Science.gov

Sample records for space environment electron

  1. The space radiation environment for electronics

    SciTech Connect

    Stassinopoulos, E.G.; Raymond, J.P.

    1988-11-01

    The earth's space radiation environment is described in terms of charged particles as relevant to effects on spacecraft electronics. The nature and magnitude of the trapped and transiting environments are described in terms of spatial distribution and temporal variation. The internal radiation environment of the spacecraft is described in terms of shielding the high-energy particles of the free-field environment. Exposure levels are presented in terms of ionizing radiation dose and particle fluence for comparison to electronic component susceptibility.

  2. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  3. The Near-Earth Space Radiation for Electronics Environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  4. Electron Beam Freeform Fabrication in the Space Environment

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Taminger, Karen M. B.; Bird, R. Keith

    2007-01-01

    The influence of reduced gravitational forces (in space and on the lunar or Martian surfaces) on manufacturing processes must be understood for effective fabrication and repair of structures and replacement parts during long duration space missions. The electron beam freeform fabrication (EBF3) process uses an electron beam and wire to fabricate metallic structures. The process efficiencies of the electron beam and the solid wire feedstock make the EBF3 process attractive for use in-space. This paper will describe the suitability of the EBF3 process in the space environment and will highlight preliminary testing of the EBF3 process in a zero-gravity environment.

  5. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  6. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  7. A Deterministic Computational Procedure for Space Environment Electron Transport

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.

    2010-01-01

    A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.

  8. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  9. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  10. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  11. The Space Radiation Environment and Its Implication for Designing Reliable Electronic Systems: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    The contents include the following: The space radiation environment. The effects on electronics. The environment in action NASA approaches to commercial electronics: flight projects; and proactive research. Living with a star space environment testbed status. Final thoughts: atomic interactions; direct ionization; interaction with nucleus.

  12. Thermal contact electronic packaging in solar pointing space environment

    SciTech Connect

    Colangelo, A.M. ); McKim, G.S. . Space Systems Div.)

    1991-02-01

    A thermal design for a solar pointing space shuttle mission is presented. The apparatus, which will measure solar flux intensity variations, contains sensors and data acquisition electronics which must be maintained within certain temperature constraints. The thermal design, which utilizes parallel heat flow paths and conduction fins to reject dissipated heat, is shown by finite difference thermal modeling to maintain component temperatures within these constraints. In the thermal modeling, arithmetic nodes are used to represent surface radiosity for radiation heat transfer. Also, the concept of mean fin conduction length and effective fin capacitance are introduced as means of simplifying the model representation of the conduction fins. An experiment was conducted to evaluate the chip/fin contact conductance.

  13. Spacecraft Environments Interactive: Space Radiation and Its Effects on Electronic System

    NASA Technical Reports Server (NTRS)

    Howard, J. W., Jr.; Hardage, D. M.

    1999-01-01

    The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster. This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).

  14. High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.

  15. High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments

    NASA Astrophysics Data System (ADS)

    Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration, including the Constellation program's Orion Crew Exploration Vehicle, the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.

  16. The Space Radiation Environment as it Relates to Electronic System Performance: Or Why Not to Fly Commercial Electronic Components in Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael A.; LaBel, Kenneth A.; Polvey, Christian

    2005-01-01

    This viewgraph presentation offers an overview of the space radiation environment, primarily in near-Earth environments such as Low Earth Orbit (LEO). The presentation describes the Halloween solar event of 2003 as an example of how solar activity can affect spacecraft electronic systems. The lunar radiation environment is also briefly summarized.

  17. Exploration Technology Developments Program's Radiation Hardened Electronics for Space Environments (RHESE) Project Overview

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Darty, Ronald C.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    Primary Objective: 1) A computational tool to accurately predict electronics performance in the presence of space radiation in support of spacecraft design: a) Total dose; b) Single Event Effects; and c) Mean Time Between Failure. (Developed as successor to CR ME96.) Secondary Objectives: 2) To provide a detailed description of the natural radiation environment in support of radiation health and instrument design: a) In deep space; b) Inside the magnetosphere; and c) Behind shielding.

  18. High Performance Processors for Space Environments: A Subproject of the NASA Exploration Missions Systems Directorate "Radiation Hardened Electronics for Space Environments" Technology Development Program

    NASA Technical Reports Server (NTRS)

    Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.

    2007-01-01

    Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.

  19. Transport of Space Environment Electrons: A Simplified Rapid-Analysis Computational Procedure

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Anderson, Brooke M.; Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Chang, C. K.

    2002-01-01

    A computational procedure for describing transport of electrons in condensed media has been formulated for application to effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The procedure is based on earlier parameterizations established from numerous electron beam experiments. New parameterizations have been derived that logically extend the domain of application to low molecular weight (high hydrogen content) materials and higher energies (approximately 50 MeV). The production and transport of high energy photons (bremsstrahlung) generated in the electron transport processes have also been modeled using tabulated values of photon production cross sections. A primary purpose for developing the procedure has been to provide a means for rapidly performing numerous repetitive calculations essential for electron radiation exposure assessments for complex space structures. Several favorable comparisons have been made with previous calculations for typical space environment spectra, which have indicated that accuracy has not been substantially compromised at the expense of computational speed.

  20. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  1. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  2. Lunar Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; LeClair, A. C.; Spann, J. F.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  3. Microsystems, Space Qualified Electronics and Mobile Sensor Platforms for Harsh Environment Applications and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Okojie, Robert S.; Krasowski, Michael J.; Beheim, Glenn M.; Fralick, Gustave C.; Wrbanek, John D.; Greenberg, Paul S.; Xu, Jennifer

    2007-01-01

    NASA Glenn Research Center is presently developing and applying a range of sensor and electronic technologies that can enable future planetary missions. These include space qualified instruments and electronics, high temperature sensors for Venus missions, mobile sensor platforms, and Microsystems for detection of a range of chemical species and particulates. A discussion of each technology area and its level of maturity is given. It is concluded that there is a strong need for low power devices which can be mobile and provide substantial characterization of the planetary environment where and when needed. While a given mission will require tailoring of the technology for the application, basic tools which can enable new planetary missions are being developed.

  4. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  5. Electronics for Extreme Environments

    NASA Astrophysics Data System (ADS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  6. Lessons Learned Using COTS Electronics for the International Space Station Radiation Environment

    NASA Technical Reports Server (NTRS)

    Blumer, John H.; Roth, A. (Technical Monitor)

    2001-01-01

    The mantra of 'Faster, Better, Cheaper' has to a large degree been interpreted as using Commercial Off-the-Shelf (COTS) components and/or circuit boards. One of the first space applications to actually use COTS in space along with radiation performance requirements was the Expedite the Processing of Experiments to Space Station (EXPRESS) Rack program, for the International Space Station (ISS). In order to meet the performance, cost and schedule targets, military grade Versa Module Eurocard (VME) was selected as the baseline design for the main computer, the Rack Interface Controller (RIC). VME was chosen as the computer backplane because of the large variety of military grade boards available, which were designed to meet the military environmental specifications (thermal, shock, vibration, etc.). These boards also have a paper pedigree in regards to components. Since these boards exceeded most ISS environmental requirements, it was reasoned using COTS mid-grade VME boards, as opposed to designing custom boards could save significant time and money. It was recognized up front the radiation environment of ISS, while benign compared to many space flight applications, would be the main challenge to using COTS. Thus in addition to selecting vendors on how well their boards met the usual performance and environmental specifications, the board's parts lists were reviewed on how well they would perform in the ISS radiation environment. However, issues with verifying that the available radiation test data was applicable to the actual part used, vendor part design changes and the fact most parts did not have valid test data soon complicated board and part selection in regards to radiation.

  7. Lessons learned using COTS electronics for the International Space Station radiation environment

    NASA Astrophysics Data System (ADS)

    Blumer, John H.

    2001-02-01

    The mantra of Faster, Better, Cheaper has to a large degree been interpreted as using Commercial Off The Shelf (COTS) components and/or circuit boards. One of the first space applications to actually use COTS in space along with radiation performance requirements was the EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack program, for the International Space Station (ISS). In order to meet the performance, cost and schedule targets, military grade Versa Module Eurocard (VME) was selected as the baseline design for the main computer, the Rack Interface Controller (RIC). VME was chosen as the computer backplane because of the large variety of military grade boards available, which were designed to meet the military environmental specifications (thermal, shock, vibration, etc.). These boards also have a paper pedigree in regards to components. Since these boards exceeded most ISS environmental requirements, it was reasoned using COTS mil-grade VME boards, as opposed to designing custom boards could save significant time and money. It was recognized up front the radiation environment of ISS, while benign compared to many space flight applications, would be the main challenge to using COTS. Thus in addition to selecting vendors on how well their boards met the usual performance and environmental specifications, the board's parts lists were reviewed on how well they would perform in the ISS radiation environment. However, issues with verifying that the available radiation test data was applicable to the actual part used, vendor part design changes and the fact most parts did not have valid test data soon complicated board and part selection in regards to radiation. .

  8. Materials selection for electronic enclosures in space environment considering electromagnetic interference effect

    NASA Astrophysics Data System (ADS)

    Fayazbakhsh, K.; Abedian, A.

    2012-02-01

    Using low power electronic devices for space applications to reduce the mass and energy consumption has lead to electromagnetic interference (EMI) problem. Electronic enclosures are used to shield electronic devices against EMI. In the past, electromagnetic shielding has been mainly the only criteria considered in electronic enclosure design. However, there are several structural and thermal requirements for selection of shielding materials which should also be taken into account. In this research work, three quantitative materials selection methods, i.e. Digital Logic (DL), Modified Digital Logic (MDL), and Z-transformation, are employed to select the best material from among a list of candidate materials. Composite and metallic electronic enclosures are explored and the best material is selected. Z-transformation method is applicable to both of the considered case studies while DL and MDL can only be used for solving one of them. Z-transformation method ranks aluminum as the first choice among various metallic materials. The wide range of Z-transformation application and its practical results confirm the superiority of Z-transformation method over DL and MDL methods.

  9. Space and Atmospheric Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Day, John H. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on space environments and the protection of materials and structures from their harsh conditions. Space environments are complex, and the complexity of spacecraft systems is increasing. Design accommodation must be realistic. Environmental problems can be limited at low cost relative to spacecraft cost.

  10. Complex influence of space environment on materials and electronic devices in the conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Musabayev, T.; Zhantayev, Zh.; Grichshenko, V.

    2016-09-01

    The paper presents a new physical model describing the processes in materials and electronic devices under the influence of cosmic rays in microgravity. The model identifies specific features of formation of the area of radiation defects (ARD) in the electronic materials in microgravity. The mechanism of interaction between the ARD and memory modules in microgravity causing malfunction and failure of onboard electronics is considered. The results of failure of memory modules under real conditions are presented.

  11. The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Bourdarie, Sebastien; Xapsos, Michael A.

    2008-01-01

    The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.

  12. A New Electron Source for Laboratory Simulation of the Space Environment

    NASA Technical Reports Server (NTRS)

    Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian

    2012-01-01

    We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses

  13. Space Electronics: A Challenging World for Designers

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; LaBel, Kenneth A.

    2004-01-01

    This viewgraph presentation provides an overview of: 1) The Space Radiation Environment; 2) The Effects on Electronics; 3) The Environment in Action; 4) Hardening Approaches to Commercial CMOS Electronics (including device vulnerabilities).

  14. Radiation Assurance for the Space Environment

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian

    2004-01-01

    The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.

  15. Space Environments Testbed

    NASA Technical Reports Server (NTRS)

    Leucht, David K.; Koslosky, Marie J.; Kobe, David L.; Wu, Jya-Chang C.; Vavra, David A.

    2011-01-01

    The Space Environments Testbed (SET) is a flight controller data system for the Common Carrier Assembly. The SET-1 flight software provides the command, telemetry, and experiment control to ground operators for the SET-1 mission. Modes of operation (see dia gram) include: a) Boot Mode that is initiated at application of power to the processor card, and runs memory diagnostics. It may be entered via ground command or autonomously based upon fault detection. b) Maintenance Mode that allows for limited carrier health monitoring, including power telemetry monitoring on a non-interference basis. c) Safe Mode is a predefined, minimum power safehold configuration with power to experiments removed and carrier functionality minimized. It is used to troubleshoot problems that occur during flight. d) Operations Mode is used for normal experiment carrier operations. It may be entered only via ground command from Safe Mode.

  16. Complex role of secondary electron emissions in dust grain charging in space environments: measurements on Apollo 11 & 17 dust grains

    NASA Astrophysics Data System (ADS)

    Abbas, Mian; Tankosic, Dragana; Spann, James; Leclair, Andre C.

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, by electron/ion collisions, and sec-ondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstel-lar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynam-ical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10-400 eV energy range. The charging rates of positively and negatively charged particles of 0.2 to 13 µm diam-eters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong parti-cle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  17. Phase-Space Density Analysis of the AE-8 Traped Electron and the AP-8 Trapped Proton Model Environments

    SciTech Connect

    Thomas E. Cayton

    2005-08-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  18. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    SciTech Connect

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  19. Space Electronic Test Engineering

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  20. Microbiology & Toxicology: Space Environment

    NASA Video Gallery

    One key aspect in maintaining crew health and performance during spaceflight missions is the provision of a habitable environment with acceptably low concentrations of microbiological and toxicolog...

  1. Advanced cryocooler electronics for space

    NASA Astrophysics Data System (ADS)

    Harvey, D.; Danial, A.; Davis, T.; Godden, J.; Jackson, M.; McCuskey, J.; Valenzuela, P.

    2004-06-01

    Space pulse-tube cryocoolers require electronics to control the cooling temperature and self-induced vibration. Other functions include engineering diagnostics, telemetry and safety protection of the unit against extreme environments and operational anomalies. The electronics must survive the harsh conditions of launch and orbit, and in some cases severe radiation environments for periods exceeding 10 years. A number of our current generation high reliability radiation hardened electronics units have been launched and others are in various stages of assembly or integration on a number of space flight programs. This paper describes the design features and performance of our next generation flight electronics designed for the STSS payloads. The electronics provides temperature control with better than +/-50 mK short-term stability. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter limits peak-to-peak reflected ripple current on the primary power bus to less than 3% of the average DC current. The 3 kg unit is capable of delivering 180 W continuous to NGST's high-efficiency cryocooler (HEC).

  2. An Assessment of Molten Metal Detachment Hazards for Electron Beam Welding in the Space Environment: Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.

    1998-01-01

    Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

  3. The space radiation environment

    SciTech Connect

    Robbins, D.E.

    1997-04-30

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.

  4. Internal space charge measurement of materials in a space environment

    NASA Astrophysics Data System (ADS)

    Griseri, V.; Fukunaga, K.; Maeno, T.; Payan, D.; Laurent, C.; Levy, L.

    2003-09-01

    The charging/discharging effect produced by space environment on space vehicles are known but not fully identified yet. Experiments performed in laboratory in vacuum chamber that simulates spatial environment and the most realistic charge condition occurring in space have been developed in the last past forty years. A very small Pulse Electro-Acoustic space charge detection unit (mini-PEA) that can be mounted in a vacuum chamber, to measure internal space charges of materials in-situ during the irradiation has been developed. Several materials used in spatial environment such as Teflon®, and Kapton ® films on addition to PMMA films have been studied. The comparison and the good agreement between measured and calculated depth of penetration for electrons of given energy depending on the material nature contribute in the validation of the detection system and encourage us for further studies and development.

  5. Radiation Effects in the Space Telecommunications Environment

    SciTech Connect

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  6. Space environment model construction technology

    NASA Astrophysics Data System (ADS)

    Nishimoto, Hironobu; Matsumoto, Haruhisa

    1992-08-01

    A space environment model was constructed based on the results of the review on space environment model conducted in Fiscal Year 1986 and 1987. The space environment model was constructed to collect theories and data required for grasping various physical entities such as radiation, plasma, and spacecraft fragments and so forth, and to enable quantitative prediction of their time wise, spacial distribution and their effects such as electrification and material deterioration, and its system structure and functions were shown. The Technical Data Acquisition Equipment (TEDA) installed onboard the Engineering Test Satellite-5 (ETS-5) consist of various satellite environment monitors and component and material deterioration monitors for the purpose of acquiring technical data required for design and evaluation for satellite development. Review was conducted to clarify the correlation between each TEDA data and to apply the result in constructing the satellite environment model. Correlation between each TEDA data was made clear.

  7. Space Environment Information System (SPENVIS)

    NASA Astrophysics Data System (ADS)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  8. Space station neutral external environment

    NASA Technical Reports Server (NTRS)

    Ehlers, H.; Leger, L.

    1988-01-01

    Molecular contamination levels arising from the external induced neutral environment of the Space Station (Phase 1 configuration) were calculated using the MOLFLUX model. Predicted molecular column densities and deposition rates generally meet the Space Station contamination requirements. In the doubtful cases of deposition due to materials outgassing, proper material selection, generally excluding organic products exposed to the external environment, must be considered to meet contamination requirements. It is important that the Space Station configuration, once defined, is not significantly modified to avoid introducing new unacceptable contamination sources.

  9. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  10. Space Debris Environent Remediation Concepts

    NASA Astrophysics Data System (ADS)

    Klinkrad, H.; Johnson, N. L.

    2009-03-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also at sizes which may cause further catastrophic collisions. A collisional cascading may ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention.The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities, and then investigating means of mitigating the creation of space debris. In an on-going activity, an IAA study group looks into methods of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial castastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electro-dynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be discussed.

  11. Modeling the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2006-01-01

    There has been a renaissance of interest in space radiation environment modeling. This has been fueled by the growing need to replace long time standard AP-9 and AE-8 trapped particle models, the interplanetary exploration initiative, the modern satellite instrumentation that has led to unprecedented measurement accuracy, and the pervasive use of Commercial off the Shelf (COTS) microelectronics that require more accurate predictive capabilities. The objective of this viewgraph presentation was to provide basic understanding of the components of the space radiation environment and their variations, review traditional radiation effects application models, and present recent developments.

  12. Living with a Star Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  13. Space Radiation Effects on Electronics: Simple Concepts and New Challenges

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    This viewgraph presentation covers the following topics: 1) The Space Radiation Environment; 2) The Effects on Electronics; 3) The Environment in Action; 4) NASA Approaches to Commercial Electronics; 5) Final Thoughts.

  14. Space environment measurements by JAXA satellites and ISS/JEM

    NASA Astrophysics Data System (ADS)

    Obara, Takahiro; Matsumoto, Haruhisa; Koga, Kiyokazu

    2012-02-01

    In order to monitor space environment and its temporal variations, JAXA Space Environment Group has been developing space radiation detectors as well as magnetometers and installing them on Low Earth Orbit (LEO) satellites, Geostationary Orbit (GEO) satellites, Geostationary Transfer Orbit (GTO) satellite, Quasi Zenith Orbit (QZO) satellite and Japanese Experimental Module (JEM) of the International Space Station (ISS). We are using these space environment data to know the situation of space environment and to provide warning messages to the satellite operators as well as ISS/JEM manager, when the space environment will be harmful. Based on our observation data, we also have constructed an advanced electron belt model for the use in satellite manufacturing. With space radiation data obtained by JAXA satellites and ISS, some findings related to the space radiation environment have been obtained. We will review our activities related to the space environment research and development in JAXA.

  15. Space environment effects (M0006)

    NASA Technical Reports Server (NTRS)

    Angelo, J. A., Jr.; Madonna, R. G.; Altadonna, L. P.; Dagostino, M. D.; Chang, J. Y.; Alfano, R. R.; Caplan, V. L.

    1984-01-01

    The effects of long term exposure to the near Earth space environment on advanced electrooptical and radiation sensor components were examined. The effect of long duration spaceflight on the germination rate of selected terrestrial plant seeds is observed in exobiological experiments.

  16. RADECS Short Course Session I: The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael; Bourdarie, Sebastien

    2007-01-01

    The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.

  17. Space Environment (Natural and Induced)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; George, Kerry A.; Cucinotta, Francis A.

    2007-01-01

    Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime.

  18. Space electronics technology summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An overview is given of current electronics R and D activities, potential future thrusts, and related NASA payoffs. Major increases in NASA mission return and significant concurrent reductions in mission cost appear possible through a focused, long range electronics technology program. The overview covers: guidance assessments, navigation and control, and sensing and data acquisition processing, storage, and transfer.

  19. Nuclear and Non-Ionizing Energy-Loss of Electrons with Low and Relativistic Energies in Materials and Space Environment

    NASA Astrophysics Data System (ADS)

    Boschini, M. J.; Consolandi, C.; Gervasi, M.; Giani, S.; Grandi, D.; Ivanchenko, V.; Nieminem, P.; Pensotti, S.; Rancoita, P. G.; Tacconi, M.

    2012-08-01

    The treatment of the electron-nucleus interaction based on the Matt differential cross section was extended to account for effects due to screened Coulomb potentials, finite sizes and finite rest masses of nuclei for electrons above 200keV and up to ultra high energies. This treatment allows one to determine both the total and differential cross sections, thus, subsequently to calculate the resulting nuclear and non-ionizing stopping powers. Above a few hundreds of MeV, neglecting the effect due to finite rest masses of recoil nuclei the stopping power and NIEL result to be largely underestimated. While, above a few tens of MeV, the finite size ofthe nuclear target prevents a further large increase of stopping powers which approach almost constant values.

  20. Near Space Environments: Tethering Systems

    NASA Technical Reports Server (NTRS)

    Lucht, Nolan R.

    2013-01-01

    Near Space Environments, the Rocket University (Rocket U) program dealing with high altitude balloons carrying payloads into the upper earth atmosphere is the field of my project. The tethering from balloon to payload is the specific system I am responsible for. The tethering system includes, the lines that tie the payload to the balloon, as well as, lines that connect payloads together, if they are needed, as well as how to sever the tether to release payloads from the balloon. My objective is to design a tethering system that will carry a payload to any desired altitude and then sever by command at any given point during flight.

  1. Environment of Space Interactions with Space Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The primary product of this research project was a computer program named SAVANT. This program uses the Displacement Damage Dose (DDD) method of calculating radiation damage to solar cells. This calculation method was developed at the Naval Research Laboratory, and uses fundamental physical properties of the solar cell materials to predict radiation damage to the solar cells. This means that fewer experimental measurements are required to characterize the radiation damage to the cells, which results in a substantial cost savings to qualify solar cells for orbital missions. In addition, the DDD method makes it easier to characterize cells that are already being used, but have not been fully tested using the older technique of characterizing radiation damage. The computer program combines an orbit generator with NASA's AP-8 and AE-8 models of trapped protons and electrons. This allows the user to specify an orbit, and the program will calculate how the spacecraft moves during the mission, and the radiation environment that it encounters. With the spectrum of the particles, the program calculates how they would slow down while traversing the coverglass, and provides a slowed-down spectrum.

  2. The natural space environment: Effects on spacecraft

    NASA Technical Reports Server (NTRS)

    James, Bonnie F.; Norton, O. W. (Compiler); Alexander, Margaret B. (Editor)

    1994-01-01

    The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of the natural space environments and their effect on spacecraft design, development, and operations, and also highlights some of the new developments in science and technology for each space environment. It is hoped that a better understanding of the space environment and its effect on spacecraft will enable program management to more effectively minimize program risks and costs, optimize design quality, and successfully achieve mission objectives.

  3. Space Environment Effects on Silicone Seal Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Daniels, Christopher C.; Dever, Joyce A.; Miller, Sharon K.; Waters, Deborah L.; Finkbeiner, Joshua R.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2010-01-01

    A docking system is being developed by the NASA to support future space missions. It is expected to use redundant elastomer seals to help contain cabin air during dockings between two spacecraft. The sealing surfaces are exposed to the space environment when vehicles are not docked. In space, the seals will be exposed to temperatures between 125 to -75 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). Silicone rubber is the only class of space flight-qualified elastomeric seal material that functions across the expected temperature range. NASA Glenn has tested three silicone elastomers for such seal applications: two provided by Parker (S0899-50 and S0383-70) and one from Esterline (ELA-SA-401). The effects of atomic oxygen (AO), UV and electron particle radiation, and vacuum on the properties of these three elastomers were examined. Critical seal properties such as leakage, adhesion, and compression set were measured before and after simulated space exposures. The S0899-50 silicone was determined to be inadequate for extended space seal applications due to high adhesion and intolerance to UV, but both S0383-70 and ELA-SA-401 seals were adequate.

  4. Designing Electronic Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Kirschner, Paul; Strijbos, Jan-Willem; Kreijns, Karel; Beers, Pieter Jelle

    2004-01-01

    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use…

  5. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  6. Environment resistant windows for space greenhouses

    NASA Astrophysics Data System (ADS)

    Gan, B. K.; Kondyurin, A.; Bilek, M.; Latella, B. A.

    One of the ways of providing a self-sustainable environment in space is to provide food and life support systems through bio-regenerative power i e a greenhouse It is an essential structure because it provides oxygen and food in a controlled environment The windows and frames of a greenhouse are generally made from glass or polymer panels which allow sunlight to enter Polymers are useful because they are lightweight transparent corrosion resistant and inexpensive However windows which are made from polymeric materials or polymer-based composites suffer from accelerated erosion due to the presence of atomic oxygen in space environment A metal oxide deposited on the surface of the polymer will aid in the resistance of these polymers to chemical attack as well as improving surface hardness and wear resistance characteristics In this study we modified the surfaces of polycarbonate PC by deposition and implantation of thin and transparent aluminium oxide Al 2 O 3 coatings The Al 2 O 3 plasma was produced using a cathodic arc deposition system with a combination of plasma immersion ion implantation PIII The coatings were then tested for resistance to atomic oxygen environment These were carried out by monitoring the mass loss of the deposited samples exposed to an rf oxygen plasma The morphology and optical properties of the coatings before and after exposure to oxygen plasma were then examined using electron microscopy profilometry and ellipsometry Mechanical properties and adhesion characteristics of the coatings

  7. Organic polymer materials in the space environment

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2016-05-01

    The space environment is a complex environment full of microgravity, high vacuum, high and low temperature, strong radiation and plasma. Polymers used in the space environment will inevitably experience aging and degradation which result in changes of the material mechanics, physics and chemical properties, until they lose usefulness. To make a material that can be used for a long time and whose performance is not changed in the space environment, its ability to resist environmental factors must be excellent. Therefore, this paper provides an introduction to the harmful conditions in the space environment and their effects on the polymers, also it reviews the aging mechanisms of the adhesives used in the space environment and the effect of thermal cycling, stress, electromagnetic radiation and ionizing particles on the properties of polymers and optical devices, to provide the reference basis for selection, modification and reliability analysis of materials used in the space environment.

  8. Magnetic Environment in Geo-space

    NASA Astrophysics Data System (ADS)

    Yumoto, Kiyohumi

    In order to understand the complexity in the Sun-Earth system, the Space Environment Research Center, Kyushu University will conduct global magnetic network observations for space weather studies during the international CAWSES period (2004-2008). In this paper, we will introduce magnetic environment in geo-space and our MAGDAS/CPMN system.

  9. Space Environment Testing of Photovoltaic Array Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry.

  10. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  11. Advances in Space Environment Research - Volume I

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.

    2003-10-01

    Advances in Space Environment Research - Volume I contains the proceedings of two international workshops, the World Space Environment Forum (WSEF2002) and the High Performance Computing in Space Environment Research (HPC2002), organized by the World Institute for Space Environment Research (WISER) from 22 July to 2 August 2002 in Adelaide, Australia. The articles in this volume review the state-of-the-art of the theoretical, computational and observational studies of the physical processes of Sun-Earth connections and Space Environment. They cover six topical areas: Sun/Heliosphere, Magnetosphere/Bow Shock, Ionosphere/Atmosphere, Space Weather/Space Climate, Space Plasma Physics/Astrophysics, and Complex/Intelligent Systems. The authors are leading space physicists from 20 countries/regions, representing the WISER international network of research and training centers of excellence dedicated to promote cooperation in cutting-edge space environment research and training of first-rate space scientists, and to link nations for the peaceful use of the space environment. This volume is useful for space physicists, astrophysicists and plasma physicists; and can be adopted as a reference book for advanced undergraduate and postgraduate students. Link: http://www.wkap.nl/prod/b/1-4020-1278-0

  12. Space Shuttle externally induced environment compared with Skylab's natural environment

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1990-01-01

    Electret measurements obtained of the particulate contamination environment within the Space Shuttle Orbiter's cargo bay are presently compared with ground measurements of the particulates emitted by the Shuttle's SRBs, as well as with the expected natural particulate environment as measured by Skylab. Chemical analysis is shown to reveal the difference between natural and anthropogenic space debris; the most probable primary source of the Space Shuttle's particulate environment is the SRB exhaust.

  13. Harsh environments electronics : downhole applications.

    SciTech Connect

    Vianco, Paul Thomas

    2011-03-01

    The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate

  14. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  15. Analog environments in space human factors

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.

    1992-01-01

    An account is given of what has been learned from space analog environments, which mimic such significant features of space as isolation, confinement, risk, and deprivation; emphasis is placed on the especially successful environments constituted by extended submarine research, undersea habitats, and Antarctic station wintering. Attention is also given to the advantages and limitations of the use of analog environments for space human factors research, and possibilities for such research efforts' management.

  16. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  17. Cryogenic Electronics Being Developed for Space Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Gerber, Scott S.

    2002-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that can operate efficiently and reliably in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units to maintain the surrounding temperature of the onboard electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures would not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures. Thereby, such electronics would reduce system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results because semiconductor and dielectric materials have better behavior and tolerance in their electrical and thermal properties at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center is focusing on the research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and in deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial off-the-shelf as well as developed components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, dc-dc converters, operational amplifiers, and oscillators are also being investigated for potential use in low-temperature applications. For example, the output response of an advanced oscillator at room temperature and at -190 C is shown. Most oscillators can operate at temperatures

  18. Space Environment Effects on Materials : An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.

    2006-01-01

    A general overview on the space environment and its effects on materials is presented. The topics include: 1) Impact of Space Effects on Spacecraft Costs; 2) Space Environment Effects on Spacecraft by Source; 3) Primary Source of Space Effects: The Sun; 4) The Earth's Environment; 5) Trapped Radiation Belts; 6) Aurora Are Everywhere; 7) Spacecraft Interactions; 8) Atmospheric Effects; 9) Contaminant Effects on Materials; 10) Meteoroid/Debris Effects on Materials; 11) Spacecraft Surface Charging; 12) Surface Discharge Effects; 13) Internal Electrostatic Discharge--Satellite Killer; 14) Plasma Interactions DS-1 Ion Engines; 15) Radiation Effects on Spacecraft Systems and Materials; 16) Total Ionizing Dose Effects Total Ionizing Dose Effects; 17) Man-Made Sources of Space Effects Man-Made Sources of Space Effects; and 18) Space Environments Versus Interactions.

  19. The AE-8 trapped electron model environment

    NASA Technical Reports Server (NTRS)

    Vette, James I.

    1991-01-01

    The machine sensible version of the AE-8 electron model environment was completed in December 1983. It has been sent to users on the model environment distribution list and is made available to new users by the National Space Science Data Center (NSSDC). AE-8 is the last in a series of terrestrial trapped radiation models that includes eight proton and eight electron versions. With the exception of AE-8, all these models were documented in formal reports as well as being available in a machine sensible form. The purpose of this report is to complete the documentation, finally, for AE-8 so that users can understand its construction and see the comparison of the model with the new data used, as well as with the AE-4 model.

  20. The Space Environment from LEO to Deep Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    This viewgraph presentation reviews several space environments, and the hazards they pose to spacecraft operations. The presentation covers solar activity effects, galactic cosmic rays, near Earth environments including the magnetosphere, thermosphere, ionsophere, and plasmasphere, single event upsets, micrometeoroids, space debris, and an overview of conditions on other planets, especially Jupiter.

  1. Contaminant ions and waves in the space station environment

    NASA Technical Reports Server (NTRS)

    Murphy, G. B.

    1988-01-01

    The probable plasma (ions and electrons) and plasma wave environment that will exist in the vicinity of the Space Station and how this environment may affect the operation of proposed experiments are discussed. Differences between quiescent operational periods and non-operational periods are also addressed. Areas which need further work are identified and a course of action suggested.

  2. The NASA Space Environment Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Jost, R. J.

    1982-01-01

    The NASA Space Environment Simulation Laboratory (SESL) features a chamber for studying specific space plasma physics phenomena. The test chamber, an upright domed cylinder having a 17 m diam and a 27 m height for an inner working volume, is lined with magnetic field generator coils. The chamber pressure is nominally 1/1,000,000th torr. Equipment positioning is carried out by remote control from outside guided by a closed circuit television system. Plasma is generated in the chamber by means of a 30 cm Kaufman thruster which produces ion densities of 100,000-1,000,000/cu cm. The ion bulk flow energy is in the range of 20-50 eV and a charge exchange with the ambient gas produces a cold isotropic ion component. Langmuir probes provide measurements of the electron temperature and density, and the composition and pressure are monitored by mass spectrometry and ion gages. Experiments have been performed on electron beam-plasma interactions, VLF antenna impedance measurements, and high voltage plasma sheaths which may be encountered by spacecraft.

  3. The Sun and Earth's Space Environment

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2009-01-01

    Earth's space environment is closely controlled by solar variability over various time scales. Solar variability is characterized by its output in the form of mass and electromagnetic output. Solar mass emission also interacts with mass entering into the heliosphere in the form of cosmic rays and neutral material. This paper provides an overview of how the solar variability affects Earth's space environment.

  4. FPGAs in Space Environment and Design Techniques

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of Field Programmable Gate Arrays (FPGA) in the space environment and design techniques. Details are given on the effects of the space radiation environment, total radiation dose, single event upset, single event latchup, single event transient, antifuse technology and gate rupture, proton upsets and sensitivity, and loss of functionality.

  5. Environment and the Space Program

    ERIC Educational Resources Information Center

    Schirra, Walter W., Jr.

    1969-01-01

    Data collected at projected space station will contribute to solution of environmental problems on earth and will enable more efficient use of earth's natural resources. Adapted from commencement address delivered at Newark College of Engineering, June 5, 1969. (WM)

  6. E-Textile Antennas for Space Environments

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  7. NASA's Space Environments and Effects (SEE) Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody

    2001-01-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, adhesives and other data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on a spacecraft, its sub-systems, materials and instruments. In partnership with industry, academia, and other US and international government agencies, the National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program (agency-wide in scope but managed at the Marshall Space Flight Center) provides a very comprehensive and focused approach to understanding the space environment. It does this by defining the best techniques for both flight- and groundbased experimentation, updating models which predict both the environments and the environmental effects on spacecraft and ensuring that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and discuss several current technology development activities associated with the spacecraft charging phenomenon.

  8. ONERA's contribution to space environment standardization

    NASA Astrophysics Data System (ADS)

    Maget, Vincent; Ecoffet, Robert; Roussel, Jean-Francois

    Ever since its creation in 1967, the Space Environment Department (DESP) at ONERA's objective has been to evaluate the environmental conditions of space missions and prevent the damage they may cause. The DESP studies and models the different components of the space mission environment (mainly charged particles) and evaluates the associated risks with on-board experiments and simulations on the ground. As the reference expert in space environment for both the French Space Agency and European space industries, the DESP has been named as the French representative in the ISO TC20 / SC14 / WG4 working group. In parallel to this contribution, the DESP is also involved in WG1 (Design engineering and production) and WG6 (Materials and Processes),as well as in the European Cooperation for Space Standardization (ECSS) committee dedicated to Space Environment standards (ECSS-10.04C). The purpose of this presentation is, first, to detail the ONERA’s contributions to space environment standardizations (its role as well as the standards developed at ONERA). In a second step, I shall also present some on-going works such as data assimilation and specifications model for other planets (Jupiter and Saturn) conducted at ONERA, in order to prepare the next generation standards and anticipate Space community needs.

  9. Physics of the Space Environment

    NASA Astrophysics Data System (ADS)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of

  10. The ESA Space Environment Information System (SPENVIS)

    NASA Astrophysics Data System (ADS)

    Heynderickx, D.; Quaghebeur, B.; Evans, H. D. R.

    2002-01-01

    The ESA SPace ENVironment Information System (SPENVIS) provides standardized access to models of the hazardous space environment through a user-friendly WWW interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. It is available on-line at http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity with the models to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes. It is very useful in conjunction with radiation effects and electrostatic charging testing in the context of hardness assurance. SPENVIS is based on internationally recognized standard models and methods in many domains. It uses an ESA-developed orbit generator to produce orbital point files necessary for many different types of problem. It has various reporting and graphical utilities, and extensive help facilities. The SPENVIS radiation module features models of the proton and electron radiation belts, as well as solar energetic particle and cosmic ray models. The particle spectra serve as input to models of ionising dose (SHIELDOSE), Non-Ionising Energy Loss (NIEL), and Single Event Upsets (CREME). Material shielding is taken into account for all these models, either as a set of user-defined shielding thicknesses, or in combination with a sectoring analysis that produces a shielding distribution from a geometric description of the satellite system. A sequence of models, from orbit generator to folding dose curves with a shielding distribution, can be run as one process, which minimizes user interaction and

  11. Space shuttle natural environment analysis

    NASA Technical Reports Server (NTRS)

    Batts, Wade

    1988-01-01

    Five major tasks are briefly outlined: development of detailed wind profile measurements for Kennedy Space Center (KSC) and Vandenberg Air Force Base (VAFB): development of software to construct meteorological data tapes for use in the STS Post Ascent Analysis; development of storage, access, and utilization codes for Global Cloud Cover data; development of software and meteorological data bases to establish launch delay risks at KSC and VAFB; and development of the meteorological tower 301 climatological data base at VAFB.

  12. Space Environment and Effects System (SEES)

    NASA Astrophysics Data System (ADS)

    Higashio, Nana; Obara, Takahiro; Matsumoto, Haruhisa; Koga, Kiyokazu; Koshiishi, Hideki

    Space environment group in JAXA has installed insturments to measure space environment on eleven satellites. In the last year, the biggest instrument called SEDA-AP (Space Environment Data Acquision equipment -Attached Paylod) was atteched to the palette of JEM (ISS). On the other hand, we have a web site, "Space Environment and Effects System(SEES)". This system consisits of four parts. First part is to provide data that were obtained from these insturments. There are 18 kinds of mesurments, for example, radiation, magnetic field and so on. In 1994, Anik E-1 and Anik E-2 were broken by solar storm and we could catch the abnormal data from our instrument. Second part is a warning system. Many Japanese satellites are working around the earth and they are always exposed to radioactivity in space. So we predict the the radiation data in two days and if the expected value is over the threshold of safety, we inform a warning massage to users who want to keep their satellites safe. And we also provide the warning massage for Japanese astronauts who stay at ISS. Third part is the tool of the space environment /satellite environment models. There are 12 kinds of environment models which are constructed from 90 space environment models, for example, radiation model, solar activity model and so on. If you register your infomation in the SEES web site, you can simulate space environment by using them. Fourth part is providing the 2D and 3D infomations of satellite's orvits. This show the satelllite's position on the world map at a paticular time. If you want to use this system, please visit our SEES page at (http://seesproxy.tksc.jaxa.jp/fw/dfw/SEES/index.html ).

  13. Space environment robot vision system

    NASA Technical Reports Server (NTRS)

    Wood, H. John; Eichhorn, William L.

    1990-01-01

    A prototype twin-camera stereo vision system for autonomous robots has been developed at Goddard Space Flight Center. Standard charge coupled device (CCD) imagers are interfaced with commercial frame buffers and direct memory access to a computer. The overlapping portions of the images are analyzed using photogrammetric techniques to obtain information about the position and orientation of objects in the scene. The camera head consists of two 510 x 492 x 8-bit CCD cameras mounted on individually adjustable mounts. The 16 mm efl lenses are designed for minimum geometric distortion. The cameras can be rotated in the pitch, roll, and yaw (pan angle) directions with respect to their optical axes. Calibration routines have been developed which automatically determine the lens focal lengths and pan angle between the two cameras. The calibration utilizes observations of a calibration structure with known geometry. Test results show the precision attainable is plus or minus 0.8 mm in range at 2 m distance using a camera separation of 171 mm. To demonstrate a task needed on Space Station Freedom, a target structure with a movable I beam was built. The camera head can autonomously direct actuators to dock the I-beam to another one so that they could be bolted together.

  14. Natural Hazards of the Space Environment

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Kross, Dennis A. (Technical Monitor)

    2000-01-01

    Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.

  15. Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  16. The Near-Earth Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  17. Space environments and their effects on space automation and robotics

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.

    1990-01-01

    Automated and robotic systems will be exposed to a variety of environmental anomalies as a result of adverse interactions with the space environment. As an example, the coupling of electrical transients into control systems, due to EMI from plasma interactions and solar array arcing, may cause spurious commands that could be difficult to detect and correct in time to prevent damage during critical operations. Spacecraft glow and space debris could introduce false imaging information into optical sensor systems. The presentation provides a brief overview of the primary environments (plasma, neutral atmosphere, magnetic and electric fields, and solid particulates) that cause such adverse interactions. The descriptions, while brief, are intended to provide a basis for the other papers presented at this conference which detail the key interactions with automated and robotic systems. Given the growing complexity and sensitivity of automated and robotic space systems, an understanding of adverse space environments will be crucial to mitigating their effects.

  18. Space, Atmospheric, and Terrestrial Radiation Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.

    2003-01-01

    The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.

  19. Space Ethics and Protection of the Space Environment

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2002-01-01

    The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one

  20. Secondary Electron Emission and the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2006-01-01

    The emission of secondary electrons from surfaces exposed to the space plasma and radiation environment is a process of great importance to space system engineering design and operations. A spacecraft will collect charge until it reaches an equilibrium potential gov,erned by the balance of incoming electron and ion currents from the space environment with outgoing secondary, backscattered, and photoelectron currents. Laboratory measurements of secondary electron yields are an important parameter for use in spacecraft charging analyses because the magnitude and sign of the equilibrium potential depends on both the energy spectrum of electrons and ions in the space environment and the electrical properties of the surface materials (including the energy dependent secondary electron yields). Typical benign equilibrium potentials range &om a few tens of volts positive in interplanetary space to a few volts negative in low Earth orbit. However, spacecraft are known to charge to negative potentials exceeding one to ten kilovolts in some environments and anomalies or system failures due to electrostatic discharges originating from highly charged surfaces becomes a serious concern. This presentation will provide a review of the spacecraft charging process with special emphasis on the role of secondary electrons in controlling the current balance process. Charging examples will include spacecraft in Earth orbit and interplanetary space as well as dust charging on the lunar surface, a phenomenon of importance to future lunar surface operations.

  1. Interpreting the International Space Station Microgravity Environment

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric M.; Humphreys, Brad

    2005-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. A physical environment with very low-levels of acceleration and vibration has been accomplished by both the free fall associated with orbital flight and the design of the International Space Station. The International Space Station design has been driven by a long-standing, high-level requirement for a microgravity mode of operation. The Space Acceleration Measurement System has been in operation for nearly four years on the ISS measuring the microgravity environment in support of principal investigators and to characterize the ISS microgravity environment. The Principal Investigator Microgravity Services project functions as a detective to ascertain the source of disturbances seen in the ISS microgravity environment to allow correlation between that environment and experimental data. Payload developers need to predict the microgravity environment that will be imposed upon an experiment and ensure that the science and engineering requirements will be met. The Principal Investigator Microgravity Services project is developing n interactive tool to predict the microgravity environment at science payloads based on user defined operational scenarios. These operations (predictions and post-analyses) allow a researcher to examine the microgravity acceleration levels expected to exist when their experiment is operated and then receive an analysis of the environment which existed during their experiment operations. Presented in this paper will be descriptions of the environment predictive tool and an investigation into a previously unknown disturbance in the ISS microgravity environment.

  2. Microgravity Environment on the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin

    2004-01-01

    A primary feature of the International Space Station will be its microgravity environment--an environment in which the effects of gravity are drastically reduced. The International Space Station design has been driven by a long-standing, high-level requirement for a microgravity mode of operation. Various types of data are gathered when science experiments are conducted. The acceleration levels experienced during experiment operation should be factored into the analysis of the results of most microgravity experiments. To this end, the Space Acceleration Measurement System records the acceleration levels to support microgravity researchers for nearly three years of International Space Station operations. The Principal Investigator Microgravity Services project assists the experiments principal investigators with their analysis of the acceleration (microgravity) environment. The Principal Investigator Microgravity Services project provides cataloged data, periodic analysis summary reports, specialized reports for experiment teams, and real-time data in a variety of user-defined formats. Characterization of the various microgravity carriers (e.g., Shuttle and International Space Station) is also accomplished for the experiment teams. Presented in this paper will be a short description of how microgravity disturbances may affect some experiment classes, a snapshot of the microgravity environment, and a view into how well the space station is expected to meet the user requirements.

  3. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  4. International Space Station External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  5. Stress proteins are induced by space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo

    The space environment contains two major biologically significant influences such as space radiations and microgravity. Almost all organisms possess essential recognition and response systems for environmental changes. The famous one of cellular stress responses is the gene induction of heat shock protein (HSP). HSP expression is increased under elevated temperatures, and also increased by other sources of cellular stress, including ionizing radiation, oxidative injury, osmotic stress and the unfolded protein response. HSPs assist in the folding and maintenance of newly translated proteins, the refolding of denatured proteins and the further unfolding of misfolded or destabilized proteins to protect the cell from crisis. Based on our space experiment, we report the results and discussion from the viewpoint of HSP expression after exposure to space environment.

  6. Space Station - The base for tomorrow's electronic industry

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1985-01-01

    The potential value of space material processing on the Space Station for the electronics industry is examined. The primary advantages of the space environment for producing high-purity semiconductors and electrooptical materials are identified as the virtual absence of gravity (suppressing buoyancy-driven convection in melts and density segregation of alloys) and the availabilty of high vacuum (with high pumping speed and heat rejection). The recent history of material development and processing technology in the electronics industry is reviewed, and the principal features of early space experiments are outlined.

  7. Space Station Freedom natural environment design models

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.

    1993-01-01

    The Space Station Freedom program has established a series of natural environment models and databases for utilization in design and operations planning activities. The suite of models and databases that have either been selected from among internationally recognized standards or developed specifically for spacecraft design applications are presented. The models have been integrated with an orbit propagator and employed to compute environmental conditions for planned operations altitudes of Space Station Freedom.

  8. Space Weather Operational Products in the NOAA Space Environment Center

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.; Onsager, T. G.

    2006-12-01

    The NOAA Space Environment Center (SEC) is the Nation's official source of space weather alerts and warnings, and provides real-time monitoring and forecasting of solar and geophysical events. The SEC, a 24- hour/day operations center, provides space weather products to the scientific and user communities in the United States and around the world. This presentation will provide a brief overview of the SEC current suite of space weather products, with an emphasis on models and products recently introduced into the Operations Center. Customer uses of products will be discussed, which will highlight the diverse customer base for space weather services. Also, models in SEC's testbed will be introduced. SEC's testbed facility is dedicated to moving space environment models from a research-development mode to an operational mode. The status of efforts to replace NASA's aging real-time monitor (ACE) in the solar wind ahead of Earth, an "upstream data buoy", will also be described. Numerous existing and planned space weather products and models rely on near real-time solar wind data.

  9. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  10. Book Review: Physics of the Space Environment

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  11. Predictions of the Space Environment Services Center

    NASA Technical Reports Server (NTRS)

    Heckman, G. R.

    1979-01-01

    The types of users of the Space Environment Services Center are identified. All the data collected by the Center are listed and a short description of each primary index or activity summary is given. Each type of regularly produced forecast is described, along with the methods used to produce each prediction.

  12. Learning Spaces in Mobile Learning Environments

    ERIC Educational Resources Information Center

    Solvberg, Astrid M.; Rismark, Marit

    2012-01-01

    Mobile learning (m-learning) environments open a wide range of new and exciting learning opportunities, and envision students who are continually on the move, learn across space and time, and move from topic to topic and in and out of interaction with technology. In this article we present findings from a study of how students manoeuvre and study…

  13. Space Environment's Effects on Seal Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Daniels, Christopher C.; Dunlap, Patrick; Miller, Sharon; Dever, Joyce; Waters, Deborah; Steinetz, Bruce M.

    2007-01-01

    A Low Impact Docking System (LIDS) is being developed by the NASA Johnson Space Center to support future missions of the Crew Exploration Vehicle (CEV). The LIDS is androgynous, such that each system half is identical, thus any two vehicles or modules with LIDS can be coupled. Since each system half is a replica, the main interface seals must seal against each other instead of a conventional flat metal surface. These sealing surfaces are also expected to be exposed to the space environment when vehicles are not docked. The NASA Glenn Research Center (NASA GRC) is supporting this project by developing the main interface seals for the LIDS and determining the durability of candidate seal materials in the space environment. In space, the seals will be exposed to temperatures of between 50 to 50 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). NASA GRC is presently engaged in determining the effects of these environments on our candidate elastomers. Since silicone rubber is the only class of seal elastomer that functions across the expected temperature range, NASA GRC is focusing on three silicone elastomers: two provided by Parker Hannifin (S0-899-50 and S0-383-70) and one from Esterline Kirkhill (ELA-SA-401). Our results from compression set, elastomer to elastomer adhesion, and seal leakage tests before and after various simulated space exposures will be presented.

  14. Space weather at different planetary environments

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Milillo, Anna; Andriopoulou, Maria; Dandouras, Iannis; Radioti, Aikaterini; Lilensten, Jean; Coustenis, Athena; Nordheim, Tom; Orsini, Stefano; Mura, Alessandro; Mangano, Valeria

    2015-04-01

    Different aspects of the conditions in the Sun, solar wind and magnetospheric plasmas, at various planetary systems of our Solar System, can influence the performance and reliability of space-borne technological systems. The science study of the so-called Planetary Space Weather considers different cross-disciplinary issues, including: - the interaction of solar wind/magnetospheric plasmas with planetary/satellite surfaces, ionospheres and thick (e.g. at Jupiter, Saturn, Uranus, Mars, Venus, Titan) or tenuous (e.g. Ganymede, Europa, Mercury, our Moon) atmospheres, including the generation of auroras - the satellite interactions with their neutral environments and dust - the variability of the magnetospheric regions under different solar wind conditions - radiation belts, and their interactions with atmospheres/satellites/rings, in different planetary environments - the inter-comparisons of space weather conditions in different planetary environments In this paper, a brief review of theoretical and data analysis studies regarding planetary space weather in different bodies of our Solar System is presented. The importance of such studies for the in-situ data interpretations as well as for the preparation of future space missions is outlined.

  15. Momentum-space properties from coordinate-space electron density

    SciTech Connect

    Harbola, Manoj K.; Zope, Rajendra R.; Kshirsagar, Anjali; Pathak, Rajeev K.

    2005-05-22

    Electron density and electron momentum density, while independently tractable experimentally, bear no direct connection without going through the many-electron wave function. However, invoking a variant of the constrained-search formulation of density-functional theory, we develop a general scheme (valid for arbitrary external potentials) yielding decent momentum-space properties, starting exclusively from the coordinate-space electron density. A numerical illustration of the scheme is provided for the closed-shell atomic systems He, Be, and Ne in their ground state and for 1s{sup 1} 2s{sup 1} singlet electronic excited state for helium by calculating the Compton profiles and the expectation values derived from given coordinate-space electron densities.

  16. Deep Space Design Environments for Human Exploration

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Clowdsley, M. S.; Cucinotta, F. A.; Tripathi, R. K.; Nealy, J. E.; DeAngelis, G.

    2002-01-01

    Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed.

  17. Deep space environments for human exploration

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Clowdsley, M. S.; Cucinotta, F. A.; Tripathi, R. K.; Nealy, J. E.; De Angelis, G.

    2004-01-01

    Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed. Published by Elsevier Ltd on behalf of COSPAR.

  18. Deep space environments for human exploration.

    PubMed

    Wilson, J W; Clowdsley, M S; Cucinotta, F A; Tripathi, R K; Nealy, J E; De Angelis, G

    2004-01-01

    Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed. PMID:15880915

  19. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  20. Lead-Free Experiment in a Space Environment

    NASA Technical Reports Server (NTRS)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  1. Reliability of Electronics for Cryogenic Space Applications Being Assessed

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2005-01-01

    Many future NASA missions will require electronic parts and circuits that can operate reliably and efficiently in extreme temperature environments below typical device specification temperatures. These missions include the Mars Exploration Laboratory, the James Webb Space Telescope, the Europa Orbiter, surface rovers, and deep-space probes. In addition to NASA, the aerospace and commercial sectors require cryogenic electronics in applications that include advanced satellites, military hardware, medical instrumentation, magnetic levitation, superconducting energy management and distribution, particle confinement and acceleration, and arctic missions. Besides surviving hostile space environments, electronics capable of low-temperature operation would enhance circuit performance, improve system reliability, extend lifetime, and reduce development and launch costs. In addition, cryogenic electronics are expected to result in more efficient systems than those at room temperature.

  2. Space environment's effect on MODIS calibration

    NASA Astrophysics Data System (ADS)

    Dodd, J. L.; Wenny, B. N.; Chiang, K.; Xiong, X.

    2010-09-01

    The MODerate resolution Imaging Spectroradiometer flies on board the Earth Observing System (EOS) satellites Terra and Aqua in a sun-synchronous orbit that crosses the equator at 10:30 AM and 2:30 PM, respectively, at a low earth orbit (LEO) altitude of 705 km. Terra was launched on December 18,1999 and Aqua was launched on May 4, 2002. As the MODIS instruments on board these satellites continue to operate beyond the design lifetime of six years, the cumulative effect of the space environment on MODIS and its calibration is of increasing importance. There are several aspects of the space environment that impact both the top of atmosphere (TOA) calibration and, therefore, the final science products of MODIS. The south Atlantic anomaly (SAA), spacecraft drag, extreme radiative and thermal environment, and the presence of orbital debris have the potential to significantly impact both MODIS and the spacecraft, either directly or indirectly, possibly resulting in data loss. Efforts from the Terra and Aqua Flight Operations Teams (FOT), the MODIS Instrument Operations Team (IOT), and the MODIS Characterization Support Team (MCST) prevent or minimize external impact on the TOA calibrated data. This paper discusses specific effects of the space environment on MODIS and how they are minimized.

  3. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  4. NASA's Space Environments and Effects (SEE) Program: The Pursuit of Tomorrow's Space Technology

    NASA Technical Reports Server (NTRS)

    Pearson, Steven D.; Hardage, Donna M.

    1998-01-01

    A hazard to all spacecraft orbiting the earth and exploring the unknown in deep space is the existence of a harsh and ever changing environment with its subsequent effects. Some of these environmental hazards, such as plasma, extreme thermal excursions, meteoroids, and ionizing radiation result from natural sources, whereas others, such as orbital debris and neutral contamination are induced by the presence of spacecraft themselves. The subsequent effects can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and advocates technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will provide an overview of the Program's purpose, goals, database management and technical activities. In particular, the SEE Program has been very active in developing improved ionizing radiation models and developing related flight experiments which should aid in determining the effect of the radiation environment on modern electronics.

  5. Natural environment design requirements for the Space Telescope (revision A)

    NASA Technical Reports Server (NTRS)

    West, G. S.; Wright, J. J.

    1976-01-01

    The natural environment design requirements for the Space Telescope are presented. Because the Space Telescope is to be carried as cargo to orbital altitudes in the space shuttle bay, orbital environment impacts are the main concern.

  6. Natural environment design requirements for the space telescope

    NASA Technical Reports Server (NTRS)

    West, G. S.; Wright, J. J.

    1976-01-01

    The natural environment design requirements for the Large Space Telescope are presented. Because the Large Space Telescope is to be carried as cargo to orbital altitudes in the space shuttle bay, orbital environment impacts are emphasized.

  7. Droplet Charging Effects in the Space Environment

    SciTech Connect

    Joslyn, Thomas B.; Ketsdever, Andrew D.

    2011-05-20

    Several applications exist for transiting liquid droplets through the near-Earth space environment. Numerical results are presented for the charging of liquid droplets of trimethyl pentaphenyl siloxane (DC705) in three different plasma environments: ionosphere, auroral, and geosynchronous Earth orbit (GEO). Nominal and high geomagnetic activity cases are investigated. In general, high levels of droplet charging (>100 V) exist only in GEO during periods of high geomagnetic or solar activity. An experiment was conducted to assess the charging of silicon-oil droplets due to photoemission. The photoemission yield in the 120-200 nm wavelength range was found to be approximately 0.06.

  8. Electronic structure calculations in arbitrary electrostatic environments

    NASA Astrophysics Data System (ADS)

    Watson, Mark A.; Rappoport, Dmitrij; Lee, Elizabeth M. Y.; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2012-01-01

    Modeling of electronic structure of molecules in electrostatic environments is of considerable relevance for surface-enhanced spectroscopy and molecular electronics. We have developed and implemented a novel approach to the molecular electronic structure in arbitrary electrostatic environments that is compatible with standard quantum chemical methods and can be applied to medium-sized and large molecules. The scheme denoted CheESE (chemistry in electrostatic environments) is based on the description of molecular electronic structure subject to a boundary condition on the system/environment interface. Thus, it is particularly suited to study molecules on metallic surfaces. The proposed model is capable of describing both electrostatic effects near nanostructured metallic surfaces and image-charge effects. We present an implementation of the CheESE model as a library module and show example applications to neutral and negatively charged molecules.

  9. Space Analogue Environments: Are the Populations Comparable?

    NASA Astrophysics Data System (ADS)

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  10. Potentially improved glasses from space environment

    NASA Technical Reports Server (NTRS)

    Nichols, R.

    1977-01-01

    The benefits of processing glasses in a low-gravity space environment are examined. Containerless processing, the absence of gravity driven convection, and lack of sedimentation are seen as potential advantages. Potential applications include the formation of glass-ceramics with a high content of active elements for ferromagnetic devices, the production of ultrapure chalcogenide glasses for laser windows and IR fiber optics, and improved glass products for use in optical systems and laser fusion targets.

  11. Monitoring tropical environments with Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Lulla, Kamlesh P.

    1989-01-01

    Orbital photography from the Space Shuttle missions (1981-88) and earlier manned spaceflight programs (1962-1975) allows remote sensing time series to be constructed for observations of environmental change in selected portions of the global tropics. Particular topics and regions include deforestation, soil erosion, supersedimentation in streams, lacustrine, and estuarine environments, and desertification in the greater Amazon, tropical Africa and Madagascar, South and Southeast Asia, and the Indo-Pacific archipelagoes.

  12. Microbial survival in deep space environment.

    NASA Technical Reports Server (NTRS)

    Silverman, G. J.

    1971-01-01

    Review of the knowledge available on the extent to which microorganisms (mainly microbial spores, vegetative cells, and fungi) are capable of surviving the environment of deep space, based on recent simulation experiments of deep space. A description of the experimental procedures used is followed by a discussion of deep space ecology, the behavior of microorganisms in ultrahigh vacuum, and factors influencing microbial survival. It is concluded that, so far, simulation experiments have proved far less lethal to microorganisms than to other forms of life. There are, however, wide gaps in the knowledge available, and no accurate predictions can as yet be made on the degree of lethality that might be incurred by a microbial population on a given mission. Therefore, sterilization of spacecraft surfaces is deemed necessary if induced panspermia (i.e., interplanetary life propagation) is to be avoided.

  13. Electronic Verification at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, T. W.

    1995-01-01

    This document reviews some current applications of Electronic Verification and the benefits such applications are providing the Kennedy Space Center (KSC). It also previews some new technologies, including statistics regarding performance and possible utilization of the technology.

  14. Particulate electron beam weld emission hazards in space

    NASA Technical Reports Server (NTRS)

    Bunton, Patrick H.

    1996-01-01

    The electron-beam welding process is well adapted to function in the environment of space. The Soviets were the first to demonstrate welding in space in the mid-1980's. Under the auspices of the International Space Welding Experiment (ISWE), an on-orbit test of a Ukrainian designed electron-beam welder (the Universal Hand Tool or 'UHT') is scheduled for October of 1997. The potential for sustained presence in space with the development of the international space station raises the possibility of the need for construction and repair in space. While welding is not scheduled to be used in the assembly of the space station, repair of damage from orbiting debris or meteorites is a potential need. Furthermore, safe and successful welding in the space environment may open new avenues for design and construction. The safety issue has been raised with regard to hot particle emissions (spatter) sometimes observed from the weld during operations. On earth the hot particles pose no particular hazard, but in space there exists the possibility for burn-through of the space suit which could be potentially lethal. Contamination of the payload bay by emitted particles could also be a problem.

  15. Space processing of electronic materials

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1982-01-01

    The bulk growth of solid solution alloys of mercury telluride and cadmium telluride is discussed. These alloys are usually described by the formula Hg1-xCdxTe, and are useful for the construction of infrared detectors. The electronic energy band gap can be controlled between zero and 1.6 electron volts by adjusting the composition x. The most useful materials are at x approximately 20%, suitable for detection wavelengths of about 10 micrometers. The problems of growing large crystals are rooted in the wide phase diagram of the HgTe-CdTe pseudobinary system which leads to exaggerate segregation in freezing, constitutional supercooling, and other difficulties, and in the high vapor pressure of mercury at the growth temperatures, which leads to loss of stoichiometry and to the necessity of working in strong, pressure resistant sealed containers.

  16. Space weather circulation model of plasma clouds as background radiation medium of space environment.

    NASA Astrophysics Data System (ADS)

    Kalu, A. E.

    A model for Space Weather (SW) Circulation with Plasma Clouds as background radiation medium of Space Environment has been proposed and discussed. Major characteristics of the model are outlined and the model assumes a baroclinic Space Environment in view of observed pronounced horizontal electron temperature gradient with prevailing weak vertical temperature gradient. The primary objective of the study is to be able to monitor and realistically predict on real- or near real-time SW and Space Storms (SWS) affecting human economic systems on Earth as well as the safety and Physiologic comfort of human payload in Space Environment in relation to planned increase in human space flights especially with reference to the ISS Space Shuttle Taxi (ISST) Programme and other prolonged deep Space Missions. Although considerable discussions are now available in the literature on SW issues, routine Meteorological operational applications of SW forecast data and information for Space Environment are still yet to receive adequate attention. The paper attempts to fill this gap in the literature of SW. The paper examines the sensitivity and variability in 3-D continuum of Plasmas in response to solar radiation inputs into the magnetosphere under disturbed Sun condition. Specifically, the presence of plasma clouds in the form of Coronal Mass Ejections (CMEs) is stressed as a major source of danger to Space crews, spacecraft instrumentation and architecture charging problems as well as impacts on numerous radiation - sensitive human economic systems on Earth. Finally, the paper considers the application of model results in the form of effective monitoring of each of the two major phases of manned Spaceflights - take-off and re-entry phases where all-time assessment of spacecraft transient ambient micro-incabin and outside Space Environment is vital for all manned Spaceflights as recently evidenced by the loss of vital information during take-off of the February 1, 2003 US Columbia

  17. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  18. The Space Environment Sensor Suite for NPOESS

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Eastman, K. W.; Eraker, J. H.; Belue, J.; Citrone, P.; Bloom, J. D.; Christensen, T. E.; Talmadge, S.; Ubhayakar, S. K.; Denig, W. F.

    2005-12-01

    The Space Environment Sensor Suite (SESS) is a set of instruments of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that takes measurements to produce space environment data products. The SESS includes a complement of instruments that provide in-situ data on particles, fields, aurora, and the ionosphere. The SESS team consists of the NPOESS Integrated Program Office (IPO), Northrop Grumman Space Technology (NGST) -- the prime contractor for NPOESS, Ball Aerospace & Technologies Corp. (BATC) -- lead systems integrator for SESS, key instrument/algorithm suppliers, and the science community advisors who represent the future users of SESS data products. This team has developed a baseline design and constellation that address the NPOESS requirements for the SESS-specific in-situ Environmental Data Records (EDRs). These EDRs are allocated to a Thermal Plasma Sensor (TPS), a Low Energy Particle Sensor (LEPS), a Medium Energy Particle Sensor (MEPS), and a High Energy Particle Sensor (HEPS) that are distributed on the multi-orbit NPOESS system architecture to satisfy the user community's performance and coverage needs. This paper will present details on the SESS sensors, the architecture and its expected performance.

  19. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  20. Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment

    NASA Technical Reports Server (NTRS)

    Bedingfield, Keith, L.; Leach, Richard D.; Alexander, Margaret B. (Editor)

    1996-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. This primer provides a brief overview of the natural space environment - definition, related programmatic issues, and effects on various spacecraft subsystems. The primary focus, however, is to catalog, through representative case histories, spacecraft failures and anomalies attributed to the natural space environment. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  1. Relating space radiation environments to risk estimates

    SciTech Connect

    Curtis, S.B. ||

    1993-12-31

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  2. Microbial response to space environment, part B

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Chassay, C. E.; Ellis, W. L.; Foster, B. G.; Volz, P. A.; Spizizen, J.; Buecker, H.; Wrenn, R. T.; Simmonds, R. C.; Long, R. A.

    1972-01-01

    The performance of the microbial response to space environment experiment is considered excellent by all investigators. For most microbial systems, only preliminary survival data are available at this time. None of the available data indicate space flight-mediated changes in cell viability or recovery. One quite important observation has been made at this early date, however. The eggs produced after mice had been infected with N. dubius larvae demonstrated a significant decrease in hatchability when compared to identical ground controls. Except for the fact that the Apollo 16 flight larvae had been on board the command module, treatment of the flown larvae and ground control larvae was the same; neither had been exposed to UV irradiation. The significance and implications of this finding are currently being studied.

  3. Relating space radiation environments to risk estimates

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  4. Space environment and lunar surface processes, 2

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1982-01-01

    The top few millimeters of a surface exposed to space represents a physically and chemically active zone with properties different from those of a surface in the environment of a planetary atmosphere. To meet the need or a quantitative synthesis of the various processes contributing to the evolution of surfaces of the Moon, Mercury, the asteroids, and similar bodies, (exposure to solar wind, solar flare particles, galactic cosmic rays, heating from solar radiation, and meteoroid bombardment), the MESS 2 computer program was developed. This program differs from earlier work in that the surface processes are broken down as a function of size scale and treated in three dimensions with good resolution on each scale. The results obtained apply to the development of soil near the surface and is based on lunar conditions. Parameters can be adjusted to describe asteroid regoliths and other space-related bodies.

  5. Space Environments and Effects: Trapped Proton Model

    NASA Technical Reports Server (NTRS)

    Huston, S. L.; Kauffman, W. (Technical Monitor)

    2002-01-01

    An improved model of the Earth's trapped proton environment has been developed. This model, designated Trapped Proton Model version 1 (TPM-1), determines the omnidirectional flux of protons with energy between 1 and 100 MeV throughout near-Earth space. The model also incorporates a true solar cycle dependence. The model consists of several data files and computer software to read them. There are three versions of the mo'del: a FORTRAN-Callable library, a stand-alone model, and a Web-based model.

  6. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  7. Electron environment specification models for Galileo

    NASA Astrophysics Data System (ADS)

    Lazaro, Didier; Bourdarie, Sebastien; Hands, Alex; Ryden, Keith; Nieminen, Petteri

    The MEO radiation hazard is becoming an increasingly important consideration with an ever rising number of satellites missions spending most of their time in this environment. This region lies in the heart of the highly dynamic electron radiation belt, where very large radiation doses can be encountered unless proper shielding to critical systems and components is applied. Significant internal charging hazards also arise in the MEO regime. For electron environment specification at Galileo altitude, new models have been developed and implemented: long term effects model for dose evaluation, statistical model for internal charging analysis and latitudinal model for ELDRS analysis. Models outputs, tools and validation with observations (Giove-A data) and existing models (such as FLUMIC) are presented . "Energetic Electron Environment Models for MEO" Co 21403/08/NL/JD in consortium with ONERA, QinetiQ, SSTL and CNES .

  8. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  9. Electronic materials processing and the microgravity environment

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1988-01-01

    The nature and origin of deficiencies in bulk electronic materials for device fabrication are analyzed. It is found that gravity generated perturbations during their formation account largely for the introduction of critical chemical and crystalline defects and, moreover, are responsible for the still existing gap between theory and experiment and thus for excessive reliance on proprietary empiricism in processing technology. Exploration of the potential of reduced gravity environment for electronic materials processing is found to be not only desirable but mandatory.

  10. Coatings in space environment. [for satellite thermal control

    NASA Technical Reports Server (NTRS)

    Triolo, J. J.; Heaney, J. B.; Hass, G.

    1978-01-01

    The behavior in space environment of evaporated Al uncoated and coated with reactively deposited silicon oxide (SiOx), electron beam evaporated SiO2 and Al2O3, and Al and Ag coated with double layers of Al2O3 + SiOx is compared with metallized Teflon and Kapton, anodized Al (Alzak), and white paints. Flight data from three calorimetric experiments and one reflectometer flown in different orbital environments are compared with laboratory test data. The results demonstrate that evaporated thin films are extremely versatile and stable coatings for space applications. Through the use of control samples studied in different laboratory tests and monitored for up to 12,000 hours of solar exposure in different orbits, a classification of orbital severity and an estimate of laboratory simulation accuracy is obtained.

  11. Control of Space-Based Electron Beam Free Form Fabrication

    NASA Technical Reports Server (NTRS)

    Seifzer. W. J.; Taminger, K. M.

    2007-01-01

    Engineering a closed-loop control system for an electron beam welder for space-based additive manufacturing is challenging. For earth and space based applications, components must work in a vacuum and optical components become occluded with metal vapor deposition. For extraterrestrial applications added components increase launch weight, increase complexity, and increase space flight certification efforts. Here we present a software tool that closely couples path planning and E-beam parameter controls into the build process to increase flexibility. In an environment where data collection hinders real-time control, another approach is considered that will still yield a high quality build.

  12. Electronic Components and Circuits for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  13. Space environment simulation at radiation test of nonmetallic materials

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.; Klinshpont, E. R.; Tupikov, V. I.

    1999-05-01

    Russia [1] (B.A. Briskman, V.I. Toupikov, E.N. Lesnovsky, Proceedings of the Seventh International Symposium on Materials in Space Environment, Toulouse, France, 16-20 June 1997, ESA, SP-399, p. 537) has proposed new international standard for the testing of materials to simulated space radiation. The proposal was submitted to ISO (The International Organization for Standards) Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). The second version of the draft was approved at the Beijing meeting (1998). The standard extends to space ionizing radiation: protons, electrons, solar ultraviolet, soft X-radiation, bremsstrahlung, that effect the polymeric materials of space engineering. The special feature of interaction of the space ionizing radiation with materials is the localization of the main part of absorbed energy in thin near-surface layers. Numerous problems appear in simulating the ionizing radiation impact, which require a solution for correct conduction of the on-ground tests.

  14. Natural environment design requirements for the space tug

    NASA Technical Reports Server (NTRS)

    West, G. S., Jr.

    1973-01-01

    The natural environment design requirements for the space tug are presented. Since the Space Tug is carried as cargo to orbital altitudes in the space shuttle bay, orbital environmental impacts and short-period atmospheric density variations are the main concerns. The subjects discussed are: (1) natural environment, (2) neutral environment, (3) charged particles, (4) radiation, and (5) meteoroid hazards.

  15. Electronic ceramics in high temperature environments

    SciTech Connect

    Searcy, A.W.; Meschi, D.J.

    1980-11-01

    Simple thermodynamic means are described for understanding and predicting the influence of temperature changes in various environments on electronic properties of ceramics. Thermal gradients, thermal cycling and vacuum annealing are discussed, as well as the variations of activities and solubilities with temperature.

  16. Predicting Material Performance in the Space Environment from Laboratory Test Data, Static Design Environments, and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Minow, Josep I.; Edwards, David L.

    2008-01-01

    Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.

  17. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  18. Development of Electronics for Low Temperature Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott; Overton, Eric

    2000-01-01

    The operation of electronic systems at cryogenic temperatures is anticipated for many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about -183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program on low temperature electronics at the NASA Glenn Research Center focuses on the development of efficient power systems capable of surviving and exploiting the advantages of low temperature environments. Inhouse efforts include the design, fabrication, and characterization of low temperature power systems and the development of supporting technologies for low temperature operations, such as dielectric and insulating materials, semiconductor devices, passive power components, opto-electronic devices, as well as packaging and integration of the developed components into prototype flight hardware.

  19. Electronic components and systems for cryogenic space applications

    NASA Astrophysics Data System (ADS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2002-05-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about -183 °C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An on-going R&D program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving and operating in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house electronic component and small system testing will also be discussed. .

  20. Space environment: A new dimension in the preparation of unique solids

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1972-01-01

    The preparation of solids, particularly electronic solids in space is discussed. Particular attention is given to the effect of non-gravational environments on the development of homogeneous materials that cannot be manufactured on earth.

  1. Space Environments and Effects Program (SEE)

    NASA Technical Reports Server (NTRS)

    Yhisreal-Rivas, David M.

    2013-01-01

    The need to preserve works and NASA documented articles is done via the collection of various Space Environments and Effects (SEE) related articles. (SEE) contains and lists the various projects that are ongoing, or have been conducted with the help of NASA. The goal of the (SEE) program is to make publicly available the environment technologies that are required to design, manufacture and operate reliable, cost-effective spacecraft for the government and commercial sectors. Of the many projects contained within the (SEE) program the Lunar-E Library and Spacecraft Materials Selector (SMS) have been selected for a more user friendly means to make the tools easily available to the public. This information which is still available required a person or entity to request access from a point of contact at NASA and wait for the requested bundled software DVD via postal service. Redesigning the material presentation and availability has been mapped to a single step process with faster turnaround time via Materials and Processes Technical Information System (MAPTIS) database. This process requires users to register and be verified in order to gain access to the information contained within. Aiding in the progression of making the software tools/documents available required a combination of specialized in-house data gathering software tools and software archeology.

  2. JPL Space Telecommunications Radio System Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  3. Effects of space environment on structural materials

    NASA Technical Reports Server (NTRS)

    Miglionico, C.; Stein, C.; Roybal, R.; Robertson, R.; Murr, L. E.; Quinones, S.; Rivas, J.; Marquez, B.; Advani, A. H.; Fisher, W. W.

    1992-01-01

    A preliminary study of materials exposed in space in a low Earth orbit for nearly six years has revealed a wide range of micrometeorite or microparticle impact craters ranging in size from 1 to 1000 micron in diameter, debris particles from adjacent and distant materials systems, reaction products, and other growth features on the specimen surfaces, and related phenomena. The exposed surface features included fine grained and nearly amorphous materials as well as a large array of single crystal particles. A replication type, lift off technique was developed to remove reaction products and debris from the specimen surfaces in order to isolate them from the background substrate without creating microchemical or microstructural artifacts or alterations. This resulted in surface features resting on a carbon support film which was virtually invisible to observation by electron microscopy and nondispersive x ray analysis. Some evidence for blisters on leading edge aluminum alloy surfaces and a high surface region concentration of oxygen determined by Auger electron spectrometry suggests oxygen effects where fluences exceed 10(exp 21) atoms/sq cm.

  4. A Coordinated Effort to Address Space Weather and Environment Needs

    NASA Technical Reports Server (NTRS)

    Minow, Joe; Spann, James F.; Edward, David L.; Burns, Howard D.; Gallagher, Dennis; Xapos, Mike; DeGroh, Kim

    2010-01-01

    The growing need for coordination of the many aspects of space environments is directly related to our increasing dependence on space assets. An obvious result is that there is a need for a coordinated effort to organize and make accessible the increasing number of space environment products that include space environment models and observations, material testing, and forecasting tools. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas; (1) natural environments characterization and modeling, (2) environmental effects on materials and systems, (3) and operational and forecasting space environments modeling. Additionally the ASE office will serve as an entry point of contact for external users who wish to take advantage of data and assets associated with space environments, including space weather.

  5. Logistics, electronic commerce, and the environment

    NASA Astrophysics Data System (ADS)

    Sarkis, Joseph; Meade, Laura; Talluri, Srinivas

    2002-02-01

    Organizations realize that a strong supporting logistics or electronic logistics (e-logistics) function is important from both commercial and consumer perspectives. The implications of e-logistics models and practices cover the forward and reverse logistics functions of organizations. They also have direct and profound impact on the natural environment. This paper will focus on a discussion of forward and reverse e-logistics and their relationship to the natural environment. After discussion of the many pertinent issues in these areas, directions of practice and implications for study and research are then described.

  6. Electronic Components and Systems for Cryogenic Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2001-01-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  7. Development of Electronics for Low-Temperature Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric

    2001-01-01

    Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.

  8. BUSEFL: The Boston University Space Environment Forecast Laboratory

    SciTech Connect

    Contos, A.R.; Sanchez, L.A.; Jorgensen, A.M.

    1996-07-01

    BUSEFL (Boston University Space Environment Forecast Laboratory) is a comprehensive, integrated project to address the issues and implications of space weather forecasting. An important goal of the BUSEFL mission is to serve as a testing ground for space weather algorithms and operational procedures. One such algorithm is the Magnetospheric Specification and Forecast Model (MSFM), which may be implemented in possible future space weather prediction centers. Boston University Student-satellite for Applications and Training (BUSAT), the satellite component of BUSEFL, will incorporate four experiments designed to measure (1) the earth{close_quote}s magnetic field, (2) distribution of energetic electrons trapped in the earth{close_quote}s radiation belts, (3) the mass and charge composition of the ion fluxes along the magnetic field lines and (4) the auroral forms at the foot of the field line in the auroral zones. Data from these experiments will be integrated into a ground system to evaluate space weather prediction codes. Data from the BUSEFL mission will be available to the scientific community and the public through media such as the World Wide Web (WWW). {copyright} {ital 1996 American Institute of Physics.}

  9. Radiation Belt Environment Model: Application to Space Weather and Beyond

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching H.

    2011-01-01

    Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.

  10. Development of a Temperature Sensor for Jet Engine and Space Missions Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Culley, Dennis E.; Elbuluk, Malik

    2008-01-01

    Electronic systems in aerospace and in space exploration missions are expected to encounter extreme temperatures and wide thermal swings. To address the needs for extreme temperature electronics, research efforts exist at the NASA Glenn Research Center (GRC) to develop and evaluate electronics for extreme temperature operations, and to establish their reliability under extreme temperature operation and thermal cycling; conditions that are typical of both the aerospace and space environments. These efforts are supported by the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program and by the NASA Electronic Parts and Packaging (NEPP) Program. This work reports on the results obtained on the development of a temperature sensor geared for use in harsh environments.

  11. Creating flowing space plasma environments with VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, Edgar, III; Longmier, Benjamin; Glover, Tim; Chang-Diaz, Franklin; Squire, Jared; Brukardt, Michael

    2008-11-01

    Recent results from the operation of a 125 cubic meter space simulation chamber are presented. The primary role of the vacuum chamber is to support the operation of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR), a high power magnetoplasma rocket, capable of Isp/thrust modulation at constant power. However, magnetospheric and heliospheric plasma environments can be produced with the VASIMR plasma source with a power range of 0.5 to 200 kW, producing a H, D, Ne, or Ar flowing plasma with flow velocities in excess of 20,000 km/s. The plasma is produced by a helicon discharge. The bulk of the energy is added by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by adiabatic expansion of the plasma in a magnetic nozzle. Particle flux and particle energy can be adjusted independently of each other, which is primarily achieved by the partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. Ion dynamics in the flowing plasma is studied using probes, gridded energy analyzers (RPA's), microwave interferometry and optical techniques.

  12. Degradation of thermal shield materials in the space radiation environment

    NASA Astrophysics Data System (ADS)

    Shimoji, S.; Kimura, H.; Koitabashi, M.; Imamura, T.; Kasai, R.; Matsushita, M.

    1983-12-01

    Changes in temperature distribution data of Experimental Technology Satellite 4 after its 3 months mission term are discussed. Analysis of the data suggested that the thermal shields loose their function in the space radiation environment. The effect of energetic particles on the shield materials was investigated. Electron beams of 500 keV and proton beams of 900 keV were irradiated on silver-Teflon and aluminized Kapton films. The fluences were changed between 10 to the 14th and 10 to the 16th power sqcm. Temperature varied between -100 and 100C. Solar absorptance, infrared emittance, tensile strength and elongation rate were measured. Thermogravimetry, infrared spectroscopy and X-ray diffraction were performed. Electron fluxes have remarkable effects on the mechanical properties, proton fluxes on the thermophysical properties of silver-Teflon film. Kapton films do not change much.

  13. Power Electronics Being Developed for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2003-01-01

    Electronic circuits and systems designed for deep space missions need to operate reliably and efficiently in harsh environments that include very low temperatures. Spacecraft that operate in such cold environments carry a large number of heaters so that the ambient temperature for the onboard electronics remains near 20 C. Electronics that can operate at cryogenic temperatures will simplify system design and reduce system size and weight by eliminating the heaters and their associated structures. As a result, system development and launch cost will be reduced. At the NASA Glenn Research Center, an ongoing program is focusing on the development of power electronics geared for deep space low-temperature environments. The research and development efforts include electrical components design, circuit design and construction, and system integration and demonstration at cryogenic temperatures. Investigations are being carried out on circuits and systems that are targeted for use in NASA missions where low temperatures will be encountered: devices such as ceramic and tantalum capacitors, metal film resistors, semiconductor switches, magnetics, and integrated circuits including dc/dc converters, operational amplifiers, voltage references, and motor controllers. Test activities cover a wide range of device and circuit performance under simple as well as complex test conditions, such as multistress and thermal cycling. The effect of low-temperature conditions on the switching characteristics of an advanced silicon-on-insulator field effect transistor is shown. For gate voltages (VGS) below 2.6 V, drain currents at -190 C are lower than drain currents at room temperature (20 C).

  14. 12 CFR 7.5010 - Shared electronic space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Shared electronic space. 7.5010 Section 7.5010 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5010 Shared electronic space. National banks that share electronic space,...

  15. 12 CFR 7.5010 - Shared electronic space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Shared electronic space. 7.5010 Section 7.5010 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5010 Shared electronic space. National banks that share electronic space,...

  16. 12 CFR 7.5010 - Shared electronic space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Shared electronic space. 7.5010 Section 7.5010 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5010 Shared electronic space. National banks that share electronic space,...

  17. 12 CFR 7.5010 - Shared electronic space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Shared electronic space. 7.5010 Section 7.5010 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5010 Shared electronic space. National banks that share electronic space,...

  18. 12 CFR 7.5010 - Shared electronic space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Shared electronic space. 7.5010 Section 7.5010 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5010 Shared electronic space. National banks that share electronic space,...

  19. Extreme Environment Technologies for Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.

    2008-01-01

    Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.

  20. Extreme environment technologies for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.

    2008-04-01

    Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense, oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spearheaded by NASA with collaboration from industry and academia.

  1. Targeted and comprehensive space-environment sensors: description and recommendations

    SciTech Connect

    Reeves, Geoffrey; O'Brien, Paul; Mazur, Joe; Ginet, Gregory

    2009-01-01

    We discuss the roles of the two classes of space-environment sensors on operational space systems: (1) Targeted sensors capable of measuring the environment and effects at a level sufficient for providing situational awareness for the host spacecraft and (2) Comprehensive sensors capable of providing detailed environment measurements that can be mapped to a broad region of near-Earth space, providing global situational awareness and quantitative characterization of the environment. Our purpose is to show the usefulness of a heterogeneous architecture with both classes of sensors for the near-term and long-term needs of National Security Space

  2. The ionizing radiation environment in space and its effects

    SciTech Connect

    Adams, Jim; Falconer, David; Fry, Dan

    2012-11-20

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  3. Electron distribution functions in electric field environments

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.

    1991-01-01

    The amount of current carried by an electric discharge in its early stages of growth is strongly dependent on its geometrical shape. Discharges with a large number of branches, each funnelling current to a common stem, tend to carry more current than those with fewer branches. The fractal character of typical discharges was simulated using stochastic models based on solutions of the Laplace equation. Extension of these models requires the use of electron distribution functions to describe the behavior of electrons in the undisturbed medium ahead of the discharge. These electrons, interacting with the electric field, determine the propagation of branches in the discharge and the way in which further branching occurs. The first phase in the extension of the referenced models , the calculation of simple electron distribution functions in an air/electric field medium, is discussed. Two techniques are investigated: (1) the solution of the Boltzmann equation in homogeneous, steady state environments, and (2) the use of Monte Carlo simulations. Distribution functions calculated from both techniques are illustrated. Advantages and disadvantages of each technique are discussed.

  4. Lithium electronic environments in rechargeable battery electrodes

    NASA Astrophysics Data System (ADS)

    Hightower, Adrian

    This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20

  5. Electronic nose for space program applications.

    PubMed

    Young, Rebecca C; Buttner, William J; Linnell, Bruce R; Ramesham, Rajeshuni

    2003-08-01

    The ability to monitor air contaminants in the shuttle and the International Space Station is important to ensure the health and safety of astronauts, and equipment integrity. Three specific space applications have been identified that would benefit from a chemical monitor: (a) organic contaminants in space cabin air; (b) hypergolic propellant contaminants in the shuttle airlock; (c) pre-combustion signature vapors from electrical fires. NASA at Kennedy Space Center (KSC) is assessing several commercial and developing electronic noses (E-noses) for these applications. A short series of tests identified those E-noses that exhibited sufficient sensitivity to the vapors of interest. Only two E-noses exhibited sufficient sensitivity for hypergolic fuels at the required levels, while several commercial E-noses showed sufficient sensitivity of common organic vapors. These E-noses were subjected to further tests to assess their ability to identify vapors. Development and testing of E-nose models using vendor supplied software packages correctly identified vapors with an accuracy of 70-90%. In-house software improvements increased the identification rates between 90 and 100%. Further software enhancements are under development. Details on the experimental setup, test protocols, and results on E-nose performance are presented in this paper along with special emphasis on specific software enhancements. PMID:14584511

  6. Electronic nose for space program applications

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Buttner, William J.; Linnell, Bruce R.; Ramesham, Rajeshuni

    2003-01-01

    The ability to monitor air contaminants in the shuttle and the International Space Station is important to ensure the health and safety of astronauts, and equipment integrity. Three specific space applications have been identified that would benefit from a chemical monitor: (a) organic contaminants in space cabin air; (b) hypergolic propellant contaminants in the shuttle airlock; (c) pre-combustion signature vapors from electrical fires. NASA at Kennedy Space Center (KSC) is assessing several commercial and developing electronic noses (E-noses) for these applications. A short series of tests identified those E-noses that exhibited sufficient sensitivity to the vapors of interest. Only two E-noses exhibited sufficient sensitivity for hypergolic fuels at the required levels, while several commercial E-noses showed sufficient sensitivity of common organic vapors. These E-noses were subjected to further tests to assess their ability to identify vapors. Development and testing of E-nose models using vendor supplied software packages correctly identified vapors with an accuracy of 70-90%. In-house software improvements increased the identification rates between 90 and 100%. Further software enhancements are under development. Details on the experimental setup, test protocols, and results on E-nose performance are presented in this paper along with special emphasis on specific software enhancements. c2003 Elsevier Science B.V. All rights reserved.

  7. Space-time separation of electronic correlations

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan M.; Schäfer, Thomas; Klebel, Benjamin; Toschi, Alessandro

    While second-order phase transitions always cause strong nonlocal fluctuations, their effect on spectral properties crucially depends on the dimensionality. First, we show that for the important case of three dimensions the electron self-energy is well separable into a local dynamical part and static nonlocal contributions. In particular, using the dynamical vertex approximation for the doped 3D Hubbard model, we demonstrate that the quasiparticle weight remains essentially momentum independent, despite overall large nonlocal corrections to the self-energy when approaching the spin-ordered state. This generalizes earlier empirical findings of this property in the iron pnictides and transition metal oxides based on Hedin's GW approximation. With this insight, we here propose a ''space-time-separated'' scheme for many-body perturbation theory that is up to ten times more efficient than current implementations. Finally, we discuss limits of the space-time separation of correlation effects by studying the crossover from three to two dimensions.

  8. Relativistic electron precipitation at International Space Station: Space weather monitoring by Calorimetric Electron Telescope

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Asaoka, Yoichi; Torii, Shoji; Terasawa, Toshio; Ozawa, Shunsuke; Tamura, Tadahisa; Shimizu, Yuki; Akaike, Yosui; Mori, Masaki

    2016-05-01

    The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4 months, CALET CHD observed REP events mainly at the dusk to midnight sector near the plasmapause, where the trapped radiation belt electrons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves. Here we show that interesting 5-20 s periodicity regularly exists during the REP events at ISS, which is useful to diagnose the wave-particle interactions associated with the nonlinear wave growth of EMIC-triggered emissions.

  9. Electronic Cigarette Topography in the Natural Environment

    PubMed Central

    Morabito, P. N.; Roundtree, K. A.

    2015-01-01

    This paper presents the results of a clinical, observational, descriptive study to quantify the use patterns of electronic cigarette users in their natural environment. Previously published work regarding puff topography has been widely indirect in nature, and qualitative rather than quantitative, with the exception of three studies conducted in a laboratory environment for limited amounts of time. The current study quantifies the variation in puffing behaviors among users as well as the variation for a given user throughout the course of a day. Puff topography characteristics computed for each puffing session by each subject include the number of subject puffs per puffing session, the mean puff duration per session, the mean puff flow rate per session, the mean puff volume per session, and the cumulative puff volume per session. The same puff topography characteristics are computed across all puffing sessions by each single subject and across all subjects in the study cohort. Results indicate significant inter-subject variability with regard to puffing topography, suggesting that a range of representative puffing topography patterns should be used to drive machine-puffed electronic cigarette aerosol evaluation systems. PMID:26053075

  10. [Progress on space oral medicine research under microgravity environment].

    PubMed

    Jing, Chen; Xingqun, Cheng; Xin, Xu; Xuedong, Zhou; Yuqing, Li

    2016-02-01

    As an interdisciplinary of stomatology and space medicine, space oral medicine focuses mainly on oral diseases happened under space environment. With the manned space technology stepping into the new era, space oral medicine has been put under the spotlight. This article will review the historical events on this subject, summarize the newly progress especially on craniomaxillofacial bone, tooth-derived stem cell and oral microbiology researches and still put forward future prospect. PMID:27266206

  11. Reanalysis of relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Chen, Yue; Kondrashov, Dmitri

    In this study we perform a reanalysis of the sparse relativistic electron data using a relatively simple one-dimensional radial diffusion model and a Kalman filtering approach. The results of the reanalysis clearly show pronounced peaks in the electron phase space density (PSD), which can not be explained by the variations in the outer boundary, and can only be produced by a local acceleration processes. The location of the innovation vector shows that local acceleration is most efficient at L* = 5.5. To verify that our results are not affected by the limitations of the satellite orbit and coverage, we performed an "identical twin" experiments with synthetic data specified only at the locations for which CRRES observations are available. Our results indicate that the model with data assimilation can accurately reproduce the underlying structure of the PSD even when data is sparse.

  12. Electro-Mechanical Systems for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg

    2011-01-01

    Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller

  13. Electrostatic behaviour of materials in a charging space environment

    NASA Astrophysics Data System (ADS)

    Catani, Jean-Pierre; Payan, Denis

    2003-09-01

    Electrostatics is one of major concerns of spacecraft technology. Space is filled with hot and low-density plasma building up high differential voltages resulting in electrostatic discharges, sometimes causing an anomalous behavior of spacecraft electronics. The interaction of the satellite with its environment induces a static charge of the various materials which it is made of. The flow and the evacuation of the charges would require a conductive satellite. Unfortunately, the reality is different and satellites are covered with dielectric materials highly resistant for thermo-optic specific purpose. It is resulting in a absolute charge value of the structure of the satellite and in a differential charge built-up between its components that can be at the origin of electrostatic discharges which consequences can end up in the loss of the satellite itself. Typical anomalies will be reviewed, it will be shown how they can be recognized as consequences of environmental induced discharges. The distribution of charges over different parts of the spacecraft is depending of ambient conditions: plasma temperature and density and sun illumination. Surface and internal charging are possible; they result in dielectric or metal arcing discharges. Understanding of charging phenomena allows us to define mitigation techniques by controlling charging, electromagnetic interference. At last, we will end with the presentation of what it is done in France and in Europe though activities in the domain of space environment in order to take into account problems in a more general context.

  14. Measurements of the thermal plasma environment of the space shuttle

    NASA Astrophysics Data System (ADS)

    Raitt, W. J.; Siskind, D. E.; Banks, P. M.; Williamson, P. R.

    1984-04-01

    The paper presents some initial results on measurements of the thermal plasma environment obtained by a spherical retarding potential analyzer and a Langmuir probe flown on the third space shuttle flight ( STS-3) as part of the NASA Office of Space Science-1 (OSS-1) payload in March 1982. One of the major effects observed is a higher degree of turbulence in the ambient plasma compared to what is observed from similar instruments flown on unmanned satellites. In addition we see the temperature of the thermal electrons elevated to values of 4000-5000 K. Associated with elevated electron temperatures are regions of enhanced plasma density resulting from the appearance of high densities of molecular ions. The thermal plasma data also show clear effects of an induced V × B · L potential at the location of the probes which matches that produced by an L vector linking the probes to the engine nozzles; thereby establishing the prime return current location on the Orbiter. The final observations discussed are the pronounced and complex wake effects resulting both from the main structure of the Orbiter and from the complex shapes of appendages attached to the Orbiter.

  15. MISSE-X: Affordable Space Environment Testing

    NASA Video Gallery

    MISSE–X is a robotically serviceable ISS external facility providing government, industry and academia experimenters with affordable access to space for materials durability testing of potential ...

  16. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  17. Review of radiation hardening techniques for EDFAs in space environment

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Tian, CuiPing; Wang, YingYing; Wang, Pu

    2015-03-01

    The damage mechanism and test technology of space radiation environment to space equipment was classified and the radiation protection demand of active fiber for space application was analyzed. The radiation hardening techniques of Ce doping, hydrogen loading and pre-radiation exposure and thermal annealing for Er:Yb co-doped fiber was surveyed.

  18. Current models of the intensely ionizing particle environment in space

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    1988-01-01

    The Cosmic Ray Effects on MicroElectronics (CREME) model that is currently in use to estimate single event effect rates in spacecraft is described. The CREME model provides a description of the radiation environment in interplanetary space near the orbit of the earth that contains no major deficiencies. The accuracy of the galactic cosmic ray model is limited by the uncertainties in solar modulation. The model for solar energetic particles could be improved by making use of all the data that has been collected on solar energetic particle events. There remain major uncertainties about the environment within the earth's magnetosphere, because of the uncertainties over the charge states of the heavy ions in the anomalous component and solar flares, and because of trapped heavy ions. The present CREME model is valid only at 1 AU, but it could be extended to other parts of the heliosphere. There is considerable data on the radiation environment from 0.2 to 35 AU in the ecliptic plane. This data could be used to extend the CREME model.

  19. Electronics for Low-Temperature Space Operation Being Evaluated

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2001-01-01

    Electronic components and systems capable of low-temperature operation are needed for many future NASA missions where it is desirable to have smaller, lighter, and cheaper (unheated) spacecraft. These missions include Mars (-20 to -120 C) orbiters, landers, and rovers; Europa (-150 C) oceanic exploratory probes and instrumentation; Saturn (-183 C) and Pluto (-229 C) interplanetary probes. At the present, most electronic equipment can operate down to only -55 C. It would be very desirable to have electronic components that expand the operating temperature range down to -233 C. The successful development of these low-temperature components will eventually allow space probes and onboard electronics to operate in very cold environments (out as far as the planet Pluto). As a result, radioisotope heating units, which are used presently to keep space electronics near room temperature, will be reduced in number or eliminated. The new cold electronics will make spacecraft design and operation simpler, more flexible, more reliable, lighter, and cheaper. Researchers at the NASA Glenn Research Center are evaluating potential commercial off-the- shelf devices and are developing new electronic components that will tolerate operation at low temperatures down to -233 C. This work is being carried out mainly inhouse and also through university grants and commercial contracts. The components include analog-to-digital converters, semiconductor switches, capacitors, dielectric and packaging material, and batteries. For example, the effect of low temperature on the capacitance of three different types of capacitors is shown in the graph. Using these advanced components, system products will be developed, including dc/dc converters, battery charge/discharge management systems, digital control electronics, transducers, and sensor instrumentation.

  20. Spacecraft Materials in the Space Flight Environment: International Space Station - May 2002 to May 2007

    NASA Technical Reports Server (NTRS)

    Golden, John; Lorenz, Mary J.; Alred, John; Koontz, Steven L.; Pedley, Michael

    2008-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low-Earth orbit (LEO) space flight is reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are presented. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions in the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6o) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1-4). The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations (5, 6). The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth (1-4). The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays (1-4) than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of

  1. Space environment and lunar surface processes

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1979-01-01

    The development of a general rock/soil model capable of simulating in a self consistent manner the mechanical and exposure history of an assemblage of solid and loose material from submicron to planetary size scales, applicable to lunar and other space exposed planetary surfaces is discussed. The model was incorporated into a computer code called MESS.2 (model for the evolution of space exposed surfaces). MESS.2, which represents a considerable increase in sophistication and scope over previous soil and rock surface models, is described. The capabilities of previous models for near surface soil and rock surfaces are compared with the rock/soil model, MESS.2.

  2. Women's Health Issues in the Space Environment

    NASA Technical Reports Server (NTRS)

    Jennings, Richard T.

    1999-01-01

    Women have been an integral part of US space crews since Sally Ride's mission in 1983, and a total of 40 women have been selected as US astronauts. The first Russian female cosmonaut flew in 1963. This presentation examines the health care and reproductive aspects of flying women in space. In addition, the reproductive implications of delaying one's childbearing for an astronaut career and the impact of new technology such as assisted reproductive techniques are examined. The reproductive outcomes of the US female astronauts who have become pregnant following space flight exposure are also presented. Since women have gained considerable operational experience on the Shuttle, Mir and during EVA, the unique operational considerations for preflight certification, menstruation control and hygiene, contraception, and urination are discussed. Medical and surgical implications for women on long-duration missions to remote locations are still evolving, and enabling technologies for health care delivery are being developed. There has been considerable progress in the development of microgravity surgical techniques, including laparoscopy, thoracoscopy, and laparotomy. The concepts of prevention of illness, conversion of surgical conditions to medically treatable conditions and surgical intervention for women on long duration space flights are considered.

  3. Power electronic applications for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Pickrell, Roy L.; Lazbin, Igor

    1990-01-01

    NASA plans to orbit a permanently manned space station in the late 1990s, which requires development and assembly of a photovoltaic (PV) power source system to supply up to 75 kW of electrical power average during the orbital period. The electrical power requirements are to be met by a combination of PV source, storage, and control elements for the sun and eclipse periods. The authors discuss the application of power electronics and controls to manage the generation, storage, and distribution of power to meet the station loads, as well as the computer models used for analysis and simulation of the PV power system. The requirements for power source integrated controls to adjust storage charge power during the insolation period current limiting, breaker interrupt current values, and the electrical fault protection approach are defined. Based on these requirements, operating concepts have been defined which then become drivers for specific system and element design.

  4. Overview of fiber optics in the natural space environment

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Dorsky, L.; Johnston, A.; Bergman, L.; Stassinopoulos, E.

    1991-01-01

    The potential applications of fiber-optic (FO) systems in spacecraft which will be exposed to the space radiation environment are discussed in view of tests conducted aboard the Long-Duration Exposure Facility and the Comet Rendezvous and Asteroid Flyby spacecraft. Attention is given to anticipated trends in the use of FO in spacecraft communications systems. The natural space radiation environment is noted to be far more benign than the military space environment, which encompasses displacement-damage effects due to significant neutron influences.

  5. The Living With a Star Space Environment Testbed Program

    NASA Technical Reports Server (NTRS)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  6. Software Process Assurance for Complex Electronics (SPACE)

    NASA Technical Reports Server (NTRS)

    Plastow, Richard A.

    2007-01-01

    Complex Electronics (CE) are now programmed to perform tasks that were previously handled in software, such as communication protocols. Many of the methods used to develop software bare a close resemblance to CE development. For instance, Field Programmable Gate Arrays (FPGAs) can have over a million logic gates while system-on-chip (SOC) devices can combine a microprocessor, input and output channels, and sometimes an FPGA for programmability. With this increased intricacy, the possibility of software-like bugs such as incorrect design, logic, and unexpected interactions within the logic is great. Since CE devices are obscuring the hardware/software boundary, we propose that mature software methodologies may be utilized with slight modifications in the development of these devices. Software Process Assurance for Complex Electronics (SPACE) is a research project that looks at using standardized S/W Assurance/Engineering practices to provide an assurance framework for development activities. Tools such as checklists, best practices and techniques can be used to detect missing requirements and bugs earlier in the development cycle creating a development process for CE that will be more easily maintained, consistent and configurable based on the device used.

  7. Manned testing in a simulated space environment

    NASA Astrophysics Data System (ADS)

    Fender, Donna L.

    1992-11-01

    A view of the facility and operational requirements involved in performing a manned thermal vacuum test is presented. The requirements fall into two major categories. The first category deals with placing the suited crewmen in a hazardous environment and assuring their safety. The second category deals with the constraints and special requirements involved with a suited crewman operating flight hardware in a 1-G environment. Design areas that deal with man rating a chamber, including fire suppression, emergency repress, emergency power, backups, reliable instrumentation and data systems, communications, television monitoring, biomedical monitoring, material compatibilities, and equipment supporting the Extravehicular Mobility Unit (EMU) are discussed. The operational issues that are peculiar to manned testing such as test rules, test procedures, test protocol, emergency drills, availability of hyperbaric facilities, test team training and certification engineering concerns for a safe mechanical and instrumentation buildup, hazard analysis, and Failure Modes and Effects Analysis are discussed. The constraints and special requirements involved with a suited crewman operating flight hardware in a 1-G environment are addressed.

  8. Microorganisms and biomolecules in space hard environment

    NASA Technical Reports Server (NTRS)

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  9. Relating space radiation environments to risk estimates

    SciTech Connect

    Curtis, S.B.

    1991-10-01

    This lecture will provide a bridge from the physical energy or LET spectra as might be calculated in an organ to the risk of carcinogenesis, a particular concern for extended missions to the moon or beyond to Mars. Topics covered will include (1) LET spectra expected from galactic cosmic rays, (2) probabilities that individual cell nuclei in the body will be hit by heavy galactic cosmic ray particles, (3) the conventional methods of calculating risks from a mixed environment of high and low LET radiation, (4) an alternate method which provides certain advantages using fluence-related risk coefficients (risk cross sections), and (5) directions for future research and development of these ideas.

  10. System Engineering Issues for Avionics Survival in the Space Environment

    NASA Technical Reports Server (NTRS)

    Pavelitz, Steven

    1999-01-01

    This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.

  11. Kapton pyrolysis, the space environment and wiring requirements

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1994-01-01

    New Low Earth Orbit (LEO) requirements of space environment wiring are compared with traditional requirements. The pyrolysis of Kapton is reviewed for the LeRc vacuum chamber and the 1989 SSF. SEEB modeling of Kapton pyrolysis is also presented.

  12. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  13. Protection of the Space Environment: The First Small Steps

    NASA Astrophysics Data System (ADS)

    Williamson, M.

    The exploration of the space environment - by robotic and manned missions - is a natural extension of mankind's desire to explore his own planet. Likewise, the development of the space environment - for industry, commerce and tourism - is a natural extension of our current business and domestic environment. Unfortunately, it appears that our ability to pollute, degrade and even destroy aspects of the space environment is also an extension of an ability we have developed and practised here on Earth. This paper reviews the evidence of mankind's pollution of the space environment - which includes the planetary bodies - in the first 45 years of the Space Age, and extrapolates the potential for further degradation into its second half-century. It considers the future development of both scientific exploration and commercial exploitation - in orbit and on the surface of the planetary bodies - and the possible detrimental effects. In presenting the case for protection of the space environment, the paper makes recommendations concerning the first steps towards a solution to the problem. Among other things, it calls for the formation of an international consultative body, to consider the issues relevant to `Protection of the Space Environment' and to raise awareness of the subject among the growing body of space professionals and practitioners. It also recommends consideration of a `set of guidelines' or `code of practice' as a precursor to more formal policies or legislation. In doing so, however, it is careful to recognise the need to strike a balance between unbridled exploration and development, and a stifling regime of rules and regulations. The discussion of this subject requires a good deal more collective knowledge, understanding and maturity than has been evident in similar discussions regarding the Earth's environment. At present, that knowledge resides largely within the professional space community. Thus there is also a need for promulgation, both within and

  14. Natural environment support guidelines for Space Shuttle tests and operations

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Brown, S. C.

    1974-01-01

    The present work outlines the general concept as to how natural environment guidelines will be developed for Space Shuttle activities. The following six categories that might need natural environment support are single out: development tests; preliminary operations and prelaunch; launch to orbit; orbital mission and operations; deorbit, entry, and landing; ferry flights. An example of detailed event requirements for decisions to launch is given. Some artist's conceptions of proposed launch complexes at Kennedy Space Center and Vandenberg AFB are shown.

  15. The Living With a Star Space Environment Testbeds

    NASA Astrophysics Data System (ADS)

    Brewer, D.; Barth, J.; Label, K.

    The Living With a Star (LWS) Space Environment Testbeds (SET) are a series of projects that contain investigations that collect data in space and use it to provide products that improve the engineering approach to accommodate and/or mitigate the effects of solar variability on spacecraft design and operations. The improvements reduce requirements for design and operations margins to account for the uncertainties in the space environment and its effects. Reducing the requirements will increase the payload fraction, permit the use of a smaller launch vehicle (thereby reducing mission cost), and/or enable routine operations in new segments of the environment (such as middle Earth orbit, the region from 2000 km to 10,000 km) at costs similar to those for operations below 2000 km. A new SET project starts about very two years when investigations are selected. Five categories of investigations included in SET projects are: (1) Characterization of the space environment in the presence of a spacecraft; (2) Definition of the mechanisms for materials' degradation and the performance characterization of materials designed for shielding from ionizing radiation; (3) Accommodation and/or mitigation of space environment effects for detectors/sensors; (4) Performance improvement methodology for microelectronics used in space; and, (5) Accommodation and/or mitigation of charging/discharging effects on spacecraft and spacecraft components. All SET projects use secondary access to space and partnering to leverage resources. An overview of the SET segment of the LWS program will be presented.

  16. Neuronal plasticity: adaptation and readaptation to the environment of space

    NASA Technical Reports Server (NTRS)

    Correia, M. J.

    1998-01-01

    While there have been few documented permanent neurological changes resulting from space travel, there is a growing literature which suggests that neural plasticity sometimes occurs within peripheral and central vestibular pathways during and following spaceflight. This plasticity probably has adaptive value within the context of the space environment, but it can be maladaptive upon return to the terrestrial environment. Fortunately, the maladaptive responses resulting from neuronal plasticity diminish following return to earth. However, the literature suggests that the longer the space travel, the more difficult the readaptation. With the possibility of extended space voyages and extended stays on board the international space station, it seems worthwhile to review examples of plastic vestibular responses and changes in the underlying neural substrates. Studies and facilities needed for space station investigation of plastic changes in the neural substrates are suggested. Copyright 1998 Elsevier Science B.V.

  17. RESCU: A real space electronic structure method

    NASA Astrophysics Data System (ADS)

    Michaud-Rioux, Vincent; Zhang, Lei; Guo, Hong

    2016-02-01

    In this work we present RESCU, a powerful MATLAB-based Kohn-Sham density functional theory (KS-DFT) solver. We demonstrate that RESCU can compute the electronic structure properties of systems comprising many thousands of atoms using modest computer resources, e.g. 16 to 256 cores. Its computational efficiency is achieved from exploiting four routes. First, we use numerical atomic orbital (NAO) techniques to efficiently generate a good quality initial subspace which is crucially required by Chebyshev filtering methods. Second, we exploit the fact that only a subspace spanning the occupied Kohn-Sham states is required, and solving accurately the KS equation using eigensolvers can generally be avoided. Third, by judiciously analyzing and optimizing various parts of the procedure in RESCU, we delay the O (N3) scaling to large N, and our tests show that RESCU scales consistently as O (N2.3) from a few hundred atoms to more than 5000 atoms when using a real space grid discretization. The scaling is better or comparable in a NAO basis up to the 14,000 atoms level. Fourth, we exploit various numerical algorithms and, in particular, we introduce a partial Rayleigh-Ritz algorithm to achieve efficiency gains for systems comprising more than 10,000 electrons. We demonstrate the power of RESCU in solving KS-DFT problems using many examples running on 16, 64 and/or 256 cores: a 5832 Si atoms supercell; a 8788 Al atoms supercell; a 5324 Cu atoms supercell and a small DNA molecule submerged in 1713 water molecules for a total 5399 atoms. The KS-DFT is entirely converged in a few hours in all cases. Our results suggest that the RESCU method has reached a milestone of solving thousands of atoms by KS-DFT on a modest computer cluster.

  18. Gravity Sensor Plasticity in the Space Environment

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1996-01-01

    The ability of the brain to learn from experience and to adapt to new environments is recognized to be profound. This ability, called 'neural plasticity,' depends directly on properties of neurons (nerve cells) that permit them to change in dimension, sprout new parts called spines, change the shape and/or size of existing parts, and to generate, alter, or delete synapses. (Synapses are communication sites between neurons.) These neuronal properties are most evident during development, when evolution guides the laying down of a general plan of the nervous system. However, once a nervous system is established, experience interacts with cellular and genetic mechanisms and the internal milieu to produce unique neuronal substrates that define each individual. The capacity for experience-related neuronal growth in the brain, as measured by the potential for synaptogenesis, is speculated to be in the trillions of synapses, but the range of increment possible for any one part of the nervous system is unknown. The question has been whether more primitive endorgans such as gravity sensors of the inner ear have a capacity for adaptive change, since this is a form of learning from experience.

  19. Effects of space radiation on electronic microcircuits

    NASA Technical Reports Server (NTRS)

    Kolasinski, W. A.

    1989-01-01

    The single event effects or phenomena (SEP), which so far have been observed as events falling on one or another of the SE classes: Single Event Upset (SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB), are examined. Single event upset is defined as a lasting, reversible change in the state of a multistable (usually bistable) electronic circuit such as a flip-flop or latch. In a computer memory, SEUs manifest themselves as unexplained bit flips. Since latchup is in general caused by a single event of short duration, the single event part of the SEL term is superfluous. Nevertheless, it is used customarily to differentiate latchup due to a single heavy charged particle striking a sensitive cell from more ordinary kinds of latchup. Single event burnout (SEB) refers usually to total instantaneous failure of a power FET when struck by a single particle, with the device shorting out the power supply. An unforeseen failure of these kinds can be catastrophic to a space mission, and the possibilities are discussed.

  20. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  1. Space Photovoltaic Research and Technology 1985: High Efficiency, Space Environment, and Array Technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.

  2. The Living With a Star Program Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  3. Physical phenomena related to crystal growth in the space environment

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1973-01-01

    The mechanism of crystal growth which may be affected by the space environment was studied. Conclusions as to the relative technical and scientific advantages of crystal growth in space over earth bound growth, without regard to economic advantage, were deduced. It was concluded that the crucibleless technique will most directly demonstrate the unique effects of the greatly reduced gravity in the space environment. Several experiments, including crucibleless crystal growth using solar energy and determination of diffusion coefficients of common dopants in liquid silicon were recommended.

  4. The Living With a Star Space Environment Testbed Experiments

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  5. ISS External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  6. Microgravity Acceleration Environment of the International Space Station (panel)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Foster, William M.; Schafer, Craig P.

    2001-01-01

    This paper examines the microgravity environment provided to the early science experiments by the International Space Station vehicle which is under construction. The microgravity environment will be compared with predicted levels for this stage of assembly. Included are initial analyses of the environment and preliminary identification of some sources of accelerations. Features of the operations of the accelerometer instruments, the data processing system, and data dissemination to users are also described.

  7. Teamwork in high-risk environments analogous to space

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  8. Space and planetary environment criteria guidelines for use in space vehicle development, 1971 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Editor)

    1971-01-01

    A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.

  9. The Space Electronics Division: Research for Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video gives an overview of work being done by the different branches of the Space Electronics Division at LeRC. The video highlights electron beam, solid state, high speed circuit design, and high frequency communication research.

  10. Protection of the space environment: the first small steps

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2004-01-01

    The development of the space environment - for industry, commerce and tourism - is a natural extension of our current business and domestic agenda. Unfortunately, this brings with it the ability to pollute, degrade and even destroy aspects of the space environment. This paper briefly reviews the evidence of mankind's pollution of the space environment in the first 45 years of the Space Age, and extrapolates the potential for further degradation into its second half-century. It also makes recommendations concerning the first steps towards a solution to the problem, including the formation of an international consultative body and consideration of a `set of guidelines' or `code of practice' as a precursor to more formal policies or legislation.

  11. An HLA based design of space system simulation environment

    NASA Astrophysics Data System (ADS)

    Li, Yinghua; Li, Yong; Liu, Jie

    2007-06-01

    Space system simulation is involved in many application fields, such as space remote sensing and space communication, etc. A simulation environment which can be shared by different space system simulation is needed. Two rules, called object template towing and hierarchical reusability, are proposed. Based on these two rules, the architecture, the network structure and the function structure of the simulation environment are designed. Then, the mechanism of utilizing data resources, inheriting object models and running simulation systems are also constructed. These mechanisms make the simulation objects defined in advance be easily inherited by different HLA federates, the fundamental simulation models be shared by different simulation systems. Therefore, the simulation environment is highly universal and reusable.

  12. Modeling Ionosphere Environments: Creating an ISS Electron Density Tool

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Minow, Joseph I.

    2011-01-01

    The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.

  13. Modeling of space environment impact on nanostructured materials. General principles

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  14. Capabilities of the Natural Environments Branch at NASA's Marshall Space Flight Center, Revised 2009

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Suggs, Rob; Roberts, Barry C.; Cooke, William J.

    2009-01-01

    The Natural Environment Branch at NASA's Marshall Space Flight Center (MSFC) has the responsibility to provide natural environments engineering support to programs and projects. The Natural Environments Branch is responsible for natural environments definitions, modeling, database development, and analytical assessments of effects. Natural Environments Branch personnel develop requirements for flight projects and provide operational support for space and launch vehicle systems. To accomplish these responsibilities, models and analytical tools have been developed in the areas of planetary atmospheres, meteoroids, ionizing radiation, plasmas and ionospheres, magnetic and gravitational fields, spacecraft charging modeling, and radiation effects on electronic parts. This paper will build on a previous paper published in 2006 and provide updated descriptions of the capabilities within the Natural Environments Branch1. Updates describing improvements and new releases of several analytical tools and models will be presented. Separate sections will specifically describe modifications in the Meteoroid Engineering Model (MEM), and the Marshall Solar Activity Future Estimation (MSAFE) capabilities.

  15. Recent Results of NASA's Space Environments and Effects Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Brewer, Dana S.

    1998-01-01

    The Space Environments and Effects (SEE) Program is a multi-center multi-agency program managed by the NASA Marshall Space Flight Center. The program evolved from the Long Duration Exposure Facility (LDEF), analysis of LDEF data, and recognition of the importance of the environments and environmental effects on future space missions. It is a very comprehensive and focused approach to understanding the space environments, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. Formal funding of the SEE Program began initially in FY95. A NASA Research Announcement (NRA) solicited research proposals in the following categories: 1) Engineering environment definitions; 2) Environments and effects design guidelines; 3) Environments and effects assessment models and databases; and, 4) Flight/ground simulation/technology assessment data. This solicitation resulted in funding for eighteen technology development activities (TDA's). This paper will present and describe technical results rom the first set of TDA's of the SEE Program. It will also describe the second set of technology development activities which are expected to begin in January 1998. These new technology development activities will enable the SEE Program to start numerous new development activities in support of mission customer needs.

  16. Development and testing of coatings for orbital space radiation environments.

    PubMed

    Pellicori, Samuel F; Martinez, Carol L; Hausgen, Paul; Wilt, David

    2014-02-01

    Specific coating processes and materials were investigated in the quest to develop multilayer coatings with greater tolerance to space radiation exposure. Ultraviolet reflection (UVR) and wide-band antireflection (AR) multilayer coatings were deposited on solar cell covers and test substrates and subsequently exposed to simulated space environments and also flown on the Materials International Space Station Experiment-7 (MISSE-7) to determine their space environment stability. Functional solar cells integrated with these coatings underwent simulated UV and MISSE-7 low earth orbit flight exposure. The effects of UV, proton, and atomic oxygen exposure on coatings and on assembled solar cells as related to the implemented deposition processes and material compositions were small. The UVR/AR coatings protected flexible polymer substrate materials that are intended for future flexible multijunction cell arrays to be deployed from rolls. Progress was made toward developing stable and protective coatings for extended space-mission applications. Test results are presented. PMID:24514237

  17. Workshop on Mercury: Space Environment, Surface, and Interior

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. The Scientific Organizing Committee consisted of Mark Robinson (Northwestern University), Marty Slade (Jet Propulsion Laboratory), Jim Slavin (NASA Goddard Space Flight Center), Sean Solomon (Carnegie Institution), Ann Sprague (University of Arizona), Paul Spudis (Lunar and Planetary Institute), G. Jeffrey Taylor (University of Hawai'i), Faith Vilas (NASA Johnson Space Center), Meenakshi Wadhwa (The Field Museum), and Thomas Watters (National Air and Space Museum). Logistics, administrative, and publications support were provided by the Publications and Program Services Departments of the Lunar and Planetary Institute.

  18. Providing controlled environments for plant growth in space.

    PubMed

    Bula, R J; Ignatius, R W

    1996-12-01

    Providing a controlled environment for growth of plants in a space environment involves development of unique technologies for the various subsystems of the plant growing facility. These subsystems must be capable of providing the desired environmental control within the operational constraints of currently available space vehicles, primarily the US Space Shuttle or the Russian Space Station, MIR. These constraints include available electrical power, limited total payload mass, and limited volume of the payload. In addition, the space hardware must meet safety requirements for a man-rated space vehicle. The ASTROCULTURE (TM) space-based plant growth unit provides control of temperature, humidity, and carbon dioxide concentration of the plant chamber air. A light emitting diode (LED) unit provides red and blue photons with a total intensity adjustable from 0 to 500 micromoles m-2 s-1. Ethylene released by the plant material is removed with a non-consumable ethylene removable unit. A porous tube and rooting matrix subsystem is used to supply water and nutrients to the plants. The ASTROCULTURE(TM) flight unit is sized to be accommodated in a single middeck locker of the US Space Shuttle, the SPACEHAB module, and with slight modification in the SPACELAB module. The environmental control capabilities of the subsystems used in the ASTROCULTURE(TM) flight unit have been validated in a microgravity environment during five US Space Shuttle missions, including two with plants. The unique environmental control technologies developed for the space-based plant growth facility can be used to enhance the environmental control capabilities of terrestrial controlled environment plant chambers. PMID:11541567

  19. Space and planetary environment criteria guidelines for use in space vehicle development. Volume 1: 1982 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Compiler); West, G. S. (Compiler)

    1983-01-01

    Guidelines on space and planetary environment criteria for use in space vehicle development are provided. Information is incorporated in the disciplinary areas of atmospheric and ionospheric properties, radiation, geomagnetic field, astrodynamic constants, and meteoroids for the Earth's atmosphere above 90 km, interplanetary space, and the atmosphere and surfaces (when available) of the Moon and the planets (other than Earth) of this solar system. The Sun, Terrestrial Space, the Moon, Mercury, Venus, and Mars are covered.

  20. Underestimated role of the secondary electron emission in the space

    NASA Astrophysics Data System (ADS)

    Nemecek, Zdenek; Richterova, Ivana; Safrankova, Jana; Pavlu, Jiri; Vaverka, Jakub; Nouzak, Libor

    2016-07-01

    Secondary electron emission (SEE) is one of many processes that charges surfaces of bodies immersed into a plasma. Until present, a majority of considerations in theories and experiments is based on the sixty year old description of an interaction of planar metallic surfaces with electrons, thus the effects of a surface curvature, roughness, presence of clusters as well as an influence of the material conductance on different aspects of this interaction are neglected. Dust grains or their clusters can be frequently found in many space environments - interstellar clouds, atmospheres of planets, tails of comets or planetary rings are only typical examples. The grains are exposed to electrons of different energies and they can acquire positive or negative charge during this interaction. We review the progress in experimental investigations and computer simulations of the SEE from samples relevant to space that was achieved in course of the last decade. We present a systematic study of well-defined systems that starts from spherical grains of various diameters and materials, and it continues with clusters consisting of different numbers of small spherical grains that can be considered as examples of real irregularly shaped space grains. The charges acquired by investigated objects as well as their secondary emission yields are calculated using the SEE model. We show that (1) the charge and surface potential of clusters exposed to the electron beam are influenced by the number of grains and by their geometry within a particular cluster, (2) the model results are in an excellent agreement with the experiment, and (3) there is a large difference between charging of a cluster levitating in the free space and that attached to a planar surface. The calculation provides a reduction of the secondary electron emission yield of the surface covered by dust clusters by a factor up to 1.5 with respect to the yield of a smooth surface. (4) These results are applied on charging of

  1. Space Environment Data Acquisition Equipment -Attached Payload (SEDA-AP) on the ISS -"Kibo" Exposed Facility

    NASA Astrophysics Data System (ADS)

    Koga, Kiyokazu; Matsumoto, Haruhisa; Kimoto, Yugo; Obara, Takahiro; Goka, Tateo

    To support future space activities, it is very important to acquire space environmental data related to space radiation degradation of space parts and materials and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. On several satellite of the Japan Aerospace Exploration Agency (JAXA) since the Engineering Test Satellite-V (ETS-V), Technical Data Acquisition Equipment (TEDA) and Space Environment Data Acquisition Equipment (SEDA) have been installed for obtaining the data described above. SEDA-Attached Payload (AP) was mounted on Japanese experimental module, "Kibo" , at International Space Station (ISS) to take continuous measurements of the 400 kilometres altitude space station's tra-jectory for a period of around 3 years. SEDA-AP comprises common bus equipment supporting launch, RMS handling, the power/communication interface with JEM-EF, an extendible mast that extends the neutron monitor sensor 1 m separate from the bus structure, and equipment that measures space environment data. SEDA-AP has been fitted with 8 kinds of instruments. It will continuously and simultaneously measure neutrons, heavy ions, plasma, high-energy electrons and protons, atomic oxygen, space debris and dusts, etc. Furthermore, by exposing electronic devices and materials directory to the space environment, it will examine how they are affected by the environment. SEDA-AP was lanced on July 16 in 2009, and attached to EF of "Kibo" on July 25 using the robot arm of "Kibo". Initial checkout was started on Au-gust 4 and successfully ended on September 17. This paper will report the mission objectives, instrumentation, and current status of SEDA-AP.

  2. NASA's Space Environments and Effects Program: Technology for the New Millennium

    NASA Technical Reports Server (NTRS)

    Hardage, Donna M.; Pearson, Steven D.

    2000-01-01

    Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.

  3. The Space Debris Environment for the ISS Orbit

    NASA Technical Reports Server (NTRS)

    Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don

    2001-01-01

    With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.

  4. Electrodynamic Dust Shields on the International Space Station: Exposure to the Space Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Hogue, M. D.; Johansen, M. R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2012-01-01

    Electrodynamic Dust Shields (EDS) have been in development at NASA as a dust mitigation method for lunar and Martian missions. An active dust mitigation strategy. such as that provided by the EDS, that can remove dust from surfaces, is of crucial importance to the planetary exploration program. We report on the development of a night experiment to fully ex pose four EDS panels to the space environment. This flight experiment is part of the Materials International Space Station experiment X(MISSE-X). an external platform on the International Space Station that will expose materials to the space environment.

  5. Center for Space Power and Advanced Electronics, Auburn University

    NASA Technical Reports Server (NTRS)

    Deis, Dan W.; Hopkins, Richard H.

    1991-01-01

    The union of Auburn University's Center for Space Power and Advanced Electronics and the Westinghouse Science and Technology Center to form a Center for the Commercial Development of Space (CCDS) is discussed. An area of focus for the CCDS will be the development of silicon carbide electronics technology, in terms of semiconductors and crystal growth. The discussion is presented in viewgraph form.

  6. Degradation of Spacecraft Materials in the Space Environment

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.

    2010-01-01

    When we think of space, we typically think of a vacuum containing very little matter that lies between the Earth and other planetary and stellar bodies. However, the space above Earth's breathable atmosphere and beyond contains many things that make designing durable spacecraft a challenge. Depending on where the spacecraft is flyng, it may encounter atomic oxygen, ultraviolet and other forms of radiation, charged particles, micrormeteoroids and debris, and temperature extremes. These environments on their own and in combination can cause degradation and failure of polymers, composites, paints and other materials used on the exterior of spacecraft for thermal control, structure, and power generation. This article briefly discusses and gives examples of some of the degradation experienced on spacecraft and night experiments as a result of the space environment and the use of ground and space data to predict durability.

  7. Qualification of quantum cascade lasers for space environments

    SciTech Connect

    Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; Crowther, Blake; Hansen, Stewart

    2014-06-11

    Laser-based instruments are enabling a new generation of scientific instruments for space environments such as those used in the exploration of Mars. The lasers must be robust and able to withstand the harsh environment of space, including radiation exposure. Quantum cascade lasers (QCLs), which are semiconductor lasers that emit in the infrared spectral region, offer the potential for the development of novel laser-based instruments for space applications. The performance of QCLs after radiation exposure, however, has not been reported. We report on work to quantify the performance of QCLs after exposure to two different radiation sources, 64 MeV protons and Cobalt-60 gamma rays, at radiation levels likely to be encountered during a typical space flight mission. No significant degradation in threshold current or slope efficiency is observed for any of the seven Fabry-Perot QCLs that are tested.

  8. Large electron screening effect in different environments

    SciTech Connect

    Cvetinović, Aleksandra Lipoglavšek, Matej; Markelj, Sabina; Vesić, Jelena

    2015-10-15

    Electron screening effect was studied in the {sup 1}H({sup 7}Li,α){sup 4}He, {sup 1}H({sup 11}B,α){sup 4}He and {sup 1}H({sup 19}F,αγ){sup 16}O reactions in inverse kinematics on different hydrogen implanted targets. Results show large electron screening potentials strongly dependent on the proton number Z of the projectile.

  9. Optical modeling in Testbed Environment for Space Situational Awareness (TESSA).

    PubMed

    Nikolaev, Sergei

    2011-08-01

    We describe optical systems modeling in the Testbed Environment for Space Situational Awareness (TESSA) simulator. We begin by presenting a brief outline of the overall TESSA architecture and focus on components for modeling optical sensors. Both image generation and image processing stages are described in detail, highlighting the differences in modeling ground- and space-based sensors. We conclude by outlining the applicability domains for the TESSA simulator, including potential real-life scenarios. PMID:21833092

  10. Space Environment Studies from CRRES, APEX, and DMSP Satellite Data

    NASA Astrophysics Data System (ADS)

    Delorey, Dennis E.; Madden, Daniel; Holeman, Ernest; Parsons, Carolyn M.; Pruneau, Paul N.; Palys, John; Martin, Kevin R.

    1996-01-01

    The Institute for Scientific Research (ISR) of Boston College was contracted by the Space Physics Division (GPS) of the Phillips Laboratory (PL) Geophysics Directorate to perform research in the area of Space Particle Modeling and Effects. A number of computer models and simulations were developed by use of the data from various spacecraft including the Combined Release and Radiation Effects Satellite (CRRES), Defense Meteorological Satellite Program (DMSP), and Advanced Photovoltaic and Electronics Experiment (APEX).