significance is limited by an absence of quantitative empirical studies. To address this shortcoming, we have mapped the distribution of closed-topographic depressions (i.e. potential overdeepenings) beneath the Antarctic and Greenland ice sheets using automated GIS techniques, and have analysed the resulting database of overdeepening characteristics. The morphologies of a subset of mapped depressions that pass strict quality criteria indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow enhances overdeepening depth. However, we infer that deepening slows with overdeepening age because (a) overdeepening depth is skewed towards shallow values - typically 200 to 300 m; and (b) overdeepening adverse slope steepness declines with overdeepening planform size. Analysis of overdeepening surface ice gradient to bed gradient ratio (the SB ratio) and surface ice velocity shows that velocities are highest for overdeepenings with SB ratios of ~ -1 to -1.5. Further, this ratio is close to the preferred range of SB ratio values exhibited by the dataset. This indicates that ice flow velocity and erosion potential are modulated by the changing efficiency of subglacial drainage and sediment transport that occurs as an overdeepening grows. This is presumed to encourage sediment deposition on the adverse slope, whilst overdeepening enlargement by headward growth (e.g. quarrying) is able to continue, and this presumption is supported by analysis of overdeepening long-profiles, which indicates that overdeepenings are typically asymmetric, with the deepest point skewed toward the overdeepening head. Our observations lead to the conclusion that overdeepening formation enhances ice sheet flow and that thinning during retreat, which will produce even greater negative SB ratios, should result a slowing or stabilisation of ice sheet flow.

  19. Arctic chlorine monoxide observations during spring 1993 over Thule, Greenland, and implications for ozone depletion

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Reeves, J. M.; Emmons, L. K.; De Zafra, R. L.

    1994-01-01

    We have determined the vertical distribution of chlorine monoxide (ClO), from measurements of pressure-broadened molecular-emission spectra made over Thule, Greenland, during the 1993 Arctic spring. The measurements show a weak lower stratospheric layer of chlorine monoxide inside the vortex in late February, which was, however, significantly greater in mixing ratio than that seen in observations we made in the spring of 1992. ClO was also observed in much smaller quantities in early to mid-March 1993 when Thule was outside the vortex. The amount of ClO within the vortex was severely reduced by the time it returned over Thule in late March. This reduction occurred several weeks earlier relative to the winter solstice than the decline of ClO inside the Antarctic vortex in 1993. The enhanced Arctic lower stratospheric layer seen in late February 1993 at a nearly equivalent photochemical period, and beyond. We have calculated daily ozone loss rates, due primarily to the dimer chlorine catalytic cycle, from both sets of measurements. The vertical integral of the Arctic daily percentage ozone loss when the largest ClO levels were present, at the end of February, is found to be approximately one quarter of that in the Antarctic at a photochemical period only 1 week later. The relative weakness of daily ozone depletion, combined with the early disappearance of ClO in the Arctic, suggests that hemispheric dilution by ozone-poor air from within the Arctic vortex is unlikely to be sufficient to explain the historically extreme loss of midlatitude northern hemisphere ozone which began in 1992 and persisted throughout 1993.

  20. Implications of ground-deformation measurements across earth fissures in subsidence areas in the southwestern USA

    USGS Publications Warehouse

    Holzer, Thomas L.

    2010-01-01

    Ground deformation was monitored at earth fissures in areas of land subsidence induced by groundwater extraction in the southwestern United States. The ground deformation is consistent with the mechanism that fissures are caused by horizontal strains generated by bending of overburden in response to localized differential compaction. Subsidence profiles indicated that localized differential subsidence occurred across the fissures and that maximum convex-upward curvature was at the fissure. The overall shape of the profile stayed similar with time, and maximum curvature remained stationary at the fissure. Horizontal displacements were largest near the fissure, and generally were small to negligible away from the fissure. Maximum tensile horizontal strains were at the fissure and coincided with maximum curvature in the subsidence profiles. Horizontal tensile strain continued to accumulate at fissures after they formed with rates of opening ranging from 30 to 120 microstrain/year at fissures in Arizona.

  1. Detrital mineral chronology of the Uinta Mountain Group: Implications for the Grenville flood in southwestern Laurentia

    USGS Publications Warehouse

    Mueller, P.A.; Foster, D.A.; Mogk, D.W.; Wooden, J.L.; Kamenov, George D.; Vogl, J.J.

    2007-01-01

    Numerous studies have shown that large quantities of Grenville-age detritus dominate Neo-proterozoic to Cambrian arenites in southwest Laurentia (southwestern United States). U-Pb ages and Hf isotopic compositions of zircons and 40Ar/39Ar ages of white mica from clastic sedimentary rocks of the Neoproterozoic Uinta Mountain Group also indicate significant Mesoproterozoic detritus mixed with a variably abundant Archean component. Zircons with ages representative of the Paleoproterozoic basement in the eastern Uinta Mountains or the younger Paleoproterozoic rocks of the adjacent Yavapai-Mazatzal terranes were not observed. A limited range of initial ??Hf (???90% between -3 and +3) for Mesoproterozoic zircons suggests derivation from a source region (or regions) characterized by mixing between juvenile and reworked older crust during Grenville orogenesis. The enriched Grenville-age basement proposed to underlie much of southeastern North America may be this source based on similarities of Hf isotopic data from Mesoproterozoic zircons in Mississippi River sand and available paleocurrent data. If so, then disruption of this supply in the Cambrian may be related to Iapetan rifting and, perhaps, the separation of the Precordillera terrane from Laurentia. ?? 2007 The Geological Society of America.

  2. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    SciTech Connect

    Grauch, V.J.S.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

    2000-06-08

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The authors have loosely divided the region into six domains based on structural style and overall geophysical character. For each domain, they review the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work. Where possible, they note abrupt changes in geophysical fields as evidence for potential structural or lithologic control on ground-water flow. They use inferred lithology to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses for regional ground-water pathways where no drill-hole information exists. The authors discuss subsurface features in the northwestern part of the Nevada Test Site and west of the Nevada Test Site in more detail to address potential controls on regional ground-water flow away from areas of underground nuclear-weapons testing at Pahute Mesa. Subsurface features of hydrogeologic importance in these areas are (1) the resurgent intrusion below Timber Mountain, (2) a NNE-trending fault system coinciding with western margins of the Silent Canyon and Timber Mountain caldera complexes, (3) a north-striking, buried fault east of Oasis Mountain extending for 15 km, which they call the Hogback fault, and (4) an east-striking transverse fault or accommodation zone that, in part, bounds Oasis Valley basin on the south, which they call the Hot Springs fault. In addition, there is no geophysical nor geologic evidence for a substantial change in subsurface physical properties within a corridor extending from the northwestern corner of the Rainier Mesa caldera to Oasis Valley basin (east of Oasis Valley discharge area). This observation supports the hypothesis of other investigators that regional ground water

  3. Rehabilitation of a debris-flow prone mountain stream in southwestern China - Strategies, effects and implications

    NASA Astrophysics Data System (ADS)

    Yu, Guo-an; Huang, He Qing; Wang, Zhaoyin; Brierley, Gary; Zhang, Kang

    2012-01-01

    SummaryRehabilitation of Shengou Creek, a small, steep mountain stream in southwestern China that is prone to debris flows, started more than 30 years ago through an integrated program of engineering applications (check dams and guiding dikes), biological measures (reforestation), and social measures (reducing human disturbance). Small and medium-sized check dams and guiding dikes were constructed on key upper and middle sections of the creek to stabilize hillslopes and channel bed. Meanwhile, Leucaena leucocephala, a drought-tolerant, fast-growing, and highly adaptive plant species, was introduced to promote vegetation recovery in the watershed. The collective community structure of tree, shrub, and herb assemblages in the artificial L. leucocephala forest, which developed after 7 years, enhanced soil structure and drastically reduced soil erosion on hillslopes. Cultivation of steep land was strictly controlled in the basin, and some inhabitants were encouraged to move from upstream areas to downstream towns to reduce disturbance. These integrated measures reduced sediment supply from both hillslopes and upstream channels, preventing sediment-related hazards. The development of natural streambed resistance structures (mainly step-pool systems) and luxuriant riparian vegetation aided channel stability, diversity of stream habitat, and ecological maintenance in the creek. These findings are compared with Jiangjia and Xiaobaini Ravines, two adjacent non-rehabilitated debris-flow streams which have climate and geomorphologic conditions similar to Shengou Creek. Habitat diversity indices, taxa richness, biodiversity, and bio-community indices are much higher in Shengou Creek relative to Jiangjia and Xiaobaini Ravines, attesting to the effectiveness of rehabilitation measures.

  4. Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge

    NASA Astrophysics Data System (ADS)

    Wilton, David J.; Bigg, Grant R.; Hanna, Edward

    2015-11-01

    We have used a coupled ocean-iceberg model to study the variation in global ocean circulation and North Atlantic iceberg flux from 1900 to 2008. The latter component of the study focused particularly on Greenland icebergs feeding into the Labrador Current and past Newfoundland. The model was forced with daily heat, freshwater and wind fluxes from the Twentieth Century Reanalysis. The reanalysis heat fluxes were shown to be offset from the, shorter, NCEP reanalysis and a grid-point correction was applied to this component of the forcing. The model produces a generally realistic ocean circulation, although with an enhanced Atlantic Meridional Overturning largely due to the forcing. The modelled iceberg flux at 48°N is well correlated with the long-term observed flux when using a modelled iceberg discharge that varies in a similar fashion to the highly variable observed flux at 48°N. From this model we infer changes in the spatial and temporal variability of iceberg calving from western Greenland. During the first third of the twentieth century the majority of modelled icebergs reaching 48°N derive from southern Greenland, while only after 1930 is the traditional perspective of a majority of such icebergs originating from Baffin Bay consistent with model results. Decadal-scale changes in the dominant regional sources are found, with oscillations between western Greenland and northern Baffin Bay. The latter origin was modelled to be most important in the last third of the twentieth century, although west Greenland sources have increased in importance in recent years. The model correctly reproduces the pronounced late spring peak in flux at 48°N for southern Greenland icebergs, but has an approximately six month offset for icebergs from Baffin Bay, most likely due to resolution issues leading to model icebergs not being delayed in shallow coastal waters, whereas in reality they may be grounded for some time or trapped in coastal sea-ice.

  5. Spatial and temporal oxygen isotope variability in northern Greenland - implications for a new climate record over the past millennium

    NASA Astrophysics Data System (ADS)

    Weißbach, S.; Wegner, A.; Opel, T.; Oerter, H.; Vinther, B. M.; Kipfstuhl, S.

    2016-02-01

    We present for the first time all 12 δ18O records obtained from ice cores drilled in the framework of the North Greenland Traverse (NGT) between 1993 and 1995 in northern Greenland. The cores cover an area of 680 km × 317 km, 10 % of the Greenland ice sheet. Depending on core length (100-175 m) and accumulation rate (90-200 kg m-2 a-1) the single records reflect an isotope-temperature history over the last 500-1100 years. Lowest δ18O mean values occur north of the summit and east of the main divide as a consequence of Greenland's topography. In general, ice cores drilled on the main ice divide show different results than those drilled east of the main ice divide that might be influenced by secondary regional moisture sources. A stack of all NGT records and the NGRIP record is presented with improved signal-to-noise ratio. Compared to single records, this stack represents the mean δ18O signal for northern Greenland that is interpreted as proxy for temperature. Our northern Greenland δ18O stack indicates distinctly enriched δ18O values during medieval times, about AD 1420 ± 20 and from AD 1870 onwards. The period between AD 1420 and AD 1850 has depleted δ18O values compared to the average for the entire millennium and represents the Little Ice Age. The δ18O values of the 20th century are comparable to the medieval period but are lower than that about AD 1420.

  6. The Neoproterozoic and Paleozoic tectonostratigraphic evolution of Southwestern Mongolia and implications for crustal growth in Asia

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Bold, U.; Buchwaldt, R.; Smith, E. F.

    2013-12-01

    Neoproterozoic and Paleozoic strata on the Zavkhan Terrane of southwestern Mongolia contain unique geochemical and paleontological records that have become central to our understanding of this pivital era of Earth history. Here we present sedimentological, stratigraphic, structural, geochemical, and geochronological data that provide context for these records, and for the tectonic evolution of the Central Asian Orogenic Belt (CAOB). The CAOB is commonly cited as the largest region of Phanerozoic crustal growth on Earth, yet the tectonic evolution of this region is poorly constrained. In contrast to previous studies that depicted a back-arc basin setting for deposition of Neoproterozoic strata in Mongolia, we propose that the Zavkhan Terrane is a segment of a ribbon continent, which formed through collapse of an extensive ca. 811-802 Ma continental arc system on the Tarim margin of Rodinia, associated with the subduction of a mid-ocean ridge at around 800 Ma. Extension is recorded by emplacement of mafic dike swarms, normal faulting, growth fault deposition of more than 500m of cobble conglomerates and the eruption of ignimbrites in the Zavkhan Volcanics. As the Zavkhan Terrane detached, an additional succession of coarse siliciclastic strata was deposited in the Khasagtin suite, followed by passive margin sedimentation consisting of limestone and glacial deposits of the Tsagaan Olom Group on an isolated carbonate platform. Detrital zircon in the glacigenic Maikhan Ul Formation constrain its age to younger than 730 Ma. Chemostratigraphy in the overlying Tayshir Formation further suggests that the Maikhan Ul diamictite is correlative with the ca. 717-662 Ma Sturtian glacial epoch. By the time limestone of the overlying Tayshir Formation was deposited, arc volcanism had been inactive for over 100 Myrs. After rifting, the Proterozoic terranes of Mongolia formed an isolated ribbon continent that was mantled with passive margin carbonate platform sedimentation through

  7. Further paleomagnetic results for lower Permian basalts of the Baoshan Terrane, southwestern China, and paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Xu, Yingchao; Yang, Zhenyu; Tong, Ya-Bo; Wang, Heng; Gao, Liang; An, Chunzhi

    2015-05-01

    The Baoshan Terrane of southwestern China is considered to have been part of the Cimmerian block during the late Paleozoic; consequently, knowledge of its paleoposition and geological evolution can provide constraints on the Permian breakup of northern East Gondwana. Therefore, we conducted paleomagnetic and rockmagnetic studies on lower Permian basalts from four localities in the Baoshan Terrane. The basalts hold a stable characteristic remanent magnetization (ChRM) at high temperatures (300-680 °C) that is carried by magnetite, maghemite, and hematite with both pseudo-single and multiple domains. To test the reliability of data from these volcanic rocks, we analyzed the geomagnetic secular variation (GSV) and reliability of both the present data and previous paleomagnetic data. The results from 23 sites yield a single reversed polarity directed downwards to the southwest, giving a site-mean direction of Dg/Ig = 156.7°/56.6° (kg = 8.0, α95 = 11.4°) before tilt correction, and Ds/Is = 218.3°/60.1° (ks = 14.1, α95 = 8.4°) after tilt correction. The result passed the fold test, but the GSV was able to be averaged out in only two sections. All available data were examined section-by-section using the angular dispersion (SB) of virtual geomagnetic poles (VGPs) to ensure that the GSV was completely averaged out. Because the dispersion in declinations is likely to have been affectedby subsequent tectonic deformation, the paleosecular variation (PSV) could not be evaluated from all the data amassed from different sections, and the PSV was able to be removed from only four (combined) sections. A small-circle fit of these VGPs gives an averaged paleocolatitude of 51.9° ± 3.7° (N = 31 sites) centered on 24°N, 99°E. The result indicates that the sampled area of the Baoshan Terrane was located at a latitude of 38°S ± 3.7° during the late early Permian. A comparison of this result with early Permian data from Gondwanan blocks suggests that the Baoshan Terrane

  8. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Xu, Yingfeng; Khawaja, Sofia; Passey, Benjamin H.; Zhang, Chunfu; Wang, Xiaoming; Li, Qiang; Tseng, Zhijie J.; Takeuchi, Gary T.; Deng, Tao; Xie, Guangpu

    2013-08-01

    A mid-Pliocene fauna (4.2-3.1 Ma) was recently uncovered in the Zanda (Zhada) Basin in the southwestern Himalaya, at an elevation of about 4200 m above sea level. These fossil materials provide a unique window for examining the linkage among tectonic, climatic and biotic changes. Here we report the results from isotopic analyses of this fauna and of modern herbivores and waters as well as paleo-temperature estimates from the Zanda Basin. The δ13C values of enamel samples from modern wild Tibetan asses, and domesticated horses, cows and goats in the area are -9.4±1.8‰, which indicate a diet comprising predominantly of C3 plants and are consistent with the current dominance of C3 vegetation in the region. The enamel-δ13C values of the fossil horses, rhinos, deer, and bovids are -9.6±0.8‰, indicating that these ancient mammals, like modern herbivores in the area, also fed primarily on C3 vegetation and lived in an environment dominated by C3 plants. The lack of significant C4 plants in the basin suggests that the area had reached high elevations (>2.5 km) by at least the mid-Pliocene. Taking into account the changes in the δ13C of atmospheric CO2 in the past, the enamel-δ13C values suggest that the average modern-equivalent δ13C value of C3 vegetation in the Zanda Basin in the mid-Pliocene was ∼1-2‰ lower than that of the C3 biomass in the basin today. This would imply a reduction in annual precipitation by about 200-400 mm in the area since then (assuming that the modern C3 δ13C-precipitation relationship applied to the past). Consistent with this inference from the δ13C data, the enamel-δ18O data show a significant shift to higher values after the mid-Pliocene, which also suggests a shift in climate to much drier conditions after ∼4-3 Ma. Paleo-temperature estimates derived from a fossil bone-based oxygen isotope temperature proxy as well as the carbonate clumped isotope thermometer for the mid-Pliocene Zanda Basin are higher than the present

  9. Climatic Trends in the Triassic to Early Jurassic Lacustrine Succession of East Greenland: Implications for Correlation in the North Atlantic Region

    NASA Astrophysics Data System (ADS)

    Andrews, Steven

    2013-04-01

    The Triassic continental successions of the North Atlantic region are poorly age constrained and therefore regional correlation is problematic. Climatic trends offer potential as the basis of regional correlation. The Triassic of East Greenland lies in the northern continuation of the northern North Sea Rift and, following reconstruction, aligns with the Viking Graben. This position, between the northern North Sea, Norwegian Sea and the Barents Shelf successions, means it is key in constructing regional correlations and understanding both tectonic and climatic evolution throughout the Triassic of the North Atlantic region. Detailed sedimentological study of exceptional exposures through the largely lacustrine Mid-Late Triassic succession of East Greenland has provided the basis for a palaeoclimatic reconstruction. This has highlighted the occurrence of significant periods of increased aridity during the Late Ladinian and the Late Carnian which bracket the more humid conditions of the Early Carnian (the 'Carnian Pluvial Event'). Following the Late Carnian arid phase a gradual cooling through the Late Triassic and Early Jurassic is recorded. Comparisons and correlations are made with Triassic successions throughout the North Atlantic. Understanding climatic trends and the response of sedimentary systems to these has important implications for the construction of facies models and therefore the prediction of both reservoir and seal distribution in the prospective North Atlantic petroleum provinces.

  10. Numerical Simulation and Sensitivity Analysis of Subglacial Meltwater Plumes: Implications for Ocean-Glacier Coupling in Rink Isbrae, West Greenland

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.

    2014-12-01

    The rate of mass loss from the Greenland Ice Sheet quadrupled over the last two decades and may be due in part to changes in ocean heat transport to marine-terminating outlet glaciers. Meltwater commonly discharges at the grounding line in these outlet glacier fjords, generating a turbulent upwelling plume that separates from the glacier face when it reaches neutral density. This mechanism is the current paradigm for setting the magnitude of net heat transport in Greenland's glacial fjords. However, sufficient observations of meltwater plumes are not available to test the buoyancy-driven circulation hypothesis. Here, we use an ocean general circulation model (MITgcm) of the near-glacier field to investigate how plume water properties, terminal height, centerline velocity and volume transport depend on the initial conditions and numerical parameter choices in the model. These results are compared to a hydrodynamic mixing model (CORMIX), typically used in civil engineering applications. Experiments using stratification profiles from the continental shelf quantify the errors associated with using far-field observatons to initialize near-glacier plume models. The plume-scale model results are then integrated with a 3-D fjord-scale model of the Rink Isbrae glacier/fjord system in west Greenland. We find that variability in the near-glacier plume structure can strongly control the resulting fjord-scale circulation. The fjord model is forced with wind and tides to examine how oceanic and atmospheric forcing influence net heat transport to the glacier.

  11. Post-Gondwana geomorphic evolution of southwestern Africa: Implications for hte controls on landscape development from observations and numerical experiments

    NASA Technical Reports Server (NTRS)

    Gilchrist, Alan R.; Kooi, Henk; Beaumont, Christopher

    1994-01-01

    The relationship between morphology and surficial geology is used to quantify the denudation that has occurred across southwestern Africa sicne the fragmentation of Gondwana during the Early Mesozoic. Two main points emerge. Signficant denudation, of the order of kilometers, is widespread except in the Kalahari region of the continental interior. The denudation is systematically distributed so that the continental exterior catchment, draining directly to the Cape basin, is denuded to a greater depth than the interior catchment inland of the Great Escarpment. The analysis also implies tha the majority of the denudation occurred before the beginning of the Cenozoic for both teh exerior and interior catchments. Existing models of landscape development are reviewed, and implications of the denudation chronology are incorporated into a revised conceptual model. This revision implies tha thte primary effect of rifting on the subsequent landscape evolution is that it generates two distinct drainage regimes. A marginal upwarp, or rift flank uplift, separates rejuvenated rivers that drain into the subsiding rift from rivers in the continetal interior that are deflected but not rejuvenated. The two catchments evolve independently unless they are integrated by breaching of hte marginal upwarp. If this occurs, the exterior baselevel is communicated to the interior catchment that is denuded accordingly. Denudation rates generally decrease as the margin evolves, and this decrease is reinforced by the exposure of substrate that is resistant to denudation and/or a change to a more arid climate. The observations do not reveal a particular style of smaller-scale landscape evolution, sucha s escarpment retreat, that is responsible for the differential denudation across the region. It is proposed that numerical model experiments, which reflect the observational insights at the large scale, may identify the smaller-scale controls on escarpment development if the model and natural

  12. Nuuk, Greenland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Nuuk (or Gadthab) is the capital and largest city of Greenland. It is located at the mouth of the Nuup Kangerlua inlet on the west coast of Greenland. It has a population of about 15,000. The site has a long history of different inhabitation: first by the Inuit people around 2000 B.C., later by Viking explorers in the 10th century. Inuit and Vikings lived together for about 500 years until about 1500, when human habitation suddenly stopped, most likely due to change in climate and vegetation.

    The image was acquired August 2, 2004, covers an area of 22.7 x 26 km, and is located at 64.2 degrees north latitude, 51.8 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Climatic implications of background acidity and other chemistry derived from electrical studies of the Greenland Ice Core Project ice core

    NASA Astrophysics Data System (ADS)

    Wolff, Eric W.; Moore, John C.; Clausen, Henrik B.; Hammer, Claus U.

    1997-11-01

    High-resolution continuous profiles were obtained on the Greenland Ice Core Project (GRIP) ice core using two different electrical methods. After correction for temperature and density, the electrical conductivity method (ECM) technique responds only to acidity, while dielectric profiling (DEP) responds to acid, ammonium, and chloride. Detailed chemistry on a section of glacial-age ice allows us to confirm the calibration factor for chloride in DEP. Acidity dominates the DEP variability in the Holocene, Allerod/Bolling, and larger interstadials; ammonium dominates in the Younger Dry as, while chloride is the major contributor in cold periods including smaller interstadials. From the electrical signals plotted on a linear timescale we can deduce the background (nonvolcanic) acidity of the ice, varying from always acidic in the Holocene to always alkaline in the cold periods. In the interstadials, the ice is close to neutral, with most of it acidic in larger interstadials, most of it alkaline in smaller ones, and rapid alternations within interstadials. It is not clear whether neutralization of individual acidic particles occurred in the atmosphere or whether acid and alkaline particles coexisted until deposition in the snowpack. The changes in acidity observed at GRIP apply at least to all of Greenland and probably to much of North America. There would have been ecological effects and important changes in the uptake of some chemicals onto ice. If acidic sulfate particles were neutralized and removed from the atmosphere, which remains uncertain, then there are atmospheric chemistry and radiative effects that require further investigation.

  14. The Weichselian (Würmian) Pleniglacial chronology of the Nussloch loess section/Germany revisited. Implications for the matching of pedosedimentary units with Greenland stadial and interstadial periods.

    NASA Astrophysics Data System (ADS)

    Kadereit, A.; Kind, C.-J.; Wagner, G. A.

    2012-04-01

    The loess section of Nussloch in SW-Germany is a key profile for the reconstruction of the terrestrial palaeoenvironment of central Europe for the time of the Weichselian (Würmian) Pleniglacial (e.g. Antoine et al., 2009). In this period, the earliest modern humans invaded SW-Germany as documented in unique cultural remains from karst caves of the Swabian Jura (e.g. Conard et al., 2009). The Nussloch profile includes a Middle Pleniglacial Cambisol remain (Lohne Soil), which serves as an important loess marker horizon throughout Europe. Greenland interstadial (GIS) 8 was hitherto regarded as the likely period of soil formation for the Lohne Soil and a suite of partly soliflucted Cryosols in the hanging wall is interpreted to represent warm climate excursions of the Upper Pleniglacial period, starting with GIS8 or GIS7 (e.g. Antoine et al., 2001, 2009; Rousseau et al., 2011). However, revaluation of available chronometric data from Nussloch suggests (GIS7 to) GIS5 as the likely period of soil formation for the Lohne Soil. GIS8 is documented by deposits from thermokarst dynamics, stratigraphically several units below the marker soil. Consequences of a revised chronology for correlations of Pleniglacial Cryosols below and above the Lohne Soil with Greenland interstadials are discussed. The implications are important for European loess research as the Nussloch section serves as a reference base throughout Europe. The revised chronology suggests also that the Lohne Soil postdates the immigration of the earliest modern humans in SW-Germany and central Europe. This finding is in contrast to the earlier age-model for the Nussloch site.

  15. Modeling Subglacial Meltwater Plumes across Greenland's Outlet Glaciers: Implications for Ice-Ocean Coupling in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Moon, T. A.; Hudson, B.; Noel, B.; Felikson, D.; Catania, G. A.; Nash, J. D.; Shroyer, E.; Bartholomaus, T.; Stearns, L. A.; van den Broeke, M.

    2015-12-01

    Meltwater accumulated on the Greenland Ice Sheet (GrIS) drains to glacier beds, often discharging into outlet glacier fjords hundreds of meters below sea level. The injection of buoyant meltwater at depth drives a turbulent plume that entrains warm bottom water as it rises along the ice face, resulting in increased submarine melt rates. Recent studies have used remotely sensed data to identify distinct seasonal flow patterns in GrIS outlet glacier dynamics, suggesting some glaciers are especially sensitive to changes at the terminus. However, we currently lack an understanding of the corresponding regional patterns in near-glacier circulation that are a first-order control on submarine melt rates and indirectly modulate the resultant estuarine exchange flow and mixing of fjord waters. In this study, we use a buoyant plume model combined with a synthesis of shipboard hydrography, moored observations, estimates of subglacial discharge, and remotely sensed data on glacier characteristics, to provide an estimate of plume properties across GrIS outlet glaciers in both time and space. We validate our model results with detailed ice-ocean measurements from neighboring outlet glacier fjords in Uummannaq Bay, west Greenland. Model and observations agree that strongly stratified fjords with deep outlet glaciers result in warm, subsurface plumes, while shallow fjords result in surface-intensified plumes that retain their cold meltwater signature. We compare these results to a high-resolution ocean model to provide an estimate of submarine melt rates during peak summer discharge. One advantage of our approach is the rapid characterization of distinct plume regimes across GrIS outlet glacier parameter space. Finally, we compare these plume regimes with characteristics of glacier behavior (ice velocity, surface elevation, terminus position), over decadal and seasonal time-scales. This comparison allows us to investigate which outlet glacier systems might be more sensitive to

  16. Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution

    NASA Astrophysics Data System (ADS)

    Patton, H.; Swift, D. A.; Clark, C. D.; Livingstone, S. J.; Cook, S. J.

    2016-09-01

    Glacier bed overdeepenings are ubiquitous in glacier systems and likely exert significant influence on ice dynamics, subglacial hydrology, and ice stability. Understanding of overdeepening formation and evolution has been hampered by an absence of quantitative empirical studies of their distribution and morphology, with process insights having been drawn largely from theoretical or numerical studies. To address this shortcoming, we first map the distribution of potential overdeepenings beneath the Antarctic and Greenland ice sheets using a GIS-based algorithm that identifies closed-contours in the bed topography and then describe and analyse the characteristics and metrics of a subset of overdeepenings that pass further quality control criteria. Overdeepenings are found to be widespread, but are particularly associated with areas of topographically laterally constrained ice flow, notably near the ice sheet margins where outlet systems follow deeply incised troughs. Overdeepenings also occur in regions of topographically unconstrained ice flow (for example, beneath the Siple Coast ice streams and on the Greenland continental shelf). Metrics indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow in general enhances overdeepening depth. However, overdeepening depth is skewed towards shallow values - typically 200-300 m - indicating that the rate of deepening slows with overdeepening age. This is reflected in a decline in adverse slope steepness with increasing overdeepening planform size. Finally, overdeepening long-profiles are found to support headward quarrying as the primary factor in overdeepening development. These observations support proposed negative feedbacks related to hydrology and sediment transport that stabilise overdeepening growth through sedimentation on the adverse slope but permit continued overdeepening planform enlargement by processes of headward erosion.

  17. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications

    USGS Publications Warehouse

    Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.

    2003-01-01

    Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.

  18. Southwestern Sojourn.

    ERIC Educational Resources Information Center

    Horwood, Bert

    1983-01-01

    Discusses the common characteristics of experiential education programs and administration in public and private elementary, secondary, and alternative high schools in Colorado and New Mexico. Also discusses the attributes of an effective outdoor education leader and how those attributes are acquired, based on interviews with Southwestern outdoor…

  19. Evidence for a Mid-Crustal Continental Suture and Implications for Multistage (U)HP exhumation, Liverpool Land, East Greenland

    NASA Astrophysics Data System (ADS)

    Johnston, S.; Brueckner, H.; Gehrels, G.; Manthei, C.; Hacker, B.; Kylander-Clark, A.; Hartz, E. H.

    2008-12-01

    The East Greenland Caledonides consists of a series of west-directed sheets that formed from 460-360 Ma as Baltica subducted westward beneath Laurentia, and offer an opportunity to study high- and ultrahigh- pressure exhumation in orogenic hangingwalls. The Liverpool Land (LL) gneiss complex, 100 km east of the nearest Caledonian gneisses, provides a window into the deepest levels of the Greenland Caledonides. From the bottom up, the LL tectonostratigraphy is comprised of the eclogite-bearing Tvaerdal orthogneiss and the granulite-facies Jaettedal paragneiss structurally below the top-N Hurry Inlet Detachment. We present new thermobarometry and U/Pb zircon and titanite geochronology from the LL gneisses to define the tectonostratigraphy, continental affinity, and exhumation histories of the LL gneiss complex. The Tvaerdal orthogneiss consists of felsic orthogneisses that host rare ultramafic bodies (Fo92) and mafic boudins that yield peak pressures of >25 kbar at 800°C. Host gneiss zircons dated using LA-MC- ICPMS yield 1676 ± 17 Ma (2s) cores with 403 ± 6 Ma (2s) rims that suggest Mesoproterozoic emplacement of the original intrusive body followed by late-Caledonian deformation. The Tvaerdal orthogneiss also includes voluminous decompression melts; one yielded a TIMS U/Pb titanite age of 387.5 ± 2.2 Ma (2s). The structurally higher Jaettedal paragneiss consists of pelitic gneisses interlayered with granodioritic-dioritic orthogneisses. The Jaettedal-Tvaerdal contact is petrologically abrupt and concordant to regional foliation and lacks sub-amphibolite-facies displacement. Aluminum silicate-bearing pelitic assemblages within the Jaettedal paragneiss yield peak metamorphic conditions of 10-11 kbar at 750- 800°C. U/Pb age maps made using LA-MC-ICPMS from three paragneisses reveal Mesoproterozoic- Archean detrital cores with Caledonian rim overgrowths that cluster between 439-434 Ma. An amphibolite restite from the Jaettedal paragneiss yielded a TIMS U

  20. Autosomal recessive diseases among the Athabaskans of the southwestern United States: recent advances and implications for the future.

    PubMed

    Erickson, Robert P

    2009-11-01

    Genetic and linguistic data suggest that the Na-Dene, of which the Athabaskans are the largest group, are part of a later immigration into the Americas than the first Amerind immigration. Whether a second and third immigration can be separated seems unlikely but continued cross-Bering Strait exchanges may have masked what was a greater separation in the past. The movement of tribes into Siberia appears to have involved a genetic bottleneck leading to at least one disease allele shared by Eskimo/Aleuts and Navajos and a second possibly shared by the Navajo and a Siberian population, but not the same Siberian population that share deep linguistic affinities with the Navajo. A second bottleneck appears to have occurred with the migration of Athabaskans from Northwest North America to the Southwestern United States along the Rocky Mountains. This bottleneck is reflected in several rare recessive diseases shared by the Navajo and Apache. Finally, the Navajo were captured and imprisoned under conditions which led to severe population loss. This, and the "hiding away" of a small number of Navajos in what is now the Western portion of the reservation, led to a Navajo-specific bottleneck(s) resulting in an increased frequency of several rare recessive diseases among the Navajo. Prejudice against human genetic research is high among the Southwestern Athabaskans but attempts to bridge the gap are now occurring. The involvement of Navajo scientists in this process is especially encouraging. PMID:19842189

  1. Metamorphism of the ca. 3800 Ma supracrustal rocks at Isua, West Greenland: implications for early Archaean crustal evolution

    NASA Astrophysics Data System (ADS)

    Boak, Jeremy L.; Dymek, Robert F.

    1982-06-01

    A detailed mineralogical and petrological study has been carried out on samples from two clastic metasedimentary lithologies from the ˜ 3800 Ma Isua Supracrustal Belt, West Greenland. Semipelitic to pelitic "garnet-biotite schist" contains the limiting AKFM assemblage: muscovite-biotite-garnet-staurolite (+ quartz + plagioclase + ilmenite), whereas "muscovite-biotite gneiss", derived from felsic volcanogenic graywacke, locally contains kyanite (+ quartz+ plagioclase + Ca-, Mn-rich garnet). Temperatures calculated from Fe-Mg partitioning between coexisting garnet- biotite indicate equilibration for garnet coresat T ˜550°C, and ˜460°C for garnet rims. We interpret the higher T as a minimum estimate for prograde regional metamorphism which we argue occurred before 3600 Ma, whereas the lower T reflects later retrogression as indicated by the development of chlorite ± sericite in many samples. The presence of kyanite as the stable aluminosilicate polymorph, combined with phase assemblage data, indicate P ˜5 kbar during prograde metamorphism, and a depthof burial of at least 15 km. The Isua supracrustals are the oldest comprehensively dated rocks on Earth, and the metamorphic mineral assemblages reported here constitute the earliest direct record of thermal regimes in Archaean crust. Therefore, characterization of the metamorphic history of the Isua region places an important constraint on models of early Earth history. Our data and observations indicate that prograde regional metamorphism at Isua occurred at conditions which are considered "normal" for an orogenic system, with a metamorphic thermal gradient ˜35°C/km. Moreover, our results contraindicate the universal occurrence of "thin" Archaean crust and excessively "steep" crustal thermal gradients as proposed by some investigators. Such conclusion appears at odds with estimates for higher terrestrial heat production during the early Archaean, but can be resolved by appealing to more rapid convection and

  2. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    SciTech Connect

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  3. Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures

    PubMed Central

    Friggens, Megan M.; Finch, Deborah M.

    2015-01-01

    Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy’s warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be

  4. Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures.

    PubMed

    Friggens, Megan M; Finch, Deborah M

    2015-01-01

    Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy's warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used

  5. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet during sustained climate warming - implications for wider ice sheet hydrology-dynamics coupling

    NASA Astrophysics Data System (ADS)

    Nienow, P. W.; Tedstone, A. J.; Gourmelen, N.; Dehecq, A.; Goldberg, D. N.; Hanna, E.

    2015-12-01

    The relationship between surface melting and ice motion will affect how the Greenland Ice Sheet (GrIS) responds to climate and the structure of the subglacial drainage system may be crucial in controlling how changing melt-rates impact ice motion. Ice sheet motion varies over seasonal time-scales in response to varying surface meltwater inputs to the ice-sheet bed which lubricate the ice-bed interface, resulting in periods of faster ice motion. However, the impact of hydro-dynamic coupling on ice motion over decadal timescales remains poorly constrained. Here we utilise remotely-sensed optical Landsat imagery to generate a record of annual motion spanning three decades extending back to 1985. Our observations cover an ˜8000 km2 area along ˜170 km of predominantly land-terminating margin of the west GrIS, and extend ˜50 km inland to 1100 m asl. We find that that annual ice motion was 12% slower in 2007-2014 compared to 1985-1994, despite a corresponding 50% increase in surface meltwater production. Less than 1/3 of the observed slowdown can be explained by a reduction in internal deformation caused by marginal ice sheet thinning, and we therefore hypothesise that increases in subglacial drainage efficiency, associated with sustained larger melt volumes, have reduced basal lubrication resulting in slower ice flow. Our findings suggest that hydro-dynamic coupling in this section of the ablation zone resulted in net ice motion slowdown over decadal timescales — not speedup as previously postulated. Increases in meltwater production from projected climate warming may therefore further reduce the motion of land-terminating margins of the ice-sheet indicating such margins are more resilient to the dynamic impacts of enhanced meltwater production than previously thought. The implications of these observations for wider ice sheet hydrology-dynamics coupling are considered.

  6. Local tomography and focal mechanisms in the south-western Alps: Comparison of methods and tectonic implications

    NASA Astrophysics Data System (ADS)

    Nicole, Béthoux; Christian, Sue; Anne, Paul; Jean, Virieux; Julien, Fréchet; François, Thouvenot; Marco, Cattaneo

    2007-03-01

    We investigate how focal solutions and hypocenter locations may depend on the ray tracing algorithm and the strategy of velocity inversion. Using arrival times from a temporary seismological network in the south-western Alps, a local earthquake tomography has been performed by Paul et al. [Paul, A., Cattaneo, M., Thouvenot, F., Spallarossa, D., Béthoux, N., and Fréchet, J., 2001. A three-dimensional crustal velocity model of the south-western Alps from local earthquake tomography. J. Geophys. Res. 106, 19367-19390.] with the method developed by Thurber [Thurber, C.H., 1993. Local earthquake tomography: velocity and Vp/Vs-Theory, in Seismic Tomography: Theory and practice, Iyer, H.M., and Irahara eds., Chapman and Hall, New York, 563-583.]. Another inversion of the same data set is performed here using a different tomography code relying on a shooting paraxial method and cubic interpolation of velocities. The resulting images display the same main features, although Thurber's code appears to be more robust in regions with scarce ray coverage and strong velocity contrasts. Concerning hypocenter location in Piemont units, one major result is the concentration of hypocenters at the boundary between the mantle wedge of the Ivrea body and the European crust. Forty-six focal mechanisms are shown that were computed using both the take-off angles in the minimum 1-D model and in the 3-D velocity structures resulting from the two inversions. The sets of focal solutions are very similar, proving the reliability and the coherency of the focal solutions. The widespread extension in the core of the western Alps is confirmed whereas a few compressive solutions are found east of the Piemont units. These results constrain the sharp change of stress tensor and evidence a decoupling of strain beneath the east of Dora Maira massif up to beneath the north of Argentera massif. On a geodynamical point of view seismicity and focal mechanism distribution are compatible with the present

  7. Response of aridland trees to artificial summer rains: Implications for climate change in the southwestern U.S.

    SciTech Connect

    Williams, D.G.; Ehleringer, J.

    1995-09-01

    The Arizona monsoon in the southwestern U.S. brings summertime precipitation to a region where water most limits primary productivity. Woodland species in southern Utah were given 25 mm of artificial rain in late July and mid September, 1994, to evaluate inter and intraspecific responses to monsoon precipitation. {delta}D of xylem water and predawn water potential increased following irrigation for Juniperus osteosperma and Pinus edulis indicating that these species have active surface roots during the monsoon season. The capacity of these trees to respond to irrigation, however, was greater in September than in July. Either high soil temperature limits root function in July or surface root growth over August promotes greater response in September. Quercus gambelii, a common associate within these woodlands, did not respond to the irrigations, demonstrating its reliance on deeper roots through the growing season. Future shifts in the seasonality of precipitation might, therefore, have differential effects on these woodland species leading to vegetation change. Interactions between changes in temperature and the seasonality of precipitation, however, need to be considered when predicting these responses.

  8. Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India-Asia collision

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gang; Hu, Xiu-Mian; BouDagher-Fadel, Marcelle; Wu, Fu-Yuan; Sun, Gao-Yuan

    2015-01-01

    Syncollisional sedimentary rocks in the Himalayan orogen record important information about the early history of the India-Asia collision. This article presents a combined stratigraphic, sedimentologic, micropaleontologic, and provenance data for the Early Eocene clastic strata (Dajin Formation) in the Kailas area, southwestern Tibet. The Dajin Formation comprises ungraded and normally graded, matrix- and clast-supported conglomerates, ungraded and cross-stratified sandstones, and massive to poorly laminated mudstones. Deposition of the rocks is characterized by subaerial and subaqueous debris flows, waning gravity flows and suspension fallout. The larger benthic foraminifera and the youngest ages of the detrital zircons constrain the depositional age to the earliest Eocene (56-54 Ma). The Dajin Formation contains abundant sandstone and mudstone clasts, indicating significant sedimentary recycling in the source area. U-Pb ages of detrital zircons are mostly clustered at ~ 120-54 Ma and have positive εHf(t) values, suggesting a Gangdese affinity. Clasts of the Dajin Formation are interpreted as having recycled from the forearc strata that were originally derived from the Gangdese magmatic arc. Highly immature texture and recycled provenance lead us to propose that deposition of the Dajin Formation was a result of the development of fold-thrusts in the Gangdese forearc. Our new results and published data from the coeval strata in the Himalayan orogen indicate that an underfilled foreland basin was initiated soon after the initial India-Asia collision, and the Dajin Formation records the wedge-top depozone of the basin system.

  9. Age of the Dawson Arkose, southwestern Air Force Academy, Colorado, and implications for the uplift history of the Front Range

    SciTech Connect

    Kluth, C.F.; Nelson, S.N. )

    1988-01-01

    An angular unconformity within the synorogenic Dawson Arkose (Late Cretaceous-Eocene) is preserved and exposed in areas south of Denver, Colorado, along the eastern side of the Front Range uplift. In the southwestern part of the Air Force Academy, the basal Dawson is concordant with the underlying Laramie and Fox Hills formations and dips 72-84{degree} eastward. Above an intraformational angular unconformity, younger units of the Dawson dip 24{degree}-46{degree} eastward. Smaller angular unconformities (10{degree}{plus minus}), and beds with gradually decreasing dip occur higher in the Dawson section. Rocks above the largest unconformity contain a rich palynomorph assemblage of Late Maestrichtain age. These data indicate that approximately 30{degree}-40{degree}, and possibly as much as approximately 70{degree}, of tilting of the underlying rocks occurred during the Late Maestrichtian (66-70 Ma). It is also possible that approximately 30{degree}-40{degree} of the tilting of the Late Cretaceous rocks occurred between latest Maestrichtian and Eocene (approximately 45 Ma). These results suggest that the transition from a tectonically quiet marine environment to a non-marine, tectonically active condition took place rapidly, probably within a few million years. When combined with published data, the authors study indicates that the Front Range has different tectonic histories on its eastern and its western side, and that the deformation is diachronous along the strike of the eastern side of the Front Range.

  10. Soil vulnerability to future climate in the southwestern USA, with implications for vegetation change and water cycle

    NASA Astrophysics Data System (ADS)

    Peterman, W. L.; Bachelet, D. M.

    2011-12-01

    Understanding soil response to changes in precipitation/snow cover and increasing temperatures is essential to predicting changes in riparian, wetland, and aquatic as well as terrestrial communities in the coming decades. Changes in precipitation and snowmelt are affecting streamflow seasonality and magnitude, and rising air temperatures and declining precipitation affect aquatic habitats directly by causing increases in stream temperatures and evapo-transpiration causing lower streamflow. The water resources of the Colorado River system are projected to be strained due to runoff losses of 7 to 20% this century, and a reduction of approximately 5% of the annual average runoff is due to increased evapotranspiration from early exposure of vegetation and soils. We are developing a spatially-explicit soil vulnerability index of high, moderate and low sensitivity soils for the southwestern USA and comparing it to projections of vegetation dieback under future climate change scenarios to provide 1) a measure of uncertainty of the model skill and 2) a warning that vegetation shifts may increase soil vulnerability in areas where it is still protected by current plant cover, thus enabling a preliminary estimate of the future location of sources of aeolian dust.

  11. Analysis of FMR1 (CGG)n alleles and FRAXA microsatellite haplotypes in the population of Greenland: implications for the population of the New World from Asia.

    PubMed

    Larsen, L A; Armstrong, J S; Grønskov, K; Hjalgrim, H; Brøndum-Nielsen, K; Hasholt, L; Nørgaard-Pedersen, B; Vuust, J

    1999-01-01

    The fragile X syndrome is caused by the expansion of a polymorphic (CGG)n tract in the promoter region of the FMR1 gene. Apparently the incidence of fragile X syndrome is rare in the population of Greenland. In order to examine population-related factors involved in stability of the (CGG)n sequence, DNA samples obtained randomly from the Greenlandic population were analysed for size and AGG interspersion pattern of the FMR1 (CGG)n region and associated DXS548-FRAXAC1 haplotypes. In addition a large Greenland family with unstable transmission in the premutation range was analysed. The (CGG)n allele sizes in the Greenland population showed a narrow distribution similar to that reported for Asian populations. DNA sequencing of alleles with 36 CGG repeats revealed an AGG(CGG)6 insertion previously reported exclusively in Asian populations and a high frequency of alleles with a (CGG)10AGG(CGG)9AGG(CGG)9 or (CGG)9AGG(CGG)9AGG(CGG)6AGG(CGG)9 sequence pattern was found. Thus the data confirm the Asian origin of the Greenlandic (Eskimo) population and indicates that some (CGG)n alleles have remained stable for 15-30,000 years, since the population of the New World arrived from Asia via the Bering Strait. PMID:10573009

  12. Early Proterozoic crustal provinces in the southwestern U. S. : What they represent and implications about continental reconstructions

    SciTech Connect

    Wooden, J.L.; Miller, D.M.; Howard, K. ); Dewitt, E. ); Karlstrom, K.E. . Dept. of Geology); Nutman, A. )

    1993-02-01

    The Early Proterozoic basement of the southwestern US can be divided into at least 3 major crustal provinces on the basis of Pb isotopic and geochemical signatures. These are: (1) the Mojave of SE CA, southern NV, and western AZ; (2) the Yavapai of central and northern AZ, northern NM and southern CO; and (3) the Mazatzal of southern AZ., and central and southern NM. The boundary between the Yavapai and Mazatzal provinces is close to the age province boundary proposed by Silver. Crustal provinces defined by chronologic, structural, lithologic, or metamorphic criteria usually don't distinguish regions unique in crustal formation character because these criteria often represent events that affected the crust (well) after the time of its original formation or represent non-unique information (e.g., magmatism can occur at the same time in entirely different crustal provinces). In comparison, isotopic and certain geochemical data often provide unique criteria because they are related to distinct mantle sources, specific processes, or the specific time of crustal formation. New U-Pb zircon ages determined by the SHRIMP ion microprobe indicate that the Mojave province probably has a latest Archean/earliest Proterozoic basement on which sedimentary rocks containing 2.7--2.5 Ga and 2.0--1.8 Ga detrital zircon populations were deposited. The timing of plutonic events in the Mojave and Yavapai provinces is indistinguishable from 1.76--1.70 Ga. Plutonic rocks with Yavapai isotopic and geochemical signatures intruded the eastern edge ( ) of the Mojave province as early as 1.74 Ga. This suggests that the two provinces were in close proximity from 1.76 Ga and that the older Mojave province was a buttress against which juvenile Yavapai crust formed.

  13. Daily nitrate losses: implication on long-term river quality in an intensive agricultural catchment of southwestern france.

    PubMed

    Boithias, Laurie; Srinivasan, Raghavan; Sauvage, Sabine; Macary, Francis; Sánchez-Pérez, José Miguel

    2014-01-01

    High nitrate concentrations in streams have become a widespread problem throughout Europe in recent decades, damaging surface water and groundwater quality. The European Nitrate Directive fixed a potability threshold of 50 mg L for European rivers. The performance of the Soil and Water Assessment Tool model was assessed in the 1110-km Save catchment in southwestern France for predicting water discharge and nitrate loads and concentrations at the catchment outlet, considering observed data set uncertainty. Simulated values were compared with intensive and extensive measurement data sets. Daily discharge fitted observations (Nash-Sutcliffe efficiency coefficient = 0.61, = 0.7, and PBIAS = -22%). Nitrate simulation (1998-2010) was within the observed range (PBIAS = 10-21%, considering observed data set uncertainty). Annual nitrate load at the catchment outlet was correlated to the annual water yield at the outlet ( = 0.63). Simulated annual catchment nitrate exportation ranged from 21 to 49 kg ha depending on annual hydrological conditions (average, 36 kg ha). Exportation rates ranged from 3 to 8% of nitrogen inputs. During floods, 34% of the nitrate load was exported, which represented 18% of the 1998-2010 period. Average daily nitrate concentration at the outlet was 29 mg L (1998-2010), ranging from 0 to 270 mg L. Nitrate concentration exceeded the European 50 mg L potability threshold during 244 d between 1998 and 2010. A 20% reduction of nitrogen input reduced crop yield by between 5 and 9% and reduced by 62% the days when the 50 mg L threshold was exceeded. PMID:25602539

  14. Coeval fluctuations of the Greenland Ice Sheet and a local ice cap during the Younger Dryas: implications for late-glacial climate

    NASA Astrophysics Data System (ADS)

    Levy, Laura; Kelly, Meredith; Lowell, Tom; Hall, Brenda; Howley, Jennifer; Smith, Colby

    2016-04-01

    Although the Younger Dryas (YD) has been recorded in ice cores atop the Greenland Ice Sheet, past glacier extents on Greenland dating to the YD are rare. In part, this is due to much of the Greenland Ice Sheet being located offshore until early Holocene time. The Scoresby Sund region (~71°N, 26°W) of central East Greenland, however, is one of only a few locations where the margins of the Greenland Ice Sheet and glaciers independent of the ice sheet were located at least partially on land by late-glacial time. In this region, two distinct sets of moraines, known as the inner and outer Milne Land Stade moraines, have been defined and mark a significant readvance or stillstand during deglaciation from the last glacial maximum. Previous work has dated these moraines to late-glacial and early Holocene time. We present a new 10Be chronology on fluctuations of both the Greenland Ice Sheet and the adjacent Milne Land ice cap from the type locality of the Milne Land Stade moraines in Milne Land. 10Be ages of boulders on bedrock distal to the inner Milne Land Stade moraines range from 12.3 to 11.5 ka and indicate that both ice masses retreated during the YD, likely in response to rising summer temperatures. Since Greenland ice-cores register cold mean annual temperatures throughout the YD, these ice-marginal data support climate conditions characterized by strong seasonality. The mean ages (± 1σ uncertainty) of the inner Milne Land Stade moraines date to 11.4 ± 0.8 ka (Greenland Ice Sheet) and 11.4 ± 0.6 ka (ice cap) indicating that they were formed during Preboreal time or at the end of the YD. Based on these coeval moraine ages, we suggest that both ice masses responded to climate conditions acting on the ice margins, specifically ablation. Moreover, our data show that the ice sheet responded sensitively (i.e., on the same time scale as a small ice cap) to late-glacial and early Holocene climate conditions.

  15. The structure and evolution of Baffin Bay and its implication on the development of the continental margins of northwest Greenland, the Nares Strait, and Baffin Island, Canada

    NASA Astrophysics Data System (ADS)

    Oakey, G.; Roest, W. R.; Lundin, E.; Damaske, D.

    2003-12-01

    Baffin Bay, located between northern Greenland and North America, is an ocean basin with a poorly understood seafloor spreading history. Magnetic anomalies identified in the North Atlantic, Norwegian-Greenland Sea and Labrador Sea have defined the independent motion of the Greenland Plate during the Cretaceous and Tertiary. However, defining the age and geometry of the crustal rocks of Baffin Bay remains key to understanding the plate tectonic history of the North Atlantic and Arctic Ocean. Satellite derived gravity data over Baffin Bay have revealed an axial low with large offsets that has been interpreted as an extinct spreading ridge and transform fault system, and this geometry has been used to improve the rotation pole for Greenland relative to North America. Based on the timing of a change in the direction of plate motions in the Labrador Sea, the latest phase of the spreading system in Baffin Bay is assumed to have been active between chron 24R (55Ma) and 13N (35Ma). Since no recent magnetic data exist in the Baffin Bay area, and older surveys suffer from the extremely large diurnal effects, observed in the auroral zone, the independent dating of the rift system remains enigmatic. However, Jackson et al. (Can. J. Earth Sci., 1979) report a magnetic survey corrected with independent diurnal observations from a moored magnetometer. A re-evaluation of this data, in context with the identified spreading system, reveals the existence of linear magnetic anomalies consistent with patterns of seafloor spreading, proving an oceanic character of the basin. The identified anomalies are tentatively interpreted as magnetic chrons 25N and 26N, and provide the first definitive ages of the plate geometry within Baffin Bay. Modern aeromagnetic data collected in the Nares Strait region in 2001 and 2003, in collaboration between the German Federal Institute of for Geosciences and Natural Resources (BGR) and the Geological Survey of Canada (GSC) have revealed new insights into

  16. Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus.

    PubMed

    Grímsson, Friðgeir; Zetter, Reinhard; Halbritter, Heidemarie; Grimm, Guido W

    2014-01-01

    The fossil record of Aponogeton (Aponogetonaceae) is scarce and the few reported macrofossil findings are in need of taxonomic revision. Aponogeton pollen is highly diagnostic and when studied with light microscopy (LM) and scanning electron microscopy (SEM) it cannot be confused with any other pollen types. The fossil Aponogeton pollen described here represent the first reliable Cretaceous and Eocene records of this genus worldwide. Today, Aponogeton is confined to the tropics and subtropics of the Old World, but the new fossil records show that during the late Cretaceous and early Cenozoic it was thriving in North America and Greenland. The late Cretaceous pollen record provides important data for future phylogenetic and phylogeographic studies focusing on basal monocots, especially the Alismatales. The Eocene pollen morphotypes from North America and Greenland differ in morphology from each other and also from the older Late Cretaceous North American pollen morphotype, indicating evolutionary trends and diversification within the genus over that time period. The presence of Aponogeton in the fossil record of North America and Greenland calls for a reconsideration of all previous ideas about the biogeographic history of the family. PMID:24926107

  17. Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus☆

    PubMed Central

    Grímsson, Friðgeir; Zetter, Reinhard; Halbritter, Heidemarie; Grimm, Guido W.

    2014-01-01

    The fossil record of Aponogeton (Aponogetonaceae) is scarce and the few reported macrofossil findings are in need of taxonomic revision. Aponogeton pollen is highly diagnostic and when studied with light microscopy (LM) and scanning electron microscopy (SEM) it cannot be confused with any other pollen types. The fossil Aponogeton pollen described here represent the first reliable Cretaceous and Eocene records of this genus worldwide. Today, Aponogeton is confined to the tropics and subtropics of the Old World, but the new fossil records show that during the late Cretaceous and early Cenozoic it was thriving in North America and Greenland. The late Cretaceous pollen record provides important data for future phylogenetic and phylogeographic studies focusing on basal monocots, especially the Alismatales. The Eocene pollen morphotypes from North America and Greenland differ in morphology from each other and also from the older Late Cretaceous North American pollen morphotype, indicating evolutionary trends and diversification within the genus over that time period. The presence of Aponogeton in the fossil record of North America and Greenland calls for a reconsideration of all previous ideas about the biogeographic history of the family. PMID:24926107

  18. Recent changes in North West Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past temperature reconstructions

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Steen-Larsen, H. C.

    2014-12-01

    Stack records of accumulation, d18O and deuterium excess were produced from up to 4 shallow ice cores at NEEM (North-West Greenland), spanning 1724-2007 and updated to 2011 using pit water stable isotope data. Signal-to-noise ratio is high for d18O (1.3) and accumulation (1.2) but is low for deuterium excess (0.4). No long-term trend is observed in the accumulation record. By contrast, NEEM d18O shows multi-decadal increasing trends in the late 19th century and since the 1980s. Decadal d18O and accumulation variability is in phase with Atlantic Multi-decadal Oscillation indices, and enhanced at the beginning of the 19th century. Large-scale spatial coherency is detected between NEEM and other Greenland ice core and temperature records, strongest for North-West Greenland d18O and summer South-West coastal temperature instrumental records. The strength of correlations with the North Atlantic Oscillation is smaller than in central or south Greenland. The strongest positive d18O values are recorded at NEEM in 2010, followed by 1928, while maximum accumulation occurs in 1933. The coldest/driest decades are depicted at NEEM in 1815-1825 and 1836-1836. The spatial structure of these warm/ wet years and cold/dry decades is investigated using all available Greenland ice cores. During the period 1958-2011, the NEEM accumulation and d18O records are highly correlated with simulated precipitation, temperature and d18O from simulations performed with MAR, LMDZiso and ECHAM5iso atmospheric models, nudged to atmospheric reanalyses. Model-data agreement is better using ERA reanalyses than NCEP/NCAR and 20CR ones. Model performance is poor for deuterium excess. Gridded temperature reconstructions, instrumental data and model outputs at NEEM are used to estimate the d18O-temperature relationship for the strong warming period in 1979-2007. The estimated slope of this relationship is 1.1±0.2‰ per °C, about twice larger than previously used to estimate last interglacial temperature

  19. Earthquake swarms in Greenland

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Voss, Peter H.; Dahl-Jensen, Trine

    2014-05-01

    Earthquake swarms occur primarily near active volcanoes and in areas with frequent tectonic activity. However, intraplate earthquake swarms are not an unknown phenomenon. They are located near zones of weakness, e.g. in regions with geological contrasts, where dynamic processes are active. An earthquake swarm is defined as a period of increased seismicity, in the form of a cluster of earthquakes of similar magnitude, occurring in the same general area, during a limited time period. There is no obvious main shock among the earthquakes in a swarm. Earthquake swarms occur in Greenland, which is a tectonically stable, intraplate environment. The first earthquake swarms in Greenland were detected more than 30 years ago in Northern and North-Eastern Greenland. However, detection of these low-magnitude events is challenging due to the enormous distances and the relatively sparse network of seismographs. The seismograph coverage of Greenland has vastly improved since the international GLISN-project was initiated in 2008. Greenland is currently coved by an open network of 19 BB seismographs, most of them transmitting data in real-time. Additionally, earthquake activity in Greenland is monitored by seismographs in Canada, Iceland, on Jan Mayen, and on Svalbard. The time-series of data from the GLISN network is still short, with the latest station been added in NW Greenland in 2013. However, the network has already proven useful in detecting several earthquake swarms. In this study we will focus on two swarms: one occurring near/on the East Greenland coast in 2008, and another swarm occurring in the Disko-area near the west coast of Greenland in 2010. Both swarms consist of earthquakes with local magnitudes between 1.9 and 3.2. The areas, where the swarms are located, are regularly active with small earthquakes. The earthquake swarms are analyzed in the context of the general seismicity and the possible relationship to the local geological conditions.

  20. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas

    NASA Astrophysics Data System (ADS)

    Keays, Reid R.; Lightfoot, Peter C.

    2007-04-01

    Sixty-five million year old continental flood basalts crop out on Qeqertarssuaq Island and the Nuussuaq Peninsula in West Greenland, and they include ˜1,000 m of picritic lavas and discrete 10- to 50-m-thick members of highly contaminated basalts. On Qeqertarssuaq, the lavas are allocated to the Vaîgat and Maligât Formations of which the former includes the Naujánguit member, which consists of picrites with 7-29 wt% MgO, 80-1,400 ppm Ni, 5.7-9.4 ppb Pt and 4.2-12.9 ppb Pd. The Naujánguit member contains two horizons of contaminated basalts, the Asûk and Kûgánguaq, which have elevated SiO2 (52-58 wt%) and low to moderate MgO (7.5-12.8 wt%). These lavas are broadly characterized by low Cu and Ni abundances (average, 40 ppm Ni and 45 ppm Cu) and very low Pt (0.16-0.63 ppb) and Pd (0.13-0.68 ppb) abundances, and in the case of the Asûk, they contain shale xenoliths and droplets of native iron and troilite. The contaminated basalts from Nuussuaq, the B0 to B4 members, are also usually Ni-, Cu-, and platinum-group elements (PGE)-depleted. The geochemical signatures (especially the ratios of incompatible trace elements such as Th/Nb) of all of the contaminated basalts from Qeqertarssuaq and some of those from Nuussuaq record what appears to be a chemical contribution from deltaic shales that lie immediately below the lavas. This suggests that the contamination of the magmas occurred during the migration of the magmas through plumbing systems developed in sedimentary rocks, and hence, at a high crustal level. Nickel, Cu, and PGE depletion together with geochemical signatures produced by crustal contamination are also a feature of Siberian Trap basalts from the Noril’sk region. These basalts belong to the 0- to 500-m thick, ˜5,000- to 10,000-km3 Nadezhdinsky Formation, which is centered in the Noril’sk Region. A major difference between Siberia and West Greenland is that PGE depletion in the Nadezhdinsky Formation samples with the lowest Cu and Ni contents is

  1. Greenland Ice Flow

    NASA Video Gallery

    Greenland looks like a big pile of snow seen from space using a regular camera. But satellite radar interferometry helps us detect the motion of ice beneath the snow. Ice starts flowing from the fl...

  2. Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening

    NASA Astrophysics Data System (ADS)

    Hopper, John R.; Dahl-Jensen, Trine; Holbrook, W. Steven; Larsen, Hans Christian; Lizarralde, Dan; Korenaga, Jun; Kent, Graham M.; Kelemen, Peter B.

    2003-05-01

    Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near-to-average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ˜600 km south of the Greenland-Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent-ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8-10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ˜2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.

  3. Supraglacial Streams on the Greenland Ice Sheet Delineated from Combined Spectral-Shape Information in High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Yang, K.; Smith, L. C.

    2012-12-01

    Supraglacial meltwater streams and lakes that form each summer across large expanses of the Greenland Ice Sheet (GrIS) ablation zone have global implications for sea level rise yet remain one of the least-studied hydrologic systems on Earth. Remote sensing of supraglacial streams is challenging owing to their narrow width (~1 - 30 m), and proximity to other features having similar visible/NIR reflectance (lakes and slush) or shape (dry stream channels, crevasses, and fractures). This presentation presents a new, automated "spectral-shape" procedure for delineating actively flowing streams in high-resolution satellite imagery, utilizing both spectral and pattern information. First, a modified Normalized Difference Water Index adapted for ice (NDWIice) enhances the spectral contrast between open water and drier snow/ice surfaces. Next, three NDWIice thresholds are used to mask deep-water lakes and discern open water from slush, in concert with a multi-points fast marching method to rejoin resulting stream fragments. Comparison of this procedure with manual digitization for six WorldView-2 images in southwestern Greenland demonstrates its value for detecting actively flowing supraglacial streams, especially in slushy areas where classification performance improves dramatically versus simple threshold methods. While a simple threshold approach is satisfactory for areas known to be slush-free, the procedure outlined here enables comprehensive stream mapping across the GrIS ablation zone, regardless of slush conditions and/or the presence of similarly shaped glaciological features.

  4. Linking petrology and seismology of the southwest Greenland lithosphere

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Vestergaard, C.; Brown, E.; Schutt, D.

    2015-12-01

    Mantle xenoliths from late-Proterozoic diamond-bearing kimberlitic dikes in the Kangerlussuaq, Sarfartoq and Maniitsoq areas of southwestern Greenland provide constraints on the composition and thermal state of lithospheric mantle beneath Greenland to depths of ~200 km [1]. Similarly, surface wave tomography studies carried out as part of the GLATIS project use a range of Rayleigh wave periods sensitive to structures at a similar depth interval within southwestern Greenland lithospheric mantle [2]. Here we link petrologic and seismologic constraints on the mantle lithosphere beneath Greenland utilizing methods of [3] that show that inferred chemical and mineralogical stratification inferred from petrology, showing mantle peridotite transitioning from garnet-free harzburgite to garnet lherzolite between ~70 and 180 km, cannot readily be resolved with fundamental mode Rayleigh waves. On the other hand, comparing phase velocities predicted from xenolith compositions, mineralogy and last equilibration temperatures and pressures, defining the continental geotherm during late-Proterozoic time, with those for the present-day mantle lithosphere suggest significant cooling of the cratonic mantle to a modern geotherm characterized by a heat flux of 30 mW/m2 and average crustal heat production of 0.3 mW/m3 [4]. These preliminary findings point to the weak dependence of shear wave velocities on mantle peridotite composition and mineralogy, and further illustrate its strong temperature dependence. Comparison of ancient and modern continental geotherms made possible by combining petrologic and seismological data, as shown here for southwest Greenland, provide additional constraints on secular cooling of cratonic regions linked to large-scale tectonic processes. [1] Bizzarro et al., 2003, CMP, 146; Sand et al., Lithos, 112. [2] Darbyshire et al., 2004, GJI, 158. [3] Schutt and Lesher, 2006, JGR, 111. [4] Meirerbachtol et al., 2015, JGR/ES, 120.

  5. Large-scale gravity anomaly in northern Norway: tectonic implications of shallow or deep source depth and a possible conjugate in northeast Greenland

    NASA Astrophysics Data System (ADS)

    Gradmann, Sofie; Ebbing, Jörg

    2015-12-01

    A prominent gravity and geoid low lies just south of the Lofoten peninsula in northern Norway, partly coinciding with the location of Proterozoic granites of the Transscandinavian Igneous Belt and being offset by ca. 100 km to the highest topography of northern Norway. The study area extends both onshore and offshore and lies at the transition between Archaean and Proterozoic lithosphere. The Palaeoproterozoic basement has been overthrusted by the Palaeozoic nappes of the Caledonian orogen and now forms the passive margin of the NE Atlantic. We investigate the gravity anomaly performing combined 3-D geophysical-petrological forward modelling of the lithosphere and sublithospheric upper mantle using the interactive modelling program LitMod3D. We include variations in thickness and composition of the lithospheric mantle in order to include the effects on the rifted margin adjoining the Baltic craton. We compare three possible origins of the anomaly: (i) a low-density upper crust, representing the northward extension of the Transscandinavian Igneous Belt, (ii) a lower crustal source formed by a Moho depression and (iii) a thick, depleted lithospheric mantle of possibly Archaean origin. A similar, yet wider and stronger gravity anomaly is found on the conjugate margin in northeastern Greenland. A shallow crustal source is most consistent with the geophysical data sets. A respective source of the granitic belt, however, is difficult to reconcile with the regional geology both in Fennoscandia and Greenland. An additional contribution form a deeper source is suggested.

  6. Flying Low over Southeast Greenland

    NASA Video Gallery

    Few of us ever get to see Greenland's glaciers from 500 meters above the ice. But in this video — recorded on April 9,2013 in southeast Greenland using a cockpit camera installed and operated by ...

  7. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  8. A re-evaluation of the Pleistocene deposits of ODP Site 987 - implications for the behavior of the Scoresby Sund sector of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Forwick, Matthias; Husum, Katrine

    2013-04-01

    In order to understand past and current dynamics of the Greenland Ice Sheet, it is essential to obtain detailed reconstructions of the natural fluctuations of the ice sheet on longer time scales. This study aims to improve our knowledge of the Greenland Ice Sheet dynamics in the Scoresby Sund sector during the Pleistocene, hence we have re-visited Unit I of Holes 987D and E of Ocean Drilling Program Leg 162 (Shipboard Scientific Party, 1996). Unit I comprises three main lithological facies: (i) mud with color banding characterized by horizontal - semi-horizontal boundaries and scattered clasts inferred to be glacimarine and marine deposits; (ii) mud with sharp color changes, irregular boundaries, clay clasts/lenses, scattered clasts and no color banding, indicating reworking of facies (i), i.e. muddy debris flow deposits; and (iii) sand lamina/layers mostly comprising fine sand, sharp upper and lower boundaries interpreted to be turbidites. These facies have also been identified by the Shipboard Scientific Party (1996) but no detailed follow-up studies of their distribution have been undertaken to our knowledge. The results of this study show that facies (i) dominate the succession deposited between ~2.14 - 0.99 Ma. The interval shows only few signs of reworking. Generally thin sandy turbidites are rare, but they are occasionally more abundant in a few tens of cm thick intervals. The abundance of sandy turbidites increases markedly about 0.99 Ma. Throughout most of the overlying interval they are associated with muddy debris-flow deposits representing facies (ii) and, thus, this part of Hole 987D is inferred to be dominated by reworked deposits. We attribute the pronounced change at ~0.99 Ma to higher sediment input from the upper slope related to the repeated presence of the grounded ice at the shelf break. This could indicate that the Greenland Ice Sheet in the Scoresby Sund area reached the shelf break more frequently during the past 1 Ma as compared to the ~2

  9. Diabetes mellitus in Greenland.

    PubMed

    Pedersen, Michael Lynge

    2012-02-01

    Fifty years ago type 2 diabetes mellitus was very rare in Greenland. Recent epidemiological studies have found a high prevalence of diabetes among Greenlanders comparable to levels among Inuit populations in Canada and Alaska. In 2008 a national diabetes programme was implemented aiming to improve the care for patients with type 2 diabetes mellitus in Greenland based on a donation from Novo Nordisk A/S to the national health care service. A diabetes concept based on national guidelines, systematized recording in an electronically medical record and feedback to the clinics were used to improve the diabetes care. The overall aim of this thesis was to evaluate if implementation of a diabetes programme in Greenland would have a measurable effect on the quality in diabetes care including diagnostic activity and screening for diabetic complications. Two observational and cross sectional studies were performed in Greenland 2008 and 2010 before and after implementation of the diabetes programme. The medical records of patients with diabetes were reviewed. The prevalence was estimated using the whole adult population in Greenland as background population. The quality of the diabetes care was monitored by 12 health care indicators. The prevalence of diagnosed cases with type 2 diabetes mellitus among Greenlanders has increased over a period of two years. In the same period a significant increase in the quality of care in diabetes in Greenland has been documented concerning all process-of-care indicators. Significantly regional variation in the diabetes care was demonstrated in 2008. The quality in the diabetes care was best in clinics with a database. In 2010 a more homogenate quality among the clinics in the diabetes care was demonstrated. These effects could be a result of the diabetes programme implanted in between the two observations. In conclusion, improved quality in the diabetes care along with an increasing prevalence of diagnosed type 2 diabetes mellitus has been

  10. Episodic speleothem deposition in Ireland during the late Quaternary; implications for Greenland ice core chronology and British-Irish Ice Sheet dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Frank; Fankhauser, Adelheid

    2016-04-01

    In shallow caves, episodes of speleothem deposition during the late Quaternary, constrained by U-series dates, provide unequivocal evidence for periods of climate amelioration (presence of liquid water, elevated soil pCO2). U-series data for speleothems from several cave systems in Ireland (Crag, Ballynamintra and Marble Arch) provide clear evidence for episodic speleothem deposition, ranging in age from Marine Isotope Stage (MIS) 7 to the Last Glacial Termination. Speleothem deposition and non-depositional phases within these caves are particularly sensitive to regional-scale climatic conditions, reflecting Ireland's mid-latitudinal, Atlantic margin location. Currently, the earliest dated speleothems from the region are sparsely preserved and thin MIS 7 and MIS 5 flowstones from Ballynamintra and Crag caves respectively. Relatively short-lived depositional phases also occurred at Crag cave during MIS4 and MIS3 and are coeval with the Greenland Interstadials (GI), supporting the recently modified GICC05 Greenland ice core chronology (Buizert et al., 2015), and new providing evidence for synchronous or nearly-synchronous climate amelioration in the N. hemisphere mid- and high-latitudes during the GI events. On the other hand, there is strong evidence that conditions at Crag cave site during stadials and the Heinrich stadials were not conducive to speleothem deposition. Episodes of non-deposition occur synchronously in several speleothems from Crag cave, providing independent constraints on the timing of Heinrich stadials HS-6 to HS-2. The new data also provide independent new insights into the behaviour of the British Irish Ice Sheet (BIIS) during MIS2. In this regard, the presence of a short depositional pulse at 23.35 ± 0.1 ka at Crag cave coincides precisely with the weak and short-lived GI2.2 event within MIS 2, suggesting a dynamic BIIS margin. Simple conductive thermal models for the propagation of surface air temperatures through the limestone karst

  11. Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores

    NASA Astrophysics Data System (ADS)

    Hastings, Meredith G.; Steig, E. J.; Sigman, D. M.

    2004-10-01

    Nitrogen and oxygen isotopes of NO3- have been measured in snow and firn from Summit, Greenland. The 15N/14N and 18O/16O ratios of NO3- in recently fallen snow are similar to those of surface snow. Diurnal variation is observed in 15N/14N of NO3-, and possibly 18O/16O, suggesting fractionating loss of NO3- from snow during the day, which is subsequently recovered at night. A larger seasonal variation is observed, with higher 15N/14N and lower 18O/16O of NO3- in summer than winter, which cannot be explained by postdepositional fractionation. The generally high 18O/16O of NO3- in Greenland snow (δ18O versus VSMOW = 65.2 to 79.6‰) indicates that oxygen atoms from ozone have been incorporated into NOx that was subsequently deposited as HNO3. The lower mean δ18O of NO3- in summer snow relative to winter (68.9‰ in summer 2000 and 70.5‰ in summer 2001 versus 77.5‰ in winter 2000-01) is a result of summertime HNO3 production via NO2 reaction with hydroxyl radical (OH), which dilutes the high δ18O imparted on NO2 from ozone. The higher mean 15N/14N of NO3- observed in snow from spring (δ15N versus air N2 = +5.9‰ in 2000 and -1.4‰ in 2001) and summer (+0.1‰ in 2000 and -0.8‰ in 2001) than fall (-9.2‰ in 2000) and winter (-10.0‰ in 2000-01) is more difficult to explain with seasonal photochemistry, given current knowledge. The seasonal 15N/14N change may reflect NOx sources, with a greater fall and wintertime contribution from fossil fuel emissions relative to other inputs of NOx (i.e., biogenic soil emissions, biomass burning, and lightning).

  12. Average sedimentary rock rare Earth element patterns and crustal evolution: Some observations and implications from the 3800 Ma ISUA supracrustal belt, West Greenland

    NASA Technical Reports Server (NTRS)

    Dymek, R. F.; Boak, J. L.; Gromet, L. P.

    1983-01-01

    Rare earth element (REE) data is given on a set of clastic metasediments from the 3800 Ma Isua Supracrustal belt, West Greenland. Each of two units from the same sedimentary sequence has a distinctive REE pattern, but the average of these rocks bears a very strong resemblance to the REE pattern for the North American Shale Composite (NASC), and departs considerably from previous estimates of REE patterns in Archaean sediments. The possibility that the source area for the Isua sediments resembled that of the NASC is regarded as highly unlikely. However, REE patterns like that in the NASC may be produced by sedimentary recycling of material yielding patterns such as are found at Isua. The results lead to the following tentative conclusions: (1) The REE patterns for Isua Seq. B MBG indicate the existence of crustal materials with fractionated REE and negative Eu anomalies at 3800 Ma, (2) The average Seq. B REE pattern resembles that of the North American Shale Composite (NASC), (3) If the Seq. B average is truly representative of its crustal sources, then this early crust could have been extensively differentiated. In this regard, a proper understanding of the NASC pattern, and its relationship to post-Archaean crustal REE reservoirs, is essential, (4) The Isua results may represent a local effect.

  13. U-Pb geochronology of the Kap Washington Volcanic Province, North Greenland: Constraints on the timing of continental rifting and implications for the development of the Arctic Basin

    NASA Astrophysics Data System (ADS)

    Thorarinsson, S. B.; Holm, P. M.; Tappe, S.; Heaman, L.; Tegner, C.

    2009-12-01

    The Kap Washington volcanic sequence at the north coast of Greenland is bimodal with alkaline basalts, trachytic to rhyolitic lavas, tuffs and ignimbrites predominating. In terms of geochemistry and distribution of rock types, the sequence bears resemblance to presently active continental rift systems, e.g. the Main Ethiopian Rift. Associated with the volcanics is a swarm of coast-normal alkaline basaltic dykes which intensifies towards the outer coast. The volcanics are believed to be linked to rifting in the Arctic Basin and have featured prominently in geotectonic reconstructions of the Arctic region (e.g. Batten et al. 1981). Here we report the first U-Pb zircon ages from silicic lavas and intrusions of the Kap Washington sequence. A total of ten samples have been dated and the duration of magmatism is constrained at present to ca. 10 million years - from 71 to 61 Ma (based on 206Pb/238U ages of concordant analyses). Three age ‘groups’ have been identified: 71-69 Ma (n = 6); 68-65 Ma (n = 2); and 64-61 Ma (n = 2). The oldest group comprises trachytic and rhyolitic lava flows from Kap Kane and a rhyolitic sill from the Kap Washington peninsula. These ages agree well with new 40Ar/39Ar ages obtained on amphiboles from benmoreitic tuffs exposed on Kap Kane (Holm et al., this session) and suggest that most of the ~1.5 km thick Kap Kane sequence was extruded within a period of 1-2 million years. The two younger groups comprise silicic lavas exposed on Lockwood Island. The exposed sequence on Lockwood Island is estimated to be 3-4 km thick and was previously thought to be the oldest part of the succession (Brown et al. 1987). The large scatter in ages on Lockwood Island indicates that magmatism was episodic rather than continuous. The new age data from the Kap Washington volcanics together with 40Ar/39Ar ages for the associated dyke swarm (Kontak et al. 2001) suggest that continental extension and magmatism occurred in the area between ca. 82 and 61 Ma. This age

  14. Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Steen-Larsen, H. C.; Ortega, P.; Swingedouw, D.; Popp, T.; Vinther, B. M.; Oerter, H.; Sveinbjornsdottir, A. E.; Gudlaugsdottir, H.; Box, J. E.; Falourd, S.; Fettweis, X.; Gallée, H.; Garnier, E.; Gkinis, V.; Jouzel, J.; Landais, A.; Minster, B.; Paradis, N.; Orsi, A.; Risi, C.; Werner, M.; White, J. W. C.

    2015-08-01

    Combined records of snow accumulation rate, δ18O and deuterium excess were produced from several shallow ice cores and snow pits at NEEM (North Greenland Eemian Ice Drilling), covering the period from 1724 to 2007. They are used to investigate recent climate variability and characterise the isotope-temperature relationship. We find that NEEM records are only weakly affected by inter-annual changes in the North Atlantic Oscillation. Decadal δ18O and accumulation variability is related to North Atlantic sea surface temperature and is enhanced at the beginning of the 19th century. No long-term trend is observed in the accumulation record. By contrast, NEEM δ18O shows multidecadal increasing trends in the late 19th century and since the 1980s. The strongest annual positive δ18O values are recorded at NEEM in 1928 and 2010, while maximum accumulation occurs in 1933. The last decade is the most enriched in δ18O (warmest), while the 11-year periods with the strongest depletion (coldest) are depicted at NEEM in 1815-1825 and 1836-1846, which are also the driest 11-year periods. The NEEM accumulation and δ18O records are strongly correlated with outputs from atmospheric models, nudged to atmospheric reanalyses. Best performance is observed for ERA reanalyses. Gridded temperature reconstructions, instrumental data and model outputs at NEEM are used to estimate the multidecadal accumulation-temperature and δ18O-temperature relationships for the strong warming period in 1979-2007. The accumulation sensitivity to temperature is estimated at 11 ± 2 % °C-1 and the δ18O-temperature slope at 1.1 ± 0.2 ‰ °C-1, about twice as large as previously used to estimate last interglacial temperature change from the bottom part of the NEEM deep ice core.

  15. Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past temperature reconstructions

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Steen-Larsen, H. C.; Ortega, P.; Swingedouw, D.; Popp, T.; Vinther, B. M.; Oerter, H.; Sveinbjornsdottir, A. E.; Gudlaugsdottir, H.; Box, J. E.; Falourd, S.; Fettweis, X.; Gallée, H.; Garnier, E.; Jouzel, J.; Landais, A.; Minster, B.; Paradis, N.; Orsi, A.; Risi, C.; Werner, M.; White, J. W. C.

    2015-01-01

    Combined records of snow accumulation rate, δ18O and deuterium excess were produced from several shallow ice cores and snow pits at NEEM (north-west Greenland), covering the period from 1724 to 2007. They are used to investigate recent climate variability and characterize the isotope-temperature relationship. We find that NEEM records are only weakly affected by inter-annual changes in the North Atlantic Oscillation. Decadal δ18O and accumulation variability is related to North Atlantic SST, and enhanced at the beginning of the 19th century. No long-term trend is observed in the accumulation record. By contrast, NEEM δ18O shows multi-decadal increasing trends in the late 19th century and since the 1980s. The strongest annual positive δ18O anomaly values are recorded at NEEM in 1928 and 2010, while maximum accumulation occurs in 1933. The last decade is the most enriched in δ18O (warmest), while the 11-year periods with the strongest depletion (coldest) are depicted at NEEM in 1815-1825 and 1836-1846, which are also the driest 11-year periods. The NEEM accumulation and δ18O records are strongly correlated with outputs from atmospheric models, nudged to atmospheric reanalyses. Best performance is observed for ERA reanalyses. Gridded temperature reconstructions, instrumental data and model outputs at NEEM are used to estimate the multi-decadal accumulation-temperature and δ18O-temperature relationships for the strong warming period in 1979-2007. The accumulation sensitivity to temperature is estimated at 11 ± 2% °C-1 and the δ18O-temperature slope at 1.1 ± 0.2‰ °C-1, about twice larger than previously used to estimate last interglacial temperature change from the bottom part of the NEEM deep ice core.

  16. Mesoproterozoic rapakivi granites of the Rondonia Tin Province, southwestern border of the Amazonian craton, Brazil-I. Reconnaissance U-Pb geochronology and regional implications

    USGS Publications Warehouse

    Bettencourt, Jorge S.; Tosdal, R.M.; Leite, W.B., Jr.; Payolla, B.L.

    1999-01-01

    Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite (U-Pb age 1406 Ma); Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga

  17. Isotopic, geochemical, and temporal characterization of Proterozoic basement rocks in the Quitovac region, northwestern Sonora, Mexico: Implications for the reconstruction of the southwestern margin of Laurentia

    USGS Publications Warehouse

    Iriondo, A.; Premo, W.R.; Martinez-Torres, L. M.; Budahn, J.R.; Atkinson, W.W., Jr.; Siems, D.F.; Guaras-Gonzalez, B.

    2004-01-01

    A detailed geochemical characterization of 19 representative Proterozoic basement rocks in the Quitovac region in northwestern Sonora, Mexico, has identified two distinct Paleoproterozoic basement blocks that coincide spatially with the previously proposed Caborca and "North America" blocks. New U-Pb zircon geochronology revises their age ranges, the Caborca (1.78-1.69 Ga) and "North America" (1.71-1.66 Ga) blocks at Quitovac, and precludes a simple age differentiation between them. In addition, Grenvillian-age granitoids (ca. 1.1 Ga), spatially associated with the Caborca block have been identified at Quitovac. Nd isotopes and major- and trace-element geochemistry support the distinction of these Paleoproterozoic blocks. Granitoids of the "North America" block are characterized by depleted ??Nd values (3.4-3.9) and younger Nd model ages (1800-1740 Ma) and have lower K2O, Y, Rb, Ba, Th, REE, and Fe/Mg values than coeval rocks of the Caborca block. The Caborca block granitoids are likewise characterized by slightly less depleted ??Nd (0.6-2.6) and older Nd model ages (2070-1880 Ma). Despite the subtle differences, granitoids from both the Caborca and "North America" blocks exhibit island arc-like affinities. We propose that the Proterozoic basement rocks from the Quitovac region are an extension of the Proterozoic crustal provinces in the southwestern United States. Specifically, rocks of the Caborca block exhibit an affinity to rocks of either the Yavapai province or the Mojave-Yavapai transition zone, whereas rocks of the "North America" block have signatures similar to those of the Mazatzal province or possibly the Yavapai province of Arizona. The new isotopic ages and geochemical data do not support the existence of the Late Jurassic Mojave-Sonora megashear at Quitovac, as originally proposed. However, the Quitovac region accounts only for a small fraction of the Proterozoic basement in Sonora, so these findings do not eliminate the possibility of a megashear

  18. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhou, Mei-Fu

    2014-01-01

    The Paleoproterozoic to Mesoproterozoic (1742-1503 Ma) Dongchuan Group in the southwestern Yangtze Block is a rift-related sedimentary sequence that was associated with the breakup of the supercontinent Columbia and is particularly important for the possible linkage between the Yangtze Block and other continents in Columbia. The Dongchuan Group consists of the Yinmin, Luoxue, Etouchang and Luzhijiang formations from the base upward. Sandstones from the Yinmin Formation are mainly arkose containing dominant K-feldspar with subordinate plagioclase and quartz. Abundant feldspar and high Qm/Q ratios (0.94-1) are indicative of plutonic sources. These sandstones have high La/Sc (3.06 to 4.32), low Sc/Th (0.74 to 1.15) and Co/Th (0.85 to 1.52) and highly evolved Nd isotopes (εNd(t) = - 6.2 to - 8.2), consistent with an old, felsic igneous source. Detrital zircons of this formation have two major age groups at 2602-2887 Ma and 2224-2392 Ma. Siltstones of the Etouchang Formation have detrital zircons with a prominent age peak at ~ 2560 Ma and several subordinate peaks at ~ 2180 Ma, ~ 2100 Ma and ~ 1900 Ma. They have high Sc/Th (1.00-7.08), Co/Th (0.13 to 6.31) and εNd(t) (- 2.1 to - 6.7), significantly different from the Yinmin Formation. The Yinmin Formation is interpreted to deposit during the initial stage of extensional rifting receiving detritus of granites and TTG mainly from uplifted shoulder. The Etouchang Formation more likely formed in a passive margin with sedimentary material largely from cratonic sources. Paleoproterozoic to Mesoproterozoic rift basins in the southwestern Yangtze Block, north Australia and northwestern Laurentia have remarkably similar provenance and tectonic setting in their lower part (1742-1596 Ma), but significantly different since the onset of the Etouchang Formation (ca. 1596 Ma). Therefore, the southwestern Yangtze Block was likely connected with the north Australia and northwestern Laurentia in Columbia and drifted away from these

  19. A new species of the genus Ocadia (Testudines: Geoemydidae) from the middle Miocene of Tanegashima Island, southwestern Japan and its paleogeographic implications.

    PubMed

    Takahashi, Akio; Ōki, Kimihiko; Ishido, Takahiro; Hirayama, Ren

    2013-01-01

    A new geoemydid turtle, Ocadia tanegashimensis (Testudines: Geoemydidae) is described on the basis of a relatively well-preserved shell from the lower middle Miocene of Tanegashima Island, Kagoshima Prefecture, southwestern Japan. This species is clearly distinguished from two congeneric species (extant O. sinensis and O. nipponica from the middle Pleistocene of eastern Japan) due to the presence of the following character states: length of the entoplastron as long as the interhyoplastral suture, the costals dovetailed with one another in outline, the third pleural overlapping only the sixth and seventh peripherals. The present study suggests that the initial intrageneric diversification of Ocadia began not later than the early Miocene in eastern Asia. PMID:26295126

  20. Scientific Collaboration Along the Trinational Frontier of Brazil-Bolivia-Peru: Implications for Regional Land-Use in the MAP Region of Southwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Brown, I.

    2002-12-01

    High-speed road systems are connecting southwestern Amazonia (~1.5 million km2) to Pacific and Atlantic ports as well as providing greater access to Brazilian, Bolivian and Peruvian urban markets. Coupled with this increased accessibility are ambitious governmental plans to expand production of timber, non-timber forest products, and beef, all of which are likely to modify human migrations in the region. The heart of southwestern Amazonia lies in the trinational frontier region of Madre de Dios Department/Peru, eastern Acre State/Brazil and Pando Department/Bolivia (MAP region: ~200,000 km2, ~500,000 inhabitants). The MAP region composes a global hot spot of terrestrial biodiversity and has become an axis of integration for the three countries. Faced with rapid change in socioeconomic trends, regional environmental scientists and professionals have promoted collaborative projects to analyze land use trends and their forcing functions and to supply these results to local and regional societies. In addition, they have begun to develop a regional scientific community that bridges different nationalities and specialties. The projects are both international - as they involve three countries - and local/regional as they involve institutions that are within a radius of 300 km of the border. In the past two years, LBA-sponsored activities have helped bring over 100 professionals together in the region in five MAP-oriented workshops. The research results are now influencing public policy and are being incorporated into the regional school systems with the objective of maximizing the benefits and minimizing the adverse impacts of the changing socio-economic trends on land-use and development in the MAP region.

  1. Geological analysis of aeromagnetic data from southwestern Alaska: implications for exploration in the area of the Pebble porphyry Cu-Au-Mo deposit

    USGS Publications Warehouse

    Anderson, Eric D.; Hitzman, Murray W.; Monecke, Thomas; Bedrosian, Paul A.; Shah, Anjana K.; Kelley, Karen D.

    2013-01-01

    Aeromagnetic data are used to better understand the geology and mineral resources near the Late Cretaceous Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The reduced-to-pole (RTP) transformation of regional-scale aeromagnetic data shows that the Pebble deposit is within a cluster of magnetic anomaly highs. Similar to Pebble, the Iliamna, Kijik, and Neacola porphyry copper occurrences are in magnetic highs that trend northeast along the crustal-scale Lake Clark fault. A high-amplitude, short- to moderate-wavelength anomaly is centered over the Kemuk occurrence, an Alaska-type ultramafic complex. Similar anomalies are found west and north of Kemuk. A moderate-amplitude, moderate-wavelength magnetic low surrounded by a moderate-amplitude, short-wavelength magnetic high is associated with the gold-bearing Shotgun intrusive complex. The RTP transformation of the district-scale aeromagnetic data acquired over Pebble permits differentiation of a variety of Jurassic to Tertiary magmatic rock suites. Jurassic-Cretaceous basalt and gabbro units and Late Cretaceous biotite pyroxenite and granodiorite rocks produce magnetic highs. Tertiary basalt units also produce magnetic highs, but appear to be volumetrically minor. Eocene monzonite units have associated magnetic lows. The RTP data do not suggest a magnetite-rich hydrothermal system at the Pebble deposit. The 10-km upward continuation transformation of the regional-scale data shows a linear northeast trend of magnetic anomaly highs. These anomalies are spatially correlated with Late Cretaceous igneous rocks and in the Pebble district are centered over the granodiorite rocks genetically related to porphyry copper systems. The spacing of these anomalies is similar to patterns shown by the numerous porphyry copper deposits in northern Chile. These anomalies are interpreted to reflect a Late Cretaceous magmatic arc that is favorable for additional discoveries of Late Cretaceous porphyry copper systems in southwestern

  2. Effect of nine years of animal waste deposition on profile distribution of heavy metals in Abeokuta, south-western Nigeria and its implication for environmental quality.

    PubMed

    Azeez, J O; Adekunle, I O; Atiku, O O; Akande, K B; Jamiu-Azeez, S O

    2009-09-01

    Uncontrolled deposition of waste from animal farms is a common practice in south-western Nigeria, and the presence of heavy metals in soil constitutes environmental and health hazards by polluting the soil, ground water, adjoining streams and rivers. The study investigated the profile distribution of Mn, Pb, Cd, Zn, Fe, Cu, Ni and Cr in some tropical Alfisols in south-western Nigeria after nine years disposal of animal wastes. The amount of these metals in the soil horizons was high enough to cause health and phytotoxic risks. All the metals except Zn and Cr increased down the profile, while Mn, Pb, Cd, Fe, Cu and Ni accumulated at 80-120 cm depth. The increment of these metals at this depth over the top soil were 26%, 143%, 72%, 47%, 328% for Mn, Pb, Cd, Cu and Ni, respectively. It thus, shows their mobility and the possibility of polluting ground water. The Mn content at the poultry and cattle waste sites increased by 127% and 25%, respectively over the control, while that of cattle and swine dump site for Cd content were 9.82 and 15.63 mg kg(-1), respectively. Lead content also increased by 8.52 and 5.25 mg kg(-1), respectively. There was the accumulation of Zn and Cu at the swine dump site while the cattle dump site had the highest amounts of nickel and chromium. The least amount of Fe was recorded at the swine waste dump site. The reduction in organic matter with depths together with the reduced pH might have favored the mobility of the metals. The ranking of pollution among the sites was poultry>swine>cattle>sheep and could be due to the type of ration fed, the vaccination programmes, sanitation programmes and other management practices. PMID:19525105

  3. Environmental Management Audit: Southwestern Power Administration (Southwestern)

    SciTech Connect

    Not Available

    1993-03-01

    This report documents the results of the Environmental Management Audit completed for the Southwestern Power Administration. During this Audit, activities and records were reviewed and personnel interviewed. The onsite portion of the Southwestern Audit was conducted from November 30 through December 11, 1992, by the US Department of Energy's Office of Environmental Audit (EH-24). EH-24 carries out independent assessments of Department of Energy (DOE) facilities and activities as part of the Assistant Secretary's Environmental Audit Program. This program is designed to evaluate the status of DOE facilities/activities regarding compliance with laws, regulations, DOE Orders, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Environmental Management Audit stresses DOE's policy that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The Environmental Management Audit focuses on management systems and programs, whereas the Environmental Baseline Audit conducted in March 1991 focused on specific compliance issues. The scope of the Southwestern Environmental Management Audit included a review of all systems and functions necessary for effective environmental management. Specific areas of review included: Organizational Structure; Environmental Commitment; Environmental Protection Programs; Formality of Environmental Programs; Internal and External Communication; Staff Resources, Training, and Development; and Program Evaluation, Reporting, and Corrective Action.

  4. Environmental Management Audit: Southwestern Power Administration (Southwestern)

    SciTech Connect

    Not Available

    1993-03-01

    This report documents the results of the Environmental Management Audit completed for the Southwestern Power Administration. During this Audit, activities and records were reviewed and personnel interviewed. The onsite portion of the Southwestern Audit was conducted from November 30 through December 11, 1992, by the US Department of Energy`s Office of Environmental Audit (EH-24). EH-24 carries out independent assessments of Department of Energy (DOE) facilities and activities as part of the Assistant Secretary`s Environmental Audit Program. This program is designed to evaluate the status of DOE facilities/activities regarding compliance with laws, regulations, DOE Orders, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Environmental Management Audit stresses DOE`s policy that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The Environmental Management Audit focuses on management systems and programs, whereas the Environmental Baseline Audit conducted in March 1991 focused on specific compliance issues. The scope of the Southwestern Environmental Management Audit included a review of all systems and functions necessary for effective environmental management. Specific areas of review included: Organizational Structure; Environmental Commitment; Environmental Protection Programs; Formality of Environmental Programs; Internal and External Communication; Staff Resources, Training, and Development; and Program Evaluation, Reporting, and Corrective Action.

  5. Atuarfitsialak: Greenland's Cultural Compatible Reform

    ERIC Educational Resources Information Center

    Wyatt, Tasha R.

    2012-01-01

    In 2002, Greenlandic reform leaders launched a comprehensive, nation-wide reform to create culturally compatible education. Greenland's reform work spans the entire educational system and includes preschool through higher education. To assist their efforts, reform leaders adopted the Standards for Effective Pedagogy developed at the Center for…

  6. The East Greenland Current studied with CFCs and released sulphur hexafluoride

    NASA Astrophysics Data System (ADS)

    Olsson, K. Anders; Jeansson, Emil; Tanhua, Toste; Gascard, Jean-Claude

    2005-03-01

    The distribution and evolution of water masses along the East Greenland Current (EGC) from south of the Fram Strait to the Denmark Strait were investigated using chlorofluorocarbons (CFCs) and the released tracer sulphur hexafluoride (SF 6) together with hydrographic data. Water masses contributing to the Denmark Strait overflow, and to some extent also contributions to the Iceland-Scotland overflow, are discussed from observations in 1999. Special emphasis is put on the advection and mixing of Greenland Sea Arctic Intermediate Water (GSAIW), which could be effectively traced thanks to the release of sulphur hexafluoride in the Greenland Sea Gyre in 1996. By means of the dispersion of the tracer, Greenland Sea Arctic Intermediate Water was followed down to the Denmark Strait Sill as well as close to the Faroe-Shetland Channel. The results indicate that this water mass can contribute to both overflows within 3 years from leaving the Greenland Sea. The transformation of Greenland Sea Arctic Intermediate Water was dominated by water from the Arctic Ocean, especially by isopycnal mixing with upper Polar Deep Water (uPDW) but, to a less extent, also by Canadian Basin Deep Water. A mixture of Greenland Sea Arctic Intermediate Water and upper Polar Deep Water was lifted 500 m on its way through southwestern Iceland Sea, to a depth shallow enough to let it reach the sill of the Denmark Strait from where it can be incorporated in the densest layer of the overflow. The observations show contributions to the Denmark Strait overflow from both the East Greenland Current and the Iceland Sea.

  7. SeaWinds - Greenland

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The frequent coverage provided by NASA's SeaWinds instrument on the QuikScat satellite provides unprecedented capability to monitor daily and seasonal changes in the key melt zones of Greenland, which is covered with a thick ice sheet that resulted from snow accumulating over tens of thousands of years. The thickness of the snow layers reveals details about the past global climate, and comparing snow accumulation and snow melting can provide insight into climate change and global warming. In particular, the extent of summer melting of snow in Greenland is considered a sensitive indicator of global change.

    Earlier scatterometer data has suggested that Greenland has experienced significantly more melting in recent years. This figure compares the melting observed over 15 days during July 1999 in Greenland. The red areas around the central blue and white areas are the main melt zones and have lower radar back scatter because of water on the surface that saturates the surface snow. As the days warm up, the melt extent dramatically increases. Comparing this data with computer models and past scatterometer data will help scientists evaluate the inter-annual variability of the melting as a step toward understanding potential climate change.

    The world's large ice sheets in Greenland and Antarctica act as vast storehouses of freshwater. Summer season melting releases large quantities of freshwater into the ocean, and year-to-year variations can have a significant impact on global sea level. Furthermore, long-term changes in the patterns and extent of melting on the large ice sheets reflect the effects of climate variability; thus Greenland is considered a sensitive indicator of global warming.

    Satellite microwave radars are extremely sensitive to melting and can provide the only effective means of accurately measuring the year-round picture of the extent and variability in ice sheet melting. Daily mean images were produced from QuikScat data collected over the

  8. Greenland ice sheet melting during the last interglacial

    NASA Astrophysics Data System (ADS)

    Langebroek, Petra M.; Nisancioglu, Kerim H.

    2016-04-01

    During the last interglacial period (LIG) peak temperatures over Greenland were several degrees warmer than today. The Greenland ice sheet (GIS) retreated causing a global sea-level rise in the order of several meters. Large uncertainties still exist in the exact amount of melt and on the source location of this melt. Here we examine the GIS response to LIG temperature and precipitation patterns using the SICOPOLIS ice sheet model. The LIG climate was simulated by forcing the Norwegian Earth System Model (NorESM) with the appropriate greenhouse gases and orbital settings. The resulting LIG ice volume evolution strongly depends on the chosen value of uncertain model parameters for the ice sheet (e.g. basal sliding parameter, PDD factors, and atmospheric temperature lapse rate). We reduce the uncertainty by evaluating an ensemble of model results against present-day observations of ice sheet size, elevation and stability, together with paleo information from deep ice cores. We find a maximum GIS reduction equivalent to 0.8 to 2.2m of global sea-level rise. In this model set-up most of the melting occurs in southwestern Greenland.

  9. Mineralogy and composition of Archean Crust, Greenland: A pilot study

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Curtiss, Brian

    1989-01-01

    The Portable Instant Display and Analysis Spectrometer (PIDAS) was taken to southwestern Greenland to investigate in situ the potential application of AVIRIS to estimate the mineralogy and composition of rocks exposed in Archean terranes. The goal was to determine the feasibility of using a high spectral resolution scanner to find and study pristine rocks, those that have not been altered by subsequent deformation and metamorphism. The application of AVIRIS data to the problems in Greenland is logical. However, before a costly deployment of the U-2 aircraft to Greenland is proposed, this study was undertaken to acquire the spectral data necessary to verify that mineralogical mapping in the environmental conditions found there is possible. Although field conditions were far from favorable, all of the major objectives of the study were addressed. One of the major concerns was that lichens would obscure the rock surfaces. It was found that the spectral signature of the lichens was distinct from the underlying rocks. Thus, a spectrum of a rock outcrop, with its partial cover of lichens, can be un-mixed into rock and lichen components. The data acquired during the course of this study supports the conclusion that areas of pristine Archean crust can be differentiated from that which has experienced low grade alteration associated with Proterizoic faulting.

  10. MTA-B or not to be? Recycled bifaces and shifting hunting strategies at Le Moustier and their implication for the late Middle Palaeolithic in southwestern France.

    PubMed

    Gravina, Brad; Discamps, Emmanuel

    2015-07-01

    Explaining late Middle Palaeolithic industrial variability remains a topic of great interest for researchers focusing on aspects of Neanderthal behavioural complexity and the so-called Middle-to-Upper Paleolithic 'transition.' Several sites in southwestern France figure prominently in these discussions, including the eponymous site of Le Moustier (Dordogne, France), one of the 'key' sequences used in larger anthropological models. Here we present a re-assessment of this important site based on a technological and taphonomic re-evaluation of previously studied collections combined with an analysis of unpublished archaeological material, which includes both lithic and faunal components. Our study produces a very different interpretation of the 'classic' Le Moustier sequence, challenging previous cultural attributions in a way that significantly impacts current debates surrounding the proposed Mousterian of Acheulean Tradition (MTA)--Châtelperronian affiliation. This new interpretation highlights independent changes in lithic technology and subsistence strategies that were previously undetected as well as a novel aspect of Neanderthal raw material use. Finally, we discuss how this new vision has important ramifications for broader issues connected to the definition of late Mousterian techno-complexes, such as the MTA, and the identification of relationships between technology, subsistence, and mobility strategies. PMID:25976251

  11. Adventure Learning @ Greenland

    NASA Astrophysics Data System (ADS)

    Miller, B. G.; Cox, C. J.; Hougham, J.; Walden, V. P.; Eitel, K.; Albano, A.

    2013-12-01

    Teaching the general public and K-12 communities about scientific research has taken on greater importance as climate change increasingly impacts the world we live in. Science researchers and the educational community have a widening responsibility to produce and deliver curriculum and content that is timely, scientifically sound and engaging. To address this challenge, in the summer of 2012 the Adventure Learning @ Greenland (AL@GL) project, a United States' National Science Foundation (NSF) funded initiative, used hands-on and web-based climate science experiences for high school students to promote climate and science literacy. This presentation will report on an innovative approach to education and outreach for environmental science research known as Adventure Learning (AL). The purpose of AL@GL was to engage high school students in the US, and in Greenland, in atmospheric research that is being conducted in the Arctic to enhance climate and science literacy. Climate and science literacy was explored via three fundamental concepts: radiation, the greenhouse effect, and climate vs. weather. Over the course of the project, students in each location engaged in activities and conducted experiments through the use of scientific instrumentation. Students were taught science research principles associated with an atmospheric observatory at Summit Station, Greenland with the objective of connecting climate science in the Arctic to student's local environments. Summit Station is located on the Greenland Ice Sheet [72°N, 38°W, 3200 m] and was the primary location of interest. Approximately 35 students at multiple locations in Idaho, USA, and Greenland participated in the hybrid learning environments as part of this project. The AL@GL project engaged students in an inquiry-based curriculum with content that highlighted a cutting-edge geophysical research initiative at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at

  12. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  13. Greenland's Biggest Losers

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Hubbard, A.; Howat, I. M.; Csatho, B. M.; Decker, D. T.; Bates, R.; Tulaczyk, S. M.

    2010-12-01

    On 4 August, 2010, 275 square km of the front of the floating Petermann Glacier, far northwest Greenland, broke away. The glacier effectively retreated 15 km. Petermann has retreated 21 km since year 2000. Consulting available imagery, publications, and maps spanning the past century, we conclude that this is a retreat to a minimum extent in the observational record. This glacier is not the only ice are loser in Greenland. GRACE observations verify the concern of increased mass budget deficit. Retreat is ongoing at the 110 km wide Humboldt glacier and at the 23 km wide Zachariae ice stream. Humboldt, Zachariae, and Petermann (16 km wide) are among a handful of large marine-terminating outlets that have bedrock trenches that lead inland below sea level to the thick, interior reservoir of the ice sheet. Sleeping giants are awakening. Our area change survey of the 35 widest Greenland outlets indicates an annual marine-terminating glacier area loss rate in excess of 130 sq km per year. Here, we evaluate in this context the mechanisms for marine-terminating glacier retreat, dynamical responses to calving, and the apparent climate forcings. The work thus consults a suite of data sets, including: long-term meteorological station records; satellite-derived sea and land surface temperatures; satellite-derived sea ice extent; regional climate model output; oceanographic casts; time lapse cameras, surface elevation change, and tidal records. Cumulative area change at Greenland’s glacier top 5 “losers”. 2010 areas are measured ~1 month prior to the end of summer melt when the survey usually is made . We do not expect 2010 area changes to be much different using the future data. If anything, we expect the losses to be larger. Click here for a full resolution graphic.

  14. An mtDNA analysis in ancient Basque populations: implications for haplogroup V as a marker for a major paleolithic expansion from southwestern europe.

    PubMed Central

    Izagirre, N; de la Rúa, C

    1999-01-01

    mtDNA sequence variation was studied in 121 dental samples from four Basque prehistoric sites, by high-resolution RFLP analysis. The results of this study are corroborated by (1) parallel analysis of 92 bone samples, (2) the use of controls during extraction and amplification, and (3) typing by both positive and negative restriction of the linked sites that characterize each haplogroup. The absence of haplogroup V in the prehistoric samples analyzed conflicts with the hypothesis proposed by Torroni et al., in which haplogroup V is considered as an mtDNA marker for a major Paleolithic population expansion from southwestern Europe, occurring approximately 10,000-15,000 years before the present (YBP). Our samples from the Basque Country provide a valuable tool for checking the previous hypothesis, which is based on genetic data from present-day populations. In light of the available data, the most realistic scenario to explain the origin and distribution of haplogroup V suggests that the mutation defining that haplogroup (4577 NlaIII) appeared at a time when the effective population size was small enough to allow genetic drift to act-and that such drift is responsible for the heterogeneity observed in Basques, with regard to the frequency of haplogroup V (0%-20%). This is compatible with the attributed date for the origin of that mutation (10,000-15, 000 YBP), because during the postglacial period (the Mesolithic, approximately 11,000 YBP) there was a major demographic change in the Basque Country, which minimized the effect of genetic drift. This interpretation does not rely on migratory movements to explain the distribution of haplogroup V in present-day Indo-European populations. PMID:10364533

  15. Subsurface geology of the Warfield structures in southwestern West Virginia: Implications for tectonic deformation and hydrocarbon exploration in the Central Appalachian basin

    SciTech Connect

    Gao, D.; Shumaker, R.C.

    1996-08-01

    Data from over 6000 wells and five multichannel reflection seismic lines were used to constrain the subsurface geometry of the Warfield structures in southwestern West Virginia within the central Appalachian basin. Based on their vertical differences in geometry and structural styles, we divided the Warfield structures into shallow (above the Devonian Onondaga Limestone), intermediate (between the Devonian Onondaga Limestone and the Silurian Tuscarora Sandstone), and deep (below the Ordovician Trenton horizon) structural levels. Shallow structures are related to the Alleghanian deformation above the major detachment horizon of the Devonian shales and consist of the Warfield anticline with a 91.5-m closure and southeast-dipping monoclines, which aided the northwest migration and entrapment of oil and gas. At the intermediate level, the closure of the Warfield anticline is lost because the Alleghanian deformation is obscured below the major detachment of the Devonian shales, which explains the reduced production from the Devonian and Silurian reservoirs. Deep structures are characterized by an asymmetric half graben within a continental rift system known as the Rome trough, in which a thick sequence of sedimentary rocks exists to provide sources for overlying reservoirs. Although stratigraphic traps may be associated with thickness and facies changes, the deep level is structurally unfavorable for trapping hydrocarbons. Based on changes we found in map trend, we divided the Warfield structures into a middle segment and southern and northern bends. The middle segment is parallel to the New York-Alabama lineament (a northeast-trending magnetic gradient); the southern and the northern bends are linked to the 38th parallel lineament (a west-trending fault system) and the Burning Springs-Mann Mountain lineament (a north-trending magnetic gradient), respectively.

  16. Age and zircon inheritance of eastern Blue Ridge plutons, southwestern North Carolina and northeastern Georgia, with implications for magma history and evolution of the southern Appalachian origin

    SciTech Connect

    Miller, C.F.; Hatcher, R.D. Jr.; Ayers, J.C.; Coath, C.D.; Harrison, T.M.

    2000-02-01

    High-resolution ion microprobe analysis of zircon has provided ages for previously undated plutons of the high-grade eastern Blue Ridge of northeastern Georgia and southwestern North Carolina. These data, together with backscattered electron imaging, reveal the presence of nearly ubiquitous inherited cores of highly variable age and magmatic rims that have experienced variable Pb loss, thus making interpretation of conventional U-Pb analyses very difficult. Ion probe rim analyses indicate that the plutons were emplaced during both the mod-Ordovician and mid-Devonian. Zircons from all intrusions have predominantly 1.0 to 1.25 Ga cores (Grenvillian). In addition, both Devonian and Ordovician plutons have smaller populations of Late Proterozoic-early Paleozoic (0.5--0.75 Ga), Middle Proterozoic (1.4 Ga), and Late Archean (2.6--2.9 Ga) cores. The ubiquitous, round cores and thick magmatic rims suggest significant resorption and then protracted growth within the melts. Zircon saturation temperatures based on whole-rock ({approximately}melt) Zr concentrations are lower than expected for magma generation (710--760 C). Zirconium concentrations may not reflect saturation at maximum temperature, if melting was very rapid (<{approximately}10{sup 5} yrs), or if zircon cores represent grains that were shielded from melt inside host grains for much of the magmatic history. Ages of magmatic and inherited zones of zircon from the plutons demonstrate that similar crust underlay the eastern Blue Ridge during both Taconian and Acadian orogenies, that there was no single episode of voluminous magmatism, and that metamorphism and deformation began before 470 Ma and continued after 370 Ma. These plutons do not constitute a significant convergence-related arc, though it is possible that they represent a displaced part of an arc that lies primarily to the east (in the Inner Piedmont?).

  17. Greenland Sea observations

    SciTech Connect

    Gudmandsen, P.; Mortensen, H.B.; Pedersen, L.T.; Skriver, H.; Minnett, P.

    1992-12-31

    ERS-1 SAR data have been acquired over the Greenland Sea and Fram Strait during two periods, the Ice Phase of three-day repeat cycle from January to March 1992 and a one-month period in the 35-day repeat cycle from 16 July to 15 August 1992. Most data became available by way of the Broadband Data Dissemination System, i.e. with a spatial resolution of about 100 m. With these data various algorithms have been tested to derive sea ice parameters such as ice extent, ice concentration and ice displacement. In the latter period data were collected to support the activities of a research vessel in the area mainly related to the large polynyas that form east and north of Greenland. The formation of polynyas could clearly be outlined but also other phenomena were observed related to the influence of wind streets and gravity waves associated with the atmospheric boundary layer. The data will have to be studied further including full-resolution data to substantiate the conclusions arrived at.

  18. Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 187Os/ 188Os composition of the convecting mantle and the nature of high 3He/ 4He mantle

    NASA Astrophysics Data System (ADS)

    Dale, C. W.; Pearson, D. G.; Starkey, N. A.; Stuart, F. M.; Ellam, R. M.; Larsen, L. M.; Fitton, J. G.; Macpherson, C. G.

    2009-02-01

    Identifying the Os isotope composition of the prevalent, largely peridotitic, convecting mantle places important constraints on the Earth's accretion, differentiation and evolution and also has implications for the interpretation of Re-depletion ages in mantle peridotites. As partial melting preferentially samples mantle components with the lowest melting temperatures, large degree melts such as picrites should most closely reflect the peridotitic components within the source. Thus, Re-Os analyses of thirty picrites from Baffin Island and West Greenland are thought to provide a good estimate of the bulk 187Os/ 188Os composition of their convecting mantle source, which is indistinguishable from DMM in terms of lithophile isotopes and trace elements. In addition, the high 3He/ 4He of these rocks allows us to comment on the possible origins of high 3He/ 4He mantle. Ingrowth-corrected 187Os/ 188Os of the picrites ranges from 0.1267 to 0.1322. The higher 187Os/ 188Os samples have correspondingly lower 143Nd/ 144Nd which can be explained by contribution (˜ 5%) from old recycled oceanic crust, including sediment. However, Baffin Island and the earliest West Greenland picrites are remarkably uniform in composition with 187Os/ 188Os between 0.1267 and 0.1280, and a mean and mode of 0.1272 ± 0.0007. Such Os isotope compositions are less radiogenic than estimates of primitive upper mantle but are similar to the least radiogenic mid-ocean ridge basalts (MORB) and the most common composition of ophiolite-derived platinum-group alloys and chromites. These compositions appear to represent a source dominated by peridotite. The picrites studied record the highest known 3He/ 4He in the silicate Earth (up to 50 Ra). For this signature to reflect isolated domains of ancient melt depletion would require significantly less radiogenic Os isotope compositions than observed ( 187Os/ 188Os: < 0.115), unless radiogenic Os, but not He, has been subsequently added. Conversely, a bulk outer

  19. Exploring the Care Relationship between Grandparents/Older Carers and Children Infected with HIV in South-Western Uganda: Implications for Care for Both the Children and Their Older Carers

    PubMed Central

    Rutakumwa, Rwamahe; Zalwango, Flavia; Richards, Esther; Seeley, Janet

    2015-01-01

    The care of children orphaned by HIV/AIDS in sub-Saharan Africa is often undertaken by grandparents, yet little is known about the care relationship between grandparent and grandchild. Our aim was to examine this relationship to understand the needs and responsibilities of both the HIV positive child and older carer and the nature of the relationship, and to assess the implications for care for the children and the older carers. A qualitative study was conducted with 40 purposively sampled children (13–17 years) and their older carers (50 years and above). Participants were recruited from two clinics in south-western Uganda. Up to three semi-structured interviews were held with each participant. Data were analysed using a thematic framework approach. We found that the care relationship was mostly reciprocal: HIV positive children depended on carers for basic and health needs and carers counted on the children for performing tedious household tasks. The relationship was also characterised by challenges, sometimes causing tension between child and carer. We conclude that: (1) interventions targeting HIV positive children need to also address the needs of older carers, and (2) carers and children would benefit from psychosocial support and social protection. PMID:25689350

  20. Distribution and Mobilization of Arsenic in the Ganges plain sedimentary deposits of South-western Bangladesh; implications from field and laboratory observations

    NASA Astrophysics Data System (ADS)

    Rahman, M.; Mano, A.; Udo, K.; Ishibashi, Y.; Han, Y.

    2011-12-01

    The variation of arsenic concentration depending on sediment size and its depositional age in a variety of sediments extracted from four As contaminated sites of the southwestern Bangladesh were studied to elucidate the aquifer geological parameters that controls the vertical As distribution and mobilization in the sediment-water interface. It was found that sediment size, reactive surface area, relative depositional age and presence of other carrier minerals having higher affinity to adsorb As, may greatly dominate the arsenic accumulation. Sorption of As onto sediment surfaces was found to vary based on the variation of the particle diameters (2 to 250 μm), which eventually reflects the role of geological materials in controlling the As distribution in various depositional layers. Medium sands commonly found in the deeper aquifer (~150m), being older in age (> 7000 yrs BP) and having relatively larger diameter (φ~250 μm) were found to contain relatively low amount of As (0.8 μg/g) whereas higher As (5 to 25 μg/g) was identified noticeably in the recently deposited and reasonably younger (100 to 1000 yrs BP) sediment particles including clay and finer sands that commonly have moderately smaller diameter (φ~2 to 90 μm). These observations were supported strongly by the findings obtained from the laboratory batch adsorption tests conducted with those sediments. Presence of As was also observed to be greatly dependent on the availability of its carrier minerals particularly Fe and Al oxide/hydroxide along the aquifer depths. Clay particles with relatively moderate Fe and Al oxide minerals was found to adsorb as much as 70 μg/g As whereas medium sand with less Fe and Al oxide minerals were noticed to capture only 4 μg/g of As in the batch adsorption test. In laboratory leaching test, significant amount of As (12 μg/g) coupled with Fe (4.8 mg/g) were found to be leached out from the shallower brown clay by using sodium bicarbonate (pH~9) as the leaching agent

  1. Petrography and detrital zircon study of late Carboniferous sequences in the southwestern North China Craton: Implications for the regional tectonic evolution and bauxite genesis

    NASA Astrophysics Data System (ADS)

    Cai, Shuhui; Wang, Qingfei; Liu, Xuefei; Feng, Yuewen; Zhang, Ying

    2015-02-01

    The North China Craton (NCC) has been flanked by the North Qilian and North Qinling arc-accretionary belts to the south and southwest since ∼400 Ma. The part of the NCC to the east of the Alax terrane (E-NCC) experienced a long sedimentary hiatus and tectonic quiescence between the Middle Ordovician and the late Carboniferous. The northern margin of the E-NCC was reactivated and uplifted with contemporaneous volcanism during the late Carboniferous, an event that partly induced the transformation of the E-NCC from an erosional platform to a continental sedimentary basin. However, the factors controlling this transformation are still not fully understood. A series of sedimentary rocks overlying Ordovician carbonates in the southwestern E-NCC contains a lower iron-oxide layer and an upper phyllosilicate layer. Detrital zircons from different parts of the profile, from the base to the top of the two layers, have similar U-Pb ages. These zircons have a minimum age of ca. 300 Ma and a prominent peak at ca. 450 Ma, with subordinate peaks at ca. 1000 and 2500 Ma. The near-identical minimum age for the two layers suggests they were semi-simultaneously deposited in the late Carboniferous after the long hiatus in sedimentation. Detrital zircons with ages of ∼450 Ma have initial Hf isotopic compositions that vary from large negative to elevated positive. These data, together with the trace element compositions of these zircons, indicate that these minerals formed in a continental arc environment. Samples from the upper sedimentary layer contain mica group minerals that are weakly buckled and fractured, and have weathered to form clay minerals, including chlorite and illite. This suggests that the protolith of this sedimentary layer was dominated by mica schist or mica-bearing granitoid that most likely located near the adjoined part between the North Qilian and North Qinling arc-accretionary belts. Detrital zircons with the youngest ages (ca. 300 Ma) were considered to

  2. Septarian carbonate concretions in the Permian Rio do Rasto Formation: Birth, growth and implications for the early diagenetic history of southwestern Gondwana succession

    NASA Astrophysics Data System (ADS)

    Alessandretti, Luciano; Warren, Lucas Veríssimo; Machado, Rômulo; Novello, Valdir Felipe; Sayeg, Isaac Jamil

    2015-08-01

    Between the Late Carboniferous and Early Triassic, the southwestern Gondwana supercontinent was characterized by the development of a huge intracratonic basin. A large confined epeiric sea and the accumulation of a transgressive-regressive sequence were formed by continuous subsidence related to tectonic effects caused by the Sanrafaelic Orogeny and the consequent generation of accommodation space. The Permian Rio do Rasto Formation documents the last progradational cycle related to the complete continentalization of this epeiric sea. The basal member of the Rio do Rasto Formation (Serrinha) is believed to have been deposited in a shallow epicontinental water body subjected to storms and influenced by episodic deltaic incursions. One of the most remarkable characteristics of the Serrinha Member is the presence of carbonate concretions hosted in mudstones and very fine sandstones. Here, we combine sedimentological and petrographic descriptions coupled with geochemical and stable carbon and oxygen isotopic data to elucidate the nature of these carbonate concretions. The non-deformed internal structure, decreasing proportion of carbonate cements relative to detrital grains toward the concretion edges, core-to-rim isotopic variations, and perhaps most importantly, the preservation of a well-developed cardhouse fabric support an early diagenetic origin for these structures at shallow burial depths of tens of meters. Stable isotope analyses of micritic calcite cements and calcites filling the septarian fractures reveal major negative excursions in both δ18O and δ13C values. Oxygen isotope ratios obtained for the micritic calcite cements vary between - 12.1 and - 2.6‰. The calcite filling septarian fractures also exhibit negative values of δ18O (- 14.2 to - 13.8‰), with an average of - 14‰. The δ13C values of micritic calcite cements range from - 5.0-0.2‰. The carbon isotopic data from the calcite-filling septarian fractures are also negative (- 4.4 to - 3.3

  3. Variations in Composition and Preservation of Peat Deposited Since 27 ka in the Baoxiu Basin, Southwestern China: Implications for Environmental and Climatic Changes

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Sun, Y.; Meyers, P. A.; Weng, H.

    2004-12-01

    Multi-proxy organic geochemical paleoclimate records have been obtained from a 200-cm peat core extending back to about 27 ka cal from the Baoxiu Lake Basin, Yunnan Province of southwestern China. Relatively low del 13C values (-26.3 to -24.3 per mil) of total organic carbon (TOC) and of n-fatty acids (-30.4 to -33.0 per mil), high TOC/TN ratios (17 to 64), and the presence of p-hydroxyphenyl, guaiacyl, and syringyl phenylpropanyl lignin units in pyrolysates show that the source of organic matter is dominated by terrestrial C3 grasses (herbaceous angiosperms) throughout this peat profile. Decomposition of peat is indicated by shortening of alkyl side-chains of methoxyphenols, an increase of oxidation products, and demethylation of methoxy groups of the lignin/polyphenol fraction. Lower amounts of these decomposition proxies below 100 cm indicate good preservation of peat from 26.8 to 22.6 ka and imply good reliability of climatic information derived from this time range in the peat profile. From 26.8 to 23.3 ka , lower inputs of terrestrial plants and lower aquatic productivity are suggested by relatively low concentrations of TOC and phosphorus, mirroring decreased precipitation. Relatively heavier carbon isotopic compositions of plant wax n-fatty acids (C24 - C30) indicate larger contributions of C4 plants, providing a further hint of dry climate. Intermediate del 13C values of TOC and of mid-chain n-fatty acids (C20 - C22) result from an overprint of organic matter from aquatic algae. From 23.3 to 22.6 ka, a rapid increase of precipitation and a resultant C3 land-plant expansion is documented by maxima in concentrations of TOC and phosphorus, a minimum in TOC del 13C, and relatively negative del 13C values of plant-wax n-fatty acids. Since 22.6 ka, climate reconstruction is not reliable because of disturbance of the peat layers. The disturbance is most likely caused by human activities, a conclusion that is supported by a rapid increase in peat decomposition as

  4. Modelling Greenland Outlet Glaciers

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelis; Abdalati, Waleed (Technical Monitor)

    2001-01-01

    The objective of this project was to develop simple yet realistic models of Greenland outlet glaciers to better understand ongoing changes and to identify possible causes for these changes. Several approaches can be taken to evaluate the interaction between climate forcing and ice dynamics, and the consequent ice-sheet response, which may involve changes in flow style. To evaluate the icesheet response to mass-balance forcing, Van der Veen (Journal of Geophysical Research, in press) makes the assumption that this response can be considered a perturbation on the reference state and may be evaluated separately from how this reference state evolves over time. Mass-balance forcing has an immediate effect on the ice sheet. Initially, the rate of thickness change as compared to the reference state equals the perturbation in snowfall or ablation. If the forcing persists, the ice sheet responds dynamically, adjusting the rate at which ice is evacuated from the interior to the margins, to achieve a new equilibrium. For large ice sheets, this dynamic adjustment may last for thousands of years, with the magnitude of change decreasing steadily over time as a new equilibrium is approached. This response can be described using kinematic wave theory. This theory, modified to pertain to Greenland drainage basins, was used to evaluate possible ice-sheet responses to perturbations in surface mass balance. The reference state is defined based on measurements along the central flowline of Petermann Glacier in north-west Greenland, and perturbations on this state considered. The advantage of this approach is that the particulars of the dynamical flow regime need not be explicitly known but are incorporated through the parameterization of the reference ice flux or longitudinal velocity profile. The results of the kinematic wave model indicate that significant rates of thickness change can occur immediately after the prescribed change in surface mass balance but adjustments in flow

  5. Greenland meltwater experiments

    NASA Astrophysics Data System (ADS)

    Olsen, S. M.; Schmith, T.

    2012-04-01

    We explore the climatic response to additional Greenland Ice Sheet melting in the EC-EARTH coupled climate model. As reference runs, we use an ensemble of two simulations from 1850 to present with historic forcing. For each of these we pick the years 1935,1950 and 1965, respectively as initial conditions for perturbed experiments with an additional freshwater forcing of 0.1 Sv distributed uniformly around Greenland , a plausible value in the upper end of future Greenland ice sheet melt estimates. We find give no evidence for abrupt transitions associated with tipping points in the Atlantic overturning circulation and mid-latitude heat transport. In fact, modelled decline in overturning in response to the additional forcing does not project onto a comparable reduction in the mid latitude (36N) ocean heat transport. This result points to an ongoing watermass transformation in the subpolar region and Arctic Mediterranean as a whole and a continued thermal mode of operation of the overturning. At the northern boundary of the subpolar region (60N) the response in overturning shows a contrasting increase in intensity along with an increase in heat transport. Whereas the latter may be expected as a result of freshwater capping and subsurface warming in the subpolar region, the increased overturning at 60N is more difficult to explain. In order to assess this in more detail we have quantified the individual thermohaline exchange components of light and dense water masses across the Greenland-Scotland Ridge. We find that the intensified overturning at 60N is reflected in increased transports of light Atlantic Water to the Nordic Seas. However, the vertical, thermohalinie overturning loop is not equally strengthened. On the contrary, we model a decline in the denser parts of the outflow, the overflows in the Denmark Strait and Faroe Bank Channel and a strong increase in the polar outflow in the Denmark Strait. We observe a gradual transition from a vertical mode of operation

  6. Cenozoic Motion of Greenland - Overlaps and Seaways

    NASA Astrophysics Data System (ADS)

    Lawver, L. A.; Norton, I. O.; Gahagan, L.

    2014-12-01

    Using the seafloor magnetic anomalies found in the Labrador Sea, North Atlantic and Eurasian basin to constrain the Cenozoic motion of Greenland, we have produced a new model for the tectonic evolution of the region. The aeromagnetic data collected by the Naval Research Lab [Brozena et al., 2003] in the Eurasian Basin and Canadian data from the Labrador Sea have been re-evaluated using new gridding algorithms and profile modeling using ModMag (Mendel et al., 2005). As a consequence, we have changed the published correlations, mostly prior to Chron C6 [19.05 Ma]. Presently published seafloor magnetic anomalies from the Labrador Sea assume that seafloor spreading ceased at C13 [33.06 Ma] but such an assumption produces an unacceptable overlap of Kronprins Christian Land of northeast Greenland with Svalbard, up to 140 km of overlap in some models. Our new model does not need any "unacceptable" overlap but does produce a slight amount of Eocene compression on Svalbard as is found on land there. Our model allows for an Early Eocene seaway between Ellesmere Island and northwest Greenland that may have connected the Labrador Sea through Baffin Bay and ultimately to the nascent Eurasian Basin, although its depth or even its essential existence is unknowable. During the Miocene, there is no room for a deepwater seaway in Fram Strait until at least the very end of the Early Miocene and perhaps not until Middle Miocene. Brozena, J. and six others, 2003. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development. Geology 31, 825-828. Mendel, V., M. Munschy and D.Sauter, 2005, MODMAG, a MATLAB program to model marine magnetic anomalies, Comp. Geosci., 31, .589-597

  7. Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland.

    PubMed

    Dugmore, Andrew J; McGovern, Thomas H; Vésteinsson, Orri; Arneborg, Jette; Streeter, Richard; Keller, Christian

    2012-03-01

    Norse Greenland has been seen as a classic case of maladaptation by an inflexible temperate zone society extending into the arctic and collapse driven by climate change. This paper, however, recognizes the successful arctic adaptation achieved in Norse Greenland and argues that, although climate change had impacts, the end of Norse settlement can only be truly understood as a complex socioenvironmental system that includes local and interregional interactions operating at different geographic and temporal scales and recognizes the cultural limits to adaptation of traditional ecological knowledge. This paper is not focused on a single discovery and its implications, an approach that can encourage monocausal and environmentally deterministic emphasis to explanation, but it is the product of sustained international interdisciplinary investigations in Greenland and the rest of the North Atlantic. It is based on data acquisitions, reinterpretation of established knowledge, and a somewhat different philosophical approach to the question of collapse. We argue that the Norse Greenlanders created a flexible and successful subsistence system that responded effectively to major environmental challenges but probably fell victim to a combination of conjunctures of large-scale historic processes and vulnerabilities created by their successful prior response to climate change. Their failure was an inability to anticipate an unknowable future, an inability to broaden their traditional ecological knowledge base, and a case of being too specialized, too small, and too isolated to be able to capitalize on and compete in the new protoworld system extending into the North Atlantic in the early 15th century. PMID:22371594

  8. Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland

    PubMed Central

    Dugmore, Andrew J.; McGovern, Thomas H.; Vésteinsson, Orri; Arneborg, Jette; Streeter, Richard; Keller, Christian

    2012-01-01

    Norse Greenland has been seen as a classic case of maladaptation by an inflexible temperate zone society extending into the arctic and collapse driven by climate change. This paper, however, recognizes the successful arctic adaptation achieved in Norse Greenland and argues that, although climate change had impacts, the end of Norse settlement can only be truly understood as a complex socioenvironmental system that includes local and interregional interactions operating at different geographic and temporal scales and recognizes the cultural limits to adaptation of traditional ecological knowledge. This paper is not focused on a single discovery and its implications, an approach that can encourage monocausal and environmentally deterministic emphasis to explanation, but it is the product of sustained international interdisciplinary investigations in Greenland and the rest of the North Atlantic. It is based on data acquisitions, reinterpretation of established knowledge, and a somewhat different philosophical approach to the question of collapse. We argue that the Norse Greenlanders created a flexible and successful subsistence system that responded effectively to major environmental challenges but probably fell victim to a combination of conjunctures of large-scale historic processes and vulnerabilities created by their successful prior response to climate change. Their failure was an inability to anticipate an unknowable future, an inability to broaden their traditional ecological knowledge base, and a case of being too specialized, too small, and too isolated to be able to capitalize on and compete in the new protoworld system extending into the North Atlantic in the early 15th century. PMID:22371594

  9. Utility of imaging spectrometry for lithologic mapping in Greenland

    NASA Technical Reports Server (NTRS)

    Rivard, Benoit; Arvidson, Raymond E.

    1992-01-01

    Landsat Thematic Mapper (TM) multispectral image data and field-based spectral reflectance measurements for a portion of the island of Storo, southwestern Greenland, were used to evaluate the potential of imaging spectrometry for lithologic mapping in arctic terrains. TM data allow mapping of tundra vegetation that typically covers moraines at lower elevations, and lichen-covered bedrock exposed at higher elevations. However, the ubiquitous lichen cover, combined with the limited spectral and radiometric capabilities of TM, severely hamper mapping of the amphibolite, anorthosite, gneiss, and granite outcrops on the island. Diagnostic mineral signatures can be discerned from high spectral and radiometric resolution observations, because lichen cover is patchy at mineral and outcrop scales. Results imply that high resolution imaging spectrometer data (e.g., from the HIRIS sensor to fly on the Earth Observing System), detailed field work, and application of subpixel mixing models will dramatically improve the ability to identify and map bedrock in similar terrains.

  10. Southwestern Blotting Assay

    PubMed Central

    Jia, Yinshan; Nagore, Linda; Jarrett, Harry

    2016-01-01

    Southwestern blotting is a technique used to study DNA-protein interactions. This method detects specific DNA-binding proteins by incubating radiolabeled DNA with a gel blot, washing, and visualizing through autoradiography. A blot resulting from 1-dimensional SDS-PAGE reveals the molecular weight of the binding proteins. To increase separation and determine isoelectric point a 2-dimensional gel can be blotted. Additional dimensions of electrophoresis, such as a gel shift (EMSA), can precede isoelectric focusing and SDS-PAGE to further improve separation. Combined with other techniques, such as mass spectrometry, the DNA-binding protein can be identified. PMID:26404144

  11. The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul; Blundell, Raymond

    2012-09-01

    In the spring of 2010, the Academia Sinica Institute of Astronomy and Astrophysics, and the Smithsonian Astrophysical Observatory, acquired the ALMA North America prototype antenna - a state-of-the-art 12-m diameter dish designed for submillimeter astronomy. Together with the MIT-Haystack Observatory and the National Radio Astronomy Observatory, the plan is to retrofit this antenna for cold-weather operation and equip it with a suite of instruments designed for a variety of scientific experiments and observations. The primary scientific goal is to image the shadow of the Super-Massive Black Hole in M87 in order to test Einstein’s theory of relativity under extreme gravity. This requires the highest angular resolution, which can only be achieved by linking this antenna with others already in place to form a telescope almost the size of the Earth. We are therefore developing plans to install this antenna at the peak of the Greenland ice-sheet. This location will produce an equivalent North-South separation of almost 9,000 km when linked to the ALMA telescope in Northern Chile, and an East-West separation of about 6,000 km when linked to SAO and ASIAA’s Submillimeter Array on Mauna Kea, Hawaii, and will provide an angular resolution almost 1000 times higher than that of the most powerful optical telescopes. Given the quality of the atmosphere at the proposed telescope location, we also plan to make observations in the atmospheric windows at 1.3 and 1.5 THz. We will present plans to retrofit the telescope for cold-weather operation, and discuss potential instrumentation and projected time-line.

  12. Seasonal variability of the warm Atlantic water layer in the vicinity of the Greenland shelf break

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Boehme, Lars; Meredith, Michael P.; Laidre, Kristin L.; Heide-Jørgensen, Mads Peter; Kovacs, Kit M.; Lydersen, Christian; Davidson, Fraser J. M.; Stenson, Garry B.; Hammill, Mike O.; Marsh, Robert; Coward, Andrew C.

    2014-12-01

    The warmest water reaching the east and west coast of Greenland is found between 200 and 600 m. While important for melting Greenland's outlet glaciers, limited winter observations of this layer prohibit determination of its seasonality. To address this, temperature data from Argo profiling floats, a range of sources within the World Ocean Database, and unprecedented coverage from marine-mammal borne sensors have been analyzed for the period 2002-2011. A significant seasonal range in temperature (~1-2°C) is found in the warm layer, in contrast to most of the surrounding ocean. The phase of the seasonal cycle exhibits considerable spatial variability, with the warmest water found near the eastern and southwestern shelf break toward the end of the calendar year. High-resolution ocean model trajectory analysis suggests the timing of the arrival of the year's warmest water is a function of advection time from the subduction site in the Irminger Basin.

  13. Brief communication: Getting Greenland's glaciers right - a new data set of all official Greenlandic glacier names

    NASA Astrophysics Data System (ADS)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-12-01

    Place names in Greenland can be difficult to get right, as they are a mix of Greenlandic, Danish, and other foreign languages. In addition, orthographies have changed over time. With this new data set, we give the researcher working with Greenlandic glaciers the proper tool to find the correct name for glaciers and ice caps in Greenland and to locate glaciers described in the historic literature with the old Greenlandic orthography. The data set contains information on the names of 733 glaciers, 285 originating from the Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs).

  14. North Atlantic warming and the retreat of Greenland's outlet glaciers.

    PubMed

    Straneo, Fiammetta; Heimbach, Patrick

    2013-12-01

    Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate. PMID:24305146

  15. Desert Voices: Southwestern Children's Literature.

    ERIC Educational Resources Information Center

    Polette, Keith

    1997-01-01

    Examines three books with different ways of writing about the desert. Discusses: "Here Is the Southwestern Desert" by Madeline Dunphy, "The Desert Is My Mother" by Pat Mora, and "The Desert Mermaid" by Alberto Blanco. (PA)

  16. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    PubMed

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland. PMID:27386509

  17. Surface-atmosphere decoupling limits accumulation at Summit, Greenland

    PubMed Central

    Berkelhammer, Max; Noone, David C.; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J.; O’Neill, Michael S.; Schneider, David; Steffen, Konrad; White, James W. C.

    2016-01-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland. PMID:27386509

  18. Paleohydrology of Southwestern Texas

    NASA Astrophysics Data System (ADS)

    Kochel, R. Craig; Baker, Victor R.; Patton, Peter C.

    1982-08-01

    Current statistical methods may be unable to accurately predict recurrence intervals of rare, large-magnitude floods, especially in semiarid regions having positively skewed annual flood distributions, great hydrologic variability, and widely spaced gaging stations. Current approaches rely on historical data, but catastrophic floods may have recurrence intervals far greater than the length of historical records. In the lower Pecos and Devils Rivers of southwestern Texas, paleoflood discharge and frequency estimates are extended over 10,000 years by the study of slack-water flood sediments. Slack-water deposits are typically fine-grained sand and silt that accumulate during floods in areas where current velocity is reduced, i.e., in back-flooded tributary mouths, channel expansions, downstream from bedrock spurs and/or slump blocks, and in shallow caves along bedrock walls. Radiocarbon dating of organic detritus in slack-water deposits establishes the flood chronology while paleoflood discharges can be estimated by slope-area techniques. Paleoflood information extracted from slack-water sediments can greatly extend flood records. These floods may be weighted like historical data in log Pearson type 3 calculations of flood frequency. Our morphostratigraphic approach combines recorded data with geomorphic evidence to derive estimates of flood frequency. This technique offers an inexpensive and rapid way to assess catastrophic flood risk.

  19. Ranking spatially and temporally variable Greenland ice surface melt factors

    NASA Astrophysics Data System (ADS)

    Box, Jason; Mottram, Ruth; Langen, Peter; Boberg, Fredrik; Promice Team

    2014-05-01

    Greenland ice sheet surface melt water production is evaluated via a spatially distributed surface energy budget analysis of the 14 summers spanning 2000-2013. Key ingredients are DMI HIRHAM5 5km x 5km output and NASA MOD10A1 daily albedo. The HIRHAM5 simulated downward solar and infrared fluxes and turbulent fluxes are compared with in-situ data from the Danish PROMICE.org automatic weather stations. The seasonally and spatially evolving relative importance of individual surface energy budget components yields detailed insight into physical processes driving melt variability with some surprising implications to ice sheet surface mass balance sensitivity to climate change.

  20. Fluctuations of the Greenland Ice Sheet since the last ice age: comparisons of the response of marine and land-terminating ice margins to Holocene climate changes

    NASA Astrophysics Data System (ADS)

    Levy, Laura; Larsen, Nicolaj; Kelly, Meredith; Kjær, Kurt; Bjørk, Anders; Kjeldsen, Kristian; Funder, Svend; Applegate, Patrick; Howley, Jennifer; Virginia, Ross

    2016-04-01

    Fluctuations of the margins of the Greenland Ice Sheet (GrIS) in response to Holocene climate change may be used as a proxy for how they may respond to future climate change. Here, we present records of Holocene fluctuations of the margins of the GrIS in southeastern and southwestern Greenland based on geomorphic mapping and 10Be dating of boulders on moraines and boulders on bedrock. We show that in southeastern Greenland the marine-terminating outlet glaciers retreated from the outer coast between 10.4 and 9.4 ka and responded rapidly to early Holocene warming, retreating up-fjord at a rate of ~70-100 m yr-1. These rates are comparable, or higher than, modern retreat rates of 30-100 m yr-1. In contrast, the terrestrial margin of the GrIS in the Kangerlussuaq region of southwestern Greenland retreated only ~25 m yr-1 throughout the early and middle Holocene. These data indicate that forcings such as warm ocean waters, fjord geometry, fjord bathymetry and ice dynamics are potential mechanisms that caused differences in retreat rates between marine and terrestrial-terminating margins of the ice sheet. Additionally, they show that the margins of the GrIS responded sensitively to Holocene climate change.

  1. A synthesis of the basal thermal state of the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  2. The Greenland Ice Mapping Project

    NASA Astrophysics Data System (ADS)

    Joughin, I.; Smith, B.; Howat, I. M.; Moon, T. A.; Scambos, T. A.

    2015-12-01

    Numerous glaciers in Greenland have sped up rapidly and unpredictably during the first part of the 21st Century. We started the Greenland Ice Mapping Project (GIMP) to produce time series of ice velocity for Greenland's major outlet glaciers. We are also producing image time series to document the advance and retreat of glacier calving fronts and other changes in ice-sheet geometry (e.g., shrinking ice caps and ice shelves). When the project began, there was no digital elevation model (DEM) with sufficient accuracy and resolution to terrain-correct the SAR-derived products. Thus, we also produced the 30-m GIMP DEM, which, aside from improving our processing, is an important product in its own right. Although GIMP focuses on time series, complete spatial coverage for initializing ice sheet models also is important. There are insufficient data, however, to map the full ice sheet in any year. There is good RADARSAT coverage for many years in the north, but the C-band data decorrelate too quickly to measure velocity in the high accumulation regions of the southeast. For such regions, ALOS data usually correlate well, but speckle-tracking estimates at L-band are subject to large ionospheric artifacts. Interferometric phase data are far less sensitive to the effect of the ionosphere, but velocity estimates require results from crossing orbits. Thus, to produce a nearly complete mosaic we used data from multiple sensors, beginning with ERS-1/2 data from the mid 1990s. By using a primarily phase-only solution for much of the interior, we have reduced the velocity errors to ~1-3 m/yr. For the faster moving ice-sheet margin where phase data cannot be unwrapped, we used speckle-tracking data. In particular, we have relied on TerraSAR-X for many fast-moving glaciers because the ionosphere far less affects X-band data. This pan-Greenland velocity map as well as many of the time series would not have been possible without an extensive archive of data collected using six

  3. Southwest coast of Greenland and Davis Strait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image was taken by MODIS as it passed over the southwest coast of Greenland (right) and the Davis Strait (center and left). The Davis Strait connects Baffin Bay to the north and the Labrador Sea to the south, and separates Greenland from Baffin Island, Canada. The Davis Strait is part of the Northwest Passage, a navigable seaway connecting the Atlantic Ocean and the Pacific Ocean. The image shows the prevailing currents in the area, with the warm water of a branch of the North Atlantic Drift flowing northward along the Greenland coast, and the cold, iceberg-filled Labrador Current flowing southward along the Baffin Island coast.

  4. Balance Velocities of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  5. High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland

    NASA Astrophysics Data System (ADS)

    Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.

    2013-12-01

    Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (<1km2) within a narrow valley stretching between Russells Glacier and Søndre Strømfjord in southwestern Greenland, which are part of an ongoing study of a series of seven lakes. Commercially available, 150 mL, polyethylene Passive Diffusion Bags (PDB's) were deployed in July 2013 for five days at 0.5-meter depth intervals. PDB samples were compared to samples collected with a submersible, electric pump taken immediately before PBD deployment. Preliminary CH4 concentrations and carbon isotopes for one lake were obtained in the field using a Los Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a

  6. Drought in Southwestern United States

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The southwestern United States pined for water in late March and early April 2007. This image is based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite from March 22 through April 6, 2007, and it shows the Normalized Difference Vegetation Index, or NDVI, for the period. In this NDVI color scale, green indicates areas of healthier-than-usual vegetation, and only small patches of green appear in this image, near the California-Nevada border and in Utah. Larger areas of below-normal vegetation are more common, especially throughout California. Pale yellow indicates areas with generally average vegetation. Gray areas appear where no data were available, likely due to persistent clouds or snow cover. According to the April 10, 2007, update from the U.S. Drought Monitor, most of the southwestern United Sates, including Utah, Nevada, California, and Arizona, experienced moderate to extreme drought. The hardest hit areas were southeastern California and southwestern Arizona. Writing for the Drought Monitor, David Miskus of the Joint Agricultural Weather Facility reported that March 2007 had been unusually dry for the southwestern United States. While California's and Utah's reservoir storage was only slightly below normal, reservoir storage was well below normal for New Mexico and Arizona. In early April, an international research team published an online paper in Science noting that droughts could become more common for the southwestern United States and northern Mexico, as these areas were already showing signs of drying. Relying on the same computer models used in the Intergovernmental Panel on Climate Change (IPCC) report released in early 2007, the researchers who published in Science concluded that global warming could make droughts more common, not just in the American Southwest, but also in semiarid regions of southern Europe, Mediterranean northern Africa, and the Middle East.

  7. Rich Rogers Flying Over Greenland Icecap

    NASA Video Gallery

    Ihis is a view from the NASA P3 aircraft cockpit as it flies 1000 feet over the Greenland icecap during Operation Icebridge mission, which flies each March-May. The end of video shows an ice camp w...

  8. Shock melting of K-feldspar and interlacing with cataclastically deformed plagioclase in granitic rocks at Toqqusap Nunaa, southern West Greenland: Implications for the genesis of the Maniitsoq structure

    NASA Astrophysics Data System (ADS)

    Keulen, Nynke; Garde, Adam A.; Jørgart, Tommy

    2015-11-01

    Folded sheets of Mesoarchaean, leucocratic plagioclase-K-feldspar-mesoperthite-bearing granitic rocks in the Toqqusap Nunaa area of the Maniitsoq structure, West Greenland, are characterised by their very fine grain sizes and microstructures without normal igneous or planar/linear tectonic fabrics. Quartz forms equidimensional and branching, ductilely deformed aggregates and bifurcating panels with protrusions, constrictions and chains of ball-shaped grains with healed, radiating intergranular fractures. Plagioclase (An10-20) was cataclastically deformed and comminuted, whereas K-feldspar and mesoperthite are devoid of cataclastic microstructures. K-feldspar forms dispersed, highly irregular grains with numerous cusps and saddles, indicating almost ubiquitous direct (shock) melting of this mineral. It is commonly located along former fractures in plagioclase, resulting in an 'interlaced' feldspar microstructure with contact shapes indicating subsequent melting of plagioclase directly adjacent to K-feldspar. Mesoperthite forms separate, rounded, and irregular grains with protrusions and cusped margins indicating crystallisation from melts. Some mesoperthite grains are texturally and compositionally heterogeneous and contain internal lenses of K-feldspar and/or plagioclase. Other mesoperthite grains comprise coarsened, 'unzipped' areas, presumably due to localised, fluid-controlled dissolution-reprecipitation processes. The ternary feldspar precursor of the mesoperthite is interpreted as having crystallised from variably effectively mixed K-feldspar shock melts and plagioclase contact melts. Direct melting of K-feldspar, but no whole-rock melting, requires shock metamorphism with a short-lived temperature excursion to above the melting temperature of K-feldspar (~ 1300 °C). The presence of three different feldspar species and absence of chemical zonation, magmatic mantling, or metamorphic coronas furthermore hinders interpretations solely by means of endogenic

  9. Dynamic Controls on Recent Increases in Northwest Greenland Coastal Precipitation

    NASA Astrophysics Data System (ADS)

    Wong, G. J.; Osterberg, E. C.; Hawley, R. L.; Courville, Z.; Ferris, D. G.; Howley, J. A.

    2015-12-01

    Arctic precipitation has been rising over recent decades, with implications for glacier mass balance, sea level rise, and thermohaline circulation via the freshening of the Arctic seas. Coastal instrumental data and proxy records in northwest (NW) Greenland indicate positive summer precipitation trends from 1952-2012 along with a long-term, significant (p < 0.05) summer warming trend. While the observed precipitation increase is likely due in part to Clausius-Clapeyron increases in vapor pressure, the dynamical mechanisms responsible for the increasing trend remain poorly understood. Here we use a 61-year record of precipitation from Thule Air Base in NW Greenland and NCEP/NCAR reanalysis data to identify atmospheric circulation patterns associated with enhanced precipitation in recent decades. We evaluate Thule precipitation-circulation relationships for the warm season (July-October [JASO]; 49% of annual precipitation) and cold season (December-February [DJF]; 20% of annual precipitation). Anomalously high precipitation in DJF and JASO is associated with enhanced southerly flow of warm, moist air and enhanced uplift (omega) in Northern Baffin Bay. Meridional flow in Baffin Bay is strongly correlated with the North Atlantic Oscillation (NAO). We observe enhanced southerly flow, uplift and Thule precipitation during negative NAO conditions in winter and to a weaker extent JASO. Based on this mechanism, the trend (p < 0.10) of declining annual NAO index values since 1981 is consistent with the rising trends in Thule annual precipitation over this interval. We find evidence that a NW Greenland ice core proxy record (2Barrel) has a diminished JASO seasonal bias compared with the coast, and thus a future, longer proxy record collected from the 2Barrel site would be well suited for capturing both summer and winter climate variability.

  10. Studying health in Greenland: obligations and challenges.

    PubMed

    Bjerregaard, Peter; Mulvad, Gert; Olsen, Jørn

    2003-03-01

    Health research in Greenland has contributed with several findings of interest for the global scientific community and has documented health problems and risk factors of importance for planning the local health care system. The study of how health develops in small, scattered communities during rapid epidemiological transition carries prospects of global significance. The Inuit are a genetically distinct people living under extreme physical conditions. Their traditional living conditions and diet are currently undergoing a transformation, which may approach their disease pattern to that of the industrialized world, while still including local outbreaks of tuberculosis. Health research in Greenland is logistically difficult and costly, but offers opportunities not found elsewhere in the world. A long tradition of registration enhances the possibilities for research. A number of research institutions in Denmark and Greenland have conducted health research in Greenland for many years in cooperation with, among others, researchers in Canada and Alaska. National and international cooperation is supported by the Danish/Greenlandic Society for Circumpolar Health, the International Union for Circumpolar Health, and the Commission for Research in Greenland. Health news are regularly reported to international and local congresses and to the scientific journals. PMID:12725338

  11. Greenland's Coast in Holiday Colors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Vibrant reds, emerald greens, brilliant whites, and pastel blues adorn this view of the area surrounding the Jakobshavn Glacier on the western coast of Greenland. The image is a false-color (near-infrared, green, blue) view acquired by the Multi-angle Imaging SpectroRadiometer's nadir camera. The brightness of vegetation in the near-infrared contributes to the reddish hues; glacial silt gives rise to the green color of the water; and blue-colored melt ponds are visible in the bright white ice. A scattering of small icebergs in Disco Bay adds a touch of glittery sparkle to the scene.

    The large island in the upper left is called Qeqertarsuaq. To the east of this island, and just above image center, is the outlet of the fast-flowing Jakobshavn (or Ilulissat) glacier. Jakobshavn is considered to have the highest iceberg production of all Greenland glaciers and is a major drainage outlet for a large portion of the western side of the ice sheet. Icebergs released from the glacier drift slowly with the ocean currents and pose hazards for shipping along the coast.

    The Multi-angle Imaging SpectroRadiometer views the daylit Earth continuously and the entire globe between 82 degrees north and 82 degrees south latitude is observed every 9 days. These data products were generated from a portion of the imagery acquired on June 18, 2003 during Terra orbit 18615. The image cover an area of about 254 kilometers x 210 kilometers, and use data from blocks 34 to 35 within World Reference System-2 path 10.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. Correlation of stratigraphy, structure, metamorphism and intrusion in the Caledonian allochthons of East Greenland and Svalbard

    NASA Astrophysics Data System (ADS)

    Gee, David G.

    2014-05-01

    migmatization and associated granite intrusion. In northeastern Greenland, the Hager Berg Allochthon, and overlying nearly 20 km thick Neoproterozoic and Early Paleozoic succession, was emplaced hot, at least 150 km westwards during the mid to late Silurian (perhaps Devonian) over the underlying Niggli Spids Complex and the latter, notably lacking the Silurian granites, was thrust at least a further 100 km westwards over the partly allochthonous Laurentian basement and its Cambro-Ordovician cover. Emplacement of the Caledonian allochthons in northeastern Greenland continued during Devonian deposition of the overlying Old Red Sandstone successions. Although the Svalbard Caledonides are disrupted by at least three major N-trending, orogen-parallel fault-zones, with vertical displacements of several kilometres and, locally, some clear evidence of sinistral strike-slip movements and orogen-parallel extension, there can be little doubt that the overall Caledonian structure of the archipelago, as in northeast Greenland, is dominated by long-transported allochthons. Those authors favoring strike-slip displacements of thousands of kilometers for the assembly of Svalbard's Caledonian "terranes" need to explain how these movements can be accommodated within the Baltica-Laurentia collisional framework. However, subordinate sinistral strike-slip displacements are necessary to explain the juxtaposition of the allochthons of northeast Greenland affinities with the co-called "Southwestern Terrane" of westernmost Spitsbergen. The latter shares some of the characteristics of the Pearya Terrane of northernmost Canada (Ellesmere Island). Tectonic extrusion, as in the Himalaya- Tibet Orogen, provides a suitable analogue.

  13. Crustal Structure in Central-Eastern Greenland

    NASA Astrophysics Data System (ADS)

    Shulgin, A.; Thybo, H.

    2013-12-01

    We present the seismic structure in the interior of Greenland based on the first measurements by the seismic refraction/wide angle reflection method. Previous seismic surveys have only been carried out offshore and near the coast of Greenland, where the crustal structure is affected by oceanic break-up and may not be representative of the interior of the island. Acquisition of geophysical data onshore Greenland is logistically complicated by the presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The EW-trending profile extends 310 km inland from the approximate edge of the stable ice cap near Scoresby Sund across the centre of the ice cap. The planned extension of the profile by use of OBSs and air gun shooting in Scoresbysund Fjord to the east coast of Greenland was unfortunately cancelled, because navigation was prevented by ice drift. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 100 kg at 35-85 m depth in individual boreholes. Two-dimensional velocity model based on forward ray tracing and tomography modelling shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western part to 40 km in the eastern part of the profile. Earlier studies show that crustal thickness further decreases eastward to ca. 30 km below the fjord system, but details of the changes are unknown. Relatively high lower crustal velocities (Vp 6.8 - 7.3) in the western part of the TopoGreenland profile may indicate past collision tectonics or may be related or to the passage of the Iceland mantle plume. The origin of the pronounced circum-Atlantic mountain ranges in Norway and eastern Greenland, which have

  14. Pervasive solar influence on Greenland temperature over the past 4000 years

    NASA Astrophysics Data System (ADS)

    Kobashi, T.; Azuma, K. G.; Box, J. E.; Gao, C.; Nakaegawa, T.

    2013-12-01

    (Hegerl et al., 2011) possibly because of less accurate forcing reconstruction. The weak but pervasive solar influence on Greenland temperature over the past 4000 years provides important implications on current and future Greenland temperatures. Hegerl, G., Luterbacher, J., González-Rouco, F., Tett, S. F., Crowley, T., and Xoplaki, E.: Influence of human and natural forcing on European seasonal temperatures, Nat. Geosci., 4, 99-103, 2011. Kobashi, T., Kawamura, K., Severinghaus, J. P., Barnola, J.-M., Nakaegawa, T., Vinther, B. M., Johnsen, S. J., and Box, J. E.: High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core, Geophys. Res. Lett., 38, 10.1029/2011GL049444, 2011. Kobashi, T., Shindell, D. T., Kodera, K., Box, J. E., Nakaegawa, T., and Kawamura, K.: On the origin of Greenland temperature anomalies over the past 800 years, Clim. Past, 9, 583-596, 2013.

  15. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Nettles, M.; Larsen, T. B.; Elósegui, P.; Hamilton, G. S.; Stearns, L. A.; Ahlstrøm, A. P.; Davis, J. L.; Andersen, M. L.; de Juan, J.; Khan, S. A.; Stenseng, L.; Ekström, G.; Forsberg, R.

    2008-12-01

    Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur.

  16. Linking surface salinity anomalies and water column stability in the Greenland Sea gyre

    NASA Astrophysics Data System (ADS)

    Lauvset, Siv; Brakstad, Ailin; Våge, Kjetil; Olsen, Are; Jeansson, Emil; Mork, Kjell-Arne

    2016-04-01

    The importance and relevance of deep convection in the Greenland Sea gyre is a topic of continued research, and several studies the past decade have shown significant changes to the hydrography of the gyre. In this study we use Argo data up to and including 2015 to show that the water column stratification in the Greenland Sea gyre, which was very weak in the late 1980s, increased throughout the 1990s, but started decreasing again in the mid-2000s. These observed changes in water column stability are associated with salinity changes at 1000 m in the gyre. By cross-correlating changes in the gyre with hydrographic time series of surface water masses we find that warm and saline surface waters exert influence on the water column to depths exceeding 1000 m, and have had an impact on the water mass structure in the Greenland Sea gyre. Such a link between surface anomalies and water column stability in the Greenland Sea gyre could have strong implications for deep ocean oxygen levels and storage of carbon.

  17. Oceanic transport of surface meltwater from the southern Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-07-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamics and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  18. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  19. Southwestern Power Administration Update, October- December 2004

    SciTech Connect

    2004-12-01

    On October 29, 2004, Southwestern and Southwest Power Pool, Inc. (SPP) reached agreement on interim arrangements to be implemented after the October 31, 2004, expiration of the membership agreement between the two parties. According to Jim McDonald, Director of Southwestern’s Division of Customer Service, the interim agreement forged between Southwestern and SPP seeks to minimize impacts to SPP as well as to Southwestern and its customers while Southwestern and SPP work on a seams/coordination agreement to succeed the expired membership agreement.

  20. Earthshots: Satellite images of environmental change – Petermann Glacier, Greenland

    USGS Publications Warehouse

    Adamson, Thomas

    2016-01-01

    This calving is normal, but it’s worth watching Petermann and other Greenland glaciers closely. Petermann is one of the major marine-terminating glaciers of Greenland. Ice loss from the Greenland Ice Sheet has increased recently. An article in Nature concluded that climate change may cause Petermann and other Greenland glaciers to contribute to sea level rise. Landsat helps glaciologists keep a close eye on this remote but significant glacier.

  1. Fire in desert grassland region of the southwestern USA: Where and why

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire is an important driver of ecological processes in semiarid systems and serves a vital role in shrub-grass interactions. In desert grasslands of the Southwestern US, the loss of fire has been implicated as a primary cause of shrub encroachment. Where fires can currently be re-introduced and mana...

  2. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left

  3. 8. VIEW OF EL PASO AND SOUTHWESTERN RAILROAD BRIDGE, PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF EL PASO AND SOUTHWESTERN RAILROAD BRIDGE, PIER BETWEEN EAST APPROACH AND RAILROAD, LOOKING NORTH. - El Paso & Southwestern Railroad Rio Grande Bridge, Spanning Rio Grande at Southwestern Railroad, El Paso, El Paso County, TX

  4. 7. VIEW OF EL PASO AND SOUTHWESTERN RAILROAD BRIDGE, PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF EL PASO AND SOUTHWESTERN RAILROAD BRIDGE, PIER BETWEEN HIGHWAY AND RAILROAD, LOOKING NORTH. - El Paso & Southwestern Railroad Rio Grande Bridge, Spanning Rio Grande at Southwestern Railroad, El Paso, El Paso County, TX

  5. 4. GENERAL VIEW OF EL PASO AND SOUTHWESTERN RAILROAD BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. GENERAL VIEW OF EL PASO AND SOUTHWESTERN RAILROAD BRIDGE, RAILROAD SPAN, LOOKING NORTH. - El Paso & Southwestern Railroad Rio Grande Bridge, Spanning Rio Grande at Southwestern Railroad, El Paso, El Paso County, TX

  6. Clouds enhance Greenland ice sheet meltwater runoff

    NASA Astrophysics Data System (ADS)

    van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (+/-5.2) W m-2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  7. Clouds enhance Greenland ice sheet meltwater runoff

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Lhermitte, Stef; Lenaerts, Jan T. M.; Gorodetskaya, Irina V.; L'Ecuyer, Tristan S.; Noël, Brice; van den Broeke, Michiel R.; Turner, David D.; van Lipzig, Nicole P. M.

    2016-04-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m‑2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  8. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  9. Geochemistry of anorthositic differentiated sills in the Archean (~ 2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Fryer, Brian J.; Appel, Peter W. U.; Kalvig, Per; Kerrich, Robert; Dilek, Yildirim; Yang, Zhaoping

    2011-04-01

    The Fiskenæsset Complex, SW Greenland, is one of the best preserved layered Archean intrusions in the world, consisting of an association of ca. 550-meter-thick anorthosite, leucogabbro, gabbro, and ultramafic rocks (dunite, peridotite, pyroxenite, and hornblendite). Despite poly-phase deformation and amphibolite to granulite facies metamorphism, primary cumulate textures and igneous layering are well-preserved in the complex. This study reports new major and trace element data for three variably thick (1 to 5 m) differentiated (dunite, through peridotite, pyroxenite, gabbro leucogabbro, to anorthosite) sequences (Sequences 1, 2 and 3) in the Sinarssuk area of the Fiskenæsset region. On several variation diagrams, samples from these sequences plot along a well-defined liquid line of descent, consistent with in situ fractional crystallization. The average chemical compositions of these sequences are used to constrain their approximate parental magma compositions. Petrographic observations and geochemical data suggest that Sequences 2 and 3 solidified from evolved magmas that underwent olivine fractionation prior to their intrusion. In contrast, Sequence 1 appears to have been derived from a near-primary parental magma (SiO 2 = 43 wt.%, MgO = 20 wt.%, Al 2O 3 = 16 wt.%, CaO = 9.3 wt.%, Ni = 840 ppm, Mg-number = 80). The trace element patterns of this parental magma are comparable to those of Phanerozoic boninites, consistent with a supra-subduction zone geodynamic setting. If the relative thickness of ultramafic layers, the sum of dunite, peridotite and pyroxenite layers, in differentiated sequences is taken as an analog for the original complex emplaced into Archean oceanic crust, the Fiskenæsset Complex might have had a minimum thickness of 1000 m, with a 500 m thick ultramafic unit at the bottom. The thickness of the ultramafic unit in the preserved complex is less than 50 m, suggesting that more than 90% of the original ultramafic unit was either delaminated

  10. Amino acids and hydrocarbons approximately 3,800-Myr old in the Isua rocks, southwestern Greenland

    NASA Technical Reports Server (NTRS)

    Nagy, B.; Engel, M. H.; Zumberge, J. E.; Ogino, H.; Chang, S. Y.

    1981-01-01

    Results of an analysis of amino acids and hydrocarbons found in the Isua banded iron formation, which contains the oldest known rocks on earth, are discussed. Similarities are pointed out between the relative amino acid abundances of the Isua rocks and those of lichens found on their surfaces, and a lack of substantial racemization indicated by the low D/L ratios in the 3800-million year old rock samples is noted. Experimental results showing the possibility of amino acid diffusion from lichens into the rocks are presented. Comparisons of the Isua rock amino acid D/L ratios with those reported for samples from other regions indicates that none of the Isua amino acids are older than a few tens of thousands to a few hundred thousand years. Analyses of the saturated hydrocarbons of the Isua samples reveals no odd carbon number preference, which may indicate antiquity, however laboratory experiments have shown that amino acids and aromatic and saturated aliphatic hydrocarbons could not have survived the metamorphic history of the Isua rocks. The evidence presented thus suggests that the amino acids and hydrocarbons found are not of the age of the sediments.

  11. Airborne Laser Mapping of Greenland

    SciTech Connect

    Krabill, W.B.; Thomas, R.H.; Martin, C.F.; Sonntag, J.G.

    1996-10-01

    The Polar ice sheets contain enough water to raise Earth`s sea level by some 70 m. It is not clear whether changes in these ice sheets are contributing to the current rise. Ice sheet mass balance estimates can be obtained by monitoring the topography of selected Polar regions. The Arctic Ice Mapping (AIM) Project is a continuing program designed to provide a record of the absolute height of representative Arctic ice sheets. Using the Global Positioning System (GPS), aircraft flight lines may be duplicated with sufficient tolerance to provide repeated laser elevation measurements from one year to another. The raw GPS measurements are re-processed post-mission to provide sub-10 cm trajectories for each aircraft flight. This program began in 1991 with a proof-of-concept mission to Greenland. The data from this mission demonstrates 20 cm repeatability, principally due to the limited GPS constellation available. Refinements in all phases of the program (software, law and GPS hardware, and a complete GPS constellation) have yielded 10 cm repeatability in data from subsequent years, which includes probable geophysical change in the surface due to storm events and wind drift. 5 refs., 5 figs., 2 tabs.

  12. Radar measurements of melt zones on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.

    1994-01-01

    Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland Ice Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer ice lens formation within the previous winter's snow pack. This observation has important implications for monitoring and understanding changes in ice sheet volume using spaceborne microwave sensors.

  13. Skerrylike mirages and the discovery of greenland.

    PubMed

    Lehn, W H

    2000-07-20

    The Norse discovery of Greenland is associated with the sighting of low barren islands called Gunnbjörn's Skerries, which have never been satisfactorily identified. Here the historical references that connect the skerries to Greenland are reviewed. A mirage of the Greenland coast, arising specifically from optical ducting under a sharp temperature inversion, is used to explain the vision of skerries seen by the Norse mariners. Images from both ducting and uniform inversions are calculated. Under the assumption of a clean Rayleigh atmosphere, sufficient visibility remains to see the skerry image at a distance of 220 km. There is significant circumstantial evidence to indicate that the Norse were familiar with the skerrylike mirage and that they used it to discover new lands. PMID:18349932

  14. Skerrylike Mirages and the Discovery of Greenland

    NASA Astrophysics Data System (ADS)

    Lehn, Waldemar H.

    2000-07-01

    The Norse discovery of Greenland is associated with the sighting of low barren islands called Gunnbj rn s Skerries, which have never been satisfactorily identified. Here the historical references that connect the skerries to Greenland are reviewed. A mirage of the Greenland coast, arising specifically from optical ducting under a sharp temperature inversion, is used to explain the vision of skerries seen by the Norse mariners. Images from both ducting and uniform inversions are calculated. Under the assumption of a clean Rayleigh atmosphere, sufficient visibility remains to see the skerry image at a distance of 220 km. There is significant circumstantial evidence to indicate that the Norse were familiar with the skerrylike mirage and that they used it to discover new lands.

  15. Lead Sources in Human Diet in Greenland

    PubMed Central

    Bjerregaard, Peter; Johansen, Poul; Mulvad, Gert; Pedersen, Henning Sloth; Hansen, Jens C.

    2004-01-01

    Although blood lead levels have declined in Greenland, they are still elevated despite the fact that lead levels in the Greenland environment are very low. Fragments of lead shot in game birds have been suggested as an important source of dietary exposure, and meals of sea birds, particularly eider, contain high concentrations of lead. In a cross-sectional population survey in Greenland in 1993–1994, blood lead adjusted for age and sex was found to be associated with the reported consumption of sea birds. Participants reporting less than weekly intake of sea birds had blood lead concentrations of approximately 75 μg/L, whereas those who reported eating sea birds several times a week had concentrations of approximately 110 μg/L, and those who reported daily intake had concentrations of 170 μg/L (p = 0.01). Blood lead was not associated with dietary exposure to other local or imported food items. PMID:15531433

  16. Greenland subglacial lakes detected by radar

    NASA Astrophysics Data System (ADS)

    Palmer, Steven J.; Dowdeswell, Julian A.; Christoffersen, Poul; Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin S.; Benham, Toby; Bamber, Jonathan; Siegert, Martin J.

    2013-12-01

    lakes are an established and important component of the basal hydrological system of the Antarctic ice sheets, but none have been reported from Greenland. Here we present airborne radio echo sounder (RES) measurements that provide the first clear evidence for the existence of subglacial lakes in Greenland. Two lakes, with areas ~8 and ~10 km2, are found in the northwest sector of the ice sheet, ~40 km from the ice margin, and below 757 and 809 m of ice, respectively. The setting of the Greenland lakes differs from those of Antarctic subglacial lakes, being beneath relatively thin and cold ice, pointing to a fundamental difference in their nature and genesis. Possibilities that the lakes consist of either ancient saline water in a closed system or are part of a fresh, modern open hydrological system are discussed, with the latter interpretation considered more likely.

  17. Late Pliocene deglaciation of Southern Greenland

    NASA Astrophysics Data System (ADS)

    Walczak, M. H.; Carlson, A. E.; Stoner, J. S.; Hatfield, R. G.; Wolhowe, M. D.; Mathias, A.

    2015-12-01

    Predicting the response of the remaining Antarctic and Greenland ice sheets to increasing atmospheric greenhouse gas concentrations is an important goal of climate science. The late Pliocene (3.3-3.0 Ma; formerly the middle Pliocene) may offer a natural quasi-analogue to climate in the upcoming centuries: CO2 levels were ~400 PPM, global surface temperatures were 2-3 degrees higher, and sea level was likely at least 6 m higher than today. Yet little is currently known about the history of the pre-Quaternary Greenland ice sheet. IODP Expedition 303 site U1307 at 2575 m depth on the Eirik Ridge extends back to 3.4 Ma, capturing the late-Pliocene warm period adjacent to the southern Greenland ice sheet. Ice-rafted debris records, interpreted on a paleomagnetic reversal age model, suggest roughly 40 ka cyclicity of between ~5% and ~40% sand. Between ~3.3 and 3.2 Ma there is a significant change in lithology characterized by an abrupt reduction in magnetic susceptibility, during which time the sand fraction remains below 10%. Assuming a magnetite mineralogy, hysteresis ratios support a much finer magnetic assemblage of unique provenance in this interval; Mrs/Ms values of the silt fraction range from ~0.2-0.25, compared to ~0.1 in the sediments above and below. The origin this material will be discussed, although this observation is unambiguously consistent with the disappearance of silt transported from the southern Greenland ice sheet. The lack of Greenlandic source material observed in this interval is unique in the last 3.4 Ma at this location, and may indicate full deglaciation of southern Greenland in the late Pliocene.

  18. Towards Greenland Glaciation: cumulative or abrupt transition?

    NASA Astrophysics Data System (ADS)

    Tan, Ning; Dumas, Christophe; Ladant, Jean-Baptiste; Ramstein, Gilles; Contoux, Camille

    2016-04-01

    During the mid-Pliocene warming period (3-3.3 Ma BP), global annual mean temperature is warmer by 2-3 degree than pre-industrial. Greenland ice sheet volume is supposed to be a 50% reduction compared to nowadays [Haywood et al. 2010]. Around 2.7-2.6 Ma BP, just ~ 500 kyr after the warming peak of mid-Pliocene, there is already full Greenland Glaciation [Lunt et al. 2008]. How does Greenland ice sheet evolve from a half size to a glaciation level during 3 Ma - 2.5 Ma? Data show that there is a decreasing trend of atmospheric CO2 concentration from 3 Ma to 2.5 Ma [Seki et al.2010; Bartoli et al. 2011; Martinez et al. 2015]. However, a recent study [Contoux et al. 2015] suggests that a lowering of CO2 is not sufficient to initiate a perennial glaciation on Greenland and must be combined to low summer insolation, to preserve the ice sheet during insolation maximum, suggesting a cumulative process. In order to diagnose whether the ice sheet build-up is an abrupt event or a cumulative process, we carry on, for the first time, a transient simulation of climate and ice sheet evolutions from 3 Ma to 2.5 Ma. This strategy enables to investigate waxing and waning of the ice sheet during several orbital cycles. To reach this goal, we use a tri-dimensional interpolation method designed by Ladant et al. (2014) which combines the evolution of CO2 concentration, orbital parameters and Greenland ice sheet sizes in an off-line way by interpolating snapshots simulations. Thanks to this new method, we can build a transient like simulation through asynchronous coupling between GCM and ice sheet model. With this method, we may consistently answer the question of the build-up of Greenland: abrupt or cumulative process.

  19. The fate of the Greenland Ice Sheet in a geoengineered, high CO2 world

    NASA Astrophysics Data System (ADS)

    Irvine, Peter J.; Lunt, Daniel J.; Stone, Emma J.; Ridgwell, Andy

    2009-10-01

    Solar radiation management (SRM) geoengineering has been proposed as one means of helping avoid the occurrence of dangerous climate change and undesirable state transitions ('tipping points') in the Earth system. The irreversible melting of the Greenland Ice Sheet is a case in point—a state transition that could occur as a result of CO2-driven elevated global temperatures, and one leading to potentially catastrophic sea-level rise. SRM schemes such as the creation of a 'sunshade' or injection of sulfate aerosols into the stratosphere could reduce incoming solar radiation, and in theory balance, in a global mean, the greenhouse warming resulting from elevated concentrations of CO2 in the atmosphere. Previous work has highlighted that a geoengineered world would have: warming towards the poles, cooling in the tropics, and a reduction in the global hydrological cycle, which may have important implications for the Greenland Ice Sheet. Using a fully coupled global climate model in conjunction with an ice sheet model, we assess the consequences for the mass balance of the Greenland Ice Sheet of the reorganization of climate patterns by the combination of high CO2 and geoengineering. We find that Greenland surface temperature and precipitation anomalies, compared to the pre-industrial situation, decrease almost linearly with increasing levels of SRM geoengineering, but that these combine to create a highly non-linear response of the ice sheet. The substantial melting of the Greenland Ice Sheet predicted for four times pre-industrial CO2 levels is prevented in our model with only a partial application of SRM, and hence without having to fully restore the global average temperature back to pre-industrial levels. This suggests that the degree of SRM geoengineering required to mitigate the worst impacts of greenhouse warming, such as sea-level rise, need not be as extensive as generally assumed.

  20. Alkenone and Isotopic Records of Holocene Climatic and Environmental Change From Laminated West Greenland Lakes

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Huang, Y.

    2004-12-01

    Long chain alkenones (LCAs) are a key class of biomarkers for paleotemperature reconstructions. These compounds are ubiquitous in ocean sediments, but rare in lake sediments. Here we report the first discovery of LCAs in a downcore profile and surface sediments of five Greenland lakes. The concentrations of LCAs in surface sediments of these lakes are one to two orders of magnitude higher than those reported previously in other lake surface sediments around the world. Alkenones are present in five Greenland lakes with elevated salinity, but absent from five freshwater lakes. The alkenones have exceptionally low \\delta13C values ranging from -40 to -43\\permil, and are depleted by 10 to 15\\permil relative to short-chain fatty acids and sterols within the same samples. These \\delta13C values are the lowest ever reported for alkenones in a natural setting and have important implications for tracing the alkenone producers in lakes. Using the published calibration for lake sediments, the alkenone unsaturation indices in the surface sediments of the Greenland lakes record late spring/early summer temperature when algal blooms occur, suggesting the applicability of lacustrine alkenones as a paleotemperature proxy. LCA unsaturation indices and \\deltaD from sediment cores taken from these Greenland lakes will help elucidate the environmental controls on these sedimentary parameters, and will aid the reconstruction of Holocene climate variability in West Greenland. Ongoing work on the saline lakes includes determining high resolution alkenone unsaturation ratios/abundances and bulk/compound-specific isotopic values from sediment cores, algal culturing, and establishing microbial community structure in the saline lakes using DNA/RNA fingerprinting. Up-to-date results will be presented in the meeting.

  1. Evidence for a (15)N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment.

    PubMed

    Bocherens, Hervé; Drucker, Dorothée G; Madelaine, Stéphane

    2014-04-01

    The Middle to Upper Palaeolithic transition around 35,000 years ago coincides with the replacement of Neanderthals by anatomically modern humans in Europe. Several hypotheses have been suggested to explain this replacement, one of them being the ability of anatomically modern humans to broaden their dietary spectrum beyond the large ungulate prey that Neanderthals consumed exclusively. This scenario is notably based on higher nitrogen-15 amounts in early Upper Palaeolithic anatomically modern human bone collagen compared with late Neanderthals. In this paper, we document a clear increase of nitrogen-15 in bone collagen of terrestrial herbivores during the early Aurignacian associated with anatomically modern humans compared with the stratigraphically older Châtelperronian and late Mousterian fauna associated with Neanderthals. Carnivores such as wolves also exhibit a significant increase in nitrogen-15, which is similar to that documented for early anatomically modern humans compared with Neanderthals in Europe. A shift in nitrogen-15 at the base of the terrestrial foodweb is responsible for such a pattern, with a preserved foodweb structure before and after the Middle to Upper Palaeolithic transition in south-western France. Such an isotopic shift in the terrestrial ecosystem may be due to an increase in aridity during the time of deposition of the early Aurignacian layers. If it occurred across Europe, such a shift in nitrogen-15 in terrestrial foodwebs would be enough to explain the observed isotopic trend between late Neanderthals and early anatomically modern humans, without any significant change in the diet composition at the Middle to Upper Palaeolithic transition. PMID:24630359

  2. Quaternary vertebrates from Greenland: A review

    NASA Astrophysics Data System (ADS)

    Bennike, Ole

    Remains of fishes, birds and mammals are rarely reported from Quaternary deposits in Greenland. The oldest remains come from Late Pliocene and Early Pleistocene deposits and comprise Atlantic cod, hare, rabbit and ringed seal. Interglacial and interstadial deposits have yielded remains of cod, little auk, collared lemming, ringed seal, reindeer and bowhead whale. Early and Mid-Holocene finds include capelin, polar cod, red fish, sculpin, three-spined stickleback, Lapland longspur, Arctic hare, collared lemming, wolf, walrus, ringed seal, reindeer and bowhead whale. It is considered unlikely that vertebrates could survive in Greenland during the peak of the last glaciation, but many species had probably already immigrated in the Early Holocene.

  3. Some aspects of venereal diseases in Greenland.

    PubMed Central

    From, E

    1980-01-01

    For many years venereal diseases have been a major problem in Greenland. Since the early 1950s gonorrhoea has been widely prevalent; in the middle of the 1960s the incidence increased rapidly. Since the early 1970s syphilis has become widespread in the population, and in 1977 an epidemic of chancroid occurred. The high figures for venereal diseases are basically due to the social change towards a modern industrial society. Improvements in the health services could be made by encouraging health education on venereal diseases, training Greenlander health personnel, and appointing a venereologist. PMID:6893008

  4. First Younger Dryas moraines in Greenland

    NASA Astrophysics Data System (ADS)

    Funder, Svend; Larsen, Nicolaj K.; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Kjær, Kurt H.; Xu, Sheng

    2016-04-01

    Over the Greenland ice sheet the Younger Dryas (YD) cold climate oscillation (12.9-11.7 kaBP) began with up to 10°C drop in temperatures and ended with up to 12°C abrupt warming. In the light of the present warming and melting of the ice sheet, and its importance for future climate change, the ice sheet's response to these dramatic changes in the past is of great interest. However, even though much effort has gone into charting YD ice margin behaviour around Greenland in recent years, no clear-cut signal of response to the oscillation has been uncovered. Here we show evidence to suggest that three major outlets from a local ice cap at Greenland's north coast advanced and retreated synchronously during YD. The evidence comprises OSL (optically stimulated luminescence) dates from a marine transgression of the coastal valleys that preceded the advance, and exposure ages from boulders on the moraines, formed by glaciers that overrode the marine sediment. The OSL ages suggest a maximum age of 12.4 ±0.6 kaBP for the marine incursion, and 10 exposure ages on boulders from the three moraines provide an average minimum age of 12.5 ±0.7 kaBP for the moraines, implying that the moraines were formed within the interval 11.8-13.0 kaBP. Elsewhere in Greenland evidence for readvance has been recorded in two areas. Most notably, in the East Greenland fjord zone outlet glaciers over a stretch of 800 km coast advanced through the fjords. In Scoresby Sund, where the moraines form a wide belt, an extensive 14C and exposure dating programme has shown that the readvance here probably culminated before YD, while cessation of moraine formation and rapid retreat from the moraine belt did not commence until c. 11.5 kaBP, but no moraines have so far been dated to YD. Readvance is also seen in Disko Bugt, the largest ice sheet outlet in West Greenland. However, here the advance and retreat of the ice stream took place in mid YD times, and lasted only a few hundred years, while YD in

  5. Characterization of household waste in Greenland.

    PubMed

    Eisted, Rasmus; Christensen, Thomas H

    2011-07-01

    The composition of household waste in Greenland was investigated for the first time. About 2tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland. PMID:21420845

  6. The Greenland Ice Sheet Monitoring Network (GLISN)

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Beaudoin, B. C.; Butler, R.; Clinton, J. F.; Dahl-Jensen, T.; Ekstrom, G.; Giardini, D.; Govoni, A.; Hanka, W.; Kanao, M.; Larsen, T.; Lasocki, S.; McCormack, D. A.; Mykkeltveit, S.; Nettles, M.; Agostinetti, N. P.; Stutzmann, E.; Tsuboi, S.; Voss, P.

    2010-12-01

    The GreenLand Ice Sheet monitoring Network (GLISN) is an international, broadband seismic capability for Greenland, being installed and implemented through the collaboration of Denmark, Canada, Germany, Italy, Japan, Norway, Poland, Switzerland, and USA. GLISN is a real-time sensor array of seismic stations to enhance and upgrade the performance of the sparse Greenland seismic infrastructure for detecting, locating, and characterizing glacial earthquakes and other cryo-seismic phenomena, and contributing to our understanding of Ice Sheet dynamics. Complementing data from satellites, geodesy, and other sources, and in concert with these technologies, GLISN will provide a powerful tool for detecting change, and will advance new frontiers of research in the glacial systems; the underlying geological and geophysical processes affecting the Greenland Ice Sheet; interactions between oceans, climate, and the cryosphere; and other multidisciplinary areas of interest to geoscience and climate dynamics. The glacial processes that induce seismic events (internal deformation, sliding at the base, disintegration at the calving front, drainage of supra-glacial lakes) are all integral to the overall dynamics of glaciers, and seismic observations of glaciers therefore provide a quantitative means for monitoring changes in their behavior over time. Long-term seismic monitoring of the Greenland Ice Sheet will contribute to identifying possible unsuspected mechanisms and metrics relevant to ice sheet collapse, and will provide new constraints on Ice Sheet dynamic processes and their potential roles in sea-level rise during the coming decades. GLISN will provide a new, fiducial reference network in and around Greenland for monitoring these phenomena in real-time, and for the broad seismological study of Earth and earthquakes. The 2010 summer field season saw the installation or upgrade of 9 stations in the GLISN network. Sites visited under the GLISN project include Station Nord (NOR

  7. The multifaceted West Greenland passive margin

    NASA Astrophysics Data System (ADS)

    Breuer, Sonja; Damm, Volkmar; Block, Martin; Schreckenberger, Bernd; Heyde, Ingo; Nelson, Catherine; Kouwe, Wim

    2013-04-01

    The Baffin Bay located between Greenland and Canada, is the northward extension of the Labrador Sea. The Davis Strait High separates these two marine basins. The evolution of these basins is closely linked, and is as well affiliated to the opening of the North Atlantic Ocean. The opening history started in the Cretaceous with the formation of several terrestrial rift basins with a block-faulted, metamorphic Precambrian basement. The further opening of the Baffin Bay coincides with the volcanic activity (60.9-52.5 Ma) along the West Greenland margin (Storey et al., 1998). The subsequent seafloor spreading in the Baffin Bay is linked to the Labrador Sea by the Ungava Fault Zone (UFZ), which is the most prominent transform fault in this region. Two main problems are still unsolved: 1) There are clear indications for normal seafloor spreading in the Baffin Bay like the seaward dipping reflectors (SDRs) on the Canadian side (Skaarup et al., 2006) and on the Greenland side based on our data. On the other hand, associated magnetic spreading anomalies are not yet discovered in the Baffin Bay or are not formed. These findings may either point to slow or ultraslow spreading or underlying strongly extended continental crust and/or serpentinised mantle. 2) The Greenlandic margin is much wider than the Canadian. In addition, a breakup unconformity can only be traced on the Greenland side and is not reported for the Canadian side. Which process causes this asymmetric margin and differences in shelf width? Is it a result of asymmetric spreading or connected to volcanic activity during breakup processes? In summer 2008, a marine geoscientific expedition (MSM09/03) was conducted with the research vessel "Maria S. Merian" in the Davis Strait and southern Baffin Bay. Approximately 1800 km of multichannel reflection seismic data were acquired. To supplement the database, a subsequent marine geoscientific expedition ARK-XXV/3 with RV POLARSTERN in summer 2010 was conducted. In our

  8. Southwestern Power Administration annual site environmental report CY 1997

    SciTech Connect

    1998-11-01

    This report provides a synopsis of Southwestern Power Administration`s (Southwestern`s) effectiveness in managing its operations in an environmentally responsible manner. In CY 1997, the Office of Environmental, Safety, and Health was reorganized and incorporated into the Division of Acquisition and Property. The Division of Acquisition, Property, and Environmental Management maintains responsibility for development, oversight, and implementation of environmental programs. Senior Management at Southwestern has taken actions to increase environmental awareness throughout the organization. During CY 1997, (Southwestern) was not involved in any known programs or activities that had adverse impacts on the environment. The 1997 Environmental Appraisal, a portion of Southwestern`s Self-Assessment and Appraisal Program, indicated approximately 90% compliance with Southwestern`s written environmental programs. Southwestern continued to function throughout CY 1997 in an operations and maintenance posture with minor substation projects.

  9. Ocean-Glacier Interactions in Alaska and Comparison to Greenland

    NASA Astrophysics Data System (ADS)

    Motyka, R. J.; Truffer, M.

    2011-12-01

    hydrographic data from Alaskan fjords to Greenland data and evaluate similarities and differences. Studies on Alaskan fjords have implications for understanding land ice - ocean interactions in Greenland as well as elsewhere in the world but much more needs to be learned on how these fjords operate.

  10. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, J.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A.

    2013-10-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically-enabled atmospheric models. However, post-deposition processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition (δ18O, δD) of surface water vapor, precipitation and samples of top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The measurements also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between surface vapor δ18O and air temperature (0.85 ± 0.11 ‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated that 6 to 20% of the surface snow mass is exchanged with the atmosphere using the CROCUS snow model. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or condensation. Comparisons with atmospheric models show that day-to-day variations in surface vapor isotopic composition are driven by synoptic weather and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in surface vapor isotopic composition. This

  11. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, S.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A. E.

    2014-02-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor

  12. Modern solar maximum forced late twentieth century Greenland cooling

    NASA Astrophysics Data System (ADS)

    Kobashi, T.; Box, J. E.; Vinther, B. M.; Goto-Azuma, K.; Blunier, T.; White, J. W. C.; Nakaegawa, T.; Andresen, C. S.

    2015-07-01

    The abrupt Northern Hemispheric warming at the end of the twentieth century has been attributed to an enhanced greenhouse effect. Yet Greenland and surrounding subpolar North Atlantic remained anomalously cold in 1970s to early 1990s. Here we reconstructed robust Greenland temperature records (North Greenland Ice Core Project and Greenland Ice Sheet Project 2) over the past 2100 years using argon and nitrogen isotopes in air trapped within ice cores and show that this cold anomaly was part of a recursive pattern of antiphase Greenland temperature responses to solar variability with a possible multidecadal lag. We hypothesize that high solar activity during the modern solar maximum (approximately 1950s-1980s) resulted in a cooling over Greenland and surrounding subpolar North Atlantic through the slowdown of Atlantic Meridional Overturning Circulation with atmospheric feedback processes.

  13. Southwestern Power Administration Annual Report 2010

    SciTech Connect

    2012-09-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2010. In FY 2010, Southwestern delivered nearly 7.6 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Texas, and Oklahoma, generating $189 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  14. Southwestern Power Administration Annual Report 2012

    SciTech Connect

    2013-09-01

    Dear Secretary Moniz: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2012. In FY 2012, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $195 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  15. Southwestern Power Administration Annual Report 2011

    SciTech Connect

    2013-04-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2011. In FY 2011, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $167 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  16. Recent glacially influenced sedimentary processes on the East Greenland continental slope and deep Greenland Basin

    NASA Astrophysics Data System (ADS)

    García, Marga; Dowdeswell, Julian A.; Ercilla, Gemma; Jakobsson, Martin

    2012-08-01

    This paper presents the morpho-sedimentary characterization and interpretations of the assemblage of landforms of the East Greenland continental slope and Greenland Basin, based on swath bathymetry and sub-bottom TOPAS profiles. The interpretation of landforms reveals the glacial influence on recent sedimentary processes shaping the seafloor, including mass-wasting and turbidite flows. The timing of landform development points to a predominantly glacial origin of the sediment supplied to the continental margin, supporting the scenario of a Greenland Ice Sheet extending across the continental shelf, or even to the shelf-edge, during the Last Glacial Maximum (LGM). Major sedimentary processes along the central section of the eastern Greenland Continental Slope, the Norske margin, suggest a relatively high glacial sediment input during the LGM that, probably triggered by tectonic activity, led to the development of scarps and channels on the slope and debris flows on the continental rise. The more southerly Kejser Franz Josef margin has small-scale mass-wasting deposits and an extensive turbidite system that developed in relation to both channelised and unconfined turbidity flows which transferred sediments into the deep Greenland Basin.

  17. Building sustained partnerships in Greenland through shared science

    NASA Astrophysics Data System (ADS)

    Culler, L. E.; Albert, M. R.; Ayres, M. P.; Grenoble, L. A.; Virginia, R. A.

    2013-12-01

    Greenland is a hotspot for polar environmental change research due to rapidly changing physical and ecological conditions. Hundreds of international scientists visit the island each year to carry out research on diverse topics ranging from atmospheric chemistry to ice sheet dynamics to Arctic ecology. Despite the strong links between scientific, social, and political issues of rapid environmental change in Greenland, communication with residents of Greenland is often neglected by researchers. Reasons include language barriers, difficulties identifying pathways for communication, balancing research and outreach with limited resources, and limited social and cultural knowledge about Greenland by scientists. Dartmouth College has a legacy of work in the Polar Regions. In recent years, a National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) in Polar Environmental Change funded training for 25 Ph.D. students in the Ecology, Earth Science, and Engineering graduate programs at Dartmouth. An overarching goal of this program is science communication between these disciplines and to diverse audiences, including communicating about rapid environmental change with students, residents, and the government of Greenland. Students and faculty in IGERT have been involved in the process of engaging with and sustaining partnerships in Greenland that support shared cultural and educational experiences. We have done this in three ways. First, a key component of our program has been hosting students from Ilisimatusarfik (the University of Greenland). Since 2009, five Greenlandic students have come to Dartmouth and formed personal connections with Dartmouth students while introducing their Greenlandic culture and language (Kalaallisut). Second, we have used our resources to extend our visits to Greenland, which has allowed time to engage with the community in several ways, including sharing our science via oral and poster presentations at Katuaq

  18. Holocene deceleration of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. PMID:26912699

  19. Congenital and hereditary visual impairment in Greenland.

    PubMed

    Rosenberg, T

    1994-04-01

    Thirty-eight cases of congenital visual impairment (CVI) were reported in the Inuit population of Greenland over a period of 40 years (1950-1989), corresponding to a frequency of 86 per 100,000 live born children. The two most common causes of blindness were optic atrophy and cerebral visual impairment due to brain disorders of various etiologies. This finding is in accordance with recently published data from the Nordic countries. On the other hand, retinopathy of prematurity and congenital cataract were rare causes of CVI in Greenland. Fifteen out of the 38 cases had unknown etiology. Genetic disorders accounted for 7/38 of the cases. A separate examination of registered cases with probable genetic visual impairment, irrespective of birth year, disclosed 25 patients. New mutations seemed to be the most reasonable explanation for isolated cases of aniridia, lens ectopia, and Down syndrome, while inbreeding was a possible contributory factor in a few autosomal recessive conditions. PMID:8018221

  20. Holocene deceleration of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.; Colgan, William T.; Fahnestock, Mark A.; Morlighem, Mathieu; Catania, Ginny A.; Paden, John D.; Gogineni, S. Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet’s radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet’s dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry.

  1. Complex Greenland outlet glacier flow captured

    PubMed Central

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  2. Complex Greenland outlet glacier flow captured.

    PubMed

    Aschwanden, Andy; Fahnestock, Mark A; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  3. Secret Science: Exploring Cold War Greenland

    NASA Astrophysics Data System (ADS)

    Harper, K.

    2013-12-01

    During the early Cold War - from the immediate postwar period through the 1960s - the United States military carried out extensive scientific studies and pursued technological developments in Greenland. With few exceptions, most of these were classified - sometimes because new scientific knowledge was born classified, but mostly because the reasons behind the scientific explorations were. Meteorological and climatological, ionospheric, glaciological, seismological, and geological studies were among the geophysical undertakings carried out by military and civilian scientists--some in collaboration with the Danish government, and some carried out without their knowledge. This poster will present some of the results of the Exploring Greenland Project that is coming to a conclusion at Denmark's Aarhus University.

  4. Results from the Sunlight Absorption on the Greenland Ice Sheet Experiment (SAGE)

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Dibb, J. E.; Flanner, M.; Courville, Z.; Chen, J.

    2014-12-01

    MODIS observations indicate that albedo of the Greenland ice sheet (GIS) has been declining since 2001, with important implications for energy balance and surface melt. The SAGE project seeks to understand the relative roles played by grain size changes, black carbon (BC), dust, and surface melt in decreasing the albedo of the high elevation areas of the GIS. Traverses were conducted in 2013 and 2014, sampling a total of 67 snow pits across much of northwestern Greenland to characterize snow microphysics and the deposition of absorbing impurities over the prior 1-2 annual cycles, with particular attention paid to sampling the 2012 melt layer. Results show elevated biomass burning derived BC levels in summer 2012 and elevated dust concentrations in spring 2013 at some sites, both particularly in the central areas of the ice sheet. Observations and modeling results indicate, however, that the albedo impact of these modest enhancements in impurity concentrations was very minimal (<<1%) in the dry snow environment. Grain metamorphosis in dry snow and surface wetting/grain growth occurring when melt extends to higher elevations appear to be the most important processes controlling albedo change across the high elevations of the Greenland ice sheet.

  5. Greenland Meltwater and Arctic Circulation Regimes

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, D. S.; Proshutinsky, A. Y.; Timmermans, M. L.; Myers, P. G.; Platov, G.

    2015-12-01

    Between 1948 and 1996, wind-driven components of ice drift and surface ocean currents experienced a well-pronounced decadal variability alternating between anticyclonic and cyclonic circulation regimes. During cyclonic regimes, low sea level atmospheric pressure dominated over the Arctic Ocean driving sea ice and the upper ocean clockwise; the Arctic atmosphere was relatively warm and humid and freshwater flux from the Arctic Ocean toward the sub-Arctic seas was intensified. During anticylonic circulation regimes, high sea level pressure dominated over the Arctic driving sea ice and ocean counter-clockwise; the atmosphere was cold and dry and the freshwater flux from the Arctic to the sub-Arctic seas was reduced. Since 1997, however, the Arctic system has been dominated by an anticyclonic circulation regime with a set of environmental parameters that are atypical for these regimes. Of essential importance is to discern the causes and consequences of the apparent break-down in the natural decadal variability of the Arctic climate system, and specifically: Why has the well-pronounced decadal variability observed in the 20th century been replaced by relatively weak interannual changes under anticyclonic circulation regime conditions in the 21st century? We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from Greenland impact environmental conditions and interrupt their decadal variability. In order to test this hypothesis, numerical experiments with several FAMOS (Forum for Arctic Modeling & Observational Synthesis) ice-ocean coupled models have been conducted. In these experiments, Greenland melt freshwater is tracked by passive tracers being constantly released along the Greenland coast. Propagation pathways and time scales of Greenland meltwater within the sub-Arctic seas are discussed.

  6. Crustal structure beneath Southwestern Mexico

    NASA Astrophysics Data System (ADS)

    Suhardja, S.; Grand, S.; Wilson, D.; Guzman Speziale, M.; Gomez Gonzalez, J.; Ni, J.; Dominguez Reyes, T.

    2007-12-01

    The MARS ( Mapping the Rivera Subduction zone ) project started in January 2006 deploying 50 broadband seismometers across southwestern Mexico for one and a half year duration. The stations were deployed in Jalisco, Michoacan and Colima states. The goal of the project is to understand the geometry of the Rivera and Cocos subducting plates and the effect of the subduction on the overriding plate. In this study, we employ the teleseismic receiver function technique to map out the lateral variation in Moho depth as well as the Vp/Vs ratio of the crust in this tectonically and magmatically active area. The ambiguity between the delay time of Ps and crustal Vp/Vs ratio is reduced by stacking later phases, the PpPs and PpSs + PsPs, for different values of Moho depth and Vp/Vs ratio (Zhu et al. ). An average crustal depth and crustal Vp/Vs ratio is obtained by finding the highest combination of parameters that give the largest amplitude stack. We find that the average Moho depth is 39 km but varies significantly from 25 to 45 km thick. The average crustal Vp/Vs ratio is 1.82 but is also variable ranging from 1.7 to 1.9. We will discuss correlations of crustal thickness and Vp/Vs ratio with crustal composition and magmatic activity.

  7. Seasonal Greenland Ice Sheet ice flow variations in regions of differing bed and surface topography

    NASA Astrophysics Data System (ADS)

    Sole, A. J.; Livingstone, S. J.; Rippin, D. M.; Hill, J.; McMillan, M.; Quincey, D. J.

    2015-12-01

    The contribution of the Greenland Ice Sheet (GrIS) to future sea-level rise is uncertain. Observations reveal the important role of basal water in controlling ice-flow to the ice sheet margin. In Greenland, drainage of large volumes of surface meltwater to the ice sheet bed through moulins and hydrofracture beneath surface lakes dominates the subglacial hydrological system and provides an efficient means of moving mass and heat through the ice sheet. Ice surface and bed topography influence where meltwater can access the bed, and the nature of its subsequent flow beneath the ice. However, no systematic investigation into the influence of topographic variability on Greenland hydrology and dynamics exists. Thus, physical processes controlling storage and drainage of surface and basal meltwater, and the way these affect ice flow are not comprehensively understood. This presents a critical obstacle in efforts to predict the future evolution of the GrIS. Here we present high-resolution satellite mapping of the ice-surface drainage network (e.g. lakes, channels and moulins) and measurements of seasonal variations in ice flow in south west Greenland. The region is comprised of three distinct subglacial terrains which vary in terms of the amplitude and wavelength and thus the degree to which basal topography is reflected in the ice sheet surface. We find that the distribution of surface hydrological features is related to the transfer of bed topography to the ice sheet surface. For example, in areas of thinner ice and high bed relief, moulins occur more frequently and are more uniformly dispersed, indicating a more distributed influx of surface-derived meltwater to the ice sheet bed. We investigate the implications of such spatial variations in surface hydrology on seasonal ice flow rates.

  8. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    SciTech Connect

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; van den Broeke, M. R.; Mosley-Thompson, E.; Price, S. F.; Mair, D.; Noël, B.; Sole, A. J.

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone, which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging –0.80 ± 0.39 m yr⁻¹ between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. If current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.

  9. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    DOE PAGESBeta

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; van den Broeke, M. R.; Mosley-Thompson, E.; Price, S. F.; Mair, D.; Noël, B.; Sole, A. J.

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging –0.80 ± 0.39 m yr⁻¹ between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. If current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

  10. A speleothem record of Holocene climate variability from southwestern Mexico

    NASA Astrophysics Data System (ADS)

    Bernal, Juan Pablo; Lachniet, Matthew; McCulloch, Malcolm; Mortimer, Graham; Morales, Pedro; Cienfuegos, Edith

    2011-01-01

    A paleoclimate reconstruction for the Holocene based upon variations of δ 18O in a U-Th dated stalagmite from southwestern Mexico is presented. Our results indicate that the arrival of moisture to the area has been strongly linked to the input of glacial meltwaters into the North Atlantic throughout the Holocene. The record also suggests a complex interplay between Caribbean and Pacific moisture sources, modulated by the North Atlantic SST and the position of the ITCZ, where Pacific moisture becomes increasingly more influential through ENSO since ~ 4.3 ka. The interruption of stalagmite growth during the largest climatic anomalies of the Holocene (10.3 and 8.2 ka) is evidenced by the presence of hiatuses, which suggest a severe disruption in the arrival of moisture to the area. The δ 18O record presented here has important implications for understanding the evolution of the North American Monsoon and climate in southwestern Mexico, as it represents one of the most detailed archives of climate variability for the area spanning most of the Holocene.

  11. Biophysical influences on the spatial distribution of fire in the desert grassland region of the southwestern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Fire is an important driver of ecological processes in semiarid systems and serves a vital role in shrub-grass interactions. In desert grasslands of the Southwestern US, the loss of fire has been implicated as a primary cause of shrub encroachment. Where fires can currently be re-introduced...

  12. A Coupled Ocean-Iceberg Model Over The 20th Century: Iceberg Flux At 48°N As A Proxy For Greenland Iceberg Discharge

    NASA Astrophysics Data System (ADS)

    Bigg, G. R.; Wilton, D.; Hanna, E.

    2013-12-01

    Grant R. Bigg1 , David J. Wilton1 and Edward Hanna1 1Department of Geography, The University of Sheffield, Sheffield, S10 2TN We have used a coupled ocean-iceberg model, the Fine Resolution Greenland and Labrador ocean model [1], to study the variation in, and trajectory of, icebergs over the twentieth century, focusing particularly on Greenland and surrounding areas. The model is forced with daily heat, freshwater and wind fluxes derived from the Twentieth Century Reanalysis Project [2]. We use the observed iceberg flux at 48°N off Newfoundland (I48N) from 1900 to 2008 [3] to assess the iceberg component of the model. Model I48N is calculated with both a variable and constant annual calving rate. The results show that ocean and atmosphere changes alone do not account for the variation in observed I48N and suggests that this series can be used as a proxy for iceberg discharge from west Greenland tidewater glaciers. The implication of this proxy is that there is significant interannual variability in Greenland iceberg discharge over the whole twentieth century. Our model results suggest that in the early decades of the twentieth century I48N was dominated by icebergs originating from south Greenland (below latitude 65°N) with west Greenland becoming the main source of I48N from the late 1930s onwards. Modeled icebergs from the east of Greenland very rarely reach 48°N. We also present results from the ocean model showing the variation of ocean transport fluxes over the course of the twentieth and early twenty first century. References 1. M. R. Wadley, and G. R. Bigg, (2002), Q. J. R. Meteorol. Soc., 128, 2187-2203 2. G. P. Compo, et al. (2011), Q. J. R. Meteorol. Soc., 137, 1-28 3. D. L. Murphy (2011) http://www.navcen.uscg.gov/?pageName=IIPIcebergCounts

  13. Effect of freshwater from the West Greenland Current on the winter deep convection in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Kawasaki, T.; Hasumi, H.

    2014-03-01

    The effect of mesoscale eddies on the deep convection in the Labrador Sea is examined by using a realistically configured eddy-resolving ice-ocean model. The near-surface boundary current flowing into the Labrador Sea is realistically simulated, namely the West Greenland Current which carries upper/onshore fresh and lower/offshore warm water, and eddies separating from these boundary currents with cold/fresh water atop warm/salty water are also well reproduced. The modeled convection is confined to the southwestern Labrador Sea as observed, and its depth and width are reproduced better than in previous modeling studies. Although previous modeling studies demonstrated only the importance of eddy-induced heat transport in inhibition of deep convection over the central to northern Labrador Sea, our study found that the eddy-induced transport of near-surface fresh water also significantly contributes.

  14. Lung function in Greenlandic and Danish children and adolescents.

    PubMed

    Krause, Tyra Grove; Pedersen, Bo V; Thomsen, Simon Francis; Koch, Anders; Wohlfahrt, Jan; Backer, Vibeke; Melbye, Mads

    2005-03-01

    Respiratory morbidity in Inuit children is high. However, little is know regarding lung function measures in this population. The forced expiratory volumes in one second (FEV(1)) and forced vital capacity (FVC) in 888 Greenlandic Inuits (N=888) and Danes (N=477) aged 6-18 years were compared. Furthermore, associations between level of lung function and atopy and lifestyle factors were estimated in Greenlanders. The effect of height on FEV(1) and FVC was significantly different in Greenlanders and Danes, this difference in lung function increased with increasing height, and could not be explained by differences in age weight and BMI. Thus, Greenlanders taller than 130 cm had up to 300-400 ml higher FEV(1) and FVC compared with Danes of the same height. Among Greenlanders, those living in settlements had the highest levels of both FEV(1) and FVC. Greenlanders had elevated levels of FEV(1) and FVC compared with Danes. The Inuit having a shorter limb length in relation to trunk height may account for these differences. However, our finding that Greenlanders living in settlements had the highest lung function level also suggests a possible role of factors in the traditional Greenlandic lifestyle. PMID:15733513

  15. Greenland surface albedo changes 1981-2012 from satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant melt over Greenland has been observed during the last several decades associated with extreme warming events over the northern Atlantic Ocean. An analysis of surface albedo change over Greenland is presented, using a 32-year consistent satellite albedo product from the Global Land Surfac...

  16. Jaguar critical habitat designation causes concern for Southwestern ranchers

    USGS Publications Warehouse

    Svancara, Colleen; Lien, Aaron M.; Vanasco, Wendy T.; Laura Lopez-Hoffman; Ruyle, George B.

    2015-01-01

    The designation of jaguar critical habitat in April 2014 in southern Arizona and southwestern New Mexico created concern for livestock ranchers in the region. We interviewed ranchers to understand their concerns with the jaguar critical habitat designation and their attitudes toward jaguars, wildlife conservation, and resource management in general. Ranchers we interviewed were concerned about direct impacts of designated critical habitat on ranching, as well as possible alternative agendas of critical habitat advocates and issues specific to the borderlands region. The ranchers were less concerned about the presence of jaguars but were more concerned about possible limiting effects of the Endangered Species Act (ESA), distrust of government entities, and litigious environmental groups. To maximize effectiveness, government agencies should work to foster trust in the ranching community, be cognizant of sensitive issues specific to the region that may challenge endangered species conservation goals, recognize the opportunity to work with ranchers for endangered species management, and provide outreach about implications of the ESA.

  17. Northeastern Exterior, Northwestern Exterior, & Southwestern Exterior Elevations, Northeastern Interior, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northeastern Exterior, Northwestern Exterior, & Southwestern Exterior Elevations, Northeastern Interior, Southeastern Interior, & Southwestern Interior Elevations, Floor Plan, and Eastern Corner Detail - Manatoc Reservation, Vale Edge Adirondack, 1075 Truxell Road, Peninsula, Summit County, OH

  18. Two possible source regions for central Greenland last glacial dust

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Stevens, Thomas; Svensson, Anders; Klötzli, Urs S.; Manning, Christina; Németh, Tibor; Kovács, János; Sweeney, Mark R.; Gocke, Martina; Wiesenberg, Guido L. B.; Markovic, Slobodan B.; Zech, Michael

    2015-12-01

    Dust in Greenland ice cores is used to reconstruct the activity of dust-emitting regions and atmospheric circulation. However, the source of dust material to Greenland over the last glacial period is the subject of considerable uncertainty. Here we use new clay mineral and <10 µm Sr-Nd isotopic data from a range of Northern Hemisphere loess deposits in possible source regions alongside existing isotopic data to show that these methods cannot discriminate between two competing hypothetical origins for Greenland dust: an East Asian and/or central European source. In contrast, Hf isotopes (<10 µm fraction) of loess samples show considerable differences between the potential source regions. We attribute this to a first-order clay mineralogy dependence of Hf isotopic signatures in the finest silt/clay fractions, due to absence of zircons. As zircons would also be absent in Greenland dust, this provides a new way to discriminate between hypotheses for Greenland dust sources.

  19. Brief communication "The aerophotogrammetric map of Greenland ice masses"

    NASA Astrophysics Data System (ADS)

    Citterio, M.; Ahlstrøm, A. P.

    2012-09-01

    The PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses is the first high resolution dataset documenting the mid-1980's extent of the Greenland Ice Sheet and all the local glaciers and ice caps. The total glacierized area was 1 804 638 km2 ± 2178 km2, of which 88 083 ± 1240 km2 belonged to local glaciers and ice caps (GIC) substantially independent from the Greenland Ice Sheet. This new result of GIC glacierized area is higher than most previous estimates, and is in line with contemporary findings based on independent data sources. Comparison between our map and the recently released GIMP (Greenland Mapping Project) Ice Cover Mask (Howat and Negrete, 2012) show potential for change assessment studies.

  20. Brief communication "The aerophotogrammetric map of Greenland ice masses"

    NASA Astrophysics Data System (ADS)

    Citterio, M.; Ahlstrøm, A. P.

    2013-03-01

    The PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses is the first high resolution dataset documenting the mid-1980s areal extent of the Greenland Ice Sheet and all the local glaciers and ice caps. The total glacierized area excluding nunataks was 1 804 638 km2 ± 2178 km2, of which 88 083 ± 1240 km2 belonged to local glaciers and ice caps (GIC) substantially independent from the Greenland Ice Sheet. This new result of GIC glacierized area is higher than most previous estimates, 81% greater than Weng's (1995) measurements, but is in line with contemporary findings based on independent data sources. A comparison between our map and the recently released Rastner et al. (2012) inventory and GIMP (Greenland Ice Mapping Project) Ice-Cover Mask (Howat and Negrete, 2013) shows potential for change-assessment studies.

  1. The East Greenland Ridge - a continental sliver along the Greenland Fracture Zone

    NASA Astrophysics Data System (ADS)

    Gerlings, Joanna; Funck, Thomas; Castro, Carlos F.; Hopper, John R.

    2014-05-01

    The East Greenland Ridge (EGR), situated along the Greenland Fracture Zone in the northern part of the Greenland-Norwegian Sea, is a NW-SE trending 250-km-long and up to 50-km-wide bathymetric high that separates the Greenland Basin in the south from the Boreas Basin in the north. Previous seismic work established that the EGR is primarily continental in nature. Detailed swath bathymetric data revealed a complex internal structure of the ridge with two main overstepping ridge segments. These segments were not adequately covered by the GEUS2002NEG seismic survey as the detailed structure was not known at that time. The crustal affinity of the northwestern, landward-most ridge segment, and how it is attached to the Northeast Greenland continental shelf, remained unclear. The GEUS-EAGER2011 survey was designed to address these issues and to provide further constraints on the structural development of the EGR. During the GEUS-EAGER2011 survey, additional seismic refraction and reflection data were acquired on the EGR and the Northeast Greenland shelf. The data set consists of two strike lines covering the seaward-most part of the Northeast Greenland shelf and the landward-most part of the EGR, and one cross line extending from the Boreas Basin, across the ridge and into the Greenland Basin. A total of 15 ocean bottom seismometers and 46 sonobuoys were deployed along the three seismic refraction lines. P-wave velocity models for the crust and upper mantle were derived by forward and inverse modelling of the travel times of the observed seismic phases using the raytracing algorithm RAYINVR. Seismic reflection data, coinciding with the seismic refraction data were used to guide the modelling of the sedimentary layers down to basement. The velocity models confirm that the crust has a continental nature along both ridge segments with a velocity structure that significantly differs from that of normal oceanic crust. The models also show that the crust of the EGR is linked to

  2. Physical and chemical limnology of a subsaline athalassic lake in West Greenland

    NASA Astrophysics Data System (ADS)

    Willemse, N. W.; van Dam, O.; van Helvoort, P. J.; Dankers, R.; Brommer, M.; Schokker, J.; Valstar, T. E.; de Wolf, H.

    2004-08-01

    Physical and chemical profiles of a shallow (c. 12-m-deep) subsaline (total dissolved solids 2.3-2.8 g l(-1)) closed-basin lake in the continental area of southwestern Greenland are described for the first time. Watercolumn data for every 5th consecutive day between April 20 and October 6, 2001, and continuous recordings of lake water level and meteorological conditions are used to infer controls on contemporary lake functioning, sediment formation and climate-lake interactions. Limnological observations demonstrate the importance of lake-ice formation and its role in haline convection and the development of meromixis. Observed lake cycling suggest that the lake at present is in a state of near-meromixis where stagnant bottom waters de-stratify through deep penetration of weak haline convective cells by the end of June. From this study, the primary reasons the shallow Greenlandic low salinity lakes develop meromixis are: (i) lack of an outflow (ii) meltwater dilution and chemical strati. cation of surface waters, (iii) insubstantial wind mixing, (iv) a weak winter thermohaline convective cell forced by cryoconcentration, and (v) biogeochemically enhanced solute concentrations near the sediment bed. Throughout the open water period the hydrological balance is dominated by evaporative losses. Lake surface water conductivities change from 2110 to 2890 muS cm(-1) due to the combined effects of open water evaporation, meltwater dilution, diffusive exchanges over the seasonal pycnocline, and boundary mixing. Freeze-out of salts and resulting deep haline convection increase overall water column salinity during winter. Owing to deep convective mixing, plant nutrients are relatively high in the upper watercolumn with a dominant internal source of phosphorous. Extreme productivity pulses of phytoplankton are observed as soon as sub-ice radiation levels increase and directly after ice-out when sufficient wind mixing can support an intense monospecific diatom bloom of Diatoma

  3. Comparative molecular microbial ecology of the spring haptophyte bloom in a greenland arctic oligosaline lake.

    PubMed

    Theroux, Susanna; Huang, Yongsong; Amaral-Zettler, Linda

    2012-01-01

    The Arctic is highly sensitive to increasing global temperatures and is projected to experience dramatic ecological shifts in the next few decades. Oligosaline lakes are common in arctic regions where evaporation surpasses precipitation, however these extreme microbial communities are poorly characterized. Many oligosaline lakes, in contrast to freshwater ones, experience annual blooms of haptophyte algae that generate valuable alkenone biomarker records that can be used for paleoclimate reconstruction. These haptophyte algae are globally important, and globally distributed, aquatic phototrophs yet their presence in microbial molecular surveys is scarce. To target haptophytes in a molecular survey, we compared microbial community structure during two haptophyte bloom events in an arctic oligosaline lake, Lake BrayaSø in southwestern Greenland, using high-throughput pyrotag sequencing. Our comparison of two annual bloom events yielded surprisingly low taxon overlap, only 13% for bacterial and 26% for eukaryotic communities, which indicates significant annual variation in the underlying microbial populations. Both the bacterial and eukaryotic communities strongly resembled high-altitude and high latitude freshwater environments. In spite of high alkenone concentrations in the water column, and corresponding high haptophyte rRNA gene copy numbers, haptophyte pyrotag sequences were not the most abundant eukaryotic tag, suggesting that sequencing biases obscured relative abundance data. With over 170 haptophyte tag sequences, we observed only one haptophyte algal Operational Taxonomic Unit, a prerequisite for accurate paleoclimate reconstruction from the lake sediments. Our study is the first to examine microbial diversity in a Greenland lake using next generation sequencing and the first to target an extreme haptophyte bloom event. Our results provide a context for future explorations of aquatic ecology in the warming arctic. PMID:23251134

  4. Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland

    NASA Astrophysics Data System (ADS)

    Yde, Jacob C.; Knudsen, N. Tvis; Hasholt, Bent; Mikkelsen, Andreas B.

    2014-11-01

    Solute export from the Greenland Ice Sheet (GrIS) to coastal regions around Greenland is likely to increase in the future as a consequence of increasing icemelt production. Here, we present hydrochemical characteristics, solute and major ion exports and chemical denudation rates for 2007-2010 for the Watson River sector of the GrIS that drains into the fjord Kangerlussuaq. The hydrochemistry is dominated by Ca2+ and HCO3- with a relatively high molar K+/Na+ ratio of 0.6 ± 0.1, typical for meltwaters draining a gneissic lithology. Low molar Ca2+/Na+ and Mg2+/Na+ ratios indicate that weathering of disseminated carbonates contributes less than silicate weathering to the chemical composition. The solute export varied between 33 × 103 (2009) and 61 × 103 tons (2010), showing that increasing discharge leads to increasing solute export at the catchment scale. Deviations between ion yield estimates derived from use of discharge-weighted and mean daily concentrations methods were generally less than 5%, indicating that the choice of method is of less importance. The chemical denudation rates ranged between 36 and 56 Σ∗ meq+ m-2 per year, which are lower than previous records from glacierized catchments. However, when normalized by discharge the denudation rates are comparable to other Arctic sites. When extrapolating the results from the Watson River catchment to the entire Greenland for 2007-2010, the solute export from Greenland meltwater varied between 7.1 × 106 and 7.8 × 106 tons, whilst the major ion export was between 6.4 × 106 and 7.3 × 106 tons. Dissolved Fe, a potential biolimiting nutrient for primary productivity in the North Atlantic, had annual export rates from Greenland between 15 × 103 and 52 × 103 tons.

  5. Extension of Greenland Ice Sheet outlets to the shelf edge bordering Baffin Bay during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, C.; Dowdeswell, J. A.; Jennings, A. E.; Kilfeather, A. A.; Hogan, K.; Andrews, J. T.

    2010-12-01

    Despite much research seeking to understand recent dynamic changes to the Greenland Ice Sheet our understanding of the longer-term history of the ice sheet remains surprisingly poor for many sectors. This is particularly the case on the central west Greenland continental margin bordering Baffin Bay. In this region, several major fast flowing outlets, including Jakobshavns Isbrae, drain the ice sheet today. Marine geological and geophysical records recently acquired from the continental shelf and slope offshore of central west Greenland provide new evidence for the extension of ice sheet outlets to the shelf edge during the last glaciation. Bathymetric troughs extend from the mouths of Umanak Fjord and Disko Bugt to the shelf edge. Streamlined subglacial bedforms imaged on geophysical records and subglacial tills recovered in cores from these troughs record the flow of grounded ice sheet outlets along these troughs to the shelf edge during the last glaciation. Major submarine fans deposited at the mouths of the troughs record associated glacigenic sediment delivery to the continental slope. Cores and geophysical records from the fans show significant differences between them in terms of the nature of sediment delivery and slope morphology, with examples of both low gradient debris-flow dominated fans and much steeper channelized fans. These differences imply marked spatial variations in the nature of continental slope sedimentation in front of fast flowing ice sheet outlets. Over thirty AMS radiocarbon dates provide new chronological control on the timing and rate of glacigenic sediment delivery to the continental slope and the timing of subsequent ice sheet retreat from the shelf edge. These new landform, sediment and chronological records from the central west Greenland shelf and slope will be presented and the wider implications for Greenland Ice Sheet history at and following the LGM discussed.

  6. The Greenland Ice Sheet in Three Dimensions

    NASA Astrophysics Data System (ADS)

    MacGregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Paden, J. D.; Gogineni, S.; Morlighem, M.; Colgan, W. T.; Li, J.; Stillman, D. E.; Grimm, R. E.; Clow, G. D.; Young, S. K.; Mabrey, A. N.; Rybarski, S. C.; Wagman, B. M.; Rodriguez, K.

    2014-12-01

    We have produced a dated radiostratigraphy for the whole of the Greenland Ice Sheet (GrIS) from two decades of airborne radar-sounding surveys performed by The University of Kansas. This radiostratigraphy reveals a wealth of new information regarding this ice sheet's three-dimensional structure and history. South of Jakobshavn Isbræ, most of the ice sheet is Holocene-aged. Eemian ice is mostly confined to central northern Greenland. Disrupted radiostratigraphy is often located near the onset of the largest outlet glaciers, suggesting a strong coupling between the initiation of faster ice flow and anomalous basal processes in the ice-sheet interior. Ice-flow modeling constrained by this radiostratigraphy reveals that the Holocene-averaged pattern of surface accumulation is similar to the modern pattern, but that Holocene surface-accumulation rates were substantially higher than present rates in the interior. The pattern of predicted basal melt is strongly modulated by surface accumulation, further suggesting that geothermal flux beneath the GrIS is low except in the vicinity of the Northeast Greenland Ice Stream. This observation also raises the possibility that the position of the GrIS's central ice divide is coupled to local basal conditions, including spatially varying subglacial geology and geothermal flux. The Holocene-averaged flow of the GrIS was significantly faster than at present, implying that the ice-sheet interior is presently dynamically thickening, likely due to the viscosity contrast between Holocene and Last Glacial Period ice. Englacial dielectric attenuation, inferred from the echo intensity of mapped reflections, is related to borehole-measured temperature and constrains depth-averaged englacial temperature across the GrIS. This ice-sheet-wide radiostratigraphy and its related inferences are new and powerful constraints on the dynamics of the GrIS, and they should be used to evaluate and improve the next generation of ice-sheet models.

  7. Clouds enhance Greenland ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  8. Growth of greenland ice sheet: measurement.

    PubMed

    Zwally, H J; Bindschadler, R A; Brenner, A C; Major, J A; Marsh, J G

    1989-12-22

    Measurements of ice-sheet elevation change by satellite altimetry show that the Greenland surface elevation south of 72 degrees north latitude is increasing. The vertical velocity of the surface is 0.20 +/- 0.06 meters per year from measured changes in surface elevations at 5906 intersections between Geosat paths in 1985 and Seasat in 1978, and 0.28 +/- 0.02 meters per year from 256,694 intersections of Geosat paths during a 548-day period of 1985 to 1986. PMID:17834422

  9. North Greenland's Ice Shelves and Ocean Warming

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Schauer, U.; Padman, L.; Melling, H.; Fricker, H. A.

    2014-12-01

    Rapid disintegration of ice shelves (the floating extensions of marine-terminating glaciers) can lead to increasing ice discharge, thinning upstream ice sheets, rising sea level. Pine Island Glacier, Antarctica, and Jacobshavn Isbrae, Greenland, provide prominent examples of these processes which evolve at decadal time scales. We here focus on three glacier systems north of 78 N in Greenland, each of which discharges more than 10 Gt per year of ice and had an extensive ice shelf a decade ago; Petermann Gletscher (PG), Niogshalvfjerdsfjorden (79N), and Zachariae Isstrom (ZI). We summarize and discuss direct observations of ocean and glacier properties for these systems as they have evolved in the northwest (PG) and northeast (79N and ZI) of Greenland over the last two decades. We use a combination of modern and historical snapshots of ocean temperature and salinity (PG, 79N, ZI), moored observations in Nares Strait (PG), and snapshots of temperature and velocity fields on the broad continental shelf off northeast Greenland (79N, ZI) collected between 1993 and 2014. Ocean warming adjacent to PG has been small relative to the ocean warming adjacent to 79N and ZI; however, ZI lost its entire ice shelf during the last decade while 79N, less than 70 km to the north of ZI, remained stable. In contrast, PG has thinned by about 10 m/y just prior to shedding two ice islands representing almost half its ice shelf area or a fifth by volume. At PG advective ice flux divergence explains about half of the dominantly basal melting while response to non-steady external forcing explains the other half. The observations at PG,79N, and ZI suggest that remotely sensed ambient surface ocean temperatures are poor proxies to explain ice shelf thinning and retreat. We posit that local dynamics of the subsurface ocean heat flux matters most. Ocean heat must first be delivered over the sill into the fjord and then within the ice shelf cavity to the base of the shelf near the grounding line

  10. Growth of Greenland ice sheet - Measurement

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Bindschadler, Robert A.; Marsh, James G.; Brenner, Anita C.; Major, Judy A.

    1989-01-01

    Measurements of ice-sheet elevation change by satellite altimetry show that the Greenland surface elevation south of 72 deg north latitude is increasing. The vertical velocity of the surface is 0.20 + or - 0.06 meters/year from measured changes in surface elevations at 5906 intersections between Geosat paths in 1985 and Seasat in 1978, and 0.28 + or - 0.02 meters/year from 256,694 intersections of Geosat paths during a 548-day period of 1985 to 1986.

  11. The recent warming trend in North Greenland

    NASA Astrophysics Data System (ADS)

    Orsi, Anais; Kawamura, Kenji; Masson-Delmotte, Valerie; Landais, Amaelle; Severinghaus, Jeff

    2015-04-01

    The arctic is the fastest warming region on Earth, but it is also one where there is little historical data. Although summer warming causes melt, the annual temperature trend is dominated by the winter and fall season, which are much less well documented. In addition, the instrumental record relies principally on coastal weather stations, and there are very few direct temperature observations in the interior dating back more than 30 years, especially in North Greenland, where the current warming trend is the largest. Here, we present a temperature reconstruction from NEEM (51°W, 77°N), in North Greenland, for the last 100 years, which allows us to put the recent trend in the context of the longer term climate. We use a combination of two independent proxies to reconstruct the temperature history at NEEM: borehole temperature and inert gas isotope measurements in the firn. Borehole temperature takes advantage of the low temperature diffusivity of the snow and ice, which allows the temperature history to be preserved in the ice for several centuries. Temperature gradients in the firn (old snow above the ice) influence the gas isotopic composition: thermal fractionation causes heavy isotopes to concentrate on the cold end of the firn column. We measured the isotopes of inert gases (N2, Ar and Kr), which have a constant atmospheric composition through time, and use the thermal fractionation signal as an additional constraint on the temperature history at the site. We find that NEEM has been warming by 0.86±0.22°C/decade over the past 30 years, from -28.55±0.29°C for the 1900-1970 average to -26.77±0.16°C for the 2000-2010 average. The warming rate at NEEM is similar to that of Greenland Summit, and confirms the large warming trends in North Greenland (polar amplification) and high altitude sites (tropospheric rather than surface warming). Water isotopes show that the recent past has not met the level of the 1928 anomaly; but the average of the past 30 years has

  12. Towards Introducing a Geocoding Information System for Greenland

    NASA Astrophysics Data System (ADS)

    Siksnans, J.; Pirupshvarre, Hans R.; Lind, M.; Mioc, D.; Anton, F.

    2011-08-01

    Currently, addressing practices in Greenland do not support geocoding. Addressing points on a map by geographic coordinates is vital for emergency services such as police and ambulance for avoiding ambiguities in finding incident locations (Government of Greenland, 2010) Therefore, it is necessary to investigate the current addressing practices in Greenland. Asiaq (Asiaq, 2011) is a public enterprise of the Government of Greenland which holds three separate databases regards addressing and place references: - list of locality names (towns, villages, farms), - technical base maps (including road center lines not connected with names, and buildings), - the NIN registry (The Land Use Register of Greenland - holds information on the land allotments and buildings in Greenland). The main problem is that these data sets are not interconnected, thus making it impossible to address a point in a map with geographic coordinates in a standardized way. The possible solutions suffer from the fact that Greenland has a scattered habitation pattern and the generalization of the address assignment schema is a difficult task. A schema would be developed according to the characteristics of the settlement pattern, e.g. cities, remote locations and place names. The aim is to propose an ontology for a common postal address system for Greenland. The main part of the research is dedicated to the current system and user requirement engineering. This allowed us to design a conceptual database model which corresponds to the user requirements, and implement a small scale prototype. Furthermore, our research includes resemblance findings in Danish and Greenland's addressing practices, data dictionary for establishing Greenland addressing system's logical model and enhanced entity relationship diagram. This initial prototype of the Greenland addressing system could be used to evaluate and build the full architecture of the addressing information system for Greenland. Using software engineering

  13. The PolarSEEDS project: communicating Greenland melting through visualization and sonification

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Perl, J.; Saltz, I.; Ham, E.

    2013-12-01

    During fall of 2011 a group of faculty at the City College of New York from the Science and Art Divisions drafted a concept for a project about communicating results from his research concerning the melting of the Greenland ice sheet through 'unconventional' venues, such as Visual Arts and Music. The opportunity to build a team and perform a project came to reality when the City College of New York (CCNY) called for the City SEED call proposal (therefore the name POLARSEEDS). The call was looking to fund innovative interdisciplinary work that could create connections among different disciplines within CCNY. The faculty members of the project were affiliated with the Dept. of Earth and Atmospheric Sciences (Tedesco), the Music Dept. and the Sonic Arts Center (Perl) and Art Dept. (Saltz and Ham). The PolarSEEDS project involved also six students at graduate and master level from the three departments. The project culminated in an exhibition at CCNY in which soundscapes obtained from sounds recorded during fieldwork in Greenland were combined with sonifications of the outputs of a climate model used to study melting in Greenland to generate ambient sounds. At the exhibit, many sonifications of the model outputs were available at computer stations together with the explanation of the different approaches undertaken to generate them. Large aerial photos of supraglacial streams and lakes over Greenland were exhibited together with infographics addressing some of the causes and implications of melting. Videos showing either footage of melting features or the impact of albedo on melting (through ad hoc experiments carried out in laboratory and filmed for the exhibit) were also exhibited. Lastly, the visitors had the opportunity to play an interactive web game developed for the project in which they had to balance the amount of clouds, solar radiation, rain and snow to keep the Greenland ice sheet from melting completely and flood New York City. In my presentation, I will

  14. Holocene relative sea-level changes in the inner Bredefjord area, southern Greenland

    NASA Astrophysics Data System (ADS)

    Sparrenbom, Charlotte J.; Bennike, Ole; Fredh, Daniel; Randsalu-Wendrup, Linda; Zwartz, Dan; Ljung, Karl; Björck, Svante; Lambeck, Kurt

    2013-06-01

    In this paper we present new relative sea-level data from southern Greenland, a key area for understanding the Greenland Ice Sheet (GIS) response to climate change. Within fourteen lakes and marine lagoons from the inner part of Bredefjord (Nordre Sermilik) in southern Greenland, isolations revealed by stratigraphic and palaeoecological analyses are dated and relative sea levels reconstructed. Due to coastal emergence caused by the GIS retreat within the area, the relative sea-level fell rapidly in the early Holocene between at least c. 9600 and c. 7300 cal. yrs BP attaining a rate of 2 cm per year between 9600 and 8000 cal. yrs BP. Spatial variability in relative sea-level changes is show for southern Greenland from a comparison with the Nanortalik and the Qaqortoq areas. The regression occurred about 2000 years later in the inner Bredefjord area, compared to the Nanortalik area, and about 1000 years later compared to the Qaqortoq area. This is a consequence of earlier deglaciation in areas located at the outer coast. Between c. 8000 cal. yrs BP and the present day, relative sea level was lower than today. The lowest relative sea level in the Inner Bredefjord area of between -5.4 and -15 m a.h.a.t. (above highest astronomical tide) was reached between 7000 and 1000 cal. yrs BP. The neoglacial readvance together with the collapse of the Laurentide peripheral bulge is probably responsible for the transgression in the Inner Bredefjord area, as has been indicated from the nearby sites Qaqortoq and Nanortalik. Our relative sea-level reconstructions showing spatial variability within southern Greenland have implications for Glacial Isostatic Adjustment (GIA) modelling and the understanding of the GIS ice sheet dynamics. The early Holocene regression is consistent with the recession of the southern sector of the GIS from the shelf edge at c. 22 000 cal. yrs BP, reaching inland of the present day outer coast by c. 12 000 cal. yrs BP, and its present margin by c. 10 500

  15. Hydrologically Induced Basal Slip Triggers Greenland Supraglacial Lake Drainages

    NASA Astrophysics Data System (ADS)

    Stevens, L. A.; Behn, M. D.; McGuire, J. J.; Das, S. B.; Joughin, I. R.; Herring, T.; Shean, D. E.; King, M. A.

    2014-12-01

    We investigate what triggers the rapid drainage of a large supraglacial lake on the western margin of the Greenland Ice Sheet using a Network Inversion Filter (NIF) (Segall and Matthews, 1997) to invert a dense local network of GPS observations over three summers (2011-2013). The NIF is used to determine the spatiotemporal variability in ice sheet behavior (1) prior to lake drainage, and in response to (2) vertical hydro-fracture crack propagation and closure, (3) the opening of a horizontal cavity at the ice-sheet bed that accommodates the rapid injection of melt-water, and (4) extra basal slip due to enhanced lubrication. The NIF also allows us to infer the distribution of melt-water at the ice-sheet bed before, during, and after drainage. Our data show that the opening and propagation of each summer's lake-draining hydro-fracture is preceded by a local stress perturbation associated with ice sheet uplift and enhanced slip above pre-drainage background velocities. Within <1 day after the onset of each precursor, a vertical crack propagates through the lake basin and the lake drains rapidly (<5 hours). The NIF shows that the precursors are not associated with slow propagation of the lake draining hydrofracture, but rather pre-existing crevasses and/or moulins, which allow substantial amounts of melt-water to reach the bed and activate enhanced basal slip up to a day before hydro-fracture crack initiation. Identification of these precursors combined with the fact that drainages are observed to occur across a range of lake volumes and geometries, suggests that lakes do not spontaneously hydro-fracture once they surpass a specific threshold despite the numerous healed hydro-fracture cracks present within the lake basin from the prior years' drainage events. These results have implications for rapid drainage of supraglacial lakes in less crevassed, interior regions of the Greenland Ice Sheet, as well as the rapid collapse of Antarctic ice shelves through melt pond

  16. Rapid Changes of Large Tidewater Glaciers in SE Greenland

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Hamilton, G. S.

    2005-12-01

    New field and satellite remote sensing measurements show that Kangerdlugssuaq Glacier and Helheim Glacier, two fast-flowing tidewater glaciers in South-East Greenland, accelerated 40-300% between 2001 and 2005 and retreated 3-5 km since July 2003. Together, the catchment basins of these two glaciers encompass ~10% of the area of the Greenland ice sheet. Previous studies observed rates of surface lowering on the main trunks of both glaciers that were too large to be caused by enhanced surface melting or decreased snow fall alone. One hypothesis to explain the thinning rates is a change in ice dynamics. We use repeat satellite imagery and published reports to reconstruct the last ~decade of flow histories for both glaciers and compare the results with velocities derived from field GPS surveys in the summer 2005. Helheim Glacier was flowing at ~8 km/yr in 1995 and 2001. In 2005, flow speeds were ~11.7 km/yr, a ~40% increase. The acceleration of Kangerdlugssuaq Glacier was more substantial. Portions of the main trunk that were flowing at ~5 km/yr in 1988, 1996 and 2001 were flowing at ~14 km/yr in summer 2005, an almost threefold increase. The accelerations in flow speeds were accompanied by other changes, including the rapid retreat of calving fronts that had maintained quasi-stable positions for the previous ~40 years, and a lowering of the ice surface by about 100 m, leaving stranded ice on adjacent ridges. The rapid thinning, acceleration and retreat of these two relatively nearby glaciers suggests a common triggering mechanism, such as enhanced surface melting due to regional climate warming. The current flow speeds, ~11 - 14 km/yr at the terminus, are too fast to be caused solely by internal deformation of the ice, implying that an increase in basal sliding forced by additional meltwater production is the probable cause of the velocity increases. The new observations and the hypothesized cause highlight the sensitivity of large outlet glaciers to local climate

  17. Variability in the East Greenland Current

    NASA Astrophysics Data System (ADS)

    Holfort, J.; Meincke, J.; Mortensen, J.

    2003-04-01

    The East Greenland Current (EGC) carries different water masses along the eastern coast of Greenland to the south. Denmark Strait overflow water (DSOW) is a mixture of these southward flowing water masses. The Polar Water part (liquid and ice) is the main oceanic fresh water source for the North Atlantic. Changes in the composition of the EGC can therefore have considerable impact also on the larger scale (e.g. the global thermohaline circulation). We will give a picture of the variability of the water mass characteristics of the EGC based on oceanic data and discuss possible effect onto the DSOW. For the shorter term variability the main data sources are recent hydrographic data; and temperature, salinity and current data from a mooring array across the EGC at 75°N. The mooring data spans 2 years (9/2000-9/2002) for deep bottom part and 1 year (9/2001-9/2002) for the upper water column. For longer term (>2 years) variability the main source are historical and recent hydrografic data.

  18. Anthropogenic carbon in the East Greenland Current

    NASA Astrophysics Data System (ADS)

    Jutterström, Sara; Jeansson, Emil

    2008-07-01

    Sections of dissolved inorganic anthropogenic carbon ( CTanthro) based on 2002 data in the East Greenland Current (EGC) are presented. The CTanthro has been estimated using a model based on optimum multiparameter analysis with predefined source water types. Values of CTanthro have been assigned to the source water types through age estimations based on the transit time distribution (TTD) technique. The validity of this approach is discussed and compared to other methods. The results indicated that the EGC had rather high levels of CTanthro in the whole water column, and the anthropogenic signal of the different source areas were detected along the southward transit. We estimated an annual transport of CTanthro with the Denmark Strait overflow ( σθ > 27.8 kg m -3) of ∼0.036 ± 0.005 Gt C y -1. The mean CTanthro concentration in this density range was ∼30 μmol kg -1. The main contribution was from Atlantic derived waters, the Polar Intermediate Water and the Greenland Sea Arctic Intermediate Water.

  19. Robots could assist scientists working in Greenland

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-07-01

    GREENLAND—Tom Lane and Suk Joon Lee, recent graduates of Dartmouth University's Thayer School of Engineering, in Hanover, N. H., are standing outside in the frigid cold testing an autonomous robot that could help with scientific research and logistics in harsh polar environments. This summer, Lane, Lee, and others are at Summit Station, a U.S. National Science Foundation (NSF)-sponsored scientific research station in Greenland, fine-tuning a battery-powered Yeti robot as part of a team working on the NSF-funded Cool Robot project. The station, also known as Summit Camp, is located on the highest point of the Greenland Ice Sheet (72°N, 38°W, 3200 meters above sea level) near the middle of the island. It is a proving ground this season for putting the approximately 68-kilogram, 1-cubic-meter robot through its paces, including improving Yeti's mobility capabilities and field-testing the robot. (See the electronic supplement to this Eos issue for a video of Yeti in action (http://www.agu.org/eos_elec/).) During field-testing, plans call for the robot to collect data on elevation and snow surface characteristics, including accumulation. In addition, the robot will collect black carbon and elemental carbon particulate matter air samples around Summit Camp's power generator to help study carbon dispersion over snow.

  20. Instrument for Analysis of Greenland's Glacier Mills

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Matthews, Jaret B.; Tran, Hung B.; Steffen, Konrad; McGrath, Dan; Phillips, Thomas; Elliot, Andrew; OHern, Sean; Lutz, Colin; Martin, Sujita; Wang, Henry

    2010-01-01

    A new instrument is used to study the inner workings of Greenland s glacier mills by riding the currents inside a glacier s moulin. The West Greenland Moulin Explorer instrument was deployed into a tubular shaft to autonomously record temperature, pressure, 3D acceleration, and location. It is built with a slightly positive buoyancy in order to assist in recovery. The unit is made up of several components. A 3-axis MEMS (microelectromechanical systems) accelerometer with 0.001-g resolution forms the base of the unit. A pressure transducer is added that is capable of withstanding 500 psi (=3.4 MPa), and surviving down to -40 C. An Iridium modem sends out data every 10 minutes. The location is traced by a GPS (Global Positioning System) unit. This GPS unit is also used for recovery after the mission. Power is provided by a high-capacity lithium thionyl chloride D-sized battery. The accelerometer is housed inside a cylindrical, foot-long (=30 cm) polyvinyl chloride (PVC) shell sealed at each end with acrylic. The pressure transducer is attached to one of these lids and a MEMS accelerometer to the other, recording 100 samples per second per axis.

  1. Toxaphene in the aquatic environment of Greenland.

    PubMed

    Vorkamp, Katrin; Rigét, Frank F; Dietz, Rune

    2015-05-01

    The octa- and nonachlorinated bornanes (toxaphene) CHBs 26, 40, 41, 44, 50 and 62 were analysed in Arctic char (Salvelinus alpinus), shorthorn sculpin (Myoxocephalus scorpius), ringed seal (Pusa hispida) and black guillemot eggs (Cepphus grylle) from Greenland. Despite their high trophic level, ringed seals had the lowest concentrations of these species, with a Σ6Toxaphene median concentration of 13-20 ng/g lipid weight (lw), suggesting metabolisation. The congener composition also suggests transformation of nona- to octachlorinated congeners. Black guillemot eggs had the highest concentrations (Σ6Toxaphene median concentration of 971 ng/g lw). Although concentrations were higher in East than in West Greenland differences were smaller than for other persistent organic pollutants. In a circumpolar context, toxaphene had the highest concentrations in the Canadian Arctic. Time trend analyses showed significant decreases for black guillemot eggs and juvenile ringed seals, with annual rates of -5 to -7% for Σ6Toxaphene. The decreases were generally steepest for CHBs 40, 41 and 44. PMID:25728301

  2. Pathways of Petermann Glacier meltwater, Greenland

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna; Johnson, Helen; Münchow, Andreas

    2016-04-01

    Radar and satellite observations suggest that the floating ice shelf of Petermann Glacier loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic Water into the fjord and under the ice shelf. The fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise on board I/B Oden in August 2015. Two methods are used to detect the meltwater from Petermann: a mathematical one that provides the concentration of ice shelf meltwater, and a geometrical one to distinguish the meltwater from Petermann and the meltwater from other ice shelves. The meltwater from Petermann mostly circulates on the north side of the fjord. At the sill, 0.5 mSv of meltwater leave the fjord, mostly on the northeastern side between 100 and 350 m depth, but also in the central channel, albeit with a lesser concentration. Meltwater from Petermann is found in all the casts in Hall Basin, notably north of the sill by Greenland coast. The geometrical method reveals that the casts closest to the Canadian side mostly contain meltwater from other, unidentified glaciers. As Atlantic Water warms up, it is key to monitor Greenland melting glaciers and track their meltwater to properly assess their impact on the ocean circulation and sea level rise.

  3. The Greenland Ice Sheet, now in HD

    NASA Astrophysics Data System (ADS)

    Howat, I. M.; Noh, M. J.; Porter, C. C.; Morin, P. J.; Herried, B.

    2014-12-01

    We are constructing very-high resolution (2 m of the margin, 10 m of the interior) Digital Elevation Model (DEM) and orthoimage mosaics of the the Greenland Ice Sheet from stereoscopic-mode satellite imagery acquired by the Worldview constellation and archived at the Polar Geospatial Center. The DEMs are constructed with the fully-automated Surface Extraction from TIN-based Search Minimization (SETSM) software developed by Ohio State University specifically for DEM extraction over high latitude terrains. The SETSM algorithm features an iterative process for correcting biases in the imagery geolocation information, improving DEM success over low-contrast and repetitively-textured surfaces such as snow and mountain shadows. The imagery are orthorectified using the corresponding DEM and individual orthoimages and DEMs are mosaiced into continuous tiles of coverage. To facilitate change detection, each pixel contains an acquisition date stamp and a flag indicating if the DEM pixel was measured or interpolated. The data are openly available online with registration at http://www.pgc.umn.edu/elevation/stereo . Here we present the Greenland DEM and orthoimage mosaics with examples of applications and comparisons to existing datasets. We compare the DEM's to coincident laser altimeter measurements to examine accuracies and potential biases, as well as discuss the feasibility of merging the DEMs with coordinated laser altimeter surveys to improve the spatial coverage of high-precision elevation data.

  4. NuukBasic - Climate effects monitoring in low arctic Greenland

    NASA Astrophysics Data System (ADS)

    Aastrup, P.; Nymand, J.; Raundrup, K.; Tamstorf, M. P.; Forchhammer, M. C.; Schmidt, N. M.; Lauridsen, T. L.

    2009-12-01

    The climate effects research program in Zackenberg in high arctic Greenland got a counterpart in Nuuk in low arctic West Greenland in 2007. The programme NuukBasic is described and, for the first time, results will presented from several of the monitoring components (Table 1). In particular, we focus on changes in plant phenology, vegetation greenness, graded effects of UVB radiation and lake ecology. Results are compared and contrasted concurrent changes at the high arctic site Zackenberg in Northeast Greenland.Biological Monitoring elements in NuukBasis

  5. Winter Camp: A Blog from the Greenland Summit, Part II

    NASA Technical Reports Server (NTRS)

    Koenig, Lora

    2009-01-01

    An earlier issue presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA s Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit.

  6. Greenland Fracture Zone-East Greenland Ridge(s) revisited: Indications of a C22-change in plate motion?

    NASA Astrophysics Data System (ADS)

    DøSsing, A.; Funck, T.

    2012-01-01

    Changes in the lithospheric stress field, causing axial rift migration and reorientation of the transform, are generally proposed as an explanation for anomalously old crust and/or major aseismic valleys in oceanic ridge-transform-ridge settings. Similarly, transform migration of the Greenland Fracture Zone and separation of the 200-km-long, fracture-zone-parallel continental East Greenland Ridge from the Eurasia plate is thought to be related to a major change in relative plate motions between Greenland and Eurasia during the earliest Oligocene (Chron 13 time). This study presents a reinterpretation of the Greenland Fracture Zone - East Greenland Ridge based on new and existing geophysical data. Evidence is shown for two overstepping ridge segments (Segments A and B) of which Segment A corresponds to the already known East Greenland Ridge while Segment B was not detected previously. Interpretation of sonobuoy data and revised modeling of existing OBS data across Segment B indicate a continental composition of the segment. This interpretation is supported by magnetic anomaly data. The Segments A and B are bounded by portions of the Greenland Fracture Zone with a distinct ˜10° difference in strike. This is suggested to relate to an early episode of transform migration and reorientation of the lithospheric stress field around Chron 22 time, i.e., shortly after the Eocene breakup in the northern NE Atlantic. These findings contradict with previous interpretations of the fracture zone, which infer simple pre-C13 strike-slip kinematics.

  7. Three Millennia of Southwestern North American Dustiness and Future Implications

    PubMed Central

    Routson, Cody C.; Overpeck, Jonathan T.; Woodhouse, Connie A.; Kenney, William F.

    2016-01-01

    Two sediment records of dust deposition from Fish Lake, in southern Colorado, offer a new perspective on southwest United States (Southwest) aridity and dustiness over the last ~3000 years. Micro scanning X-ray fluorescence and grain size analysis provide separate measures of wind-deposited dust in the lake sediment. Together these new records confirm anomalous dustiness in the 19th and 20th centuries, associated with recent land disturbance, drought, and livestock grazing. Before significant anthropogenic influences, changes in drought frequency and aridity also generated atmospheric dust loading. Medieval times were associated with high levels of dustiness, coincident with widespread aridity. These records indicate the Southwest is naturally prone to dustiness. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape, the Southwest will likely become dustier, driving negative impacts on snowpack and water availability, as well as human health. PMID:26886350

  8. Three Millennia of Southwestern North American Dustiness and Future Implications.

    PubMed

    Routson, Cody C; Overpeck, Jonathan T; Woodhouse, Connie A; Kenney, William F

    2016-01-01

    Two sediment records of dust deposition from Fish Lake, in southern Colorado, offer a new perspective on southwest United States (Southwest) aridity and dustiness over the last ~3000 years. Micro scanning X-ray fluorescence and grain size analysis provide separate measures of wind-deposited dust in the lake sediment. Together these new records confirm anomalous dustiness in the 19th and 20th centuries, associated with recent land disturbance, drought, and livestock grazing. Before significant anthropogenic influences, changes in drought frequency and aridity also generated atmospheric dust loading. Medieval times were associated with high levels of dustiness, coincident with widespread aridity. These records indicate the Southwest is naturally prone to dustiness. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape, the Southwest will likely become dustier, driving negative impacts on snowpack and water availability, as well as human health. PMID:26886350

  9. Crustal structure of the Central-Eastern Greenland: results from the TopoGreenland refraction profile

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Thybo, Hans

    2014-05-01

    Until present, seismic surveys have only been carried out offshore and near the coasts of Greenland, where the crustal structure is affected by oceanic break-up. We present the deep seismic structure of the crust of the interior of Greenland, based on the new and the only existing so far seismic refraction/wide-angle reflection profile. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass, made acquisition of geophysical data logistically complicated. The profile extends 310 km inland in E-W direction from the approximate edge of the stable ice cap near the Scoresby Sund across the center of the ice cap. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Given that the data acquisition was affected by the thick ice sheet, we questioned the quality of seismic records in such experiment setup. We have developed an automatic routine to check the amplitudes and spectra of the selected seismic phases and to check the differences/challenges in making seismic experiments on ice and the effects of ice on data interpretation. Using tomographic inversion and forward ray tracing modelling we have obtained the two-dimensional velocity model down to a 50 km depth. The model shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western part of the profile to 40 km in its eastern part. Relatively high lower crustal velocities (Vp 6.8 - 7.3 km/s) in the western part of the TopoGreenland profile may result from past collision tectonics or, alternatively, may be related to the speculated passage of the Iceland mantle plume. Comparison of our results

  10. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors