These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Space Missions  

NSDL National Science Digital Library

With three levels to choose from on each page - beginner, intermediate or advanced - this site provides in formation on past and current exploration ideas and achievements. The advances science has made in the space exploration area, such as having a permanent space station in space and the hundreds of probes, satellite, and space shuttles that have been launched. Advanced telescopes have given scientists the opportunity to see far beyond we ever imagined, and new explorations are found every day. Also featured are details about the International space station and what kinds of experiments scientists do in outer space.

Randy Russell

2004-05-10

2

Space physics missions handbook  

NASA Technical Reports Server (NTRS)

The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

Cooper, Robert A. (compiler); Burks, David H. (compiler); Hayne, Julie A. (editor)

1991-01-01

3

Low Cost Mission Operations Workshop. [Space Missions  

NASA Technical Reports Server (NTRS)

The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

1994-01-01

4

Space missions to comets  

NASA Technical Reports Server (NTRS)

The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

Neugebauer, M. (editor); Yeomans, D. K. (editor); Brandt, J. C. (editor); Hobbs, R. W. (editor)

1979-01-01

5

OPTIMIZATION OF MISSION DESIGN FOR CONSTRAINED LIBRATION POINT SPACE MISSIONS  

E-print Network

OPTIMIZATION OF MISSION DESIGN FOR CONSTRAINED LIBRATION POINT SPACE MISSIONS A DISSERTATION on Graduate Studies: iii #12;iv #12;Abstract Designing space missions to remain in the vicinity where the gravitational and centripetal accelerations exactly cancel; three where the satellite

Stanford University

6

Space Shuttle Missions Summary  

NASA Technical Reports Server (NTRS)

This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

Bennett, Floyd V.; Legler, Robert D.

2011-01-01

7

Space Mission : Y3K  

NASA Astrophysics Data System (ADS)

ESA and the APME are hosting a contest for 10 - 15 year olds in nine European countries (Austria, Belgium, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom). The contest is based on an interactive CD ROM, called Space Mission: Y3K, which explores space technology and shows some concrete uses of that technology in enhancing the quality of life on Earth. The CD ROM invites kids to join animated character Space Ranger Pete on an action-packed, colourful journey through space. Space Ranger Pete begins on Earth: the user navigates around a 'locker room' to learn about synthetic materials used in rocket boosters, heat shields, space suits and helmets, and how these materials have now become indispensable to everyday life. From Earth he flies into space and the user follows him from the control room in the spacecraft to a planet, satellites and finally to the International Space Station. Along the way, the user jots down clues that he or she discovers in this exploration, designing an imaginary space community and putting together a submission for the contest. The lucky winners will spend a weekend training as "junior astronauts" at the European Space Centre in Belgium (20-22 April 2001). They will be put through their astronaut paces, learning the art of space walking, running their own space mission, piloting a space capsule and re-entering the Earth's atmosphere. The competition features in various youth media channels across Europe. In the UK, popular BBC Saturday morning TV show, Live & Kicking, will be launching the competition and will invite viewers to submit their space community designs to win a weekend at ESC. In Germany, high circulation children's magazine Geolino will feature the competition in the January issue and on their internet site. And youth magazine ZoZitDat will feature the competition in the Netherlands throughout February. Space Mission: Y3K is part of an on-going partnership between the ESA's Technology Transfer Programme and APME, following the successful launch of "Coming of Age: plastics and space meeting the challenges to mankind" in October 1999. "Coming of Age" is a report produced by APME that brought the role of plastics in technology transfer to adult consumer audiences across Europe.

2001-01-01

8

Possible Space Missions for Solar Research After Solar Maximum Mission  

NASA Technical Reports Server (NTRS)

This ad hoc panel met in February 1977 to consider the needs of solar physics for space missions after the scheduled flight of Solar Maximum Mission in 1979. We were concerned only with scientific needs and opportunities. Neither budgetary implications nor payload feasibility were considered. This report on the panel deliberations therefore makes suggestions only. We hope it will be a useful input to the more extensive and careful analysis of the appropriate committees, such as the Solar Physics Working Group. We have made no attempt to prioritize our proposed mission. The following possible missions are describes briefly: A Solar Terrestrial Environment Mission; two versions of a Stereo Mission; a Large Scale Solar Structure Mission; a Solar Atmosphere Mission; a Solar Particle Acceleration Mission; and a Solar Pinhole Mission. We also append a brief account of the proposed Solar Probe Mission.

Sturrock, P. A.; Beckers, J. M.; Brown, J. C.; Canfield, R. C.; Harvey, J.; Holzer, T. E.; Hoyng, T. E.; Hudson, H. S.; Lin, R. P.; Linsky, J. L.

1977-01-01

9

SpaceX Demonstration Mission MISSION OBJECTIVES  

E-print Network

to the International Space Station represents an historic first, the act of berthing itself represents only one station is an important goal, it is only one measure of success. During this flight, SpaceX must with International Space Station using SpaceX's COTS UHF Communication Unit (CUCU). Astronauts on the space station

Waliser, Duane E.

10

Space Shuttle mission: STS-67  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

1995-01-01

11

Solar and heliospheric space missions  

NASA Astrophysics Data System (ADS)

The paper provides a review of the state of the art and prospects of space research in heliophysics, in which a pivotal role belongs to magnetic measurements in the Sun and heliosphere. New space missions, such as the Interhelioprobe, Solar Orbiter, Solar Probe Plus, etc., will follow the currently operating ones (Hinode, SDO, STEREO, etc.) to observe the Sun from short distances and from out-of-ecliptic positions, as well as to conduct in situ measurements in the vicinity of the Sun and outside the ecliptic. The planned coordinated observations within the framework of these missions will allow us to explore the structure and dynamics of magnetic fields in the polar regions of the Sun, to study the mechanisms of the solar dynamo and solar cycle, to gain a deeper insight into the process of corona heating and acceleration of the solar wind, and to get a response to a number of other pressing issues of heliophysics.

Kuznetsov, V. D.

2015-02-01

12

System Engineering Challenges of Future Space Missions  

NASA Technical Reports Server (NTRS)

A viewgraph presentation on the system engineering challenges that face NASA's future space missions is shown. The topics include: 1) Future Space Missions; 2) Trends; and 3) Developing System Engineers.

Hyde, Tristam Tupper

2005-01-01

13

Compaction of Space Mission Wastes  

NASA Technical Reports Server (NTRS)

The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

Fisher, John; Pisharody, Suresh; Wignarajah, K.

2004-01-01

14

SpaceX Demonstration Mission MISSION OVERVIEW  

E-print Network

the station once again. A go/nogo is performed by the Mission Control Houston team to allow Dragon to perform another set of burns that will bring it to within 1.4 kilometers (0.87 miles) of the station. Another go/nogo

Waliser, Duane E.

15

THE SPITZER SPACE TELESCOPE MISSION  

E-print Network

The Spitzer Space Telescope, NASA’s Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical, and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first 6 months of the Spitzer mission. Subject headinggs: space vehicles: instruments — telescopes

unknown authors

2004-01-01

16

COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station  

E-print Network

#12;#12;COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Overview of the International Space Station 17 Overview of NASA's COTS Program 19 SpaceX Company Overview Officer International Space Station Program Lead NASA Johnson Space Center 281-483-5111 Michael Braukus

Waliser, Duane E.

17

Space Mission Human Reliability Analysis (HRA) Project  

NASA Technical Reports Server (NTRS)

The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

Boyer, Roger

2014-01-01

18

NASA Missions Enabled by Space Nuclear Systems  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

Scott, John H.; Schmidt, George R.

2009-01-01

19

STS-38 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

20

NASA mission planning for space nuclear power  

NASA Technical Reports Server (NTRS)

An evaluation is conducted of those aspects of the Space Exploration Initiative which stand to gain from the use of nuclear powerplants. Low-power, less than 10 kW(e) missions in question encompass the Comet Rendezvous Asteroid Flyby, the Cassini mission to Saturn, the Mars Network mission, a solar probe, the Mars Rover Sample Return mission, the Rosetta comet nucleus sample return mission, and an outer planets orbiter/probe. Reactor power yielding 10-100 kW(e) can be used by advanced rovers and initial lunar and Martian outposts, as well as Jovian and Saturnian grand tours and sample-return missions.

Bennett, Gary L.; Schnyer, A. D.

1991-01-01

21

Spaceport operations for deep space missions  

NASA Technical Reports Server (NTRS)

Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

Holt, Alan C.

1990-01-01

22

STS-36 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-33/LWT-26), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2030, and 2029), and two Solid Rocket Boosters (SRB's) (designated as BI-036). The STS-36 mission was a classified Department of Defense mission, and as such, the classified portions of the mission are not discussed. The unclassified sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each of the Orbiter problems is cited in the subsystem discussion.

Mechelay, Joseph E.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

23

Space Interferometry Mission: Measuring the Universe  

NASA Technical Reports Server (NTRS)

The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

1991-01-01

24

STS-81 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-81 was the fifth of nine planned missions to dock with the Russian Mir Space Station and the fourth crewmember transfer mission. The double Spacehab module was carried for the second time, and it housed experiments that were performed by the crew and logistics equipment that was transferred to the Mir.

Fricke, Robert W., Jr.

1997-01-01

25

Advanced automation for space missions: Technical summary  

NASA Technical Reports Server (NTRS)

Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

1980-01-01

26

TMT and Space-Based Survey Missions  

NASA Astrophysics Data System (ADS)

I will discuss the synergy between TMT and space-based survey missions, particularly Euclid and WFIRST, with an eye toward ways in which these missions may affect and interact with science programs on TMT and the other giant ground-based telescopes.

Stern, Daniel

2014-07-01

27

Sustainable and autonomic space exploration missions  

Microsoft Academic Search

Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts

Roy Sterritt; Mike Hinchey; Christopher Rouff; James Rash; Walt Truszkowski

2006-01-01

28

Optimization of mission design for constrained libration point space missions  

Microsoft Academic Search

Designing space missions to remain in the vicinity of an equilibrium point in a three-body system is both useful and more difficult than for a two-body system. Because of the rotation of the system, there is not just one point of equilibrium, but rather five points where the gravitational and centripetal accelerations exactly cancel. These points are called libration points

Samantha I. Infeld

2006-01-01

29

Planetary protection status of NASA space missions  

Microsoft Academic Search

Several United States National Aeronautics and Space Administration space missions of planetary protection PP consequence category 3 and higher outbound requirements are currently operating in space In order of launch dates they are Mars Global Surveyor MGS Mars Odyssey Mars Exploration Rover MER and Mars Reconnaissance Orbiter MRO MGS originally was launched on November 7 1996 and entered Mars orbit

J. Barengoltz

2006-01-01

30

BIOMIMETIC APPROACH TO ADVANCED SPACE MISSIONS  

Microsoft Academic Search

This paper proposes and discusses the use of a biomimetic approach to conceive and design novel advanced space technological systems. The paper analyses the different phases of space missions, namely launch, parking, transfer, landing and exploration, and investigates possible advantages of a biomimetic approach for each of them. Bio-inspired technologies currently used in the space field are pointed out and

Carlo Menon; Tobias Seidl; Michael Broschart

31

Technology transfer and space science missions  

NASA Technical Reports Server (NTRS)

Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

Acuna, Mario

1992-01-01

32

Space Launch System Mission Flexibility Assessment  

NASA Technical Reports Server (NTRS)

The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

2012-01-01

33

The Deep Space Atomic Clock Mission  

NASA Technical Reports Server (NTRS)

The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

2012-01-01

34

Optimization of mission design for constrained libration point space missions  

NASA Astrophysics Data System (ADS)

Designing space missions to remain in the vicinity of an equilibrium point in a three-body system is both useful and more difficult than for a two-body system. Because of the rotation of the system, there is not just one point of equilibrium, but rather five points where the gravitational and centripetal accelerations exactly cancel. These points are called libration points (L1-L5). This work chooses an Earth-Sun L2 point mission, but is equally applicable to any libration point in any three-body system. This point is behind the Earth from the Sun and is useful because it is outside Earth's atmosphere and magnetosphere, but close enough for fast communications and maintenance missions. Also the telescope can point away from the light and heat interference of the Sun, Earth, and Moon simultaneously. The collinear points (Ll-L3) are unstable equilibriums, which makes trajectories near them quite sensitive to thrusting maneuvers or force perturbations by the full space environment. Trajectory and control history design about the unstable Sun-Earth L2 point will become increasingly complex as additional mechanical and scheduling constraints accompany scientific observation missions. Satisfying such constraints may be viewed as an optimization problem, with the objective of maximizing the mission goals. It then adds little further complexity to minimize fuel usage as part of the objective. Solving this design problem is an illustration of the power and ease of this alternative multiple-body mission design approach, which optimizes the whole trajectory and control design. In this thesis, the formulation of such an optimization problem is explained in several steps using increasingly complex dynamical and mission constraint models, and some resulting solutions for these steps are presented and discussed. The continuous time problem is first discretized using a pseudospectral method. The resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The design approach is discussed as a general mission optimization process, which can easily be used further into the design process and for more types of missions than the examples here, by applying it to a more realistically modeled and more highly constrained libration-point mission design.

Infeld, Samantha I.

35

Eighteenth Space Simulation Conference: Space Mission Success Through Testing  

NASA Technical Reports Server (NTRS)

The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'

Stecher, Joseph L., III (compiler)

1994-01-01

36

Parametric cost estimation for space science missions  

NASA Astrophysics Data System (ADS)

Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

Lillie, Charles F.; Thompson, Bruce E.

2008-07-01

37

MDP: Reliable File Transfer for Space Missions  

NASA Technical Reports Server (NTRS)

This paper presents work being done at NASA/GSFC (Goddard Space Flight Center) by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP (User Datagram Protocol)-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990s, MDP is now in daily use by both the US Post Office and the DoD (Department of Defense). This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Nack Oriented Reliable Multicast) is in the process of becoming an IETF (Internet Engineering Task Force) standard.

Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

2002-01-01

38

MDP: Reliable File Transfer for Space Missions  

NASA Technical Reports Server (NTRS)

This paper presents work being done at NASA/GSFC by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990's, MDP is now in daily use by both the US Post Office and the DoD. This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Neck Oriented Reliable Multicast) is in the process of becoming an IETF standard.

Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

2002-01-01

39

Blast-Off on Mission: SPACE  

NASA Technical Reports Server (NTRS)

Part of NASA's mission is to inspire the next generation of explorers. NASA often reaches children - the inventors of tomorrow - through teachers, reporters, exhibit designers, and other third-party entities. Therefore, when Walt Disney Imagineering, the creative force behind the planning, design, and construction of Disney parks and resorts around the world, approached NASA with the desire to put realism into its Mission: SPACE project, the Agency was happy to offer its insight.

2003-01-01

40

Sustainable and Autonomic Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

2006-01-01

41

STS-80 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

Fricke, Robert W., Jr.

1997-01-01

42

Hubble Space Telescope - First Servicing Mission  

NASA Technical Reports Server (NTRS)

Space Shuttle mission STS-61 was the first of several planned servicing missions for HST, intended to periodically replace failed components and upgrade scientific instruments with improved versions to keep the telescope viable and productive throughout its planned 15-year lifetime. This First Servicing Mission was also intended to correct several design flaws that were detected shortly after the launch of HST. There were three overall mission objectives for the STS-61 repair mission: 1) To Restore the Planned Scientific Capabilities: One complexity of the First Servicing Mission was the necessity for adding optical elements in the light path to correct the spherical aberration. These corrective optics were required to provide the quantitative science capability to enable key scientific programs to be carried out as originally planned. The addition of the COSTAR and the installation of WFPC2 both contributed to recovering these capabilities. 2) To Restore the Reliability of Vehicle Systems: Failed or degraded components had depleted some of the original subsystem redundancy, which had to be restored to allow continued science operations until the next servicing mission in 1997. Anomalous components that required servicing included the solar arrays, gyroscope sensing units, gyroscope electronics, magnetometers, solar array drive electronics, and electrical fuses. 3) To Validate the On-Orbit Servicing Concept for HST: Validation of the concept of on-orbit servicing as the way to achieve HST's full 15-year life was required to provide a foundation for future servicing missions.

1994-01-01

43

Advanced power sources for space missions  

NASA Technical Reports Server (NTRS)

Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

1989-01-01

44

STS-31 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

45

Space mission Millimetron for terahertz astronomy  

NASA Astrophysics Data System (ADS)

We present an overview of the current status of the space mission Millimetron. Millimetron is a large 10-m cooled space telescope optimized for operation in the submillimeter and far infrared wavelengths. This mission will be able to contribute to the solution of several key problems in astrophysics, such as study of the formation and evolution of stars and planets, galaxies, quasars and many others. The telescope will have an unprecedented sensitivity in the single-dish observation mode and an extremely high spatial resolution as an element of a ground-space very long baseline interferometry (VLBI) system. The mission will have a cryogenic instruments and antenna, which will be cooled passively with radiation shields and actively with mechanical coolers. With this cooling combination the 10-m space telescope may reach a temperature of about 4.5 K. The Millimetron is proposed as a Russian-led mission with an extensive international consortium in various countries. The mission launch is planned for 2017.

Smirnov, A. V.; Baryshev, A. M.; Pilipenko, S. V.; Myshonkova, N. V.; Bulanov, V. B.; Arkhipov, M. Y.; Vinogradov, I. S.; Likhachev, S. F.; Kardashev, N. S.

2012-09-01

46

STS-61 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

Fricke, Robert W., Jr.

1994-01-01

47

STS-41 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

48

Recent Applications of Space Weather Research to NASA Space Missions  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

2013-01-01

49

Life sciences space missions. Overview  

NASA Technical Reports Server (NTRS)

It has been known for many years that weightlessness induces changes in numerous physiological systems: the cardiovascular system declines in both aerobic capacity and orthostatic tolerance; there is a reduction in fluid and electrolyte balance, hematocrit, and certain immune parameters; bone and muscle mass and strength are reduced; various neurological responses include space motion sickness and posture and gate alterations. These responses are caused by the hypokinesia of weightlessness, the cephalic fluid shift, the unloading of the vestibular system, stress, and the altered temporal environment.

Sulzman, F. M.

1996-01-01

50

STS-43 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

Fricke, Robert W.

1991-01-01

51

STS-59 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1994-01-01

52

Electronic SAR processors for space missions  

NASA Technical Reports Server (NTRS)

This paper reports some interim results relating to an on-going effort to develop an electronic processor for real-time processing of synthetic aperture radar data. An experimental laboratory processor is being developed as a testbed for design of onboard processors for future space missions. This paper describes the configuration of the experimental processor and discusses technical factors pertaining to the design.

Wu, C.

1978-01-01

53

Optical Communications for Extreme Deep Space Missions  

NASA Technical Reports Server (NTRS)

A recent study of deep space telecommunications systems was performed in support of NASA's Mission to the Solar System planing activity. The results show that high bandwidth communications (greater than 1Mbps) are feasible at high-value planetary targets provided there are investments in the ground and spacecraft communication infrastructure.

Lesh, James; Deutsch, Leslie; Edwards, Charles

1996-01-01

54

STS-62 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

Fricke, Robert W., Jr.

1994-01-01

55

STS-77 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-77 Space Shuttle Program Mission Report summarizes the Payload activities as well as the: Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during the seventy-seventh flight of the Space Shuttle Program, the fifty-second flight since the return-to-flight, and the eleventh flight of the Orbiter Endeavour (OV-105). STS-77 was also the last flight of OV-105 prior to the vehicle being placed in the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-78; three SSME's that were designated as serial numbers 2037, 2040, and 2038 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-080. The RSRM's, designated RSRM-47, were installed in each SRB and the individual RSRM's were designated as 360TO47A for the left SRB, and 360TO47B for the right SRB. The STS-77 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VII, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of this flight were to successfully perform the operations necessary to fulfill the requirements of Spacehab-4, the SPARTAN 207/inflatable Antenna Experiment (IAE), and the Technology Experiments Advancing Missions in Space (TEAMS) payload. Secondary objectives of this flight were to perform the experiments of the Aquatic Research Facility (ARF), Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), Biological Research in Canisters (BRIC), Get-Away-Special (GAS), and GAS Bridge Assembly (GBA). The STS-77 mission was planned as a 9-day flight plus 1 day, plus 2 contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-77 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 11. The Government Fumished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table II. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET). The six-person crew for STS-77 consisted of John H. Casper, Col., U. S. Air Force, Commander; Curtis L. Brown, Jr., Lt. Col., U. S. Air Force, Pilot; Andrew S. W. Thomas, Civilian, Ph.D., Mission Specialist 1; Daniel W. Bursch, CDR., U. S. Navy, Mission Specialist 2; Mario Runco, Jr., Civilian, Mission Specialist 3; and Marc Gameau, Civilian, PhD, Mission Specialist 4.

Fricke, Robert W., Jr.

1996-01-01

56

STS-57 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.

Fricke, Robert W., Jr.

1993-01-01

57

STS-58 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-58 Space Shuttle Program Mission Report provides a summary of the payload activities as well as the orbiter, external tank (ET), solid rocket booster (SRB) and redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) subsystems performance during the fifty-eighth mission of the space shuttle program and fifteenth flight of the orbiter vehicle Columbia (OV-102). In addition to the orbiter, the flight vehicle consisted of an ET (ET-57); three SSME's, which were designated as serial numbers 2024, 2109, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-061. The lightweight RSRM's that were installed in each SRB were designated as 360L034A for the left SRB and 360W034B for the right SRB.

Fricke, Robert W., Jr.

1994-01-01

58

National Space Transportation Systems Program mission report  

NASA Technical Reports Server (NTRS)

The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

1984-01-01

59

Global astrometry with the space interferometry mission  

NASA Technical Reports Server (NTRS)

The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

Boden, A.; Unwin, S.; Shao, M.

1997-01-01

60

Mercury Surface, Space Environment, Geochemistry, and Ranging Mission  

E-print Network

MESSENGER Mercury Surface, Space Environment, Geochemistry, and Ranging Mission Frequently Asked Mercury's characteristics and environment during two complementary mission phases. The mission's primary goal is to increase our understanding of Mercury's density, geologic history, magnetic field, core

Mojzsis, Stephen J.

61

Space water electrolysis: Space Station through advance missions  

Microsoft Academic Search

Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station

Ronald J. Davenport; Franz H. Schubert; David J. Grigger

1991-01-01

62

STS-78 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

63

STS-71, Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

Frike, Robert W., Jr.

1995-01-01

64

Internet Data Delivery for Future Space Missions  

NASA Technical Reports Server (NTRS)

Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and as the need increases for more network-oriented mission operations. Another element of increasing significance will be the increased cost effectiveness of designing, building, integrating, and operating instruments and spacecraft that will come to the fore as more missions take up the approach of using commodity-level standard communications technologies. This paper describes how an IP (Internet Protocol)-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

Rash, James; Casasanta, Ralph; Hogie, Keith; Hennessy, Joseph F. (Technical Monitor)

2002-01-01

65

Psychological considerations in future space missions  

NASA Technical Reports Server (NTRS)

Issues affecting human psychological adjustments to long space missions are discussed. Noting that the Shuttle flight crewmembers will not have extensive flight qualification requirements, the effects of a more heterogeneous crew mixture than in early space flights is considered to create possibilities of social conflicts. Routine space flight will decrease the novelty of a formerly unique experience, and the necessity of providing personal space or other mechanisms for coping with crowded, permanently occupied space habitats is stressed. Women are noted to display more permeable personal space requirements. The desirability of planning leisure activities is reviewed, and psychological test results for female and male characteristics are cited to show that individuals with high scores in both traditionally male and female attributes are most capable of effective goal-oriented behavior and interpersonal relationships. Finally, it is shown that competitiveness is negatively correlated with the success of collaborative work and the social climate of an environment.

Helmreich, R. L.; Wilhelm, J. A.; Runge, T. E.

1980-01-01

66

Systems Architecture for Fully Autonomous Space Missions  

NASA Technical Reports Server (NTRS)

The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.

Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)

2002-01-01

67

Manned Mars missions using propellant from space  

SciTech Connect

.A recent discovery (8/14/92) of a near-earth object containing materials potentially useful for space activities could perhaps change the entire way humans access and operate in space. A near-Earth object ([number sign]4015, 1979 VA, comet Wilson-Harrington) contains water ice that could be used for space propulsion. In addition, this type of object may contain structural and lifesustaining materials (complex hydrocarbons, ammonia and/or bound nitrogen compounds) for space structures, manned planetary bases, or planetary surface terraforming. The retrieval and utilization of rocket propellant from near-Earth objects, for manned Mars missions in particular, has been investigated and the benefits of this scenario to over performing a Mars mission with terrestrial propellants have been documented. The results show water extracted from these objects and retrieved to Earth orbit for use in going to Mars may actually enable manned Mars exploration by reducing the number of Heavy Lift Launch Vehicle (HLLV) flights or eliminating the need for HLLV's altogether. The mission can perhaps be supported with existing launch vehicles and not required heavy lift capability. Also, the development of a nuclear thermal rocket for this alternate approach may be simplified substantially by reducing the operating temperature required.

Zuppero, A.C.; Olson, T.S. (Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-3413 (United States)); Redd, L.R. (Department of Energy, Office of Space, Idaho Field Office, Idaho Falls, Idaho 83402 (United States))

1993-01-10

68

The James Webb Space Telescope Mission  

NASA Technical Reports Server (NTRS)

The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under development by NASA for launch in 2014. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe, peer through dusty clouds to see AGN environments and stars forming planetary systems at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at wavelength of 2 microns (0.1 arcsec resolution). The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with propellant for 10 years of science operations. The instruments will provide broad- and narrow-band imaging, coronography, and multi-object and integral-field spectroscopy (spectral resolution of 100 to 3,000) across the 1 - 28 micron wavelength range. Science and mission operations will be conducted from the Space Telescope Science Institute in Baltimore, Maryland.

Sonneborn, George

2010-01-01

69

STS-60 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

Fricke, Robert W., Jr.

1994-01-01

70

Digital communication constraints in prior space missions  

NASA Technical Reports Server (NTRS)

Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this activity is to assist in the set-up of phase noise instrumentation, assist in the process of automated wire bonding, assist in the design and optimization of tunable microwave components, especially phase shifters, based on thin ferroelectric films, and learn how to use commercial electromagnetic simulation software.

Yassine, Nathan K.

2004-01-01

71

Space mechanisms needs for future NASA long duration space missions  

NASA Technical Reports Server (NTRS)

Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

Fusaro, Robert L.

1991-01-01

72

Developing Fault Models for Space Mission Software  

NASA Technical Reports Server (NTRS)

A viewgraph presentation on the development of fault models for space mission software is shown. The topics include: 1) Goal: Improve Understanding of Technology Fault Generation Process; 2) Required Measurement; 3) Measuring Structural Evolution; 4) Module Attributes; 5) Principal Components of Raw Metrics; 6) The Measurement Process; 7) View of Structural Evolution at the System and Module Level; 8) Identifying and Counting Faults; 9) Fault Enumeration; 10) Modeling Fault Content; 11) Modeling Results; 12) Current and Future Work; and 13) Discussion and Conclusions.

Nikora, Allen P.; Munson, John C.

2003-01-01

73

Developing fault models for space mission software  

NASA Technical Reports Server (NTRS)

Over the past several years, we have focused on developing fault models for space mission software. In general, these models use measurable attributes of a software system and its development process to estimate the number of faults inserted into the system during its development; their outputs can be used to better estimate the resources to be allocated to fault identification and removal for all system components.

Nikora, A. P.; Munson, J. C.

2003-01-01

74

Internet Technology for Future Space Missions  

NASA Technical Reports Server (NTRS)

Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith

2002-01-01

75

STS-35 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

76

Symbiotic structures to significantly enhance space missions  

NASA Astrophysics Data System (ADS)

The Department of Defense is actively pursuing a Responsive Space capability that will dramatically reduce the cost and time associated with getting a payload into space. In order to enable that capability, our space systems must be modular and flexible to cover a wide range of missions, configurations, duty cycles, and orbits. This places requirements on the entire satellite infrastructure: payloads, avionics, electrical harnessing, structure, thermal management system, etc. The Integrated Structural Systems Team at the Air Force Research Laboratory, Space Vehicles Directorate, has been tasked with developing structural and thermal solutions that will enable a Responsive Space capability. This paper details a "symbiotic" solution where thermal management functionality is embedded within the structure of the satellite. This approach is based on the flight proven and structurally efficient isogrid architecture. In our rendition, the ribs serve as fluidic passages for thermal management, and passively activated valves are used to control flow to the individual components. As the paper will explain, our analysis has shown this design to be structurally efficient and thermally responsive to a wide range of potential satellite missions, payloads, configurations, and orbits.

Williams, Andrew D.; Diaz-Aguado, Millan; Arritt, Brandon J.

2007-04-01

77

STS-79 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

Fricke, Robert W., Jr.

1996-01-01

78

STS-39 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

Fricke, Robert W.

1991-01-01

79

Training for long duration space missions  

NASA Technical Reports Server (NTRS)

The successful completion of an extended duration manned mission to Mars will require renewed research effort in the areas of crew training and skill retention techniques. The current estimate of inflight transit time is about nine months each way, with a six month surface visit, an order of magnitude beyond previous U.S. space missions. Concerns arise when considering the level of skill retention required for highly critical, one time operations such as an emergency procedure or a Mars orbit injection. The factors responsible for the level of complex skill retention are reviewed, optimal ways of refreshing degraded skills are suggested, and a conceptual crew training design for a Mars mission is outlined. Currently proposed crew activities during a Mars mission were reviewed to identify the spectrum of skills which must be retained over a long time period. Skill retention literature was reviewed to identify those factors which must be considered in deciding when and which tasks need retraining. Task, training, and retention interval factors were identified. These factors were then interpreted in light of the current state of spaceflight and adaptive training systems.

Goldberg, Joseph H.

1987-01-01

80

STS-44 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-44 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-fourth flight of the Space Shuttle Program and the tenth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-53 (LWT-46); three Space Shuttle main engines (SSME's) (serial numbers 2015, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-047. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L019A for the left SRB and 360W019B for the right SRB. The primary objective of the STS-44 mission was to successfully deploy the Department of Defense (DOD) Defense Support Program (DSP) satellite/inertial upper stage (IUS) into a 195 nmi. earth orbit at an inclination of 28.45 deg. Secondary objectives of this flight were to perform all operations necessary to support the requirements of the following: Terra Scout, Military Man in Space (M88-1), Air Force Maui Optical System Calibration Test (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Shuttle Activation Monitor (SAM), Radiation Monitoring Equipment-3 (RME-3), Visual Function Tester-1 (VFT-1), and the Interim Operational Contamination Monitor (IOCM) secondary payloads/experiments.

Fricke, Robert W.

1992-01-01

81

The Mitigation of Radiation Hazards on Missions to Deep Space  

Microsoft Academic Search

Since the advent of human space flight in the late 1950s, more than 200 people have flown in space, from sub-orbital flights and the Apollo missions to the Moon, to space stations Skylab, Soyuz, and the International Space Station. Even tourists are beginning to travel to space. As technology advances, human interplanetary missions are seen as the next steps for

Mohi Kumar

2005-01-01

82

The SPAce Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

83

Space Place: LISA Space Mission Gives Humans a Sixth Sense  

NSDL National Science Digital Library

This activity is related to gravity and the LISA (Laser Interferometer Space Antenna) mission. Like a sixth sense, detecting gravity waves will give us a whole new way to see the universe. Provides an easy explanation of gravitational waves, with a link to an interactive crossword using the new vocabulary words.

84

The Deep Space 1 and Space Technology 4/Champollion Missions  

NASA Technical Reports Server (NTRS)

NASA's New Millennium Program (NMP) is designed to develop, test, and flight validate new, advanced technologies for planetary and Earth exploration missions, using a series of low cost spacecraft. Two of NMP's current missions include encounters with comets and asteroids. The Deep Space 1 mission was launched on October 24, 1998 and will fly by asteroid 1992 KD on July 29, 1999, and possibly Comet Wilson-Harrington and/or Comet Borrelly in 2001. The Space Technology 4/Champollion mission will be launched in April, 2003 and will rendezvous with, orbit and land on periodic Comet Tempel 1 in 2006. ST-4/Champollion is a joint project with CNES, the French space agency. The DS-1 mission is going well since launch and has already validated several major technologies, including solar electric propulsion (SEP), solar concentrator arrays, a small deep space transponder, and autonomous navigation. The spacecraft carries two scientific instruments: MICAS, a combined visible camera and UV and IR spectrometers, and PEPE, an ion and electron spectrometer. Testing of the science instruments is ongoing. Following the asteroid encounter in July, 1999, DS-1 will go on to encounters with one or both comets if NASA approves funding for an extended mission. The ST-4/Champollion mission will use an advanced, multi-engine SEP system to effect a rendezvous with Comet P/Tempel 1 in February, 2006, after a flight time of 2.8 years. After orbiting the comet for several months in order to map its surface and determine its gravity field, ST-4/Champollion will descend to the comet's surface and will anchor itself with a 3-meter long harpoon. Scientific experiments include narrow and wide angle cameras for orbital mapping, panoramic and near-field cameras for landing site mapping, a gas chromatograph/mass spectrometer, a combined microscope and infrared spectrometer, and physical properties probes. Cometary samples will be obtained from depths up to 1.4 meters. The spacecraft is solar powered with rechargeable batteries, thus allowing a long duration mission on the nucleus surface. At the time of this writing, the ST-4/Champollion spacecraft was undergoing a major redesign to fit within NASA cost constraints, and approval of the mission is pending.

Weissman, Paul R.

2000-01-01

85

Automation of Hubble Space Telescope Mission Operations  

NASA Technical Reports Server (NTRS)

On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

2012-01-01

86

STS-51 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-51 Space Shuttle Program Mission Report summarizes the payloads as well as the orbiter, external tank (ET), solid rocket booster (SRB), redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) systems performance during the fifty-seventh flight of the space shuttle program and seventeenth flight of the orbiter vehicle Discovery (OV-103). In addition to the orbiter, the flight vehicle consisted of an ET designated as ET-59; three SSME's, which were designated as serial numbers 2031, 2034, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-060. The lightweight RSRM's that were installed in each SRB were designated as 360W033A for the left SRB and 360L033B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

87

STS-49: Space shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.

Fricke, Robert W.

1992-01-01

88

STS-48 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

Fricke, Robert W.

1991-01-01

89

STS-40 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

Fricke, Robert W.

1991-01-01

90

STS-56 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-56 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-fourth flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-54); three SSME's, which were designated as serial numbers 2024, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-058. The lightweight RSRM's that were installed in each SRB were designated as 360L031A for the left SRB and 360L031B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

91

STS-72 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

92

Antibacterial Activity of Alkyl Gallates against Xanthomonas citri subsp. citri  

PubMed Central

The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. PMID:23104804

Silva, I. C.; Regasini, L. O.; Petrônio, M. S.; Silva, D. H. S.; Bolzani, V. S.; Belasque, J.; Sacramento, L. V. S.

2013-01-01

93

Antibacterial activity of alkyl gallates against Xanthomonas citri subsp. citri.  

PubMed

The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. PMID:23104804

Silva, I C; Regasini, L O; Petrônio, M S; Silva, D H S; Bolzani, V S; Belasque, J; Sacramento, L V S; Ferreira, H

2013-01-01

94

Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report  

NASA Technical Reports Server (NTRS)

The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.

1993-01-01

95

STS-75 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-75 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fifth flight of the Space Shuttle Program, the fiftieth flight since the return-to-flight, and the nineteenth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-76; three SSME's that were designated as serial numbers 2029, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-078. The RSRM's, designated RSRM-53, were installed in each SRB and the individual RSRMs were designated as 36OW53A for the left SRB, and 36OW053B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirements of the Tethered Satellite System-1 R (TSS-1R), and the United States Microgravity Payload-3 (USMP-3). The secondary objectives were to complete the operations of the Orbital Acceleration Research Experiment (OARE), and to meet the requirements of the Middeck Glovebox (MGBX) facility and the Commercial Protein Crystal Growth (CPCG) experiment. Appendix A provides the definition of acronyms and abbreviations used thorughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

96

STS-42 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-42 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-fifth flight of the Space Shuttle Program and the fourteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-52 (LWT-45); three Space Shuttle main engines (SSME's), which were serial numbers 2026, 2022, and 2027 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-048. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L020A for the left SRM and 360Q020B for the right SRM. The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). Secondary objectives were to perform all operations necessary to support the requirements of the following: Gelation of Sols: Applied Microgravity Research (GOSAMR); Student Experiment 81-09 (Convection in Zero Gravity); Student Experiment 83-02 (Capillary Rise of Liquid Through Granular Porous Media); the Investigation into Polymer Membrane Processing (IPMP); the Radiation Monitoring Equipment-3 (RME-3); and Get-Away Special (GAS) payloads carried on the GAS Beam Assembly.

Fricke, Robert W.

1992-01-01

97

Irreducible Tests for Space Mission Sequencing Software  

NASA Technical Reports Server (NTRS)

As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

Ferguson, Lisa

2012-01-01

98

The JEM-EUSO Space mission  

NASA Astrophysics Data System (ADS)

The JEM-EUSO experiment, Extreme Universe Space Observatory at the Japanese Experiment Module of the International Space Station, is a space mission devoted to the scientific research of cosmic rays of highest energies. JEM-EUSO will address basic problems of fundamental physics and high-energy astrophysics studying the nature and origin of the Ultra High Energy Cosmic Rays (UHECRs). The JEM-EUSO instrument basically consists of an UHECR telescope assisted by an atmosphere monitoring device and controlled by a calibration system. Its telescope looks down from the International Space Station to detect UV photons emitted from air showers generated by UHECRs in the atmosphere. The optical system, the focal surface detectors and electronics and the infrared camera are in advanced stage of development. They will be tested and calibrated on ground (EUSO-TA) in the next months at (and with) the Telescope Array experiment in Utah, and next year on board of a stratospheric Balloon (EUSO-Balloon) in collaboration with the French Space Agency CNES. 13 Countries, 76 Institutes and about 280 researchers are collaborating in JEM-EUSO, with the support of the most important International and National Space Agencies and research funding institutions.

Osteria, G.

2014-06-01

99

STS-46 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

Fricke, Robert W.

1992-01-01

100

STS-76 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

101

Spreadsheets for Analyzing and Optimizing Space Missions  

NASA Technical Reports Server (NTRS)

XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays.

Some, Raphael R.; Agrawal, Anil K.; Czikmantory, Akos J.; Weisbin, Charles R.; Hua, Hook; Neff, Jon M.; Cowdin, Mark A.; Lewis, Brian S.; Iroz, Juana; Ross, Rick

2009-01-01

102

Autonomous Navigation for Deep Space Missions  

NASA Technical Reports Server (NTRS)

Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.

Bhaskaran, Shyam

2012-01-01

103

Automated Design of Multiphase Space Missions Using Hybrid Optimal Control  

ERIC Educational Resources Information Center

A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving…

Chilan, Christian Miguel

2009-01-01

104

Space Missions and Information Technology: Some Thoughts and Highlights  

NASA Technical Reports Server (NTRS)

A viewgraph presentation about information technology and its role in space missions is shown. The topics include: 1) Where is the IT on Space Missions? 2) Winners of the NASA Software of the Year Award; 3) Space Networking Roadmap; and 4) 10 (7) -Year Vision for IT in Space.

Doyle, Richard J.

2006-01-01

105

STS-68 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-68 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fifth flight of the Space Shuttle Program and the seventh flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-65; three SSMEs that were designated as serial numbers 2028, 2033, and 2026 in positions 1, 2, and 3, respectively; and two SRBs that were designated BI-067. The RSRMs that were installed in each SRB were designated as 360W040A for the left SRB and 360W040B for the right SRB. The primary objective of this flight was to successfully perform the operations of the Space Radar Laboratory-2 (SRL-2). The secondary objectives of the flight were to perform the operations of the Chromosome and Plant Cell Division in Space (CHROMEX), the Commercial Protein Crystal Growth (CPCG), the Biological Research in Canisters (BRIC), the Cosmic Radiation Effects and Activation Monitor (CREAM), the Military Application of Ship Tracks (MAST), and five Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-01-01

106

STS-47 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

Fricke, Robert W., Jr.

1992-01-01

107

STS-54 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-01-01

108

STS-69 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-69 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-first flight of the Space Shuttle Program, the forty-sixth flight since the return-to-flight, and the ninth flight of the Orbiter Endeavour(OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-72; three SSME's that were designated as serial numbers 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-074. The RSRMS, designated RSRM-44, were installed in each SRB and the individual RSRM's were designated as 36OL048A for the left SRB, and 36OW048B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirments of Wake Shield Facility (WSF) and SPARTAN-201. The secondary objectives were to perform the operation of the International Extreme Ultraviolet Hitchhiker (IEH-1), the Capillary Pumped Loop-2/GAS Bridge Assembly (CAPL-2/GBA), Thermal Energy Storage (TES), Auroral Photography Experiment-B (APE-B) and the Extravehicular Activity (EVA) Development Flight Test 02 (EDFT-02), the Biological Research in Canister (BRIC) payload, the Commercial Generic Bioprocessing Apparatus (CGBA) payload, the Electrolysis Performance Improvement Concept Study (EPICS) payload, the Space Tissue Loss, National Institute of Health-Cells (STL/NIH-CS) payload, and the Commercial Middeck Instrumentation Technology Associates Experiment (CMIX). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1995-01-01

109

STS-45 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

Fricke, Robert W.

1992-01-01

110

STS-74 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

111

STS-54 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-03-01

112

Radiation protection guidelines for space missions  

NASA Technical Reports Server (NTRS)

The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

Fry, R. J.; Nachtwey, D. S.

1988-01-01

113

Space Interferometry Mission starlight and metrology subsystems  

NASA Astrophysics Data System (ADS)

The Space Interferometry Mission (SIM), planned for launch in 2009, will measure the positions of celestial objects to an unprecedented accuracy of 4.0 microarcseconds. In order to achieve this accuracy, which represents an improvement of almost two orders of magnitude over previous astrometric measurements, a ten-meter baseline interferometer will be flown in space. NASA challenges JPL and its industrial partners, Lockheed Martin and TRW, to develop an affordable mission. This challenge will be met using a combination of existing designs and new technology. Performance and affordability must be balanced with a cost-conscious Systems Engineering approach to design and implementation trades. This paper focuses on the Lockheed Martin-led Starlight (STL) and Metrology (MET) subsystems within the main instrument of SIM. Starlight is collected by 35cm diameter telescopes to form fringes on detectors. To achieve the stated accuracy, the position of these white-light fringes must be measured to 10-9 of a wavelength of visible light. The STL Subsystem consists of siderostats, telescopes, fast steering mirrors, roof mirrors, optical delay lines and beam combiners. The MET Subsystem is used to measure very precisely the locations of the siderostats with respect to one another as well as to measure the distance traveled by starlight from the siderostat mirrors and reference corner cubes through the system to a point very close to the detectors inside the beam combiners. The MET subsystem consists of beam launchers, double and triple corner cubes, and a laser distribution system.

Ames, Lawrence L.; Barrett, Stephanie D.; Calhoon, Stuart J.; Kvamme, Eric T.; Mason, James E.; Oseas, Jeffrey M.; Pryor, Mark; Schaechter, David B.; Stubbs, David M.

2003-02-01

114

Deep Space Orbital Service Model for Virtual Planetary Science Missions  

NASA Astrophysics Data System (ADS)

An extension of the orbital service model, a technique for coordinating mission services between multiple spacecraft, is presented. This facilitates the creation of virtual uploadable ‘app’ missions to deep space probes.

Straub, J.

2014-06-01

115

STS-64 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.

Fricke, Robert W., Jr.

1995-01-01

116

Atmospheric constraint statistics for the Space Shuttle mission planning  

NASA Technical Reports Server (NTRS)

The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constrants for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing.

Smith, O. E.; Batts, G. W.; Willett, J. A.

1982-01-01

117

Atmospheric constraint statistics for the Space Shuttle mission planning  

NASA Technical Reports Server (NTRS)

The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constraints for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch operations, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing. Previously announced in STAR as N82-33417

Smith, O. E.

1983-01-01

118

Radiation shielding for future space exploration missions  

NASA Astrophysics Data System (ADS)

Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical weighted figure of merit (WFoM) approach that quantifies the effectiveness of a candidate material to shield space crews from the whole of the space radiation environment. The results of the WFoM approach should prove useful to designers and engineers in seeking alternative materials suitable for the construction of spacecraft or planetary surface habitats needed for long-term space exploration missions. The dosimetric measurements in this study have confirmed the principle of good space radiation shielding design by showing that low-Z¯ materials are most effective at reducing absorbed dose and dose equivalent while high-Z¯ materials are to be avoided. The relatively high WFoMs of carbon composite and lunar- and Martian-regolith composite could have important implications for the design and construction of future spacecraft or planetary surface habitats. The ground-based measurements conducted in this study have validated the heavy ion extension of FLUKA by producing normalized differential LET fluence spectra that are in good agreement with experiment.

DeWitt, Joel Michael

119

Operationally Responsive Space Launch for Space Situational Awareness Missions  

NASA Astrophysics Data System (ADS)

The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The Command researched and identified a course of action that has maximized operationally responsive space for Low-Earth-Orbit Space Situational Awareness assets. On 1 Aug 06, Air Force Space Command activated the Space Development and Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) to develop the operationally responsive spacelift capability for Low-Earth-Orbit Space Situational Awareness assets. The LTS created and executed a space enterprise strategy to place small payloads (1500 pounds), at low cost (less than 28M to 30M per launch), repeatable and rapidly into 100 - 255 nautical miles orbits. In doing so, the squadron provides scalable launch support services including program management support, engineering support, payload integration, and post-test evaluation for space systems. The Air Force, through the SDTW/LTS, will continue to evolve as the spacelift execution arm for Space Situational Awareness by creating small, less-expensive, repeatable and operationally responsive space launch capability.

Freeman, T.

120

Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01  

NASA Technical Reports Server (NTRS)

This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.

1993-01-01

121

STS-53 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-53 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during the fifty-second flight of the Space Shuttle Program, and the fifteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated as ET-49/LWT-42; three SSME's, which were serial numbers 2024, 2012, and 2017 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-055. The lightweight RSRM's that were installed in each SRB were designated 360L028A for the left SRB, and 360L028B for the right SRB. The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-III (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-1A (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Listed in the discussion of each anomaly is the officially assigned tracking number as published by each Project Office in their respective Problem Tracking List. All times given in this report are in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-01-01

122

Radiation protection guidelines for space missions  

NASA Technical Reports Server (NTRS)

NASA's current radiation protection guidelines date from 1970, when the career limit was set at 400 rem. Today, using the same approach, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments to be experienced in different missions than previously. Since 1970 women have joined the ranks. For these and other reasons it was necessary to reexamine the radiation protection guidelines. This task was undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and orbit inclination. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (4.0Sv) for a 24 year old female to 400 rem for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye was reduced from 600 to 400 rem (6.0 to 4.0 Sv.)

Fry, R. J. M.; Nachtwey, D. S.

1986-01-01

123

STS-73 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-73 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-second flight of the Space Shuttle Program, the forty-seventh flight since the return-to-flight, and the eighteenth flight of the Orbiter Columbia (OV-102). STS-73 was also the first flight of OV-102 following the vehicle's return from the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-73; three SSME's that were designated as serial numbers 2037 (Block 1), 2031 (PH-1), and 2038 (Block 1) in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-075. The RSRM's, designated RSRM-50, were installed in each SRB and the individual RSRM's were designated as 36OL050A for the left SRB, and 36OW050B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML)-2 payload.

Fricke, Robert W., Jr.

1995-01-01

124

STS-52 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

Fricke, Robert W., Jr.

1992-01-01

125

STS-65 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.

Fricke, Robert W., Jr.

1994-01-01

126

STS-50 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-50 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-eighth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of the following: an ET which was designated ET-50 (LUT-43); three SSME's which were serial numbers 2019, 2031, and 2011 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-051. The lightweight/redesigned RSRM's installed in each SRB were designated 360L024A for the left RSRM and 360M024B for the right RSRM. The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment 2 (SAREX-2) payloads. An additional secondary objective was to meet the requirements of the Ultraviolet Plume Instrument (UVPI), which was flown as a payload of opportunity.

Fricke, Robert W.

1992-01-01

127

The COBRAS/SAMBA space mission  

SciTech Connect

COBRAS/SAMBA is an ESA mission designed for extensive, accurate mapping of the anisotropies of the Cosmic Background Radiation, with angular sensitivity from sub-degree scales up to and overlapping with the COBE-DMR resolution. This will allow a full identification of the primordial density perturbations which grew to form the large-scale structures observed in the present universe. The COBRAS/SAMBA maps will provide powerful tests for the inflationary model and decisive answers on the origin of cosmic structure. A combination of bolometric and radiometric instrumentation will ensure the sensitivity and spectral coverage required for accurate foreground discrimination, A far-Earth orbit has been selected to minimize the unwanted emission from the Earth. The project is currently in the Phase A study within the European Space Agency M3 program.

Mandolesi, N.; Bersanelli, M.; Cesarsky, C.; Danese, L.; Efstathiou, G.; Griffin, M.; Lamarre, J.M.; Norgaard-Nielsen, H.U.; Pace,O.; Puget, J.L.; Raisanen, A.; Smoot, GF.; Tauber, J.; Volonte, S.

1996-12-04

128

Space Station Live: Robotic Refueling Mission - Duration: 5:11.  

NASA Video Gallery

NASA Public Affairs Officer Dan Huot speaks with Robert Pickle, Robotic Refueling Mission ROBO lead, about the International Space Station demonstration of the tools, technologies and techniques to...

129

Emerald: An Experimental Mission in Robust Distributed Space Systems  

Microsoft Academic Search

Distributed space systems are often cited as a means of enabling vast performance increases ranging from enhanced mission capabilities to radical reductions in operations cost. To explore this concept, Stanford University and Santa Clara University have initiated development of a simple, low cost, two-satellite mission known as Emerald. The Emerald mission has several on-orbit goals. First, it will verify an

Christopher Kitts; Freddy Pranajaya; Julie Townsend; Robert Twiggs

130

Sensor technology for advanced space missions  

NASA Technical Reports Server (NTRS)

The capability and applications of two sensors, Spatial, High-Accuracy, Position-Encoding Sensor (SHAPES) and Fiber Optics Rotation Sensor (FORS), for advanced missions are discussed. The multiple target, 3-D position sensing capability of SHAPES meets a critical technology need for many developing applications. A major milestone of the SHAPES task was completed on schedule on May 30, 1986, by demonstrating simultaneous ranging to eight moving targets at a rate of 10 measurements per second. The range resolution to static target was shown to be 25 microns. SHAPES scheduled technology readiness will support the sensor needs of a number of early users. The next phase in the development of SHAPES is to incorporate an angular measurement CCD to provide the full 3-dimensional sensing. A flight unit design and fabrication can be complete by FY89. FORS, with its significant improvement over present technology in lifetime, performance, weight, power, and recurrent cost, will be an important technology for future space systems. Technology readiness will be demonstrated with a FORS brassboard with fully integrated IO chips by FY88. The unique capability of miniature remote sensing heads, connected to a central system, will open up new areas in control and stability of large space structures. This application requires additional study.

Nerheim, N. M.; Depaula, R. P.

1986-01-01

131

STS-67 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-01-01

132

National Space Transportation Systems Program mission report  

NASA Technical Reports Server (NTRS)

The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

1984-01-01

133

STS-66 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

Fricke, Robert W., Jr.

1995-01-01

134

Heuristics Applied in the Development of Advanced Space Mission Concepts  

NASA Technical Reports Server (NTRS)

Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

Nilsen, Erik N.

1998-01-01

135

Advanced thermal control technologies for space science missions at JPL  

NASA Technical Reports Server (NTRS)

A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.

Birur, G. C.; O'Donnell, T.

2000-01-01

136

Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster  

NASA Technical Reports Server (NTRS)

NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

2004-01-01

137

Space environments and effects analysis for ESA missions  

NASA Astrophysics Data System (ADS)

The evaluation of the environments of space missions is an area of increasing importance in the spacecraft design and operation phase. The need to assess accurately the effects of high-energy radiation, plasma and micro-particles on space missions has fostered the development and use of new generation tools to cope with the increasingly demanding requirements from more challenging space missions, use of commercial devices and advanced scientific detectors. We present applications at ESA of new tools for the support of space missions including particle transport in planetary magnetic fields, applied to the INTEGRAL mission, and shielding assessments in the context of the future BepiColombo and JWST missions. Developments of other new tools or techniques, such as microscopic NIEL degradation prediction tools, will be outlined. The need of a common framework for the development of future analysis tools (Geant4-based and not) is presented.

Space Environments and Effects Analysis Section

2006-01-01

138

Space transfer concepts and analysis for exploration missions  

NASA Technical Reports Server (NTRS)

A broad scoped and systematic study was made of space transfer concepts for human Lunar and Mars missions. Relevant space transportation studies were initiated to lead to further detailed activities in the following study period.

1991-01-01

139

Launch of space shuttle Challenger on the 41-C mission  

NASA Technical Reports Server (NTRS)

Wide angle view of the launch of the space shuttle Challenger on the 41-C mission from the Kennedy Space Center (KSC) launch pad. This view was taken from the Shuttle training aircraft by Astronaut John Young.

1984-01-01

140

An integrated medical system for long-duration space missions.  

NASA Technical Reports Server (NTRS)

A description is given of the Integrated Medical and Behavioral Laboratory Measurement System (IMBLMS) being developed for onboard medical support of the crew and for medical research during space missions. The system is suitable for use during early extended space flights and for accommodating measurement and diagnostic apparatus as well as treatment and surgical facilities developed for later missions.

Pool, S. L.; Belasco, N.

1972-01-01

141

Social and cultural issues during Shuttle\\/Mir space missions  

Microsoft Academic Search

A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper,

Nick Kanas; Vyacheslav Salnitskiy; Ellen M. Grund; Vadim Gushin; Daniel S. Weiss; Olga Kozerenko; Alexander Sled; Charles R. Marmar

2000-01-01

142

Space transfer concepts and analysis for exploration missions  

NASA Technical Reports Server (NTRS)

Covered here is the second phase of a broad scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 1, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from the Stafford Committee Synthesis Report.

1991-01-01

143

Maintenance of Space Station Freedom - The role of mission controllers  

NASA Technical Reports Server (NTRS)

The key roles played in the on-orbit maintenance of Space Station Freedom by mission controllers working in the Space Station Control Center are discussed. Responsibilities ranging from planning and procedure development to training and real-time support are addressed. The organization of the Mission Operations Directorate is described.

Watson, J. K.; Davison, M. T.; Langendorf, S. E.

1991-01-01

144

Mars rover/sample return mission requirements affecting space station  

NASA Technical Reports Server (NTRS)

The possible interfaces between the Space Station and the Mars Rover/Sample Return (MRSR) mission are defined. In order to constrain the scope of the report a series of seven design reference missions divided into three major types were assumed. These missions were defined to span the probable range of Space Station-MRSR interactions. The options were reduced, the MRSR sample handling requirements and baseline assumptions about the MRSR hardware and the key design features and requirements of the Space Station are summarized. Only the aspects of the design reference missions necessary to define the interfaces, hooks and scars, and other provisions on the Space Station are considered. An analysis of each of the three major design reference missions, is reported, presenting conceptual designs of key hardware to be mounted on the Space Station, a definition of weights, interfaces, and required hooks and scars.

1988-01-01

145

National Aeronautics and Space Administration MISSION REQUIREMENTS  

E-print Network

requirements are identified forLM CSM passive experiment Soil Mechanics and for experiment 07HER Lunar SeismicARY NOMENCLATURE AND PART NO. OF AFFECTED END ITEM Mission Requirements, J-3 Type Mission, Lunar Landing GSE 0 Conditions are modified for experiments Lunar Sounder and Lunar Neutron Probe. WEIGHT · Additions to the data

Rathbun, Julie A.

146

Radiological risk analysis of potential SP-100 space mission scenarios  

SciTech Connect

This report presents a radiological risk analysis of three representative space mission scenarios utilizing a fission reactor. The mission profiles considered are: a high-altitude mission, launched by a TITAN IV launch vehicle, boosted by chemical upper stages into its operational orbit, a interplanetary nuclear electric propulsion (NEP) mission, started directly from a shuttle parking orbit, a low-altitude mission, launched by the Shuttle and boosted by a chemical stage to its operational orbit, with subsequent disposal boost after operation. 21 refs., 12 figs., 7 tabs.

Bartram, B.W.; Weitzberg, A.

1988-08-19

147

Reducing Mission Costs by Leveraging Previous Investments in Space  

NASA Technical Reports Server (NTRS)

The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center has been charged with the responsibility to reduce mission cost by allowing access to previous developments on government and commercial space missions. RSDO accomplishes this responsibility by implementing two revolutionary contract vehicles, the Rapid Spacecraft Acquisition (RSA) and Quick Ride. This paper will describe the concept behind these contracts, the current capabilities available to missions, analysis of pricing trends to date using the RSDO processes, and future plans to increase flexibility and capabilities available to mission planners.

Miller, Ron; Adams, W. James

1999-01-01

148

Fusion energy for space missions in the 21st Century  

SciTech Connect

Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

Schulze, N.R.

1991-08-01

149

Fusion energy for space missions in the 21st Century  

NASA Technical Reports Server (NTRS)

Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

Schulze, Norman R.

1991-01-01

150

Cost Estimating of Space Science Missions  

NASA Astrophysics Data System (ADS)

Abstract: Estimating the cost of NASA's science missions is a very difficult task. Anticipating how a system concept may evolve over time is challenging to say the least. Historical data, however, can help to estimate how the design may grow and how the schedules may change over time. An overall approach for costing such system relies on utilizing multiple methods based on historical technical, cost and schedule data to provide a robust range of estimates for future missions. This approach and other considerations for costing NASA science missions will be discussed.

Bitten, Robert

2014-08-01

151

A new opportunity from space: PLATO mission  

NASA Astrophysics Data System (ADS)

The satellite PLATO represents a new challenge for future investigations of exoplanets and oscillations of stars. It is one of the proposed missions of ESA COSMIC VISION 2015-2025 and it is scheduled for launch in 2017. The goal of the mission is a full characterization of the planet star systems with an asteroseismic analysis of the host stars. The PLATO Payload Consortium (PPLC) includes several European countries which are employed in the assessment study of the mission. Thanks to the high precision photometry, PLATO is thought to be able to detect planets and oscillations within a large sample of targets.

Claudi, Riccardo

2010-07-01

152

Active Refrigeration for Space Astrophysics Missions  

NASA Technical Reports Server (NTRS)

The use of cryogen dewars limits mission lifetime, increases sensor mass, and increases program engineering and launch costs on spacebased low-background, precision-pointing instruments, telescopes and interferometers.

Wade, L.

1994-01-01

153

Space-Based Gravitational-Wave Observatory Mission Concept  

NASA Astrophysics Data System (ADS)

Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected “The Gravitational Universe” as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

Livas, Jeffrey C.

2014-08-01

154

Analysis of selected deep space missions  

NASA Technical Reports Server (NTRS)

Task 1 of the NEW MOONS (NASA Evaluation With Models of Optimized Nuclear Spacecraft) study is discussed. Included is an introduction to considerations of launch vehicles, spacecraft, spacecraft subsystems, and scientific objectives associated with precursory unmanned missions to Jupiter and thence out of the ecliptic plane, as well as other missions to Jupiter and other outer planets. Necessity for nuclear power systems is indicated. Trajectories are developed using patched conic and n-body computer techniques.

West, W. S.; Holman, M. L.; Bilsky, H. W.

1971-01-01

155

Deep space network: Mission support requirements  

NASA Technical Reports Server (NTRS)

The purpose is to provide NASA and Jet Propulsion Laboratory management with a concise summary of information concerning the forecasting of the necessary support and requirements for missions described here, including the Earth Radiation Budget Experiment, the Cosmic Background Explorer, the Comet Rendezvous Asteroid Flyby, the Cassini, and the Dynamics Explorer-1. A brief description of various missions along with specific support requirements for each are given.

1991-01-01

156

Semi-Immersive Space Mission Design and Visualization: Case Study of the "Terrestrial Planet Finder" Mission.  

E-print Network

Semi-Immersive Space Mission Design and Visualization: Case Study of the "Terrestrial Planet Finder of Technology Pasadena, CA 91125 Abstract This paper addresses visualization issues of the Terrestrial Planet the visualization of the Terrestrial Planet Finder Mission (TPF) as a case study to identify and analyze

157

Space Station needs, attributes and architectural options. Volume 2, book 1, part 1: Mission requirements  

NASA Technical Reports Server (NTRS)

The baseline mission model used to develop the space station mission-related requirements is described as well as the 90 civil missions that were evaluated, (including the 62 missions that formed the baseline model). Mission-related requirements for the space station baseline are defined and related to space station architectural development. Mission-related sensitivity analyses are discussed.

1983-01-01

158

Space transfer concepts and analyses for exploration missions, phase 3  

NASA Technical Reports Server (NTRS)

This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

Woodcock, Gordon R.

1993-01-01

159

Magnetic Materials Suitable for Fission Power Conversion in Space Missions  

NASA Technical Reports Server (NTRS)

Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

Bowman, Cheryl L.

2012-01-01

160

An integrated mission planning approach for the space exploration initiative  

SciTech Connect

A fully integrated energy-based approach to mission planning is needed if the Space Exploration Initiative (SEI) is to succeed. Such an approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI and provide an economic benefit by greatly enhancing our international technical competitiveness through technology spin-offs and through the resulting early return on investment. Integrated planning and close interagency cooperation must occur if the SEI is to achieve its goal of expanding the human presence into the solar system and be an affordable endeavor. An energy-based mission planning approach gives each mission planner the needed power, yet preserves the individuality of mission requirements and objectives while reducing the concessions mission planners must make. This approach may even expand the mission options available and enhance mission activities.

Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

1992-01-01

161

Ares V an Enabling Capability for Future Space Astrophysics Missions  

NASA Technical Reports Server (NTRS)

The potential capability offered by an Ares V launch vehicle completely changes the paradigm for future space astrophysics missions. This presentation examines some details of this capability and its impact on potential missions. A specific case study is presented: implementing a 6 to 8 meter class monolithic UV/Visible telescope at an L2 orbit. Additionally discussed is how to extend the mission life of such a telescope to 30 years or longer.

Stahl, H. Philip

2007-01-01

162

Ares V: an Enabling Capability for Future Space Science Missions  

NASA Technical Reports Server (NTRS)

The potential capability offered by an Ares V launch vehicle completely changes the paradigm for future space astrophysics missions. This presentation examines some details of this capability and its impact on potential missions. A specific case study is presented: implementing a 6 to 8 meter class monolithic UV/Visible telescope at an L2 orbit. Additionally discussed is how to extend the mission life of such a telescope to 30 years or longer.

Stahl, H. Philip

2007-01-01

163

Space station needs, attributes, and architectural options: Mission requirements  

NASA Technical Reports Server (NTRS)

Space station missions and their requirements are discussed. Analyses of the following four mission categories are summarized: (1) commercial, (2) technology, (3) operation, and (4) science and applications. The requirements determined by the study dictate a very strong need for a manned space station to satisfy the majority of the missions. The station is best located at a 28.5-deg inclination and initially (1992 era) requires a crew of four (three for mission payloads) and a mission power of 25 kW. A space platform in a polar orbit is needed to augment the station capability; it initially would be a 15-kW system, located in a sun-synchronous orbit.

Riel, F. D.

1983-01-01

164

Collaboration support system for "Phobos-Soil" space mission.  

NASA Astrophysics Data System (ADS)

Rapid development of communication facilities leads growth of interactions done via electronic means. However we can see some paradox in this segment in last times: Extending of communication facilities increases collaboration chaos. And it is very sensitive for space missions in general and scientific space mission particularly because effective decision of this task provides successful realization of the missions and promises increasing the ratio of functional characteristic and cost of mission at all. Resolving of this problem may be found by using respective modern technologies and methods which widely used in different branches and not in the space researches only. Such approaches as Social Networking, Web 2.0 and Enterprise 2.0 look most prospective in this context. The primary goal of the "Phobos-Soil" mission is an investigation of the Phobos which is the Martian moon and particularly its regolith, internal structure, peculiarities of the orbital and proper motion, as well as a number of different scientific measurements and experiments for investigation of the Martian environment. A lot of investigators involved in the mission. Effective collaboration system is key facility for information support of the mission therefore. Further to main goal: communication between users of the system, modern approaches allows using such capabilities as self-organizing community, user generated content, centralized and federative control of the system. Also it may have one unique possibility - knowledge management which is very important for space mission realization. Therefore collaboration support system for "Phobos-Soil" mission designed on the base of multilayer model which includes such levels as Communications, Announcement and Information, Data sharing and Knowledge management. The collaboration support system for "Phobos-Soil" mission will be used as prototype for prospective Russian scientific space missions and the presentation describes its architecture, methodological and technical aspects of its design.

Nazarov, V.; Nazirov, R.; Zakharov, A.

2009-04-01

165

Handbook for Using IP Protocols for Space Missions  

NASA Technical Reports Server (NTRS)

This presentation will provide a summary of a handbook developed at GSFC last year that contains concepts and guidelines for using Internet protocols for space missions. It will include topics on: Lessons learned from current Space IP mission. General architectural issues related to use of IP in space. Operational scenarios for common space data transfer applications. Security issues. A general review of protocols applicable for use with IP in space. The presentation will also pose questions on what sort of information would be useful in future versions of the document.

Hogie, Keith; Criscuolo, Ed; Parise, Ron

2004-01-01

166

Space water electrolysis: Space Station through advance missions  

NASA Technical Reports Server (NTRS)

Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

1991-01-01

167

Reducing the Risk of Human Space Missions with INTEGRITY  

NASA Technical Reports Server (NTRS)

The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.

Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.

2003-01-01

168

In-Space Propulsion Electric Propulsion Technologies Mission Benefits  

Microsoft Academic Search

The primary source of electric propulsion development within NASA is the In-Space Propulsion Technology (ISPT) Project at the NASA Glenn Research Center under the management of the Science Mission Directorate. The electric propulsion (EP) technology area's objective is to develop near and mid-term EP technology that enhances or enables mission capture while minimizing risk and cost to the end user.

John W. Dankanich

2008-01-01

169

Software Construction and Analysis Tools for Future Space Missions  

Microsoft Academic Search

NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context

Michael R. Lowry

2002-01-01

170

National Aeronautics and Space Administration NASA Extreme Environment Mission  

E-print Network

, and with the Space Launch System and the Orion crew vehicle, humans will soon have the ability to travel beyond low Project (NEEMO) 16 Background NASA is actively planning to expand the horizons of human space exploration for human space exploration. The NASA Extreme Environment Mission Operations project, known as NEEMO, sends

Christian, Eric

171

Virtual Environments in Training: NASA's Hubble Space Telescope Mission  

Microsoft Academic Search

Virtual environment (VE) technology was used to construct a model of the Hubble Space Telescope (HST) and those elements that were replaced or serviced during the December, 1993 repair and maintenance mission conducted by the National Aeronautics and Space Administration (NASA). The VE also included the payload bay of the Space Shuttle and the fixtures used for transporting replacement systems

R. Bowen Loftin; Patrick J. Kenney; Robin Benedetti; Chris Culbert; Mark Engelberg; Robert Jones; Paige Lucas; Mason Menninger; John Muratore; Lac Nguyen; Tim Saito; Robert T. Savely; Mark Voss

172

Small planetary missions for the Space Shuttle  

NASA Technical Reports Server (NTRS)

The paper deals with the concept of a small planetary mission that might be described as one which: (1) focuses on a narrow set of discovery-oriented objectives, (2) utilizes largely existing and proven subsystem capabilities, (3) does not tax future launch vehicle capabilities, and (4) is flexible in terms of mission timing such that it can be easily integrated with launch vehicle schedules. Three small planetary mission concepts are presented: a tour of earth-sun Lagrange regions in search of asteroids which might be gravitationally trapped, a network of spacecraft to search beyond Pluto for a tenth planet; and a probe which could be targeted for infrequent long period 'comets of opportunity' or for a multitude of shorter period comets.

Staehle, R. L.

1979-01-01

173

Assessment and control of electrostatic charges. [hazards to space missions  

NASA Technical Reports Server (NTRS)

The experience is described of NASA and DOD with electrostatic problems, generation mechanisms, and type of electrostatic hazards. Guidelines for judging possible effects of electrostatic charges on space missions are presented along with mathematical formulas and definitions.

Barrett, M.

1974-01-01

174

Mission Operations Directorate - Success Legacy of the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

Azbell, Jim

2010-01-01

175

National Space Transportation Systems Program mission report  

NASA Technical Reports Server (NTRS)

The major activities and accomplishments of this first Spacelab mission using Orbiter vehicle 102. The significant configuration differences incorporated prior to STS-9 include the first use of the 3 substack fuel cells, the use of 5 cryo tanks sets and the addition of a galley and crew sleep stations. These differences combined with the Spacelab payload resulted in the heaviest landing weight yet flown. The problems that occurred are cited and a problem tracking list of all significant anomalies tht occurred during the mission is included. Scientific results of experiments conducted are highlighted.

Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

1984-01-01

176

Deep Space Habitat Concept of Operations for Transit Mission Phases  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

Hoffman, Stephen J.

2011-01-01

177

Mission planning parameters for the Space Shuttle large format camera  

NASA Technical Reports Server (NTRS)

The paper discusses the impact of various Space Shuttle mission parameters on the efficient and meaningful utilization of the large format camera (LFC) as a photographic acquisition system. Some of the LFC's vital statistics and its mounting within the Orbiter payload are described. LFC characteristics and mounting dictate certain mission parameters. The controlling parameters are orbit inclinations, launch time of year, launch time of day, orbital altitude, mission duration, overlap selection, film capacity, and climatological prediction. A mission case is evaluated relative to controlling parameters and geographical area(s) of interest.

Wood, G. A.

1979-01-01

178

Artificial intelligence techniques for scheduling Space Shuttle missions  

NASA Technical Reports Server (NTRS)

Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

Henke, Andrea L.; Stottler, Richard H.

1994-01-01

179

Distribution of Cost Growth in Robotic Space Science Missions  

NASA Technical Reports Server (NTRS)

Cost growth characterization is a critical factor for effective cost risk analysis and project planning. This study analyzed low level budget changes in Jet Propulsion Laboratory-managed space science missions, which occurred during the development of the project. The data was then curve fit, according to cost distribution categories, to provide a reference set of distribution parameters with sufficient granularity to effectively model cost growth in robotic space science missions.

Swan, Christopher

2007-01-01

180

Manned orbital systems concepts study. Book 3: Configurations for extended duration missions. [mission planning and project planning for space missions  

NASA Technical Reports Server (NTRS)

Mission planning, systems analysis, and design concepts for the Space Shuttle/Spacelab system for extended manned operations are described. Topics discussed are: (1) payloads, (2) spacecraft docking, (3) structural design criteria, (4) life support systems, (5) power supplies, and (6) the role of man in long duration orbital operations. Also discussed are the assembling of large structures in space. Engineering drawings are included.

1975-01-01

181

Space Shuttle Discovery lifts off successfully on mission STS-95  

NASA Technical Reports Server (NTRS)

Space Shuttle Discovery soars above billowing clouds of steam and smoke into clear blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA); Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original Mercury 7 astronauts. Glenn is making his second voyage into space after 36 years. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

182

Vision for Micro Technology Space Missions. Chapter 2  

NASA Technical Reports Server (NTRS)

It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

Dennehy, Neil

2005-01-01

183

Attracting Students to Space Science Fields: Mission to Mars  

NASA Astrophysics Data System (ADS)

Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.

Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.

184

Future NASA mission applications of space nuclear power  

NASA Technical Reports Server (NTRS)

Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions (such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby) that can only be done with nuclear power. There are also studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the Space Exploration Initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars.

Bennett, Gary L.; Mankins, John; Mcconnell, Dudley G.; Reck, Gregory M.

1990-01-01

185

Bounding the Spacecraft Atmosphere Design Space for Future Exploration Missions  

NASA Technical Reports Server (NTRS)

The selection of spacecraft and space suit atmospheres for future human space exploration missions will play an important, if not critical, role in the ultimate safety, productivity, and cost of such missions. Internal atmosphere pressure and composition (particularly oxygen concentration) influence many aspects of spacecraft and space suit design, operation, and technology development. Optimal atmosphere solutions must be determined by iterative process involving research, design, development, testing, and systems analysis. A necessary first step in this process is the establishment of working bounds on the atmosphere design space.

Lange, Kevin E.; Perka, Alan T.; Duffield, Bruce E.; Jeng, Frank F.

2005-01-01

186

Social and cultural issues during Shuttle/Mir space missions  

NASA Technical Reports Server (NTRS)

A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions. Published by Elsevier Science Ltd.

Kanas, N.; Salnitskiy, V.; Grund, E. M.; Gushin, V.; Weiss, D. S.; Kozerenko, O.; Sled, A.; Marmar, C. R.

2000-01-01

187

NASA Creates Space Technology Mission Directorate  

E-print Network

drew media attention and articles on 3D printing, including coverage by Popular Mechanics and website on 3D printing and prototyping technology to create parts for the Space Launch System at Marshall Space

188

Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission  

NASA Technical Reports Server (NTRS)

The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

2015-01-01

189

Space Station Mission Planning System (MPS) development study. Volume 2  

NASA Technical Reports Server (NTRS)

The process and existing software used for Spacelab payload mission planning were studied. A complete baseline definition of the Spacelab payload mission planning process was established, along with a definition of existing software capabilities for potential extrapolation to the Space Station. This information was used as a basis for defining system requirements to support Space Station mission planning. The Space Station mission planning concept was reviewed for the purpose of identifying areas where artificial intelligence concepts might offer substantially improved capability. Three specific artificial intelligence concepts were to be investigated for applicability: natural language interfaces; expert systems; and automatic programming. The advantages and disadvantages of interfacing an artificial intelligence language with existing FORTRAN programs or of converting totally to a new programming language were identified.

Klus, W. J.

1987-01-01

190

Manned Space-Flight Experiments: Gemini V Mission  

NASA Technical Reports Server (NTRS)

This compilation of papers constitutes an interim report on the results of experiments conducted during the Gemini V manned space flight. The results of experiments conducted on Gemini III and IV manned space flights have been published previously in a similar interim report, "Manned Space Flight Experiments Symposium, Gemini Missions III and IV," which is available upon request from MSC Experiments Program Office, Houston, Texas (Code EX, Attention of R. Kinard). The Gemini V mission provided the greatest opportunity to date for conducting experiments; the increased mission duration of eight days provided this added capability. The total mission experiment complement was seventeen. Five experiments were designed to obtain basic scientific knowledge, five were medical, and seven were technological and engineering in nature. Six of the experiments had flown previously on Gemini IV, and eleven were new. The results of the experiments, including real-time modification to preflight plans made necessary by abnormal spacecraft system operation, are presented.

1966-01-01

191

Space radiation incident on SATS missions  

NASA Technical Reports Server (NTRS)

A special orbital radiation study was conducted in order to evaluate mission encountered energetic particle fluxes. This information is to be supplied to the project subsystem engineers for their guidance in designing flight hardware to withstand the expected radiation levels. Flux calculations were performed for a set of 20 nominal trajectories placed at several altitudes and inclinations. Temporal variations in the ambient electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model, extrapolated to the tentative SATS launch epoch with linear time terms. Orbital flux integrations ware performed with the latest proton and electron environment models, using new computational methods. The results are presented in graphical and tabular form. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.

Stassinopoulos, E. G.

1973-01-01

192

Potential anesthesia protocols for space exploration missions.  

PubMed

In spaceflight beyond low Earth's orbit, medical conditions requiring surgery are of a high level of concern because of their potential impact on crew health and mission success. Whereas surgical techniques have been thoroughly studied in spaceflight analogues, the research focusing on anesthesia is limited. To provide safe anesthesia during an exploration mission will be a highly challenging task. The research objective is thus to describe specific anesthesia procedures enabling treatment of pre-identified surgical conditions. Among the medical conditions considered by the NASA Human Research Program Exploration Medical Capability element, those potentially necessitating anesthesia techniques have been identified. The most appropriate procedure for each condition is thoroughly discussed. The substantial cost of training time necessary to implement regional anesthesia is pointed out. Within general anesthetics, ketamine combines the unique advantages of preservation of cardiovascular stability, the protective airway reflexes, and spontaneous ventilation. Ketamine side effects have for decades tempered enthusiasm for its use, but recent developments in mitigation means broadened its indications. The extensive experience gathered in remote environments, with minimal equipment and occasionally by insufficiently trained care providers, confirms its high degree of safety. Two ketamine-based anesthesia protocols are described with their corresponding indications. They have been designed taking into account the physiological changes occurring in microgravity and the specific constraints of exploration missions. This investigation could not only improve surgical care during long-duration spaceflights, but may find a number of terrestrial applications in isolated or austere environments. PMID:23513283

Komorowski, Matthieu; Watkins, Sharmila D; Lebuffe, Gilles; Clark, Jonathan B

2013-03-01

193

Game changing: NASA's space launch system and science mission design  

NASA Astrophysics Data System (ADS)

NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

Creech, S. D.

194

Game Changing: NASA's Space Launch System and Science Mission Design  

NASA Technical Reports Server (NTRS)

NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

Creech, Stephen D.

2013-01-01

195

Preliminary analysis of space mission applications for electromagnetic launchers  

NASA Technical Reports Server (NTRS)

The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

1984-01-01

196

STS-55 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.

Fricke, Robert W., Jr.

1993-01-01

197

Nuclear electric ion propulsion for three deep space missions  

Microsoft Academic Search

Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500km low Earth orbit encompassing the transfer of a 100MT payload into a 1500km orbit around Mars, the rendezvous of a 10MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space

Vincent P. Chiravalle

2008-01-01

198

Probing Galactic Dynamics with the Space Interferometry Mission  

Microsoft Academic Search

The Space Interferometry Mission will be the first spatial long-baseline optical interferometer in space. SIM, scheduled to launch in 2005, is designed to perform wide-angle astrometry with 4 mu arcsec precision on objects as faint as V = 20, using a 10-meter baseline. This level of precision will allow SIM to measure stellar parallax distances to 10% and transverse velocities

Stephen C. Unwin

1998-01-01

199

National Aeronautics and Space Administration Analog Missions and Field Tests  

E-print Network

National Aeronautics and Space Administration NASAfacts Analog Missions and Field Tests NASA, the National Oceanic and Atmospheric Administration's (NOAA) Aquarius Reef Base, located 63 feet beneath is actively planning to expand the frontier of human space exploration beyond low Earth orbit to destinations

200

Precision Laser Development for Gravitational Wave Space Mission  

NASA Technical Reports Server (NTRS)

Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.

Numata, Kenji; Camp, Jordan

2011-01-01

201

Primary electric propulsion for future space missions  

NASA Technical Reports Server (NTRS)

A general methodology is presented which allows prediction of the overall characteristics of thrust systems employing electron-bombardment ion thrusters. Elements of the thrust system are defined and their characteristics presented in a parametric fashion. Two system approaches are evaluated where power management and control elements and thruster characteristics were substantially different. For an assumed system approach, the methodology presented predicts overall system properties, such as input power and mass, when major mission and thrust system parameters, such as trip time and specific impulse, are assumed.

Byers, D. C.; Terdan, F. F.; Myers, I. T.

1979-01-01

202

Onboard science software enabling future space science and space weather missions  

Microsoft Academic Search

On the path towards an operational Space Weather System are science missions involving as many as 100 spacecraft (Magnetospheric Constellation, DRACO, 2010). Multiple spacecraft are required to measure the macro, meso, and micro scale plasma physics that underlies Geospace phenomena. To be feasible, however, multiple spacecraft missions must be no more costly to operate than single spacecraft missions are today.

Michael L. Rilee; Scott A. Boardsen; Maharaj K. Bhat; Steven A. Curtis

2002-01-01

203

Planetary mission departures from Space Station orbit  

NASA Technical Reports Server (NTRS)

The concept of orbital assembly and launch of oversized planetary (or lunar) spacecraft from a Space Station is rapidly coming of age. This prospect raises a host of new problems demanding timely resolution. The one most serious issue involved in launch from a rapidly precessing Space Station orbit (about -7.2 deg/day) is the need to cope with the generally out-of-plane orientation of the V-infinity departure vector. Methods dealing with single or multiple injection maneuvers, deep space plane changes, nodal shift caused by reboost strategy modifications, and departure window duration analysis are discussed.

Sergeyevsky, Andrey B.

1989-01-01

204

Development of a figure-of-merit for space missions  

NASA Technical Reports Server (NTRS)

The concept of a quantitative figure-of-merit (FOM) to evaluate different and competing options for space missions is further developed. Over six hundred individual factors are considered. These range from mission orbital mechanics to in-situ resource utilization (ISRU/ISMU) plants. The program utilizes a commercial software package for synthesis and visual display; the details are completely developed in-house. Historical FOM's are derived for successful space missions such as the Surveyor, Voyager, Apollo, etc. A cost FOM is also mentioned. The bulk of this work is devoted to one specific example of Mars Sample Return (MSR). The program is flexible enough to accommodate a variety of evolving technologies. Initial results show that the FOM for sample return is a function of the mass returned to LEO, and that missions utilizing ISRU/ISMU are far more cost effective than those that rely on all earth-transported resources.

Preiss, Bruce; Pan, Thomas; Ramohalli, Kumar

1991-01-01

205

Voice loops as coordination aids in space shuttle mission control  

NASA Technical Reports Server (NTRS)

Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.

1999-01-01

206

Voice loops as coordination aids in space shuttle mission control.  

PubMed

Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains. PMID:12269347

Patterson, E S; Watts-Perotti, J; Woods, D D

1999-01-01

207

Heritage Systems Engineering Lessons from NASA Deep Space Missions  

NASA Technical Reports Server (NTRS)

In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.

Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

2010-01-01

208

Space transfer concepts and analysis for exploration missions  

NASA Technical Reports Server (NTRS)

The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.

1990-01-01

209

Prospects of Variable Star Research by Future Space Missions  

E-print Network

ESA and NASA are studying projects having a tremendous return on variable star research. Other national space agencies are also studying or developing projects of smaller costs but with impressive returns. The projects range from global Galactic surveys like the ESA mission GAIA which will give photometric time series for about 1 billion stars, to detailed pulsation modes studies like the CNES mission COROT which could reach a photometric precision lower than 1 ppm. The presentation will emphasize the future astrometric, asteroseismologic and planet detection missions.

Laurent Eyer

2000-02-25

210

Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares  

NASA Technical Reports Server (NTRS)

Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.

Patrick, M. Clinton

2007-01-01

211

Planning for Crew Exercise for Future Deep Space Mission Scenarios  

NASA Technical Reports Server (NTRS)

Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

Moore, Cherice; Ryder, Jeff

2015-01-01

212

Impact of lunar and planetary missions on the space station  

NASA Technical Reports Server (NTRS)

The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.

1984-01-01

213

Atomic Clock Ensemble in Space: Scientific Objectives and Mission Status  

Microsoft Academic Search

Atomic Clock Ensemble in Space (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station. Fractional frequency instability and inaccuracy at the 10-16 level will be achieved. The on-board time base, distributed on Earth via a microwave link, will be used for space-to-ground as well

L. Cacciapuoti; N. Dimarcq; G. Santarelli; P. Laurent; P. Lemonde; A. Clairon; P. Berthoud; A. Jornod; F. Reina; S. Feltham; C. Salomon

2007-01-01

214

Space missions to the exoplanets: Will they ever be possible  

NASA Astrophysics Data System (ADS)

There is no doubt that the discovery of exoplanets has made interstellar space mission much more interesting than they were in the past. The possible discovery of a terrestrial type plane at a reasonable distance will give a strong impulse in this direction. However, there are doubts that such long range space mission will ever become feasible at all and, in case they will be, it is impossible to forecast a timeframe for them. At present, precursor interstellar missions are planned, but they fall way short from yielding interesting information about exoplanets, except perhaps in the case of missions to the focal line of the Sun’s gravitational lens, whose usefulness in this context is still to be demonstrated. They are anyway an essential step in the roadmap toward interstellar missions. Often the difficulties linked with interstellar missions are considered as related with the huge quantity of energy required for reaching the target star system within a reasonable timeframe. While this may well be a showstopper, it is not the only problem to be solved to make them possible. Two other issues are those linked with the probe’s autonomy and the telecommunications required to transmit large quantities of information at those distances. Missions to the exoplanets may be subdivided in the following categories: 1) robotic missions to the destination system, including flybys; 2) robotic missions including landing on an exoplanet; 3) robotic sample return missions; 4) human missions. The main problem to be solved for missions of type 1 is linked with propulsion and with energy availability, while autonomy (artificial intelligence) and telecommunication problems are more or less manageable with predictable technologies. Missions of type 2 are more demanding for what propulsion is concerned, but above all require a much larger artificial intelligence and also will generate a large amount of data, whose transmission back to Earth may become a problem. The suggestion of using a spacecraft to physically transfer back the information on a support of some type (the so called data clippers) may make missions of type 2 to be only marginally less complex than missions of type 3. Missions of type 3 are at least twice as demanding than those of type 2 for what propulsion is required, and are also much more demanding also from the viewpoint of autonomy. On the contrary, they may be simpler from the viewpoint of communications. Finally, missions of type 4 are often regarded as belonging to the science fiction domain more than to that of feasible realities. However, they might be the only possibility if the progress in the field of robotics and artificial intelligence will fall short from making it possible to proceed with robotic missions. As a conclusion, we can assess that, short of unpredictable technological breakthroughs, missions to the exoplanets are still far away in the future and educated guesses can set them centuries away from now. What can be done is to identify critical technologies and assess a roadmap to increase their technological readiness. This effort is really worthwhile, since aiming at a very difficult task like interstellar missions, will yield a positive fallout on space exploration in general. --- This paper is meant for the Panel on Exoplanetary Exploration (PEPE) which is not included in the list above, so it was included in PEX.1

Genta, Giancarlo

215

Definition of technology development missions for early space stations: Large space structures  

NASA Technical Reports Server (NTRS)

The testbed role of an early (1990-95) manned space station in large space structures technology development is defined and conceptual designs for large space structures development missions to be conducted at the space station are developed. Emphasis is placed on defining requirements and benefits of development testing on a space station in concert with ground and shuttle tests.

1983-01-01

216

Manned space travel as a cultural mission  

Microsoft Academic Search

All large-scale technology options in recent history were received by the public, partly with enthusiasm, partly with rejection. This applies to space exploration as a whole, but particularly to human spaceflight. However, the conclusion that human spaceflight involves huge costs for little benefit by no means justifies its rejection as a pointless endeavor. In fact, there may be a trans-utilitarian

Carl Friedrich Gethmann

2006-01-01

217

Liftoff of Space Shuttle Atlantis on mission STS-98  

NASA Technical Reports Server (NTRS)

Like 10,000 fireworks going off at once, Space Shuttle Atlantis roars into the moonlit sky while clouds of steam and smoke cascade behind. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

2001-01-01

218

Space Mission Operations Ground Systems Integration Customer Service  

NASA Technical Reports Server (NTRS)

The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security, and cultural differences, to ensure an efficient response to customer issues using a small Customer Service Team (CST) and adaptability, constant communication with customers, technical expertise and knowledge of services, and dedication to customer service. The HOSC Customer Support Team has implemented a variety of processes, and procedures that help to mitigate the potential problems that arise when integrating ground system services for a variety of complex missions and the lessons learned from this experience will lead the future of customer service in the space operations industry.

Roth, Karl

2014-01-01

219

Electromagnetically launched micro spacecraft for space science missions  

NASA Technical Reports Server (NTRS)

This paper presents the concept of using very small spacecraft launched by an electromagnetic launcher located in low earth orbit to perform space science missions. This paper includes a discussion of flight time versus distance performance, potential missions, electromagnetic launchers, micro spacecraft concepts, high G technology and a conceptual launcher design. It is suggested that the present is an especially good time to investigate the subject concept due to the current launch vehicle crisis for space science, and due to the large amounts of resources that the SDIO is spending on the development of the technology for electromagnetic launchers and projectiles.

Jones, Ross M.

1988-01-01

220

Habitability issues in long duration undersea and space missions  

NASA Technical Reports Server (NTRS)

The report reviews a number of studies in the area of habitability. Emphasis was placed on extracting from these studies that information most relevant to any long-term mission in confinement. It is concluded that, whereas the basic laws of habitability are known, there is much yet to be learned concerning development of social structures in small groups in relative isolation, planning for necessary hygiene needs, development of proper work spaces, and construction of internal and external communications systems. With respect to testing for habitability and the documentation of habitability principles, the space program was found to be considerably more advanced than was the program for undersea missions.

Parker, J. F., Jr.; Every, M. G.

1972-01-01

221

Earth science space missions in the 21st century  

NASA Astrophysics Data System (ADS)

In 2007, the National Research Council (NRC) published “ Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, 2007” , commonly known as the “ Decadal Survey” . This report called for a balanced set of Earth Science Missions across the Earth Science research spectrum. In response, in February 2008, NASA's Earth Science Division reorganized into two program offices: The Earth Systematic Missions Program Office (ESM PO) at Goddard Space Flight Center which includes satellites making continuous measurements of the Earth's climate, and the Earth System Science Pathfinder Program Office (ESSP PO) at Langley Research Center which develops pathfinder missions through Announcements of Opportunity. In June 2010 NASA published its plan to achieve the goals of the Decadal Survey, “ Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space.” This plan includes support for the Decadal Survey missions as well as a set of “ climate continuity missions” to address the scientific need for data continuity of key climate observations. In 2011 the NRC revisited the Decadal Survey report and published “ Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey” . This report notes that progress on the Decadal Survey plan has been slower than planned due to budget shortfalls and launch vehicle failures, and stresses that the goals of the Decadal Survey are as important as ever and must still yield a scientifically-balanced program. This paper will discuss the current status of the mission/mission study portfolios of the ESMP Program and the Earth Venture solicitations of the ESSP Program and how the Programs support the goals established and reiterated by the NRC, and will discuss the risks and challenges faced by t- e Programs as together they strive to meet these goals.

Grofic, B.

222

Propulsion trades for space science missions  

Microsoft Academic Search

This study evaluated the relative benefits of proposed deep space propulsion technology improvements in three areas: advanced chemical, solar electric, and solar sail. Within each area, specific states, representing current technology (present-1999), mid-term (2000–2004), and far term (2005+), were selected for evaluation. The figures of merit used were net spacecraft mass delivered, size of the launch vehicle needed, trip time,

Robert Gershman; Calina Seybold

1999-01-01

223

Operationally Responsive Space Launch for Space Situational Awareness Missions  

Microsoft Academic Search

The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the

T. Freeman

2009-01-01

224

Modeling and Simulation for Multi-Missions Space Exploration Vehicle  

NASA Technical Reports Server (NTRS)

Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

Chang, Max

2011-01-01

225

Next Generation Simulation Framework for Robotic and Human Space Missions  

NASA Technical Reports Server (NTRS)

The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

2012-01-01

226

Psychological Selection of NASA Astronauts for International Space Station Missions  

NASA Technical Reports Server (NTRS)

During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

Galarza, Laura

1999-01-01

227

Exploration Life Support Critical Questions for Future Human Space Missions  

NASA Technical Reports Server (NTRS)

Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

2010-01-01

228

Nuclear electric propulsion for future NASA space science missions  

SciTech Connect

This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

Yen, Chen-wan L.

1993-07-20

229

Trade Space Assessment for Human Exploration Mission Design  

NASA Technical Reports Server (NTRS)

Many human space exploration mission architecture assessments have been performed over the years by diverse organizations and individuals. Direct comparison of metrics among these studies is extremely difficult due to widely varying assumptions involving projected technology readiness, mission goals, acceptable risk criteria, and socio-political environments. However, constant over the years have been the physical laws of celestial dynamics and rocket propulsion systems. A finite diverse yet finite architecture trade space should exist which captures methods of human exploration - particularly of the Moon and Mars - by delineating technical trades and cataloging the physically realizable options of each. A particular architectural approach should then have a traceable path through this "trade tree". It should be pointed out that not every permutation of paths will result in a physically realizable mission approach, but cataloging options that have been examined by past studies should help guide future analysis. This effort was undertaken in two phases by multi-center NASA working groups in the spring and summer of 2004 using more than thirty years of past studies to "flesh out" the Moon-Mars human exploration trade space. The results are presented, not as a "trade tree", which would be unwieldy, but as a "menu" of potential technical options as a function of mission phases. This is envisioned as a tool to aid future mission designers by offering guidance to relevant past analyses.

Joosten, B. Kent

2006-01-01

230

Launching lunar missions from Space Station Freedom  

NASA Technical Reports Server (NTRS)

The relative orbital motion of Space Station Freedom and the moon places practical constraints on the timing of launch/return transfer trajectories. This paper describes the timing characteristics as well as the Delta-V variations over a representative cycle of launch/return opportunities. On average, the minimum-Delta-V transfer opportunities occur at intervals of 9 days. However, there is a significant nonuniform variation in this timing interval, as well as the minimum stay time at the moon, over the short cycle (51 days) and the long cycle (18.6 years). The advantage of three-impulse transfers for extending the launch window is also described.

Friedlander, Alan; Young, Archie

1990-01-01

231

Open Data Processing Environment for Future Space Missions  

NASA Astrophysics Data System (ADS)

The globalization and decentralisation of future space missions execution requires new concepts for payload and experiment operation. The technological evolution in the area of data systems and networks will allow for almost unlimited remote operations. Software and hardware technologies bundled with modern networking will permit the distribution of work task- and location wise. Whereas in the past both, telemetry and telecommanding had been worked out as special software products taking care of specific mission and individual instrument requirements, future systems will be based on generic solutions and open data systems. Common interface applications in software and hardware will allow the user to access any data products and other mission or experiment related information from remote site. The user will become part of the mission control centre in a virtual manner. DLR, together with small and medium enterprises, has initiated the development for an open data processing system, DAVIS, which face the new challenges. The modular concept of the generic system allows the easy customised implementation of payload and experiment specific data services. Telescience, which means the interactive remote operations of science in space, can be simply realised by scaleable real-time telemetry and telecommand modules. DAVIS covers the entire application chain - telemetry services and archiving, data processing, visualisation and on-line data analysis, as well as telecommanding and tracking. It offers further on various interfaces to other systems, databases or analysis tools via dedicated application programming interfaces (API) and supports the development of multi-platform applications. DAVIS has gained great success in past Spacelab missions and is presently used for the preparation of the project Rosetta-Lander, part of the next cornerstone mission of ESA in 2003. In addition, it is now under further development for the future utilisation in the ISS payload operations area. The paper will survey the system principles and the current development status and will give an outlook into future mission space operations techniques by means of multimedia and internet applications.

Koerver, W.; Schmitz, G.; Sommer, C.; Willnecker, R.

2002-01-01

232

Nuclear electric ion propulsion for three deep space missions  

NASA Astrophysics Data System (ADS)

Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500 km low Earth orbit encompassing the transfer of a 100 MT payload into a 1500 km orbit around Mars, the rendezvous of a 10 MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space nuclear reactor technology are assumed. It is shown that nuclear electric ion propulsion offers more than twice the payload for the Mars mission relative to the case when a nuclear thermal rocket is used for the trans-Mars injection maneuver at Earth, and about the same payload advantage relative to the case when solar electric propulsion is used for the Mars heliocentric transfer. For missions to the outer planets nuclear electric ion propulsion increases the payload mass fraction by a factor of two or more compared with high thrust systems that utilize gravity assist trajectories.

Chiravalle, Vincent P.

2008-03-01

233

PUS Services Software Building Block Automatic Generation for Space Missions  

NASA Astrophysics Data System (ADS)

The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the characterization of the reference avionics architecture and of the reference on- board software high-level architecture.

Candia, S.; Sgaramella, F.; Mele, G.

2008-08-01

234

48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 false Mission Critical Space System Personnel Reliability Program...Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION...Clauses 1852.246-70 Mission Critical Space System Personnel Reliability...

2011-10-01

235

48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 true Mission Critical Space System Personnel Reliability Program...Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION...Clauses 1852.246-70 Mission Critical Space System Personnel Reliability...

2010-10-01

236

48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 false Mission Critical Space System Personnel Reliability Program...Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION...Clauses 1852.246-70 Mission Critical Space System Personnel Reliability...

2012-10-01

237

48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.  

Code of Federal Regulations, 2014 CFR

...2014-10-01 false Mission Critical Space System Personnel Reliability Program...Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION...Clauses 1852.246-70 Mission Critical Space System Personnel Reliability...

2014-10-01

238

48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 false Mission Critical Space System Personnel Reliability Program...Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION...Clauses 1852.246-70 Mission Critical Space System Personnel Reliability...

2013-10-01

239

Protocol Sensing Across Multiple Space Missions  

NASA Technical Reports Server (NTRS)

In this work, we present sensing performance using an architecture for a reconfigurable protocol chip for spacebased applications. Toward utilizing the IP packet architecture, utilizing data link layer framing structures for multiplexed data on a channel are the targeted application considered for demonstration purposes. Specifically, we examine three common framing standards and present the sensing performance of these standards and their relative de-correlation metrics. Some analysis is performed to investigate the impact of lossy links and on the number of packets required to perform a decision with some probability. Finally, we present results on a demonstration platform that integrated reconfigurable sensing technology into the Ground Station Interface Device (GRID) for End-to-End IP demonstrations in space.

Okino, Clayton; Gray, Andrew; Schoolcraft, Joshua

2006-01-01

240

ISS Update: Communication Delays During Deep Space Missions - Duration: 7:30.  

NASA Video Gallery

NASA Public Affairs Officer Brandi Dean talks with Jeremy Frank, Autonomous Mission Operations Test Principal Investigator, about how communication delays will affect future deep space missions and...

241

Portable Diagnostics Technology Assessment for Space Missions. Part 1; General Technology Capabilities for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years.

Nelson, Emily S.; Chait, Arnon

2010-01-01

242

Tropospheric Wind Measurements from Space: The SPARCLE Mission and Beyond  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

243

Long Duration Space Missions: Human Subsystem Risks and Requirements  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the human health and performance risks associated with long duration space flight beyond low earth orbit. The contents include: 1) Human Research Program; 2) Human Subsystem Risks; 3) Human Exploration Framework Team (HEFT) Architecture Elements; 4) Potentially Unacceptable Risks -1; 5) Potentially Unacceptable Risks-2; and 6) Major Mission Drivers of Risk.

Kundrot, Criag E.

2011-01-01

244

Advances in Space Traveling-Wave Tubes for NASA Missions  

Microsoft Academic Search

Significant advances in the performance and reliability of traveling-wave tubes (TWTs) utilized in amplifying space communication signals for NASA missions have been achieved over the last three decades through collaborative efforts between NASA and primarily L-3 Communications Electron Technologies, Inc. (L-3 ETI). This paper summarizes some of the key milestones during this period and includes development of TWTs for the

Jeffrey D. Wilson; Edwin G. Wintucky; Karl R. Vaden; Dale A. Force; Isay L. Krainsky; Rainee N. Simons; Neal R. Robbins; William L. Menninger; Daniel R. Dibb; David E. Lewis

2007-01-01

245

An integrated mission planning approach for the space exploration initiative  

Microsoft Academic Search

A fully integrated energy-based approach to mission planning is needed if the Space Exploration Initiative (SEI) is to succeed. Such an approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI and provide an economic benefit by greatly enhancing our international technical

Edmund P. Coomes; Jeffery E. Dagle; Judith A. Bamberger; Kent E. Noffsinger

1992-01-01

246

An integrated mission planning approach for the Space Exploration initiative  

Microsoft Academic Search

This report discusses a fully integrated energy-based approach to mission planning which is needed if the Space Exploration Initiative (SEI) is to succeed. Such an approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI and provide an economic benefit by greatly

E. P. Coomes; J. E. Dagle; J. A. Bamberger; K. E. Noffsinger

1992-01-01

247

Survey of Past, Present and Planned Human Space Mission Simulators  

Microsoft Academic Search

In light of the renewed international interest in lunar exploration, including plans for setting up a permanent human outpost on the Moon, the need for next generation earth-based human space mission simulators has become inevitable and urgent. These simulators have been shown to be of great value for medical, physiological, psychological, biological and exobiological research, and for subsystem test and

Susmita Mohanty; Sue Fairburn; Barbara Imhof; Stephen Ransom; Andreas Vogler

248

Mission to Jupiter. [Pioneer 10 and 11 space probes  

NASA Technical Reports Server (NTRS)

The Pioneer 10 and Pioneer 11 space probes and their missions to Jupiter are discussed along with the experiments and investigations which will be conducted onboard. Jupiter's atmosphere, its magnetic fields, radiation belts, the spacecraft instruments, and the Jovian system will be investigated. Educational study projects are also included.

1975-01-01

249

Space transfer concepts and analyses for exploration missions  

NASA Technical Reports Server (NTRS)

The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis in the structure, power, life support system, and radiation environment.

Woodcock, Gordon R.

1992-01-01

250

Revolutionary Deep Space Science Missions Enabled by Onboard Autonomy  

E-print Network

from fresh lava flows or plumes, flooding, thermal events, crustal motion, movement in ice formations Science Abstract Breakthrough autonomy technologies enable a new range of space missions that acquire vast instrument data onboard and use a range of techniques to detect science events. For example, automatic

Schaffer, Steven

251

The European Space Agency {\\\\Gaia} mission: exploring the Galaxy  

Microsoft Academic Search

The {\\\\Gaia} astrometric mission was approved by the European Space Agency in 2000 and the construction of the spacecraft and payload is on-going for a launch in late 2012. {\\\\Gaia} will continuously scan the entire sky for 5 years, yielding positional and velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars

C. Jordi

2011-01-01

252

Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions  

NASA Technical Reports Server (NTRS)

Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

2009-01-01

253

Mission Statements, Physical Space, and Strategy in Higher Education  

ERIC Educational Resources Information Center

The effectiveness of higher education institutions has bases in institutional structures and cultures. However, structure and culture represent abstract concepts while institutions realize high performance in practice. Given their salience in higher education, mission statements and campus space bring structure and culture into the realm of…

Fugazzotto, Sam J.

2009-01-01

254

The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission  

NASA Technical Reports Server (NTRS)

Neurolab (STS-90) represents a major scientific achievement that built upon the knowledge and capabilities developed during the preceding 15 successful Spacelab module missions. NASA proposed a dedicated neuroscience research flight in response to a Presidential declaration that the 1990's be the Decade of the Brain. Criteria were established for selecting research proposals in partnership with the National Institutes of Health (NM), the National Science Foundation, the Department of Defense, and a number of the International Space Agencies. The resulting Announcement of Opportunity for Neurolab in 1993 resulted in 172 proposals from scientists worldwide. After an NIH-managed peer review, NASA ultimately selected 26 proposals for flight on the Neurolab mission.

Buckey, Jay C., Jr. (Editor); Homick, Jerry L. (Editor)

2003-01-01

255

Launch and Assembly Reliability Analysis for Human Space Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

2012-01-01

256

Definition of technology development missions for early space stations: Large space structures  

NASA Technical Reports Server (NTRS)

The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

Gates, R. M.; Reid, G.

1984-01-01

257

Temporal Investment Strategy to Enable JPL Future Space Missions  

NASA Technical Reports Server (NTRS)

The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.

Lincoln, William P.; Hua, Hook; Weisbin, Charles R.

2006-01-01

258

Role of Lidar Technology in Future NASA Space Missions  

NASA Technical Reports Server (NTRS)

The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.

Amzajerdian, Farzin

2008-01-01

259

The James Webb Space Telescope: Science and Mission Status  

NASA Technical Reports Server (NTRS)

The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA for launch later this decade. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe and peer through dusty clouds to see star and planet formation at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at 2 microns. The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5- year prime science mission, with consumables for 10 years of science operations.

Sonneborn, George

2011-01-01

260

Maximizing Science Capability for Far-Infrared Space Missions  

NASA Technical Reports Server (NTRS)

The far-infrared and submillimeter region (20 microns-800 microns) has perhaps the greatest potential of all wavelengths for advancement in astronomy. When viewed in terms of the cosmic backgrounds, the far-IR is extremely important: half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z approximately equal to 6) this energy is redshifted to approximately 600 microns. Existing and planned missions have a broad range of capabilities, defined in terms of their spectral coverage, spectral resolution, angular resolution, mapping speed, and sensitivity. In this 5-dimensional parameter space, the far-IR is substantially be-hind most other wavelength bands. The opportunity for future missions with great discovery potential is evident. Such missions will be well-suited to answering fundamental questions about the history of energy release in the Universe, the formation and evolution of galaxies, and formation of stellar and protoplanetary systems. We discuss the parameter space that can be filled by a few well-chosen space missions, specifically a submillimeter all-sky survey and a far-IR to submillimeter observatory. Ultimately, a long baseline submillimeter interferometer is necessary to provide sensitivity and angular resolution.

Benford, Dominic; Leisawitz, Dave; Moseley, Harvey; Staguhn, Johannes; Voellmer, George

2004-01-01

261

Automated design of multiphase space missions using hybrid optimal control  

NASA Astrophysics Data System (ADS)

A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving the associated continuous optimal control problem. This strategy, however, will most likely yield a sub-optimal solution, as the problem is sophisticated for several reasons. For example, the number of events in the optimal mission structure is not known a priori and the system equations of motion change depending on what event is current. In this work a framework for the automated design of multiphase space missions is presented using hybrid optimal control (HOC). The method developed uses two nested loops: an outer-loop that handles the discrete dynamics and finds the optimal mission structure in terms of the categorical variables, and an inner-loop that performs the optimization of the corresponding continuous-time dynamical system and obtains the required control history. Genetic algorithms (GA) and direct transcription with nonlinear programming (NLP) are introduced as methods of solution for the outer-loop and inner-loop problems, respectively. Automation of the inner-loop, continuous optimal control problem solver, required two new technologies. The first is a method for the automated construction of the NLP problems resulting from the use of a direct solver for systems with different structures, including different numbers of categorical events. The method assembles modules, consisting of parameters and constraints appropriate to each event, sequentially according to the given mission structure. The other new technology is for a robust initial guess generator required by the inner-loop NLP problem solver. Two new methods were developed for cases including low-thrust trajectories. The first method, based on GA, approximates optimal control histories by incorporating boundary conditions explicitly using a conditional penalty function. The second method, feasible region analysis, is based on GA and NLP; the GA approximates the optimal boundary points of low-thrust arcs while NLP finds the required control histories. The solution of two representative multiphase space mission design problems shows the effectiveness of the methods developed.

Chilan, Christian Miguel

262

Wireless Network Communications Overview for Space Mission Operations  

NASA Technical Reports Server (NTRS)

The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

Fink, Patrick W.

2009-01-01

263

Psychology and culture during long-duration space missions  

NASA Astrophysics Data System (ADS)

The objective of this paper is twofold: (a) to review the current knowledge of cultural, psychological, psychiatric, cognitive, interpersonal, and organizational issues that are relevant to the behavior and performance of astronaut crews and ground support personnel and (b) to make recommendations for future human space missions, including both transit and planetary surface operations involving the Moon or Mars. The focus will be on long-duration missions lasting at least six weeks, when important psychological and interpersonal factors begin to take their toll on crewmembers. This information is designed to provide guidelines for astronaut selection and training, in-flight monitoring and support, and post-flight recovery and re-adaptation.

Kanas, N.; Sandal, G.; Boyd, J. E.; Gushin, V. I.; Manzey, D.; North, R.; Leon, G. R.; Suedfeld, P.; Bishop, S.; Fiedler, E. R.; Inoue, N.; Johannes, B.; Kealey, D. J.; Kraft, N.; Matsuzaki, I.; Musson, D.; Palinkas, L. A.; Salnitskiy, V. P.; Sipes, W.; Stuster, J.; Wang, J.

2009-04-01

264

Achievement of IKAROS — Japanese deep space solar sail demonstration mission  

NASA Astrophysics Data System (ADS)

This paper describes achievements of the IKAROS project, the world's first successful interplanetary solar power sail technology demonstration mission. It was developed by the Japan Aerospace Exploration Agency (JAXA) and was launched from Tanegashima Space Center on May 21, 2010. IKAROS successfully deployed a 20 m-span sail on June 9, 2010. Since then IKAROS has performed interplanetary solar-sailing taking advantage of an Earth-Venus leg of the interplanetary trajectory. We declared the completion of the nominal mission phase in the end of December 2010 when IKAROS successfully passed by Venus with the assist of solar sailing. This paper describes the overview of the IKAROS spacecraft system, how the world's first interplanetary solar sailer has been operated and what were achieved by the end of the nominal mission phase.

Tsuda, Yuichi; Mori, Osamu; Funase, Ryu; Sawada, Hirotaka; Yamamoto, Takayuki; Saiki, Takanao; Endo, Tatsuya; Yonekura, Katsuhide; Hoshino, Hirokazu; Kawaguchi, Jun'ichiro

2013-02-01

265

Software Construction and Analysis Tools for Future Space Missions  

NASA Technical Reports Server (NTRS)

NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.

Lowry, Michael R.; Clancy, Daniel (Technical Monitor)

2002-01-01

266

Operations Concepts for Deep-Space Missions: Challenges and Opportunities  

NASA Technical Reports Server (NTRS)

Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

McCann, Robert S.

2010-01-01

267

SP-100 space reactor power system readiness and mission flexibility  

NASA Astrophysics Data System (ADS)

The SP-100 Space Reactor Power System (SRPS) is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10s to 100s of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). An effective infracture of Industry, National Laboratories and Government agencies has made substantial progress since the 1988 System Design Review. Hardware development and testing has progressed to the point of resolving the key technical feasibility issues. The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. The benefits of utilizing a low power (6 to 20 kWe range) early flight mission as a precursor to operational missions in the 100 kWe range has received renewed interest among Government Agencies and Industry. Studies and assessments were performed throughout 1992 to further refine the potential missions and the SP-100 Space Reactor Power Systems that could be available to support these missions. The results of assessment showed that the ``first generation'' technology available now from the SP-100 program can support a wide range of candidate missions. The status of the nuclear technology was matured to the level of supporting a flight design with the present available data base. The conductively coupled thermoelectric cell technology is now in the cell level testing and verification phase and component level readiness is projected to be complete by the end of GFY94. Power system designs using the present day flight proven RTG unicouple have been established and also represent an attractive option for early launches. These design concepts are discussed in further detail in a companion paper. (Josloff 1993). This paper will review the SP-100 key features, technology status and early flight mission readiness and updates an earlier paper on this topic (Josloff 1992a).

Josloff, Allan T.; Matteo, Donald N.; Bailey, H. Sterling

1993-01-01

268

Autonomous Medical Care for Exploration Class Space Missions  

NASA Technical Reports Server (NTRS)

The US-based health care system of the International Space Station (ISS) contains several subsystems, the Health Maintenance System, Environmental Health System and the Countermeasure System. These systems are designed to provide primary, secondary and tertiary medical prevention strategies. The medical system deployed in Low Earth Orbit (LEO) for the ISS is designed to enable a "stabilize and transport" concept of operations. In this paradigm, an ill or injured crewmember would be rapidly evacuated to a definitive medical care facility (DMCF) on Earth, rather than being treated for a protracted period on orbit. The medical requirements of the short (7 day) and long duration (up to 6 months) exploration class missions to the Moon are similar to LEO class missions with the additional 4 to 5 days needed to transport an ill or injured crewmember to a DCMF on Earth. Mars exploration class missions are quite different in that they will significantly delay or prevent the return of an ill or injured crewmember to a DMCF. In addition the limited mass, power and volume afforded to medical care will prevent the mission designers from manifesting the entire capability of terrestrial care. NASA has identified five Levels of Care as part of its approach to medical support of future missions including the Constellation program. In order to implement an effective medical risk mitigation strategy for exploration class missions, modifications to the current suite of space medical systems may be needed, including new Crew Medical Officer training methods, treatment guidelines, diagnostic and therapeutic resources, and improved medical informatics.

Hamilton, Douglas; Smart, Kieran; Melton, Shannon; Polk, James D.; Johnson-Throop, Kathy

2007-01-01

269

Space Radiation Cancer Risks and Uncertainties for Mars Missions  

NASA Technical Reports Server (NTRS)

Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.

Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Badhwar, G. D.; Saganti, P. B.; Dicello, J. F.

2001-01-01

270

Human interactions during Shuttle/Mir space missions  

NASA Technical Reports Server (NTRS)

To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.

Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Kozerenko, O.; Sled, A.; Marmar, C. R.

2001-01-01

271

Selection criteria for waste management processes in manned space missions.  

PubMed

Management of waste produced during manned space exploration missions will be an important function of advanced life support systems. Waste materials can be thrown away or recovered for reuse. The first approach relies totally on external supplies to replace depleted resources while the second approach regenerates resources internally. The selection of appropriate waste management processes will be based upon criteria which include mission and hardware characteristics as well as overall system considerations. Mission characteristics discussed include destination, duration, crew size, operating environment, and transportation costs. Hardware characteristics include power, mass and volume requirements as well as suitability for a given task. Overall system considerations are essential to assure optimization for the entire mission rather than for an individual system. For example, a waste management system designed for a short trip to the moon will probably not be the best one for an extended mission to Mars. The purpose of this paper is to develop a methodology to identify and compare viable waste management options for selection of an appropriate waste management system. PMID:11537685

Doll, S; Cothran, B; McGhee, J

1991-10-01

272

Large size greenhouse for long-term space missions  

NASA Astrophysics Data System (ADS)

Crew space flights require on-going delivery of food, air and water from Earth. A long time missions in far space cannot be realized without self-supported life system, when food, air and water will be reused. For ecological self-regulated life support system a large volume of green house is needed. An inflatable construction of composite materials cured directly in free space environment is a way for development of large greenhouse. The rigidization of the frame by the way of chemical reaction of polymerization is viewed as real way. The large volume greenhouse created on Earth orbit is proposed. The construction and material of space greenhouse are considered based on results of biological investigations in space flights.

Kondyurin, Alexey

273

Informatics-based medical procedure assistance during space missions.  

PubMed

Currently, paper-based and/or electronic together with telecommunications links to Earth-based physicians are used to assist astronaut crews perform diagnosis and treatment of medical conditions during space travel. However, these have limitations, especially during long duration missions in which telecommunications to earth-based physicians can be delayed. We describe an experimental technology called GuideView in which clinical guidelines are presented in a structured, interactive, multi-modal format and, in each step, clinical instructions are provided simultaneously in voice, text, pictures video or animations. An example application of the system to diagnosis and treatment of space Decompression Sickness is presented. Astronauts performing space walks from the International Space Station are at risk for decompression sickness because the atmospheric pressure of the Extra-vehicular Activity space- suit is significantly less that that of the interior of the Station. PMID:19048089

Iyengar, M S; Carruth, T N; Florez-Arango, J; Dunn, K

2008-08-01

274

Space construction system analysis study: Project systems and missions descriptions  

NASA Technical Reports Server (NTRS)

Three project systems are defined and summarized. The systems are: (1) a Solar Power Satellite (SPS) Development Flight Test Vehicle configured for fabrication and compatible with solar electric propulsion orbit transfer; (2) an Advanced Communications Platform configured for space fabrication and compatible with low thrust chemical orbit transfer propulsion; and (3) the same Platform, configured to be space erectable but still compatible with low thrust chemical orbit transfer propulsion. These project systems are intended to serve as configuration models for use in detailed analyses of space construction techniques and processes. They represent feasible concepts for real projects; real in the sense that they are realistic contenders on the list of candidate missions currently projected for the national space program. Thus, they represent reasonable configurations upon which to base early studies of alternative space construction processes.

1979-01-01

275

A Management Model for International Participation in Space Exploration Missions  

NASA Technical Reports Server (NTRS)

This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

2005-01-01

276

The DSCOVR Solar Wind Mission and Future Space Weather Products  

NASA Astrophysics Data System (ADS)

The Deep Space Climate Observatory (DSCOVR) mission, scheduled for launch in mid-2014, will provide real-time solar wind thermal plasma and magnetic measurements to ensure continuous monitoring for space weather forecasting. DSCOVR will orbit L1 and will serve as a follow-on mission to NASA's Advanced Composition Explorer (ACE), which was launched in 1997. DSCOVR will have a total of six instruments, two of which will provide real-time data necessary for space weather forecasting: a Faraday cup to measure the proton and alpha components of the solar wind, and a triaxial fluxgate magnetometer to measure the magnetic field in three dimensions. Real-time data provided by DSCOVR will include Vx, Vy, Vz, n, T, Bx, By, and Bz. Such real-time L1 data is used in generating space weather applications and products that have been demonstrated to be highly accurate and provide actionable information for customers. We evaluate current space weather products driven by ACE and discuss future products under development for DSCOVR. New space weather products under consideration include: automated shock detection, more accurate L1 to Earth delay time, and prediction of rotations in solar wind Bz within magnetic clouds. Suggestions from the community on product ideas are welcome.

Cash, M. D.; Biesecker, D. A.; Reinard, A. A.

2012-12-01

277

Space Test and Operations Port for Exploration Missions  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) has from its inception included plans to support the testing of exploration vehicle/systems technology, the assembly of space transport vehicles, and a variety of operations support (communications, crew transfer, cargo handling, etc). Despite the fact that the ISS has gone through several re-designs and reductions in size and capabilities over the past 20 years, it still has the key capabilities, truss structure, docking nodes, etc required to support these exploration mission activities. ISS is much like a frontier outpost in the Old West, which may not have been in optimum location (orbit) for assisting travelers on their way to California (the Moon and Mars), but nevertheless because it had supplies and other support services (regular logistics from Earth, crewmembers, robotics, and technology test and assembly support capabilities) was regularly used as a stopover and next trip phase preparation site by all kinds of travelers. This paper will describe some of the ISS capabilities which are being used currently, and are being planned for use, by various payload sponsors, developers and Principal Investigators, sponsored by the NASA Office of Space Flight (Code M ISS Research Program Office - Department of Defense (DoD), NASA Hqs Office of Space Communications, Italian Space Agency, etc.). Initial ideas and concepts for payloads and technology testing which are being planned, or which are being investigated, for use in support of advanced space technology development and verification and exploration mission activities will be summarized. Some of the future ISS payloads and test activities already identified include materials and system component space environment testing, laser space communication system demonstrations (leading to the possible development of an ISS deep space communication node), and an advanced space propulsion testbed and ISS based, free-flying platform.

Holt, Alan C.

2004-01-01

278

Capability Investment Strategy to Enable JPL Future Space Missions  

NASA Technical Reports Server (NTRS)

The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future missions are ready as needed. The responsibilities include development of a Strategic Plan (Antonsson, E., 2005). As part of the planning effort, a structured approach to technology prioritization, based upon the work of the START (Strategic Assessment of Risk and Technology) (Weisbin, C.R., 2004) team, was developed. The purpose of this paper is to describe this approach and present its current status relative to the JPL technology investment.

Lincoln, William; Merida, Sofia; Adumitroaie, Virgil; Weisbin, Charles R.

2006-01-01

279

Potential civil mission applications for space nuclear power systems  

NASA Technical Reports Server (NTRS)

It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

Ambrus, J. H.; Beatty, R. G. G.

1985-01-01

280

Scientific and Mission Requirements of Next-generation Space Infrared Space Telescope SPICA  

NASA Astrophysics Data System (ADS)

SPICA (Space Infrared Telescope for Cosmology Astrophysics) is a next-generation space tele-scope for mid-and far-infrared astronomy, based on the heritage of AKARI, Spitzer, and Her-schel, Here we introduce Mission Requirement Document (MRD), where scientific and mission requirement of SPICA are described. The MRD clarifies the objectives of the SPICA mission. These objectives are more concretely expressed by various scientific targets, and based on these targets, the mission requirements, such as required specifications of the mission instrumenta-tions, scientific operations etc. are defined. Also the success criteria, by which the evaluation of the mission achievement will be addressed, are clearly described. The mission requirements described here will give the baseline of the study of the system requirements. In the future, The MRD will also be used to confirm the development status, system performance, and operational results on orbit etc. are well in-line with the mission requirements. To summarize, the most important mission requirement of SPICA is to realize a large, mono-lithic (not segmented) 3-m class or larger mirror cooled down below 6K, in order to perform extremely deep imaging and spectroscopy at 5-210µm.

Matsuhara, Hideo; Nakagawa, Takao; Ichikawa, Takashi; Takami, Michihiro; Sakon, Itsuki

281

Neurolab - A Space Shuttle Mission Dedicated to Neuroscience Research  

NASA Technical Reports Server (NTRS)

Session JA5 includes short reports concerning: (1) NASA/NIH Neurolab Collaborations; (2) Neurolab Mission: An Example of International Cooperation; (3) Neurolab: An Overview of the Planned Scientific Investigations; (4) EDEN: A Payload for NEUROLAB, dedicated to Neuro Vestibular Research; (5) Neurolab Experiments on the Role of Visual Cues in Microgravity Spatial Orientation; and (6) The Role of Space in the Exploration of the Mammalian Vestibular System.

1997-01-01

282

Prototype Space Mission SEBAC Biological Solid Waste Management System  

Microsoft Academic Search

This paper reports on fabrication, installation, start-up and shakedown of a full-scale prototype solid waste management system designed to be a principal component in a bio-regenerative solid waste management system to support a 6-person crew on long-term space missions. System design is based upon a patented process for odorless bioconversion of organic solid wastes to biogas and compost by anaerobic

Arthur A. Teixeira; David P. Chynoweth; John M. Owens; Elana Rich; Amy L. Dedrick; Patrick J. Haley

2004-01-01

283

Minimizing Astronauts' Risk from Space Radiation during Future Lunar Missions  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the risk factors from space radiation for astronauts on future lunar missions. Two types of radiation are discussed, Galactic Cosmic Radiation (GCR) and Solar Particle events (SPE). Distributions of Dose from 1972 SPE at 4 DLOCs inside Spacecraft are shown. A chart with the organ dose quantities is also given. Designs of the exploration class spacecraft and the planned lunar rover are shown to exhibit radiation protections features of those vehicles.

Kim, Myung-Hee Y.; Hayat, Mathew; Nounu, Hatem N.; Feiveson, Alan H.; Cucinotta, Francis A.

2007-01-01

284

Space transfer concepts and analysis for exploration missions  

NASA Technical Reports Server (NTRS)

The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis on the structure, power, life support system, and radiation environment for a baseline habitat with specific alternatives for the baseline.

Woodcock, Gordon R.

1992-01-01

285

A space-to-space microwave wireless power transmission experiential mission using small satellites  

NASA Astrophysics Data System (ADS)

A space solar microwave power transfer system (SSMPTS) may represent a paradigm shift to how space missions in Earth orbit are designed. A SSMPTS may allow a smaller receiving surface to be utilized on the receiving craft due to the higher-density power transfer (compared to direct solar flux) from a SSMPTS supplier craft; the receiving system is also more efficient and requires less mass and volume. The SSMPTS approach also increases mission lifetime, as antenna systems do not degrade nearly as quickly as solar panels. The SSMPTS supplier craft (instead) can be replaced as its solar panels degrade, a mechanism for replacing panels can be utilized or the SSMPTS can be maneuvered closer to a subset of consumer spacecraft. SSMPTS can also be utilized to supply power to spacecraft in eclipse and to supply variable amounts of power, based on current mission needs, to power the craft or augment other power systems. A minimal level of orbital demonstrations of SSP technologies have occurred. A mission is planned to demonstrate and characterize the efficacy of space-to-space microwave wireless power transfer. This paper presents an overview of this prospective mission. It then discusses the spacecraft system (comprised of an ESPA/SmallSat-class spacecraft and a 1-U CubeSat), launch options, mission operations and the process of evaluating mission outcomes.

Bergsrud, Corey; Straub, Jeremy

2014-10-01

286

HEXANE: Architecting Manned Space Exploration Missions beyond Low-Earth Orbit  

E-print Network

HEXANE: Architecting Manned Space Exploration Missions beyond Low-Earth Orbit by Alexander August;2 [page intentionally left blank] #12;3 Architecting Manned Space Exploration Missions beyond Low- Earth

de Weck, Olivier L.

287

Solid Freeform Fabrication: An Enabling Technology for Future Space Missions  

NASA Technical Reports Server (NTRS)

The emerging class of direct manufacturing processes known as Solid Freeform Fabrication (SFF) employs a focused energy beam and metal feedstock to build structural parts directly from computer aided design (CAD) data. Some variations on existing SFF techniques have potential for application in space for a variety of different missions. This paper will focus on three different applications ranging from near to far term to demonstrate the widespread potential of this technology for space-based applications. One application is the on-orbit construction of large space structures, on the order of tens of meters to a kilometer in size. Such structures are too large to launch intact even in a deployable design; their extreme size necessitates assembly or erection of such structures in space. A low-earth orbiting satellite with a SFF system employing a high-energy beam for high deposition rates could be employed to construct large space structures using feedstock launched from Earth. A second potential application is a small, multifunctional system that could be used by astronauts on long-duration human exploration missions to manufacture spare parts. Supportability of human exploration missions is essential, and a SFF system would provide flexibility in the ability to repair or fabricate any part that may be damaged or broken during the mission. The system envisioned would also have machining and welding capabilities to increase its utility on a mission where mass and volume are extremely limited. A third example of an SFF application in space is a miniaturized automated system for structural health monitoring and repair. If damage is detected using a low power beam scan, the beam power can be increased to perform repairs within the spacecraft or satellite structure without the requirement of human interaction or commands. Due to low gravity environment for all of these applications, wire feedstock is preferred to powder from a containment, handling, and safety standpoint. The energy beams may be either electron beam or laser, and the developments required for either energy source to achieve success in these applications will be discussed.

Taminger, Karen M. B.; Hafley, Robert A.; Dicus, Dennis L.

2002-01-01

288

Writing the History of Space Missions: Rosetta and Mars Express  

NASA Astrophysics Data System (ADS)

Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

Coradini, M.; Russo, A.

2011-10-01

289

Active Radiation Shield for Space Exploration Missions (ARSSEM)  

E-print Network

One of the major issues to be solved is the protection from the effects of ionizing radiation. Exploration mission, lasting two to three years in space, represents a very significant step from the point of view of radiation protection: both the duration (up to 5 times) and the intensity (up to 5 times) of the exposure to radiation are increased at the same time with respect to mission on the ISS reaching and sometime exceeding professional career limits. In this ARSSEM report, after reviewing the physics basis of the issue of radiation protection in space, we present results based for the first time on full physics simulation to understand the interplay among the the various factors determining the dose absorbed by the astronauts during a long duration mission: radiation composition and energy spectrum, 3D particle propagation through the magnetic field, secondary production on the spacecraft structural materia, dose sensitivity of the various parts of the human body. As first application of this approach, we use this analysis to study a new magnetic configuration based on Double Helix coil and exhibiting a number of interesting features which are suited to active shield application. The study also proposes a technology R&D roadmap for active radiation shield development which would match ESA decadal development strategy for human exploration of space.

R. Battiston; W. J. Burger; V. Calvelli; R. Musenich; V. Choutko; V. I. Datskov; A. Della Torre; F. Venditti; C. Gargiulo; G. Laurenti; S. Lucidi; S. Harrison; R. Meinke

2012-09-10

290

Coping with space motion sickness in Spacelab missions  

NASA Technical Reports Server (NTRS)

Lessons learned from Skylab are applied to methods of dealing with space sickness among crewmembers in their first orbital flight. Early experiences on Skylab 3 led to regularly scheduled scopalamine/dexedrine tablets ingestion. Subsequent experiences on the next Skylab mission established a 75% incidence of the sickness among first-time-in-orbit crewmembers, notably in periods of inactivity rather than work periods. Intramuscular injections are recommended to treat acute space sickness. Preflight transdermal scopalamine plus three or four doses of 5 mg amphetamine are chosen preventive measures, giving 12 hours of efficacy.

Graybiel, A.

1981-01-01

291

Medical support and technology for long-duration space missions  

NASA Technical Reports Server (NTRS)

The current philosophy and development directions being taken towards realization of medical systems for use on board space stations are discussed. Data was gained on the performance of physical examinations, venipuncture and blood flow, blood smear and staining, white blood cell differential count, throat culture swab and colony count, and microscopy techniques during a 28-day period of the Skylab mission. It is expected that the advent of Shuttle flights will rapidly increase the number of persons in space, create a demand for in-space rather than on-earth medical procedures, and necessitate treatments for disorders without the provision for an early return to earth. Attention is being given to pressurized environment and extravehicular conditions of treatment, the possibilities of the use of the OTV for moving injured or ill crewmembers to other space stations, and to isolation of persons with communicable diseases from station crews.

Furukawa, S.; Nicogossian, A.; Buchanan, P.; Pool, S. L.

1982-01-01

292

Geospace Missions for Space Weather and the Next Scientific Challenges  

NASA Technical Reports Server (NTRS)

Currently there is an active international flotilla of spacecraft that continuously observe and measure the dynamic space environment that surrounds our planet. These spacecraft have remote sensors for photons and particles, and in situ instruments for plasmas, fields and particles. They provide the data input to guide, motivate, and validate predictive space weather models used by decision makers and for a myriad of scientific investigations. This talk will briefly survey the current Geospace missions relevant to space weather, what they observe, and why. This talk will conclude with the description of two most significant scientific challenges that must be met in order to advance our understanding and prediction of space weather, and its impacts to society. They are the genesis and evolution of ionospheric variability and the interplanetary magnetic field. Concepts of possible solutions for these two challenges will be discussed.

Spann, James

2014-01-01

293

Developing a Habitat for Long Duration, Deep Space Missions  

NASA Technical Reports Server (NTRS)

One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 cu m (9,464 cu ft) distributed over the functions. The work was validated through comparison to Mir, Skylab, the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concept. Using HIDH guidelines, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

Rucker, Michelle A.; Thompson, Shelby

2012-01-01

294

Autonomous and autonomic systems: a paradigm for future space exploration missions  

Microsoft Academic Search

More and more, the National Aeronautics and Space Administration (NASA) will rely on concepts from autonomous systems not only in mission control centers on the ground, but also on spacecraft and on rovers and other space assets on extraterrestrial bodies. Autonomy facilitates not only reduced operations costs, but also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will

Walter F. Truszkowski; Michael G. Hinchey; James L. Rash; Christopher A. Rouff

2006-01-01

295

Enhancing Team Performance for Long-Duration Space Missions  

NASA Technical Reports Server (NTRS)

Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

Orasanu, Judith M.

2009-01-01

296

The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission  

NASA Astrophysics Data System (ADS)

We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.

Damé, Luc

2013-05-01

297

The next-generation infrared space mission SPICA  

NASA Astrophysics Data System (ADS)

SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an astronomical mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3.2 m telescope. Its high spatial resolution and unprecedented sensitivity in the mid- and far-infrared will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. To reduce the mass of the whole mission, SPICA will be launched at ambient temperature and cooled down on orbit by mechanical coolers on board with an efficient radiative cooling system, a combination of which allows us to have a 3-m class cooled (6 K) telescope in space with moderate total weight (3.7t). SPICA is proposed as a Japanese-led mission together with extensive international collaboration. The most important international partner is ESA. The assessment study on the European contribution to the SPICA project has been conducted under the framework of the ESA Cosmic Vision 2015-2025. Korea has also established a formal SPICA tema at KASI. Taiwan and US participations are also being discussed extensively. The target of launch is early 2020s.

Nakagawa, Takao

2012-07-01

298

Active Radiation Shield for Space Exploration Missions (ARSSEM)  

E-print Network

One of the major issues to be solved is the protection from the effects of ionizing radiation. Exploration mission, lasting two to three years in space, represents a very significant step from the point of view of radiation protection: both the duration (up to 5 times) and the intensity (up to 5 times) of the exposure to radiation are increased at the same time with respect to mission on the ISS reaching and sometime exceeding professional career limits. In this ARSSEM report, after reviewing the physics basis of the issue of radiation protection in space, we present results based for the first time on full physics simulation to understand the interplay among the the various factors determining the dose absorbed by the astronauts during a long duration mission: radiation composition and energy spectrum, 3D particle propagation through the magnetic field, secondary production on the spacecraft structural materia, dose sensitivity of the various parts of the human body. As first application of this approach, we...

Battiston, R; Calvelli, V; Musenich, R; Choutko, V; Datskov, V I; Della Torre, A; Venditti, F; Gargiulo, C; Laurenti, G; Lucidi, S; Harrison, S; Meinke, R

2012-01-01

299

What space missions instruments may see at the heliospheric interface?  

NASA Astrophysics Data System (ADS)

In the future, the scientific community is expecting a new generation deep space mission with multiple instruments onboard (IBEX -Interstellar Boundary Explorer, or the Interstellar Probe Mission, etc.) This opportunity provides a big challenge for theoreticians dealing with the numerical simulations of these interactions and, in particular, of the heliospheric interface. The 3D MHD models of the solar wind - interstellar plasma interaction including in a self-consistent way interactions of various populations of plasma and neutral particles should be ready to confront their results with the forthcoming data that will be obtained from space missions. Meanwhile, in the near future, predictions made by sophisticated theoretical models should help refine the goals and optimize the capabilities of the instruments that will explore the far heliosphere and the local ISM. In this paper we address questions about physical interpretation of numerical results obtained by three-dimensional MHD simulations of the interaction between the solar wind and the interstellar medium. We discuss configurations of the heliospheric interface shaped by the influence of the strength and orientation of the interstellar magnetic field in the presence of the neutral particles and interplanetary magnetic field.

Ratkiewicz, R.; Grygorczuk, J.; Ben-Jaffel, L.

300

Validation (not just verification) of Deep Space Missions  

NASA Technical Reports Server (NTRS)

ion & Validation (V&V) is a widely recognized and critical systems engineering function. However, the often used definition 'Verification proves the design is right; validation proves it is the right design' is rather vague. And while Verification is a reasonably well standardized systems engineering process, Validation is a far more abstract concept and the rigor and scope applied to it varies widely between organizations and individuals. This is reflected in the findings in recent Mishap Reports for several NASA missions, in which shortfalls in Validation (not just Verification) were cited as root- or contributing-factors in catastrophic mission loss. Furthermore, although there is strong agreement in the community that Test is the preferred method for V&V, many people equate 'V&V' with 'Test', such that Analysis and Modeling aren't given comparable attention. Another strong motivator is a realization that the rapid growth in complexity of deep-space missions (particularly Planetary Landers and Space Observatories given their inherent unknowns) is placing greater demands on systems engineers to 'get it right' with Validation.

Duren, Riley M.

2006-01-01

301

The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission.  

PubMed

We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018. PMID:25685424

Damé, Luc

2013-05-01

302

Space Radiation Risk Assessment for Future Lunar Missions  

NASA Technical Reports Server (NTRS)

For lunar exploration mission design, radiation risk assessments require the understanding of future space radiation environments in support of resource management decisions, operational planning, and a go/no-go decision. The future GCR flux was estimated as a function of interplanetary deceleration potential, which was coupled with the estimated neutron monitor rate from the Climax monitor using a statistical model. A probability distribution function for solar particle event (SPE) occurrence was formed from proton fluence measurements of SPEs occurred during the past 5 solar cycles (19-23). Large proton SPEs identified from impulsive nitrate enhancements in polar ice for which the fluences are greater than 2 10(exp 9) protons/sq cm for energies greater than 30 MeV, were also combined to extend the probability calculation for high level of proton fluences. The probability with which any given proton fluence level of a SPE will be exceeded during a space mission of defined duration was then calculated. Analytic energy spectra of SPEs at different ranks of the integral fluences were constructed over broad energy ranges extending out to GeV, and representative exposure levels were analyzed at those fluences. For the development of an integrated strategy for radiation protection on lunar exploration missions, effective doses at various points inside a spacecraft were calculated with detailed geometry models representing proposed transfer vehicle and habitat concepts. Preliminary radiation risk assessments from SPE and GCR were compared for various configuration concepts of radiation shelter in exploratory-class spacecrafts.

Kim, Myung-Hee Y.; Ponomarev, Artem; Atwell, Bill; Cucinotta, Francis A.

2007-01-01

303

An Evolvable Space Telescope for Future Astronomical Missions  

NASA Astrophysics Data System (ADS)

Astronomical flagship missions after the James Webb Space Telescope (JWST) will require lower cost space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures.Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance.Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8-m to 16-m telescopes that have been studied for the follow-on to JWST using similar development/assembly approaches without accounting for too large of a portion of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an 'Evolvable Space Telescope' that would be 3 to 4-m when placed on orbit and then periodically augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16-m space telescope.This paper reviews the technologies required for such a mission, identifies candidate architectures, and discusses different science measurement objectives for these architectures.

Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin; Dailey, Dean

2015-01-01

304

International mission planning for space Very Long Baseline Interferometry  

NASA Technical Reports Server (NTRS)

Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions.

Ulvestad, James S.

1994-01-01

305

Developing a Habitat for Long Duration, Deep Space Missions  

NASA Technical Reports Server (NTRS)

One possible next leap in human space exploration is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to be designed to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be 268 m3 distributed over the functions. The work was validated through comparison with the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concepts. In the end, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

Rucker, Michelle A.; Thompson, Shelby

2011-01-01

306

SIM PlanetQuest: Science with the Space Interferometry Mission  

NASA Technical Reports Server (NTRS)

SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM, including copies of this report, may be obtained from the project web site, at http://sim. jpl.nasa.gov.

Unwin, Stephen (Editor); Turyshev, Slava (Editor)

2004-01-01

307

Research Needs in Electrostatics for Lunar and Mars Space Missions  

NASA Technical Reports Server (NTRS)

The new space exploratory vision announced by President Bush on January 14, 2004, initiated new activities at the National Science and Space Administration (NASA) for human space missions to further explore our solar system. NASA is undertaking Lunar exploration to support sustained human and robotic exploration of Mars and beyond. A series of robotic missions to the Moon by 2008 to prepare for human exploration as early as 2015 but no later than 2020 are anticipated. In a similar way, missions to the Moon and Mars are being planned in Europe, Japan and Russia. These space missions will require international participation to solve problems in a number of important technological areas where research is needed, including biomedical risk mitigation as well as life support and habitability on the surface of Mars. Mitigation of dust hazards is one of the most important problems to be resolved for both Lunar and Mars missions. Both Lunar and Martian regolith are unique materials and completely different from the terrestrial soils that we are exposed to on earth. The total absence of water and an atmosphere on the moon and the formation of soil and fine dust by micrometeorite impacts over billions of years resulted in a layer of soil with unique properties. The soil is primarily basaltic in composition with a high glass concentration. The depth of the soil layer varies from a few meters in the mare areas (dark areas on the Lunar near side) to tens of meters in the highland areas (the lighter mountainous areas) and the particle size distribution of this dust layer varies widely with a major mass fraction less than 10 micrometer in diameter. The hard soil from the moon which has been extensively studied by several researchers showed clearly unique properties of Lunar soil. Apollo astronauts became aware of the potentially serious threat to crew health and mission hardware that can be caused by the lunar dust. As reported by McKay and Carrier the mass fraction of the lunar dust with particle diameter smaller than 20p.m probably represents up to 30% of the total mass of regolith. Apollo astronaut Dr. Harrison Schmidt reported that these fine dust particles were clinging to the Extra Vehicular Activity (EVA) suits and to the visors and were limiting the activity on the surface of the moon. The dust particles that were transported with the EVA suits into the lunar module floated throughout the cabin. Crews inhaled the dust particles and noted that they smelled like gun smoke, caused a chocking sensation in the throat and eye irritation. In addition,, some of the mechanical systems were not functioning well because of the dust deposition. It appeared that the dust particles are highly charged electrostatically and Dr. Schmidt noted that future successful Lunar missions will require appropriate dust mitigation technology for protecting astronauts from inhaling toxic particles and mission's life supporting equipment from contamination with the dust particles.

Calle, Carlos I.

2005-01-01

308

The New Millennium Program Space Technology 5 (ST-5) Mission  

NASA Technical Reports Server (NTRS)

The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.

Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.

2005-01-01

309

Exobiology missions proposed in Japan to utilize international space station  

NASA Astrophysics Data System (ADS)

The Japanese portion of International Space Station offers opportunities to conduct exobiology experiments and observations at its exposed facility. Preparatory studies have been conducted to define proposals for its possible utilization. Research subjects have been proposed from quite diverse fields of exobiology. It ranges from a basic scientific mission, such as a survey on formation and fate of organic materials under space environment, to a part of an engineering project related to quarantine technology for planetary probes dedicated to exobiology exploration. Besides technical feasibility of implementation of those payloads on the space system, scientific assessment is strongly required to elucidate key issues of exobiology conducted in near Earth orbit. Even research facilities in low Earth orbit, although literally in space, give quite a different environment from that of interstellar space in many aspects. Scientific significance of conducting exobiology there should be based on uniqueness of employing microgravity and its synergetic effects with other factors for exobiology. Because of the quite limited chance of executing space experiments, as well as high cost of its execution, proposed subjects should be proved to possess great competitiveness against studies on the ground where space environment could also be well simulated with less cost. An international forum for exobiology might play an important role to formulate prioritized plan and strategy of the discipline. Such a body could orchestrate exobiology in Earth orbit under complementary relationships among scientific endeavors carried on by scientists who participate in collaborative efforts.

Yamashita, M.; Kobayashi, K.; Hashimoto, H.; Kawasaki, Y.; Koike, J.; Saito, T.

1999-01-01

310

Advanced Water Recovery Technologies for Long Duration Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

Liu, Scan X.

2005-01-01

311

Crystallization of two bacterial enzymes on an unmanned space mission  

NASA Astrophysics Data System (ADS)

We have grown crystals of two bacterial enzymes, thermolysin from Bacillus thermoproteolyticus and a novel 23 kD lysozyme from Streptomyces coelicolor, on the unmanned COSIMA-2 space mission. The crystals obtained under microgravity conditions were compared with crystals grown in a ground control experiment using identical hardware, and with those obtained in 'hanging drops' in the laboratory. For both enzymes, the space-grown crystals tended to be longer but thinner than their terrestrial counterparts. The diffraction properties of each type of crystals were assessed by collecting nearly complete diffraction data sets using an area detector. Space-grown crystals of the enzymes showed much weaker diffraction than both the ground control and the laboratory-grown crystals. Possible reasons for this are discussed.

Hilgenfeld, Rolf; Liesum, Alexander; Storm, Ru¨diger; Plaas-Link, Andreas

1992-08-01

312

Robotic Drilling Technology and Applications to Future Space Missions  

NASA Astrophysics Data System (ADS)

Introduction: Robotic drilling has great potential to become a vital, enabling technology in the context of future human and robotic exploration of the Solar System. Specific needs for human exploration relate to the ability for remote missions to scout potential locations for habitability and/or resource recovery. We will describe relevant challenges to robotic drilling and development pertaining to operations within hostile planetary environments. From the perspective of a system concept for mission architectures and exploration approaches, the ability to drill into extra-terrestrial planetary bodies and recover samples for analysis and/or utilization can provide vital references, resources, and opportunities for mission enrichment. The technology for supporting and planning such missions presents a feed-forward advantage for a human presence in such environments. Future space missions for drilling in the shallow and mid-to-deep subsurface face issues unfamiliar to terrestrial analogues, including limited power, very low or very high pressures, and widely varying thermal environments. We will discuss the means and approaches for establishing drilling operations, managing drilling sites, and mitigating environmental effects. Early robotic phases will leverage system-of-systems collaborations among humans and machines on and above the surface of planetary bodies. Such "precursor missions" will be charged with the task of mapping subsurface geology, understanding soil/rock particle distributions, obtaining geologic history, and determining local resource profiles. An example of the need for this kind of information is given to good effect by one of the lessons learned by NASA's Apollo program: the effects of lunar dust on humans, drilling mechanisms, and mission expectations were far greater than initially expected, and are still being critically considered. Future missions to Solar System bodies, including the Moon and Mars, will need to have advance information about local geologic effects, especially below the visible surface. In these hostile environments, valuable resources (e.g., water and other volatiles) will probably be hidden in substrata. Prospecting, mapping, excavating, and recovering these resources will remain a central need for NASA's exploration efforts for the foreseeable future. Swales Aerospace has a proven history in the development of low-power robotic drilling technology and research. We will show some results of a successful field campaign, during which our research prototype drill reached a depth of 10 meters with an average power consumption of only 100 Watts. We will summarize our results from a recent 2006 Idaho 2m-Basalt field test that proven basalt can be cored using 90W and past paper studies on drilling in the Martian environment and our perspective on the development of mission profiles for planetary drilling. We will suggest architectures for future drilling missions, potential configurations for deployed planetary drills, and provide comments on relevant engineering challenges such as sample acquisition, mission time, power, and mass.

Guerrero, J. L.; Reiter, J. W.; Rumann, A.; Wu, D.; Wang, G. Y.; Meyers, M.; Craig, J.; Abbey, W.; Beegle, L. W.

2006-12-01

313

The Aquarius Mission: Sea Surface Salinity from Space  

NASA Technical Reports Server (NTRS)

Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is sea surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of sea water and, consequently, the radiometric emission of the sea surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the air-sea exchange of CO2. In order to meet these science objectives, the NASA Salinity Sea Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km altitude in a sun-synchronous orbit and 300 km swath can provide the desired 100 km resolution global coverage every week. Within this decade, it may be possible to combine satellite sea surface salinity measurements with ongoing satellite observations of temperature, surface height, air-sea fluxes; vertical profiles of temperature and salinity from the Argo program; and modern ocean/atmosphere modeling and data assimilation tools, in order to finally address the complex influence of buoyancy on the ocean circulation and climate.

Koblinsky, Chester; Chao, Y.; deCharon, A.; Edelstein, W.; Hildebrand, P.; Lagerloef, G.; LeVine, D.; Pellerano, F.; Rahmat-Samii, Y.; Ruf, C.

2001-01-01

314

An evolvable space telescope for future astronomical missions  

NASA Astrophysics Data System (ADS)

Astronomical flagship missions after JWST will require affordable space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures. Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance. Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8 m to 16 m telescopes that have been studied as a follow-on to JWST using similar development/assembly approaches without decimating the rest of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an "Evolvable Space Telescope" that would begin as a 3 to 4 m telescope when placed on orbit and then periodically be augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16 m or larger space telescope. This paper reviews the approach for such a mission and identifies and discusses candidate architectures.

Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin R.; Dailey, Dean R.

2014-08-01

315

The Next Generation Deep Space Network: Meeting the Needs of Future Human and Robotic Space Exploration Missions  

Microsoft Academic Search

NASA's Deep Space Network (DSN) is evolving to meet the communication and navigation needs of increasingly complex, data-intensive exploration and space science missions, both human and robotic. Solar system exploration missions, for instance, are focusing more on long-duration orbital remote sensing at increasing spatial, spectral, and temporal resolutions. Such missions are also conducting more elaborate in situ investigations - with

R. A. Preston; D. S. Abraham; L. J. Deutsch; B. Geldzahler

2004-01-01

316

Space Radiation and Manned Mission: Interface Between Physics and Biology  

NASA Astrophysics Data System (ADS)

The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.

Hei, Tom

2012-07-01

317

The European Space Agency's LISA mission study: status and present results  

Microsoft Academic Search

The European Space Agency is currently pursuing a comprehensive industrial study of the complete LISA mission within a contract awarded to Astrium Satellites GmbH in 2005. The study is in its final phase and has developed a consolidated mission and payload concept. The feasibility and robustness of the mission concept has been confirmed. The mission performance and the resulting technical

U. A. Johann; M. Ayre; P. F. Gath; W. Holota; P. Marenaci; H. R. Schulte; P. Weimer; D. Weise

2008-01-01

318

Science Exploration of the Moon with the European Space Agency SMART1 Mission  

Microsoft Academic Search

SMART-1, with a planned launch date of 2001, will be the first Small Mission for Advanced Research in Technology of the ESA Scientific Programme Horizons 2000. The mission is dedicated to the testing of new technologies for preparing future cornerstone missions, using solar electrical propulsion in deep space. The mission operational lifetime contains periods for cruise phase and an orbital

B. H. Foing; G. Racca

1998-01-01

319

Instrument development at the European Space Agency for future earth observation missions  

Microsoft Academic Search

The European Space Agency is preparing the next generation of earth observation satellites to be launched during the next decade. Two classes of missions have been defined: the 'Earth Watch' missions of pre-operational nature and the research-oriented 'Earth Explorer' missions featuring satellites dedicated to particular scientific research fields. Nine potential missions have been identified that are the subject of technical

Roland Meynart

1995-01-01

320

Precision Pointing for the Laser Interferometry Space Antenna Mission  

NASA Technical Reports Server (NTRS)

The Laser Interferometer Space Antenna (LISA) mission is a planned NASA-ESA gravitational wave detector consisting of three spacecraft in heliocentric orbit. Lasers are used to measure distance fluctuations between proof masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Each spacecraft and its two laser transmit/receive telescopes must be held stable in pointing to less than 8 nanoradians per root Hertz in the frequency band 0.1-100 mHz. The pointing error is sensed in the received beam and the spacecraft attitude is controlled with a set of micro-Newton thrusters. Requirements, sensors, actuators, control design, and simulations are described.

Hyde, T. Tupper; Bauer, Frank H. (Technical Monitor); Maghami, P. G.

2003-01-01

321

Peer-to-Peer Planning for Space Mission Control  

NASA Technical Reports Server (NTRS)

Planning and scheduling for space operations entails the development of applications that embed intimate domain knowledge of distinct areas of mission control, while allowing for significant collaboration among them. The separation is useful because of differences in the planning problem, solution methods, and frequencies of replanning that arise in the different disciplines. For example, planning the activities of human spaceflight crews requires some reasoning about all spacecraft resources at timescales of minutes or seconds, and is subject to considerable volatility. Detailed power planning requires managing the complex interplay of power consumption and production, involves very different classes of constraints and preferences, but once plans are generated they are relatively stable.

Barreiro, Javier; Jones, Grailing, Jr.; Schaffer, Steve

2009-01-01

322

Future L5 Missions for Solar Physics and Space Weather  

NASA Astrophysics Data System (ADS)

Coronal mass ejections (CMEs) and corotating interaction regions (CIR) are the sources of intense space weather in the heliosphere. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). In this paper, the advantages of remote-sensing and in-situ observations from the Sun-Earth L5 point are discussed. Locating a mission at Sun-Earth L5 has several key benefits for solar physics and space weather: (1) off the Sun-Earth line view is critical in observing Earth-arriving parts of CMEs, (2) L5 coronagraphic observations can also provide near-Sun space speed of CMEs, which is an important input to models that forecast Earth-arrival time of CMEs, (3) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, (4) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, (5) CIRs reach the L5 point a few days before they arrive at Earth, and hence provide significant lead time before CIR arrival, (6) L5 observations can provide advance knowledge of CME and CIR source regions (coronal holes) rotating to Earth view, and (7) magnetograms obtained from L5 can improve the surface magnetic field distribution used as input to MHD models that predict the background solar wind. The paper also discusses L5 mission concepts that can be achieved in the near future. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C., MacDowall, R. J., Maksimovic, M., Sittler, E., et al. (2011b), Earth-Affecting Solar Causes Observatory (EASCO): a mission at the Sun-Earth L5, Solar Physics and Space Weather Instrumentation IV. Ed. Fineschi, S. & Fennelly, J., Proceedings of the SPIE, Volume 8148, article id. 81480Z, DOI: 10.1117/12.901538

Auchere, Frederic; Gopalswamy, Nat

323

Design and application of electromechanical actuators for deep space missions  

NASA Technical Reports Server (NTRS)

This third semi-annual progress report covers the reporting period from August 16, 1994 through February 15, 1995 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions'. There are two major report sections: Motor Control Status/Electrical Experiment Planning and Experiment Planning and Initial Results. The primary emphasis of our efforts during the reporting period has been final construction and testing of the laboratory facilities. As a result, this report is dedicated to that topic.

Haskew, Tim A.; Wander, John

1995-01-01

324

Timekeeping for the Space Technology 5 (ST-5) Mission  

NASA Technical Reports Server (NTRS)

Space Technology 5, or better known as ST-5, is a space technology development mission in the New Millennium Program (NMP) and NASA s first experiment in the design of miniaturized satellite constellations. The mission will design, integrate and launch multiple spacecraft into an orbit high above the Earth s protective magnetic field known as the magnetosphere. Each spacecraft incorporates innovative technology and constellation concepts which will be instrumental in future space science missions. A total of three ST-5 spacecraft will be launched as secondary payloads into a highly elliptical geo-synchronous transfer orbit, and will operate as a 3-element constellation for a minimum duration of 90 days. In order to correlate the time of science measurements with orbit position relative to the Earth, orbit position in space (with respect to other objects in space) and/or with events measured on Earth or other spacecraft, accurate knowledge of spacecraft and ground time is needed. Ground time as used in the USA (known as Universal Time Coordinated or UTC) is maintained by the U.S. Naval Observatory. Spacecraft time is maintained onboard within the Command and Data Handling (C&DH) system. The science requirements for ST-5 are that spacecraft time and ground time be correlatable to each other, with some degree of accuracy. Accurate knowledge of UTC time on a spacecraft is required so that science measurements can be correlated with orbit position relative to the Earth, orbit position in space and with events measured on Earth or other spacecraft. The most crucial parameter is not the clock oscillator frequency, but more importantly, how the clock oscillator frequency varies with time or temperature (clock oscillator drift). Even with an incorrect clock oscillator frequency, if there were no drift, the frequency could be assessed by comparing the spacecraft clock to a ground clock during a few correlation events. Once the frequency is accurately known, it is easy enough to make a regular adjustment to the spacecraft clock or to calculate the correct ground time for a given spacecraft clock time. The oscillator frequency, however, is temperature dependent, drifts with age and is affected by radiation; hence, repeated correlation measurements are required.

Raphael, Dave; Luers, Phil; Sank, Victor; Jackson, George

2002-01-01

325

In-Situ Resource Utilization for Economical Space Missions  

NASA Technical Reports Server (NTRS)

This paper presents some recent developments in the technologies of ISRU with the specific intention of cost reductions in space missions. Recognizing that a certain level of technology maturation is necessary before the mission designers will seriously consider any technology, the hypothesis is made that the overall cost-index is inversely proportional to the TRL. Also recognizing that the cost is directly proportional to the mass at launch, the cost-index is identified as the ratio of the launch mass to the TRL. Whether this cost-index is the true measure of the overall mission cost is arguable; however, the relative costs of comparable technologies can be readily assessed by applying identical rules of such an evaluation. As one example of this approach, Mars Sample Return (MSR) is studied, and nine competing technologies are evaluated for the key Mars Ascent Vehicle (MAV). It is found that the technology of oxygen production through the dissociation of atmospheric carbon dioxide can be a key technology. In addition to reporting upon this technology briefly, one innovative application that significantly enhances the science capabilities of a rover is discussed.

Ramohalli, Kumar

1999-01-01

326

Towards synthetic biological approaches to resource utilization on space missions.  

PubMed

This paper demonstrates the significant utility of deploying non-traditional biological techniques to harness available volatiles and waste resources on manned missions to explore the Moon and Mars. Compared with anticipated non-biological approaches, it is determined that for 916 day Martian missions: 205 days of high-quality methane and oxygen Mars bioproduction with Methanobacterium thermoautotrophicum can reduce the mass of a Martian fuel-manufacture plant by 56%; 496 days of biomass generation with Arthrospira platensis and Arthrospira maxima on Mars can decrease the shipped wet-food mixed-menu mass for a Mars stay and a one-way voyage by 38%; 202 days of Mars polyhydroxybutyrate synthesis with Cupriavidus necator can lower the shipped mass to three-dimensional print a 120 m(3) six-person habitat by 85% and a few days of acetaminophen production with engineered Synechocystis sp. PCC 6803 can completely replenish expired or irradiated stocks of the pharmaceutical, thereby providing independence from unmanned resupply spacecraft that take up to 210 days to arrive. Analogous outcomes are included for lunar missions. Because of the benign assumptions involved, the results provide a glimpse of the intriguing potential of 'space synthetic biology', and help focus related efforts for immediate, near-term impact. PMID:25376875

Menezes, Amor A; Cumbers, John; Hogan, John A; Arkin, Adam P

2015-01-01

327

Towards synthetic biological approaches to resource utilization on space missions  

PubMed Central

This paper demonstrates the significant utility of deploying non-traditional biological techniques to harness available volatiles and waste resources on manned missions to explore the Moon and Mars. Compared with anticipated non-biological approaches, it is determined that for 916 day Martian missions: 205 days of high-quality methane and oxygen Mars bioproduction with Methanobacterium thermoautotrophicum can reduce the mass of a Martian fuel-manufacture plant by 56%; 496 days of biomass generation with Arthrospira platensis and Arthrospira maxima on Mars can decrease the shipped wet-food mixed-menu mass for a Mars stay and a one-way voyage by 38%; 202 days of Mars polyhydroxybutyrate synthesis with Cupriavidus necator can lower the shipped mass to three-dimensional print a 120 m3 six-person habitat by 85% and a few days of acetaminophen production with engineered Synechocystis sp. PCC 6803 can completely replenish expired or irradiated stocks of the pharmaceutical, thereby providing independence from unmanned resupply spacecraft that take up to 210 days to arrive. Analogous outcomes are included for lunar missions. Because of the benign assumptions involved, the results provide a glimpse of the intriguing potential of ‘space synthetic biology’, and help focus related efforts for immediate, near-term impact. PMID:25376875

Menezes, Amor A.; Cumbers, John; Hogan, John A.; Arkin, Adam P.

2015-01-01

328

The SAGE III's mission aboard the International Space Station  

NASA Astrophysics Data System (ADS)

The Stratospheric Aerosol and Gas Experiment (SAGE III) is being prepared for deployment on the International Space Station (ISS) in 2015. Constructed in the early 2000s, the instrument is undergoing extensive testing and refurbishment prior to delivery to ISS. In addition, ESA is refurbishing their Hexapod which is a high-accuracy pointing system developed to support ISS external payloads, particularly SAGE III. The SAGE III instrument refurbishment also includes the replacement of the neutral density filter that has been associated with some instrument performance degradation during the SAGE III mission aboard METEOR/3M mission (2002-2005). We are also exploring options for expanding the science targets to include additional gas species including IO, BrO, and other solar, lunar, and limb-scatter species. In this presentation, we will discuss SAGE III-ISS refurbishment including results from Sun-look testing. We also will discuss potential revisions to the science measurements and the expected measurement accuracies determined in part through examination of the SAGE III-METEOR/3M measurement data quality. In addition, we will discuss potential mission science goals enabled by the mid-inclination ISS orbit. No dedicated field campaign for SAGE III validation is anticipated. Instead, validation will primarily rely on a collaborative effort with international groups making in situ and ground-based measurements of aerosol, ozone, and other SAGE III data products. A limited balloon-based effort with a yet-to-be-determined validation partner is also in the planning stages.

Pitts, Michael; Thomason, Larry; Zawodny, Joseph; Flittner, David; Hill, Charles; Roell, Marilee; Vernier, Jean-Paul

2014-05-01

329

Exploration Life Support Critical Questions for Future Human Space Missions  

NASA Technical Reports Server (NTRS)

Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

2009-01-01

330

Challenges to Health During Deep Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Long duration missions outside of low Earth orbit will present unique challenges to the maintenance of human health. Stressors with physiologic and psychological impacts are inherent in exploration missions, including reduced gravity, increased radiation, isolation, limited habitable volume, circadian disruptions, and cabin atmospheric changes. Operational stressors such as mission timeline and extravehicular activities must also be considered, and these varied stressors may act in additive or synergistic fashions. Should changes to physiology or behavior manifest as a health condition, the rendering of care in an exploration environment must also be considered. Factors such as the clinical background of the crew, inability to evacuate to Earth in a timely manner, communication delay, and limitations in available medical resources will have an impact on the assessment and treatment of these conditions. The presentations associated with this panel will address these unique challenges from the perspective of several elements of the NASA Human Research Program, including Behavioral Health and Performance, Human Health Countermeasures, Space Radiation, and Exploration Medical Capability.

Watkins, S.; Leveton, L.; Norsk, P.; Huff, J.; Shah, R.

2014-01-01

331

Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mission concepts  

Microsoft Academic Search

Liquid hydrogen and oxygen cryogenic propulsion and storage were recently considered for application to Titan Explorer and Comet Nuclear Sample Return space science mission investigations. These missions would require up to 11 years of cryogenic storage. We modeled and designed cryogenic propellant storage concepts for these missions. By isolating the propellant tank’s view to deep space, we were able to

D. W. Plachta; R. J. Christie; J. M. Jurns; P. Kittel

2006-01-01

332

Implementing Distributed Operations: A Comparison of Two Deep Space Missions  

NASA Technical Reports Server (NTRS)

Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption of web-based and telecommunication tools has been critical to the success of Cassini operations.

Mishkin, Andrew; Larsen, Barbara

2006-01-01

333

Space station needs, attributes and architectural options study. Volume 2: Mission analysis  

NASA Technical Reports Server (NTRS)

Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.

1983-01-01

334

Space station needs, attributes and architectural options. Volume 3, task 1: Mission requirements  

NASA Technical Reports Server (NTRS)

The mission requirements of the space station program are investigated. Mission parameters are divided into user support from private industry, scientific experimentation, U.S. national security, and space operations away from the space station. These categories define the design and use of the space station. An analysis of cost estimates is included.

1983-01-01

335

Galaxy Mission Completes Four Star-Studded Years in Space  

NASA Technical Reports Server (NTRS)

NASA's Galaxy Evolution Explorer is celebrating its fourth year in space with some of M81's 'hottest' stars.

In a new ultraviolet image, the magnificent M81 spiral galaxy is shown at the center. The orbiting observatory spies the galaxy's 'sizzling young starlets' as wisps of bluish-white swirling around a central golden glow. The tints of gold at M81's center come from a 'senior citizen' population of smoldering stars.

'This is a spectacular view of M81,' says Dr. John Huchra, of the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass. 'When we proposed to observe this galaxy with GALEX we hoped to see globular clusters, open clusters, and young stars...this view is everything that we were hoping for.'

The image is one of thousands gathered so far by GALEX, which launched April 28, 2003. This mission uses ultraviolet wavelengths to measure the history of star formation 80 percent of the way back to the Big Bang.

The large fluffy bluish-white material to the left of M81 is a neighboring galaxy called Holmberg IX. This galaxy is practically invisible to the naked human eye. However, it is illuminated brilliantly in GALEX's wide ultraviolet eyes. Its ultraviolet colors show that it is actively forming young stars. The bluish-white fuzz in the space surrounding M81 and Holmberg IX is new star formation triggered by gravitational interactions between the two galaxies. Huchra notes that the active star formation in Holmberg IX is a surprise, and says that more research needs to be done in light of the new findings from GALEX.

'Some astronomers suspect that the galaxy Holmberg IX is the result of a galactic interaction between M81 and another neighboring galaxy M82,' says Huchra. 'This particular galaxy is especially important because there are a lot of galaxies like Holmberg IX around our Milky Way galaxy. By understanding how Holmberg IX came to be, we hope to understand how all the little galaxies surrounding the Milky Way developed.'

'Four years after GALEX's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe,' says Kerry Erickson, GALEX project manager.

M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today.

The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.

2007-01-01

336

The James Webb Space Telescope: Mission Overview and Status  

NASA Technical Reports Server (NTRS)

The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6 Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program.

Greenhouse, Matthew A.

2011-01-01

337

Precision Pointing for the Laser Interferometer Space Antenna (LISA) Mission  

NASA Technical Reports Server (NTRS)

The Laser Interferometer Space Antenna (LISA) mission is a planned NASA-ESA gravity wave detector consisting of three spacecraft in heliocentric orbit. Lasers are used to measure distance fluctuations between the proof masses aboard the spacecraft to the picometer level over the 5 million kilometer spacing. Each spacecraft and it's two laser transmit/receive telescopes must be held stable in pointing to less than 8 nanoradians per root Hertz in the frequency band 0.1 mHz to 0.1 Hz. This is accomplished by sensing the pointing error in the received beam and controlling the spacecraft attitude with a set of micronewton thrusters. Requirements, sensors, actuators, control design, and simulations are described in this paper.

Bauer, Frank H. (Technical Monitor); Hyde, T. Tupper; Maghami, P.

2003-01-01

338

Potential Uses of Deep Space Cooling for Exploration Missions  

NASA Technical Reports Server (NTRS)

Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could counter temperature increases thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.

Chambliss, Joe; Sweterlitsch, Jeff; Swickrath, Micahel J.

2012-01-01

339

Potential Uses of Deep Space Cooling for Exploration Missions  

NASA Technical Reports Server (NTRS)

Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could avoid temperature increase thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.

Chambliss, Joseph; Sweterlitsch, Jeff; Swickrath, Michael

2011-01-01

340

Onboard Systems Record Unique Videos of Space Missions  

NASA Technical Reports Server (NTRS)

Ecliptic Enterprises Corporation, headquartered in Pasadena, California, provided onboard video systems for rocket and space shuttle launches before it was tasked by Ames Research Center to craft the Data Handling Unit that would control sensor instruments onboard the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft. The technological capabilities the company acquired on this project, as well as those gained developing a high-speed video system for monitoring the parachute deployments for the Orion Pad Abort Test Program at Dryden Flight Research Center, have enabled the company to offer high-speed and high-definition video for geosynchronous satellites and commercial space missions, providing remarkable footage that both informs engineers and inspires the imagination of the general public.

2010-01-01

341

Miniature Mass Spectrometers on Space and Planetary Missions  

NASA Technical Reports Server (NTRS)

Space flight mass spectrometers contribute our understanding of the origin and evolution of our solar system and even of life itself. This fundamental role has motivated increasing interest in miniature mass spectrometry for planetary missions. Several remarkable new instruments are en route or under development to investigate the composition of planetary bodies such as Mars and comets. For instance, the Sample Analysis at Mars (SAM) suite on the 2009 Mars Science Laboratory (MSL) mission includes a quadrupole mass spectrometer with a sophisticated gas processing system as well as pyrolysis and chemical derivatization protocols for solid samples. Future missions will require even lighter, lower power, and yet more capable mass spectrometers, particularly to analyze samples in situ on planetary surfaces. We have been developing laser-based mass spectrometers for elemental and organic/molecular analysis of rock, ice, or fine particle samples. These typically use time-of-flight (TOF) mass analyzers, which are readily miniaturized and can detect both atomic species and complex organics that occur in a variety of planetary materials. For example, nonvolatile polycyclic aromatic hydrocarbons and kerogen-like macromolecular carbon are found in some carbonaceous meteorites, which derived from asteroid parent bodies. A single focused laser pulse is able to volatilize and ionize some of these compounds for direct TOF analysis. While this is possible without any sample preparation or contact, sensitivity and quantitative performance can improve significantly with some sample handling. As such we have also been examining robotic mechanisms and protocols to accompany space flight mass spectrometers. In addition, sensors in early development may significantly improve these capabilities, via use of techniques such as switchable polarity, ambient pressure, or resonant ionization; tandem mass spectrometry (TOF or ion trap); and chemical imaging.

Brinckerhoff, William

2008-01-01

342

Small Stirling dynamic isotope power system for robotic space missions  

NASA Technical Reports Server (NTRS)

The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

Bents, D. J.

1992-01-01

343

Small Stirling dynamic isotope power system for robotic space missions  

NASA Astrophysics Data System (ADS)

The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

Bents, D. J.

1992-08-01

344

Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2  

NASA Technical Reports Server (NTRS)

Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

1983-01-01

345

Entry, descent and landing vehicle design space exploration for crewed Mars missions  

E-print Network

With the announcement of the Vision for Space Exploration in 2004, NASA has been preparing plans for a crewed mission to Mars in the next few decades. One challenge associated with crewed missions to the Martian surface ...

Khan, Zahra

2008-01-01

346

Marshall Space Flight Center's role in EASE/ACCESS mission management  

NASA Technical Reports Server (NTRS)

The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

Hawkins, Gerald W.

1987-01-01

347

Contributions of the International Space Station towards future exploration missions  

NASA Astrophysics Data System (ADS)

When the idea of a large space station in Low Earth Orbit (LEO) was conceived in the 1980s, it was primarily planned as an orbiting laboratory for microgravity research. Some even thought of it as an industrial plant in space. Whereas the latter did not materialize because of various reasons, the former is absolutely true when you talk about the International Space Station (ISS). Since the transition to a six astronaut crew in 2009 and the completion of its assembly in 2011, it has been intensively used as laboratory in a wide field of scientific topics. Experiments conducted on ISS have yielded first class results in biology, physiology, material science, basic physics, and many more. While its role as a laboratory in space is widely recognized, the awareness for its potential for preparing future exploration missions beyond LEO is just increasing. This paper provides information on how the ISS programme contributes to future exploration efforts, both manned and unmanned. It highlights the work that has been done or is currently underway in the fields of technology, operations, and science. Further potentials and future projects for exploration preparation are also shown. A special focus lies on experiments and projects primarily funded by the German Aerospace Center (DLR) or with strong German participation in the science team.

Weppler, Johannes

2014-11-01

348

For Earth into space: The German Spacelab Mission D-2  

NASA Astrophysics Data System (ADS)

The Spacelab Mission D-2 successfully lifted off from Kennedy Space Center on April 26, 1993. With 88 experiments on board covering eleven different research disciplines it was a very ambitious mission. Besides materials and life science subjects, the mission also encompassed astronomy, earth observation, radiation physics and biology, telecommunication, automation and robotics. Notable results were obtained in almost all cases. To give some examples of the scientific output, building upon results obtained in previous missions (FSLP, D1) diffusion in melts was broadly represented delivering most precise data on the atomic mobility within various liquids, and crystal growth experiments (the largest gallium arsenide crystal grown by the floating zone technique, so far obtained anywhere, was one of the results), biological cell growth experiments were continued (for example, beer yeast cultures, continuing their growth on earth, delivered a qualitatively superior brewery result), the human physiology miniclinic configuration ANTHRORACK gave novel insights concerning cardiovascular, pulmonary, and renal (fluid volume determining) factors. Astronomical experiments yielded insights into our own galaxy within the ultra violet spectrum, earth observation experiments delivered the most precise resolution data superimposed by thematic mapping of many areas of the Earth, and the robotics experiment brought a remarkable feature in that a flying object was caught by the space robot, which was only achieved through several innovative advances during the time of experiment preparation. The eight years of preparation were also beneficial in another sense. Several discoveries have been made, and various technology transfers into ground-based processes were verified. To name the outstanding ones, in the materials science a novel bearing materials production process was developped, a patent granted for an improved high temperature heating chamber; with life sciences a new hormone, the peptide urodilatin, discovered in 1988 and its significance for the fluid volume control of the human body, an aplanation tonometer developped for hand- and selfoperation for measuring the inner eye pressure; in the technological disciplines another patent issued for a sensor based control ball in conjunction with the robotics experiment (to be manufactured under licence of an American company.

Sahm, P. R.; Keller, M. H.; Schiewe, B.

349

A SLAM II simulation model for analyzing space station mission processing requirements  

NASA Technical Reports Server (NTRS)

Space station mission processing is modeled via the SLAM 2 simulation language on an IBM 4381 mainframe and an IBM PC microcomputer with 620K RAM, two double-sided disk drives and an 8087 coprocessor chip. Using a time phased mission (payload) schedule and parameters associated with the mission, orbiter (space shuttle) and ground facility databases, estimates for ground facility utilization are computed. Simulation output associated with the science and applications database is used to assess alternative mission schedules.

Linton, D. G.

1985-01-01

350

SUGAR METABOLISM AND PATHOGENICITY OF SPIROPLASMA CITRI  

Microsoft Academic Search

SUMMARY Spiroplasma citri is a plant-pathogenic mollicute, phy- logenetically related to Gram-positive bacteria. Spiro- plasma cells are restricted to the phloem sieve elements and are transmitted by leafhopper vectors. Recent re- search has allowed depicting a unique scenario in S. citri pathogenicity, where sugar metabolism plays a major role. In vitro S. citri uses fructose, glucose, and trehalose, which are

J. Renaudin

2006-01-01

351

On-Line Tool for the Assessment of Radiation in Space - Deep Space Mission Enhancements  

NASA Technical Reports Server (NTRS)

The On-Line Tool for the Assessment of Radiation in Space (OLTARIS, https://oltaris.nasa.gov) is a web-based set of tools and models that allows engineers and scientists to assess the effects of space radiation on spacecraft, habitats, rovers, and spacesuits. The site is intended to be a design tool for those studying the effects of space radiation for current and future missions as well as a research tool for those developing advanced material and shielding concepts. The tools and models are built around the HZETRN radiation transport code and are primarily focused on human- and electronic-related responses. The focus of this paper is to highlight new capabilities that have been added to support deep space (outside Low Earth Orbit) missions. Specifically, the electron, proton, and heavy ion design environments for the Europa mission have been incorporated along with an efficient coupled electron-photon transport capability to enable the analysis of complicated geometries and slabs exposed to these environments. In addition, a neutron albedo lunar surface environment was also added, that will be of value for the analysis of surface habitats. These updates will be discussed in terms of their implementation and on how OLTARIS can be used by instrument vendors, mission designers, and researchers to analyze their specific requirements.12

Sandridge, Chris a.; Blattnig, Steve R.; Norman, Ryan B.; Slaba, Tony C.; Walker, Steve A.; Spangler, Jan L.

2011-01-01

352

Issues that Drive Waste Management Technology Development for Space Missions  

NASA Technical Reports Server (NTRS)

Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

2005-01-01

353

The European Space Agency {\\Gaia} mission: exploring the Galaxy  

E-print Network

The {\\Gaia} astrometric mission was approved by the European Space Agency in 2000 and the construction of the spacecraft and payload is on-going for a launch in late 2012. {\\Gaia} will continuously scan the entire sky for 5 years, yielding positional and velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars throughout our Galaxy and beyond. The main scientific goal is to quantify early formation and the subsequent dynamic and chemical evolution of the Milky way. The stellar survey will have a completeness to $V = 20$ mag, with a precision of about 25 $\\mu$as at 15 mag. The astrometric information will be combined with astrophysical data acquired through on-board spectrophotometry and spectroscopy, allowing the chemical composition and age of the stars to be derived. Data acquired and processed as a result of the {\\Gaia} mission are estimated to amount to about 1 petabyte. One of the challenging problems is the close relationship between astr...

Jordi, C

2011-01-01

354

Space radiation risks for astronauts on multiple International Space Station missions.  

PubMed

Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA's radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members' radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903

Cucinotta, Francis A

2014-01-01

355

Development of Electronics for Low-Temperature Space Missions  

NASA Technical Reports Server (NTRS)

Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.

Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric

2001-01-01

356

TAMU: Blueprint for A New Space Mission Operations System Paradigm  

NASA Technical Reports Server (NTRS)

The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

2011-01-01

357

Precipitation Measurements from Space: The Global Precipitation Measurement Mission  

NASA Technical Reports Server (NTRS)

Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

Hou, Arthur Y.

2007-01-01

358

Space station needs, attributes and architectural options study. Volume 2: Mission definition  

NASA Technical Reports Server (NTRS)

The space applications and science programs appropriate to the era beyond 1990, those user missions which can utilize the Space Station to an advantage, and user mission concepts so that requirements, which will drive the Space Stations (SS) design are addressed.

1983-01-01

359

Space station needs, attributes and architectural options study. Volume 3: Mission requirements  

NASA Technical Reports Server (NTRS)

User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

1983-01-01

360

Architecting a Family of Space Tugs based on Orbital Transfer Mission Scenarios  

E-print Network

1 Architecting a Family of Space Tugs based on Orbital Transfer Mission Scenarios by Kalina K Students #12;2 #12;3 Architecting a Family of Space Tugs based on Orbital Transfer Mission Scenarios and Astronautics Abstract The consequences of satellite misplacement or collision with space debris reach far

361

National Aeronautics and Space Administration Mars Atmosphere and Volatile Evolution Mission  

E-print Network

National Aeronautics and Space Administration NASAfacts MAVEN Mars Atmosphere and Volatile mission during which it will make its key measurements. #12;National Aeronautics and Space Administration loss, and the role that escape of gas from the atmosphere to space has played through time. MISSION

Mojzsis, Stephen J.

362

STS-70 Space Shuttle Mission Report - September 1995  

NASA Technical Reports Server (NTRS)

The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

Fricke, Robert W., Jr.

1995-01-01

363

Constraint and Flight Rule Management for Space Mission Operations  

NASA Technical Reports Server (NTRS)

The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

2010-01-01

364

Cognitive Functioning in Space Exploration Missions: A Human Requirement  

NASA Technical Reports Server (NTRS)

Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.

Fiedler, Edan; Woolford, Barbara

2005-01-01

365

New Concepts for Space-Based Gravitational Wave Missions  

NASA Technical Reports Server (NTRS)

The most astrophysically interesting sources in the gravitational wave spectrum lie in the low-frequency band (0.0001 - 1 Hz), which is only accessible from space. For two decades, the LISA concept has been the leading contender for a detector in this band. Despite a strong recommendation from Astro2010, there is strong motivation to find a less expensive concept, even at the loss of some science. We are searching for a lower cost mission concept by examining alternate orbits, less-capable measurement concepts, radically different implementations of the measurement concept and other cost-saving ideas. We report the results of our searches to date, and summarize the analyses behind them.

Stebbins, Robin T.; Baker, J. G.; Cooley, D. S.; Gallagher, R. J.; Hughes, S. P.; Livas, J. C.; Simpson, J. E.; Thorpe, J. I.; Welter, G. L.

2011-01-01

366

An Overview of Space Power Systems for NASA Missions  

NASA Technical Reports Server (NTRS)

Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.

Lyons, Valerie J.; Scott, John H.

2007-01-01

367

Space missions to detect the cosmic gravitational-wave background  

E-print Network

It is thought that a stochastic background of gravitational waves was produced during the formation of the universe. A great deal could be learned by measuring this Cosmic Gravitational-wave Background (CGB), but detecting the CGB presents a significant technological challenge. The signal strength is expected to be extremely weak, and there will be competition from unresolved astrophysical foregrounds such as white dwarf binaries. Our goal is to identify the most promising approach to detect the CGB. We study the sensitivities that can be reached using both individual, and cross-correlated pairs of space based interferometers. Our main result is a general, coordinate free formalism for calculating the detector response that applies to arbitrary detector configurations. We use this general formalism to identify some promising designs for a GrAvitational Background Interferometer (GABI) mission. Our conclusion is that detecting the CGB is not out of reach.

Neil J. Cornish; Shane L. Larson

2001-03-24

368

Cardiovascular Countermeasures for Exploration-Class Space Flight Missions  

NASA Technical Reports Server (NTRS)

Astronaut missions to Mars may be many years or even decades in thc future but current and planned efforts can be extrapolated to required treatments and prophylaxis for delerious efforts of prolonged space flight on the cardiovascular system. The literature of candidate countermeasures was considered in combination with unpublished plans for countermeasure implementation. The scope of cardiovascular countermeasures will be guided by assessments of the efficacy of mechanical, physiological and pharmacological approaches in protecting the cardiovascular capacities of interplanetary crewmembers. Plans for countermeasure development, evaluation and validation will exploit synergies among treatment modalities with the goal of maximizing protective effects while minimizing crew time and in-flight resource use. Protection of the cardiovascular capacity of interplanetary crewmembers will become more effective and efficient over the next few decades, but trade-offs between cost and effectiveness of efficiency are always possible if the increased level of risk can be accepted.

Charles, John B.

2004-01-01

369

The Space Infrared Interferometric Telescope (SPIRIT): mission study results  

NASA Astrophysics Data System (ADS)

We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 ?m. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously.

Leisawitz, David; Baker, Charles; Barger, Amy; Benford, Dominic; Blain, Andrew; Boyle, Rob; Broderick, Richard; Budinoff, Jason; Carpenter, John; Caverly, Richard; Chen, Phil; Cooley, Steve; Cottingham, Christine; Crooke, Julie; DiPietro, Dave; DiPirro, MIke; Femiano, Michael; Ferrer, Art; Fischer, Jackie; Gardner, Jonathan; Hallock, Lou; Harris, Kenny; Hartman, Kate; Harwit, Martin; Hillenbrand, Lynne; Hyde, Tupper; Jones, Drew; Kellogg, Jim; Kogut, Alan; Kuchner, Marc; Lawson, Bill; Lecha, Javier; Lecha, Maria; Mainzer, Amy; Mannion, Jim; Martino, Anthony; Mason, Paul; Mather, John; McDonald, Gibran; Mills, Rick; Mundy, Lee; Ollendorf, Stan; Pellicciotti, Joe; Quinn, Dave; Rhee, Kirk; Rinehart, Stephen; Sauerwine, Tim; Silverberg, Robert; Smith, Terry; Stacey, Gordon; Stahl, H. Philip; Staguhn, Johannes; Tompkins, Steve; Tveekrem, June; Wall, Sheila; Wilson, Mark

2006-06-01

370

Design and application of electromechanical actuators for deep space missions  

NASA Technical Reports Server (NTRS)

This progress report documents research and development efforts performed from August 16, 1993 through August 15, 1994 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions.' Since the submission of our last progress report in February 1994, our efforts have been almost entirely focused on final construction of the test stand and experiment design. Hence, this report is dedicated solely to these topics. However, updates on our research personnel and our health monitoring and fault management efforts are provided in this summary. Following this executive summary are two report sections. The first is devoted to the motor drive being constructed for the test stand. The thrust of the next section is the mechanical and hydraulic design and construction based on the planned experimental requirements. Following both major sections are three appendices.

Haskew, Tim A.; Wander, John

1994-01-01

371

Critical soft landing technology issues for future US space missions  

NASA Technical Reports Server (NTRS)

A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.

Macha, J. M.; Johnson, D. W.; Mcbride, D. D.

1992-01-01

372

PETS - A GRB Polarimetry Mission on the International Space Station  

NASA Astrophysics Data System (ADS)

Polarimetry of Energetic Transients in Space (PETS) is a gamma-ray polarimetry mission that was recently proposed as an NASA Astrophysics Mission of Opportunity. It will make the first definitive observations of the inner jets of GRBs, which cannot be probed with conventional non-polarization instruments. It will also observe, for the first time, the polarization signature from SGRs, revealing high-energy emission processes originating from the most intense magnetic field conditions known to exist. PETS will use gamma-ray polarimetry to uncover the energy release mechanism associated with the formation of stellar-mass black holes and investigate the physics of extreme magnetic fields in the vicinity of compact objects. The objectives are : 1) determine the structure and composition of GRB jets and uncover the mechanisms powering them; and 2) determine the emission geometry and mechanisms under the extreme magnetic field conditions found in SGRs. The PETS science objectives are met with two instruments. The primary instrument, the TRAnsient Polarimeter (TRAP), is a wide FOV non-imaging polarimeter that measures polarization over the energy range from 50-500 keV. Knowledge of the transient source location, required for the polarization analysis, is provided by the TRAnsient Location Experiment (TRALE). PETS will be mounted on the ISS with the two instruments pointed towards the zenith, scanning the sky as it orbits the Earth. During the two-year baseline mission, PETS will achieve its primary science objective with the polarization measurement of ~100 GRBs with a minimum detectable polarization (MDP) better than 50%, ~35 GRBs with an MDP of better than 30%, and ~5 with an MDP of better than 15%. These data will be sufficient to distinguish amongst three basic models for the inner jet at a 90% confidence level. The secondary science objective will be achieved with the measurement of 3-4 SGRs with a minimum detectable polarization of 15-50%. PETS is a self-contained mission in that it will be able to achieve its objectives without relying on other sources for transient location data, while providing potentially important contextual data for other ongoing investigations. Scheduled launch date is 2018.

McConnell, Mark L.; Baring, M. G.; Bloser, P. F.; Greiner, J.; Harding, A. K.; Hartmann, D.; Hill, J. E.; Kaaret, P.; Kippen, R. M.; Pearce, M.; Produit, N.; Roming, P.; Ryan, J. M.; Ryde, F.; Sakamoto, T.; Toma, K.; Zhang, B.

2013-04-01

373

Potential renovascular hypertension, space missions, and the role of magnesium  

PubMed Central

Space flight (SF) and dust inhalation in habitats cause hypertension whereas in SF (alone) there is no consistent hypertension but reduced diurnal blood pressure (BP) variation instead. Current pharmaceutical subcutaneous delivery systems are inadequate and there is impairment in the absorption, metabolism, excretion, and deterioration of some pharmaceuticals. Data obtained from the National Aeronautics and Space Administration through the Freedom of Information Act shows that Irwin returned from his 12-day Apollo 15 mission in 1971 and was administered a bicycle stress test. With just three minutes of exercise, his BP was >275/125 mm Hg (heart rate of only 130 beats per minute). There was no acute renal insult. Irwin’s apparent spontaneous remission is suggested to be related to the increase of a protective vasodilator, and his atrial natriuretic peptide (ANP) reduced with SF because of reduced plasma volume. With invariable malabsorption and loss of bone/muscle storage sites, there are significant (P < 0.0001) reductions of magnesium (Mg) required for ANP synthesis and release. Reductions of Mg and ANP can trigger pronounced angiotensin (200%), endothelin, and catecholamine elevations (clearly shown in recent years) and vicious cycles between the latter and Mg deficits. There is proteinuria, elevated creatinine, and reduced renal concentrating ability with the potential for progressive inflammatory and oxidative stress-induced renal disease and hypertension with vicious cycles. After SF, animals show myocardial endothelial injuries and increased vascular resistance of extremities in humans. Even without dust, hypertension might eventually develop from renovascular hypertension during very long missions. Without sufficient endothelial protection from pharmaceuticals, a comprehensive gene research program should begin now. PMID:21694921

Rowe, William J

2009-01-01

374

An Alternative Water Processor for Long Duration Space Missions  

NASA Technical Reports Server (NTRS)

A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration human space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to stoichiometric maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater

Barta, Daniel J.; Pickering, Karen D.; Meyer, Caitlin; Pennsinger, Stuart; Vega, Leticia; Flynn, Michael; Jackson, Andrew; Wheeler, Raymond

2014-01-01

375

In-Space Propulsion Technology products ready for infusion on NASA's future science missions  

Microsoft Academic Search

Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant

David J. Anderson; Eric Pencil; Todd Peterson; John Dankanich; Michelle M. Munk

2012-01-01

376

Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission  

NASA Technical Reports Server (NTRS)

.The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

Prasad, Narasimha S.

2012-01-01

377

Performance assessment of planetary missions as launched from an orbiting space station  

NASA Technical Reports Server (NTRS)

Results presented are intended to assist planners and the mission analysis community in assessing the performance impact (pro or con) of launching planetary missions from an orbiting space station as compared to the usual, ground-based Shuttle launch of such missions. The analyses comprising this assessment include: (1) a basic understanding and description of the space station launch problem; (2) examination of alternative injection strategies and selection of the most appropriate strategy for minimizing performance penalties; and (3) quantitative comparison of station-launched and Shuttle-launched performance over a wide energy/mass range of planetary mission opportunities. Data for each mission covers a full 360 deg of possible nodal location of the space station orbit. The main results are that planetary missions can be launched from a space station within acceptable penalty bounds, and that the station serving as a staging base/propellant depot can benefit some missions requiring large payload mass or high injection energy.

Friedlander, A.

1982-01-01

378

New Detector Developments for Future UV Space Missions  

NASA Astrophysics Data System (ADS)

Ultraviolet (UV) astronomy is facing “dark ages”: After the shutdown of the Hubble Space Tele-scope only the WSO/UV mission will be operable in the UV wavelength region with efficient instruments. Improved optics and detectors are necessary for future successor missions to tackle new scientific goals. This drives our development of microchannel plate (MCP) UV-detectors with high quantum efficiency, high spatial resolution and low-power readout electronics. To enhance the quantum efficiency and the lifetime of the MCP detectors we are developing new cathodes and new anodes for these detectors. To achieve high quantum efficiency, we will use caesium-activated gallium nitride as semitransparent photocathodes with a much higher efficiency than default CsI/CsTe cathodes in this wavelength range. The new anodes will be cross-strip anodes with 64 horizontal and 64 vertical electrodes. This type of anode requires a lower gain and leads to an increased lifetime of the detector, compared to MCP detectors with other anode types. The heart of the new developed front-end-electronic for such type of anode is the so called “BEETLE chip”, which was designed by the MPI für Kernphysik Heidelberg for the LHCb ex-periment at CERN. This chip provides 128 input channels with charge-sensitive preamplifiers and shapers. Our design of the complete front-end readout electronics enables a total power con-sumption of less than 10 W. The MCP detector is intrinsically solar blind, single photon counting and has a very low read-out noise. To qualify this new type of detectors we are presently planning to build a small UV telescope for the usage on the German Technology Experimental Carrier (TET). Furthermore we are involved in the new German initiative for a Public Telescope, a space telescope equipped with an 80 cm mirror. One of the main instruments will be a high-resolution UV-Echelle Spectrograph that will be built by the University of Tübingen. The launch of this mission is scheduled for 2017.

Werner, Klaus; Kappelmann, Norbert

379

Crew of Hubble Space Telescope servicing mission visits Europe  

NASA Astrophysics Data System (ADS)

The Hubble Space telescope servicing mission in December (STS-61) was a great success and the fully refurbished orbiting telescope produced absolutely remarkable first results just two weeks ago. The 7-member crew who carried out the mission will soon be in Europe to share their experience with the Press, ESA space specialists and the European space community. Public conferences will also be held in Switzerland, the home country of ESA astronaut Claude Nicollier. The visit of the STS-61 crew is scheduled as follows: Friday 11 February, 1994 - ESA Paris, France Presentation and Press Conference Location: ESA, 8/10 Rue Mario Nikis, 75015 Paris time: 16:00 hrs - 17:30 hrs contact: ESA, Public Relations Office Tel. (+33) 1 42 73 71 55 Fax. (+33) 1 42 73 76 90 Monday 14 February, 1994 - British Aerospace, Bristol, United Kingdom Presentation and Press Conference Location: British Aerospace, FPC 333, Filton, Bristol BS12 7QW time: 10:00 hrs - 12:00 hrs contact: BAe, Public Relations Tel. (+44) 272 36 33 69 Tel. (+44) 272 36 33 68 Tuesday 15 February, 1994 - ESA/ESTEC, Noordwijk, the Netherlands Presentation and Press Conference Location: Noordwijk Space Expo, Keplerlaan 3, 2201 AZ Noordwijk, the Netherlands time: 09:30 hrs - 12:00 hrs contact: ESTEC Public Relations Office Tel. (+31) 1719 8 3006 Fax. (+31) 1719 17 400 Wednesday 16 February, 1944 - ESO, Garching - Munich, Germany Presentation and Press Conference Location: European Southern Observatory, Karl- Schwarzschild-Str. 2, 85748 Garching -Munich, Germany time: to be decided contact: ESO Information Service Tel. (+49) 89 32 006 276 Fax. (+49) 89 320 23 62 Thursday 17 February, 1994 - Bern, Switzerland a. Presentation and Press Conference Location: Hotel Bern, Zeughausgasse 9, 3001 Bern, Switzerland time: 09:30 hrs contact: Press & Information Service of the Federal Dept. for Education & Sciences Tel. (+41) 31 322 80 34 Fax. (+41) 31 312 30 15 b. Public conference Location: University of Bern, Institute of Physics time: 18:00 hrs - 20:00 hrs Friday 18 February, 1994 - Geneva, Switzerland a. Presentation and Press Conference Location: Geneva Observatory, Chemin des Maillettes 51, 1290 Sauverny, Switzerland time: 10:00 hrs - 11:30 hrs contact: Press Service University of Geneva Tel. (+41) 22 705 77 17 Tel. (+41) 22 328 25 66 b. Public Conference Location: University of Geneva, Auditorium Piaget, Uni Dufour time: 18:00 hrs - 20:30 hrs For accreditation and further information on these events, please get in touch directly with the contact listed for each location.

1994-01-01

380

Mission Possible: BioMedical Experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

Bopp, E.; Kreutzberg, K.

2011-01-01

381

ESA unveils Spanish antenna for unique space mission  

NASA Astrophysics Data System (ADS)

The newly refurbished antenna, which is located at the Villafranca del Castillo Satellite Tracking Station site (VILSPA) near Madrid, has been selected as the prime communication link with the Cluster II spacecraft. The VIL-1 antenna will play a vital role in ESA's Cluster mission by monitoring and controlling the four spacecraft and by receiving the vast amounts of data that will be returned to Earth during two years of operations. Scheduled for launch in summer 2000, the Cluster quartet will complete the most detailed investigation ever made into the interaction between our pl0anet's magnetosphere - the region of space dominated by Earth's magnetic field - and the continuous stream of charged particles emitted by the Sun - the solar wind. This exciting venture is now well under way, following completion of the satellite assembly and test programme and two successful verification flights by the newly developed Soyuz-Fregat launch vehicle. The ESA Flight Acceptance Review Board has accordingly given the go-ahead for final launch preparations at the Baikonur Cosmodrome in Kazakhstan. VILSPA, ESA and Cluster II Built in 1975, after an international agreement between the European Space Agency and the Spanish government, VILSPA is part of the European Space Operations Centre (ESOC) Tracking Station Network (ESTRACK). In the last 25 years, VILSPA has supported many ESA and international satellite programmes, including the International Ultraviolet Explorer (IUE), EXOSAT and the Infrared Space Observatory (ISO). In addition to supporting the Cluster II mission, it has been designated as the Science Operations Centre for ESA's XMM Newton mission and for the Far-Infrared Space Telescope (FIRST), which is due to launch in 2007. There are now more than half a dozen large dish antennae installed at VILSPA. One of these is the VIL-1 antenna, a 15 metre diameter dish which operates in the S-band radio frequency (1.8 - 2.7 GHz). This antenna has been modernised recently in order to support the forthcoming Cluster II mission. As a result, VILSPA now has two fully upgraded 15 metre S-band antennae, which should enable the facility to enter the new millennium confident in its ability to support future space programmes. Modernisation of VIL-1 included the replacement of the 60 dish panels, the subreflector, the antenna equipment room and other parts of the main structure. One of the most significant modifications has been the replacement of the Servo and tracking systems, since the Cluster II satellites will move in a highly elliptical orbit and require high speed tracking. Into Orbit The Cluster II mission will be launched by two Soyuz rockets provided by the French-Russian Starsem consortium. After two engine burns by the Fregat upper stage, the spacecraft will separate and use their own propulsion systems to reach their final orbits. Travelling in close formation, the four Cluster spacecraft will swoop to within 19,000 km of the Earth's surface and then retreat to 119,000 km - almost one third of the way to the Moon. The four satellites will be visible for an average of about 10 hours per day from the VILSPA ground station. However, only one satellite at a time can be in communication with the ground, which reduces the available time each day to around two and a half hours per satellite. Further challenges arise from the need to send new instructions to the 11 scientific instruments on each spacecraft, and from the vast amount of data to be returned each day from the 44 experiments. Over two years of operations, this adds up to 580 Gigabytes (580,000,000,000 bytes!) of data - equivalent to 290 million pages of printed text. VILSPA will be just one link in the overall Cluster II communications network. The day-to-day operation of the four spacecraft will be handled by the Operations Control Centre at ESOC (Darmstadt, Germany). All of the Cluster II data exchange between VILSPA and ESOC will be handled by dedicated communication lines. European Teamwork. Industrial enterprises in almost all of the 14 ESA member states and the United Stat

2000-05-01

382

www.nasa.gov SpaceX CRS-1 Mission Press Kit  

E-print Network

www.nasa.gov #12;1 SpaceX CRS-1 Mission Press Kit CONTENTS 3 Mission Overview 7 Mission Timeline 9 and Communications 310-463-0794 (c) Katherine.Nelson@spacex.com media@spacex.com NASA PUBLIC AFFAIRS CONTACTS Trent Perrotto Public Affairs Officer Human Exploration and Operations NASA Headquarters 202-358-1100 Jenny

383

Leaders in space: Mission commanders and crew on the International Space Station  

NASA Astrophysics Data System (ADS)

Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission commanders scored higher than crew on the coping style of Accepting Responsibility. These results improve our understanding of the similarities and differences between mission commanders and crew, and suggest areas of importance for the selection and training of future commanders.

Brcic, Jelena

384

Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992  

NASA Technical Reports Server (NTRS)

A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.

1992-01-01

385

Double Pinhole Heliometer: a prototype for space missions  

NASA Astrophysics Data System (ADS)

The diameter of the Sun has been measured by some space missions like PICARD, SDO and SOHO, and RHESSI satellite restitued the figure of the Sun with a similar milli-arcsec accuracy. The absolute value and the variations of the solar diameter are being debated either from ground-based measurements and from space measurements. The former are heavily affected by the atmospheric turbulence from 200 to 0.01 Hz at scales from few to thousands arcseconds; all measurements are affected by the small variations of the instrumental point spread function due to temperature variations. The optical system that can be exempted by such micro-variations and may allow the required stability over years is a pinhole system. The variations due to the thermal expansions affect only the dimension of the holes, and then the diffraction pattern; this variation is the simpler to be modelled, as well as the modification of the focal length of the system. A carbon fiber prototype of the double pinhole mask is under construction at Sapienza University of Rome with the same acquisition system used with the reflecting heliometer of Rio de Janeiro. The dependence of the solar limb darkening function inflexion point localization convoluted with the pinhole point spread function against thermal variations is discussed in view of detecting micro-variations of the solar diameter.

Sigismondi, Costantino; Humberto Andrei, Alexandre; Emilio, Marcelo; Fazio, Eugenio; Ucci, Graziano; Vincentelli, Federico; Zema, Vanessa; Scardino, Francesco

386

Pressure Fed Nuclear Thermal Rockets for space missions  

SciTech Connect

The National Space Policy includes a long range goal of expanding human presence and activity beyond Earth orbit into the solar system. This has renewed interest in the potential application of Nuclear Thermal Rockets (NTR) to space flight, particularly for human expeditions to the Moon and Mars. Recent NASA studies consider applications of the previously developed NERVA (Nuclear Engine for Rocket Vehicle Application) technology and the more advanced gas core reactors and show their potential advantages in reducing the initial mass in Earth orbit (IMEO) compared to advanced chemical rocket engines. Application of NERVA technology will require reestablishing the prior technological base or extending it to an advanced NERVA type engine, while the gas core NTR will require an extensive high risk research and development program. A technology intermediate between NERVA and the gas core NTR is a low pressure engine based on solid fuel, a Pressure Fed NTR (PFNTR). In addition to the simplicity of the gas pressurized engine cycle, the PFNTR takes advantage of the dissociation of hydrogen-the increases in specific impulse become significant as the chamber pressure decreases below 1.0 MPa (10 atmospheres) and the chamber temperature increases above 3000 K. The developmental status of technology applicable to a Pressure Fed Nuclear Thermal Rocket (PFNTR) lies between that of the NERVA engine and the gas core NTR (GCNTR). This document investigates PFNTR performance and provides typical mission analyses.

Leyse, C.F. (Leyse (C.F.), Idaho Falls, ID (USA)); Madsen, W.W.; Ramsthaler, J.H.; Schnitzler, B.G. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-08-01

387

Mini AERCam Inspection Robot for Human Space Missions  

NASA Technical Reports Server (NTRS)

The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

2004-01-01

388

Characterizing 3D Vegetation Structure from Space: Mission Requirements  

NASA Technical Reports Server (NTRS)

Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates. (2) The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first global inventory of forest biomass with a spatial resolution 1km or finer and unprecedented accuracy (ii) annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass accumulation rates at resolutions of 1km or finer, and (iii) transects of vertical and horizontal forest structure with 30 m along-transect measurements globally at 25 m spatial resolution, essential for habitat characterization. We also show from the literature that lidar profile samples together with wall-to53 wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together to satisfy these vegetation 3D structure and biomass measurement requirements. Finally we argue that the technology readiness levels of combined pol-SAR and lidar instruments are adequate for space flight. Remaining to be worked out, are the particulars of a lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information and measurement requirement articulated herein.

Hall, Forrest G.; Bergen, Kathleen; Blair, James B.; Dubayah, Ralph; Houghton, Richard; Hurtt, George; Kellndorfer, Josef; Lefsky, Michael; Ranson, Jon; Saatchi, Sasan; Shugart, H. H.; Wickland, Diane

2012-01-01

389

Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission  

NASA Technical Reports Server (NTRS)

The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

Delombard, Richard; Finley, Brian D.

1991-01-01

390

Space Station Mission Planning System (MPS) development study. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

The basic objective of the Space Station (SS) Mission Planning System (MPS) Development Study was to define a baseline Space Station mission plan and the associated hardware and software requirements for the system. A detailed definition of the Spacelab (SL) payload mission planning process and SL Mission Integration Planning System (MIPS) software was derived. A baseline concept was developed for performing SS manned base payload mission planning, and it was consistent with current Space Station design/operations concepts and philosophies. The SS MPS software requirements were defined. Also, requirements for new software include candidate programs for the application of artificial intelligence techniques to capture and make more effective use of mission planning expertise. A SS MPS Software Development Plan was developed which phases efforts for the development software to implement the SS mission planning concept.

Klus, W. J.

1987-01-01

391

Modular Gravitational Reference Sensor for High Precision Astronomical Space Missions  

NASA Astrophysics Data System (ADS)

We review the progress in developing the Modular Gravitational Reference Sensor (modular GRS) [1], which was first proposed as a simplified core sensor for space gravitational wave detection missions. In a modular GRS, laser beam from the remote the sensor does not illuminate the proof mass directly. The internal measurement from housing to proof mass is separated from the external interferometry. A double side grating may further simplify the structure and may better preserve the measurement precision. We review the recent progress in developing modular GRS at Stanford. We have further studied optical sensing design that combines advantage of high precision interferometric measurement and robust optical shadow sensing scheme. We have made critical progress in optical measurement of the center of mass position of a spherical proof mass at a precision without costing the dynamic range while spinning. We have successfully demonstrated the feasibility of fabricating localized grating pattern onto the dielectric and gold materials. We have conducted an initial experiment of rf heterodyne of cavity reflection and thus lowered optical power than that in the direct detection. We have further studied UV LED that will be used for AC charge management experiment. The modular GRS will be an in-time, cost effective product for the advanced Laser Interferometric Space Antenna (LISA) and the Big Bang Observatory (BBO). [1] K. Sun, G. Allen, S. Buchman, D. DeBra, and R. L. Byer, “Advanced Architecture for High Precision Space Laser Interferometers”, 5th International LISA Symposium, ESTEC, Noordwijk, The Netherlands, 12-16 July 2004. Class. Quantum Grav. 22 (2005) S287-S296.

Sun, Ke-Xun; Allen, G.; Buchman, S.; Byer, R. L.; Conklin, J. W.; DeBra, D. B.; Gill, D.; Goh, A.; Higuchi, S.; Lu, P.; Robertson, N.; Swank, A.

2006-12-01

392

The European Space Agency?s Preparatory Activities for Future Atmospheric Composition Sounding Missions  

Microsoft Academic Search

While the European Space Agency's Envisat mission is successfully observing the Earth's atmosphere using the three instruments GOMOS, MIPAS and SCIAMACHY, GOME on the ERS-2 mission is still operational with limitations in data coverage, and MetOp will provide continuity to GOME-type observations, ESA is conducting preparatory activities for future missions. Two future mission candidates focusing on water vapour measurements have

J. Langen; T. Wehr

2004-01-01

393

STS-1: the first space shuttle mission, April 12, 1981 - Duration: 2 minutes, 43 seconds.  

NASA Video Gallery

Space shuttle Columbia launched on the first space shuttle mission on April 12, 1981, a two-day demonstration of the first reusable, piloted spacecraft's ability to go into orbit and return safely ...

394

Spacecraft design-for-demise strategy, analysis and impact on low earth orbit space missions  

E-print Network

Uncontrolled reentry into the Earth atmosphere by LEO space missions whilst complying with stipulated NASA Earth atmospheric reentry requirements is a vital endeavor for the space community to pursue. An uncontrolled reentry ...

Waswa, M. B. Peter (Peter Moses Bweya)

2009-01-01

395

Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission  

NASA Astrophysics Data System (ADS)

A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

2013-11-01

396

Visual Risk Assessment of Space Radiation Exposure for Future Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Protecting astronauts from space radiation exposure during an interplanetary mission is an important challenge for mission design and operations. If sufficient protection is not provided near solar maximum, the risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). Polyethylene shielded "storm shelters" inside spacecraft have been shown to limit total exposure from a large SPE to a permissible level, preventing acute risks and providing a potential approach to fulfill the ALARA (as low as reasonably achievable) requirement. For accurate predictions of radiation dose to astronauts involved in future space exploration missions, detailed variations of radiation shielding properties are required. Radiation fluences and doses vary considerably across both the spacecraft geometry and the body-shielding distribution. A model using a modern CAD tool ProE(TradeMark), which is the leading engineering design platform at NASA, has been developed to account for these local variations in the radiation distribution. Visual assessment of radiation distribution at different points inside a spacecraft module and in the human body for a given radiation environment are described. Results will ultimately guide in developing requirements for maximal protection for astronauts from space radiation.

Hussein, Hesham F.; Kim, Myung-Hee; Cucinotta, Francis A.

2006-01-01

397

NASA's In-Space Propulsion Technology Project Overview and Mission Applicability  

Microsoft Academic Search

The In-Space Propulsion Technology Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This paper provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, and advanced chemical thrusters. Aerocapture investments have 1) improved models

Tibor Kremic; D. J. Anderson; J. W. Dankanich

2008-01-01

398

The NASA In-Space Propulsion Technology Project, products, and mission applicability  

Microsoft Academic Search

The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments

David J. Anderson; Eric Pencil; Larry Liou; John Dankanich; Michelle M. Munk; T. Kremic

2009-01-01

399

Space station needs, attributes and architectural options study. Volume 7-2: Data book. Commercial missions  

NASA Technical Reports Server (NTRS)

The history of NASA's materials processing in space activities is reviewed. Market projections, support requirements, orbital operations issues, cost estimates and candidate systems (orbiter sortie flight, orbiter serviced free flyer, space station, space station serviced free flyer) for the space production of semiconductor crystals are examined. Mission requirements are identified for materials processing, communications missions, bioprocessing, and for transferring aviation maintenance training technology to spacecraft.

1983-01-01

400

Nuclear reactor power as applied to a space-based radar mission  

NASA Technical Reports Server (NTRS)

A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

1988-01-01

401

Definition of technology development missions for early space station satellite servicing, volume 1  

NASA Technical Reports Server (NTRS)

The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

1983-01-01

402

Safety improvement issues for mission aborts of future space transportation systems  

Microsoft Academic Search

Two-stage winged space access vehicles consisting of a carrier stage with airbreathing turbo\\/ram jet engines and a rocket propelled orbital stage which may significantly reduce space transport costs and have additional advantages offer a great potential for mission safety improvements. Formulating the nominal mission and abort scenarios caused by engine malfunctions as an optimal control problem allows full exploitation of

M. Mayrhofer; M. Wächter; G. Sachs

2006-01-01

403

Aldo Morselli, INFN Roma Tor Vergata! 1! the AGILE space mission  

E-print Network

Aldo Morselli, INFN Roma Tor Vergata! 1! the AGILE space mission Aldo Morselli INFN Roma Tor Energy Sky Annapolis Sept. 18 2014 #12;Aldo Morselli, INFN Roma Tor Vergata! 2! the AGILE space mission Aldo Morselli INFN Roma Tor Vergata On behalf of Marco Tavani and the AGILE Team 10th INTEGRAL Workshop

Morselli, Aldo

404

Space station needs, attributes, and architectural options study. Volume 1: Missions and requirements  

NASA Technical Reports Server (NTRS)

Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.

1983-01-01

405

Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability  

NASA Technical Reports Server (NTRS)

The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.

1972-01-01

406

Assessment of Countermeasure Efficacy for Long-Term Space Missions  

NASA Technical Reports Server (NTRS)

One of the main functions of the upcoming International Space Station (ISS) will be to provide a venue for testing proposed countermeasures for their ability to protect humans from the debilitating effects of longterm space flight. However, several limiting factors preclude an evaluation process similar to that used in clinical trials which traditionally are implemented with large sample sizes of subjects, including control groups, and with blind or double-blind application of treatments according to factorial or other balanced experimental designs. In particular, only very limited numbers of human subjects will be available for actual field testing in the ISS With no more than 125 subjects planned to fly on all ISS missions over 10 years, it is not possible to test extensive combinations of some 15-20 proposed countermeasures. Furthermore because of safety concerns and operational considerations, it is unlikely that anything other than the current best guess at the most effective countermeasure package will ever be used on ISS. In particular, control or placebos will not be allowed. In view of these limitations, historical data and groundbased or animal studies will have to be used to compensate for small sample sizes and lack of controls in the field. As a result, statistical analysis methodology will have to be developed which allows for the integration of these disparate data types into a meaningful evaluation process. The process must be sequential, providing objective rules for deciding through time whether to reject or modify an ineffective countermeasure, or whether to certify one as effective. Additional output should include performance characteristics for all relevant physiological systems, including uncertainty analyses and estimates of accept/reject decision error rates.

Feiveson, Alan H.; Paloski, William H. (Technical Monitor)

2000-01-01

407

Design and application of electromechanical actuators for deep space missions  

NASA Astrophysics Data System (ADS)

The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

Haskew, Tim A.; Wander, John

1993-09-01

408

Design and application of electromechanical actuators for deep space missions  

NASA Technical Reports Server (NTRS)

The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

Haskew, Tim A.; Wander, John

1993-01-01

409

Development of double-stage ADR for future space missions  

NASA Astrophysics Data System (ADS)

We report a development of a portable dewar with a double-stage ADR in it, and its cooling test results. The purpose of this system is to establish a cooling cycle of double-stage adiabatic demagnetization from 4.2 K to 50 mK, which is strongly desired for future space science missions. In our test dewar, two units of ADR are installed in parallel at the bottom of a liquid He tank. We used 600 g of GGG (Gadolinium Gallium Garnet) for the higher temperature stage (4 Tesla) and ˜90 g of CPA (Chromic Potassium Alum) for the lower temperature stage (3 Tesla). A passive gas-gap heat switch (PGGHS) is used between these two stages, while a mechanical heat switch between the He tank and the GGG stage. Using this system, 50 mK was achieved, and various kinds of cooling cycles with different operating temperatures and different sequences of magnetization were tested. We also evaluated the performance of the PGGHS, and interference of the magnetic field with each other during a stable temperature control.

Shinozaki, Keisuke; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Takei, Yoh; Masui, Kensuke; Asano, Kentaro; Ohashi, Takaya; Ezoe, Yuichiro; Ishisaki, Yoshitaka; Fujimoto, Ryuichi; Sato, Kosuke; Kanao, Kenichi; Yoshida, Seiji

2010-09-01