Note: This page contains sample records for the topic space citris mission from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Space Missions  

NSDL National Science Digital Library

With three levels to choose from on each page - beginner, intermediate or advanced - this site provides in formation on past and current exploration ideas and achievements. The advances science has made in the space exploration area, such as having a permanent space station in space and the hundreds of probes, satellite, and space shuttles that have been launched. Advanced telescopes have given scientists the opportunity to see far beyond we ever imagined, and new explorations are found every day. Also featured are details about the International space station and what kinds of experiments scientists do in outer space.

Russell, Randy

2004-05-10

2

Space physics missions handbook  

NASA Technical Reports Server (NTRS)

The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

Cooper, Robert A. (compiler); Burks, David H. (compiler); Hayne, Julie A. (editor)

1991-01-01

3

Space Astrometry Missions  

NASA Astrophysics Data System (ADS)

The successful hipparcos mission has brought, and proved the validity of, a new observational concept to achieve absolute measurements of star positions in space. Only five years after the final publication of the results there are now four astrometry missions scheduled for the next decade, three of which appearing as the natural heirs of this pioneering mission. Space astrometry missions share a certain number of common features imposed by their observational principles and their scientific goals. The first part of this paper attempts to show how the objectives put severe constraints on the design and that this can be investigated with a fairly general approach. The German mission diva is then detailed as an illustration (gaia being considered elsewhere in this volume). In the last section few words are added about fame and simfollowed by global comparisons of these missions and their scientific returns.

Mignard, F.; Roeser, S.

4

Dosimetry during space missions  

NASA Technical Reports Server (NTRS)

Comparative radiation hazards due to various sources of radiation in several prominent manned space missions are surveyed, along with techniques for coping with the hazards. Cosmic radiation of solar and galactic origin, and Van Allen belt radiation, are the major hazards outside the earth's geomagnetic shield, and were a major problem in the Apollo missions. The Skylab missions, while within the geomagnetic field, were subject to extensive exposure to the trapped radiation belts (Van Allen belts), while the Soyuz-Apollo test project involved orbiting at a lower altitude, with lower exposure. No solar particle bursts affected Apollo missions, and the Solar Particle Alert Network devised to help cope with the problem is described. Dosimetry practices and devices are described. Radiation experience and dose readings logged with the various missions are reported.

Bailey, J. V.

1976-01-01

5

Low Cost Mission Operations Workshop. [Space Missions  

NASA Technical Reports Server (NTRS)

The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

1994-01-01

6

Space mission planning and operations  

Microsoft Academic Search

3 ISTRAC Center of ISRO at Bangalore 560 058, India Indian Space Research Organization successfully car- ried out more than 40 space missions, during the last four decades, in the area of space sciences, spacecraft tech- nologies, space applications and launch vehicle tech- nologies. Mission planning and mission design are the most important multi-disciplinary elements in realiz- ing these objectives.

V. Adimurthy; M. Y. S. Prasad; S. K. Shivakumar

7

Space missions and planetary ephemerides  

NASA Astrophysics Data System (ADS)

In this talk, we will discuss the evolution of the last planetary ephemerides and their implications on the development and preparation of space missions.We will show how the planetary ephemerides are an important part of the space missions preparation and requirements. We will give examples as the Mars missions, the Mercury Bepi- Colombo mission,or the GAIA mission. In the other hand, we will show how the space missions data are a key point not only for the construction of new planetary ephemeris, but also for a better understanding of the solar system in its all. Thanks to space mission tracking data, it became then possible to have, for example, a good estimation of the sun oblatness, to compute accurately asteroid masses and even to test general relativity.

Fienga-Schultheis, A.; Laskar, J.; Manche, H.; Gastineau, M.

2007-08-01

8

Space missions to comets  

NASA Technical Reports Server (NTRS)

The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

Neugebauer, M. (editor); Yeomans, D. K. (editor); Brandt, J. C. (editor); Hobbs, R. W. (editor)

1979-01-01

9

The AGILE space mission  

NASA Astrophysics Data System (ADS)

AGILE is an Italian Space Agency mission dedicated to the exploration of the gamma-ray Universe. The AGILE, very innovative instrument, combines for the first time a gamma-ray imager (sensitive in the range 30 MeV 50 GeV) and a hard X-ray imager (sensitive in the range 18 60 keV). An optimal angular resolution and very large fields of view are obtained by the use of state-of-the-art Silicon detectors integrated in a very compact instrument. AGILE was successfully launched on April 23, 2007 from the Indian base of Sriharikota and was inserted in an optimal low-particle background equatorial orbit. AGILE will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE Cycle-1 pointing program started on 2007 December 1, and is open to the international community through a Guest Observer Program.

Tavani, M.; Barbiellini, G.; Argan, A.; Bulgarelli, A.; Caraveo, P.; Chen, A.; Cocco, V.; Costa, E.; de Paris, G.; Del Monte, E.; Di Cocco, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Evangelista, Y.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Longo, F.; Marisaldi, M.; Mastropietro, M.; Mauri, F.; Mereghetti, S.; Morelli, E.; Morselli, A.; Pacciani, L.; Pellizzoni, A.; Perotti, F.; Picozza, P.; Pontoni, C.; Porrovecchio, G.; Prest, M.; Pucella, G.; Rapisarda, M.; Rossi, E.; Rubini, A.; Soffitta, P.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Zambra, A.; Zanello, D.; Giommi, P.; Antonelli, A.; Pittori, C.

2008-04-01

10

Science and Deep Space Missions  

NASA Technical Reports Server (NTRS)

Have you ever wondered about the science goals of various deep space missions? Or why scientists want such seemingly complicated spacecraft and operations scenarios? With a focus on outer planets) this talk will cover the scientific goals and results of several recent and future missions) how scientists approach a requirements flow down) and how the disparate needs of mission engineers and scientists can come together for mission success. It will also touch on several up and coming technologies and how they will change mission architectures in the future.

Simon-Miller, Amy

2011-01-01

11

Urinary albumin in space missions.  

PubMed

Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity). PMID:15002544

Cirillo, Massimo; De Santo, Natale G; Heer, Martina; Norsk, Peter; Elmann-Larsen, Benny; Bellini, Luigi; Stellato, Davide; Drummer, Christian

2002-07-01

12

Space Shuttle Missions Summary  

NASA Technical Reports Server (NTRS)

This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

Bennett, Floyd V.; Legler, Robert D.

2011-01-01

13

Advanced power sources for space missions  

Microsoft Academic Search

Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study

J. G. Jr. Gavin; T. R. Burkes; R. E. English; N. J. Grant; G. L. Kulcinski; J. P. Mullin; K. L. Peddicord; C. K. Purvis; W. J. Sarjeant; J. P. Vandevender

1989-01-01

14

White Label Space GLXP Mission  

NASA Astrophysics Data System (ADS)

This poster presents a lunar surface mission concept and corresponding financing approach developed by the White Label Space team, an official competitor in the Google Lunar X PRIZE. The White Label Space team's origins were in the European Space Agency's ESTEC facility in the Netherlands. Accordingly the team's technical headquarters are located just outside ESTEC in the Space Business Park. The team has active partners in Europe, Japan and Australia. The team's goal is to provide a unique publicity opportunity for global brands to land on the moon and win the prestigious Google Lunar X PRIZE. The poster presents the main steps to achieve this goal, the cost estimates for the mission, describes the benefits to the potential sponsors and supporters, and details the progress achieved to date.

Barton, A.

2012-09-01

15

Space Mission : Y3K  

NASA Astrophysics Data System (ADS)

ESA and the APME are hosting a contest for 10 - 15 year olds in nine European countries (Austria, Belgium, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom). The contest is based on an interactive CD ROM, called Space Mission: Y3K, which explores space technology and shows some concrete uses of that technology in enhancing the quality of life on Earth. The CD ROM invites kids to join animated character Space Ranger Pete on an action-packed, colourful journey through space. Space Ranger Pete begins on Earth: the user navigates around a 'locker room' to learn about synthetic materials used in rocket boosters, heat shields, space suits and helmets, and how these materials have now become indispensable to everyday life. From Earth he flies into space and the user follows him from the control room in the spacecraft to a planet, satellites and finally to the International Space Station. Along the way, the user jots down clues that he or she discovers in this exploration, designing an imaginary space community and putting together a submission for the contest. The lucky winners will spend a weekend training as "junior astronauts" at the European Space Centre in Belgium (20-22 April 2001). They will be put through their astronaut paces, learning the art of space walking, running their own space mission, piloting a space capsule and re-entering the Earth's atmosphere. The competition features in various youth media channels across Europe. In the UK, popular BBC Saturday morning TV show, Live & Kicking, will be launching the competition and will invite viewers to submit their space community designs to win a weekend at ESC. In Germany, high circulation children's magazine Geolino will feature the competition in the January issue and on their internet site. And youth magazine ZoZitDat will feature the competition in the Netherlands throughout February. Space Mission: Y3K is part of an on-going partnership between the ESA's Technology Transfer Programme and APME, following the successful launch of "Coming of Age: plastics and space meeting the challenges to mankind" in October 1999. "Coming of Age" is a report produced by APME that brought the role of plastics in technology transfer to adult consumer audiences across Europe.

2001-01-01

16

Defining Space Mission Architects for the Smaller Missions  

NASA Technical Reports Server (NTRS)

The definition of the Space Mission Architect (SMA) must be clear in both technical and human terms if we expect to train and/or to find people needed to architect the numbers of smaller missions expected in the future.

Anderson, C.

1999-01-01

17

Space Shuttle mission: STS-67  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

1995-01-01

18

Compaction of Space Mission Wastes  

NASA Technical Reports Server (NTRS)

The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

Fisher, John; Pisharody, Suresh; Wignarajah, K.

2004-01-01

19

Interactive Space Education and Space Shuttle Mission 51-L.  

National Technical Information Service (NTIS)

Shuttle mission 51-L launched an interactive promotion of education direct from space. Emphasis on use of actual video scenes of space mission and astronomical phenomena are encouraged as tools in the classroom. Observation and prediction of Earth satelli...

P. D. Maley

1986-01-01

20

Revolutionary Materials for NASA's Space Missions  

Microsoft Academic Search

Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and

R. K. Tripathi; J. W. Wilson; F. A. Cucinotta; J. E. Nealy; M. S. Clowdsley; M.-H. Y. Kim

2002-01-01

21

Future Materials for Space Missions and Industries  

NASA Astrophysics Data System (ADS)

Protection from hazards of radiation has been identified as one of the two biggest problems of NASA. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Studies have been made for various missions. Current technology is adequate for low earth orbit missions. Revolutionary materials need to be developed for career astronauts and deep space missions. The details of this new method and its impact on space missions and other technologies will be discussed.

Tripathi, R. K.; Wilson, J. W.

2004-03-01

22

Space Station Live: Robotic Refueling Mission  

NASA Video Gallery

NASA Public Affairs Officer Dan Huot speaks with Robert Pickle, Robotic Refueling Mission ROBO lead, about the International Space Station demonstration of the tools, technologies and techniques to...

23

Space Mission Human Reliability Analysis (HRA) Project  

NASA Technical Reports Server (NTRS)

The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

Boyer, Roger

2014-01-01

24

NASA Missions Enabled by Space Nuclear Systems  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

Scott, John H.; Schmidt, George R.

2009-01-01

25

STS-38 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

26

NASA mission planning for space nuclear power  

NASA Technical Reports Server (NTRS)

An evaluation is conducted of those aspects of the Space Exploration Initiative which stand to gain from the use of nuclear powerplants. Low-power, less than 10 kW(e) missions in question encompass the Comet Rendezvous Asteroid Flyby, the Cassini mission to Saturn, the Mars Network mission, a solar probe, the Mars Rover Sample Return mission, the Rosetta comet nucleus sample return mission, and an outer planets orbiter/probe. Reactor power yielding 10-100 kW(e) can be used by advanced rovers and initial lunar and Martian outposts, as well as Jovian and Saturnian grand tours and sample-return missions.

Bennett, Gary L.; Schnyer, A. D.

1991-01-01

27

Revolutionary Materials for NASA's Space Missions  

NASA Astrophysics Data System (ADS)

Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Studies have been made for L2, Lunar, Mars and Mars/Venus swing-by reference missions. For all these missions, material trades have been studied. And, as an example, a crew age trade for Mars/Venus swing-by mission has been done. The career blood forming organ (BFO) constraints are more stringent and play a critical role in the optimization procedure. The short missions to L2 and the Moon mainly need to deal with the possibility of solar particle events. It is found that improved shield materials will be required to enable a Mars mission in which middle-aged astronauts can participate. If the age of the astronauts are allowed to be 55 and older then more options are available. Revolutionary materials need to be developed to have younger crewmembers on board to Mars and other long duration missions. The details of this new method and its impact on space missions and other technologies will be discussed.

Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.; Nealy, J. E.; Clowdsley, M. S.; Kim, M.-H. Y.

2002-03-01

28

Mission and space vehicle concepts  

NASA Technical Reports Server (NTRS)

A number of top-level considerations which affect Mars and vehicle selection are discussed. Indications are provided of the nature and severity of the impact of these considerations on missions and vehicles. Various types of missions, such as Mars fly-bys, Mars orbiting and landing mission, and missions to the moons of Mars are identified and discussed. Mission trajectories and opportunities are discused briefly. The different types of vehicles required in a Mars program are also discussed. Discussion includes several potential Earth-to-Orbit (ETO) vehicles, Mars surface vehicles, and 2 types of Orbit-to-Orbit (OTO) vehicles. Indications are provided as to preference for some of the concepts discussed.

Butler, John

1986-01-01

29

Generic mission planning concepts for space astronomy missions  

NASA Technical Reports Server (NTRS)

The past two decades have seen the rapid development of space astronomy, both manned and unmanned, and the concurrent proliferation of the operational concepts and software that have been produced to support each individual project. Having been involved in four of these missions since the '70's and three yet to fly in the present decade, the authors believe it is time to step back and evaluate this body of experience from a macro-systems point of view to determine the potential for generic mission planning concepts that could be applied to future missions. This paper presents an organized evaluation of astronomy mission planning functions, functional flows, iteration cycles, replanning activities, and the requirements that drive individual concepts to specific solutions. The conclusions drawn from this exercise are then used to propose a generic concept that could support multiple missions.

Guffin, O. T.; Onken, J. F.

1993-01-01

30

Space Interferometry Mission: Measuring the Universe  

NASA Technical Reports Server (NTRS)

The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

1991-01-01

31

Space Based Internet Network Emulation for Deep Space Mission Applications  

Microsoft Academic Search

Future space missions will benefit from an evolvable communication infrastructure, which can be built cost effectively over a period of time. This evolvable infrastructure needs to include two way high data rate transfers to support human exploration missions, and asymmetric high data rate links to support scientific missions. For this communication infrastructure to be effective, it needs to be designed

Shaun Endres; Michael Griffith; Behnam Malakooti; Kul Bhasin; Allen Holtz

32

BIOMIMETIC APPROACH TO ADVANCED SPACE MISSIONS  

Microsoft Academic Search

This paper proposes and discusses the use of a biomimetic approach to conceive and design novel advanced space technological systems. The paper analyses the different phases of space missions, namely launch, parking, transfer, landing and exploration, and investigates possible advantages of a biomimetic approach for each of them. Bio-inspired technologies currently used in the space field are pointed out and

Carlo Menon; Tobias Seidl; Michael Broschart

33

Benchmarking Radiation Transport Codes for Space Missions  

Microsoft Academic Search

For long duration and\\/or deep space human missions, protection from severe space radiation exposure is a challenging design constraint and may be a potential limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft

Ram Tripathi; John Wilson; Larry Townsend; Tony Gabriel; Larry Pinsky; Tony Slaba

2008-01-01

34

Symbiotic structures to significantly enhance space missions  

Microsoft Academic Search

The Department of Defense is actively pursuing a Responsive Space capability that will dramatically reduce the cost and time associated with getting a payload into space. In order to enable that capability, our space systems must be modular and flexible to cover a wide range of missions, configurations, duty cycles, and orbits. This places requirements on the entire satellite infrastructure:

Andrew D. Williams; Millan Diaz-Aguado; Brandon J. Arritt

2007-01-01

35

STS-81 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-81 was the fifth of nine planned missions to dock with the Russian Mir Space Station and the fourth crewmember transfer mission. The double Spacehab module was carried for the second time, and it housed experiments that were performed by the crew and logistics equipment that was transferred to the Mir.

Fricke, Robert W., Jr.

1997-01-01

36

Radiation Shielding Analysis for Deep Space Missions  

Microsoft Academic Search

An environment for radiation shielding analysis for manned deep space mission scenarios has been developed. The analysis is performed by dividing a mission scenario into three possible different phases, namely the interplanetary cruise phase, the final planetary approach and orbit insertion, and the surface phase. In the first phase only Galactic Cosmic Rays and Solar Events particles are used, in

Giovanni de Angelis; Martha S. Clowdsley; John E. Nealy; Robert C. Singleterry; Ram K. Tripathi; John W. Wilson

2003-01-01

37

Space Mission Analysis and Design. Second edition  

Microsoft Academic Search

The goal of this second edition is siniflar to the first: to allow you to begin with a ``blank sheet of paper`` and design a space mission to meet a set of broad, often poorly defined, objectives. You should be able to define the mission in sufficient detail to identify principal drivers and make a preliminary assessment of overan performance,

W. J. Larson; J. R. Wertz

1992-01-01

38

Advanced automation for space missions: Technical summary  

NASA Technical Reports Server (NTRS)

Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

1980-01-01

39

Future Materials for Space Missions and Industries  

Microsoft Academic Search

Protection from hazards of radiation has been identified as one of the two biggest problems of NASA. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase

R. K. Tripathi; J. W. Wilson

2004-01-01

40

Optimization of mission design for constrained libration point space missions  

Microsoft Academic Search

Designing space missions to remain in the vicinity of an equilibrium point in a three-body system is both useful and more difficult than for a two-body system. Because of the rotation of the system, there is not just one point of equilibrium, but rather five points where the gravitational and centripetal accelerations exactly cancel. These points are called libration points

Samantha I. Infeld

2006-01-01

41

Optical data storage in space missions  

NASA Astrophysics Data System (ADS)

Optical mass storage of digital data (CD-ROM, WORM) for use in space missions was assessed. Upgrading of commercial devices seems feasible, while ground support can be done by common equipment and software.

Joosten, L. J. M.; Sijmonsma, R. M. M.; Visser, F. B.; Reesink, W. E.

1987-03-01

42

National Space Transportation Systems Program Mission Report.  

National Technical Information Service (NTIS)

The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant...

M. A. Collins A. D. Aldrich G. S. Lunney

1984-01-01

43

Space Interferometry Mission Instrument Mechanical Layout  

NASA Technical Reports Server (NTRS)

The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).

Aaron, K.; Stubbs, D.; Kroening, K.

2000-01-01

44

Eighteenth Space Simulation Conference: Space Mission Success Through Testing  

NASA Technical Reports Server (NTRS)

The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'

Stecher, Joseph L., III (compiler)

1994-01-01

45

Nuclear Power for deep space missions  

NASA Astrophysics Data System (ADS)

Nuclear Power enables exploratory missions into deep space, where solar insolation is too weak for Solar Power to be effective. Radioisotope powered deep space platforms such as Voyager have been used for many years. Fission powered satellite have been flown also, mainly by the USSR. However these are low power systems. The high powered fission option is developing in the USA. This offers much more power to mission and platform designers. It will enhance the electric propulsion option for deep space platforms and allow much more power intensive payloads to be deployed. This paper reviews the history of Space Nuclear Reactors and describes emerging systems.

Gardner, F. J.

1994-06-01

46

Benchmark Problems for Space Mission Formation Flying  

NASA Technical Reports Server (NTRS)

To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

2003-01-01

47

The Spitzer Space Telescope Mission  

Microsoft Academic Search

The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for

M. W. Werner; T. L. Roellig; F. J. Low; G. H. Rieke; M. Rieke; W. F. Hoffmann; E. Young; J. R. Houck; B. Brandl; G. G. Fazio; J. L. Hora; R. D. Gehrz; G. Helou; B. T. Soifer; J. Stauffer; J. Keene; P. Eisenhardt; D. Gallagher; T. N. Gautier; W. Irace; C. R. Lawrence; L. Simmons; J. E. Van Cleve; M. Jura; E. L. Wright; D. P. Cruikshank

2004-01-01

48

The spitzer space telescope mission  

Microsoft Academic Search

The Spitzer Space Telescope, NASA’s Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for

M. W. Werner

2005-01-01

49

MDP: Reliable File Transfer for Space Missions  

NASA Technical Reports Server (NTRS)

This paper presents work being done at NASA/GSFC (Goddard Space Flight Center) by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP (User Datagram Protocol)-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990s, MDP is now in daily use by both the US Post Office and the DoD (Department of Defense). This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Nack Oriented Reliable Multicast) is in the process of becoming an IETF (Internet Engineering Task Force) standard.

Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

2002-01-01

50

Hubble Space Telescope Servicing Mission 3A  

NASA Technical Reports Server (NTRS)

The Hubble Space Telescope's purpose is to spend 20 years probing the farthest and faintest reaches of the cosmos. Crucial to fulfilling this objective is a series of on-orbit servicing missions. Hubble was placed in orbit on April 25, 1990, by the shuttle Discovery and subsequent servicing followed in December 1993 and February 1997. The third in the series of planned servicing missions for the Hubble Space Telescope was scheduled for June 2000. This third Servicing Mission has been separated into two flights. The first of these flights, Servicing Mission 3A, is scheduled for December 1999, and the second, Servicing Mission 3B, is scheduled for 2001. The fourth Servicing Mission is scheduled for 2003 with a "close-out" Mission in 2010. Three instruments are currently in active scientific use on Hubble - the Wide Field and Planetary Camera 2, the Space Telescope Imaging Spectrograph, and Fine Guidance Sensor I R, which has been designated as the prime FGS for astrometric science. Other instrument bays are occupied by the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), which is now dormant due to the depletion of its solid nitrogen cryogen, the Faint Object Camera, which has been decommissioned, and the corrective optical device called COSTAR, which is no longer needed.

1999-01-01

51

Responsive access to space: Space Test Program Mission S26  

Microsoft Academic Search

Space Test Program Mission S26 (STP-S26) is the twenty sixth dedicated small launch vehicle mission of the Department of Defense Space Test Program. STP-S26 extends previous standard interface development efforts, implementing a number of capabilities aimed at enabling responsive access to space for small experimental satellites and payloads. The STP-S26 Minotaur-IV launch vehicle is configured in a Multi-Payload Adaptor configuration

H. Borowski; Kenneth Reese; M. Motola

2010-01-01

52

STS-36 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the...

J. E. Mechelay D. M. Germany L. S. Nicholson

1990-01-01

53

STS-35 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle...

D. W. Camp D. M. Germany L. S. Nicholson

1991-01-01

54

STS-38 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle,...

D. W. Camp D. M. Germany L. S. Nicholson

1991-01-01

55

STS-31 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, t...

D. W. Camp D. M. Germany L. S. Nicholson

1990-01-01

56

Space Interferometry Mission starlight and metrology subsystems  

Microsoft Academic Search

The Space Interferometry Mission (SIM), planned for launch in 2009, will measure the positions of celestial objects to an unprecedented accuracy of 4.0 microarcseconds. In order to achieve this accuracy, which represents an improvement of almost two orders of magnitude over previous astrometric measurements, a ten-meter baseline interferometer will be flown in space. NASA challenges JPL and its industrial partners,

Lawrence L. Ames; Stephanie D. Barrett; Stuart J. Calhoon; Eric T. Kvamme; James E. Mason; Jeffrey M. Oseas; Mark Pryor; David B. Schaechter; David M. Stubbs

2003-01-01

57

MDP: Reliable File Transfer for Space Missions  

NASA Technical Reports Server (NTRS)

This paper presents work being done at NASA/GSFC by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990's, MDP is now in daily use by both the US Post Office and the DoD. This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Neck Oriented Reliable Multicast) is in the process of becoming an IETF standard.

Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

2002-01-01

58

Space Shuttle Mission 41-C Official crew photo  

NASA Technical Reports Server (NTRS)

Space Shuttle Mission 41-C Official crew photo. From left to right: Robert Crippen, crew commander; Terry Hart, mission specialist; James van Hoften, mission specialist; George Nelson, mission specialist; and Francis (Dick) Scobee, pilot.

1983-01-01

59

Mission Success Driven Space System Sparing Analysis  

NASA Technical Reports Server (NTRS)

Among the maintenance resources, the spare parts are the most difficult to predict. Items in the space systems are very different from the point of view of reliability, cost, weight, volume, etc. The different combinations of spares make different contribution to the: mission success, spare investment, volume occupied and weight. Hence, the selection of spares for a mission planned must take into account all of these features. This paper presents the generic mission success driven sparing model developed, for the complex space systems. The mathematical analysis used in the model enables the user to select the most suitable selection of the spare package for the mission planned. The illustrative examples presented clearly demonstrate the applicability and usefulness of the model introduced.

Knezevic, J.

1995-01-01

60

Optical communication for space missions  

NASA Technical Reports Server (NTRS)

Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.

Firtmaurice, M.

1991-01-01

61

STS-80 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

Fricke, Robert W., Jr.

1997-01-01

62

A multi-mission space avionics architecture  

Microsoft Academic Search

As the budget for the space industry is dwindling, a reusable avionics architecture applicable across multiple missions is urgently needed to reduce the development and production costs of flight projects. This paper presents a multi-mission avionics architecture which employs interface standards extensively, so that avionics systems can be built rapidly by assembling subsystems and instruments in a plug-and-play manner. The

Savio Chau; Kim R. Reh; Brian Cox; J. N. Barfield; W. L. Lockhart; M. L. McLelland

1996-01-01

63

Sustainable and Autonomic Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

2006-01-01

64

Blast-Off on Mission: SPACE  

NASA Technical Reports Server (NTRS)

Part of NASA's mission is to inspire the next generation of explorers. NASA often reaches children - the inventors of tomorrow - through teachers, reporters, exhibit designers, and other third-party entities. Therefore, when Walt Disney Imagineering, the creative force behind the planning, design, and construction of Disney parks and resorts around the world, approached NASA with the desire to put realism into its Mission: SPACE project, the Agency was happy to offer its insight.

2003-01-01

65

Robust Preliminary Space Mission Design under Uncertainty  

Microsoft Academic Search

\\u000a This chapter presents the design of a space mission at a preliminary stage, when uncertainties are high. At this particular\\u000a stage, an insufficient consideration for uncertainty could lead to a wrong decision on the feasibility of the mission. Contrary\\u000a to the traditional margin approach, the methodology presented here explicitly introduces uncertainties in the design process.\\u000a The overall system design is

Massimiliano Vasile; Nicolas Croisard

66

Procedure Visualization to Augment Space Mission Training  

NASA Technical Reports Server (NTRS)

The Intelligent Virtual Station (IVS) has been developed by the Smart Systems Research Laboratory at the NASA Ames Research Center as a solution to some of the training and operations challenges faced by organizations like the International Space Station training facilities and Mission Control engineering teams. At present, astronaut crews are constrained by limited access to physical mockups, which themselves have a built-in 1-g limitation. Mission operations team are faced with the daunting task of controlling the operations and maintenance of an ever-changing Station in space. Many operations teams create and follow textual procedures without the ability to visualize the given actions or alternatives. The NS allows users to easily generate and view procedures to enhance training and operations. Because training and mission operations are of crucial importance to the International Space Station and other similarly sophisticated programs, this paper is focused on the NS integrated procedure tool.

McIntosh, Dawn M.; Elcott, Sharif; Betts, Bradley J.; Mah, Robert W.

2003-01-01

67

Mars mission effects on Space Station evolution  

NASA Technical Reports Server (NTRS)

The permanently manned Space Station scheduled to be operational in low earth by the mid 1990's, will provide accommodations for science, applications, technology, and commercial users, and will develop enabling capabilities for future missions. A major aspect of the baseline Space Station design is that provisions for evolution to greater capabilities are included in the systems and subsystems designs. User requirements are the basis for conceptual evolution modes or infrastructure to support the paths. Four such modes are discussed in support of a Human to Mars mission, along with some of the near term actions protecting the future of supporting Mars missions on the Space Station. The evolution modes include crew and payload transfer, storage, checkout, assembly, maintenance, repair, and fueling.

Askins, Barbara S.; Cook, Stephen G.

1989-01-01

68

Advanced power sources for space missions  

NASA Technical Reports Server (NTRS)

Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

1989-01-01

69

STS-31 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

70

Hubble Space Telescope - First Servicing Mission  

NASA Technical Reports Server (NTRS)

Space Shuttle mission STS-61 was the first of several planned servicing missions for HST, intended to periodically replace failed components and upgrade scientific instruments with improved versions to keep the telescope viable and productive throughout its planned 15-year lifetime. This First Servicing Mission was also intended to correct several design flaws that were detected shortly after the launch of HST. There were three overall mission objectives for the STS-61 repair mission: 1) To Restore the Planned Scientific Capabilities: One complexity of the First Servicing Mission was the necessity for adding optical elements in the light path to correct the spherical aberration. These corrective optics were required to provide the quantitative science capability to enable key scientific programs to be carried out as originally planned. The addition of the COSTAR and the installation of WFPC2 both contributed to recovering these capabilities. 2) To Restore the Reliability of Vehicle Systems: Failed or degraded components had depleted some of the original subsystem redundancy, which had to be restored to allow continued science operations until the next servicing mission in 1997. Anomalous components that required servicing included the solar arrays, gyroscope sensing units, gyroscope electronics, magnetometers, solar array drive electronics, and electrical fuses. 3) To Validate the On-Orbit Servicing Concept for HST: Validation of the concept of on-orbit servicing as the way to achieve HST's full 15-year life was required to provide a foundation for future servicing missions.

1994-01-01

71

STS-61 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

Fricke, Robert W., Jr.

1994-02-01

72

Recent Applications of Space Weather Research to NASA Space Missions  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Jospeh I.; Parker, L. Neergaard; Suggs, Robert M.

2013-01-01

73

Electronics for Low Temperature Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

2007-01-01

74

STS-41 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

75

STS-43 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

Fricke, Robert W.

1991-01-01

76

STS-59 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1994-01-01

77

Space Interferometry Mission instrument mechanical layout  

Microsoft Academic Search

The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4×10-6 are sec (about 1 billionth of a degree). In order to achieve this accuracy, which represents an improvement of almost two orders of magnitude over previous astrometric measurements, a ten-meter baseline interferometer will be flown in space. Starlight

K. M. Aaron; D. M. Stubbs; K. Kroening

2000-01-01

78

National Space Transportation Systems Program Mission Report.  

National Technical Information Service (NTIS)

The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the ...

M. A. Collins A. D. Aldrich G. S. Lunney

1984-01-01

79

(abstract) Space Communications Technologies for Interstellar Missions  

NASA Technical Reports Server (NTRS)

This paper will examine candidate communications architectures for potential interstellar missions in an effort to determine feasibility for such links and to identify likely technology advances that will be needed to support such endeavors. Examination of this challenging and futuristic communications problem may serve to guide the direction and advancement of space telecommunications technologies useful for other nearer-term applications.

Lesh, James R.; Ruggier, Charles J.; Cesarone, Robert J.

1994-01-01

80

GEANT4 Applications for NASA Space Missions  

Microsoft Academic Search

Geant4 is nowadays widely adopted as the simulation engine for NASA space missions. We will review three major application areas of Geant4: apparatus simulation, including pre-launch design and post-launch analysis; planetary scale simulation, including radiation spectra; micro-dosimetry simulation, including single-event effects on electronics components.

Makoto Asai; Robert A. Reed; Robert A. Weller

2006-01-01

81

Optical Communications for Extreme Deep Space Missions  

NASA Technical Reports Server (NTRS)

A recent study of deep space telecommunications systems was performed in support of NASA's Mission to the Solar System planing activity. The results show that high bandwidth communications (greater than 1Mbps) are feasible at high-value planetary targets provided there are investments in the ground and spacecraft communication infrastructure.

Lesh, James; Deutsch, Leslie; Edwards, Charles

1996-01-01

82

STS-62 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

Fricke, Robert W., Jr.

1994-01-01

83

STS-62 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

Fricke, Robert W., Jr.

1994-05-01

84

ISS Update: Communication Delays During Deep Space Missions  

NASA Video Gallery

NASA Public Affairs Officer Brandi Dean talks with Jeremy Frank, Autonomous Mission Operations Test Principal Investigator, about how communication delays will affect future deep space missions and...

85

STS-57 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.

Fricke, Robert W., Jr.

1993-01-01

86

Anaerobic digestion of space mission wastes.  

PubMed

The technical feasibility of applying leachbed high-solids anaerobic digestion for reduction and stabilization of the organic fraction of solid wastes generated during space missions was investigated. This process has the advantages of not requiring oxygen or high temperature and pressure while producing methane, carbon dioxide, nutrients, and compost as valuable products. Anaerobic biochemical methane potential assays run on several waste feedstocks expected during space missions resulted in ultimate methane yields ranging from 0.23 to 0.30 L g-1 VS added. Modifications for operation of a leachbed anaerobic digestion process in space environments were incorporated into a new design, which included; (1) flooded operation to force leachate through densified feedstock beds; and (2) separation of biogas from leachate in a gas collection reservoir. This mode of operation resulted in stable performance with 85% conversion of a typical space solid waste blend, and a methane yield of 0.3 Lg per g VS added after a retention time of 15 days. These results were reproduced in a full-scale prototype system. A detailed analysis of this process was conducted to design the system sized for a space mission with a six-person crew. Anaerobic digestion compared favorably with other technologies for solid waste stabilization. PMID:16784202

Chynoweth, D P; Owens, J M; Teixeira, A A; Pullammanappallil, P; Luniya, S S

2006-01-01

87

Decoder synchronization for deep space missions  

NASA Technical Reports Server (NTRS)

The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

1994-01-01

88

STS-58 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-58 Space Shuttle Program Mission Report provides a summary of the payload activities as well as the orbiter, external tank (ET), solid rocket booster (SRB) and redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) subsystems performance during the fifty-eighth mission of the space shuttle program and fifteenth flight of the orbiter vehicle Columbia (OV-102). In addition to the orbiter, the flight vehicle consisted of an ET (ET-57); three SSME's, which were designated as serial numbers 2024, 2109, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-061. The lightweight RSRM's that were installed in each SRB were designated as 360L034A for the left SRB and 360W034B for the right SRB.

Fricke, Robert W., Jr.

1994-01-01

89

Internet Data Delivery for Future Space Missions  

NASA Technical Reports Server (NTRS)

This paper presents work being done at NASA/GSFC (Goddard Space Flight Center) on applying standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols (IP) can provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, and constellations of spacecraft. A primary component of this work is to design and demonstrate automated end-to-end transport of files in a dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. These functions and capabilities will become increasingly significant in the years to come as both Earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively expensive. This paper describes how an IP-based communication architecture can support existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end file transfers all the way from instruments to control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with data rates and downlink capabilities from 300 Kbps to 4 Mbps. Many examples are based on designs currently being investigated for the Global Precipitation Measurement (GPM) mission.

Rash, James; Hogie, Keith; Casasanta, Ralph; Hennessy, Joseph F. (Technical Monitor)

2002-01-01

90

National Space Transportation Systems Program mission report  

NASA Technical Reports Server (NTRS)

The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

1984-01-01

91

STS-71, Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

Frike, Robert W., Jr.

1995-01-01

92

STS-78 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

93

Internet Data Delivery for Future Space Missions  

NASA Technical Reports Server (NTRS)

Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and as the need increases for more network-oriented mission operations. Another element of increasing significance will be the increased cost effectiveness of designing, building, integrating, and operating instruments and spacecraft that will come to the fore as more missions take up the approach of using commodity-level standard communications technologies. This paper describes how an IP (Internet Protocol)-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

Rash, James; Casasanta, Ralph; Hogie, Keith; Hennessy, Joseph F. (Technical Monitor)

2002-01-01

94

Planetary mission applications for space storable propulsion  

NASA Technical Reports Server (NTRS)

This paper presents the results of a study to compare space-storable with earth-storable spacecraft propulsion systems, space-storable with solid kick stages, and several space-storable development options on the basis of benefits received for cost expenditures required. The results show that, for a launch vehicle with performance less than that of Shuttle/Centaur, space-storable spacecraft propulsion offers an incremental benefit/cost ratio between 1.0 and 5.5 when compared to earth-storable systems for three of the four missions considered. In the case of VOIR 83, positive benefits were apparent only for a specific launch vehicle-spacecraft propulsion combination. A space-storable propulsion system operating at thrust of 600 lbf, 355 units of specific impulse, and with blowdown pressurization, represents the best choice for the JO 81 mission on a Titan/Centaur if only spacecraft propulsion modifications are considered. For still higher performance, a new solid-propellant kick stage with space-storable spacecraft propulsion is preferred over a system which uses space-storable propellants for both the kick stage and the spacecraft system.

Chase, R. L.; Cork, M. J.; Young, D. L.

1974-01-01

95

Manned Mars missions using propellant from space  

SciTech Connect

.A recent discovery (8/14/92) of a near-earth object containing materials potentially useful for space activities could perhaps change the entire way humans access and operate in space. A near-Earth object ([number sign]4015, 1979 VA, comet Wilson-Harrington) contains water ice that could be used for space propulsion. In addition, this type of object may contain structural and lifesustaining materials (complex hydrocarbons, ammonia and/or bound nitrogen compounds) for space structures, manned planetary bases, or planetary surface terraforming. The retrieval and utilization of rocket propellant from near-Earth objects, for manned Mars missions in particular, has been investigated and the benefits of this scenario to over performing a Mars mission with terrestrial propellants have been documented. The results show water extracted from these objects and retrieved to Earth orbit for use in going to Mars may actually enable manned Mars exploration by reducing the number of Heavy Lift Launch Vehicle (HLLV) flights or eliminating the need for HLLV's altogether. The mission can perhaps be supported with existing launch vehicles and not required heavy lift capability. Also, the development of a nuclear thermal rocket for this alternate approach may be simplified substantially by reducing the operating temperature required.

Zuppero, A.C.; Olson, T.S. (Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-3413 (United States)); Redd, L.R. (Department of Energy, Office of Space, Idaho Field Office, Idaho Falls, Idaho 83402 (United States))

1993-01-10

96

Space Shuttle Mission Sequence-Illustration  

NASA Technical Reports Server (NTRS)

This diagram illustrates the Space Shuttle mission sequence. The Space Shuttle was approved as a national program in 1972 and developed through the 1970s. Part spacecraft and part aircraft, the Space Shuttle orbiter, the brain and the heart of the Space Transportation System (STS), required several technological advances, including thousands of insulating tiles able to stand the heat of reentry over the course of many missions, as well as sophisticated engines that could be used again and again without being thrown away. The airplane-like orbiter has three main engines, that burn liquid hydrogen and oxygen stored in the large external tank, the single largest structure in the Shuttle. Attached to the tank are two solid rocket boosters that provide the vehecile with most of the thrust needed for liftoff. Two minutes into the flight, the spent solids drop into the ocean to be recovered and refurbished for reuse, while the orbiter engines continue burning until approximately 8 minutes into the flight. After the mission is completed, the orbiter lands on a runway like an airplane.

1975-01-01

97

The James Webb Space Telescope Mission  

NASA Technical Reports Server (NTRS)

The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under development by NASA for launch in 2014. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe, peer through dusty clouds to see AGN environments and stars forming planetary systems at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at wavelength of 2 microns (0.1 arcsec resolution). The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with propellant for 10 years of science operations. The instruments will provide broad- and narrow-band imaging, coronography, and multi-object and integral-field spectroscopy (spectral resolution of 100 to 3,000) across the 1 - 28 micron wavelength range. Science and mission operations will be conducted from the Space Telescope Science Institute in Baltimore, Maryland.

Sonneborn, George

2010-01-01

98

Systems Architecture for Fully Autonomous Space Missions  

NASA Technical Reports Server (NTRS)

The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.

Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)

2002-01-01

99

STS-60 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

Fricke, Robert W., Jr.

1994-01-01

100

Digital communication constraints in prior space missions  

NASA Technical Reports Server (NTRS)

Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this activity is to assist in the set-up of phase noise instrumentation, assist in the process of automated wire bonding, assist in the design and optimization of tunable microwave components, especially phase shifters, based on thin ferroelectric films, and learn how to use commercial electromagnetic simulation software.

Yassine, Nathan K.

2004-01-01

101

Space mechanisms needs for future NASA long duration space missions  

NASA Technical Reports Server (NTRS)

Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

Fusaro, Robert L.

1991-01-01

102

Combatting Managerial Complacency in Space Missions  

NASA Astrophysics Data System (ADS)

Human factors techniques have made significant contributions to the safety of space missions. Physiological models help to monitor crew workload and performance. Empirical studies inform the design of operator interfaces to maximize finite cognitive and perceptual resources. Further progress has been made in supporting distributed situation awareness across multi-national teams and in promoting the resilience of complex, time critical missions. Most of this work has focused on operational performance. In contrast, most space-based mishaps stem from organizational problems and miss-management. In particular, this paper focuses on the dangers of complacency when previous successes are wrongly interpreted as guarantees of future safety. The argument is illustrated by the recent loss of NASA's Nuclear Compton Telescope Balloon; during a launch phase that 'no-one considered to be a potential hazard'. The closing sections argue that all senior executives should read at least one mishap report every year in order to better understand the hazards of complacency.

Johnson, C. W.

2012-01-01

103

The Status Of The Corot Space Mission  

Microsoft Academic Search

The CoRoT space mission has been in orbit for more than 1000 days. It has two main objectives - To search for small-radius traniting exoplanets and asteroseismology with a an unprecedented photometric precision. In both cases the goals have been fulfilled. During 2009, the planet CoRoT-7b have been published, an object with a radius of 1.7 Earth radii and a

Carl Fridlund

2010-01-01

104

High performance techniques for space mission scheduling  

NASA Technical Reports Server (NTRS)

In this paper, we summarize current research at Carnegie Mellon University aimed at development of high performance techniques and tools for space mission scheduling. Similar to prior research in opportunistic scheduling, our approach assumes the use of dynamic analysis of problem constraints as a basis for heuristic focusing of problem solving search. This methodology, however, is grounded in representational assumptions more akin to those adopted in recent temporal planning research, and in a problem solving framework which similarly emphasizes constraint posting in an explicitly maintained solution constraint network. These more general representational assumptions are necessitated by the predominance of state-dependent constraints in space mission planning domains, and the consequent need to integrate resource allocation and plan synthesis processes. First, we review the space mission problems we have considered to date and indicate the results obtained in these application domains. Next, we summarize recent work in constraint posting scheduling procedures, which offer the promise of better future solutions to this class of problems.

Smith, Stephen F.

1994-01-01

105

STS-35 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

106

Critical Need for Radiation Damage Tools for Space Missions  

Microsoft Academic Search

NASA has a new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA, as much as ever, is committed to the safety of the missions and the crew. Exposure from the hazards

Ram Tripathi

2005-01-01

107

Symbiotic structures to significantly enhance space missions  

NASA Astrophysics Data System (ADS)

The Department of Defense is actively pursuing a Responsive Space capability that will dramatically reduce the cost and time associated with getting a payload into space. In order to enable that capability, our space systems must be modular and flexible to cover a wide range of missions, configurations, duty cycles, and orbits. This places requirements on the entire satellite infrastructure: payloads, avionics, electrical harnessing, structure, thermal management system, etc. The Integrated Structural Systems Team at the Air Force Research Laboratory, Space Vehicles Directorate, has been tasked with developing structural and thermal solutions that will enable a Responsive Space capability. This paper details a "symbiotic" solution where thermal management functionality is embedded within the structure of the satellite. This approach is based on the flight proven and structurally efficient isogrid architecture. In our rendition, the ribs serve as fluidic passages for thermal management, and passively activated valves are used to control flow to the individual components. As the paper will explain, our analysis has shown this design to be structurally efficient and thermally responsive to a wide range of potential satellite missions, payloads, configurations, and orbits.

Williams, Andrew D.; Diaz-Aguado, Millan; Arritt, Brandon J.

2007-03-01

108

STS-79 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

Fricke, Robert W., Jr.

1996-01-01

109

STS-39 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

Fricke, Robert W.

1991-01-01

110

Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach  

NASA Technical Reports Server (NTRS)

The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

2011-01-01

111

The SPAce Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

112

Exoplanets and the Space Interferometry Mission  

NASA Astrophysics Data System (ADS)

The Doppler technique has revealed exoplanets with masses as low as 15 MEarth orbiting between 0.03 and 5.5 AU. The distribution of planet masses rises toward the lowest detectable masses and an increasing number of planets reside in larger orbits. The majority of planets reside in non-circular orbits and multiple planet systems are common, often trapped in resonances. The Space Interferometry Mission (SIM) will detect planets with masses less than 10 MEarth orbiting within 2 AU of nearby stars. It will measure the masses and orbits of rocky planets, testing theories of their formation and dynamical evolution in protoplanetary disks. For the closest stars, planets with masses as low as 3 MEarth within 1 AU are detectable at a secure level, and marginal detections of planets of 1 MEarth can be made. SIM will be the first mission to find rocky planets near the habitable zone of nearby stars, allowing follow-up by later imaging and spectroscopic missions, such as the "Terrestrial Planet Finder" and Darwin. Thus, SIM will provide TPF and Darwin a set of target stars enriched in rocky planets, increasing the efficiency of those missions by factors of at least ˜3. Indeed, SIM can dictate the timing of imaging observations by selecting orbital phases when the planet resides outside the diffraction blind spot.

Marcy, G. W.; Fischer, D. A.; McCarthy, C.; Ford, E. B.

2005-10-01

113

Space cryogenic system for SPICA mission  

NASA Astrophysics Data System (ADS)

This paper describes that the feasibility of the next Japanese infrared astronomical SPICA mission is verified in thermal design by numerical analyses and developed technologies. In this advanced cryogenic mission, in order to cool the large primary mirror and focal plane instruments down to 4.5 K for 5 years or longer without cryogen, the mechanical cooling is employed with effective radiant cooling, which compensates the limited cooling capacity of the JT cryocooler for 4.5 K upgraded from that developed for the "JEM/SMILES" mission on the International Space Station. First, thermal design of the telescope is numerically discussed with thermal mathematical models. Some configurations of radiators, shields and solar-array paddles are investigated and compared in technical and mission feasibilities. Next, the development status of the 3He-JT circuit with the Stirling cryocooler for one detector operated at the lowest temperature of 1.7 K is reported. The recent results of experiments give that the breadboard model of the 1.7 K cryocooler successfully exceeds the required cooling capacity of 10mW at 1.7K with small power consumption. Finally, the heat rejection system from those cryocoolers is discussed. As a promising candidate, the loop heat pipe is chosen and suitably designed.

Sugita, Hiroyuki; Nagai, Hiroki; Nakagawa, Takao; Murakami, Hiroshi; Matsumoto, Toshio; Murakami, Masahide; Narasaki, Katsuhiro; Hirabayashi, Masayuki

2004-10-01

114

Training for long duration space missions  

NASA Technical Reports Server (NTRS)

The successful completion of an extended duration manned mission to Mars will require renewed research effort in the areas of crew training and skill retention techniques. The current estimate of inflight transit time is about nine months each way, with a six month surface visit, an order of magnitude beyond previous U.S. space missions. Concerns arise when considering the level of skill retention required for highly critical, one time operations such as an emergency procedure or a Mars orbit injection. The factors responsible for the level of complex skill retention are reviewed, optimal ways of refreshing degraded skills are suggested, and a conceptual crew training design for a Mars mission is outlined. Currently proposed crew activities during a Mars mission were reviewed to identify the spectrum of skills which must be retained over a long time period. Skill retention literature was reviewed to identify those factors which must be considered in deciding when and which tasks need retraining. Task, training, and retention interval factors were identified. These factors were then interpreted in light of the current state of spaceflight and adaptive training systems.

Goldberg, Joseph H.

1987-01-01

115

Space Place: LISA Space Mission Gives Humans a Sixth Sense  

NSDL National Science Digital Library

This activity is related to gravity and the LISA (Laser Interferometer Space Antenna) mission. Like a sixth sense, detecting gravity waves will give us a whole new way to see the universe. Provides an easy explanation of gravitational waves, with a link to an interactive crossword using the new vocabulary words.

2011-01-01

116

STS-44 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-44 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-fourth flight of the Space Shuttle Program and the tenth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-53 (LWT-46); three Space Shuttle main engines (SSME's) (serial numbers 2015, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-047. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L019A for the left SRB and 360W019B for the right SRB. The primary objective of the STS-44 mission was to successfully deploy the Department of Defense (DOD) Defense Support Program (DSP) satellite/inertial upper stage (IUS) into a 195 nmi. earth orbit at an inclination of 28.45 deg. Secondary objectives of this flight were to perform all operations necessary to support the requirements of the following: Terra Scout, Military Man in Space (M88-1), Air Force Maui Optical System Calibration Test (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Shuttle Activation Monitor (SAM), Radiation Monitoring Equipment-3 (RME-3), Visual Function Tester-1 (VFT-1), and the Interim Operational Contamination Monitor (IOCM) secondary payloads/experiments.

Fricke, Robert W.

1992-01-01

117

Radiation Protection Materials for Space Missions and Industries  

Microsoft Academic Search

NASA has a new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is ``the show stopper.'' The great cost of added radiation shielding is a potential limiting factor in deep

Ram Tripathi

2007-01-01

118

The Status Of The Corot Space Mission  

NASA Astrophysics Data System (ADS)

The CoRoT space mission has been in orbit for more than 1000 days. It has two main objectives - To search for small-radius traniting exoplanets and asteroseismology with a an unprecedented photometric precision. In both cases the goals have been fulfilled. During 2009, the planet CoRoT-7b have been published, an object with a radius of 1.7 Earth radii and a mass of 4.8 Earth masses leading to an average density of 5.5 g/cm-3. This object is thus the first planet similar to Mercury, Venus and the Earth found outside the Solar System. Asteroseismological signatures of a number of objects have been presented, including those of a number of solar type stars. The mission has just been extended for another three years of operations by the French space agency, CNES and their partners. In this paper, we present a status report of the CoRoT mission, the plans for the future and describe in some detail the difficulties encountered during the first three years.

Fridlund, Carl; CoRoT Co-Investigator Team

2010-01-01

119

STS-51 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-51 Space Shuttle Program Mission Report summarizes the payloads as well as the orbiter, external tank (ET), solid rocket booster (SRB), redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) systems performance during the fifty-seventh flight of the space shuttle program and seventeenth flight of the orbiter vehicle Discovery (OV-103). In addition to the orbiter, the flight vehicle consisted of an ET designated as ET-59; three SSME's, which were designated as serial numbers 2031, 2034, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-060. The lightweight RSRM's that were installed in each SRB were designated as 360W033A for the left SRB and 360L033B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

120

STS-49: Space shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.

Fricke, Robert W.

1992-01-01

121

STS-40 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

Fricke, Robert W.

1991-01-01

122

STS-48 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

Fricke, Robert W.

1991-01-01

123

STS-56 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-56 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-fourth flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-54); three SSME's, which were designated as serial numbers 2024, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-058. The lightweight RSRM's that were installed in each SRB were designated as 360L031A for the left SRB and 360L031B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

124

NASA's Spitzer Space Telescope's Operational Mission Experience  

NASA Technical Reports Server (NTRS)

New Generation of Detector Arrays(100 to 10,000 Gain in Capability over Previous Infrared Space Missions). IRAC: 256 x 256 pixel arrays operating at 3.6 microns, 4.5 microns, 5.8 microns, 8.0 microns. MIPS: Photometer with 3 sets of arrays operating at 24 microns, 70 microns and 160 microns. 128 x 128; 32 x 32 and 2 x 20 arrays. Spectrometer with 50-100 micron capabilities. IRS: 4 Array (128x128 pixel) Spectrograph, 4 -40 microns. Warm Launch Architecture: All other Infrared Missions launched with both the telescope and scientific instrument payload within the cryostat or Dewar. Passive cooling used to cool outer shell to approx.40 K. Cryogenic Boil-off then cools telescope to required 5.5K. Earth Trailing Heliocentric Orbit: Increased observing efficiency, simplification of observation planning, removes earth as heat source.

Wilson, Robert K.; Scott, Charles P.

2006-01-01

125

ECLSS development for future space missions  

NASA Technical Reports Server (NTRS)

The Environmental Control and Life Support System (ECLSS) for Space Station Freedom is presently under development. Three areas of concern for longer duration missions are recycling of mass, monitoring and controlling the ECLSS, and controlling trace contaminants and microorganisms. The goal is to 'close the loop' for water and oxygen much more than has been done on previous missions. Alternative technologies for performing each of the ECLSS functions are being developed and evaluated as part of the selection process for choosing the technologies to use on Freedom. Methods to automatically monitor and control the ECLSS are being investigated. The instrumentation needs are being determined in order to focus effort where most needed. Research is also underway to improve methods of monitoring and controlling trace contaminants and microorganisms.

Wieland, Paul O.; Humphries, William R.

1990-01-01

126

Automation of Hubble Space Telescope Mission Operations  

NASA Technical Reports Server (NTRS)

On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

2012-01-01

127

STS-72 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

128

STS-75 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-75 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fifth flight of the Space Shuttle Program, the fiftieth flight since the return-to-flight, and the nineteenth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-76; three SSME's that were designated as serial numbers 2029, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-078. The RSRM's, designated RSRM-53, were installed in each SRB and the individual RSRMs were designated as 36OW53A for the left SRB, and 36OW053B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirements of the Tethered Satellite System-1 R (TSS-1R), and the United States Microgravity Payload-3 (USMP-3). The secondary objectives were to complete the operations of the Orbital Acceleration Research Experiment (OARE), and to meet the requirements of the Middeck Glovebox (MGBX) facility and the Commercial Protein Crystal Growth (CPCG) experiment. Appendix A provides the definition of acronyms and abbreviations used thorughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

129

Secure Telemetry Demonstrator for Future Space Missions  

NASA Astrophysics Data System (ADS)

End-to-end security is an emerging need of future space missions for protecting satellite's data from unauthorized access. Trend towards this new necessity is sustained by the growing convenience in making use of open systems and Internet connectivity for the control of shared instruments and for data distribution causing on the other hand an increased vulnerability from the security point of view. In response to that need, Syderal SA in Swit- zerland is developing under an ESA contract a demonstrator of a fundamental building block for providing space mission security services on an end-to- end basis. Specifically, this demonstrator implements all necessary functions on the spacecraft side for pro- viding data link layer security over a space link on a point-to-point basis. At the same time, it provides end-to- end security when used in combination with network layer security between end-users (connected through public networks) and payloads. This development is carried out within the frame of ISO/IEC 15408 standard on Evaluation Criteria for IT security [6], [7] and [8] as well as in accordance to ESA ECSS telemetry and telecommand standards [3] and [4].

Lombardi, P.; Fabry, P.; Akuatse, D.; Carrard, D.

2007-08-01

130

Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report  

NASA Technical Reports Server (NTRS)

The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.

1993-01-01

131

STS-46 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

Fricke, Robert W.

1992-01-01

132

Autonomous Navigation for Deep Space Missions  

NASA Technical Reports Server (NTRS)

Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.

Bhaskaran, Shyam

2012-01-01

133

Spreadsheets for Analyzing and Optimizing Space Missions  

NASA Technical Reports Server (NTRS)

XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays.

Some, Raphael R.; Agrawal, Anil K.; Czikmantory, Akos J.; Weisbin, Charles R.; Hua, Hook; Neff, Jon M.; Cowdin, Mark A.; Lewis, Brian S.; Iroz, Juana; Ross, Rick

2009-01-01

134

STS-47 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

Fricke, Robert W., Jr.

1992-01-01

135

STS-54 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-01-01

136

STS-45 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

Fricke, Robert W.

1992-01-01

137

STS-74 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

138

Radiation protection guidelines for space missions  

NASA Technical Reports Server (NTRS)

The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

Fry, R. J.; Nachtwey, D. S.

1988-01-01

139

Space Missions and Information Technology: Some Thoughts and Highlights  

NASA Technical Reports Server (NTRS)

A viewgraph presentation about information technology and its role in space missions is shown. The topics include: 1) Where is the IT on Space Missions? 2) Winners of the NASA Software of the Year Award; 3) Space Networking Roadmap; and 4) 10 (7) -Year Vision for IT in Space.

Doyle, Richard J.

2006-01-01

140

Automated design of multiphase space missions using hybrid optimal control  

Microsoft Academic Search

A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving the associated continuous optimal control problem.

Christian Miguel Chilan

2009-01-01

141

Mission planning for the Lidar in Space Technology Experiment  

NASA Technical Reports Server (NTRS)

Developing a mission planning system for a Space Shuttle mission is a complex procedure. Several months of preparation are required to develop a plan that optimizes science return during the short operations time frame. Further complicating the scenario is the necessity to schedule around crew activities and other payloads which share Orbiter resources. SpaceTec, Inc. developed the mission planning system for the Lidar In Space Technology Experiment, or LITE, which flew on Space Shuttle mission STS-64 in September of 1994. SpaceTec used a combination of off-th-shelf and in-house developed software to analyze various mission scenarios both premission and real-time during the flight. From this analysis, SpaceTec developed a comprehensive mission plan that met the mission objectives.

Redifer, Matthew E.

1995-01-01

142

STS-64 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.

Fricke, Robert W., Jr.

1995-01-01

143

Radiation shielding for future space exploration missions  

NASA Astrophysics Data System (ADS)

Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical weighted figure of merit (WFoM) approach that quantifies the effectiveness of a candidate material to shield space crews from the whole of the space radiation environment. The results of the WFoM approach should prove useful to designers and engineers in seeking alternative materials suitable for the construction of spacecraft or planetary surface habitats needed for long-term space exploration missions. The dosimetric measurements in this study have confirmed the principle of good space radiation shielding design by showing that low-Z¯ materials are most effective at reducing absorbed dose and dose equivalent while high-Z¯ materials are to be avoided. The relatively high WFoMs of carbon composite and lunar- and Martian-regolith composite could have important implications for the design and construction of future spacecraft or planetary surface habitats. The ground-based measurements conducted in this study have validated the heavy ion extension of FLUKA by producing normalized differential LET fluence spectra that are in good agreement with experiment.

DeWitt, Joel Michael

144

Research Needs in Electrostatics for Lunar and Mars Space Missions.  

National Technical Information Service (NTIS)

The new space exploratory vision announced by President Bush on January 14, 2004, initiated new activities at the National Science and Space Administration (NASA) for human space missions to further explore our solar system. NASA is undertaking Lunar expl...

C. I. Calle

2005-01-01

145

Enhancing Team Performance for Long-Duration Space Missions.  

National Technical Information Service (NTIS)

Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex pro...

J. M. Orasanu

2009-01-01

146

Deep Space Orbital Service Model for Virtual Planetary Science Missions  

NASA Astrophysics Data System (ADS)

An extension of the orbital service model, a technique for coordinating mission services between multiple spacecraft, is presented. This facilitates the creation of virtual uploadable ‘app’ missions to deep space probes.

Straub, J.

2014-06-01

147

Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01  

NASA Technical Reports Server (NTRS)

This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.

1993-01-01

148

Nuclear Electric Propulsion for Outer Space Missions  

NASA Technical Reports Server (NTRS)

Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

Barret, Chris

2003-01-01

149

STS-65 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.

Fricke, Robert W., Jr.

1994-01-01

150

STS-52 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

Fricke, Robert W., Jr.

1992-12-01

151

STS-52 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

Fricke, Robert W., Jr.

1992-01-01

152

STS-50 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-50 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-eighth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of the following: an ET which was designated ET-50 (LUT-43); three SSME's which were serial numbers 2019, 2031, and 2011 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-051. The lightweight/redesigned RSRM's installed in each SRB were designated 360L024A for the left RSRM and 360M024B for the right RSRM. The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment 2 (SAREX-2) payloads. An additional secondary objective was to meet the requirements of the Ultraviolet Plume Instrument (UVPI), which was flown as a payload of opportunity.

Fricke, Robert W.

1992-01-01

153

STS-73 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-73 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-second flight of the Space Shuttle Program, the forty-seventh flight since the return-to-flight, and the eighteenth flight of the Orbiter Columbia (OV-102). STS-73 was also the first flight of OV-102 following the vehicle's return from the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-73; three SSME's that were designated as serial numbers 2037 (Block 1), 2031 (PH-1), and 2038 (Block 1) in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-075. The RSRM's, designated RSRM-50, were installed in each SRB and the individual RSRM's were designated as 36OL050A for the left SRB, and 36OW050B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML)-2 payload.

Fricke, Robert W., Jr.

1995-01-01

154

Radiation protection guidelines for space missions  

NASA Technical Reports Server (NTRS)

NASA's current radiation protection guidelines date from 1970, when the career limit was set at 400 rem. Today, using the same approach, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments to be experienced in different missions than previously. Since 1970 women have joined the ranks. For these and other reasons it was necessary to reexamine the radiation protection guidelines. This task was undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and orbit inclination. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (4.0Sv) for a 24 year old female to 400 rem for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye was reduced from 600 to 400 rem (6.0 to 4.0 Sv.)

Fry, R. J. M.; Nachtwey, D. S.

1986-01-01

155

Polarization Effects Aboard the Space Interferometry Mission  

NASA Technical Reports Server (NTRS)

For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

2006-01-01

156

Power Electronic Components, Circuits and Systems for Deep Space Missions  

Microsoft Academic Search

Power electronic circuits are widely used in space missions in the areas of power management, conditioning, and control systems. Circuits designed for deep space applications and outer planetary explorations are required to operate reliably and efficiently under extreme temperature conditions. This requirement is dictated by the fact that the operational environments associated with some of the space missions would encompass

Malik Elbuluk; Ahmad Hammoud; Richard Patterson

2005-01-01

157

Modelling and simulation of the space mission MICROSCOPE  

Microsoft Academic Search

MICROSCOPE is a French space mission for testing the weak equivalence principle (WEP). The mission goal is the determination of the Eötvös parameter ? with an accuracy of 10?15. The French space agency CNES is responsible for the satellite which is developed and produced within the Myriade series. The satellite's payload T-SAGE (Twin Space Accelerometer for Gravitation Experimentation) is developed

Stefanie Bremer; Meike List; Hanns Selig; Hans Rath; Hansjörg Dittus

2011-01-01

158

STS-67 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-01-01

159

STS-67 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-05-01

160

STS-66 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

Fricke, Robert W., Jr.

1995-01-01

161

National Space Transportation Systems Program mission report  

NASA Technical Reports Server (NTRS)

The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

1984-01-01

162

Radiation Protection Materials for Space Missions and Industries  

NASA Astrophysics Data System (ADS)

NASA has a new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is ``the show stopper.'' The great cost of added radiation shielding is a potential limiting factor in deep space missions. In the enabling technology, we have developed methodology and concomitant technology for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Studies have been made for various missions. Current technology is adequate for low earth orbit missions. Revolutionary materials need to be developed for career astronauts and deep space missions. The details of this new technology and its impact on space missions and other technologies will be discussed.

Tripathi, Ram

2007-03-01

163

Deep Space 2: The Mars Microprobe Mission  

Microsoft Academic Search

The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact

Suzanne Smrekar; David Catling; Ralph Lorenz; Julio Magalhães; Jeffrey Moersch; Paul Morgan; Bruce Murray; Marsha Presley-Holloway; Albert Yen; Aaron Zent; Diana Blaney

1999-01-01

164

Hubble Space Telescope: Should NASA Proceed with a Servicing Mission.  

National Technical Information Service (NTIS)

The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010. In January 2004, then-NASA Administrator Se...

D. Morgan

2006-01-01

165

James Webb Space Telescope: Mission Overview and Status  

NASA Technical Reports Server (NTRS)

Often described as the successor to the Hubble Space Telescope, the James Webb Space Telescope (JWST) is a general astrophysics mission that will be used by the international astronomy community in a manner similar to other major space observatories: HST, Chandra, and Spitzer. The JWST is being developed by NASA in partnership with the European and Canadian Space Agencies for launch during 2013. This talk will review the science goals, overall mission architecture, and development status of the JWST.

Greenhouse, Matthew

2009-01-01

166

Quasar Astrophysics with the Space Interferometry Mission  

NASA Technical Reports Server (NTRS)

Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn

2007-01-01

167

Maintenance of Space Station Freedom - The role of mission controllers  

NASA Technical Reports Server (NTRS)

The key roles played in the on-orbit maintenance of Space Station Freedom by mission controllers working in the Space Station Control Center are discussed. Responsibilities ranging from planning and procedure development to training and real-time support are addressed. The organization of the Mission Operations Directorate is described.

Watson, J. K.; Davison, M. T.; Langendorf, S. E.

1991-01-01

168

Space station needs, attributes and architectural options: Mission requirements  

NASA Technical Reports Server (NTRS)

Various mission requirements for the proposed space station are examined. Subjects include modelling methodology, science applications, commercial opportunities, operations analysis, integrated mission requirements, and the role of man in space station functions and activities. The information is presented through the use of graphs.

1983-01-01

169

Space transfer concepts and analysis for exploration missions  

NASA Technical Reports Server (NTRS)

Covered here is the second phase of a broad scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 1, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from the Stafford Committee Synthesis Report.

1991-01-01

170

Model-based trade space exploration for near-Earth space missions  

Microsoft Academic Search

We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable

Ronald Cohen; Wayne Boncyk; James Brutocao; Iain Beveridge

2005-01-01

171

Mars rover/sample return mission requirements affecting space station  

NASA Technical Reports Server (NTRS)

The possible interfaces between the Space Station and the Mars Rover/Sample Return (MRSR) mission are defined. In order to constrain the scope of the report a series of seven design reference missions divided into three major types were assumed. These missions were defined to span the probable range of Space Station-MRSR interactions. The options were reduced, the MRSR sample handling requirements and baseline assumptions about the MRSR hardware and the key design features and requirements of the Space Station are summarized. Only the aspects of the design reference missions necessary to define the interfaces, hooks and scars, and other provisions on the Space Station are considered. An analysis of each of the three major design reference missions, is reported, presenting conceptual designs of key hardware to be mounted on the Space Station, a definition of weights, interfaces, and required hooks and scars.

1988-01-01

172

NASA mission planning for space nuclear power  

Microsoft Academic Search

As the human race moves outward into the solar system with both robotic and piloted spacecraft there will be an ever evolving need for nuclear power and eventually for nuclear propulsion. Studies have already been completed which show the scientific merits of such exciting missions as Jovian grand tours, Uranus and Neptune orbiters and probes and a Pluto flyby-missions which

Gary L. Bennett; A. Dan Schnyer

1991-01-01

173

NASA mission planning for space nuclear power  

Microsoft Academic Search

As the human race moves outward into the solar system with both robotic and piloted spacecraft there will be an ever evolving need for nuclear power and eventually for nuclear propulsion. Studies have already been completed which show the scientific merits of such exciting missions as Jovian grand tours, Uranus and Neptune orbiters and probes and a Pluto flyby—missions which

Gary L. Bennett; A. Dan Schnyer

1991-01-01

174

Estimating continental hydrology parameters from space missions  

Microsoft Academic Search

Different instruments on board Earth Observing satellite missions that were designed either for ocean missions or land surface classification have been used to retrieve continental surface hydrology parameters While altimeter measurements provide an estimate of height over water bodies of typically a few km in size it is necessary to complement these measurements with imagers either optical or microwave to

N. M. Mognard; A. Cazenave; J.-F. Cretaux; S. Calmant; G. Ramillien; F. Frappart; K. Dominh; M. Cauhope

2006-01-01

175

Pioneers 10 and 11 deep space missions  

NASA Technical Reports Server (NTRS)

Pioneers 10 and 11 were launched from Earth, 2 March 1972, and 5 April 1973, respectively. The Pioneers were the first spacecraft to explore the asteroid belt and the first to encounter the giant planets, Jupiter and Saturn. The Pioneer 10 spacecraft is now the most distant man-made object in our solar system and is farther from the Sun than all nine planets. It is 47 AU from the Sun and is moving in a direction opposite to that of the Sun's motion through the galaxy. Pioneer 11 is 28 AU from the Sun and is traveling in the direction opposite of Pioneer 10, in the same direction as the Sun moves in the galaxy. These two Pioneer spacecraft provided the first large-scale, in-situ measurements of the gas and dust surrounding a star, the Sun. Since launch, the Pioneers have measured large-scale properties of the heliosphere during more than one complete 11-year solar sunspot cycle, and have measured the properties of the expanding solar atmosphere, the transport of cosmic rays into the heliosphere, and the high-energy trapped radiation belts and magnetic fields associated with the planets Jupiter and Saturn. Accurate Doppler tracking of these spin-stabilized spacecraft was used to search for differential gravitational forces from a possible trans-Neptunian planet and to search for gravitational radiation. Future objectives of the Pioneer 10 and 11 missions are to continue measuring the large-scale properties of the heliosphere and to search for its boundary with interstellar space.

Dyal, Palmer

1990-01-01

176

Fusion energy for space missions in the 21st Century  

NASA Technical Reports Server (NTRS)

Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

Schulze, Norman R.

1991-01-01

177

A new opportunity from space: PLATO mission  

NASA Astrophysics Data System (ADS)

The satellite PLATO represents a new challenge for future investigations of exoplanets and oscillations of stars. It is one of the proposed missions of ESA COSMIC VISION 2015-2025 and it is scheduled for launch in 2017. The goal of the mission is a full characterization of the planet star systems with an asteroseismic analysis of the host stars. The PLATO Payload Consortium (PPLC) includes several European countries which are employed in the assessment study of the mission. Thanks to the high precision photometry, PLATO is thought to be able to detect planets and oscillations within a large sample of targets.

Claudi, Riccardo

2010-07-01

178

Cost Estimating of Space Science Missions  

NASA Astrophysics Data System (ADS)

Abstract: Estimating the cost of NASA's science missions is a very difficult task. Anticipating how a system concept may evolve over time is challenging to say the least. Historical data, however, can help to estimate how the design may grow and how the schedules may change over time. An overall approach for costing such system relies on utilizing multiple methods based on historical technical, cost and schedule data to provide a robust range of estimates for future missions. This approach and other considerations for costing NASA science missions will be discussed.

Bitten, Robert

2014-08-01

179

Hypervelocity Impact Effects on Space Mission Instrumentation  

NASA Astrophysics Data System (ADS)

Understanding the physics and chemistry of hypervelocity collisions of small impactors on spacescrafts and their instruments is critical to their survival and operational accuracy, as well as for the design of future mission instrumentation.

Jaramillo-Botero, A. J. B.; Beegle, L. W. B.; Hodyss, R. P. H.; Goddard, W. A. G.; Darrach, M. R.

2014-06-01

180

Active Refrigeration for Space Astrophysics Missions  

NASA Technical Reports Server (NTRS)

The use of cryogen dewars limits mission lifetime, increases sensor mass, and increases program engineering and launch costs on spacebased low-background, precision-pointing instruments, telescopes and interferometers.

Wade, L.

1994-01-01

181

Analysis of selected deep space missions  

NASA Technical Reports Server (NTRS)

Task 1 of the NEW MOONS (NASA Evaluation With Models of Optimized Nuclear Spacecraft) study is discussed. Included is an introduction to considerations of launch vehicles, spacecraft, spacecraft subsystems, and scientific objectives associated with precursory unmanned missions to Jupiter and thence out of the ecliptic plane, as well as other missions to Jupiter and other outer planets. Necessity for nuclear power systems is indicated. Trajectories are developed using patched conic and n-body computer techniques.

West, W. S.; Holman, M. L.; Bilsky, H. W.

1971-01-01

182

Deep space network: Mission support requirements  

NASA Technical Reports Server (NTRS)

The purpose is to provide NASA and Jet Propulsion Laboratory management with a concise summary of information concerning the forecasting of the necessary support and requirements for missions described here, including the Earth Radiation Budget Experiment, the Cosmic Background Explorer, the Comet Rendezvous Asteroid Flyby, the Cassini, and the Dynamics Explorer-1. A brief description of various missions along with specific support requirements for each are given.

1991-01-01

183

Space water electrolysis: Space Station through advance missions  

NASA Technical Reports Server (NTRS)

Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

1991-01-01

184

Space water electrolysis: Space Station through advance missions  

NASA Astrophysics Data System (ADS)

Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

1991-09-01

185

Access to Space for Technology Validation Missions: A Practical Guide  

NASA Technical Reports Server (NTRS)

Space technology experiments and validation missions share a common dilemma with the aerospace industry in general: the high cost of access to space. Whether the experiment is a so-called university cubesat, a university measurement experiment, or a NASA New Millennium Program (NMP) technology validation mission, the access to space option can be scaled appropriately for the particular constraints. A cubesat might fly as one of a number of cubesats that negotiate a flight on an experimental vehicle. A university experiment might do the same. A NASA flight validation might partner with an Air Force experimental mission.

Herrell, Linda M.

2007-01-01

186

Space transfer concepts and analyses for exploration missions, phase 3  

NASA Technical Reports Server (NTRS)

This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

Woodcock, Gordon R.

1993-01-01

187

Space-Based Gravitational-Wave Observatory Mission Concept  

NASA Astrophysics Data System (ADS)

Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected “The Gravitational Universe” as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

Livas, Jeffrey C.

2014-08-01

188

Handbook for Using IP Protocols for Space Missions  

NASA Technical Reports Server (NTRS)

This presentation will provide a summary of a handbook developed at GSFC last year that contains concepts and guidelines for using Internet protocols for space missions. It will include topics on: Lessons learned from current Space IP mission. General architectural issues related to use of IP in space. Operational scenarios for common space data transfer applications. Security issues. A general review of protocols applicable for use with IP in space. The presentation will also pose questions on what sort of information would be useful in future versions of the document.

Hogie, Keith; Criscuolo, Ed; Parise, Ron

2004-01-01

189

Space station needs, attributes, and architectural options: Mission requirements  

NASA Technical Reports Server (NTRS)

Space station missions and their requirements are discussed. Analyses of the following four mission categories are summarized: (1) commercial, (2) technology, (3) operation, and (4) science and applications. The requirements determined by the study dictate a very strong need for a manned space station to satisfy the majority of the missions. The station is best located at a 28.5-deg inclination and initially (1992 era) requires a crew of four (three for mission payloads) and a mission power of 25 kW. A space platform in a polar orbit is needed to augment the station capability; it initially would be a 15-kW system, located in a sun-synchronous orbit.

Riel, F. D.

1983-01-01

190

Ares V an Enabling Capability for Future Space Astrophysics Missions  

NASA Technical Reports Server (NTRS)

The potential capability offered by an Ares V launch vehicle completely changes the paradigm for future space astrophysics missions. This presentation examines some details of this capability and its impact on potential missions. A specific case study is presented: implementing a 6 to 8 meter class monolithic UV/Visible telescope at an L2 orbit. Additionally discussed is how to extend the mission life of such a telescope to 30 years or longer.

Stahl, H. Philip

2007-01-01

191

An integrated mission planning approach for the space exploration initiative  

SciTech Connect

A fully integrated energy-based approach to mission planning is needed if the Space Exploration Initiative (SEI) is to succeed. Such an approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI and provide an economic benefit by greatly enhancing our international technical competitiveness through technology spin-offs and through the resulting early return on investment. Integrated planning and close interagency cooperation must occur if the SEI is to achieve its goal of expanding the human presence into the solar system and be an affordable endeavor. An energy-based mission planning approach gives each mission planner the needed power, yet preserves the individuality of mission requirements and objectives while reducing the concessions mission planners must make. This approach may even expand the mission options available and enhance mission activities.

Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

1992-01-01

192

An integrated mission planning approach for the Space Exploration Initiative  

SciTech Connect

This report discusses a fully integrated energy-based approach to mission planning which is needed if the Space Exploration Initiative (SEI) is to succeed. Such an approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI and provide an economic benefit by greatly enhancing our international technical competitiveness through technology spin-offs and through the resulting early return on investment. Integrated planning and close interagency cooperation must occur if the SEI is to achieve its goal of expanding the human presence into the solar system and be an affordable endeavor. An energy-based mission planning approach gives each mission planner the needed power, yet preserves the individuality of mission requirements and objectives while reducing the concessions mission planners must make. This approach may even expand the mission options available and enhance mission activities.

Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

1992-08-01

193

Virtual Environments in Training: NASA's Hubble Space Telescope Mission  

Microsoft Academic Search

Virtual environment (VE) technology was used to construct a model of the Hubble Space Telescope (HST) and those elements that were replaced or serviced during the December, 1993 repair and maintenance mission conducted by the National Aeronautics and Space Administration (NASA). The VE also included the payload bay of the Space Shuttle and the fixtures used for transporting replacement systems

R. Bowen Loftin; Patrick J. Kenney; Robin Benedetti; Chris Culbert; Mark Engelberg; Robert Jones; Paige Lucas; Mason Menninger; John Muratore; Lac Nguyen; Tim Saito; Robert T. Savely; Mark Voss

194

Developing a Habitat for Long Duration, Deep Space Missions.  

National Technical Information Service (NTIS)

One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four...

M. A. Rucker S. Thompson

2012-01-01

195

Requirement of the galU gene for polysaccharide production by and pathogenicity and growth In Planta of Xanthomonas citri subsp. citri.  

PubMed

Xanthomonas citri subsp. citri is the causal agent of citrus canker, which has a significant impact on citrus production. In this study, we characterized the galU gene of X. citri subsp. citri. Two galU mutants (F6 and D12) were identified in an X. citri subsp. citri EZ-Tn5 Tnp transposon library. Rescue cloning, sequence analysis, and Southern blot analysis indicated that both of these mutants had a single copy of the EZ-Tn5 transposon inserted in galU in the chromosome. Further study showed that galU was required for biosynthesis of extracellular polysaccharides (EPS; xanthan gum) and capsular polysaccharide (CPS) and biofilm formation. Mutation of galU resulted in a loss of pathogenicity for grapefruit. The loss of pathogenicity of a galU mutant resulted from its inability to grow in planta rather than from the effect on virulence genes. Quantitative reverse transcription-PCR assays indicated that mutation of galU did not impair the expression of key virulence genes, such as pthA of X. citri subsp. citri. Although D12 had a growth rate similar to that of the wild-type strain in nutrient broth, no D12 population became established in the intercellular spaces of citrus leaves. Coinoculation of a galU mutant with the wild-type strain did not promote growth of the galU mutant in planta. Defects in EPS and CPS production, pathogenicity, and growth in planta of the galU mutant were complemented to the wild-type level using plasmid pCGU2.1 containing an intact galU gene. These data indicate that the galU gene contributes to X. citri subsp. citri growth in intercellular spaces and is involved in EPS and CPS synthesis and biofilm formation. PMID:20118360

Guo, Yinping; Sagaram, Uma Shankar; Kim, Jeong-soon; Wang, Nian

2010-04-01

196

Space Station needs, attributes and architectural options. Volume 2, book 1, part 1: Mission requirements  

NASA Technical Reports Server (NTRS)

The baseline mission model used to develop the space station mission-related requirements is described as well as the 90 civil missions that were evaluated, (including the 62 missions that formed the baseline model). Mission-related requirements for the space station baseline are defined and related to space station architectural development. Mission-related sensitivity analyses are discussed.

1983-01-01

197

Reducing the Risk of Human Space Missions with INTEGRITY  

NASA Technical Reports Server (NTRS)

The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.

Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.

2003-01-01

198

Japanese Mars mission in the future space program  

Microsoft Academic Search

Japan Aerospace Exploration Agency JAXA is now constructing a new category of space activity Exploration in the course of the long term vision released in 2005 At present this Exploration program is focused on investigation and utilization of the moon A couple of lunar landing missions at the period around the year 2015 will be followed by missions aiming at

S. Sasaki; S. Tanaka; T. Okada; H. Miyamoto; N. Terada

2006-01-01

199

Deep space network enhancement for the Galileo mission to Jupiter  

Microsoft Academic Search

The Galileo mission to Jupiter has unique scientific objectives never attempted before by a planetary mission. These objectives have presented technical challenges to the NASA Deep Space Network. New technologies and system concepts have been developed to meet these challenges. Major implementations are underway to equip the ground stations in the Network. Significant improvement in performance is expected. The ground-based

T. K. Peng; J. W. Armstrong; J. C. Breidenthal; F. F. Donivan; N. C. Ham

1986-01-01

200

Software Construction and Analysis Tools for Future Space Missions  

Microsoft Academic Search

NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context

Michael R. Lowry

2002-01-01

201

Space mission scenario development and performance analysis tool  

Microsoft Academic Search

This paper discusses a new and innovative approach for a rapid spacecraft multidisciplinary performance analysis using a tool called the Mission Scenario Development Workbench (MSDW). To meet the needs of new classes of space missions, analysis tools with proven models were developed and integrated into a framework to enable rapid trades and analyses between spacecraft designs and operational scenarios during

M. Kordon; J. Baker; J. Gilbert; D. Hanks

2005-01-01

202

National Space Transportation Systems Program mission report  

NASA Technical Reports Server (NTRS)

The major activities and accomplishments of this first Spacelab mission using Orbiter vehicle 102. The significant configuration differences incorporated prior to STS-9 include the first use of the 3 substack fuel cells, the use of 5 cryo tanks sets and the addition of a galley and crew sleep stations. These differences combined with the Spacelab payload resulted in the heaviest landing weight yet flown. The problems that occurred are cited and a problem tracking list of all significant anomalies tht occurred during the mission is included. Scientific results of experiments conducted are highlighted.

Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

1984-01-01

203

Mission design for deep space 1: A low-thrust technology validation mission  

Microsoft Academic Search

Deep Space 1 (DS1), currently scheduled for launch in July or August 1998, is the first mission of NASA's New Millennium program, chartered to flight validate high-risk, advanced technologies important for future space and Earth science programs. DS1's payload of technologies will be rigorously exercised during the two-year mission. Several features of the project present unique or unusual opportunities and

Marc D. Rayman; Pamela A. Chadbourne; Jeffery S. Culwell; Steven N. Williams

1999-01-01

204

Expert systems and advanced automation for space missions operations  

NASA Technical Reports Server (NTRS)

Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

1990-01-01

205

Assessment and control of electrostatic charges. [hazards to space missions  

NASA Technical Reports Server (NTRS)

The experience is described of NASA and DOD with electrostatic problems, generation mechanisms, and type of electrostatic hazards. Guidelines for judging possible effects of electrostatic charges on space missions are presented along with mathematical formulas and definitions.

Barrett, M.

1974-01-01

206

48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.  

Code of Federal Regulations, 2013 CFR

...246-70 Mission Critical Space System Personnel Reliability Program...clause: Mission Critical Space System Personnel Reliability Program (MAR 1997) (a) In implementation of the Mission Critical Space System Personnel...

2013-10-01

207

A space transfer vehicle for lunar missions  

Microsoft Academic Search

Two 'low profile' strategies for supporting the lunar outpost concept developed by NASA-JSC Planetary Surface Systems are examined. The first strategy involves the design of missions that require only a single launch of a derivative 'National Launch System' (NLS) vehicle. The launch capacity of the derivatives range from 80 to 140 percent of the Apollo\\/Saturn capacity and use only conventional

Dana Andrews; Tim Vinopal; Cynthia Frost

1991-01-01

208

Galilean Satellites and the Galileo Space Mission  

Microsoft Academic Search

The Galileo spacecraft arrived at Jupiter in December 1995 to start its two-year mission of exploring the Jovian system, The spacecraft will complete eleven orbits around Jupiter and have ten more close encounters with the outer three Galilean satellites, after the initial close approach to lo on December 7, 1995, Since the lo encounter occurred closer to lo than originally

J. H. Lieske

1996-01-01

209

Deep Space Habitat Concept of Operations for Transit Mission Phases  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

Hoffman, Stephen J.

2011-01-01

210

Artificial intelligence techniques for scheduling Space Shuttle missions  

NASA Technical Reports Server (NTRS)

Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

Henke, Andrea L.; Stottler, Richard H.

1994-01-01

211

Vision for Micro Technology Space Missions. Chapter 2  

NASA Technical Reports Server (NTRS)

It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

Dennehy, Neil

2005-01-01

212

Bounding the Spacecraft Atmosphere Design Space for Future Exploration Missions  

NASA Technical Reports Server (NTRS)

The selection of spacecraft and space suit atmospheres for future human space exploration missions will play an important, if not critical, role in the ultimate safety, productivity, and cost of such missions. Internal atmosphere pressure and composition (particularly oxygen concentration) influence many aspects of spacecraft and space suit design, operation, and technology development. Optimal atmosphere solutions must be determined by iterative process involving research, design, development, testing, and systems analysis. A necessary first step in this process is the establishment of working bounds on the atmosphere design space.

Lange, Kevin E.; Perka, Alan T.; Duffield, Bruce E.; Jeng, Frank F.

2005-01-01

213

Liftoff of Space Shuttle Endeavour on mission STS-97  

NASA Technical Reports Server (NTRS)

Blue mach diamonds signal the speed and force at which Space Shuttle Endeavour roars into space after a perfect launch. Liftoff occurred on time at 10:06:01 p.m. EST. The Shuttle and its five-member crew will deliver U.S. solar arrays to the International Space Station and be the first Shuttle crew to visit the Station'''s first resident crew. The 11-day mission includes three spacewalks. This marks the 101st mission in Space Shuttle history and the 25th night launch. Endeavour is expected to land at KSC Dec. 11 at 6:19 p.m. EST.

2000-01-01

214

Future NASA mission applications of space nuclear power  

NASA Technical Reports Server (NTRS)

Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions (such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby) that can only be done with nuclear power. There are also studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the Space Exploration Initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars.

Bennett, Gary L.; Mankins, John; Mcconnell, Dudley G.; Reck, Gregory M.

1990-01-01

215

Space mission scenario development and performance analysis tool  

NASA Technical Reports Server (NTRS)

This paper discusses a new and innovative approach for a rapid spacecraft multi-disciplinary performance analysis using a tool called the Mission Scenario Development Workbench (MSDW). To meet the needs of new classes of space missions, analysis tools with proven models were developed and integrated into a framework to enable rapid trades and analyses between spacecraft designs and operational scenarios during the formulation phase of a mission. Generally speaking, spacecraft resources are highly constrained on deep space missions and this approach makes it possible to maximize the use of existing resources to attain the best possible science return. This approach also has the potential benefit of reducing the risk of costly design changes made later in the design cycle necessary to meet the mission requirements by understanding system design sensitivities early and adding appropriate margins. This paper will describe the approach used by the Mars Science Laboratory Project to accomplish this result.

Kordon, Mark; Baker, John; Gilbert, John; Hanks, David

2004-01-01

216

Social and cultural issues during Shuttle/Mir space missions  

NASA Technical Reports Server (NTRS)

A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions. Published by Elsevier Science Ltd.

Kanas, N.; Salnitskiy, V.; Grund, E. M.; Gushin, V.; Weiss, D. S.; Kozerenko, O.; Sled, A.; Marmar, C. R.

2000-01-01

217

A space transfer vehicle for lunar missions  

NASA Technical Reports Server (NTRS)

Two 'low profile' strategies for supporting the lunar outpost concept developed by NASA-JSC Planetary Surface Systems are examined. The first strategy involves the design of missions that require only a single launch of a derivative 'National Launch System' (NLS) vehicle. The launch capacity of the derivatives range from 80 to 140 percent of the Apollo/Saturn capacity and use only conventional cryogenic or stable chemical propulsion. The second strategy involves the design of missions that only require the currently planned NASA NLS vehicle to be built. This strategy uses either one or two launches with an earth and/or lunar orbit rendezvous for stage assembly. Advance propulsion concepts, in addition to cryogenics, for the translunar injection stage are addressed.

Andrews, Dana; Vinopal, Tim; Frost, Cynthia

1991-01-01

218

Space radiation incident on SATS missions  

NASA Technical Reports Server (NTRS)

A special orbital radiation study was conducted in order to evaluate mission encountered energetic particle fluxes. This information is to be supplied to the project subsystem engineers for their guidance in designing flight hardware to withstand the expected radiation levels. Flux calculations were performed for a set of 20 nominal trajectories placed at several altitudes and inclinations. Temporal variations in the ambient electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model, extrapolated to the tentative SATS launch epoch with linear time terms. Orbital flux integrations ware performed with the latest proton and electron environment models, using new computational methods. The results are presented in graphical and tabular form. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.

Stassinopoulos, E. G.

1973-01-01

219

Potential anesthesia protocols for space exploration missions.  

PubMed

In spaceflight beyond low Earth's orbit, medical conditions requiring surgery are of a high level of concern because of their potential impact on crew health and mission success. Whereas surgical techniques have been thoroughly studied in spaceflight analogues, the research focusing on anesthesia is limited. To provide safe anesthesia during an exploration mission will be a highly challenging task. The research objective is thus to describe specific anesthesia procedures enabling treatment of pre-identified surgical conditions. Among the medical conditions considered by the NASA Human Research Program Exploration Medical Capability element, those potentially necessitating anesthesia techniques have been identified. The most appropriate procedure for each condition is thoroughly discussed. The substantial cost of training time necessary to implement regional anesthesia is pointed out. Within general anesthetics, ketamine combines the unique advantages of preservation of cardiovascular stability, the protective airway reflexes, and spontaneous ventilation. Ketamine side effects have for decades tempered enthusiasm for its use, but recent developments in mitigation means broadened its indications. The extensive experience gathered in remote environments, with minimal equipment and occasionally by insufficiently trained care providers, confirms its high degree of safety. Two ketamine-based anesthesia protocols are described with their corresponding indications. They have been designed taking into account the physiological changes occurring in microgravity and the specific constraints of exploration missions. This investigation could not only improve surgical care during long-duration spaceflights, but may find a number of terrestrial applications in isolated or austere environments. PMID:23513283

Komorowski, Matthieu; Watkins, Sharmila D; Lebuffe, Gilles; Clark, Jonathan B

2013-03-01

220

Laser Propulsion for LOTV Space Missions  

NASA Astrophysics Data System (ADS)

Advanced Space Propulsion-Investigation Committee (ASPIC) of the Japan Society for Aeronautics and Space Sciences (JSASS) selected the Laser Orbital Transfer Vehicle (LOTV) project for development of non-chemical space propulsion systems that have a capability to sustain expanded human space activities in the 21st century. This talk is presenting an analysis of the laser propulsion researches made within the frames of the ISTC Project 1801 as applied to the LOTV Project. The study includes the development of techniques for low-thrust maneuvers of the spacecraft to achieve geostationary orbits.

Rezunkov, Yuri A.

2004-03-01

221

The Geodetic Reference Antenna in Space (GRASP) Mission Concept  

NASA Astrophysics Data System (ADS)

The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept dedicated to the enhancement of all the space geodetic techniques, promising revolutionary improvements to the definition of the TRF, its densification, and accessibility. GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a supremely calibrated and modelable spacecraft, offering an innovative space-based approach to a heretofore intractable problem: establishing precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a solution to another difficult problem, namely, the consistent calibration of the myriad antennas used to transmit and receive the ubiquitous signals of the present and future Global Navigation Satellite Systems (GNSS). The resulting improvement in GNSS signal modeling will benefit all precision applications of these systems, which are the cornerstone of many Earth science missions. This paper will describe the GRASP mission concept, and the simulations analyses carried out to quantify the science benefits of this mission.

Bar-Sever, Y.; Haines, B.; Wu, S.

2009-04-01

222

Space Station Mission Planning System (MPS) development study. Volume 2  

NASA Technical Reports Server (NTRS)

The process and existing software used for Spacelab payload mission planning were studied. A complete baseline definition of the Spacelab payload mission planning process was established, along with a definition of existing software capabilities for potential extrapolation to the Space Station. This information was used as a basis for defining system requirements to support Space Station mission planning. The Space Station mission planning concept was reviewed for the purpose of identifying areas where artificial intelligence concepts might offer substantially improved capability. Three specific artificial intelligence concepts were to be investigated for applicability: natural language interfaces; expert systems; and automatic programming. The advantages and disadvantages of interfacing an artificial intelligence language with existing FORTRAN programs or of converting totally to a new programming language were identified.

Klus, W. J.

1987-01-01

223

Manned Space-Flight Experiments: Gemini V Mission  

NASA Technical Reports Server (NTRS)

This compilation of papers constitutes an interim report on the results of experiments conducted during the Gemini V manned space flight. The results of experiments conducted on Gemini III and IV manned space flights have been published previously in a similar interim report, "Manned Space Flight Experiments Symposium, Gemini Missions III and IV," which is available upon request from MSC Experiments Program Office, Houston, Texas (Code EX, Attention of R. Kinard). The Gemini V mission provided the greatest opportunity to date for conducting experiments; the increased mission duration of eight days provided this added capability. The total mission experiment complement was seventeen. Five experiments were designed to obtain basic scientific knowledge, five were medical, and seven were technological and engineering in nature. Six of the experiments had flown previously on Gemini IV, and eleven were new. The results of the experiments, including real-time modification to preflight plans made necessary by abnormal spacecraft system operation, are presented.

1966-01-01

224

Analysis of Space Coherent LIDAR Wind Mission  

NASA Technical Reports Server (NTRS)

An evaluation of the performance of a coherent Doppler lidar proposed by a team comprising the NASA Marshall Space Flight Center, Lockheed Martin Space Company, University of Wisconsin and Los Alamos National Laboratory to NASA's Earth System Science Pathfinder (ESSP) program was performed. The design went through several iterations and only the performance of the final design is summarized here.

Spiers, Gary D.

1997-01-01

225

STS-55 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.

Fricke, Robert W., Jr.

1993-01-01

226

Game Changing: NASA's Space Launch System and Science Mission Design  

NASA Technical Reports Server (NTRS)

NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

Creech, Stephen D.

2013-01-01

227

Game changing: NASA's space launch system and science mission design  

NASA Astrophysics Data System (ADS)

NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

Creech, S. D.

228

Preliminary analysis of space mission applications for electromagnetic launchers  

NASA Technical Reports Server (NTRS)

The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

1984-01-01

229

The problem of artificial gravity in piloted space exploration missions  

Microsoft Academic Search

The review deals with the problem of using artificial gravity in piloted space missions, its history and relevance to the proclaimed goals of remote space exploration. It contains a brief discussion of deconditioning and loss of acceleration tolerance developing in cosmonauts despite a variety of preventive procedures. Key issues pertaining short-arm centrifuge (SAC) design and in-flight utilization are acceleration tolerance,

A. R. Kotovskaya

2011-01-01

230

MESSENGER mission: first electronically steered antenna for deep space communications  

Microsoft Academic Search

The MESSENGER mission to orbit the planet Mercury poses significant design challenges for its deep space communication system. These challenges include a wide pointing range, tight packaging, and a high temperature environment. To meet these challenges, the spacecraft incorporates the first steerable phased array antenna flown for deep space communications. The invention of a method for achieving circular polarization in

R. S. Bokulic; K. B. Fielhauer; R. E. Wallis; S. Cheng; M. L. Edwards; R. K. Stilwell; J. E. Perm; J. R. Bruzzi; P. M. Malouf

2004-01-01

231

Nuclear electric ion propulsion for three deep space missions  

Microsoft Academic Search

Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500km low Earth orbit encompassing the transfer of a 100MT payload into a 1500km orbit around Mars, the rendezvous of a 10MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space

Vincent P. Chiravalle

2008-01-01

232

Mission College. Part 3, Preliminary Instructional Strategies and Space Allocations.  

ERIC Educational Resources Information Center

The purpose of this document is to transform the educational program planned for Mission College into instructional and service space. This study of physical facilities and use of space is organized into four support systems required for the development of college programs: instructional support system, individual support system, activity support…

West Valley Joint Community Coll. District, Campbell, CA.

233

Radiometer effect in the ?SCOPE space mission  

Microsoft Academic Search

Space experiments to test the Equivalence Principle (EP) are affected by a systematic radiometer effect having the same signature as the target signal. In [PhRvD 63 (2001) 101101(R)] we have investigated this effect for the three proposed experiments currently under study by space agencies: ?SCOPE, STEP and GG, setting the requirements to be met—on temperature gradients at the level of

A. M. Nobili; D. Bramanti; G. L. Comandi; R. Toncelli; E. Polacco

2002-01-01

234

Precision Laser Development for Gravitational Wave Space Mission  

NASA Technical Reports Server (NTRS)

Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.

Numata, Kenji; Camp, Jordan

2011-01-01

235

Asteroid mission departure strategies from a precessing Space Station orbit  

NASA Technical Reports Server (NTRS)

In using the Space Station as a point of departure for interplanetary missions, the precission of its orbit complicates the process of determining the available departure period. The constantly changing ascending node of the Space Station orbit defines the departure geometry. Severe Delta V penalties occur if favorable departure opportunities are missed and a plane change is required at departure. This paper compares two strategies to reduce the cost of the plane change maneuver, and increase the available departure opportunities. A 3-impulse injection strategy is compared to a deep space plane change for two asteroid rendezvous missions. Results indicate that the deep space plane change strategy has lower propellant mass requirements for the two missions studied. The difference in propellant requirements for the two strategies is a function of the departure geometry.

Sharma, Jayant

1990-01-01

236

Space Shuttle Discovery is launched on mission STS-96  

NASA Technical Reports Server (NTRS)

In the early dawn, the brilliant flames from the launch of Space Shuttle Discovery light up the billows of steam below. Mission STS-96 lifted off at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

237

Space Shuttle Discovery is launched on mission STS-96  

NASA Technical Reports Server (NTRS)

Competing with the sunrise, the brilliant flames from the launch of Space Shuttle Discovery light up the morning sky. Mission STS- 96 lifted off at 6:49:42 a.m. EDT. The crew of seven begin a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

238

Onboard science software enabling future space science and space weather missions  

Microsoft Academic Search

On the path towards an operational Space Weather System are science missions involving as many as 100 spacecraft (Magnetospheric Constellation, DRACO, 2010). Multiple spacecraft are required to measure the macro, meso, and micro scale plasma physics that underlies Geospace phenomena. To be feasible, however, multiple spacecraft missions must be no more costly to operate than single spacecraft missions are today.

Michael L. Rilee; Scott A. Boardsen; Maharaj K. Bhat; Steven A. Curtis

2002-01-01

239

TAMU: A New Space Mission Operations Paradigm  

NASA Technical Reports Server (NTRS)

The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

2011-01-01

240

The suitability of various spacecraft for future space applications missions  

NASA Technical Reports Server (NTRS)

The Space Applications Advisory Committee (SAAC) of NASA's Advisory Council was asked by the Associate Administrator for Space Science and Applications to consider the most suitable future means for accomplishing space application missions. To comply with this request, SAAC formed a Task Force whose report is contained in this document. In their considerations, the Task Force looked into the suitability of likely future spacecraft options for supporting various types of application mission payloads. These options encompass a permanent manned space station, the Space Shuttle operating in a sortie mode, unmanned platforms that integrate a wide variety of instruments or other devices, and smaller free fliers that accommodate at most a few functions. The Task Force also recognized that the various elements could be combined to form a larger space infrastructure. This report summarizes the results obtained by the Task Force. It describes the approach utilized, the findings and their analysis, and the conclusions.

Mathews, C. W.; Bernstein, R.; Maclellan, D. C.

1986-01-01

241

Liftoff of Space Shuttle Atlantis on mission STS-98  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis erupts from Launch Pad 39A amid billows of smoke and steam as it climbs into the early evening sky. Nearby, pelicans also launch from their perches at the roar of the liftoff. Launch occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:00 p.m. EST.

2001-01-01

242

Voice loops as coordination aids in space shuttle mission control  

NASA Technical Reports Server (NTRS)

Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.

1999-01-01

243

Heritage Systems Engineering Lessons from NASA Deep Space Missions  

NASA Technical Reports Server (NTRS)

In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.

Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

2010-01-01

244

Enabling Antenna Systems for Extreme Deep-Space Mission Applications  

Microsoft Academic Search

Two NASA deep-space probes, Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) and New Horizons (NH), are moving towards the extremes of our solar system (Mercury and Pluto). The delivery of the science in these extreme environments is a challenge, and the missions require unique approaches. MESSENGER'S antenna system utilizes the first electronically scanned high-gain array for a deep-space telecommunication

Ron Schulze; Robert E. Wallis; Robert K. Stilwell; Cheng Weilun

2007-01-01

245

Risks of radiation cataracts from interplanetary space missions  

NASA Astrophysics Data System (ADS)

Recognition of the human risks from radiation exposure during manned missions in deep space has been fostered by international co-operation; interagency collaboration is facilitating their evaluation. Further co-operation can lead, perhaps by the end of this decade, to an evaluation of one of the three major risks, namely radiation cataractogenesis, sufficient for use in the planning of the manned mission to Mars.

Lett, J. T.; Lee, A. C.; Cox, A. B.

246

Aquarius: A Mission to Monitor Sea Surface Salinity from Space  

Microsoft Academic Search

Aquarius is a combination passive\\/active L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius\\/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of

D. M. Le Vine; F. Pellerano; G. S. E. Lagerloef; S. Yueh; R. Colomb

2006-01-01

247

A low-cost femtosatellite to enable distributed space missions  

Microsoft Academic Search

A new class of distributed space missions is emerging which requires hundreds to thousands of satellites for real-time, distributed, multi-point sensing to accomplish long-awaited remote sensing and science objectives. These missions, stymied by the lack of a low-cost mass-producible solution, can become reality by merging the concepts of distributed satellite systems and terrestrial wireless sensor networks. However, unlike terrestrial sensor

David J. Barnhart; Tanya Vladimirova; Adam M. Baker; Martin N. Sweeting

2009-01-01

248

Radiation effects on microelectronics and future space missions  

NASA Technical Reports Server (NTRS)

This paper briefly reviews the three basic radiation effect mechanisms, and how they interrupt the functionality of currently available non-volatile memory technologies. This paper also presents a very general overview of the radiation environments expected in future space exploration missions. Unfortunately, these environments will be very harsh, from a radiation standpoint, and thus a significant effort is required to develop non-volatile technologies that will meet future mission requirements.

Patterson, Jeffrey D.

2003-01-01

249

Pioneer mission support. [Deep Space Network activities  

NASA Technical Reports Server (NTRS)

Activities within the Deep Space Network in support of the Pioneer Project's in-flight spacecraft during the period December 1976 through March 1977 are reported. The amount of tracking coverage provided by the network and a summary of operational testing ot the Mark III Data Subsystems are presented.

Adamski, T. P.

1977-01-01

250

Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares  

NASA Technical Reports Server (NTRS)

Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.

Patrick, M. Clinton

2007-01-01

251

Impact of lunar and planetary missions on the space station  

NASA Technical Reports Server (NTRS)

The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.

1984-01-01

252

Space astrometry missions: principles and objectives  

NASA Astrophysics Data System (ADS)

The objectives of space astrometry are the same as those of ground-based astrometry: to measure relative positions in a small field of view or/and to determine positions in a consistent full-sky reference frame (global astrometry). Three space techniques exist, and we present the principles of each, with a description of one realisation: The spaceborne classical small field imaging (HST); Michelson interferometry (SIM), optimised for small field astrometry, but which can also be used to build a global reference frame; HIPPARCOS type, two field of view astrometry (GAIA, and DIVA and FAME if they are re-endorsed). Specifically designed for global astrometry, but can also obtain good results within small fields. In conclusion, a choice among the very large astronomical and astrophysical objectives of SIM and GAIA will be presented.

Mignard, F.; Kovalevsky, J.

253

Propulsion trades for space science missions  

Microsoft Academic Search

This study evaluated the relative benefits of proposed deep space propulsion technology improvements in three areas: advanced chemical, solar electric, and solar sail. Within each area, specific states, representing current technology (present-1999), mid-term (2000–2004), and far term (2005+), were selected for evaluation. The figures of merit used were net spacecraft mass delivered, size of the launch vehicle needed, trip time,

Robert Gershman; Calina Seybold

1999-01-01

254

Radiation protection guidelines for space missions  

SciTech Connect

The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs.

Fry, R.J.M.

1987-01-01

255

Micro-Flying Robotics in Space Missions  

NASA Technical Reports Server (NTRS)

The Columbia Accident Investigation Board issued a major recommendation to NASA. Prior to return to flight, NASA should develop and implement a comprehensive inspection plan to determine the structural integrity of all Reinforced Carbon-Carbon (RCC) system components. This inspection plan should take advantage of advanced non-destructive inspection technology. This paper describes a non-intrusive technology with a micro-flying robot to continuously monitor inside a space vehicle for any stress related fissures, cracks and foreign material embedded in walls, tubes etc.

Bardina, Jorge; Thirumalainambi, Rajkumar

2005-01-01

256

Earth science space missions in the 21st century  

NASA Astrophysics Data System (ADS)

In 2007, the National Research Council (NRC) published “ Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, 2007” , commonly known as the “ Decadal Survey” . This report called for a balanced set of Earth Science Missions across the Earth Science research spectrum. In response, in February 2008, NASA's Earth Science Division reorganized into two program offices: The Earth Systematic Missions Program Office (ESM PO) at Goddard Space Flight Center which includes satellites making continuous measurements of the Earth's climate, and the Earth System Science Pathfinder Program Office (ESSP PO) at Langley Research Center which develops pathfinder missions through Announcements of Opportunity. In June 2010 NASA published its plan to achieve the goals of the Decadal Survey, “ Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space.” This plan includes support for the Decadal Survey missions as well as a set of “ climate continuity missions” to address the scientific need for data continuity of key climate observations. In 2011 the NRC revisited the Decadal Survey report and published “ Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey” . This report notes that progress on the Decadal Survey plan has been slower than planned due to budget shortfalls and launch vehicle failures, and stresses that the goals of the Decadal Survey are as important as ever and must still yield a scientifically-balanced program. This paper will discuss the current status of the mission/mission study portfolios of the ESMP Program and the Earth Venture solicitations of the ESSP Program and how the Programs support the goals established and reiterated by the NRC, and will discuss the risks and challenges faced by t- e Programs as together they strive to meet these goals.

Grofic, B.

257

Protocol Sensing Across Multiple Space Missions  

NASA Technical Reports Server (NTRS)

In this work, we present sensing performance using an architecture for a reconfigurable protocol chip for spacebased applications. Toward utilizing the IP packet architecture, utilizing data link layer framing structures for multiplexed data on a channel are the targeted application considered for demonstration purposes. Specifically, we examine three common framing standards and present the sensing performance of these standards and their relative de-correlation metrics. Some analysis is performed to investigate the impact of lossy links and on the number of packets required to perform a decision with some probability. Finally, we present results on a demonstration platform that integrated reconfigurable sensing technology into the Ground Station Interface Device (GRID) for End-to-End IP demonstrations in space.

Okino, Clayton; Gray, Andrew; Schoolcraft, Joshua

2006-01-01

258

Modeling and Simulation for Multi-Missions Space Exploration Vehicle  

NASA Technical Reports Server (NTRS)

Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

Chang, Max

2011-01-01

259

Exploration Life Support Critical Questions for Future Human Space Missions  

NASA Technical Reports Server (NTRS)

Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

2010-01-01

260

Microbial contamination monitoring and control during human space missions  

NASA Astrophysics Data System (ADS)

The ubiquity and resilience of microorganisms makes them unavoidable in most environments including space habitats. The impaired immune system of astronauts in flight raises the level of concern about disease risk during human space missions and additionally these biological contaminants may affect life support systems and hardware. In this review, the microbial contamination observed in manned space stations and in particular the International Space Station ISS will be discussed, demonstrating that it is a microbiologically safe working and living habitat. Microbial contamination levels were in general below the implemented quality standards, although, occasional contamination hazard reports indicate that the current prevention and monitoring strategies are the strict minimum.

Van Houdt, Rob; Mijnendonckx, Kristel; Leys, Natalie

2012-01-01

261

Vital Role of Nuclear Physics in Space Missions  

NASA Astrophysics Data System (ADS)

Protection from hazards of radiation has been identified as one of the two biggest problems of NASA. One of the major considerations in human exploration and development of space is protecting astronauts, habitat and electronics against the hazards of deep space cosmic radiation. Accurate risk assessments critically depend on the accuracy of the input information about the interaction of ions with materials, electronics and tissues. Due to paucity of the huge amount of needed experimental input data about the interaction of radiation, it is imperative to develop reliable accurate models of nuclear reactions and structures that form the basic input ingredients. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center. The vital role and importance of nuclear physics for space missions would be discussed and a few examples would be presented for space missions.

Tripathi, R. K.; Wilson, J. W.

2004-05-01

262

Open Data Processing Environment for Future Space Missions  

NASA Astrophysics Data System (ADS)

The globalization and decentralisation of future space missions execution requires new concepts for payload and experiment operation. The technological evolution in the area of data systems and networks will allow for almost unlimited remote operations. Software and hardware technologies bundled with modern networking will permit the distribution of work task- and location wise. Whereas in the past both, telemetry and telecommanding had been worked out as special software products taking care of specific mission and individual instrument requirements, future systems will be based on generic solutions and open data systems. Common interface applications in software and hardware will allow the user to access any data products and other mission or experiment related information from remote site. The user will become part of the mission control centre in a virtual manner. DLR, together with small and medium enterprises, has initiated the development for an open data processing system, DAVIS, which face the new challenges. The modular concept of the generic system allows the easy customised implementation of payload and experiment specific data services. Telescience, which means the interactive remote operations of science in space, can be simply realised by scaleable real-time telemetry and telecommand modules. DAVIS covers the entire application chain - telemetry services and archiving, data processing, visualisation and on-line data analysis, as well as telecommanding and tracking. It offers further on various interfaces to other systems, databases or analysis tools via dedicated application programming interfaces (API) and supports the development of multi-platform applications. DAVIS has gained great success in past Spacelab missions and is presently used for the preparation of the project Rosetta-Lander, part of the next cornerstone mission of ESA in 2003. In addition, it is now under further development for the future utilisation in the ISS payload operations area. The paper will survey the system principles and the current development status and will give an outlook into future mission space operations techniques by means of multimedia and internet applications.

Koerver, W.; Schmitz, G.; Sommer, C.; Willnecker, R.

2002-01-01

263

Collection and management of fecal wastes for space missions.  

PubMed

An improved type of human waste collection subsystem has been developed for Space Station Freedom which is designed to meet the challenges of zero gravity collection and system performance. Fecal collection is followed by passive storage for relatively short duration missions. The benefits of utilizing components in solid wastes as part of a partial or completely closed Environmental Control and Life Support System (ECLSS) become more apparent as the duration of the mission increases. The purpose of this review is to summarize the development issues associated with the current waste management subsystem for Space Station Freedom. Also reviewed are current ideas associated with the evolutionary development of this waste management subsystem for longer duration missions. PMID:11537686

Rethke, D W; Steele, J W

1991-10-01

264

Nuclear electric ion propulsion for three deep space missions  

NASA Astrophysics Data System (ADS)

Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500 km low Earth orbit encompassing the transfer of a 100 MT payload into a 1500 km orbit around Mars, the rendezvous of a 10 MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space nuclear reactor technology are assumed. It is shown that nuclear electric ion propulsion offers more than twice the payload for the Mars mission relative to the case when a nuclear thermal rocket is used for the trans-Mars injection maneuver at Earth, and about the same payload advantage relative to the case when solar electric propulsion is used for the Mars heliocentric transfer. For missions to the outer planets nuclear electric ion propulsion increases the payload mass fraction by a factor of two or more compared with high thrust systems that utilize gravity assist trajectories.

Chiravalle, Vincent P.

2008-03-01

265

Coherent Lidar Design and Performance for Space Missions  

NASA Technical Reports Server (NTRS)

This report represents the final report for three years of research in the performance of coherent Doppler lidar for use during space missions and the effectiveness of its use for research into wind turbulence. Included are summaries of each year's results, and the publications derived from that years research. The research for year one determined the performance of coherent Doppler Lidar in the weak signal regime, and improved algorithms for extracting the performance velocity estimators with wind turbulence. Year two reviewed the performance of coherent Doppler Lidar for a shuttle mission, worked to improve a maximum likelihood velocity estimator which permits more accurate measurements when the signal level is not known, and in situ atmospheric measurements were conducted. Using a computer simulation the performance of the coherent Doppler lidar for space missions was determined during the third year's research.

Frehlich, Rod

1999-01-01

266

Tropospheric Wind Measurements from Space: The SPARCLE Mission and Beyond  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

267

Tropospheric Wind Measurements From Space: The SPARCLE Mission And Beyond  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

268

Small Space Weather Research Mission Designed Fully by Students  

Microsoft Academic Search

Students at the University of Colorado at Boulder are building a satellite to study the space weather generated by high-energy particles near the Earth. The Colorado Student Space Weather Experiment (CSSWE) is a CubeSat mission funded by the U.S. National Science Foundation, scheduled for launch into a low-Earth polar orbit in June 2012 as a secondary payload under NASA's Educational

Xinlin Li; Scott Palo; Rick Kohnert

2011-01-01

269

International Space Station (ISS) Configuration Post STS-117 Mission  

NASA Technical Reports Server (NTRS)

Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by the blackness of space, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

2007-01-01

270

Real-Time Decision Support System for Space Missions Control  

Microsoft Academic Search

Space weather refers to conditions on the sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that affect human life or health(1). Such influence is particularly strong on spacecrafts by reducing the mission lifetime and causing long periods of instrument's unavailability. Understanding the cause-effect relation

João Moura Pires; Marta Pantoquilho; Nuno Viana

2004-01-01

271

Technology assessment of advanced automation for space missions  

NASA Technical Reports Server (NTRS)

Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

1982-01-01

272

Modular Gravitational Reference Sensor for High Precision Astronomical Space Missions  

Microsoft Academic Search

We review the progress in developing the Modular Gravitational Reference Sensor (modular GRS) [1], which was first proposed as a simplified core sensor for space gravitational wave detection missions. In a modular GRS, laser beam from the remote the sensor does not illuminate the proof mass directly. The internal measurement from housing to proof mass is separated from the external

Ke-Xun Sun; G. Allen; S. Buchman; R. L. Byer; J. W. Conklin; D. B. DeBra; D. Gill; A. Goh; S. Higuchi; P. Lu; N. Robertson; A. Swank

2006-01-01

273

Vision for Micro Technology Space Missions, Chapter 2.  

National Technical Information Service (NTIS)

It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusio...

N. Dennehy

2005-01-01

274

Launch of Space Shuttle Endeavour on mission STS-61  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavour lifts off from Launch Pad 39B with a crew of six NASA astronauts, a Swiss mission specialist and a variety of special tools aboard. Launch occured at 4:27:00 a.m., December 2, 1993. The launch is reflected in a pool of water in the marsh nearby.

1993-01-01

275

Long Duration Space Missions: Human Subsystem Risks and Requirements  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the human health and performance risks associated with long duration space flight beyond low earth orbit. The contents include: 1) Human Research Program; 2) Human Subsystem Risks; 3) Human Exploration Framework Team (HEFT) Architecture Elements; 4) Potentially Unacceptable Risks -1; 5) Potentially Unacceptable Risks-2; and 6) Major Mission Drivers of Risk.

Kundrot, Criag E.

2011-01-01

276

Role of Lidar Technology in Future NASA Space Missions  

Microsoft Academic Search

The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar\\/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance

Farzin Amzajerdian

277

Importance of Nuclear Physics to NASA's Space Missions  

NASA Technical Reports Server (NTRS)

We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

2001-01-01

278

Atmosphere Selection for Long-duration Manned Space Missions  

NASA Technical Reports Server (NTRS)

This viewgraph reviews the spacecraft environment for future human space exploration missions. The choice of a atmosphere mix will play a critical role in the ultimate safety, productivity, and cost. There are a multitude of factors involved in selection of spacecraft environments.

Hirsch, David B.

2007-01-01

279

Technology assessment of advanced automation for space missions  

NASA Astrophysics Data System (ADS)

Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

1982-11-01

280

Advanced solar dynamic power systems for future space missions  

Microsoft Academic Search

A design and analysis study has been conducted to evaluate the applicability of solar dynamic power generation systems to a wide variety of future space missions. The most promising approach is to limit peak power cycle temperatures to approximately 1090 K by the utilization of lithium fluoride as a thermal energy storage medium which allows energy to be stored at

J. M. Friefeld; W. E. Wallin

1989-01-01

281

Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions  

NASA Technical Reports Server (NTRS)

Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

2009-01-01

282

Surface and Subsurface Quadrupolar Probes for Future Space Missions  

Microsoft Academic Search

Quadrupolar Probes (also called Mutual Impedance Probes) can accurately measure the electrical properties of gaseous, solid and liquid materials. Flight instruments have been developed for atmospheric investigations (Huygens) and for stationary surface measurements (Rosetta lander). Future space missions will employ mobile platforms such as surface vehicles and underground tools (drills, moles). These new instrument carriers will require adapted electrode configurations

R. Trautner; F. Simões; R. Grard; M. Hamelin

2003-01-01

283

Space Shuttle Atlantis poised for launch on mission STS-77  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavour, atop the Mobile Launcher Platform and Crawler-Transporter, slowly lumbers past a tree alongside the crawlerway. The journey from the Vehicle Assembly Building to Pad 39B will take about five or six hours to complete. Once hard down at the pad, preparations will continue to ready Endeavour for its upcoming spaceflight on Mission STS-77.

1996-01-01

284

Thermal Subsystem Design Methodology for Responsive Space Missions  

Microsoft Academic Search

The traditional approach to satellite design is a customized and highly optimized satellite bus. The primary design driver is to minimize mass but often at the expense of time and money. As a result, every design is unique and requires extensive design, modeling, analysis, and test programs. For Responsive Space (RS), the satellite must be adaptable to different missions and

M. Eric Lyall; Andrew D. Williams; Derek W. Hengeveld; Quinn E. Young

285

Space transfer concepts and analyses for exploration missions  

NASA Technical Reports Server (NTRS)

The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis in the structure, power, life support system, and radiation environment.

Woodcock, Gordon R.

1992-01-01

286

The next generation space telescope design reference mission  

NASA Astrophysics Data System (ADS)

We review the Next Generation Space Telescope (NGST) design reference mission (DRM). The NGST DRM contains the scientific goals of the observatory and consists of primary and secondary targets and their characteristics. The purpose of the DRM is to establish a metric against which cost/capability trades, instrumental configurations, and operational scenarios can be tested.

Smith, Eric P.; Mather, John; Bely, Pierre; Koratkar, Anuradha; Stiavelli, Massino; Stockman, H. S. (Peter)

1997-05-01

287

Autonomous medical care for exploration class space missions.  

PubMed

The US-based health care system of the International Space Station contains several subsystems, the Health Maintenance System, Environmental Health System and the Countermeasure System. These systems are designed to provide primary, secondary and tertiary medical prevention strategies. The medical system deployed in low Earth orbit for the International Space Station is designed to support a "stabilize and transport" concept of operations. In this paradigm, an ill or injured crewmember would be rapidly evacuated to a definitive medical care facility (DMCF) on Earth, rather than being treated for a protracted period on orbit. The medical requirements of the short (7 day) and long duration (up to 6 months) exploration class missions to the moon are similar to low Earth orbit class missions but also include an additional 4 to 5 days needed to transport an ill or injured crewmember to a DMCF on Earth. Mars exploration class missions are quite different in that they will significantly delay or prevent the return of an ill or injured crewmember to a DMCF. In addition the limited mass, power and volume afforded to medical care will prevent the mission designers from manifesting the entire capability of terrestrial care. National Aeronautics and Space Administration has identified five levels of care as part of its approach to medical support of future missions including the Constellation program. To implement an effective medical risk mitigation strategy for exploration class missions, modifications to the current suite of space medical systems may be needed, including new crew medical officer training methods, treatment guidelines, diagnostic and therapeutic resources, and improved medical informatics. PMID:18385587

Hamilton, Douglas; Smart, Kieran; Melton, Shannon; Polk, James D; Johnson-Throop, Kathy

2008-04-01

288

SUGAR METABOLISM AND PATHOGENICITY OF SPIROPLASMA CITRI  

Microsoft Academic Search

SUMMARY Spiroplasma citri is a plant-pathogenic mollicute, phy- logenetically related to Gram-positive bacteria. Spiro- plasma cells are restricted to the phloem sieve elements and are transmitted by leafhopper vectors. Recent re- search has allowed depicting a unique scenario in S. citri pathogenicity, where sugar metabolism plays a major role. In vitro S. citri uses fructose, glucose, and trehalose, which are

J. Renaudin

2006-01-01

289

Launch and Assembly Reliability Analysis for Human Space Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

2012-01-01

290

Advanced Microsatellite Mission—deep space applications and constraints  

NASA Astrophysics Data System (ADS)

One very cost-effective route into orbit is as an Auxiliary Microsatellite on the ASAP-5 structure. All planned flights of the ASAP-5 structure are into GTO. The Advanced Microsatellite Mission study carried out within the ESA General Studies Programme addressed the feasibility of a deep space mission starting from this point. One of the major configuration drivers in the ASAP-5 launch envelope is the available volume. Low-density nondeployable equipment (tanks, star sensor baffles, etc.) becomes design drivers. Optimisation for power and volume has led to an Attitude Control System architecture which is gyro-based (using the latest high-performance MEMS devices) making use of opportunistic calibration by minimally baffled star sensors. Solar electric propulsion appears the leading candidate for missions requiring large ?V. There has historically been a quest for ever higher values of Isp for SEP thrusters, but it is shown that a full mission-level trade-off taking into account the restricted power availability on this class of spacecraft often leads to a lower value of Isp in order to minimise operations costs and improve the timeliness of scientific observations. It is concluded that useful deep space missions can be performed by a spacecraft complying with the ASAP-5 constraints.

Chaloner, C. P.; Olivier, B. A. H.; Howieson, J.

2006-10-01

291

Definition of technology development missions for early space stations: Large space structures  

NASA Technical Reports Server (NTRS)

The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

Gates, R. M.; Reid, G.

1984-01-01

292

The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission  

NASA Technical Reports Server (NTRS)

Neurolab (STS-90) represents a major scientific achievement that built upon the knowledge and capabilities developed during the preceding 15 successful Spacelab module missions. NASA proposed a dedicated neuroscience research flight in response to a Presidential declaration that the 1990's be the Decade of the Brain. Criteria were established for selecting research proposals in partnership with the National Institutes of Health (NM), the National Science Foundation, the Department of Defense, and a number of the International Space Agencies. The resulting Announcement of Opportunity for Neurolab in 1993 resulted in 172 proposals from scientists worldwide. After an NIH-managed peer review, NASA ultimately selected 26 proposals for flight on the Neurolab mission.

Buckey, Jay C., Jr. (Editor); Homick, Jerry L. (Editor)

2003-01-01

293

Perfect launch for Space Shuttle Discovery on mission STS-105  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Smoke billows out from Launch Pad 39A as Space Shuttle Discovery soars into the blue sky on mission STS-105 to the International Space Station. Liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

2001-01-01

294

Perfect launch for Space Shuttle Discovery on mission STS-105  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Trailing a fiery-looking column of smoke, Space Shuttle Discovery hurtles into a blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

2001-01-01

295

Perfect launch for Space Shuttle Discovery on mission STS-105  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Viewed from between the trees, Space Shuttle Discovery rises above the smoke as it soars into the blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

2001-01-01

296

Making the Hubble Space Telescope servicing mission safe  

NASA Astrophysics Data System (ADS)

In late 1993 or early 1994 the National Aeronautics and Space Administration will undertake the most ambitious space repair mission ever attempted. Three days of complicated and arduous space walks will be performed to rectify some of the Hubble Space Telescope's (HST) anomalies and to upgrade other systems. The HST is an observatory designed for on-orbit servicing and refurbishment, making the telescope's 15 year design lifetime possible through revisit missions every 3 years. This first Servicing Mission will provide corrective optics to compensate for the primary mirror's spherical aberration in an upgrade to the Wide Field Planetary Camera and install a new Corrective Optics Space Telescope Axial Replacement. The telescope's solar arrays, two rate sensor units, and gyro electronics will also be replaced. This paper will detail how the HST system safety program is conducted. Numerous safety analyses are conducted through the various phases of design, test, and fabrication and results are presented to NASA management for discussion during dedicated safety reviews. This paper will then address the system safety assessment and risk analysis methodologies used (i.e. hazard analysis, fault tree analysis, and failure modes and effects analysis) and how they are coupled with engineering and test analyses for a "synergistic picture" of the system. Some preliminary safety analysis results, showing the relationship between hazard identification, control or abatement, and finally control verification will be presented as examples of this safety process.

Bahr, N. J.; DePalo, S. V.

297

Sleep and circadian rhythm during a short space mission.  

PubMed

An experiment was conducted to assess sleep and circadian regulation in an orbiting spacecraft. In orbit the weakened influence of 24-h zeitgebers could result in delayed circadian phases with the possibility of a transition to free-running circadian rhythms. This and the specific stressors of a space mission may lead to changes in ultradian sleep regulation and in reduced sleep quantity and quality. During the mission sleep was recorded polygraphically on tape, as was body temperature. Daytime alertness was rated subjectively by a mood questionnaire. For comparison the same parameters were measured during a baseline period preceding the space mission. The circadian rhythms of body temperature and alertness were found to be delayed in space compared to baseline. This may mark a phase shift or the transition to a circadian state of free-run. Sleep was shorter and more disturbed. The structure of sleep was significantly altered. In space REM latency was shorter, there was less REM sleep in the second non-REM/REM cycle, and slow-wave sleep was redistributed from the first to the second cycle. The self-assessed mood resembled sleep disturbances and adaptation to the space environment. Reduced sleep quality and quantity are likely to result in fatigue and lower daytime performance. Countermeasures should be adopted to improve sleep of astronauts. PMID:8241722

Gundel, A; Nalishiti, V; Reucher, E; Vejvoda, M; Zulley, J

1993-09-01

298

Asynchronous Message Service for Deep Space Mission Operations  

NASA Technical Reports Server (NTRS)

While the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) provides internationally standardized file transfer functionality that can offer significant benefits for deep space mission operations, not all spacecraft communication requirements are necessarily best met by file transfer. In particular, continuous event-driven asynchronous message exchange may also be useful for communications with, among, and aboard spacecraft. CCSDS has therefore undertaken the development of a new Asynchronous Message Service (AMS) standard, designed to provide common functionality over a wide variety of underlying transport services, ranging from shared memory message queues to CCSDS telemetry systems. The present paper discusses the design concepts of AMS, their applicability to deep space mission operations problems, and the results of preliminary performance testing obtained from exercise of a prototype implementation.

Burleigh, Scott C.

2006-01-01

299

Role of Lidar Technology in Future NASA Space Missions  

NASA Technical Reports Server (NTRS)

The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.

Amzajerdian, Farzin

2008-01-01

300

The James Webb Space Telescope: Science and Mission Status  

NASA Technical Reports Server (NTRS)

The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA for launch later this decade. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe and peer through dusty clouds to see star and planet formation at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at 2 microns. The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5- year prime science mission, with consumables for 10 years of science operations.

Sonneborn, George

2011-01-01

301

Ecological Niches for Space Missions in the Far-Infrared  

NASA Technical Reports Server (NTRS)

The far-infrared and submillimeter region (30 micrometers-750 micrometers) has perhaps the greatest potential of all wavelengths for advancement in astronomy. When viewed in terms of the cosmic backgrounds, the fares is extremely important: half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80 - 100 micrometers. At the highest known galaxy redshifts (z approximately equal to 6) this energy is redshifted to approximately 600 micrometers. Existing and planned survey missions have a broad range of capabilities, defined in terms of their spectral coverage, spectral resolution, survey area, and sensitivity. In this 4-dimensional parameter space, the flares is found to be substantially behind most other wavelength bands. The opportunity for future missions with great discovery potential is evident. Such missions will be wellsuited to answering fundamental questions about the history of energy release in the Universe, the formation and evolution of galaxies, and formation of stellar and protoplanetary systems. We discuss the parameter space that can be filled by a few well-chosen space missions, specifically a submillimeter all-sky survey and a far-IR to submillimeter observatory.

Benford, Dominic J.; Leisawitz, D. T.; Moseley, S. H.; Shafer, R. A.; Staguhn, J. G.; Fisher, Richard R. (Technical Monitor)

2001-01-01

302

Automated design of multiphase space missions using hybrid optimal control  

NASA Astrophysics Data System (ADS)

A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving the associated continuous optimal control problem. This strategy, however, will most likely yield a sub-optimal solution, as the problem is sophisticated for several reasons. For example, the number of events in the optimal mission structure is not known a priori and the system equations of motion change depending on what event is current. In this work a framework for the automated design of multiphase space missions is presented using hybrid optimal control (HOC). The method developed uses two nested loops: an outer-loop that handles the discrete dynamics and finds the optimal mission structure in terms of the categorical variables, and an inner-loop that performs the optimization of the corresponding continuous-time dynamical system and obtains the required control history. Genetic algorithms (GA) and direct transcription with nonlinear programming (NLP) are introduced as methods of solution for the outer-loop and inner-loop problems, respectively. Automation of the inner-loop, continuous optimal control problem solver, required two new technologies. The first is a method for the automated construction of the NLP problems resulting from the use of a direct solver for systems with different structures, including different numbers of categorical events. The method assembles modules, consisting of parameters and constraints appropriate to each event, sequentially according to the given mission structure. The other new technology is for a robust initial guess generator required by the inner-loop NLP problem solver. Two new methods were developed for cases including low-thrust trajectories. The first method, based on GA, approximates optimal control histories by incorporating boundary conditions explicitly using a conditional penalty function. The second method, feasible region analysis, is based on GA and NLP; the GA approximates the optimal boundary points of low-thrust arcs while NLP finds the required control histories. The solution of two representative multiphase space mission design problems shows the effectiveness of the methods developed.

Chilan, Christian Miguel

303

The role of clocks in operating deep space missions  

NASA Technical Reports Server (NTRS)

Operation of deep space missions requires stable frequency references and clocks to perform several mission critical functions. These references are used in generating the telecommunication links to maintain communications between earth and spacecraft, in generating accurate doppler, range, and very long baseline interferometry (VLBI) observables for determining the spacecraft's time varying position, and to generate on-board timing information for clocking out timed commands and time tagging instrument data. In addition, science applications exist, particularly those utilizing radio instrumentation, which can require additional functions and levels of performance. The design necessary to support these functions affects both the spacecraft and the ground tracking stations.

Asmar, Sami W.; Kursinski, E. R.

1992-01-01

304

Psychology and culture during long-duration space missions  

NASA Astrophysics Data System (ADS)

The objective of this paper is twofold: (a) to review the current knowledge of cultural, psychological, psychiatric, cognitive, interpersonal, and organizational issues that are relevant to the behavior and performance of astronaut crews and ground support personnel and (b) to make recommendations for future human space missions, including both transit and planetary surface operations involving the Moon or Mars. The focus will be on long-duration missions lasting at least six weeks, when important psychological and interpersonal factors begin to take their toll on crewmembers. This information is designed to provide guidelines for astronaut selection and training, in-flight monitoring and support, and post-flight recovery and re-adaptation.

Kanas, N.; Sandal, G.; Boyd, J. E.; Gushin, V. I.; Manzey, D.; North, R.; Leon, G. R.; Suedfeld, P.; Bishop, S.; Fiedler, E. R.; Inoue, N.; Johannes, B.; Kealey, D. J.; Kraft, N.; Matsuzaki, I.; Musson, D.; Palinkas, L. A.; Salnitskiy, V. P.; Sipes, W.; Stuster, J.; Wang, J.

2009-04-01

305

Wireless Network Communications Overview for Space Mission Operations  

NASA Technical Reports Server (NTRS)

The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

Fink, Patrick W.

2009-01-01

306

Space Shuttle to deploy Magellan planetary science mission  

NASA Technical Reports Server (NTRS)

The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).

1989-01-01

307

Probabilistic assessment of radiation risk for astronauts in space missions  

NASA Astrophysics Data System (ADS)

Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ?. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, ?30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions. Internal documentation of NASA Constellation Trade Study (F.A. Cucinotta, personal communication).

Kim, Myung-Hee Y.; De Angelis, Giovanni; Cucinotta, Francis A.

2011-04-01

308

Operations Concepts for Deep-Space Missions: Challenges and Opportunities  

NASA Technical Reports Server (NTRS)

Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

McCann, Robert S.

2010-01-01

309

Software Construction and Analysis Tools for Future Space Missions  

NASA Technical Reports Server (NTRS)

NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.

Lowry, Michael R.; Clancy, Daniel (Technical Monitor)

2002-01-01

310

Radiation hazards on space missions outside the magnetosphere.  

PubMed

Future space missions outside the magnetosphere will subject astronauts to a hostile and unfamiliar radiation environment. An annual dose equivalent to the blood-forming organs (BFOs) of approximately 0.5 Sv is expected, mostly from heavy ions in the galactic cosmic radiation. On long-duration missions, an anomalously-large solar energetic particle event may occur. Such an event can expose astronauts to up to approximately 25 Gy (skin dose) and up to approximately 2 Sv (BFO dose) with no shielding. The anticipated radiation exposure may necessitate spacecraft design concessions and some restriction of mission activities. In this paper we discuss our model calculations of radiation doses in several exo-magnetospheric environments. Specific radiation shielding strategies are discussed. A new calculation of aluminum equivalents of potential spacecraft shielding materials demonstrates the importance of low-atomic-mass species for protection from galactic cosmic radiation. PMID:11537305

Letaw, J R; Silberberg, R; Tsao, C H

1989-01-01

311

The scientific basis for the space interferometry mission  

NASA Technical Reports Server (NTRS)

The space interferometry mission (SIM), for launch in 2004, is expected to determine the positions of point sources to a global accuracy of 4 microarcsec, and an accuracy of 1 microarcsec over small angles. The instrument will reach 200 mag in 3 x 10(exp 4) s and has a nominal lifetime of five years. A nulling capability will be provided and synthesis imaging and near-infrared capabilities are being considered. These capabilities will extend those of the Hipparcos mission by almost three orders of magnitude in every sense. The NASA's expectation for the scientific return from the SIM mission is outlined in terms of the areas of stellar physics, galactic structure and extragalactic astrophysics, including the distance scale problem.

Peterson, Deane; Shao, Michael

1997-01-01

312

Radiation hazards on space missions outside the magnetosphere  

NASA Astrophysics Data System (ADS)

Future space missions outside the magnetosphere will subject astronauts to a hostile and unfamiliar radiation environment. An annual dose equivalent to the blood-forming organs (BFOs) of -0.5 Sv is expected, mostly from heavy ions in the galactic cosmic radiation. On long-duration missions, an anomalously-large solar energetic particle event may occur. Such an event can expose astronauts to up to -25 Gy (skin dose) and up to -2 Sv (BFO dose) with no shielding. The anticipated radiation exposure may necessitate spacecraft design concessions and some restriction of mission activities. In this paper we discuss our model calculations of radiation doses in several exo-magnetospheric environments. Specific radiation shielding strategies are discussed. A new calculation of aluminum equivalents of potential spacecraft shielding materials demonstrates the importance of low-atomic-mass species for protection from galactic cosmic radiation.

Letaw, J. R.; Silberberg, R.; Tsao, C. H.

313

Space radiation cancer risks and uncertainties for Mars missions.  

PubMed

Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks. PMID:11604093

Cucinotta, F A; Schimmerling, W; Wilson, J W; Peterson, L E; Badhwar, G D; Saganti, P B; Dicello, J F

2001-11-01

314

Space Radiation Cancer Risks and Uncertainties for Mars Missions  

NASA Technical Reports Server (NTRS)

Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.

Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Badhwar, G. D.; Saganti, P. B.; Dicello, J. F.

2001-01-01

315

Space Shuttle Discovery is launched on mission STS-96  

NASA Technical Reports Server (NTRS)

On its perfect launch today, Space Shuttle Discovery's brilliant flames illuminate the tower at left, with the lightning mast on top, and the billows of smoke and steam at right. Liftoff into a gossamer dawn sky for mission STS-96 occurred at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

316

Estimating the Deep Space Network modification costs to prepare for future space missions by using major cost drivers  

NASA Technical Reports Server (NTRS)

This paper develops a cost model to do long range planning cost estimates for Deep Space Network (DSN) support of future space missions. The paper focuses on the costs required to modify and/or enhance the DSN to prepare for future space missions. The model is a function of eight major mission cost drivers and estimates both the total cost and the annual costs of a similar future space mission. The model is derived from actual cost data from three space missions: Voyager (Uranus), Voyager (Neptune), and Magellan. Estimates derived from the model are tested against actual cost data for two independent missions, Viking and Mariner Jupiter/Saturn (MJS).

Remer, Donald S.; Sherif, Josef; Buchanan, Harry R.

1993-01-01

317

Space construction system analysis study: Project systems and missions descriptions  

NASA Technical Reports Server (NTRS)

Three project systems are defined and summarized. The systems are: (1) a Solar Power Satellite (SPS) Development Flight Test Vehicle configured for fabrication and compatible with solar electric propulsion orbit transfer; (2) an Advanced Communications Platform configured for space fabrication and compatible with low thrust chemical orbit transfer propulsion; and (3) the same Platform, configured to be space erectable but still compatible with low thrust chemical orbit transfer propulsion. These project systems are intended to serve as configuration models for use in detailed analyses of space construction techniques and processes. They represent feasible concepts for real projects; real in the sense that they are realistic contenders on the list of candidate missions currently projected for the national space program. Thus, they represent reasonable configurations upon which to base early studies of alternative space construction processes.

1979-01-01

318

A Management Model for International Participation in Space Exploration Missions  

NASA Technical Reports Server (NTRS)

This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

2005-01-01

319

The DSCOVR Solar Wind Mission and Future Space Weather Products  

NASA Astrophysics Data System (ADS)

The Deep Space Climate Observatory (DSCOVR) mission, scheduled for launch in mid-2014, will provide real-time solar wind thermal plasma and magnetic measurements to ensure continuous monitoring for space weather forecasting. DSCOVR will orbit L1 and will serve as a follow-on mission to NASA's Advanced Composition Explorer (ACE), which was launched in 1997. DSCOVR will have a total of six instruments, two of which will provide real-time data necessary for space weather forecasting: a Faraday cup to measure the proton and alpha components of the solar wind, and a triaxial fluxgate magnetometer to measure the magnetic field in three dimensions. Real-time data provided by DSCOVR will include Vx, Vy, Vz, n, T, Bx, By, and Bz. Such real-time L1 data is used in generating space weather applications and products that have been demonstrated to be highly accurate and provide actionable information for customers. We evaluate current space weather products driven by ACE and discuss future products under development for DSCOVR. New space weather products under consideration include: automated shock detection, more accurate L1 to Earth delay time, and prediction of rotations in solar wind Bz within magnetic clouds. Suggestions from the community on product ideas are welcome.

Cash, M. D.; Biesecker, D. A.; Reinard, A. A.

2012-12-01

320

European Space Agency's Fluorescence Explorer Mission: Concept and Applications  

NASA Astrophysics Data System (ADS)

The Fluorescence Explorer (FLEX) is a dedicated satellite for the detection and measurement of solar-induced fluorescence (SIF). It is one of two candidate missions currently under evaluation by ESA for deployment in its Earth Explorer 8 program, with Phase A/B1 assessments now underway. FLEX is planned as a tandem mission with ESA's core mission Sentinel-3, and would carry an instrument, FLORIS, optimized for discrimination of the fluorescence signal in terrestrial vegetation. The FLEX mission would be the first to be focussed upon optimization of SIF detection in terrestrial vegetation, and using finer spatial resolution than is available with current satellites. It would open up a novel avenue for monitoring photosynthetic function from space, with diverse potential applications. Plant photosynthetic tissues absorbing sunlight in the wavebands of photosynthetically active radiation (400 to 700 nm) emit fluorescence in the form of red and far-red light. This signal confers a small but measurable contribution to apparent reflectance spectra, and with appropriate analysis it may be detected and quantified. Over the last 15-20 years, techniques for SIF detection have progressed from contact or near-contact methods using single leaves to remote techniques using airborne sensors and towers over plant canopies. Ongoing developments in instrumentation, atmospheric correction procedures, signal extraction techniques, and utilization of the SIF signal itself are all critical aspects of progress in this area. The FLEX mission would crystallize developments to date into a state-of-the-art pioneering mission targeting actual photosynthetic function. This compares to existing methods which address only potential function. Thus, FLEX could serve to provide real-time data on vegetation health and stress status, and inputs for parameterization of photosynthetic models (e.g. with measures of light-use efficiency). SIF might be correlated or modelled to photosynthetic rates or gross primary production — an important topic of research. An overview of the FLEX mission concept, applications of SIF, scientific challenges and opportunities will be presented.

Mohammed, G.; Moreno, J. F.; Goulas, Y.; Huth, A.; Middleton, E.; Miglietta, F.; Nedbal, L.; Rascher, U.; Verhoef, W.; Drusch, M.

2012-12-01

321

Human interactions during Shuttle/Mir space missions  

NASA Technical Reports Server (NTRS)

To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.

Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Kozerenko, O.; Sled, A.; Marmar, C. R.

2001-01-01

322

The Space Interferometry Mission (SIM) and Terrestrial Planet Finder (TPF)  

NASA Astrophysics Data System (ADS)

The Space Interferometry Mission (SIM) and the Terrestrial Planet Finder (TPF) are two missions in the portfolio of NASA's Origins program. SIM is a 10m optical interferometer, which will perform astrometry with microarcsecond precision. SIM will measure masses and orbits of gaseous and terrestrial extrasolar planets, and carry out a large number of observing programs that address fundamental questions in stellar, Galactic, and extragalactic astrophysics. TPF will search for Earth analogs in the habitable zones of ~150 nearby stars, and characterize the composition of their atmospheres. TPF could either be implemented as a mid-infrared interferometer, or as a coronographic space telescope operating at visible wavelengths. The planetary programs of SIM and TPF complement each other very well; SIM will characterize the orbits of extrasolar planets and determine their masses, and TPF will provide measurements of their physical properties.

Quirrenbach, Andreas

323

Review of Two Game Changing Technologies for Space Mission Application  

NASA Astrophysics Data System (ADS)

As technology continues to move forward, many new developments and products become available and can be considered for application in NASA's space missions. Two game changing technologies are high temperature superconductors (HTSC) and ionic polymer-metallic composite (IPMC) actuators and sensors. High temperature superconductors are a metal or alloy that can be cooled to above 70 K and are able to conduct an electric flow with zero resistance. Ionic polymer-metal composites actuators and sensors are synthetic composites that display artificial muscle behavior under an applied voltage. By conducting research to review papers, attending lectures and conferences, and interviewing and meeting with developers and researchers many products and applications for specific use in space missions were found. HTSC technology is being integrated into rocket propulsion and acceleration, radiation shielding, energy storage and medical diagnostic tools. IPMC technology is being integrated into extreme environment robotics, avionics and motion detection.

Randazzo, Patricia

2010-10-01

324

Potential civil mission applications for space nuclear power systems  

NASA Technical Reports Server (NTRS)

It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

Ambrus, J. H.; Beatty, R. G. G.

1985-01-01

325

Scientific and Mission Requirements of Next-generation Space Infrared Space Telescope SPICA  

NASA Astrophysics Data System (ADS)

SPICA (Space Infrared Telescope for Cosmology Astrophysics) is a next-generation space tele-scope for mid-and far-infrared astronomy, based on the heritage of AKARI, Spitzer, and Her-schel, Here we introduce Mission Requirement Document (MRD), where scientific and mission requirement of SPICA are described. The MRD clarifies the objectives of the SPICA mission. These objectives are more concretely expressed by various scientific targets, and based on these targets, the mission requirements, such as required specifications of the mission instrumenta-tions, scientific operations etc. are defined. Also the success criteria, by which the evaluation of the mission achievement will be addressed, are clearly described. The mission requirements described here will give the baseline of the study of the system requirements. In the future, The MRD will also be used to confirm the development status, system performance, and operational results on orbit etc. are well in-line with the mission requirements. To summarize, the most important mission requirement of SPICA is to realize a large, mono-lithic (not segmented) 3-m class or larger mirror cooled down below 6K, in order to perform extremely deep imaging and spectroscopy at 5-210µm.

Matsuhara, Hideo; Nakagawa, Takao; Ichikawa, Takashi; Takami, Michihiro; Sakon, Itsuki

326

Minimizing Astronauts' Risk from Space Radiation during Future Lunar Missions  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the risk factors from space radiation for astronauts on future lunar missions. Two types of radiation are discussed, Galactic Cosmic Radiation (GCR) and Solar Particle events (SPE). Distributions of Dose from 1972 SPE at 4 DLOCs inside Spacecraft are shown. A chart with the organ dose quantities is also given. Designs of the exploration class spacecraft and the planned lunar rover are shown to exhibit radiation protections features of those vehicles.

Kim, Myung-Hee Y.; Hayat, Mathew; Nounu, Hatem N.; Feiveson, Alan H.; Cucinotta, Francis A.

2007-01-01

327

Science Priorities of the RadioAstron Space VLBI Mission  

Microsoft Academic Search

The main scientific goal of the RadioAstron Space VLBI mission is study of Active Galactic Nuclei (AGN), Masers and other astronomical objects with unprecedented angular resolution, up to few millionths of an arc-second. The resolution achieved with RadioAstron will allow study the following phenomena and problems: * Central engine of AGN and physical processes near super massive black holes providing

Glen Langston; N. Kardashev

2006-01-01

328

Exo-astrobiology with ESA space science missions  

Microsoft Academic Search

Key questions of astrobiology can be addressed by several space missions from the ESA Science Horizons 2000 Programme, such as: How do solar and stellar systems form? (with ISO, FIRST, SMART-1, Rosetta, Colombo, Gaia). Geological evolution of terrestrial planets (with Living planet, Mars-express, SMART-1, Bepi-Colombo to Mercury). Interstellar Complex organic chemistry (with ISO, ISS\\/EXPOSE, FIRST, Rosetta). Co-evolution of Earth-Moon, impacts

Bernard H. Foing

2001-01-01

329

Radiometer mission requirements for large space antenna systems  

NASA Technical Reports Server (NTRS)

Requirements are defined for Earth observational microwave radiometry using large space antenna systems with apertures in the 50 to 200 meter range. General Earth observational needs, specific measurement requirements, orbital mission guidelines and constraints, and general radiometric requirements are defined. Specific measurements include soil moisture, water surface temperature, water roughness, ice boundaries, salinity, and water pollutants. Measurements with 10 to 1 km spatial resolution and 3 to 1 day temporal resolution are required.

Keafer, L. S., Jr.; Swanson, P.; Eckerman, J.

1982-01-01

330

International Space Station (ISS) Configuration Post STS-117 Mission  

NASA Technical Reports Server (NTRS)

Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by our colorful Earth, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

2007-01-01

331

Radiation-shielding requirements on long-duration space missions  

Microsoft Academic Search

An analysis of radiation shielding requirements on long duration space missions is presented. The report finds the principal radiation hazards to be galactic cosmic radiation (cosmic rays) and radiation from solar flares. Galactic cosmic radiation is a continuous source of radiation delivering a dose equivalent to the blood-forming organs varying from 20 REM\\/year to 50 REM\\/year over the 11-year solar

J. R. Letaw; S. Clearwater

1986-01-01

332

Space transfer concepts and analysis for exploration missions  

NASA Technical Reports Server (NTRS)

The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis on the structure, power, life support system, and radiation environment for a baseline habitat with specific alternatives for the baseline.

Woodcock, Gordon R.

1992-01-01

333

Neurolab - A Space Shuttle Mission Dedicated to Neuroscience Research  

NASA Technical Reports Server (NTRS)

Session JA5 includes short reports concerning: (1) NASA/NIH Neurolab Collaborations; (2) Neurolab Mission: An Example of International Cooperation; (3) Neurolab: An Overview of the Planned Scientific Investigations; (4) EDEN: A Payload for NEUROLAB, dedicated to Neuro Vestibular Research; (5) Neurolab Experiments on the Role of Visual Cues in Microgravity Spatial Orientation; and (6) The Role of Space in the Exploration of the Mammalian Vestibular System.

1997-01-01

334

Ultra Reliable Closed Loop Life Support for Long Space Missions  

NASA Technical Reports Server (NTRS)

Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

Jones, Harry W.; Ewert, Michael K.

2010-01-01

335

Ongoing and Planned Space Missions for High Energy Astrophysics in China: How to Reduce the Cost?  

NASA Astrophysics Data System (ADS)

In this talk, I will introduce the ongoing and planned space missions, dedicated to high energy astrophysics in China, including X-ray missions e.g. HXMT, POLAR, and Einstein Probe, and gamma-ray missions e.g. DAMPE and HERD. I will briefly talk about the budget situation and possible ways to reduce the cost of space mission learned from the limited experience out of these space missions.

Su, Meng

2014-08-01

336

Writing the History of Space Missions: Rosetta and Mars Express  

NASA Astrophysics Data System (ADS)

Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

Coradini, M.; Russo, A.

2011-10-01

337

The problem of artificial gravity in piloted space exploration missions  

NASA Astrophysics Data System (ADS)

The review deals with the problem of using artificial gravity in piloted space missions, its history and relevance to the proclaimed goals of remote space exploration. It contains a brief discussion of deconditioning and loss of acceleration tolerance developing in cosmonauts despite a variety of preventive procedures. Key issues pertaining short-arm centrifuge (SAC) design and in-flight utilization are acceleration tolerance, effectiveness and g-prescriptions. The Russian and international literature on SAC experience in ground-based investigations with simulated microgravity effects (immersion, HDT) gives credence to this approach to counteracting the negative physiological effects of microgravity. Open issues and goals to be gained are described.

Kotovskaya, A. R.

2011-05-01

338

Coping with space motion sickness in Spacelab missions  

NASA Technical Reports Server (NTRS)

Lessons learned from Skylab are applied to methods of dealing with space sickness among crewmembers in their first orbital flight. Early experiences on Skylab 3 led to regularly scheduled scopalamine/dexedrine tablets ingestion. Subsequent experiences on the next Skylab mission established a 75% incidence of the sickness among first-time-in-orbit crewmembers, notably in periods of inactivity rather than work periods. Intramuscular injections are recommended to treat acute space sickness. Preflight transdermal scopalamine plus three or four doses of 5 mg amphetamine are chosen preventive measures, giving 12 hours of efficacy.

Graybiel, A.

1981-01-01

339

Visiting the International Space Station - my mission diary  

NASA Astrophysics Data System (ADS)

Having been fortunate enough to be the first European Astronaut to visit and live aboard the International Space Station, I would like to share with you my personal diary of this very special trip. Space Shuttle "Endeavour", with an international crew of seven, lifted off from Kennedy Space Center in Florida on 19 April for an 11-day mission, which included the delivery of the European-developed "Raffaello" logistics module to the Station and the attachment of the Station's new 17-metre Canadian Robotic Arm. We returned to Earth, with a landing at Edwards Air Force Base in California, on 1 May. Raffaello had been packed for its outward journey with 10 tons of new Station equipment, including six experiment racks and two storage racks for the US "Destiny" module, as well as supplies for the astronauts and other equipment for future construction and maintenance work. One of my main task during the mission was to oversee the safe unloading of all of the experiments and equipment into the Space Station. I was relieved that the whole exercise went so smoothly and very proud to have been the first astronaut to represent Europe on the International Space Station.

Guidoni, U.

2001-08-01

340

Medical support and technology for long-duration space missions  

NASA Technical Reports Server (NTRS)

The current philosophy and development directions being taken towards realization of medical systems for use on board space stations are discussed. Data was gained on the performance of physical examinations, venipuncture and blood flow, blood smear and staining, white blood cell differential count, throat culture swab and colony count, and microscopy techniques during a 28-day period of the Skylab mission. It is expected that the advent of Shuttle flights will rapidly increase the number of persons in space, create a demand for in-space rather than on-earth medical procedures, and necessitate treatments for disorders without the provision for an early return to earth. Attention is being given to pressurized environment and extravehicular conditions of treatment, the possibilities of the use of the OTV for moving injured or ill crewmembers to other space stations, and to isolation of persons with communicable diseases from station crews.

Furukawa, S.; Nicogossian, A.; Buchanan, P.; Pool, S. L.

1982-01-01

341

Developing a Habitat for Long Duration, Deep Space Missions  

NASA Technical Reports Server (NTRS)

One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 cu m (9,464 cu ft) distributed over the functions. The work was validated through comparison to Mir, Skylab, the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concept. Using HIDH guidelines, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

Rucker, Michelle A.; Thompson, Shelby

2012-01-01

342

Space missions to small bodies: asteroids and cometary nuclei  

NASA Astrophysics Data System (ADS)

The knowledge of the physical and dynamical properties, distribution, formation, and evolution of small bodies is fundamental to understand how planet formation occurred and, even more importantly, if and how these objects have played a role in the apparition of life on Earth. In the last century, asteroids began to no longer appear as starlike points of light in our telescopes, but to be resolved worlds with distinctly measurable sizes, shapes, and surface morphologies. Only in the last 25 years, the exploration of small bodies by spacecraft has begun and revealed objects widely diverse in formation region, evolution and properties (e.g. shape, albedo density, gravity, regolith size distribution, and porosity). In this paper we will provide a chronological analysis of comet nuclei and asteroids as revealed by space missions. The real breakthrough began with the ESA Giotto mission in 1986 to the comet Halley, while the latest JAXA Hayabusa mission was devoted to hover above the small asteroid Itokawa with a touch-and-go for a sample return of asteroidal regolith. Comet and asteroid science stands at the threshold of a new exceptional era, with many new missions to be devoted to these widely diverse and still poorly known small bodies.

Barucci, M. A.; Dotto, E.; Levasseur-Regourd, A. C.

2011-11-01

343

Enhancing Team Performance for Long-Duration Space Missions  

NASA Technical Reports Server (NTRS)

Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

Orasanu, Judith M.

2009-01-01

344

International mission planning for space Very Long Baseline Interferometry  

NASA Technical Reports Server (NTRS)

Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions.

Ulvestad, James S.

1994-01-01

345

Space research activities during missions of the past.  

PubMed

For over 30 yr, men and women have lived for various periods of time in a weightless (or free-fall) environment while orbiting the Earth. During these years, we have learned that humans function quite well for short periods of weightlessness, that is, for up to a little more than a year. Some space flight missions have provided physiologic data, including cardiovascular data, from the spacefarers. In fact, some missions have provided laboratories for systematic study of cardiovascular responses and adaptation to space flight. However, the opportunity to obtain physiologic data from people in space is a rarity. It is important to remember that the population sample sizes are small, other stresses may confound the effects of weightlessness, and in some situations the crewmembers are subjects for several experiments at the same time. Furthermore, comparison of cardiovascular data from space flight to data obtained on the ground is sometimes difficult because the subject's posture on the ground is not always reported; in a gravity environment, posture influences the hydrostatic gradient. This over view describes what we have learned about cardiovascular function during flight and after return to Earth. PMID:8897395

Frey, M A

1996-10-01

346

An Architecture to Promote the Commercialization of Space Mission Command and Control  

NASA Technical Reports Server (NTRS)

This paper describes a command and control architecture that encompasses space mission operations centers, ground terminals, and spacecraft. This architecture is intended to promote the growth of a lucrative space mission operations command and control market through a set of open standards used by both gevernment and profit-making space mission operators.

Jones, Michael K.

1996-01-01

347

Validation (not just verification) of Deep Space Missions  

NASA Technical Reports Server (NTRS)

ion & Validation (V&V) is a widely recognized and critical systems engineering function. However, the often used definition 'Verification proves the design is right; validation proves it is the right design' is rather vague. And while Verification is a reasonably well standardized systems engineering process, Validation is a far more abstract concept and the rigor and scope applied to it varies widely between organizations and individuals. This is reflected in the findings in recent Mishap Reports for several NASA missions, in which shortfalls in Validation (not just Verification) were cited as root- or contributing-factors in catastrophic mission loss. Furthermore, although there is strong agreement in the community that Test is the preferred method for V&V, many people equate 'V&V' with 'Test', such that Analysis and Modeling aren't given comparable attention. Another strong motivator is a realization that the rapid growth in complexity of deep-space missions (particularly Planetary Landers and Space Observatories given their inherent unknowns) is placing greater demands on systems engineers to 'get it right' with Validation.

Duren, Riley M.

2006-01-01

348

Space Radiation Risk Assessment for Future Lunar Missions  

NASA Technical Reports Server (NTRS)

For lunar exploration mission design, radiation risk assessments require the understanding of future space radiation environments in support of resource management decisions, operational planning, and a go/no-go decision. The future GCR flux was estimated as a function of interplanetary deceleration potential, which was coupled with the estimated neutron monitor rate from the Climax monitor using a statistical model. A probability distribution function for solar particle event (SPE) occurrence was formed from proton fluence measurements of SPEs occurred during the past 5 solar cycles (19-23). Large proton SPEs identified from impulsive nitrate enhancements in polar ice for which the fluences are greater than 2 10(exp 9) protons/sq cm for energies greater than 30 MeV, were also combined to extend the probability calculation for high level of proton fluences. The probability with which any given proton fluence level of a SPE will be exceeded during a space mission of defined duration was then calculated. Analytic energy spectra of SPEs at different ranks of the integral fluences were constructed over broad energy ranges extending out to GeV, and representative exposure levels were analyzed at those fluences. For the development of an integrated strategy for radiation protection on lunar exploration missions, effective doses at various points inside a spacecraft were calculated with detailed geometry models representing proposed transfer vehicle and habitat concepts. Preliminary radiation risk assessments from SPE and GCR were compared for various configuration concepts of radiation shelter in exploratory-class spacecrafts.

Kim, Myung-Hee Y.; Ponomarev, Artem; Atwell, Bill; Cucinotta, Francis A.

2007-01-01

349

Searching for Planets with the Space Interferometry Mission  

NASA Technical Reports Server (NTRS)

The Space Interferometry Mission (SIM) will be the first space-based long baseline Michelson interferometer designed for precision astrometry. It will address a wide range of problems in stellar astrophysics and Galactic structure, delivering precision astrometry of stars down to 20 magnitude throughout the entire Galaxy. SIM uses a 10-m Michelson interferometer in Earth-trailing solar orbit to provide 4 microarcsecond (gas) precision astrometry. With a 5-year mission lifetime, SIM will be a powerful tool for discovering planets around nearby stars, through detection of the stellar reflex motion. The astrometric method complements the radial velocity technique which as already yielded many new planets, with an important benefit of directly measuring planetary masses. SIM will have a single-measurement precision of 1 microarcsecond in a frame defined by nearby reference stars, enabling searches for planets with masses as small as a few earth masses around the nearest stars. More massive planets will be detectable to much larger distances. In addition to precision astrometry SIM will also serve an important role as a technology precursor for future astrophysics missions using interferometers. Two technologies demonstrated will be high dynamic-range aperture synthesis imaging at 10-milliarcsec resolution in the optical, and fringe nulling to 10 (exp -4).

Unwin, Stephen

2000-01-01

350

Developing a Habitat for Long Duration, Deep Space Missions  

NASA Technical Reports Server (NTRS)

One possible next leap in human space exploration is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to be designed to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be 268 m3 distributed over the functions. The work was validated through comparison with the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concepts. In the end, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

Rucker, Michelle A.; Thompson, Shelby

2011-01-01

351

SIM PlanetQuest: Science with the Space Interferometry Mission  

NASA Technical Reports Server (NTRS)

SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM, including copies of this report, may be obtained from the project web site, at http://sim. jpl.nasa.gov.

Unwin, Stephen (Editor); Turyshev, Slava (Editor)

2004-01-01

352

Qualifying a Bonding Process for the Space Interferometry Mission  

NASA Technical Reports Server (NTRS)

The Space Interferometry Mission consists of three parallel Michelson interferometers that will be capable of detecting extrasolar planets with a high degree of accuracy and precision. High levels of stability must be met in order to fulfill the scientific requirements of this mission. To attain successful measurements the coefficient of thermal expansion between optics and bonding material must be minimized without jeopardizing the integrity of the bonds. Optic-to-optic bonds have been analyzed to better understand variables such as the effects of the coefficient of thermal expansion differences between optics and bonding materials, and materials have been chosen for the project based on these analyses. A study was conducted to determine if a reliable, repeatable process for bonding by wicking adhesive could be obtained using a low-viscosity epoxy and ultra-low expansion glass. A process of creating a methodology of bonding fused silica optics with Z-6020 silane primer and Epo-Tek 301 epoxy will be discussed.

Joyce, Gretchen P.

2005-01-01

353

Research Needs in Electrostatics for Lunar and Mars Space Missions  

NASA Technical Reports Server (NTRS)

The new space exploratory vision announced by President Bush on January 14, 2004, initiated new activities at the National Science and Space Administration (NASA) for human space missions to further explore our solar system. NASA is undertaking Lunar exploration to support sustained human and robotic exploration of Mars and beyond. A series of robotic missions to the Moon by 2008 to prepare for human exploration as early as 2015 but no later than 2020 are anticipated. In a similar way, missions to the Moon and Mars are being planned in Europe, Japan and Russia. These space missions will require international participation to solve problems in a number of important technological areas where research is needed, including biomedical risk mitigation as well as life support and habitability on the surface of Mars. Mitigation of dust hazards is one of the most important problems to be resolved for both Lunar and Mars missions. Both Lunar and Martian regolith are unique materials and completely different from the terrestrial soils that we are exposed to on earth. The total absence of water and an atmosphere on the moon and the formation of soil and fine dust by micrometeorite impacts over billions of years resulted in a layer of soil with unique properties. The soil is primarily basaltic in composition with a high glass concentration. The depth of the soil layer varies from a few meters in the mare areas (dark areas on the Lunar near side) to tens of meters in the highland areas (the lighter mountainous areas) and the particle size distribution of this dust layer varies widely with a major mass fraction less than 10 micrometer in diameter. The hard soil from the moon which has been extensively studied by several researchers showed clearly unique properties of Lunar soil. Apollo astronauts became aware of the potentially serious threat to crew health and mission hardware that can be caused by the lunar dust. As reported by McKay and Carrier the mass fraction of the lunar dust with particle diameter smaller than 20p.m probably represents up to 30% of the total mass of regolith. Apollo astronaut Dr. Harrison Schmidt reported that these fine dust particles were clinging to the Extra Vehicular Activity (EVA) suits and to the visors and were limiting the activity on the surface of the moon. The dust particles that were transported with the EVA suits into the lunar module floated throughout the cabin. Crews inhaled the dust particles and noted that they smelled like gun smoke, caused a chocking sensation in the throat and eye irritation. In addition,, some of the mechanical systems were not functioning well because of the dust deposition. It appeared that the dust particles are highly charged electrostatically and Dr. Schmidt noted that future successful Lunar missions will require appropriate dust mitigation technology for protecting astronauts from inhaling toxic particles and mission's life supporting equipment from contamination with the dust particles.

Calle, Carlos I.

2005-01-01

354

Next-Generation Space Telescope design reference mission  

NASA Astrophysics Data System (ADS)

The Next Generation Space Telescope (NGST) Design Reference Mission (DRM) represents a suite of potential astronomical programs and targets along with their expected physical properties, and desired observation modes. This broad science program is being used to drive the observatory design in a way as fundamental as traditional engineering parameters. Astronomers use the DRM to communicate their desires in a quantitative fashion to the engineers who will eventually construct the observatory. The DRM is also the primary tool used to measure the relative value of NGST mission architectures and technological readiness of the program. Specifically, the fraction of the DRM completed by a given observatory configuration in a given time is, to first order, a measure of the value of the design. Those designs which complete a higher fraction of the observations listed below are more capable than those complete lesser fractions.

Smith, Eric P.; Mather, John C.; Stockman, Hervey S.; Bely, Pierre Y.; Stiavelli, Massimo; Burg, Richard

1998-08-01

355

NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions.  

National Technical Information Service (NTIS)

The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit (LEO). The SLS Program, managed at NASA s Marshall Space Flight C...

S. D. Creech

2012-01-01

356

Hubble Space Telescope Servicing Mission 3A Rendezvous Operations  

NASA Technical Reports Server (NTRS)

The Hubble Space Telescope (HST) hardware complement includes six gas bearing, pulse rebalanced rate integrating gyros, any three of which are sufficient to conduct the science mission. After the loss of three gyros between April 1997 and April 1999 due to a known corrosion mechanism, NASA decided to split the third HST servicing mission into SM3A, accelerated to October 1999, and SM3B, scheduled for November 2001. SM3A was developed as a quick turnaround 'Launch on Need' mission to replace all six gyros. Loss of a fourth gyro in November 1999 caused HST to enter Zero Gyro Sunpoint (ZGSP) safemode, which uses sun sensors and magnetometers for attitude determination and momentum bias to maintain attitude stability during orbit night. Several instances of large attitude excursions during orbit night were observed, but ZGSP performance was adequate to provide power-positive sun pointing and to support low gain antenna communications. Body rates in ZGSP were estimated to exceed the nominal 0.1 deg/sec rendezvous limit, so rendezvous operations were restructured to utilize coarse, limited life, Retrieval Mode Gyros (RMGs) under Hardware Sunpoint (HWSP) safemode. Contingency procedures were developed to conduct the rendezvous in ZGSP in the event of RMGA or HWSP computer failure. Space Shuttle Mission STS-103 launched on December 19, 1999 after a series of weather and Shuttle-related delays. After successful rendezvous and grapple under HWSP/RMGA, the crew changed out all six gyros. Following deploy and systems checkout, HST returned to full science operations.

Lee, S.; Anandakrishnan, S.; Connor, C.; Moy, E.; Smith, D.; Myslinski, M.; Markley, L.; Vernacchio, A.

2001-01-01

357

Robotic Drilling Technology and Applications to Future Space Missions  

NASA Astrophysics Data System (ADS)

Introduction: Robotic drilling has great potential to become a vital, enabling technology in the context of future human and robotic exploration of the Solar System. Specific needs for human exploration relate to the ability for remote missions to scout potential locations for habitability and/or resource recovery. We will describe relevant challenges to robotic drilling and development pertaining to operations within hostile planetary environments. From the perspective of a system concept for mission architectures and exploration approaches, the ability to drill into extra-terrestrial planetary bodies and recover samples for analysis and/or utilization can provide vital references, resources, and opportunities for mission enrichment. The technology for supporting and planning such missions presents a feed-forward advantage for a human presence in such environments. Future space missions for drilling in the shallow and mid-to-deep subsurface face issues unfamiliar to terrestrial analogues, including limited power, very low or very high pressures, and widely varying thermal environments. We will discuss the means and approaches for establishing drilling operations, managing drilling sites, and mitigating environmental effects. Early robotic phases will leverage system-of-systems collaborations among humans and machines on and above the surface of planetary bodies. Such "precursor missions" will be charged with the task of mapping subsurface geology, understanding soil/rock particle distributions, obtaining geologic history, and determining local resource profiles. An example of the need for this kind of information is given to good effect by one of the lessons learned by NASA's Apollo program: the effects of lunar dust on humans, drilling mechanisms, and mission expectations were far greater than initially expected, and are still being critically considered. Future missions to Solar System bodies, including the Moon and Mars, will need to have advance information about local geologic effects, especially below the visible surface. In these hostile environments, valuable resources (e.g., water and other volatiles) will probably be hidden in substrata. Prospecting, mapping, excavating, and recovering these resources will remain a central need for NASA's exploration efforts for the foreseeable future. Swales Aerospace has a proven history in the development of low-power robotic drilling technology and research. We will show some results of a successful field campaign, during which our research prototype drill reached a depth of 10 meters with an average power consumption of only 100 Watts. We will summarize our results from a recent 2006 Idaho 2m-Basalt field test that proven basalt can be cored using 90W and past paper studies on drilling in the Martian environment and our perspective on the development of mission profiles for planetary drilling. We will suggest architectures for future drilling missions, potential configurations for deployed planetary drills, and provide comments on relevant engineering challenges such as sample acquisition, mission time, power, and mass.

Guerrero, J. L.; Reiter, J. W.; Rumann, A.; Wu, D.; Wang, G. Y.; Meyers, M.; Craig, J.; Abbey, W.; Beegle, L. W.

2006-12-01

358

Future Mission Trends and their Implications for the Deep Space Network  

NASA Technical Reports Server (NTRS)

This viewgraph presentation discusses the direction of future missions and it's significance to the Deep Space Network. The topics include: 1) The Deep Space Network (DSN); 2) Past Missions Driving DSN Evolution; 3) The Changing Mission Paradigm; 4) Assessing Future Mission Needs; 5) Link Support Trends; 6) Downlink Rate Trends; 7) Uplink Rate Trends; 8) End-to-End Link Difficulty Trends; 9) Summary: Future Mission Trend Drivers; and 10) Conclusion: Implications for the DSN.

Abraham, Douglas S.

2006-01-01

359

Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth  

NASA Technical Reports Server (NTRS)

The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.

Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark

1993-01-01

360

Space Radiation and Manned Mission: Interface Between Physics and Biology  

NASA Astrophysics Data System (ADS)

The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.

Hei, Tom

2012-07-01

361

Nuclear Physics on Critical Path for Space Missions  

NASA Astrophysics Data System (ADS)

Protection from hazards of space radiation has been identified as one of the five NASA's critical areas for human space flights. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues, microelectronic devices, and materials. One of the major considerations in human exploration and development of space is protecting astronauts, habitat and electronics against the hazards of severe deep space radiation. Accurate risk assessments critically depend on the accuracy of the input information about the interaction of ions with materials, electronics and tissues. Due to paucity of the huge amount of needed experimental input data about the interaction of radiation, it is imperative to develop reliable accurate models of nuclear reactions and structures that form the basic input ingredients. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center. The vital role and importance of nuclear physics for space missions would be discussed.

Tripathi, Ram

2007-10-01

362

Design and application of electromechanical actuators for deep space missions  

NASA Technical Reports Server (NTRS)

This third semi-annual progress report covers the reporting period from August 16, 1994 through February 15, 1995 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions'. There are two major report sections: Motor Control Status/Electrical Experiment Planning and Experiment Planning and Initial Results. The primary emphasis of our efforts during the reporting period has been final construction and testing of the laboratory facilities. As a result, this report is dedicated to that topic.

Haskew, Tim A.; Wander, John

1995-01-01

363

Timekeeping for the Space Technology 5 (ST-5) Mission  

NASA Technical Reports Server (NTRS)

Space Technology 5, or better known as ST-5, is a space technology development mission in the New Millennium Program (NMP) and NASA s first experiment in the design of miniaturized satellite constellations. The mission will design, integrate and launch multiple spacecraft into an orbit high above the Earth s protective magnetic field known as the magnetosphere. Each spacecraft incorporates innovative technology and constellation concepts which will be instrumental in future space science missions. A total of three ST-5 spacecraft will be launched as secondary payloads into a highly elliptical geo-synchronous transfer orbit, and will operate as a 3-element constellation for a minimum duration of 90 days. In order to correlate the time of science measurements with orbit position relative to the Earth, orbit position in space (with respect to other objects in space) and/or with events measured on Earth or other spacecraft, accurate knowledge of spacecraft and ground time is needed. Ground time as used in the USA (known as Universal Time Coordinated or UTC) is maintained by the U.S. Naval Observatory. Spacecraft time is maintained onboard within the Command and Data Handling (C&DH) system. The science requirements for ST-5 are that spacecraft time and ground time be correlatable to each other, with some degree of accuracy. Accurate knowledge of UTC time on a spacecraft is required so that science measurements can be correlated with orbit position relative to the Earth, orbit position in space and with events measured on Earth or other spacecraft. The most crucial parameter is not the clock oscillator frequency, but more importantly, how the clock oscillator frequency varies with time or temperature (clock oscillator drift). Even with an incorrect clock oscillator frequency, if there were no drift, the frequency could be assessed by comparing the spacecraft clock to a ground clock during a few correlation events. Once the frequency is accurately known, it is easy enough to make a regular adjustment to the spacecraft clock or to calculate the correct ground time for a given spacecraft clock time. The oscillator frequency, however, is temperature dependent, drifts with age and is affected by radiation; hence, repeated correlation measurements are required.

Raphael, Dave; Luers, Phil; Sank, Victor; Jackson, George

2002-01-01

364

Exploration Life Support Critical Questions for Future Human Space Missions  

NASA Technical Reports Server (NTRS)

Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

2009-01-01

365

Challenges to Health During Deep Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Long duration missions outside of low Earth orbit will present unique challenges to the maintenance of human health. Stressors with physiologic and psychological impacts are inherent in exploration missions, including reduced gravity, increased radiation, isolation, limited habitable volume, circadian disruptions, and cabin atmospheric changes. Operational stressors such as mission timeline and extravehicular activities must also be considered, and these varied stressors may act in additive or synergistic fashions. Should changes to physiology or behavior manifest as a health condition, the rendering of care in an exploration environment must also be considered. Factors such as the clinical background of the crew, inability to evacuate to Earth in a timely manner, communication delay, and limitations in available medical resources will have an impact on the assessment and treatment of these conditions. The presentations associated with this panel will address these unique challenges from the perspective of several elements of the NASA Human Research Program, including Behavioral Health and Performance, Human Health Countermeasures, Space Radiation, and Exploration Medical Capability.

Watkins, S.; Leveton, L.; Norsk, P.; Huff, J.; Shah, R.

2014-01-01

366

Training Space Surgeons for Missions to the Moon and Mars  

NASA Technical Reports Server (NTRS)

Over a period of 4 years, several working groups reviewed the provisions for medical care in low earth orbit and for future flights such as to the Moon and Mars. More than 60 medical experts representing a wide variety of clinical backgrounds participated in the working groups. They concluded that NASA medical training for long-duration missions, while critical to success, is currently aimed at short-term skill retention. They noted that several studies have shown that skills and knowledge deteriorate rapidly in the absence of adequate sustainment training. American Heart Association studies have shown that typically less than twenty-five percent of learned skills remain after 6 to 8 months. In addition to identifying the current training deficiencies, the working groups identified additional skill and knowledge sets required for missions to the Moon and Mars and curricula were developed to address inadequacies. Space medicine care providers may be categorized into 4 types based on health care responsibilities and level of education required. The first 2 types are currently recognized positions within the flight crew: crew medical officers and astronaut-physician. The crew medical officer (CMO), a non-medically trained astronaut crewmember, is given limited emergency medical technician-like training to provide medical care on orbit. Many of hidher duties are carried out under the direction of a ground-based flight surgeon in mission control. Second is the astronaut- physician whose primary focus is on mission specialist duties and training, and who has very limited ability to maintain medical proficiency. Two new categories are recommended to complete the 4 types of care providers primarily to address the needs of those who will travel to the Moon and Mars. Physician astronaut - a physician, who in addition to being a mission specialist, will be required to maintain and enhance hidher medical proficiency while serving as an astronaut. Space surgeon - a physician astronaut given special training to address the unique health care requirements envisioned for expeditions such as those to Mars.

Pool, S. L.; McSwain, N.

2004-01-01

367

The James Webb Space Telescope: Mission Overview and Status  

NASA Technical Reports Server (NTRS)

The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6 Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program.

Greenhouse, Matthew A.

2011-01-01

368

Potential Uses of Deep Space Cooling for Exploration Missions  

NASA Technical Reports Server (NTRS)

Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could avoid temperature increase thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.

Chambliss, Joseph; Sweterlitsch, Jeff; Swickrath, Michael

2011-01-01

369

Potential Uses of Deep Space Cooling for Exploration Missions  

NASA Technical Reports Server (NTRS)

Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could counter temperature increases thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.

Chambliss, Joe; Sweterlitsch, Jeff; Swickrath, Micahel J.

2012-01-01

370

Goddard Space Flight Center solar array missions, requirements and directions  

NASA Technical Reports Server (NTRS)

The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

Gaddy, Edward; Day, John

1994-01-01

371

Goddard Space Flight Center Solar Array Missions, Requirements and Directions  

NASA Technical Reports Server (NTRS)

The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are "in house" spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are "out of house" spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC "in house" and "out of house" spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

Gaddy, Edward; Day, John

1994-01-01

372

Implementing Distributed Operations: A Comparison of Two Deep Space Missions  

NASA Technical Reports Server (NTRS)

Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption of web-based and telecommunication tools has been critical to the success of Cassini operations.

Mishkin, Andrew; Larsen, Barbara

2006-01-01

373

Galaxy Mission Completes Four Star-Studded Years in Space  

NASA Technical Reports Server (NTRS)

NASA's Galaxy Evolution Explorer is celebrating its fourth year in space with some of M81's 'hottest' stars.

In a new ultraviolet image, the magnificent M81 spiral galaxy is shown at the center. The orbiting observatory spies the galaxy's 'sizzling young starlets' as wisps of bluish-white swirling around a central golden glow. The tints of gold at M81's center come from a 'senior citizen' population of smoldering stars.

'This is a spectacular view of M81,' says Dr. John Huchra, of the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass. 'When we proposed to observe this galaxy with GALEX we hoped to see globular clusters, open clusters, and young stars...this view is everything that we were hoping for.'

The image is one of thousands gathered so far by GALEX, which launched April 28, 2003. This mission uses ultraviolet wavelengths to measure the history of star formation 80 percent of the way back to the Big Bang.

The large fluffy bluish-white material to the left of M81 is a neighboring galaxy called Holmberg IX. This galaxy is practically invisible to the naked human eye. However, it is illuminated brilliantly in GALEX's wide ultraviolet eyes. Its ultraviolet colors show that it is actively forming young stars. The bluish-white fuzz in the space surrounding M81 and Holmberg IX is new star formation triggered by gravitational interactions between the two galaxies. Huchra notes that the active star formation in Holmberg IX is a surprise, and says that more research needs to be done in light of the new findings from GALEX.

'Some astronomers suspect that the galaxy Holmberg IX is the result of a galactic interaction between M81 and another neighboring galaxy M82,' says Huchra. 'This particular galaxy is especially important because there are a lot of galaxies like Holmberg IX around our Milky Way galaxy. By understanding how Holmberg IX came to be, we hope to understand how all the little galaxies surrounding the Milky Way developed.'

'Four years after GALEX's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe,' says Kerry Erickson, GALEX project manager.

M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today.

The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.

2007-01-01

374

The Science and Technology of Future Space Missions  

NASA Astrophysics Data System (ADS)

The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data processing. Powerful computers with customized architectures are designed and developed. High-speed intercommunication networks are studied and tested. In parallel to the hardware research activities, software development is undertaken for several purposes: digital and video compression algorithms, payload and spacecraft control and diagnostics, scientific processing algorithms, etc. Besides, embedded Java virtual machines are studied for tele-science applications (direct link between scientist console and scientific payload). At system engineering level, the demand for spacecraft autonomy is increased for planetology missions: reliable intelligent systems that can operate for long periods of time without human intervention from ground are requested and investigated. A technologically challenging but less glamorous area of development is represented by the laboratory equipment for end-to-end testing (on ground) of payload instruments. The main fields are cryogenics, laser and X-ray optics, microwave radiometry, UV and infrared testing systems.

Bonati, A.; Fusi, R.; Longoni, F.

1999-12-01

375

A methodology to determine impact of robotic technologies on space exploration missions  

Microsoft Academic Search

This paper presents a new method for evaluating relative strengths and impact of robotic technologies utilized for space exploration missions. The method uses a three tiered process involving mission analysis, technology performance characterization, and technology influence models. Mission analysis focuses on determining the goals of the mission and evaluating the metrics that quantify those goals. Technology performance characterization allows the

Ayanna Howard; William Lincoln; Ramachandra Manvi; G. Rodriguez; C. R. Weisbin; M. Drummond

2004-01-01

376

The space instrument SOVAP of the PICARD mission  

NASA Astrophysics Data System (ADS)

PICARD is a scientific mission of the French space agency CNES. Its objectives are the study of the origin of the solar variability and the study of the relations between the Sun and the Earth's climate. The payload was launched on 15 june 2010 in a Sun Synchronous Orbit at 725 km altitude. The mission life time is two years, however to be extended to three years. The payload consists of two absolute radiometers measuring the TSI (Total Solar Irradiance) and an imaging telescope to determine the solar diameter, the limb shape and asphericity. SOVAP (SOlar VAriability PICARD) is an experiment developed by the STCE (Solar Terrestrial Center of Excellence) with a contribution of the CNRS (Centre National de Recherche Scientifique) composed of an absolute radiometer provided by the RMIB (Royal Meteorological Institute of Belgium) to measure the TSI and a bolometer provided by the ROB (Royal Observatory of Belgium) to measure both the solar and terrestrial outgoing radiation with 10 s sampling . The Sovap instrument aims at high quality metrology in the space environment. In this paper, we describe the SOVAP instrument and its technical performances.

Dewitte, S.; Conscience, C.; Mefta, M.; Chevalier, A.; Crommelynck, D.

2010-12-01

377

The Herschel Space Observatory: Early Results and Mission Status  

NASA Astrophysics Data System (ADS)

Herschel is a cornerstone mission of the European Space Agency (ESA), with major involvement from NASA. The PACS and SPIRE instruments are moderate resolution imaging spectrometers and photometers that together cover over a decade in wavelength from 670 to 57 microns, with spectral resolution as high as 2000. HIFI is a single pixel dual-polarization heterodyne spectrometer that covers frequencies between 470 GHz and 2000 GHz (640 microns to 150 microns wavelength) with a maximum spectral resolution in excess of 1 million. At the present time, instrumental performance is close to or better than that expected before launch. Herschel was launched on May 14, 2009 (along with the Planck cosmology mission). A science lifetime of 3 years in anticipated, limited by the liquid helium supply. In this talk I review the characteristics of the Herschel Space Observatory and the capabilities of its three science instruments. I will also summarize the early results from Herschel. The access with a suite of high sensitivity imaging and spectroscopy systems to a largely unexplored portion of the electromagnetic spectrum has resulted in an exceptionally wide range of astronomical discoveries, in areas ranging from distant galaxies, to high-resolution spectroscopy of molecular clouds in the Milky Way, to observations of objects in our solar system. The final opportunity to submit observing proposals will be in Summer 2011.

Goldsmith, Paul

2011-01-01

378

Miniature Mass Spectrometers on Space and Planetary Missions  

NASA Technical Reports Server (NTRS)

Space flight mass spectrometers contribute our understanding of the origin and evolution of our solar system and even of life itself. This fundamental role has motivated increasing interest in miniature mass spectrometry for planetary missions. Several remarkable new instruments are en route or under development to investigate the composition of planetary bodies such as Mars and comets. For instance, the Sample Analysis at Mars (SAM) suite on the 2009 Mars Science Laboratory (MSL) mission includes a quadrupole mass spectrometer with a sophisticated gas processing system as well as pyrolysis and chemical derivatization protocols for solid samples. Future missions will require even lighter, lower power, and yet more capable mass spectrometers, particularly to analyze samples in situ on planetary surfaces. We have been developing laser-based mass spectrometers for elemental and organic/molecular analysis of rock, ice, or fine particle samples. These typically use time-of-flight (TOF) mass analyzers, which are readily miniaturized and can detect both atomic species and complex organics that occur in a variety of planetary materials. For example, nonvolatile polycyclic aromatic hydrocarbons and kerogen-like macromolecular carbon are found in some carbonaceous meteorites, which derived from asteroid parent bodies. A single focused laser pulse is able to volatilize and ionize some of these compounds for direct TOF analysis. While this is possible without any sample preparation or contact, sensitivity and quantitative performance can improve significantly with some sample handling. As such we have also been examining robotic mechanisms and protocols to accompany space flight mass spectrometers. In addition, sensors in early development may significantly improve these capabilities, via use of techniques such as switchable polarity, ambient pressure, or resonant ionization; tandem mass spectrometry (TOF or ion trap); and chemical imaging.

Brinckerhoff, William

2008-01-01

379

Small Stirling dynamic isotope power system for robotic space missions  

NASA Technical Reports Server (NTRS)

The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

Bents, D. J.

1992-01-01

380

Space station needs, attributes and architectural options study. Volume 2: Mission analysis  

NASA Technical Reports Server (NTRS)

Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.

1983-01-01

381

Space station needs, attributes and architectural options. Volume 3, task 1: Mission requirements  

NASA Technical Reports Server (NTRS)

The mission requirements of the space station program are investigated. Mission parameters are divided into user support from private industry, scientific experimentation, U.S. national security, and space operations away from the space station. These categories define the design and use of the space station. An analysis of cost estimates is included.

1983-01-01

382

Space Radiation a Potential Show Stopper in Missions to Moon and Mars and beyond  

Microsoft Academic Search

Exposure from the hazards of severe space radiation in deep space\\/ long duration missions is `the show stopper' for NASA's vision of missions to Moon, Mars and beyond. The key to the success of human exploration and development of space is protecting astronauts, habitat and electronics against the hazards of severe space radiation environment. Accurate risk assessments critically depend on

Ram Tripathi

2007-01-01

383

Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mission concepts  

Microsoft Academic Search

Liquid hydrogen and oxygen cryogenic propulsion and storage were recently considered for application to Titan Explorer and Comet Nuclear Sample Return space science mission investigations. These missions would require up to 11 years of cryogenic storage. We modeled and designed cryogenic propellant storage concepts for these missions. By isolating the propellant tank’s view to deep space, we were able to

D. W. Plachta; R. J. Christie; J. M. Jurns; P. Kittel

2006-01-01

384

A Proposal to Study the Scientific Uses of Solar Electric Propulsion for Space Physics Missions  

NASA Technical Reports Server (NTRS)

This effort was for the participation of Dr. William S. Kurth in the study of the application of spacecraft using solar electric propulsion (SEP) for a range of space physics missions. This effort included the participation of Dr. Kurth in the Tropix Science Definition Team but also included the generalization to various space physics and planetary missions, including specific Explorer mission studies.

Kurth, William S.

1999-01-01

385

Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission  

NASA Astrophysics Data System (ADS)

Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for Hubble's success is the advantage of being in orbit, beyond the Earth's atmosphere. From there it enjoys a crystal-clear view of the universe - without clouds and atmospheric disturbances to blur its vision. European astronomer Guido De Marchi from ESO in Munich has been using Hubble since the early days of the project. He explains: "HST can see the faintest and smallest details and lets us study the stars with great accuracy, even where they are packed together - just as with those in the centre of our Galaxy". Dieter Reimers from Hamburg Observatory adds: "HST has capabilities to see ultraviolet light, which is not possible from the ground due to the blocking effect of the atmosphere. And this is really vital to our work, the main aim of which is to discover the chemical composition of the Universe." The Servicing Missions In the early plans for telescope operations, maintenance visits were to have been made every 2.5 years. And every five years HST should have been transported back to the ground for thorough overhaul. This plan has changed somewhat over time and a servicing scheme, which includes Space Shuttle Servicing Missions every three years, was decided upon. The two first Servicing Missions, in December 1993 (STS-61) and February 1997 (STS-82) respectively, were very successful. In the first three years of operations HST did not meet expectations because its primary mirror was 2 microns too flat at the edge. The first Servicing Mission in 1993 (on which the European astronaut Claude Nicollier flew) dealt with this problem by installing a new instrument with corrective optics (COSTAR - Corrective Optics Space Telescope Axial Replacement). With this pair of "glasses" HST's golden age began. The images were as sharp as originally hoped and astonishing new results started to emerge on a regular basis. The first Servicing Mission also replaced the solar panels and installed a new camera (Wide Field and Planetary Camera 2 - WFPC2). The High-Speed Photometer (HSP) was replaced by COSTAR. During the second Servicing Missi

1999-11-01

386

Radiological health risks for exploratory class missions in space.  

PubMed

Crewmembers on missions to the Moon or Mars will be unavoidably exposed to ionizing radiation as they pass through the Van Allen belts and the Galactic Cosmic Ray (GCR) flux. There is the possibility for exposure to proton radiation from Solar Particle Events (SPE). Using absorbed doses and ICRP 26, Linear Energy Transfer (LET) -dependent quality factors, the following dose-equivalents are estimated: In a spacecraft with 0.75 cm aluminum walls (2 g/cm2) at solar minimum, the lunar round trip dose-equivalent is less than 0.05 Sv. During a Mars mission the estimated dose-equivalents are: outbound (Van Allen Belts) <0.02 Sv; Earth to Mars (205 days exposure to free space GCR) 0.32 Sv; 30 days on the Martian surface (GCR) 0.023 Sv; Mars to Earth (225 days exposure to free space) 0.35 Sv; and through the Van Allen Belts 0.02 Sv. Conventionally, the total of 0.73 Sv over 460 days could be expected to increase the risk of cancer mortality in a 35-year old male astronaut by about one percent. However three-fourths of the dose-equivalent in free space is contributed by high LET heavy ions (Z > or = 3) and target fragments with average quality factors of 10.3 and 20 respectively. The biological effectiveness of these radiations is poorly understood; so the quality factors are set at conservatively very high values. The entire concept of absorbed dose/quality factor/dose-equivalent as applied to GCR must be reconsidered. PMID:11537128

Nachtwey, D S; Yang, T C

1991-01-01

387

On-Line Tool for the Assessment of Radiation in Space - Deep Space Mission Enhancements  

NASA Technical Reports Server (NTRS)

The On-Line Tool for the Assessment of Radiation in Space (OLTARIS, https://oltaris.nasa.gov) is a web-based set of tools and models that allows engineers and scientists to assess the effects of space radiation on spacecraft, habitats, rovers, and spacesuits. The site is intended to be a design tool for those studying the effects of space radiation for current and future missions as well as a research tool for those developing advanced material and shielding concepts. The tools and models are built around the HZETRN radiation transport code and are primarily focused on human- and electronic-related responses. The focus of this paper is to highlight new capabilities that have been added to support deep space (outside Low Earth Orbit) missions. Specifically, the electron, proton, and heavy ion design environments for the Europa mission have been incorporated along with an efficient coupled electron-photon transport capability to enable the analysis of complicated geometries and slabs exposed to these environments. In addition, a neutron albedo lunar surface environment was also added, that will be of value for the analysis of surface habitats. These updates will be discussed in terms of their implementation and on how OLTARIS can be used by instrument vendors, mission designers, and researchers to analyze their specific requirements.12

Sandridge, Chris a.; Blattnig, Steve R.; Norman, Ryan B.; Slaba, Tony C.; Walker, Steve A.; Spangler, Jan L.

2011-01-01

388

Space Operations: NASA Is Not Properly Safeguarding Valuable Data from past Missions.  

National Technical Information Service (NTIS)

NASA is responsible for space exploration and the management, archiving, and dissemination of space science data. Since 1958, the agency has spent about $24 billion on its space science program and successfully launched over 260 scientific missions. Data ...

S. A. Schwartz R. W. Beers M. J. Dolak D. T. Schwartz D. D. Rush

1990-01-01

389

Genetic Variation in Spiroplasma citri  

Microsoft Academic Search

Spiroplasmas are members of the Class Mollicutes, wall-less prokaryotes having a high adenosine–thymidine content in their small genomes. Spiroplasma citri is a plant pathogen that inhabits phloem. Like other phytopathogenic spiroplasmas and the related phytoplasmas, it is transmitted from plant to plant by phloem-feeding leafhoppers that serve as alternate hosts for the spiroplasma as well as vectors. Genetic information in

U. Melcher; J. Fletcher

1999-01-01

390

Packaging data products using data grid middleware for Deep Space Mission Systems  

NASA Technical Reports Server (NTRS)

Deep Space Mission Systems lack the capability to provide end to end tracing of mission data products. These data products are simple products such as telemetry data, processing history, and uplink data.

Mattmann, Chris A.; Ramirez, Paul M.; Chrichton, Daniel J.; Hughes, J. Steven

2004-01-01

391

Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2  

NASA Technical Reports Server (NTRS)

Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

1983-01-01

392

The SP-100 space reactor as a power source for Mars exploration missions  

NASA Technical Reports Server (NTRS)

This paper argues that many of the power requirements of complex, relatively long-duration space missions such as the exploration of Mars may best be met through the use of power systems which use nuclear reactors as a thermal energy source. The development of such a power system, the SP-100, and its application in Mars mission scenarios is described. The missions addressed include a freighter mission and a mission involving exploration of the Martian surface.

Isenberg, Lon; Heller, Jack A.

1989-01-01

393

Cognitive Functioning in Space Exploration Missions: A Human Requirement  

NASA Technical Reports Server (NTRS)

Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.

Fiedler, Edan; Woolford, Barbara

2005-01-01

394

Constraint and Flight Rule Management for Space Mission Operations  

NASA Technical Reports Server (NTRS)

The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

2010-01-01

395

STS-70 Space Shuttle Mission Report - September 1995  

NASA Technical Reports Server (NTRS)

The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

Fricke, Robert W., Jr.

1995-01-01

396

Development of Electronics for Low Temperature Space Missions  

NASA Technical Reports Server (NTRS)

The operation of electronic systems at cryogenic temperatures is anticipated for many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about -183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program on low temperature electronics at the NASA Glenn Research Center focuses on the development of efficient power systems capable of surviving and exploiting the advantages of low temperature environments. Inhouse efforts include the design, fabrication, and characterization of low temperature power systems and the development of supporting technologies for low temperature operations, such as dielectric and insulating materials, semiconductor devices, passive power components, opto-electronic devices, as well as packaging and integration of the developed components into prototype flight hardware.

Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott; Overton, Eric

2000-01-01

397

Development of Electronics for Low-Temperature Space Missions  

NASA Technical Reports Server (NTRS)

Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.

Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric

2001-01-01

398

Investigation of Electrostatic Accelerometer in HUST for Space Science Missions  

NASA Astrophysics Data System (ADS)

High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the ?V/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

2014-05-01

399

Space Weather Aspects of the Solar Orbiter Mission  

NASA Astrophysics Data System (ADS)

Approved in October 2000 by ESA's Science Programme Committee as a flexi-mission, the Solar Orbiter will study the Sun and unexplored regions of the inner heliosphere from a unique orbit that brings the probe to within 45 solar radii of our star, and to solar latitudes as high as 38 deg. This orbit will allow the Solar Orbiter to make fundamental contributions to our understanding of the transient phenomena driving space weather, including coronal mass ejections (CMEs) and flare-related effects. Being closer to the sources of such transients in the solar atmosphere, the Solar Orbiter will be ideally located to measure the input into the heliosphere and to determine the boundary conditions near the Sun. The scientific payload to be carried by the probe will include a sophisticated remote-sensing package, as well as state-of-the-art in situ instruments. The multi-wavelength, multi-disciplinary approach of the Solar Orbiter, combined with its novel location, represents a powerful tool for studies of the influence of space weather-related events on interplanetary space.

Fleck, B.; Marsden, R.

2001-05-01

400

Space Radiation Risks for Astronauts on Multiple International Space Station Missions  

PubMed Central

Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA’s radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members’ radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate.

Cucinotta, Francis A.

2014-01-01

401

Space radiation risks for astronauts on multiple international space station missions.  

PubMed

Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA's radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members' radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903

Cucinotta, Francis A

2014-01-01

402

Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission  

NASA Technical Reports Server (NTRS)

.The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

Prasad, Narasimha S.

2012-01-01

403

New Concepts for Space-Based Gravitational Wave Missions  

NASA Technical Reports Server (NTRS)

The most astrophysically interesting sources in the gravitational wave spectrum lie in the low-frequency band (0.0001 - 1 Hz), which is only accessible from space. For two decades, the LISA concept has been the leading contender for a detector in this band. Despite a strong recommendation from Astro2010, there is strong motivation to find a less expensive concept, even at the loss of some science. We are searching for a lower cost mission concept by examining alternate orbits, less-capable measurement concepts, radically different implementations of the measurement concept and other cost-saving ideas. We report the results of our searches to date, and summarize the analyses behind them.

Stebbins, Robin T.; Baker, J. G.; Cooley, D. S.; Gallagher, R. J.; Hughes, S. P.; Livas, J. C.; Simpson, J. E.; Thorpe, J. I.; Welter, G. L.

2011-01-01

404

An Overview of Space Power Systems for NASA Missions  

NASA Technical Reports Server (NTRS)

Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.

Lyons, Valerie J.; Scott, John H.

2007-01-01

405

Potential renovascular hypertension, space missions, and the role of magnesium  

PubMed Central

Space flight (SF) and dust inhalation in habitats cause hypertension whereas in SF (alone) there is no consistent hypertension but reduced diurnal blood pressure (BP) variation instead. Current pharmaceutical subcutaneous delivery systems are inadequate and there is impairment in the absorption, metabolism, excretion, and deterioration of some pharmaceuticals. Data obtained from the National Aeronautics and Space Administration through the Freedom of Information Act shows that Irwin returned from his 12-day Apollo 15 mission in 1971 and was administered a bicycle stress test. With just three minutes of exercise, his BP was >275/125 mm Hg (heart rate of only 130 beats per minute). There was no acute renal insult. Irwin’s apparent spontaneous remission is suggested to be related to the increase of a protective vasodilator, and his atrial natriuretic peptide (ANP) reduced with SF because of reduced plasma volume. With invariable malabsorption and loss of bone/muscle storage sites, there are significant (P < 0.0001) reductions of magnesium (Mg) required for ANP synthesis and release. Reductions of Mg and ANP can trigger pronounced angiotensin (200%), endothelin, and catecholamine elevations (clearly shown in recent years) and vicious cycles between the latter and Mg deficits. There is proteinuria, elevated creatinine, and reduced renal concentrating ability with the potential for progressive inflammatory and oxidative stress-induced renal disease and hypertension with vicious cycles. After SF, animals show myocardial endothelial injuries and increased vascular resistance of extremities in humans. Even without dust, hypertension might eventually develop from renovascular hypertension during very long missions. Without sufficient endothelial protection from pharmaceuticals, a comprehensive gene research program should begin now.

Rowe, William J

2009-01-01

406

DMD chip space evaluation for ESA's EUCLID mission  

NASA Astrophysics Data System (ADS)

The EUCLID mission from the European Space Agency (ESA) will study the dark universe by characterizing a very high number of galaxies in shape and in spectrum. The high precision spectra measurements could be obtained via multi-object spectroscopy (MOS) using Digital Micromirror Devices (DMD). These devices would act as object selection reconfigurable masks. ESA has engaged with Visitech and LAM in a technical assessment of the DMD from Texas Instruments that features a 2048 x 1080 mirrors and a 13.68?m pixel pitch for space applications. For EUCLID, the device should work in vacuum, at low temperature, and each MOS exposure lasts 1500s with micromirrors held in a static state (either ON or OFF) during that duration. A specific thermal / vacuum test chamber has been developed for test conditions down to -40°C at 10-5 mbar vacuum. Imaging capability for resolving each micromirror has also been developed for determining any single mirror failure. Dedicated electronics and software permit to hold any pattern on the device for a duration as long as 1500s. Our first tests reveal that the DMD remains fully operational at -40°C. A 1038 hours life test, in EUCLID conditions (temperature and vacuum) has been successfully completed. Total Ionizing Dose (TID) radiation tests have been completed, establishing between 10 and 15 Krads, the level of TID that the DMD can tolerate; at mission level, this limitation could most likely be overcome by a proper shielding of the device. Finally, thermal cycling, vibration tests and MOS-like tests are under way.

Zamkotsian, Frederic; Grassi, Emmanuel; Lanzoni, Patrick; Barette, Rudy; Fabron, Christophe; Tangen, Kyrre; Marchand, Laurent; Duvet, Ludovic

2010-02-01

407

Mirror Technology Development at MSFC for the Next Generation Space Telescope and Other Space Telescope Missions  

NASA Technical Reports Server (NTRS)

Large-aperture low-areal-density mirrors are critical to the success of the Next Generation Space Telescope (NGST) as well as other related space missions such as the Space Based Laser (SBL). Currently fabrication technology has demonstrated areal densities of 50 kg/sq m. NASA and its DOD partners are conducting a series of risk reduction projects to demonstrate mirror fabrication technology for mirror systems with areal densities of 15 kg/sq m. This talk will present an overview of these risk reduction experiments.

Stahl, H. Philip; Smith, W. Scott; Burdine, Robert (Technical Monitor)

2001-01-01

408

Space station needs, attributes and architectural options study. Volume 3: Mission requirements  

NASA Technical Reports Server (NTRS)

User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

1983-01-01

409

Mission Possible: BioMedical Experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

Bopp, E.; Kreutzberg, K.

2011-01-01

410

Leaders in space: Mission commanders and crew on the International Space Station  

NASA Astrophysics Data System (ADS)

Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission commanders scored higher than crew on the coping style of Accepting Responsibility. These results improve our understanding of the similarities and differences between mission commanders and crew, and suggest areas of importance for the selection and training of future commanders.

Brcic, Jelena

411

Mini AERCam Inspection Robot for Human Space Missions  

NASA Technical Reports Server (NTRS)

The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

2004-01-01

412

Small Space Weather Research Mission Designed Fully by Students  

NASA Astrophysics Data System (ADS)

Students at the University of Colorado at Boulder are building a satellite to study the space weather generated by high-energy particles near the Earth. The Colorado Student Space Weather Experiment (CSSWE) is a CubeSat mission funded by the U.S. National Science Foundation, scheduled for launch into a low-Earth polar orbit in June 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. CSSWE will observe energetic particles for a minimum of 3 months with two goals: to relate the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth and to determine the evolution of the energy spectrum of radiation belt electrons. To accomplish these objectives, CSSWE will measure energetic ions and electrons coming directly from the Sun while it traverses the polar regions, where Earth s magnetic field lines are directly connected to the interplanetary magnetic field. CSSWE will also measure radiation belt particles at lower latitudes. These types of radiation can affect the operations and life spans of Earth-orbiting spacecraft. Solar particles incident over the polar caps also produce ionospheric disturbances that can affect radio frequency communications.

Li, Xinlin; Palo, Scott; Kohnert, Rick

2011-04-01

413

Pressure Fed Nuclear Thermal Rockets for space missions  

SciTech Connect

The National Space Policy includes a long range goal of expanding human presence and activity beyond Earth orbit into the solar system. This has renewed interest in the potential application of Nuclear Thermal Rockets (NTR) to space flight, particularly for human expeditions to the Moon and Mars. Recent NASA studies consider applications of the previously developed NERVA (Nuclear Engine for Rocket Vehicle Application) technology and the more advanced gas core reactors and show their potential advantages in reducing the initial mass in Earth orbit (IMEO) compared to advanced chemical rocket engines. Application of NERVA technology will require reestablishing the prior technological base or extending it to an advanced NERVA type engine, while the gas core NTR will require an extensive high risk research and development program. A technology intermediate between NERVA and the gas core NTR is a low pressure engine based on solid fuel, a Pressure Fed NTR (PFNTR). In addition to the simplicity of the gas pressurized engine cycle, the PFNTR takes advantage of the dissociation of hydrogen-the increases in specific impulse become significant as the chamber pressure decreases below 1.0 MPa (10 atmospheres) and the chamber temperature increases above 3000 K. The developmental status of technology applicable to a Pressure Fed Nuclear Thermal Rocket (PFNTR) lies between that of the NERVA engine and the gas core NTR (GCNTR). This document investigates PFNTR performance and provides typical mission analyses.

Leyse, C.F. (Leyse (C.F.), Idaho Falls, ID (USA)); Madsen, W.W.; Ramsthaler, J.H.; Schnitzler, B.G. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-08-01

414

Space Missions for Automation and Robotics Technologies (SMART) Program  

NASA Technical Reports Server (NTRS)

NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

Cliffone, D. L.; Lum, H., Jr.

1985-01-01

415

Characterizing 3D Vegetation Structure from Space: Mission Requirements  

NASA Technical Reports Server (NTRS)

Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates. (2) The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first